Ber. Naturf. Ges. Freiburg i. Br., 99, S. 23 - 44, Freiburg 2009

Zur Hydrogeochemie von Bor und Fluor

Erhebungen in Grund- und Fließgewässern sowie Beobachtungen in einem Grundwasser-Versuchsfeld in Südwestdeutschland

Werner Käß

Stichwörter

Hydrogeochemie, Bor, Fluor, Grundwasser, Flusswasser, Uferfiltration

Zusammenfassung

Anthropogen geprägte Belastungen von Grund- und Fließgewässern mit Bor stammen von borhaltigen Kunstdüngern in intensiv landwirtschaftlich genutzten Gebieten mit Spargel- und Zuckerrübenanbau. Eine weitere Belastung geht vom Perborat aus, das als mildes Bleichmittel dem Waschpulver zugesetzt ist. Über die Kläranlagen und aus Waschmittelrückständen in Verpackungsmaterialien, die auf Deponien landen, kommt letztlich Bor als Borsäure in die Umwelt. Gezielte Versuche in einem Versuchsfeld beweisen, dass Borsäure mit dem Grundwasserleiter eine reversible Wechselwirkung hat.

Eine durch den Menschen bewirkte Umweltbelastung durch Fluor ist vergleichsweise gering. Sie geht im Wesentlichen von der Fluor verarbeitenden Industrie aus. Bei Fluorid ist die Wechselwirkung mit dem Gestein bei der Untergrundpassage stärker als bei der Borsäure. Aber auch dieser Vorgang ist reversibel. Fluorid eignet sich nicht als geohydrologisches Markierungsmittel; es sei denn durch Langzeitbeobachtungen wie beim Beispiel der Uferfiltratstrecke am Unteren Neckar gezeigt wurde.

Beide Spurenstoffe Bor und Fluor sind in den vom Menschen unbeeinflussten Grundwässern in Baden-Württemberg stets, wenn auch in Spuren, nachweisbar. Ihre Herkunft ist von

Anschrift des Verfassers: Prof. Dr. Werner Käß Mühlematten 5, 79224 Umkirch

Werner Käß

Bor- und Fluor-haltigen Mineralien abzuleiten. Bor ist ein Bestandteil des Turmalins mit 10% B und anderen Bor-Silikaten wie Axinit u.a. Fluor ist im Fluorit (Flussspat CaF₂) sowie in mehreren Glimmerspezies enthalten. Die Verwitterung der kristallinen Gesteine bewirkt einen ständigen Grundgehalt an B und F in den Sickerwässern. Diese Verwitterungsprodukte gelangen schließlich in die Quell- und Fließgewässer.

Weitere natürliche Quellen an Bor sind die salinaren Gesteine im Mittleren Muschelkalk, im Gipskeuper sowie im Oberrotliegend.

Für die erhöhten Fluoridgehalte in der Oberen Meeresmolasse und im Malm des oberschwäbisch-oberbayerischen Molassebeckens gibt es noch keine Erklärung.

Hydrogeochemistry of boron and fluorine Investigations in ground and river waters as well as in a groundwater test field in Southwest-Germany

Key words

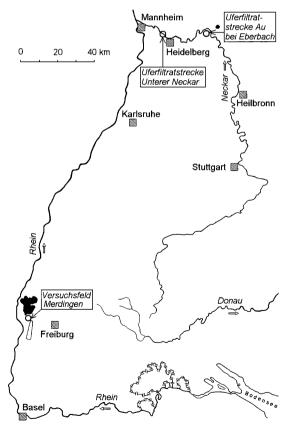
Hydrogeochemistry, boron, fluorine, groundwater, river water, bank filtration

Abstract

Boron and fluorine are environment-relevant trace elements. They can be used as indicators for bank infiltration into aquifers. Two examples in "Eberbach" and in the "Unterer Neckar-Plain" show the results of the influx of Neckar-water – contaminated with boronic acid and fluoride – into the neighbouring aquifer.

Calculated examinations in a test field give information about the behaviour of boronic acid and fluoride during the transport in aquifers.

A tabulated compile of the concentrations of boronic acid and fluoride in ground- and river water in Southwest-Germany gives insight into uninfluenced and contaminated waters.


1. Einleitung

Untersuchungen an Wasserversorgungsanlagen am Unteren Neckar zeigen, dass im Grundwasser sowohl Borat als auch Fluorid gute Hinweise für den Zustrom von uferfiltriertem Oberflächenwasser geben können. Dabei wird von der anthropogen verursachten Belastung dieser beiden Stoffe Gebrauch gemacht.

Borat stammt überwiegend aus Waschmitteln, die Perborat als mildes Oxidationsmittel enthalten. Beim Waschvorgang entsteht aus Perborat Borat und gelangt über die Abwasseranlagen in den Vorfluter.

Fluorid kommt aus Industrieanlagen, die Fluorminerale für die Aluminium- und Kunststoffindustrie verarbeiten. Unterhalb solcher Anlagen enthalten die Fließgewässer regelmäßig gegenüber dem geogenen Untergrund erhöhte Fluoridgehalte.

Im vorliegenden Aufsatz werden zwei Uferfiltratstrecken am Unteren Neckar beschrieben. Gezielte Versuche zum Stofftransport von Borat und Fluorid im Porengrundwasser in einem Versuchsfeld im Oberrheintal ergänzen die Beobachtungen am Unteren Neckar (Abb. 1).

Abb. 1: Lage der Untersuchungsgebiete: Uferfiltratstrecke am Unteren Neckar bei Eberbach; nordöstlich der Vulkanschlot "Katzenkopf" (schwarz; vergl. Abb. 2), Uferfiltratstrecke am Unteren Neckar unterhalb Heidelberg und Versuchsfeld Merdingen westlich Freiburg i.Br. zwischen Kaiserstuhl und Tuniberg.

Werner Käß

Im letzten Abschnitt werden die geochemischen Untersuchungsergebnisse über die Borsäure- und Fluoridgehalte der Grundwasserleiter sowie in den Vorflutern Neckar und Rhein Südwestdeutschlands vorgestellt.

Alle durchgeführten Arbeiten sind das Ergebnis von Förderungen durch die Deutsche Forschungsgemeinschaft in den Jahren 1976–1979:

- Schwerpunktprogramm "Geochemie umweltrelevanter Spurenstoffe", AZ. Ka 451/1.
- "Grundwasser-Geochemie", AZ. Pf 65/15.

Über die durchgeführten Vorhaben sind ausführliche Berichte an die DFG gesandt worden. Zahlreiche Einzelheiten sind in Vorträgen und diesbezüglichen Beiträgen verwendet worden. Eine zusammenhängende Veröffentlichung der Berichte erfolgte jedoch nicht. Dies soll hier nachgeholt werden.

Auf die Human- und Ökotoxikologie von Bor und Fluor wird hier nicht eingegangen.

2. Uferfiltratstrecke Eberbach/Neckar

Die Stadt Eberbach, am rechten Neckarufer gelegen, bezieht heute ihr Wasser aus Quellen. In der am linken Neckarufer liegenden Talebene "Au" gegenüber Eberbach stehen in den Talkiesen mehrere ehemalige Förder-Brunnen, die heute als Notbrunnen dienen (Abb. 2 und 3). Außerdem gibt es im Fassungsgebiet 15 Grundwassermessstellen (Abb. 4a).

In Zusammenarbeit mit den Stadtwerken Eberbach wurden im Spätsommer 1976 während eines Pumpversuchs Grundwasserbeprobungen durch das Landesamt für Geologie, Rohstoffe und Bergbau – heute als Abt. 9 des Regierungspräsidiums Freiburg i.Br. – durchgeführt. Die Untersuchungsergebnisse ergaben ein eindrucksvolles Bild über die Zustromverhältnisse

Abb. 2: Blick in Richtung Osten auf das Untere Neckartal. In der Bildmitte die Stadt Eberbach, davor das Wassergewinnungsgebiet "Au". Am Horizont ist die kleine Kuppe des Vulkanschlots "Katzenkopf" zu erkennen (Foto: W. Käß, 16. Juli 1978).

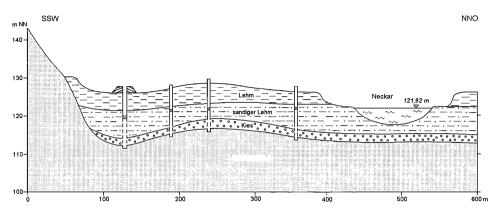
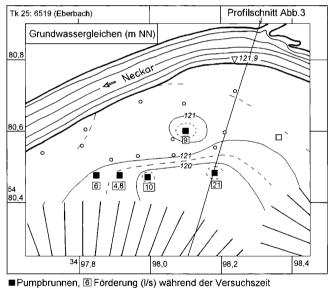
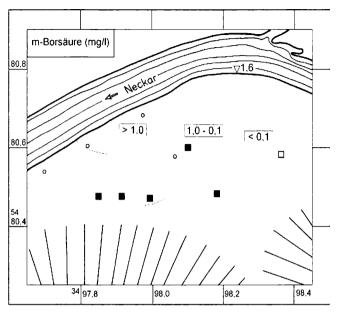
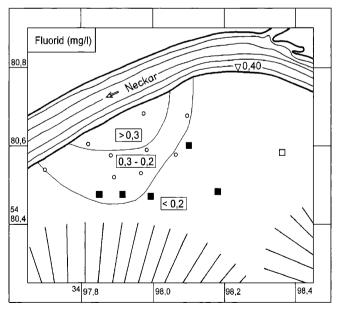



Abb. 3: Geologischer Profilschnitt durch das Wassergewinnungsgebiet "Au" bei Eberbach. Lage der Schnittlinie auf Abb. 4a.



☐ Brunnen in Ruhe ○ Grundwassermessstellen


Abb. 4a: Ehemaliges Wasserfassungsgebiet "Au" der Stadt Eberbach. Grundwassergleichen am 10./11. August 1976 in den Brunnen und Messstellen sowie Lage des Profilschnittes Abb. 3.

aus dem Neckar zu den einzelnen Brunnen. Die am Stichtag, den 25. August 1976 ermittelten Grundwassergleichen in Abb. 4a zeigen den stärksten Zustrom von Neckarwasser in das Talgrundwasser zwischen den Nahtstellen der 121,5 m-Grundwassergleiche mit dem Neckarufer. Rund um die Entnahmebrunnen sind die Absenktrichter deutlich zu erkennen.

In den Abbildungen 4b und 4c sind die Konzentrationsbereiche für Metaborsäure und Fluorid abgebildet. Beide Darstellungen zeigen eine deutliche Konzentrationsabnahme in Richtung auf die in Betrieb stehenden Brunnenfassungen.

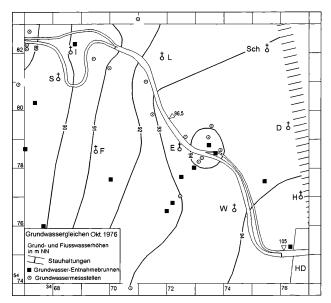
Abb. 4b: Konzentrationsbereiche für m-Borsäure im Grund- und Flusswasser des Wasserfassungsgebietes "Au" am 10./11. August 1976.

Abb. 4c: Konzentrationsbereiche für Fluorid im Grund- und Flusswasser des Wasserfassungsgebietes "Au" am 10./11. August 1976.

In Fließrichtung auf die Brunnen findet eine allmähliche Verdünnung, d.h. ein Vermischen des Uferfiltrats mit dem aus dem Buntsandstein des südlich anschließenden "Kleinen Odenwalds" zuströmenden Kluftgrundwassers statt. Das Wasser, das aus dem Buntsandstein kommt, weist einen Borsäuregehalt von 0,02 mg/l und einen Fluoridgehalt von 0,15 mg/l auf.

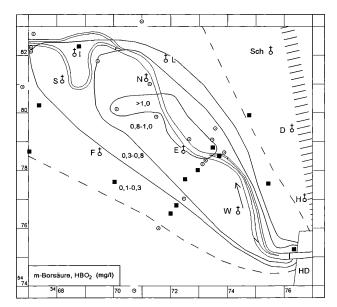
Ähnliche Grundwasser-Beschaffenheitsänderungen zwischen Neckarufer und dem südlich anstehenden Buntsandstein wie bei Borsäure und Fluorid können auch für die mg/l-Gehalte an Chlorid ($300 \rightarrow <15$), Sulfat ($170 \rightarrow <10$), Sauerstoff ($<2 \rightarrow 9$) sowie für CSB mit Mn-VII ($5 \rightarrow 1$) nachvollzogen werden. Die Abnahme der Wassertemperatur zwischen dem Neckar und den uferfernen Messstellen von 24–25°C auf <20°C wurde bereits bei Käss (2004:267) abgedruckt.

3. Uferfiltratstrecke Unterer Neckar


Am Unteren Neckar zwischen Heidelberg und Mannheim – genauer: zwischen dem Eintritt des Neckars in das Oberrheintal im Stadtgebiet Heidelberg und Ilversheim – tritt auf weite Strecken Flusswasser in den quartären Grundwasserleiter über.

Im Zuge der "Hydrogeologischen Kartierung" des Rhein-Neckar-Raums sind umfangreiche Grund- und Flusswasserbeprobungen für chemische, z.T. auch für mikrobiologische und isotopenhydrologische Analysen durchgeführt worden (MELUF, HMLULF & MLWF, 1980). In diesem länderübergreifenden Gemeinschaftswerk konnten die Detailuntersuchungen an der Uferfiltratstrecke Unterer Neckar nicht ihrer Bedeutung entsprechend gewürdigt werden. Umso mehr sollten die aus den Untersuchungen resultierenden Ergebnisse in Bezug auf das Verhalten der Spurenstoffe Bor und Fluor bei der Passage vom Oberflächenwasser zum abgesenkten Grundwasserleiter nicht vergessen werden.

Die Gründe für den Übertritt von Flusswasser in den Untergrund liegen einerseits in den für die Neckarschifffahrt wichtigen Stauhaltungen mit den gegenüber dem Naturzustand um bis 8 m höheren Wasserständen; andererseits wird aus dem umliegenden Gelände Grundwasser für den dicht besiedelten Rhein-Neckar-Raum entnommen (Abb. 5a). Dabei entstehen Absenktrichter, zu denen teilweise auch Uferfiltrat beigezogen wird. Die wichtigste Grundwasserförderung findet im betrachteten Gebiet in den Wasserfassungsanlagen "Rauschen" zwischen Edingen und Wieblingen statt.


In den Abbildungen 5b und 5c sind die Konzentrationsbereiche für die umweltrelevanten Spurenstoffe m-Borsäure und Fluorid im Oberen Grundwasserhorizont aufgezeichnet. Die im Neckarwasser bei Eberbach gefundenen Durchschnittskonzentrationen von 1,6 mg/l für HBO₂ und 0,40 mg/l für F⁻ können ohne Einschränkung als Ausgangskonzentrationen im durch diese Stoffe belasteten Flusswasser auch für diese Uferfiltratstrecke angesehen werden; denn unterhalb Eberbach finden keine größeren Zuflüsse mehr statt.

Beide Abbildungen können fast als deckungsgleich angesehen werden. Die stärksten Abflüsse in den Untergrund sind für beide Stoffe in der Strecke zwischen 1 km oberhalb Edingen und Neckarhausen feststellbar. Beiderseits dieses Flussabschnitts nehmen die Konzentrationen durch Verdünnung mit neu gebildetem Grundwasser und zum geringeren Teil durch Grundwasserentnahme ab. Die nicht zu übersehende unterschiedliche Auflösung zwischen den beiden Darstellungen ist durch das voneinander abweichende Verhältnis zwischen Vorbelastung und Grundlast begründet. Bei der Borsäure beträgt der Quotient >10:1, beim Fluorid nur etwas mehr als 4:1.

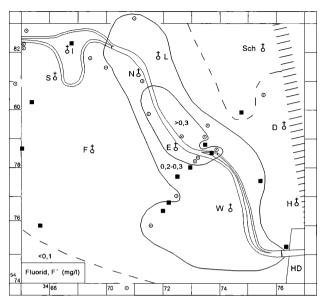


Abb. 5a: Uferfiltratstrecke am Neckar zwischen Heidelberg und Ilvesheim. Grundwassergleichen am 4. Oktober 1976 nach MELUF, HMLULF & MLWF, 1980.

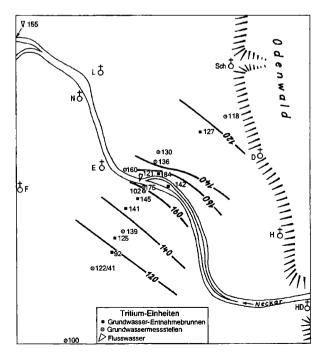

Erläuterungen für die abgekürzten Ortsbezeichnungen: D = Dossenheim, E = Edingen, F = Friedrichsfeld, H = Handschuhsheim, HD = Heidelberg, I = Ilversheim, L = Ladenburg, N = Neckarhausen, S = Seckenheim, Sch = Schriesheim, W = Wieblingen.

Abb. 5b: Konzentrationsbereiche für m-Borsäure im Grund- und Flusswasser in der Uferfiltratstrecke Heidelberg-Ilvesheim am 6. September 1978.

Abb. 5c: Konzentrationsbereiche für Fluorid in Grund- und Fließwasser in der Uferfiltratstrecke Heidelberg-Ilvesheim am 6. September 1978.

Abb. 5d: Tritium-Werte in einem SW–NO-Profil entlang der stärksten Infiltration am 6. September 1978. Für das Neckarwasser muss ein jahreszeitlich unabhängiger Mittelwert von 160 TE angenommen werden.

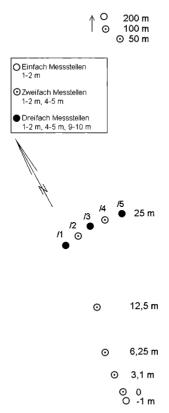
Während der Entnahmekampagnen sind in einem SW-NO-Profil Grund- und Flusswasserproben zur Tritiumbestimmung entnommen worden (Abb. 5d). Auch für diese Markierung findet beiderseits eine auf mehrere Kilometer sich erstreckende Verdünnung statt; eine wertvolle Ergänzung zu den hydrochemischen Beobachtungen.

4. Markierversuche im Versuchsfeld Merdingen

Das Versuchsfeld liegt in einem Waldstück rd. 6 km östlich Breisach (Abb. 1). Der Untergrund besteht aus kalkalpinen Schottern.

Seit der Einrichtung des Versuchsfeldes im Jahr 1979 sind zahlreiche Versuche zur Erforschung des Transport- und Abbauverhaltens von Markier- und anderen Stoffen sowie von Mikroorganismen durchgeführt worden. Eine Zusammenstellung diesbezüglicher Veröffentlichungen ist im Schriftenverzeichnis aufgeführt.

Hier werden 2 Versuche beschrieben, bei denen Borat und Fluorid jeweils mit Uranin eingesetzt worden sind. Ein Versuch mit gleichzeitiger Einspeisung von Borat und Fluorid – zusammen mit Uranin – wurde nicht durchgeführt, weil bei den unvermeidlich hohen Konzentrationen eine Wechselwirkung zu befürchten war. Uranin wurde als konservativer Pilot eingesetzt, weil sein Transportverhalten dem Wassermolekül weitgehend nahe kommt.

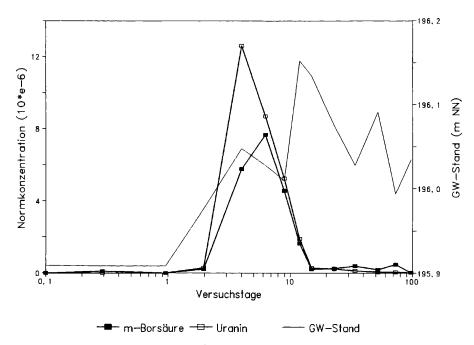

Beim Versuch im Jahr 2008 mit Borat und Uranin wurde eine konzentrierte Lösung von 2 kg Borax und 20 g Uranin in das Rohr "0" eingegeben (Abb. 6). 2 kg Borax entsprechen in Lösung 920 g Metaborsäure HBO₂. In der Abb. 7a sind die Durchgangskurven für die Beobachtungsstelle 25/2 für einen Fließweg von 25 m aufgetragen. Die auf die Eintragsmassen umgerechneten spezifischen Werte zeigen, dass Borsäure eine Verzögerung im Transport gegenüber Uranin erleidet. Die Auswertung der korrigierten Summenkurven ergab folgende Werte:

	Borsäure	Uranın
Mittlere Abstandsgeschwindigkeit v _m	4,58 m/d = 0,19 m/h	5,87 m/d = 0,245 m/h
Longitudinaler Dispersionskoeffizient Dl	$0.24 \cdot 10^{-3} \text{ m}^2/\text{s}$	$0.31 \cdot 10^{-3} \text{ m}^2/\text{s}$
Dispersivität α	4,23 m	4,56 m

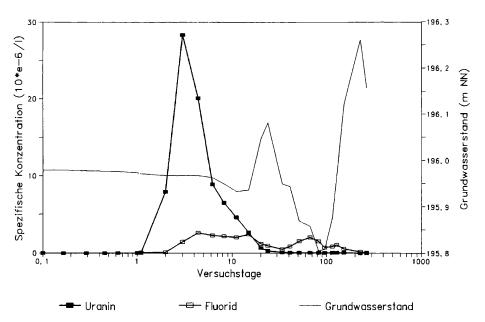
Daraus geht hervor, dass die Borsäure etwas weniger als halb so schnell wie Uranin transportiert wird. In der Beobachtungsstelle in einer Entfernung von 50 m von der Einspeisestelle waren Borsäure und Uranin nur in Spuren, bei 100 m überhaupt nicht mehr nachweisbar.

Der Versuch mit Fluorid wurde 1996 in derselben Fließstrecke durchgeführt und zwar mit 1,8 kg Natriumfluorid entsprechend 814 g Fluorid und mit 1,73 g Uranin. Die Durchgangskurven sowie die Ganglinie der Grundwasserstände zeigt Abb. 7b. Demnach weist Fluorid gegenüber Uranin eine stark verzögerte Untergrundpassage auf. Ferner ist aus Abb. 7b zu entnehmen, dass der unregelmäßige Fluorid-Kurvenverlauf auf die schwankenden Grundwasserstände zurückzuführen ist: Bei sinkenden Wasserständen ist ein Konzentrationsschub zu bemerken; bei steigendem Wasserstand ein Konzentrationsrückgang. Das Ergebnis der Kurvenauswertung ergibt folgende Zahlen:

	Fluorid	Uranin
Mittlere Abstandsgeschwindigkeit v _m	0.97 m/d = 0.04 m/h	5,62 m/d = 0,234 m/h
Longitudinaler Dispersionskoeffizient Dl	$0.086 \cdot 10^{-3} \text{ m}^2/\text{s}$	$0,445\cdot10^{-3} \text{ m}^2/\text{s}$
Dispersivität α	7,69 m	6,85 m


Abb. 6: Lageplan für die Messstellen im Versuchsfeld Merdingen. Eingabestelle: 0; Beobachtungsstelle für die beschriebenen Markierversuche: 25 m/2.

Trotz des verzögerten Durchgangs von Fluorid gegenüber Uranin bestätigt die Auswertung der Durchgangskurven keine dauerhafte Rückhaltung von Fluorid.


Die longitudinale Dispersion Dl und α sind Größen, die sowohl vom durchflossenen Gestein als auch von der Fließgeschwindigkeit abhängen. Aus den vorstehenden Tabellen geht hervor, dass für die Markierstoffe Borsäure und Uranin einerseits und für Fluorid und Uranin andererseits größenordnungsmäßig ähnliche Werte zu beobachten sind. Die etwas kleinere Dispersion beim 1. Versuch ist wohl durch die ansteigende Grundwasserhöhe und damit eine merklich höhere Abstandsgeschwindigkeit zu erklären (SCHULZ 2004: 297–298).

5. Zur Untergrundpassage von Bor und Fluor

Bor kommt im Wasserkreislauf überwiegend in Form der Borsäure vor. Ursprünglich nahm man die Spezies Metaborsäure HBO₂ als jene Form an, die im Grund- und Oberflächenwasser vorliegen würde. Durch die Untersuchungen von SENFTEN 1972 ist erwiesen worden, dass Bor in wässrigen Lösungen überwiegend als Orthoborsäure (H₃BO₃) vorliegt.

Abb. 7a: Normierte Durchgangskurven für die Grundwassermarkierung im Versuchsfeld Merdingen mit m-Borsäure und Uranin sowie mit den jeweiligen Grundwasserhöhen in der Messstelle 25 m/5.

Abb. 7b: Normierte Durchgangskurven für die Grundwassermarkierung im Versuchsfeld Merdingen mit Fluorid und Uranin sowie mit den jeweiligen Grundwasserhöhen in der Messstelle 25 m/5.

Dessen ungeachtet werden in dieser Arbeit die Borgehalte als m-Borsäure aufgelistet. Dies nicht nur aus Gründen der Vergleichbarkeit mit anderen Trink- und Heilwasseranalysen, sondern auch in Bezug auf den Feststoffgehalt in der Analysentabelle, da ja wie bei der m-Kieselsäure die wasserärmeren Spezies vorzuziehen sind.

Man sollte annehmen, dass Fluorid auf Grund seiner negativen Ladung ein konservativer Stoff ist, der sich im Grundwasserstrom ähnlich wie Uranin verhalten würde. Borsäure als neutrales Molekül und Fluorid als das am stärksten negativ geladene Anion dürften wohl ungehindert durch die Porenräume transportiert werden. WEI HUANG et al. (2000: 133) reihten Fluorid zu den konservativen Tracern ein; auch RICHTER et al. (1999) kamen durch Säulenversuch zu diesem Ergebnis. Die Daten aus den Merdinger Versuchen zeigen jedoch, dass diese Voraussetzungen nicht zutreffen. Die Durchgangskurven ergeben Retardationen in Bezug auf Uranin für Borsäure von 1,4 und für Fluorid von 3,1. KLOTZ ermittelte 1982 in einem Säulenversuch mit fluvioglazialem Kies aus dem Alpenvorland für Fluorid eine Retardation von 2,54.

Die Salze der Borsäure sind alle gut wasserlöslich; lediglich die Calcium- und Magnesiumsalze sind etwas geringer, jedoch nicht schwerlöslich. Trotz des Gehaltes des Merdinger Grundwassers von rd. 150 mg/l Ca²⁺ und rd. 14 mg/l Mg²⁺ dürften diese Verbindungen für den gehemmten Borsäuretransport nur eine untergeordnete Rolle spielen. Vermutlich kommt hier die Bildung eines Komplexes nach der Gleichung BF₃OH⁻ + 2H₂O = H₃BO₃ + 2H⁺ + 3F⁻ mit der Komplexbildungskonstanten log K = -13,1908 zur Geltung (MERKEL & SPERLING 1988). Dies bedeutet, dass das Markierungsmittel Borsäure beim Markierversuch mit hoher Konzentration in der Umgebung der Einspeisestelle mit dem Fluorid-Ion reagiert hat, auch wenn die F-Grundlast im Versuchsfeld nur bei etwa 0,21 mg/l liegt. Ein weiterer Gesichtspunkt, der für die Verzögerung beim Borsäuretransport eine Rolle gespielt hat, ist in der Sorption an Tonminerale, insbes, an Illit zu sehen. Nach ERNST & WERNER (1964) ist auf Grund der Borgehalte eine Unterscheidung von marinen gegen limnische Ablagerungen möglich, da erstere aus dem Meerwasser Bor an Tonmineralien sorbiert enthalten. Die nach BROCKAMP (1973) irreversible Bindung von Bor kann jedoch teilweise remobilisiert werden (HARDER 1958, 1960/61). Falls Sorption und Desorption hier an einer wesentlichen Funktion teilnehmen, ist eine völlige Wiederausschwemmung von Bor gegeben, da die Integration der Flächen in den beiden Durchgangskurven gleichgroß ist. Der Gehalt des durchflossenen Schotterkörpers an Schluff und Ton beträgt rd. 1 Gew.-%; somit sind Sorptionsvorgänge gegeben, da der Tonanteil nahezu völlig aus Illit besteht.

Die hohe Verzögerung des Fluorids im Vergleich mit dem Transport von Uranin kann zwanglos durch die Komplexneigung von Fluor sowie durch die Bildung des schwerlöslichen Calciumfluorids CaF $_2$ erklärt werden. Calciumfluorid oder das Mineral Fluorit CaF $_2$ ist in Wasser mit 2,4 mg/l bei 10 °C schwerlöslich. In natürlichen Wässern ist der Gehalt an Fluorid-Ionen stark temperaturabhängig (LANGGUTH & PLUM 1984: 113). Neben der Bildung des schwerlöslichen Calciumfluorids kommt die Komplexierung mit Aluminium zur Geltung. Der Grundgehalt des Merdinger Wassers an Aluminium wurde wiederholt zu 60 µg/l Al $^{3+}$ bestimmt. Bereits geringe Aluminiumkonzentrationen können Fluorid als komplexes AlF $_3$ binden, das seinerseits leicht an Tonmineralien und an Eisenoxidhydrat sorbiert wird.

Während der Versuchszeit nimmt die Verdünnung durch den weiteren Grundwasserzufluss zu, so dass sich die schwerlöslichen und komplexierten Spezies allmählich wieder in ionogene Formen umwandeln und am Stofftransport mehr oder weniger ungehindert teilhaben. Bei der Planimetrierung der beiden Durchgangskurven von Fluorid und Uranin ergaben sich gleichgroße Flächeninhalte, so dass ein vollständiges Wiederauswaschen gefolgert werden kann.

Borsäure- und Fluorid-Konzentrationen in ausgewählten südwestdeutschen Grund- und Mineralwässern sowie in Wässern mit herausragenden Gehalten

Für seine Dissertation analysierte K. WIRTH (1973, 1974) 24 unbelastete Grundwässer in den badisch-württembergischen Festgesteinen. Die Einzugsgebiete der Entnahmestellen liegen in Waldgebieten; lediglich jene für den Muschelkalk und für das Holozän sind z.T. landwirtschaftlich genutzt. Er untersuchte die Hauptbestandteile Natrium, Kalium, Calcium und Magnesium sowie auf die Spurenelemente Barium, Strontium, Rubidium und Lithium. Dieselben Beprobungsstellen wurden einige Jahre später mit einem DFG-Auftrag nochmals beprobt mit dem Ziel, die Borsäure- und Fluoridgehalte unbelasteter Grundwässer zu ermitteln.

Die nachfolgenden Tabellen enthalten darüber hinaus noch weitere Entnahmestellen. Vor allem wurden auch die Porengrundwässer sowie mehrere bemerkenswerte B- und F-Vorkommen aufgelistet. Letztlich wurden noch die B- und F-Gehalte in Neckar und Rhein ermittelt.

In den Sedimentgesteinen (Tabelle 1) sind durchweg niedrige Grundlasten an Bor und Fluorid gefunden worden. Bei der Auswahl der Entnahmestellen wurde darauf geachtet, dass anthropogene Einflüsse nicht vorlagen. Diese waren allerdings für den Grundwasserleiter Holozän und für Muschelkalk nicht immer auszuschließen. Wo derartige Einflüsse durch landwirtschaftliche Nutzung zu vermuten waren, ist dies bei "Bemerkungen" angegeben.

Im Oberrheintal weist der Obere Grundwasserleiter (qh) Borsäuregehalte im Durchschnitt von weniger als 0,1 mg/l auf. Die Probennahmestellen bei Bruchsal und Schwanau liegen in Gebieten, die landwirtschaftlich genutzt werden und enthalten Werte über 0,2 mg/l. Dies ist auf den Einsatz von Kunstdüngern, die Bormangelkrankheiten an Nutzpflanzen vermeiden sollen, zurückzuführen. Zuckerrüben erleiden Herzfäule, wenn sie zu wenig mit B versorgt werden. Bor-Superphosphat enthält z.B. 0,55% B, Bor-Rhenaniaphosphat 0,65% B. Dort wurden auch erhöhte Fluoridwerte beobachtet, die wahrscheinlich ebenfalls durch künstliche Düngung verursacht sind; dafür sprechen außerdem die bedeutend erhöhten Feststoffgehalte. Pleistozäne Tiefenwässer (qp), die so gut wie nicht anthropogen beeinflusst sind, enthalten im Durchschnitt leicht erhöhte B- und F-Werte. Die bisher beschriebenen Quartärwässer stammen aus den vorwiegend kalkalpinen Kiessanden. Holozäne Wässer aus kristallinen Schwarzwaldschottern sind bei Freiburg, Umkirch und Fahrnau entnommen worden. Mit Ausnahme eines erhöhten Fluoridgehaltes aus einem Freiburger Brauereibrunnen sind alle übrigen Gehalte sehr niedrig.

Tab. 1: Metaborsäure- und Fluoridwerte in Sedimentgesteinen.

Ort, Kreis	Entnahmestelle	TK	R-	H-	Geo-	Entn	HBO ₂	_	Festst.	Bemer-				
		25	Wert	Wert	logie	Tag	mg/l	mg/l	mg/l	kungen				
D. d.Calarahaan IVA	D D 121	(717		artär	-1-	12.02.79	0.117	0.24	(01	T J				
Bad Schönborn, KA	Beregn.Br. 131 GWM 142	6717	72 310 68 520	52 220	qh	13.02.78	0,117	0,24	601	Landw.				
Bruchsal, KA		6817	59 320	44 060 36 610	qh	27.02.78	0,34	0,27	857	Spargel Wald				
Blankenloch, KA	GWM 113	6916			qh	28.02.78	0,093	0,17	556					
Durmersheim, KA	GWM 119	7015	46 700	22 660	qh	07.03.78		0,05	376	Wald				
Schwanau, OG	GWM 3480	7612	40 350	57 660	qh	18.09.78	0,26	0,25	856	Landw.				
Leopolds- hafen, KA	GWM FWR 134	6816	54 640	47 390	qp	20.02.78	Ĺ	ĺ	445	200 m t.				
Graben, KA	GWM FWR 8	6816	61 870	43 700	qp	21.02.78	0,04	0,15	521	92 m t.				
Neudorf, KA	GWM FWR 3	6817	64 840	50 321	qp	22.02.78	0,23	0,22	714	186 m t.				
Blankenloch, KA	GWM pp 19	6916	50 740	38 700	qр	13.03 78	0,03	0,13	489	54 m t.				
Freiburg, FR	Br. Feierling	8013	14 380	17 930	qh	26.06.81	0,02	0,664	120	Brauerei				
Umkirch, FR	GWM 923	7912	07 890	22 030	qh	14.04.83	0,05	0,05	187	Geo- therm.				
Fahrnau, LÖ	GWM 134	8313	13 150	82 070	qh	24.11.71	0,011	0,04	89	_				
	·-		Te	rtiär										
Blankenloch, KA	GWM pp 20	6916	61 230	38 500	tPL	13.03.78	0,15	0,22	561	112 m t.				
Mettenberg, BC	Mönchsrot 5	7923	75 385	20 265	OSM	21.09.82	0,03	0,13	280	120 m t.				
Nenzingen, KN	Qu. NO Nenz.	8119	97 720	01 440	OMM	13.01.77	0,02	0,30	615	WV N.				
Krumbach, BC	Bohrung 13	8285	63 280	95 270	OMM	23.08.79	n.b.	5,28	1448	900 m t.				
	,		M	alm										
Ippingen, TUT	Harbenbachqu.	8018	75 380	15 510	ox2	17.05.77	0,06	0,19	412	Q: 2 1/s				
Hintschingen, TUT	Schontalquelle	8018	77 620	00 960	ox2	17.05.77	0,097	0,145	520	Q: 2 l/s				
Keuper	·				L		_							
Pfaffenhofen, HN	Belzbrunnen	6919	97 600	96 000	km4	11.05.77	0,06	0,21	595	Q: 15 l/s				
Gündelbach, LB	Steinbachquelle	7019	97 930	28 200	km4	11.05.77	0,11	0,21	793	Q: 0,5 l/s				
Hachtel, MGH	Stöchichquelle	6524	55 788	75 340	ku	23.07.79	0,04	0,15	586	Q: 1,8 l/s				
	<u> </u>		Musc	helkalk						•				
Weizen, WT	Schambach	8216	59 350	94 990	mo	17.05.77	0,03	0,19	597	Q: 2 l/s				
Leinbach, WT	Qu. N.Leinbach	8216	57 440	97 080	mo	17.05.77	0,04	0,21	614	Q: 3 l/s				
Gültlingen, CW	Fuchtbachqu.	7318	83 420	91 380	mo	24.08.87	0,05	0,63	649	Q: 10 l/s				
Hachtel, MGH	Brunnenstube	6524	57 400	75 640	mm	23.07.79	0,09	0,12	784	Q: 1,5 l/s				
Wachbach, MGH	Schafbrunnen	6524	56 530	77 480	mm	23.07.79	0,02	0,15	676	-				
Althausen, MGH	Affentalquelle	6524	52 700	81 130	mu2	23.07.79	0,024	0,18	680	-				
Stuppach, MGH	Ortsquelle	6524	54 450	78 770	mu2	23.07.79	0,014	0,15	639	_				
	Buntsandstein													
Tumlingen, FDS	Qu. i. Markental	7517	68 300	69 900	so	12.05.77	0,04	0,14	777	Q: 5 l/s				
Waldbrunn, HD	Eierbrunnen	6520	05 480	82 680	sm	07.12.76	0,06	0,15	228	Q: 4 l/s				
Seebach, OG	Rotmurgbrunnen	7415	42 545	80 360	sm	12.05.77	0,07	0,16	176	Q: 3 l/s				
Ottenhöfen, OG	Eselsquelle	7415	38 845	77 660	sm/sn	12.05.77	0,01	0,17	132	Q: 0,05 l/s				
			Rotl	iegend	•									
Bad Säckingen, WT	Bohrloch 90'	8413	21 400	69 330	ro	24.11.59	12	2,15	7177					

	Tab. 2:	Metaborsäure-	und Fluoridwerte in	Kristallingesteinen.
--	----------------	---------------	---------------------	----------------------

Ort, Kreis	Entnahme- stelle	TK 25	R-Wert	H-Wert	Entn Tag	HBO ₂ mg/l	F- mg/l	Festst. mg/l	Bemer- kungen			
Granit												
Ibach, WT	Kreuzer- brunnen	8214	31 800	91 280	17.05.77	0,10	0,16	56	St.Blasien- granit			
Ibach, WT	Steinbächle	8214	29 530	91 330	17.05.77	0,25	0,16	58	St.Blasien- granit			
Altglashütten, WT	Qu. Zweiseen- blick	8114	31 020	02 340	18.05.77	0,02	0,14	57	Bärhalde- granit			
Altglashütten, WT	Haslachbach	8114	31 360	02 130	18.05.77	0,04	0,17	98	Bärhalde- granit			
Wieslet, LÖ	Stäudelbach	8312	11 200	84 100	18.05.77	0,02	0,21	98	Malsburg- granit			
			(Gneis								
Sulzburg, FR	Viehstellen- grund	8112	05 375	00 380	20.05 77	0,06	0,17	144	Anatexit			
Oberried, FR	Rosshalde	8013	22 660	09 320	18.05.77	0,02	0,14	105	Diatexit			
Hofsgrund, FR	Sägfelsen	8113	19 080	05 550	18.05.77	0,06	0,14	96	Diatexit			
FR-Kappel	Stollenauslauf	8013	17 906	09 200	22.10.80	<0,01	0,07	59	Gn.+Erz- gang			
Vulkanite												
Münstertal, FR	Stampf	8183	14 080	03 100	18.05.77	0,06	0,18	99	Ignimbrit			
Durbach, OG	Lautenbach	7514	27 950	71 280	18.05.77	0,06	0,15	80	Quarz- porphyr			

Grundwässer des Tertiärs aus dem Pliozän im Oberrheintal und aus der Oberen Süßwassermolasse Oberschwabens zeigen keine herausragenden Werte. Bemerkenswert ist jedoch der hohe Fluoridgehalt in der Oberen Meeresmolasse der Krumbacher Bohrung 13. In diesem Zusammenhang sei darauf hingewiesen, dass die oberschwäbischen Heil- und Thermalbäder Bad Waldsee, Meersburg, Bad Wurzach, Konstanz und Friedrichshafen ihr Wasser aus der Oberen Meeresmolasse fördern, jeweils mit Fluorid über 1 mg/l, also nach den Begriffsbestimmungen (DHV-DTV 2005) deklarationsfähig sind (KÄSS & KÄSS 2008).

Aus dem Malm sind 2 Quellen besprochen worden, die in Waldgebieten ihr Einzugsgebiet haben. Andere Malmkarstquellen wurden außer Acht gelassen, da die meisten Karstquellen ein Einzugsgebiet aufweisen, das ungeschützt den Einflüssen durch Landwirtschaft und Verkehrswege ausgesetzt ist. Auch in diesem Grundwasserleiter sind in Oberschwaben – ähnlich wie in der OMM – erhöhte Fluoridgehalte in den Heil- und Thermalbädern Bad Waldsee, Aulendorf, Jordanbad und Überlingen in deklarierbaren Konzentrationen enthalten. Ähnliche Feststellungen sind auch im östlich anschließenden Molassebecken zu verzeichnen. Die Keuper-Grundwässer weisen keine auffallenden B- und F-Werte auf, wenn man vom Gipskeuper (km1) absieht (Tabelle 3). Im Muschelkalk sind nur an einer Stelle (Fuchtbachquelle) erhöhte Fluoridwerte gemessen worden. Die Buntsandsteinwässer enthalten ausnahmslos nur Spuren von Borsäure und Fluorid. Das teilweise salinar geprägte Oberrotliegend tritt mit hohen Borsäure- und Fluoridwerten in Erscheinung.

Kluftgrundwässer aus kristallinen Gesteinen sind ohne Ausnahme niedrig mineralisiert; d.h. im Verein mit durchschnittlichen Feststoffgehalten unter 100 mg/l sind auch die B- und F-Werte knapp über, einmal unter der Erfassungsgrenze für Borsäure festgestellt worden (Tabelle 2).

Tab. 3: Metaborsäure- und Fluoridwerte in Salinar-, Thermal-, Mineral- und Erdölbegleitwässern.

Ort, Kreis	Entnahmestelle	TK 25	R-Wert	H-Wer	Geo- logie	Entn Tag	HBO ₂		Festst.	Bemer- kungen			
						Tag	mg/l	mg/l	g/l	Kungen			
Salinarwässer													
Horrheim, LB	GWM 3	7019	79 450	27 640	km1	08.10.80	2,1	n.b.	2,9	18 m tief			
Rottweil, RW	Solebohrung 8	7817	73 945	34 525	mm	18.09.69	38,0	n.b.	268	140 m tief			
Mosbach, MOS	Bohrung 1908	6620	10 820	69 060	so	14.03.79	3,59	n.b.	9,1	94 m tief			
Eberbach, HD	König-Heinr Qu.	6517	99 420	80 835		20.04.76	6,5	1,4	7,35	Dolomit			
Ohlsbach, OG	Bohrung 2	7513	24 730	65 610	gn	18.10.78	23,3	1,08	15,3	+Graphit			
Thermalwässer													
Wildbad, CW	Thermal- quelle III	7217	66 935	01 400	gr	24.11.81	0,39	1,35	0,42	40,0 °C			
Saulgau, SIG	Thermal- bohrung I	7922	35 700	19 450	joM	11.01.82	0,13	0,26	0,49	41 °C			
Buchau, BC	Thermal- bohrung	7923	45 220	25 460	jo	18.08.82	0,22	0,64	0,46	46,4 °C			
Jordanbad, BC	Bohrung 1982	7924	61 160	26 780	jo	25.11.82	0,47	1,3	0,45	48,1 °C			
		•	Mi	neralwäs	ser	<u>. </u>				•			
Langenbrücken, KA	Karl-Siegel- Quelle	6717	74 720	51 770	mo	25.09.69	17,3	2,6	37	Th. Sole			
Urach, RT	Thermal- bohrung 3	7422	27 652	74 430	mo	02.11.77	2,1	1,68	4,23	50,4 °C			
Steinenstadt, FR	Georgsquelle	8211	92 130	92 240	jmHR	09.06.80	2,21	0,76	5,22	28,0 °C			
Herrenalb, KA	Thermalquelle I	7116	59 190	07 340	gr	27.01.71	0,70	1,08	2,51	506 m t.			
Waldkirch, FR	Bohrung 1964/66	7913	22 010	28 160	gr	07.10.78	4,66	2,54	0,52	600 m t.			
Suggenbad, FR	Schwefel- Quelle	7913	20 410	26 140	gn	11.04.86	0,33	0,23	0,43	gn-Zer- satz			
			Erdö	lbegleitw	ässer								
Altenheim, OG	Offenburg 9	7512	12 070	69 895	jmHR	10.02.84	127	2,3	288	1375 m t.			
Eggenstein, KA	Leopldshf. 16–18	6916	57 445	38 155	tNSBN	Febr. 79	146	0,38	103	730 m t.			
Pfullendorf, SIG	Pfullendorf 11	8021	19 650	13 180	lu/ko	21.09.82	151	0,68	19,7	44 °C			
Hagenbach, SIG	Ostrach 7	8021	22 260	14 070	km4	21.09.82	119	3,2	21,8	38 °C			
Illmensee, SIG	Illmensee 1	8122	29 770	99 745	km3s	21.09.82	131	0,27	57,8	1980 m t.			
Tristolz, BC	Oberschw. 2	8025	69 550	17 240	tUMBA	21.09.82	14	5,85	1,62	1509 m t			
	L					L			<u> </u>				

Tabelle 3 zeigt Beispiele von Salinar-, Thermal-, Mineral- und Erdölbegleitwässern mit herausragenden B- und F-Gehalten. Hingewiesen sei wiederum auf die erhöhten Fluoridwerte in den oberschwäbischen Thermalwässern Saulgau, Buchau und Jordanbad.

Extrem fluoridreiche Grundwässer werden in der Tabelle 4 aufgelistet. Sie hängen einmal mit dem Barytabbau bei Pforzheim zusammen, denn Bariumsulfat ist stets von Fluorit begleitet. Andererseits ist Kohlensäure ein Mobilisator für die Gesteinszersetzung; die Säuerlinge von Bad Griesbach und Bad Peterstal beziehen ihre Mineralwässer aus dem mit Fluoritbestückten Gängen durchzogenen Renchgneis. Ein außergewöhnlich hoher Fluoridgehalt fin-

Ort, Kreis	Entnahmestelle	TK 25	R- Wert	H- Wert	Geo- logie	Entn Tag	HBO ₂ mg/l	F- mg/l	Festst. mg/l	Bemerkungen
PF-Würm	Käfersteige	7118	82 800	12 650	su	28.07.81	0,21	2,85	639	Barytabbau
Bad Gries- bach, OG	St.Josefsquelle	7515	43 980	68 520	gp	15 02 71	0,33	6,72	337	Säuerling
Bad Peterstal, OG	Schulhaus- quelle	7515	41 320	66 090	gp	19.07.79	n.b.	2,1	7186	Säuerling
Wolfach, OG	Kurgarten bohrung	7615	42 370	51 740	gn	05.05.81	2,76	2,0	576	Q: 0,33 l/s
Untermünster- tal, FR	Schindlergang	8112	11 800	01 450	Porphyr	30.09.71	n.b.	3,41	350	Erzgänge
Löpsingen, NÖ	Forschungsbg. 1973	7129	10 830	18 090	gn	04.05.81	4,84	26	2003	zerrüttet

Tab. 4: Einige fluoridreiche Grundwässer in SW-Deutschland.

det sich in der Forschungsbohrung 1973 im Meteoritenkrater Ries mit 26 mg/l F⁻ Unter den Kratersee-Sedimenten befinden sich zerrüttete Gneise mit Resten von Fluoritgängen.

In Tabelle 5 werden außerdem die Einwirkungen der umweltbelastenden Tätigkeit des Menschen in den betroffenen Grund- und Fließgewässern wiedergegeben. Man erkennt, dass Müllsickerwässer hohe Borsäurekonzentrationen aufweisen, die durch Restmengen in Waschmittelkartons auf die Abfallplätze und mit dem Sickerwasser in das Grundwasser gelangen. Ein anschauliches Beispiel über den Einfluss von borsäurehaltigen Müllsickerwässern ist 2004 bei Käss dokumentiert; der erhöhte Borsäuregehalt des Grundwassers ist in diesem Beispiel aus Oberschwaben noch über 1,5 km abstromig nachweisbar.

Auch die borsäurehaltigen kommunalen Abwässer zeigen im Beispiel des Freiburger Rieselfeldes den Einfluss auf das Grundwasser. Bemerkenswert ist die Selbstreinigung des dortigen quartären Porengrundwasserleiters: 1000 m unterstromig des Rieselfeldes besitzt das Grundwasser bereits wieder Trinkwasserqualität, wobei jedoch die B- und F-Werte gegenüber der Grundlast in der oberstromigen Messstelle 7507 noch merklich erhöht sind. Eine Bestätigung der Selbstreinigung erfolgt durch die Analyse des Uranins, das ein Abfallprodukt aus Uranin-haltigen Spül- und Badezusatzmitteln ist (KÄSS 2004: 261).

Die anthropogene Belastung des Grundwassers bleibt nicht ohne Auswirkung auf die Vorfluter. Auch die Gehalte an Borsäure und Fluorid finden sich in Tabelle 5 für den Neckar und für den Rhein an einigen ausgewählten Probennahmestellen. Es ist darauf hinzuweisen, dass es sich hierbei um Tages- und nicht um Durchschnittswerte handelt.

7. Analytik

Die *Borsäure* wurde nach den Deutschen Einheitsverfahren (DEV) D 17 = DIN 38 405 Teil 17 mit Azomethin H bestimmt. Die Erfassungsgrenze liegt bei dieser Methode bei 5 μ g/l HBO₂.

Fluorid ist mittels der fluoridsensitiven Elektrode von INGOLD analysiert worden. Die Methode nach den DEV D4 = DIN 38 405, Teil 4, wurde für die Untersuchung von Grundwasser abgeändert: Die Pufferlösung wurde zum Untersuchungswasser nicht wie vorgegeben im Verhältnis 1:1, sondern im Verhältnis 1:10 zugesetzt; dafür hatte die Pufferlösung die doppelte Konzentration. Die Erfassungsgrenze konnte dadurch etwa um den Faktor 5 auf $1 \,\mu g/l \, F^-$ gesenkt werden.

Uranin ist mittels Spektralfluorimetrie mit dem HITACHI-Gerät F-2500 mit einer Erfassungsgrenze von 2 ng/l bestimmt worden.

Tab. 5: Metaborsäure- und Fluoridwerte in anthropogen beeinflussten Grund- und Fließwässern.																
Grundwässer bei Abfallplätzen																
Ort, Kreis		Untersucl objekt	hungs-	TK R- 25 Wert			H- Wert		Entn Tag	HBO ₂ mg/l	1	F- ng/l	Fest g/	- 1	Erläuterungen	
Poppenwei	ler, LB	Kreisabfa	ıllplatz	702	1 22	2 250	20 54	10	06.09.80	66,4	1	,35	15,	37I -	WM 10 m von eponie entfernt	
Hohenacke	r, WN	Deponie Stuttgart	Stadt	712	1 23	065	13 14	0	08.09.89	43,2		6,2	25,	α	WM 25 m von eponie entfernt	
Hohenacke	r, WN	Deponie Stuttgart	Stadt	712	1 23	900	13 44	0	18.09.81	0,57),14	1,6	144	WM 500 m von eponie entfernt	
Hohenacke	r, WN	PWK Ho	henacker	712	1 22	990	13 65	0	18.09.81	0,06	0),24	0,7		00 m von eponie entfernt	
Freiburger Rieselfeld, westl. Stadtteil "Rieselfeld"																
GW-Mess- stelle	TK 2	25 R-We	ert H-V	Vert I	Entn.	-Tag	HBC mg/	-	F- mg/l	Fests g/l	- 1		nin g/l	Erlä	uterungen	
7507	791:	2 10 33	30 18	590	13.11	1.85	0,01	4	0,084	252	;	<0,	002		-Zustrom Rieselfeld	
7098	791:	2 08 07	77 19	310	13.11	1.85	2,85	5	0,14	337	,	0,	21		eres Ende Rieselfeldes	
7133	791	2 07 87	72 203	312	28.07	7.86	2,08	3	0,13	332	,	0,	04	04 500 m unterhalb des Rieselfeldes		
7081	791:	2 07 35	50 20 :	580	28.07	7.86	2,07	7	0,16	310)	1 0012 1) m unterhalb Rieselfeldes	
Neckar-Fluss Neckar-Fluss																
Ort, Kreis		Fluss-km	TK 25	R-W	ert/	H-W	/ert	En	ifn - Tag I	HBO ₂ mg/l	F- mg	g/l	Fes mg.		Bemerkungen	
Stuttgart- Münster		188	7121	16	750	09	430	20	0.08.76	3.76 1,36 0,35 780		780	Niedrigwasse			
Heilbronn- Böckingen		115,6	6821	13	995	44	230	0	8.12.82	1,19	(),23		746	Mittelwasser	
Neckarsuln	ı, HN	107,4	6821	15	950	50	080	2	1.10.76	1,83	(),10	_ 1	385	Mittelwasser	
Eberbach, I	HD	57,0	6519	98	220	88	720	0	8.10.76	1,20	(),53	1	144	Mittelwasser	
Wieblingen		17,3	6517	73	160		480		5.09.76	1,22	_),35	9	953	Mittelwasser	
Dossenhein	n, HD	17,3	6517	73	130	78	580	14	4.10.76	1,38	(),99	٥	984	Niedrigwasse	
		•	_			Rh	einstr	om	1			İ				
Basel, Wett brücke	stein-	166,7	8411	94	000	70	100	2	2.02.81	0,19	(),11	4	430	Mittelwasser	
Roxheim, F		433,5	6416	57	520	91	320	03.09.85 4,6		4,64]	1,10	1	814	BASF-Klär- anlAuslauf, Niedrigw.	
Worms, Peg 0,43 m	gel:	443,4	6316	54	900	99	550	0 23.11.83		0,60	(),27	1	249	Niedrigwasse	
MZ-Weiser	nau	495	6014	50	000	38	900	2	0.01.81	0,28	(),24	1	300	Mittelwasser	
KO, KA	Allee	591,5	5611	00	800	81	250	1	1.10.76	0,48	(),45	4	485	Niedrig- Mittelwasser	
BN-Plitters	dorf	646	5308	82	700	18	500	0	7.02.83	0,15	(),36	1	370	Mittelwasser	
K-Ehrenfel	d	689	5007	67	800		200		7.10.76	0,60),57		639	Niedrigwasse	
Emmerich,	KLE	852,8	4103	16	300	43	650	10	6.10.76	0,60),85	_ {	322	Niedrigwasse	

Danksagung

Der Deutschen Forschungsgemeinschaft sage ich Dank für die finanzielle Beihilfe zu den durchgeführten Arbeiten. Dem Landesamt für Geologie, Rohstoffe und Bergbau danke ich für die Bereitwilligkeit, die Analysen im Geochemischen Laboratorium durchführen zu lassen und für die Genehmigung zur Veröffentlichung. Herrn Dipl.-Chem J. ROPPEL ist für die Gelände- und Laborarbeiten zu danken. Nicht zuletzt danke ich meinem Freund M.A. GEYH für die Zurverfügungstellung des Tritiumbestandes im Fluss- und Grundwasser am Unteren Neckar sowie für die Durchsicht des diesbezüglichen Manuskriptes.

Angeführte Schriften

- BROCKAMP, O. (1973): Fixation of Boron by autogenic and detrital clays Geochim. Cosmochim. Acta, 37: 1339, Oxford
- DHV-DTV (2005): Begriffsbestimmungen Qualitätsstandards für die Prädikatisierung von Kurorten, Erholungsorten und Heilbrunnen 12. Aufl., 93 S., 7 Tab.; Bonn (Flöttmann Gütersloh)
- ERNST, W. & H. WERNER (1964): Anwendung der Bor-Methode in den geologischen Formationen zu ihrer besseren Unterscheidung in wissenschaftlichem und praktischem Interesse sowie Untersuchungen über die Bindung und Festlegung des Bors in natürlichen und künstlichen Sedimenten Forschungsber. Nordrhein-Westfalen; 1433: 27 S., Köln und Opladen
- HARDER, H. (1958): Beitrag zur Geochemie des Bors Fortschr. Mineral., 37: 82. –(1960/61): Einbau von Bor in detritische Mineralien Geochim. Cosmochim. Acta, 21:284-294; Oxford
- Käss, W. (2004): Geohydrologische Markierungstechnik. Lehrbuch der Hydrogeologie, Band 9, 2. Aufl., XIV + 557 S., 239 Abb., 43 Tab., 8 Farbtafeln, Berlin-Stuttgart (Gebr. Borntraeger)
- KÄSS, W. & H. KÄSS (2008): Deutsches Bäderbuch, 2. Aufl. [Hrsg. KÄSS, W. & KÄSS, H., Vereinigung für Bäder- und Klimakunde e.V.]; 1232 S., 588 Abb., 314 Tab., 1 Kt., Stuttgart (Schweizerbart)
- KLOTZ, D. (1982): Verhalten hydrologischer Tracer in ausgewählten fluvioglazialen Kiesen, Hangschutt-Kiesen und tertiären Kies-Sanden aus Bayern Beitr. Geol. Schweiz Hydrol., 28(II):245-256, Bern (Kümmerly + Frey)
- LANGGUTH, H.-R. & H. PLUM (1984): Untersuchung der Mineral- und Thermalquellen der Eifel auf geothermische Indikationen Forschungsbericht BMFT-FB-T 84-019, 176 S., 44 Abb., 11 Tab., Karlsruhe-Eggenstein-Leopoldshafen

- MELUF; HMLULF & MLWF (Ministerium für Ernährung, Landwirtschaft und Forsten Baden-Württemberg, Hessischer Minister für Landentwicklung, Umwelt, Landwirtschaft und Forsten, Ministerium für Landwirtschaft, Weinlese und Forsten Rheinland-Pfalz) [Hrsg] (1980): Hydrogeologische Kartierung und Grundwasserbewirtschaftung Rhein-Neckar-Raum: 71 S., 14 Anl., Stuttgart-Wiesbaden-Mainz
- MERKEL, B. & B. SPERLING (1988): Hydrogeochemische Stoffsysteme II DVWK-Schriften, 117, 397 S., zahlr. Abb. und Tab., 1 CD, Bonn (Wirtschafts- und Verlagsges. Gas und Wasser GmbH)
- RICHTER, M., M. GRÜNDIG & A. SEESE (1999): Untersuchung von Transportprozessen mittels Positron-Emissions-Tomographie (PET) Jahresbericht 1999 Inst. f. Interdisziplinäre Isotopenforschung, 2 S., 4 Abb., Leipzig
- SCHULZ, H.D. (2004): Physikalische Grundlagen des Stofftransports im Untergrund In: Käss, W. (2004)
- SENFTEN, H. (1972): Borsäure in Trink- und Mineralwässern Diss. Univ. Bern (Mskr.), 184 S., 8 Abb., 90 Tab., Liebefeld/Bern
- WEI HUANG, D.N. LERNER, C.C. SMITH & S.F. THORNTON (2000): Non-reactive solute dispersion in Triassic sandstone: Laboratory simulation and an application to the field Tracers and Modelling in Hydrogeology, IAHS-Publ., 262:127-133, 2 Fig., 4 Tab., Wallingford UK
- WIRTH, K. (1973): Spurenelementgehalte in Quellwässern und ihre Beziehungen zum durchflossenen Gestein Diss. Geol. Inst. Albert-Ludwigs-Universität Freiburg, 87 S., (Mskr.), 12 Abb., Freiburg i.Br.

Veröffentlichungen über Markierversuche im Versuchsfeld Merdingen

- DE CARVALHO DILL, A., K. GERLINGER, T. HAHN, H. HÖTZL, W. KÄSS, CH. LEIBUNDGUT, P. MALOSZEWSKI, I. MÜLLER, S. OETZEL, D. RANK, G. TEUTSCH & A. WERNER (1992): Porous Aquifer Test Site Merdingen (Germany). Steir. Beitr. Hydrogeol., 43:251-280, 14 Abb., 4 Tab., Graz
- Käss, W. (1988): Markierung von Porengrundwasser. Proceedings 5th Intern. Symp. Underground Water Tracing, Athen, 22.-27.Sept. 1986, S.191-201; Athen. –(1990): Chemisorption als hydrologische Barriere Z. dt. geol. Ges., 144:225-231; Hannover
- KÄSS, W., R. RITTER & C. SACRÉ (1983): Lebensdauer und Transport von Bakterien in typischen Grundwasserleitern Oberrheinische Schottereben DVWK-Schriftenreihe Nr. 35, "Mikroorganismen und Viren in Grundwasserleitern", S. 127-138; Eschborn

Werner Käß

- KÄSS, W., S. OETZEL T. HAHN, B. REICHERT & K. BOTZENHART (1991): Field experiments with microbial tracers in a pore aquifer Water Sci. Tech., 24:305-308, (IAWPRC)
- LUFT, G. & G. MORGENSCHWEIS (1982): Ermittlung von Abstandsgeschwindigkeit, hydraulischer Leitfähigkeit und Dispersionskoeffizient aus Markierungsversuchen-295, 8 Abb., 2 Tab., Bern
- MENZEL, C.M., F.T. LANGE, W. KÄSS & H. HÖTZL (2002): Occurrance of naphthalinesulfonates and their condensates with formaldehyde in a landfill lechate and their transport behavior in groundwater of the Upper Rhine Valley, Germany Environm. Geology, 41:731-741, 8 Fig., 2 Tab., Berlin (Springer)

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Berichte der naturforschenden Gesellschaft zu

Freiburg im Breisgau

Jahr/Year: 2009

Band/Volume: 99

Autor(en)/Author(s): Käß Werner

Artikel/Article: Zur Hydrogeochemie von Bor und Fluor-Erhebungen in

Grund- und Fließgewässem sowie Beobachtungen in einem Grundwasser-Versuchsfeld in Südwestdeutschland 23-44