ZUR HERKUNFT DES GASES DER KOCHBRUNNEN IM NEUSIEDLERSEE

D. Rank, W. Papesch, F. Staudner Bundesversuchs- und Forschungsanstalt Arsenal, Wien.

ZUSAMMENFASSUNG

Als Ergänzung zu früheren Untersuchungen an den Kochbrunnen bei Eisbedeckung des Sees wurden im Sommer 1985 weitere Proben entnommen und an dem enthaltenen Methan eine 14 C-Altersdatierung ausgeführt. Das Gas ist biogener Herkunft, sein 14 C-Alter beträgt mehr als 30.000 Jahre, aus dem 2 H- und 13 C-Gehalt des Methan kann auf tertiäre Herkunft geschlossen werden.

EINLEITUNG

Zur Abschätzung der Bedeutung der Kochbrunnen für den unterirdischen Zufluß zum Neusiedlersee waren in den Wintern 1983/84 und 1984/85 aus den Ruster Kochbrunnen Wasserund Gasproben entnommen und chemisch-physikalisch untersucht worden (RANK et al., 1985). Ein Vergleich der Isotopenverhältnisse und der chemischen Eigenschaften der Wasserproben aus den Kochbrunnen mit denen von See- und Grundwasserproben ließ darauf schließen, daß es sich bei den Ruster Kochbrunnen lediglich um Gasaustritte handelt – es konnten keine signifikanten Unterschiede zwischen den Eigenschaften von Kochbrunnen- und Seewasser festgestellt werden. Das austretende Gas besteht vorwiegend aus Methan. Zur Absicherung dieser Ergebnisse wurden im Sommer 1985 weitere Gas- und Wasserproben gesammelt und vor allem das Gas auf seine Herkunft untersucht.

PROBENAHME UND MESSERGEBNISSE

Am 23.8.85 wurden beim stärksten Gasaustritt der Kochbrunnenreihe - vermutlich Kochbrunnen B in RANK et al. (1985) - Gas- und Wasserproben entnommen. Die Wassertiefe betrug ca. 120 cm. Das aufsteigende Gas wurde mit einem Trichter unmittelbar am Seegrund aufgefangen. Weiters wurde als Vergleichsprobe eine Seewasserprobe in ca. 100 m Entfernung in Richtung Podersdorf gezogen.

Die Ergebnisse der Isotopenanalysen an den beiden Wasserproben (Tab.1) bestätigen die bei den Winterprobenahmen erhaltenen Resultate: es gibt keine signifikanten Untérschiede zwischen See- und Kochbrunnenwasser, daher ist ein Austritt von Grundwasser an diesen Stellen auszuschließen.

Tabelle 1: Isotopenverhältnisse von Kochbrunnen- und Seewasser.

	³ H (TE)	δ ¹⁸ 0(%o)
Kochbrunnen B	29,2 ⁺ 1,4	-1,96
Seewasser (100 m entfernt)	28,9 ⁺ 1,4	-1,95

Die chemische Zusammensetzung des Gases ist ähnlich wie bei den früheren Probenahmen (Tab.2), die Probe vom 23.8.85 dürfte aber repräsentativer sein – unmittelbar am Seegrund gesammelt, während die Probenahme am 20.2.84 an der Wasseroberfläche erfolgte. Hierauf dürften der etwas höhere $\mathrm{CH_4}$ -Gehalt sowie der niedrigere $\mathrm{N_2}$ - und $\mathrm{O_2}$ -Gehalt der Augustprobe zurückzuführen sein. Zum Vergleich ist in der Tabelle auch die Zusammensetzung einer in Ufernähe gesammelten Sumpfgasprobe angegeben.

Tabelle 2: Chemische Zusammensetzung* des Gases der Kochbrunnen im Neusiedlersee bei Rust und Isotopenzusammensetzung des enthaltenen Methan; zum Vergleich ist die Zusammensetzung von Sumpfgas in Ufernähe angeführt (ca. 2 m vom Ufer im See entnommen, BVFA-ARSENAL 1960).

	Kochbrunnen im Neusiedlersee (350 m vom Schilfrand)			Sumpfgas am Ufer
1984 02	1984 02 20	1985 01 17	1985 08 23	1959 11 02
CH ₄ (%)	77,16	79,36	82,58	76,1
N ₂ (%)	19,06	16,87	15,75	14,1
02 (%)	1,66	0,77	0,14	3,0
CO ₂ (%)	0,20	0,62	0,39	6,8
δ ² H (%o)	-		-206,9	
δ ¹³ C (%o)	- ,	-57,4	- 54,5	
14 _{C-Alter (a)}	-		>30.000	

^{*)} Rest Wasserdampf

Aus der Zusammensetzung des Gases – Fehlen höherer Kohlenwasserstoffe – kann auf dessen biogene Herkunft geschlossen werden (SCHOELL, 1980). Die 14 C-Datierung des Methan erbrachte ein Alter von über 30.000 Jahren, es besteht demnach kein Zusammenhang mit dem heutigen See. Der 2 H- und 13 C-Gehalt deuten auf tertiäre Herkunft hin.

Literatur

BVFA-ARSENAL, 1960: Analyse von Sumpfgas und Faulschlamm. Bericht S 2313 der Bundesversuchs- und Forschungsanstalt Arsenal, Wien.

RANK, D., M. TSCHULIK, W. PAPESCH, P. DOLEZEL, 1985: Untersuchungen an den "Kochbrunnen" im Neusiedlersee bei Rust. Biologisches Forschungsinstitut für Burgenland, Illmitz; Bericht 55: 45-49.

SCHOELL, M., 1980: The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta, 44: 649-661.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: BFB-Bericht (Biologisches Forschungsinstitut für Burgenland,

Illmitz 1

Jahr/Year: 1986

Band/Volume: <u>58</u>

Autor(en)/Author(s): Rank Dieter, Papesch Wolfgang, Staudner F.

Artikel/Article: Zur Herkunft der Kochbrunnen im Neusiedlersee 93-94