Metabasites in the Basement Units of the Western Alps

By JACQUELINE DESMONS

With 4 Text-Figures and 2 Tables

Contents

1. Introduction
2. Petrography
 2.1. Pennine Ancient Basement
 2.2. Pennine Younger Basement
 2.3. Austro-Alpine Basement
 2.4. External Crystalline Massifs
3. Chemistry and Affinities
 3.1. Pennine Ancient Basement
 3.2. Pennine Younger Basement
 3.3. Internal Sesia Zone
 3.4. External crystalline Massifs
4. Metamorphism and Age Data
 4.1. Protolith Ages
 4.2. Metamorphic Evolution
 4.2.1. Internal Zones
 4.2.1.1. Eclogites
 4.2.1.2. Remarks on the Radiometric Data
 4.2.1.3. Amphibolite Facies
 4.2.1.4. Variscan
 4.2.1.5. Late Variscan
 4.2.2. External Basement Units
5. Concluding Remarks: Comparison with the Eastern Alps
Acknowledgments
References

Metabasite in den Grundgebirgseinheiten der Westalpen

Zusammenfassung

Der vorliegende Artikel gibt einen kurzen Überblick über die Metabasite der voralpinen kristallinen Folge der Westalpen, um sie mit denen der Ostalpen vergleichen zu können.

*) Author's address: JACQUELINE DESMONS, C.N.R.S.; C.R.P.G., B.P. 20, F-54501 Vandoeuvre-lès-Nancy Cedex.
Abstract

Metabasites found in the pre-Alpine crystalline sequences of the Western Alps are briefly reviewed in order to provide comparisons for the Eastern Alps.

In the internal units, banded amphibolites and boudinaged layers of the "ancient" basement are mostly Ti-rich tholeiites. Their amphibolite facies metamorphism, which postdated an eclogite phase, is considered as probably late Proterozoic in age. A "younger" basement type, likely Late Cambrian in age, contains high-Ti tholeiitic basic sills and a low-Ti basic body. The grade of the pre-Permian Variscan metamorphism in these internal units ranges from nil to low.

The internal crystalline masses contain banded amphibolites, an ophiolite sequence, a plutonic-volcanic complex and various other metabasic bodies. Eclogite relics are found. The protolith ages range from late Proterozoic to Devonian. The original tectonic environments are heterogeneous. Both back-arc and intracontinental magmatism are probably present.

Attention is drawn to difficulties in interpreting geochronological data, in which the leading part is played by high heat flow periods (e.g., Permian) and tectonic events (e.g., decoupling and upheaval of slabs of lower crust in eclogite or granulate facies).

Comparisons are suggested

1) between, on one hand, the pre-Alpine crystalline and more particularly, in the Central Alps, the Simplon-Ticino Sub-Pennine units and, on the other hand, the Tauern crystalline sequences (all accreted to Europe in Variscan times), and
2) between, on one hand, the middle and lower Pennine and the Austro-Alpine units of the Western Alps and, on the other hand, the Middle and Upper Austro-Alpine of the Eastern Alps (all belonging to Gondwana up to Alpine times).

1. Introduction

In the Western Alps, crystalline sequences, Proterozoic and Palaeozoic in protolith age, constitute the basement of

1) the external (Dauphiné-Helvetic) crystalline massifs,
2) the Pennine Briançon-Bernhard units,
3) the internal Pennine massifs,
4) the so-called Austro-Alpine units and
5) the Southern Alps (Fig. 1; Table 1).

According to the current picture of their evolution, the external crystalline massifs, like central Europe, have been strongly affected by the Variscan orogeny, whereas the predominant metamorphic and tectonic imprints in the Pennine and Austro-Alpine units are lower Palaeozoic and older in age. From this, and owing to similarities in the lithology and in the Alpine sedimentary facies, the Pennine and Austro-Alpine crystalline units of the Western Alps are now regarded as detached from Gondwana not earlier than in the Alpine cycle (DESMONS, 1986; RADELLI & DESMONS, 1987). It follows that fruitful comparisons can be made of the crystalline basement of both Western and Eastern Alps.

The pre-Alpine sequences belong to three age groups (Table 1):

1) Upper Carboniferous and Permian sequences consisting of clastic rocks and intermediate to acid magmatic rocks in the external and in the Pennine cover, including the zone Houlleire of the Briançon zone; acidic and intermediate igneous and volcaniclastic rocks of the internal Pennine and Austro-Alpine units; layered gabbroic complexes in the Dent Blanche unit;
2) “Younger” basement (pre-Upper Carboniferous and post-Proterozoic) sequences which are constituted by metasedimentary and meta-igneous rocks forming some Pennine massifs (northern Vanoise, or Pourri-Bellecôte, massif, Ambin formation, etc.); a similar age is assigned to parts of the external crystalline massifs; 3) “Ancient” basement sequences (Proterozoic ?), comprised of metasedimentary and meta-igneous rocks of parts of the external crystalline massifs, most of Briançon, internal Pennine and internal Sesia-Lanzo units, and the Southern Alps.

The present paper reviews the available petrological data concerning the metabasites found in the “younger” and “ancient” basement units of the Western Alps. The Upper Carboniferous to Peronian sequences and the metabasites of the Southern Alps will not be discussed. The chemical and geochronological coverage of these rocks is far from complete and the synthesis will remain provisional in many aspects.

Table 1. Pre-Upper Carboniferous metabasites in the Western Alps.

<table>
<thead>
<tr>
<th>Massif/unit</th>
<th>Metabasite exposure</th>
<th>Chemistry of the metabasites</th>
<th>Measured/assumed age of protolith</th>
<th>Type and age of pre-Alpine metam.</th>
<th>References (* = synthetic paper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External crystalline massifs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aiguilles Rouges</td>
<td>interlayered lenses</td>
<td>plagioclase + K-basalt; N-MORB</td>
<td>453 ±3 (U/Pb zr)</td>
<td>eclogite, U. Silurian - L. Devonian; amphib., Devonian idem, ± Lower Carboniferous greenschist</td>
<td>Liégeois & Duchêne, 1981; Paquette et al., 1989b</td>
</tr>
<tr>
<td>Belledonne</td>
<td>NE part and Allemont/ Rochaillote form.:</td>
<td></td>
<td>= 600-500; early Paleozoic</td>
<td></td>
<td>Bédinier et al., 1981</td>
</tr>
<tr>
<td></td>
<td>banded amphibolites, lenses</td>
<td>T- and N-MORB; low-Ti tholeiite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chamrousse: ophidiolite sequence</td>
<td>E-, T- and N-MORB</td>
<td>496 ± 6 (U-Pb zr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riouperoux-Livet</td>
<td>> arc tholeiite</td>
<td>497 ± 24 (Sm/Nd);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W = Chauliot: banded amphibolites, lenses</td>
<td>crust-contaminated T-MORB and calc-alkaline</td>
<td>352±55, 35±17 (U-Pb zr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvoux</td>
<td>core = E part: idem</td>
<td>intermediate- Ti tholeiite, N- and E-MORB, crust-contaminated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentera</td>
<td>banded amphibolites, lenses</td>
<td></td>
<td>471 ±40-29 (U-Pb zr)</td>
<td>idem</td>
<td>Latouche & Bogaëssoff, 1987; Paquette et al., 1989b</td>
</tr>
</tbody>
</table>

| Briçon-Bernhard (Middle Pennine) massifs: |
Stalden sup. + Ruitor + Ponit	banded amphibolites, boudins	high-Ti tholeiite (MORB)			
Chaussée formation	banded amphibolites	Ti-rich tholeiite, spilite, tholeiite, spilite			
Calizzano-Savona	idem	Ti-rich tholeiite (MORB); spilite + alkaline			
younger basement: Métailler	layers in metasedim.	Ti-rich tholeiite	Cambrian ?	none or very low	*Desmons & Ploquin, 1989; Guillot et al., 1991
N Vanoise-Bellecôte-Pouri	sill	Ti-rich tholeiite			
Zona interna	igneous body	Ti-poor tholeiite			
Ambin F.	layers, banded meta-	Ti- and N-MORB;	Late Proterozoic	eclogite, amphibolite, Late Pan-African ?	Beirach, 1952
Accoglio p.p.	tuffs and tuffs	Ti-rich tholeiite			

| Internal Pennine massifs: |
Mt. Rose	banded amphibolites,	high-Ti tholeiite ?	Late Proterozoic ?	eclogite, amphibolite, Late Pan-African ?	Michel, 1953; compagnoni & Prato, 1969
Gran Paradiso	boudins				*Desmons & Ploquin, 1989; Forcella et al., 1973
T Valsois-T. Visone (Ligury)	idem				
Austro-Alpine: internal Sesia-Lanzo	internal Sesia-Lanzo				

2. Petrography

2.1. Pennine Ancient Basement

The Alpine metamorphism and deformation, which have been strong and commonly pervasive, make it difficult to characterize the pre-Alpine sequences in the Pennine basement. Pre-Alpine metamorphic mineral associations have often been destroyed and the grain size strongly reduced; pre-Alpine structural planes have been transposed into Alpine planes.

The ancient basement sequences of the Pennine units comprise: metasedimentary schist and gneiss, very rare marble; acid orthogneiss (augen-gneiss, minor granophyre); and metabasite showing amphibolite and subordinate eclogite facies pre-Alpine associations. There is an insignificant amount of ultrabasic rocks, of cumulate origin. The metabasites most commonly consist of banded amphibolites, with alternating melanocratic and leuocratic layers. (These leucocratic layers are often ill-named
Fig. 1. Tectonic map of the Western Alps.
1 = Cover of the external zones; Prealps; 2 = External crystalline massifs; 3 = Pennine cover; Valais zone; 4 = Combin and Zermatt zones, undifferentiated; 5 = Pennine front (boundary between Alpine Europe and Alpine Gondwana); 6 = Pennine younger basement; 7 = Pennine ancient basement; Simplon-Ticino nappe (central Alps); 8 = Sesia and Dent Blanche (Arolla) zones and related klippen; 9 = Southern Alps; "Second diorite-kinzigitic" zone; Valpelline unit.

Fig. 2. Example of lithostratigraphic section through a banded metabasic outcrop (chlorite-epidote-albite-actinolite rock, possible meta-pyroclastite) in the Briançonnais zone, Ruitor massif, Valgrisanche (NW Italy). Note the interlayered mica-schists ± chloritoid.
lepsyntites by French authors.) In addition, there are a few metre-sized, lenticular or boudinaged, bodies. Relics of gabbroic or ophiitic structure are scarce.

In the banded amphibolites (DESMONS & HUNZIKER, 1988) the relative proportions of basic, intermediate and acid parts, the thickness of the individual layers and thus the number of alternations, vary strongly. These alternating rocks of contrasting compositions (Fig. 2) are most frequently interpreted, in the Alps and Variscan Europe, as bimodal volcanics and/or volcanioclastics (e.g. FRANK et al., 1976; FRISCH et al., 1984; WIMMENAUER & LI, 1988; SANTALLIER et al., 1988), but this explanation is far from being entirely satisfying, owing to the high number of these repeated, often thin, layers. An origin in a layered plutonic complex can not be contemplated but in a few cases: most leucocratic layers are sodic, thus not corresponding to anorthosite, but rather to plagiogranite composition.

Evidence from the Chamrousse ophiolite in the Belle-donne massif (MÉNOT, 1988c) shows that a metamorphosed tilted dyke complex, with a foliation parallel to the intrusive contacts, can mimic a banded sequence. In addition, thinning of the layers and part of the alternations may have been generated by folding, as shown by the presence of host-rock layers in the sequence (Fig. 2).

2.2. Pennine Younger Basement

The younger basement type comprises sequences that have not been, or only slightly, metamorphosed in pre-Alpine time (DESMONS & FABRE, 1988; DESMONS & PLOQUIN, 1989; DESMONS, 1990). These sequences are found in the Briançon zone (so far not in Ligury), where their stratigraphical or structural position is intermediate between crystalline sequences of ancient basement type at the footwall and Lower Permian layers at the hanging wall. In the internal Pennine massifs (especially the Dora-Maira massif), evidence supporting younger basement type remains so far ambiguous.

It appears that only the younger basement units possess a Permian tegument, which directly overlies the basement (the Permian layers exposed west of the Chasseforêt, or southern Vanoise, massif do not constitute its cover, but a probable trace of the Pourri-Bellocôte unit, squeezed in the Chavière fault zone). Although for a long time regarded as Upper Carboniferous to Permian in age, the younger basement sedimentary sequences in fact are no lithological equivalents of the palaeontologically dated clastic rocks of the zone Houillère and both belong to different structural units (BOCQUET (DESMONS), 1974a; GUILLOT et al., 1987).

The younger basement sequences include metamorphic shales and graywackes, felsic tuffs, granophyre bodies and metabasites which, in the western part of the Pourri-Bellocôte massif, or northern Vanoise, are of two different types: a lower tectonic slice containing an igneous body with gabbro, leucogabbro, basalt and a few rhyolitic rocks, and an overlying upper slice comprising basic layers interpreted as sills and sedimentary rocks.

2.3. Austro-Alpine Basement

In the eastern (internal) part of the Sesia-Lanzo zone and in the Mt. Emilius klippe, the so-called “eclogitic mica-

schists” consist of centimetre to metre-thick basic boudins and layers, with eclogite and amphibolite metamorphic associations, enclosed within garnet mica-schists. Minor gabbro with some preserved magmatic features, marbles and quartzites are also found. These rocks belong to the ancient basement type.

The acid plutonic and volcaniclastic protoliths of the “gneiss minuti” and meta-diorites of the western (external) part of the Sesia-Lanzo zone, of the Arolla sequence in the Dent Blanche nappe and related klippen have been considered, but without radiometric evidence, as possibly Permian in age.

Associated metabasites are uncommon. The gabbro bodies of the Matterhorn-Arolla have yielded Permian radiometric ages (DAL PIAZ et al., 1977).

The Valpelline zone in the Dent Blanche nappe, and the “Second diorito-kinzigitic” klippen overlying the Sesia zone contain granulite facies metasedimentary and meta-basic rocks which are similar to South-Alpine rocks.

These rocks of the external Sesia, the Dent Blanche and the “Second diorito-kinzigitic” units will not be taken into consideration in this paper.

2.4. External Crystalline Massifs

Metabasites are unevenly distributed in the different subunits making up the external crystalline massifs. Taking the Belledonne massif as an example (VIVIER et al., 1987; MÉNOT, 1988a and b), we see different types of basic associations related to separate structural units.

In the SW part of the massif an almost complete ophiolite sequence, the Chamrousse overturned sequence, is exposed over an area of 32 x 2 to 5 km. It includes ultrabasic and basic cumulates, isotropic gabbro, and various basalts. It lies in tectonic contact with a gneiss-amphibolite formation (the Allemont-Rochetaillee formation), and with an underlying plutonic-volcanic complex, the Riouperoux-Livet complex. The latter complex comprises banded metabasites intruded by acid magmatic rocks, and associated with some clastic sedimentary rocks.

The NE part of the Belledonne massif includes banded metabasites and metabasic lenses, interlayered with metasedimentary rocks. There are a few eclogite relics. This type of exposure is also found in the other external crystalline massifs: Aiguilles Rouges, western (Challilô) and core parts of Pelvoux, and Argentera. In the Aiguilles Rouges and the Argentera massifs the amount of metabasites is trivial.

Unlike the Pennine and Austro-Alpine basement, the external crystalline massifs show the effects of a strong metamorphic imprint of Variscan age, predominantly of amphibolite facies, secundarily of greenschist facies, which has been only slightly disturbed by the Alpine events. In particular, the different domains making up each massif have been juxtaposed in late Variscan times (Lower Carboniferous).

3. Chemistry and Affinities

3.1. Pennine Ancient Basement

In the ancient Pennine basement units (DESMONS & PLOQUIN, 1989), in addition to a few cumulate samples
from the lenticular bodies, of alkaline composition, the ana-
lysed metabasites show a Ti-rich, less frequently a Ti-
poor tholeiitic trend and are often spilitic (Table 1; Fig. 3
and 4D; only major element data are presented in dia-
grams, as only few trace element analyses are available). Those rocks that on the basis of their TiO₂ and Al₂O₃ con-
tents can be safely considered as deriving from basalts
(Pearce, 1983) have a MORB affinity.

3.2. Pennine Younger Basement

In the younger Pennine basement units the metabasite
composition is tholeiitic (Fig. 3 and 4C): high-Ti in the Bell-
ecôte sills, low-Ti in the cumulates and basalts of the Bell-
ecôte igneous body and in most Ambin and Accegliro me-
tabasites. The additional presence of calc-alkaline (in pyroclastic rocks ?) and within-plate characteristics is not ascertained owing to the small number of the correspond-
ing analyses. For igneous bodies such as that in the Pour-
ri-Bellecôte massif, an arc tholeiite affinity and an im-
mature arc setting have been inferred (Guillot, 1987), which should be corroborated by appropriate diagrams using trace elements.

3.3. Internal Sesia Zone

According to their TiO₂ and Al₂O₃ contents (Pearce,
1983) only a small part of the analyzed metabasites can rep-
resent possible basaltic melts. These metabasites are de-
scribed as plagioclase to olivine tholeiites, similar to MORB, but the TiO₂ – FeO*/MgO diagram (Fig. 4D) clearly indicates three trends: low-Ti tholeiitic, calc-alkaline and high-Ti tholeiitic. Trace element data should be used to discuss their possible tectonic environments.

3.4. External Crystalline Massifs

In the Belledonne external crystalline massif, the Cham-
rousse ophiolite contains olivine tholeiitic basalts, rich in
Ti (Fig. 3 and 4B), with complex and evolving MORB affini-
ties: E-, T-, N- and P-types have all been mentioned. It has been suggested that the magma was derived from a het-
erogeneous mantle influenced by a subduction zone (Phin &
Carme, 1987), or from the mantle underlying an attenuated continental crust, transitional to oceanic crust (Menot et
al., 1988b). Bodinier et al. (1981) proposed a mid-ocean
ridge and its flanks. On the basis of the chemical charac-
teristics, of the olivine → clinopyroxene → plagioclase
 crystallization sequence and of the remark (Desmons &
Radeli, 1989a and b) that the lithosphere of large oceans
gets entirely subducted and has no chance to be accreted
as ophiolites, a back-arc basin with an associated ensi-
matic arc seems to be a more likely original setting.

In the amphibolites of the Allemont-Rochetaillé forma-
tion both N- to T-MORB and supra-subduction-zone affin-
ities are found.

The banded amphibolites of NE Belledonne, as well as
the eclogites and amphibolites of the Aiguilles Rouges,
Pelvoux and Argentera massif, include tholeiites with in-
termediate to low Ti-contents (Fig. 3 and 4A), which REE
patterns show to be typical of N-MORB (Aiguilles Rouges,
Pelvoux and Argentera), but strongly enriched LIL-elements and the relatively high Nb/Zr ratio point to a subcontinental mantle source. Calc-alkaline metabasites are also present in the Pelvoux and Belledonne massifs (Fig. 4A). Field evidence (the insignificant amount of the basic rock relative to the host sedimentary rocks) and chemical comparisons, however, led Liegeois & Duchesne (1981) to suggest dyke
or sill intrusions for some amphibolites and eclogites of the Aiguilles Rouges massif. Some eclogites of the Argentera appear to be derived from cumulates.

4. Metamorphism and Age Data

4.1. Protolith Ages

In the external crystalline massifs radiometric and isotopic data (Sm-Nd, U-Pb on zircon and Rb-Sr; references given in Table 1) indicate:

1) a late Proterozoic to early Palaeozoic age of the gneiss-amphibolite Alemont-Rochetaillée formation (500-600 Ma);
2) a Cambrian-Ordovician age (497 ± 24 and 496 ± 6 Ma) for the Chamrousse ophiolite body in the Belledonne external crystalline massif;
3) an early Palaeozoic age for the metabasites in the NE part of the Belledonne massif, in the Aiguilles Rouges (453 ± 3 Ma) and Argentera massifs (471 ± 26 Ma); and
4) a Devonian age (352 ± 55 and 365 ± 17 Ma) for the trondhjemite intruding the banded metabasites of the Riouperoux-Livet plutonic-volcanic complex in the same massif.

No direct chronological evidence is available for the West-Alpine Pennine and Austro-Alpine metabasites. Cambrian Rb-Sr and middle Proterozoic Sm-Nd ages have been obtained from similar amphibolites in the Central Alps (STILLE, 1980; STILLE & TATSUMOTO, 1985). Allowing for time for the subsequent metamorphic and magmatic events, which are to be placed at likely orogenic periods, late Proterozoic is considered to be a likely time for the main basic magmatism in the ancient Pennine units. In the Dora-Maira massif Sm-Nd and isotopic Pb ages (PAQUETTE et al., 1989a; TILTON et al., 1991) point to lower and middle Proterozoic for the granitic source of the metasedimentary rocks and two (674 and 667 Ma) data may be related to late Proterozoic granitic intrusions in the pre-existing sequence.

In the younger basement units the youngest possible age of the basic magmatism is Cambrian on the basis of
the Late Cambrian zircon age of a granophyre sill (Guillot et al., 1991).

Traces of late magmatic alterations and ocean-type metamorphism and deformation have been described from the Ca-amphibole-bearing gabbros of the younger basement and from the Chamrousse ophiolite.

4.2. Metamorphic Evolution

4.2.1. Internal Zones

In the internal zones (Pennine and Austro-Alpine) the pre-Alpine metamorphic evolution includes the following stages recorded by mineral relics and/or radiometric ages: eclogite, amphibolite locally associated with anatectic, and local greenschist (Desmons, 1992, with previous references).

4.2.1.1. Eclogites

Early eclogites are found in the Bernhard-Briançon zone (Thélin et al., 1989; Desmons in Debelsmas et al.; 1989; MESSIGA, 1981), in the internal Pennine massifs and in the internal Austro-Alpine units. They may have been much more widespread than currently found, as shown by the common presence of rutile, by the ~10–30 % pyrope content of garnet cores and by symplectitic remnants.

Granulite relics older than eclogitic minerals have been mentioned in the Sesia Zone and considered as possibly present in the Gran Paradiso (Battiston et al., 1984–87).

The pre-Alpine age of the eclogites in the Briançon-Bernhard zone is beyond doubt (in spite of Caby & Kienast’s, 1989, contention of a Mesozoic-Alpine age, i.e. Upper Eocene-Lower Oligocene), as the succeeding associations are observed: omphacite + garnet → (pre-Alpine) hornblende + plagioclase + clinzoisite + garnet → (Alpine) glaucophane + epidote + chlorite and chlorite ± actinolite + albite + epidote. Eclogites in more internal units could actually belong to two age groups, one earlier than the amphibolite metamorphic facies and one Eo-Alpine in age. In the Monte Rosa massif Beáth (1952) suspected early eclogites, older than the amphibolite association.

COMPAGNONI & LOMBARDO (1974), arguing that eclogite associations could not have survived at close contact with intrusive granite, as well as Dal Piaz & Lombardo (1986) sustained an Alpine age for all Gran Paradiso and Monte Rosa eclogites. However, the argument can be reversed and one can wonder, in the hypothesis of Eo-Alpine eclogites, how would come that the granite adjoining the eclogite has not been eclogitized as the Sesia granitoids have known in all ancient Pennine and Austro-Alpine basement units, sillimanite (relic or pseudomorphed) has been found in the Monte Rosa and Gran Paradiso massifs (Beáth, 1952; Compagnoni & Prato, 1969), in the Bernhard zone near the Great St.-Bernhard pass and in Ligury where an anatectic grade has been reached (Messiga, 1981; Cortesogno et al., 1982; Cortesogno, 1984–86). An evolution of the amphibolite facies can be recognized in particular areas: a kyanite-bearing, middle-pressure phase has been followed by a higher-temperature, sillimanite-bearing, phase, then by a lower-pressure and temperature, biotite-bearing, phase during which kyanite was no longer stable (BOCCOUET [DESMONDS], 1974a; Desmons, 1992; Desmons & Mercier, 1993). A late greenschist phase has been distinguished in the Ligurian Alps.

So far, the amphibolite facies phase or phases remain undated in the internal Western Alps. Variscan K-Ar ages obtained from biotite and white mica (BoCCouet [DeSMONDS], et al., 1974; Monié, 1990) may date the green schist phase, or have no geological significance. Most muscovite ages, if not Alpine-rejuvenated, point to the Permian thermal event. A late Proterozoic, i.e. late Pan-

4.2.1.3. Amphibolite Facies

Amphibolite facies associations post-date the eclogite facies. Kyanite, staurolite, biotite, garnet, hornblende are known in all ancient Pennine and Austro-Alpine basement units, sillimanite (relic or pseudomorphed) has been found in the Monte Rosa and Gran Paradiso massifs (Beáth, 1952; Compagnoni & Prato, 1969), in the Bernhard zone near the Great St.-Bernhard pass and in Ligury where an anatectic grade has been reached (Messiga, 1981; Cortesogno et al., 1982; Cortesogno, 1984–86). An evolution of the amphibolite facies can be recognized in particular areas: a kyanite-bearing, middle-pressure phase has been followed by a high-temperature, sillimanite-bearing, phase, then by a lower-pressure and temperature, biotite-bearing, phase during which kyanite was no longer stable (BoCCouET [DeSMONDS], 1974a; Desmons, 1992; Desmons & Mercier, 1993). A late greenschist phase has been distinguished in the Ligurian Alps.

Generally speaking, Rb-Sr and K-Ar methods date thermal events: the thermal peak or the closure of the isotopic system. In many cases of polymetamorphism the apparent ages date neither the primary crystallization time, nor the foliation plane where the dated mineral is lying, nor even the associated minerals. When a same group of ages is found all over a large area (e.g. Permian ages in the Alps), a period of high heat flow, thus an extensional regime, must be suspected, which can be directly dated through the primary minerals of the related magmatic. Likewise, when similar ages are repeatedly obtained from one tectonic zone, the possibility must be considered that the dated event is not the crystallization but an isotopic closure due to an abrupt tectonic event.

Examples can be the tectonic detachment of slabs of eclogitic-crati con and granulitic-tectonically active lower crust (sensu Griffin & O’Reilly, 1987), or a shearing event catalyzing a reaction that in spite of appropriate P-T conditions had been prevented to occur earlier owing to nucleation or fluid circulation problems (e.g., Authemey & Griffin, 1985). In many cases eclogites point not to a high-pressure type of metamorphism and ultra-deep subduction of sialic crust, but to the tectonic incorporation of slabs of cratonic deep crust, reflecting a shield, i.e. a high-pressure-barrovian, geotherm.
African age is possible for this amphibolite facies phase in the internal basement units.

4.2.1.4. Variscan

In these internal units the Variscan (Devonian-Lower Carboniferous) metamorphic imprint has been absent or of very-low grade (in the younger basement and most of the ancient basement) to low-grade (in part of ancient basement units: the later greenschist facies mentioned in Ligury). This is of utmost importance in differentiating the basement of the external units from the internal units.

4.2.1.5. Late Variscan

As shown by the Upper Carboniferous rocks of the zone Houillère, the late Variscan events did not leave any noticeable metamorphic imprint in this part of the Briançon zone. However, the radiometric ages that are commonly obtained in the Pennine basement point to a Permian high heat flow regime. This can be connected with the widespread acid magmatism of that period and of Lower Triassic time, and with the likely existence of an underlying extensional and granulitized deep crust.

Our most contact effects around the Variscan granitoids did not survive the Alpine metamorphic phases. Andalusite-bearing veins have been locally mentioned, however (BEARTH, 1960-63).

4.2.2. External Basement Units

In the external basement units a number of chronological data (summarized by von RAUMER, 1984; von RAUMER et al., 1990) point to:
1) poorly defined Proterozoic metamorphic events (amphibolite facies, migmatite);
2) Ordovician-Silurian eclogite (PAQUETTE et al., 1989b) (time of the crystallization of the eclogite minerals or of the detachment from the cratonic lower crust?);
3) Devonian to Carboniferous amphibolite metamorphic associations, evolving from kyanite through sillimanite to andalusite associations, with migmatite and Late Carboniferous granitoid intrusion.

5. Concluding remarks:
Comparison with the Eastern Alps

Some close similarities can be recognized in protolith lithology and in pre-Alpine metamorphic evolution of Western and Eastern Alpine units (Table 2). It must be noted that these similarities may be related to common histories up to a certain time, but do not imply identical Alpine structural positions. The similarities are:
1) Between the ancient Pennine plus Austro-Alpine basement units of the Western Alps and Middle Austro-Alpine crystalline units of the Eastern Alps (Celtic and, in part, Noric terranes of FRISCH & NEUBAUER, 1989);
2) Between the younger Pennine basement units and the Upper Austro-Alpine in the Eastern Alps (e.g. most part of the Noric terrane; compare the Bellècôte sills and plutonites with the metabasites from the Greywacke Zone and Upper Austro-Alpine; NEUBAUER & FRISCH, 1988; LOESCHKE, 1989; NEUBAUER et al., 1989);
3) Between the external crystalline massifs (and the Sub-Pennine – i.e. lower than Pennine – units in the Central Alps) and both Untere Schieferhüllle and Gneisskerne of the Tauern window (following a proposal of DESMONS & RADELLI, 1990, based on lithological similarities of both crystalline and Mesozoic sequences, on the Vari-
can age of the granitoid intrusives and on the Alpine struc-
tural position below Wallis-type ophiolites and schists). In
particular, the Cambrian-Ordovician Charnmousse ophio-
lite, generated in a back-arc basin, partly above a subduc-
tion zone, should be compared with the ensimatic arc-de-
dived Stubbach ophiolite (FRISCH & NEUBAUER, 1989 with
previous references). The late Proterozoic–early Palaeozo-
ic banded amphibolites of the external crystalline massifs
should be compared with the metabasites of the (upper
Proterozoic or Palaeozoic?) Habach formation (HÖCK et
al., 1982; FRISCH et al., 1987; REITZ & HÖLL, 1988). Thus,
the Tauern crystalline basement and cover should best be
compared, not to Briancçon basement, but to Simpion-Ti-
cino basement units and Valais/Valais cover sequences.

At the onset of the Alpine orogenic cycle, all Pennine and
Austro-Alpine units belonged to Gondwana, more pre-
cisely to that part of the Tethys s.l. formed by the Gondwa-
nan margin, from which fragments will detach arc-fashion,
creating back-arc basins behind them (RADELLI & DE-
SMONS, 1987, 1988). These units are derived from a large
Gondwanan province characterized by a same gneiss-
amphibolite "ancient" association.

During Variscan times, while the future external crystal-
line massifs and Sub-Pennine units, already detached from
Gondwana, together with other parts of Variscan
Europe were progressively accrued to Laurentia-Baltica,
extensional processes were resulting in some magmatism
and intracontinental basin subsidence within the margin
of Gondwana (the future younger basement and Upper
Austro-Alpine). Localized high heat flow produced grani-
toid intrusions and rejuvenated isotopic systems. It is
worth noting that the two basement types, younger and
ancient, are also found in Calabria (Di PISA et al., 1988), in
the Tuscan basement (e.g., MORETTI et al., 1990) and other
places of the Alpine belt.

The importance of the Variscan thermal events in the
Eastern Alps is still debated: regarded as minor by BECKER
et al. (1987, p. 178, in the Ötztal), it is also considered as
high (MORAUF, 1982, in the Koralm, and others). As men-
tioned above, one has to be careful in distinguishing a
thermal re-setting from a regional metamorphic and defor-
mational phase.

Much work has still to be done on the internal crystalline
units of the Western Alps, especially as concerns the
chemical composition, the magmatic sources and the
ages of the metabasites. The ancient basement still con-
ceals much of its complexity. The metabasites appear as
polygenic. The Charnmousse ophiolite bears evidence of
ocean-type crust in lower Palaeozoic times. Many of the
other ancient metabasites have the composition of high
Ti-tholeiites. As they do not form ophiolite sequences but
are associated with leucocratic rocks, they perhaps are to
be interpreted as ensialic magmatics or volcanoclasticis,
a hypothesis that should be confirmed by additional trace
element data. A similar ensialic origin has been inferred for
the metabasites of the Middle Austro-Alpine of the East-
ern Alps (FRISCH & NEUBAUER, 1989). In the present state
of knowledge any attempt at an Early Palaeozoic palaeo-
geographic reconstruction seems to be a premature and
delusive attempt.

Acknowledgments

I thank Dr. V. HÖCK, Dr. R. SEEMANN and Dr. F. KOLLER, whose kind invita-
tion to the Knappenwand colloquium has brought this paper to light, and
Dr. L. RADELLI for his constructive comments.

References

AUSTHEIM, H. & GRIFFIN, W.L.: Shear deformation and eclogite
formation within granulite-facies anorthosites of the Bergens
arcs, western Norway. - Chemical Geol., 50, 267–281, Amster-
dam 1985.

BARRÉT, J.C. & PÉCHER, A.: Notice explicative de la feuille Saint-
Christophe-en-Olans à 1/50 000. - Orleans (Bur. geol.
min.) 1984.

BATTISTON, P., BENCIOLINI, L., DAL PIZZ, G.V., DE VECCHI, G.,
MARCHI, G., MARTIN, S., POLINO, R. & TARTARONI, P.: Geologia di
una trasversa dal Gran Paradiso alla Zona Sesia-Lanzo in alta Va-

BEARTH, P.: Geologie und Petrographie des Monte Rosa. - Beltr.

BEARTH, P.: Contribution à la subdivision tectonique et stratigra-
pique du cristallin de la nappe du Grand-St-Bernard dans le
Valais (Suisse). - Mém. h. sér. Soc. géol. France, 2, 407–418,
Amsterdam 1960–63.

BECKER, L.P., FRANK, W., HÖCK, V., KLEINSCHMIDT, G., NEUBAUER,
SASSI, F.P. & SCHRAUM, J.-M.: Outlines of the pre-Alpine meta-
orphic events in the Austrian Alps. - In: FLÜGEL, H.W., SASSI,
F.P. & GRELLA, P. (Eds.): Pre-Variscan and Variscan events in
the Alpine-Mediterranean mountain belts, 69–106, Bratislava
(Afa Publ.) 1987.

BIHO, G. & POGNIANTE, U.: Paleozoico continental-type gabbros in
the Gran Paradiso nappe (Western Alps, Italy): Early-alpine
eclogitization and geochemistry. - Lithos, 12, 3–19, Amster-
dam 1989.

BOCQUET [DESMONS], J.: Le socle briançonnais de Vanoise (Sau-
voie): arguments en faveur de son âge anté-alpin et de son po-
lymétamorphisme. - C.R. Acad. Sci., 278 (D), 2601–2604, Paris
1974a.

BOCQUET [DESMONS], J.: Il metamorfismo prealpino nella Vanoise
(Savoi) e in aree settori dello zolcolo brianzono. - Mem. Soc.

BOCQUET [DESMONS], J., DELALOYER, M., HUNZIKER, J.C. & KRUM-
MENACHER, D.: K-Ar and Rb-Sr dating of blue amphiboles,
micas and associated minerals from the Western Alps. - Con-

BODINIER J.L., DUPUY, C., DOSTAL, A. & CARMELE: Geochemistry of
ophiolites from the Charnmrousse complex (Belledonne massif,

BODINIER J.L., GIRAUD, A., DUPUY, C., LEYRELLOUP, A. & DOSTAL, J.: Carac-
térisation géochimique des métabasites associées à la suture
mériodionale hercynienne: Massif central français et
Charnmrousse (Alpes). - Bull. Soc. géol. France (8), 2, 115–124,

BARY, R. & KINNAST, J.R.: Meso-Alpine high-pressure assem-
blages and excavation of the Rutor Briançonnais basement
(Savoi, Val d’Aoste, Graie Alps). - Terra abstracts, 1, 266, Ox-
ford 1989.

CARRÉ, R. & PIN, C.: Vue d’ensemble sur le magnétisme pré-
orogénique et l’évolution métamorphique et tectonique
varié dans le Sud de la chaîne de Belledonne (Massifs
Cristallins externes, Alpes françaises). - C.R. Acad. Sci.,

CHOPIN, C.: Coesite and pure pyrope in high-grade blueschists of
the Western Alps: a first record and some consequences. - Con-

COMPAGNONI, R. & PRATO, R.: Paramorfosi di cianite su sillimanite
in scisti pregranitici del Massiccio del Gran Paradiso.- Boll.

COMPAGNONI, R. & LOMBARDO, B.: The Alpine age of the Gran Para-

COMPAGNONI, R., DAL PIZZ G.V., HUNZIKER, J.C., GOSSO, G., LOM-
BARDI, B.A. & WILLIAMS, P.F.: The Sesia-Lanzo zone, a slice of con-
tinental crust with alpine high pressure-low temperature as-
semblages in the Western Italian Alps. - Rend. Soc. Ital.

NEUBAUER, F., FRISCH W., SCHMEROLD, R. & SCHLÖSER, H.: Meta-...