B. KLAUSNITZER, Leipzig

Faunistisch-ökologische Untersuchungen über die Laufkäfer (Col., Carabidae) des Stadtgebietes von Leipzig

Summary From 1978 to 1981 in the city and the suburb of Leipzig 7,709 Carabidae representing 103 species were collected in 16 areas by means of earth trops. The areas investigated are characterized, the results obtained are compared with the fauna described by H. DIETZE. Altogether 175 species have been demonstrated in the Leipzig area.

The material is analyzed over the A-E-gradient with respect to total dominance, types of hibernation, biological size (volume), ecological groups, number of species and individuals, diversity, aequity and the index values of dominance, richness and evenness. An orientated change of these values was found in several cases. The analysis of representation revealed the occurence of characteristical species in certain areas, succesive associations of Carabidae and a differently extended occurence of the species toward the city.

Резюме С 1978 по 1981 год собрали на 16 точек, расположенных на территории и по окрайности рода Лейпцига с помощью почвенных ловушек 7.709 Carabidae, относящих к 103 видам. Даются характеристику исследуемой территории и сравнение полученных проб с фаной от X. Дитце. До сих пор нашли всего 175 видов в районе Лейпцига.

Сравнивают материал вдоль А-Е-градиента по отношению общего доминанц, зимующих типов, объема биомассы, принадлежности к экологическим группам, числов видов и индивидиум, диверситета, эквитета и числов для доминанц, рихнес и ивеннес. При этом часто наблюдаются направленное изменение величин вдоль градиента. Анализ репресентанца давал следующие результаты: Есть характеристические виды для отдельных площадок, сообщества Carabidae изменяются последовательны и распротранение видов отличается начиная открая до центра города.

1. Einleitung

Laufkäfer (Carabidae) werden seit vielen Jahrzehnten in verschiedenartigen Habitaten unter qualitativen und quantitativen Aspekten untersucht. Besser als bei anderen Käfergruppen sind ihre Habitatsansprüche, die Potenz gegenüber verschiedenen Umweltfaktoren, Präferenzverhältnisse, charakteristische Assoziationen und Fortpflanzungszyklen bekannt. Sie sind im Vergleich zu vielen anderen Coleopterengruppen relativ leicht quantitativ zu erfassen. Deshalb sind sie zur Charakterisierung von Standorten besonders gut geeignet. Auch bei der neuerdings in stärkerem Maße erfolgenden ökologischen Erforschung von Stadtlandschaften werden die Carabiden in besonderem Maße herangezogen (BARNDT 1981, KLAUSNITZER 1982, 1983, KLAUS-NITZER und RICHTER 1980, KLOMANN 1978, MÜLLER 1980, SCHAEFER und KOCK 1979, TOPP 1972).

Für die Stadt Leipzig ergibt sich eine glückliche Ausgangssituation, weil durch HER-MANN DIETZE¹ (1936, 1937, 1938, 1939, 1942,

1961) bereits eine umfassende Bearbeitung der Carabidenfauna erfolgt ist. Wie wohl die meisten älteren faunistischen Veröffentlichungen enthält sie jedoch kaum quantitative Angaben. DIETZES Arbeit ist besonders deshalb wertvoll, weil er neben den eigenen Funden auch Ergebnisse anderer Sammler sorgfältig analysierte und einbezog.

Von 1978 bis 1981 wurden durch verschiedene Personen, vielfach Diplomanden, Aufsammlungen mit Bodenfallen im Stadtgebiet und am Stadtrand von Leipzig vorgenommen. Das da-

HERMANN DIETZE wurde am 14. 4. 1889 in Leipzig geboren. Er studierte an der Universität seiner Heimatstadt und war später als Studienrat für Biologie und Chemie sowie als Turnlehrer tätig, bis er Mitte der 30er Jahre zwangsweise aus seinem Beruf entlassen wurde. 1945 kehrte er in den Schuldienst zurück und hielt auch Vorlesungen über Entomologie an der Universität Leipzig. H. DIETZE war ein vielseitiger Biologe, besonders Coleopterologe, die Carabidae sah er wohl als sein Spezialgebiet an. Nach seinem Tode am 2. 3. 1980 gelangte seine Insektensammlung in den Besitz der Sektion Biowissenschaften der Karl-Marx-Universität Leipzig.

bei gewonnene Material umfaßt insgesamt 7709 Individuen in 103 Arten. Eine zusammenfassende Darstellung scheint berechtigt zu sein, zumal aus den Diplomarbeiten kaum etwas publiziert wurde. Die Zahl der gesammelten Individuen mag im Vergleich zu anderen Erhebungen gering erscheinen. Jedoch war es ausgesprochen schwierig, im Stadtgebiet mit Bodenfallen zu arbeiten. Das Ausmaß mutwilliger Zerstörung reichte bis zur Entfernung ganzer Fallenreihen. In diesem schwer zu umgehenden Problem liegt auch eine wesentliche Ursache für Ungleichgewichte bei der Untersuchung der einzelnen Flächen. Vor allem die zentralen Parkanlagen waren schwierig zu bearbeiten.

Bei der Determination standen für die Gattung Amara Herr Dr. F. HIEKE, Zoologisches Museum Berlin, und für die Gattung Bembidion Herr Dr. G. MÜLLER-MOTZFELD, Sektion Biologie der Ernst-Moritz-Arndt-Universität Greifswald, freundlicherweise zur Verfügung. Beiden Kollegen sei für ihre Unter-

stützung sehr herzlich gedankt. In die vorliegende Arbeit gehen die Sammelergebnisse verschiedener Diplomanden ein: Frau COR-NELIA KÖBERLEIN, Fräulein KERSTIN WOLFF, Herr JOACHIM HENSEL, Herr BERND KATH, Herr FRANK KÖBERLEIN und Herr HELGE WOLFF. Carabiden aus Beifängen anderer Erhebungen verdanke ich den Herren WOLFGANG JOOST, ROLAND KOS-LOWSKI, BERND KUCKELKORN und JÜR-GEN LEHNERT. Allen sei für ihr Entgegenkommen ebenfalls sehr herzlich gedankt. Für Hinweise und die Mühen der Betreuung von Diplomanden danke ich meinen Mitarbeitern Dr. sc. P. GUTTE, Dr. W JOOST und Dr. K. RICHTER.

2. Untersuchungsgebiete und Sammelergebnisse

Die Lage der einzelnen untersuchten Habitate wird durch die beigegebene Karte verdeutlicht (Abb. 1). Weitere Angaben zu den Aufsammlungen können den Tabellen 1—15 entnommen werden.

2.1. Parkanlage am Schwanenteich (PST), Größe: 6,2 ha Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KLAUSNITZER et al. 1980, KOSLOWSKI et al. 1980, WOLFF 1982 Tabelle 1:

	9		1978 J. LEHNERT		1979 B. KUCKEL- KORN		OLFF		
	dominante Arten	n	⁰ / ₀	n	0 / _{0}	n	$^{0}/_{0}$	Summe	⁰ / ₀
wL	Leistus ferrugineus	3	5,0	_	_	_	_	3	
w (L)	Nebria brevicollis	_	_	_	-	4	25,0	4	
m (I)	Bembidion properans	3	5,0	2		-	_	5	
m (L)	Bembidion quadrimaculatum	4	6,7	_	_	2	12,5	6	4,3
h I	$A saphidion\ flavipes$	3	5,0	_	_	5	31,3	8	5,7
m (L)	Harpalus rufipes	_	_	1		1	6,3	2	
m I	Harpalus aeneus	4	6,7	9	13,8	_	_	13	9,2
h (I)	Pterostichus nigrita	_	_	3	4,6	_	-	3	
m (L)	Calathus fuscipes	10	16,7	14	21,5	3	18,8	27	19,1
w (I)	Platynus obscurus	10	16,7	8	12,3	_		18	12,8
x I	Platynus dorsalis	5	8,3	1		1	6,3	7	5,0
m I	Amara aenea	11	18,3	22	33,8	_	_	33	23,4
	Individuen	60		65		16		141	
	Arten	16		13		6		22	
	Biovolumen Ind. (mm³)	26,8		39,9		43,0		33,3	
	Überwinterungstyp								
	imaginal (I)	31	64,6	42	75,0	6	37,5	79	70,5
	larval (L)	17	35,4	14	25,0	10	62,5	33	29,5
	Ökologische Gruppen								
	xerophile Arten (x)	5	10,4	_		1	6,3	7	6,3
	mesophile Arten (m)	27	56,3	45	80,4	6	37,5	79	70,5
	hygrophile Arten (h)	3	6,3	3	5,4	5	31,3	8	7,1
	Waldarten (w)	13	27,1	8	14,3	4	25,0	18	16,1

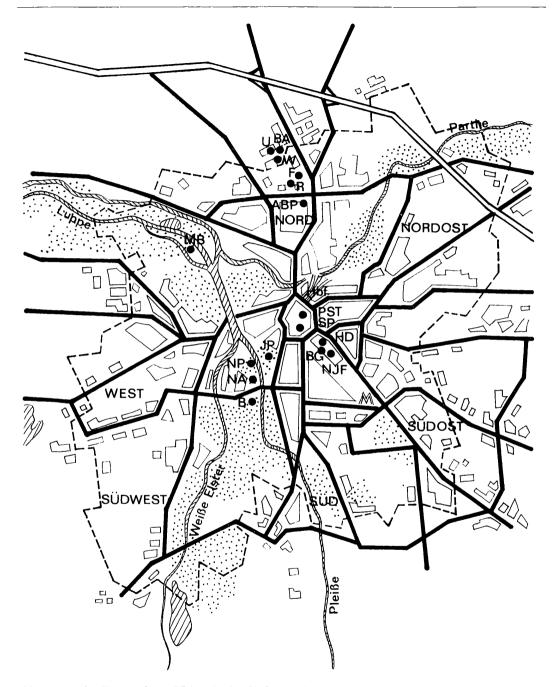


Abb. 1 Lage der Untersuchungsflächen in der Stadt Leipzig

2.2. Schillerpark (SP), Größe: 8,3 ha

Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KOSLOWSKI et al. 1980, WOLFF 1982

Ta	hal	10	ο.
1 a	De.	пe	4:

	Jahr de r Erhebung	1979		1981			
	Sammler	B. KU	CKELKORN	K. WC			
	dominante Arten	n	0/0	n	0/0	Summe	0/0
w (L)	Nebria brevicollis	_	_	112	81,8	112	68,3
m I	Bembidion lampros	2	7,4	_	_	2	
m (I)	Bembidion properans	8	29,6	1		9	5,5
h I	Asaphidion flavipes	_	_	13	9,5	13	7,9
m I	Harpalus aeneus	6	22,2	7	5,1	13	7,9
m I	Amara aenea	10	37,0	1		11	6,7
	Individuen	27		137		164	
	Arten	5		8		9	
	Biovolumen/Ind. (mm³)	21,9		66,9		59,6	
	Überwinterungstyp						
	imaginal (I)	26	100,0	22	16,4	48	29,1
	larval (L)	_		112	83,6	112	70,9
	Ökologische Gruppen						
	mesophile Arten (m)	26	100,0	7	5,2	33	20,9
	hygrophile Arten (h)	_	_	13	9,7	13	8,2
	Waldarten (w)	_	-	112	83,6	112	70,9

2.3. Johannapark (JP), Größe 15,2 ha

Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KLAUSNITZER et al. 1980, KATH 1981

Tabelle 3:

	Jahr der Erhebung	1979	1979 1980				
	Sammler	C. un	d	B. KA	TH		
		F. KČ	BERLEIN				
	dominante Arten	n	0/0	n	0/0	Summe	0/0
w (L)	Nebria brevicollis	43	43,4	107	45,5	150	44,9
w (I)	Notiophilus biguttatus	3		20	8,5	23	6,9
h (I)	Loricera pilicornis	_		12	5,1	12	
m (I)	Bembidion properans	6	6,1	1		7	
h I	Asaphidion flavipes	5	5,1	29	12,3	34	10,2
m (L)	Harpalus rufipes	7	7,1	9		16	4,8
m I	Harpalus aeneus	4	4,0	6		10	
x I	Platynus dorsalis	16	16,2	12	5,1	28	8,4
m I	Amara aenea	6	6,1	7		13	
	Individuen	99		235		334	
	Arten	15		19		21	
	Biovolumen/Ind. (mm³) Überwinterungstyp	53,8		47,8		55,1	
	imaginal (I)	37	42,5	73	40,6	85	33,9
	larval (L)	50	57,5	107	59,4	166	66,1
	Ökologische Gruppen						
	xerophile Arten (x)	16	18,4	12	6,7	28	11,2
	mesophile Arten (m)	23	26,4	_	_	16	6,4
	hygrophile Arten (h)	5	5,7	41	22,8	34	13,5
	Waldarten (w)	43	49,4	127	70,6	173	68,9

2.4. Nonne, Parkteil (NP), Größe: 24,4 ha Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KATH 1981

Tobollo 4:

e 4:		
Jahr der Erhebung	1980	
Sammler	B. KA	TH
dominante Arten	n	0/0
Carabus nemoralis	67	24,4
Leistus rufomarginatus	16	5,8
Nebria brevicollis	106	38,6
Notophilus biguttatus	19	6,9
$Abax\ parallelepipedus$	32	11,6
Amara ovata	11	4,0
Individuen	275	
Arten	22	
Biovolumen/Ind. (mm ³)	234,3	
Überwinterungstyp		
imaginal (I)	129	51,4
larval (L)	122	48,6
Ökologische Gruppen		
mesophile Arten (m)	11	4,4
Waldarten (w)	240	95,6
	Jahr der Erhebung Sammler dominante Arten Carabus nemoralis Leistus rufomarginatus Nebria brevicollis Notophilus biguttatus Abax parallelepipedus Amara ovata Individuen Arten Biovolumen/Ind. (mm³) Überwinterungstyp imaginal (I) larval (L) Ökologische Gruppen mesophile Arten (m)	Jahr der Erhebung Sammler B. KA' dominante Arten Carabus nemoralis Leistus rufomarginatus Nebria brevicollis Notophilus biguttatus Abax parallelepipedus Arten Lindividuen Arten 22 Biovolumen/Ind. (mm³) Überwinterungstyp imaginal (I) larval (L) Ükologische Gruppen mesophile Arten (m) 11

2.5. Nonne, Auwaldteil (NA), Größe: 31,3 ha Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KATH 1981

Tabel	le 5:		
	Jahr der Erhebung	1980	
	Sammler	B. KA	$\mathbf{T}\mathbf{H}$
	dominante Arten	n	0/0
w (I)	Carabus nemoralis	180	50,1
w (L)	Nebria brevicollis	21	5,9
w I	$Abax\ parallelepipedus$	62	17,3
w I	Platynus assimilis	19	5,3
	Individuen	359	
	Arten	28	
	Biovolumen/Ind. (mm³)	459,5	
	Überwinterungstyp		
	imaginal (I)	261	92,6
	larval (L)	21	7,4
	Ökologische Gruppen		
	Waldarten (w)	282	100,0

2.7. Ehemaliger Neuer Johannisfriedhof (NJF), Größe: 29,0 ha

Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KOSLOWSKI et al. 1980, WOLFF 1982

Tabelle 7:

	Jahr der Erhebung	1979		1981			
	Sammler	R. KC	SLOWSKI	K. WC	OLFF		
	dominante Arten	n	0/0	n	0/0	Summe	0/0
w (L)	Nebria brevicollis	15	17,2	51	10,0	66	11,1
m I	Bembidion lampros	46	52,9	28	5,5	74	12,4
m (L)	Harpalus rufipes	4	4,6	104	20,4	108	18,1
m I	Harpalus aeneus	6	6,9	33	6,5	39	6,5
x (L)	Bradycellus csikii	7	8,0	4		11	
m L	Pterostichus melanarius	_	_	21	4,1	21	3,5
x (L)	Synuchus nivalis	_		24	4,7	24	4,0
m (L)	Calathus fuscipes	_	_	66	12,9	66	11,1
m (L)	Calathus melanocephalus	-	-	89	17,5	89	14,9
	Individuen	87		510		597	
	Arten	11		30		30	
	Biovolumen/Ind. (mm³) Überwinterungstyp	26,4		69,8		63,9	
	imaginal (I)	52	66,7	61	14,7	113	23,2
	larval (L) Ökologische Gruppen	26	33,3	355	85,3	374	76,8
	xerophile Arten (x)	7	9,0	24	5,8	24	4,9
	mesophile Arten (m)	56	71,8	341	82,0	397	81,5
	Waldarten (w)	15	19,2	51	12,3	66	13,6

2.6. Beipert (B), Größe: 34,7 ha

Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KATH, 1981

Tabelle 6:

	Jahr der Erhebung Sammler	1980 B. KA	TH
	dominante Arten	n	⁰ / ₀
w (L)	Carabus coriaceus	65	8,2
w (I)	Carabus nemoralis	326	41,4
w (L)	Nebria brevicollis	73	9,3
w I	$Abax\ parallelepipedus$	147	18,7
w I	Abax parallelus	54	6,9
w I	Platynus assimilis	46	5,8
	Individuen	788	
	Arten	27	
	Biovolumen/Ind. (mm³) Überwinterungstyp	555,0	
	imaginal (I)	573	80,6
	larval (L) Ökologische Gruppen	138	19,4
	Waldarten (w)	711	100,0

2.8. Botanischer Garten (BG), Größe: 3,0 ha Literatur zum Untersuchungsgebiet und zur Sammelmethodik: WOLFF 1982

Tabelle 8:

	Jahr der Erhebung	1981	
	Sammler	K. WC	OLFF
	dominante Arten	n	⁰ / ₀
w (L)	Nebria brevicollis	4	7,5
w (I)	Notiophilus biguttatus	19	35,8
h I	Anisodactylus binotatus	9	17,0
m (L)	Calathus fuscipes	6	11,3
m (L)	Amara familiaris	6	11,3
	Individuen	53	
	Arten	13	
	Biovolumen/Ind. (mm³) Überwinterungstyp	34,1	
	imaginal (I)	28	63,6
	larval (L)	16	36,4
	Ökologische Gruppen		
	mesophile Arten (m)	12	27,3
	hygrophile Arten (h)	9	20,5
	Waldarten (w)	23	52,3

2.9. Hausdach Talstraße 33 (HD)

Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KLAUSNITZER et al. 1980

Tabelle 9:

Laber	ic o.		
	Jahr der Erhebung Sammler	1979 B. KLA NITZE K. RIC	R u.
	dominante Arten	n	⁰ / ₀
m (L)	Bembidion		
	quadrimaculatum	99	73,9
m I	Harpalus aeneus	7	5,2
m I	Amara aenea	15	11,2
x I	Microlestes minutulus	7	5,2
	Individuen	134	
	Arten	6	
	Biovolumen/Ind. (mm ³)	6,9	
	Überwinterungstyp		
	imaginal (I)	29	22,7
	larval (L)	99	77,3
	Ökologische Gruppen		
	xerophile Arten (x)	7	5,5
	mesophile Arten (m)	121	94,5

2.11. Feldrand am nördlichen Stadtrand (F) Literatur zum Untersuchungsgebiet und zur Sammelmethodik: HENSEL 1981

Tabelle 11:

	Jahr der Erhebung Sammler	1980 J. HEN	ISEL
	dominante Arten	n	0/0
m I	Bembidion lampros	139	25,4
m (L)	Harpalus rufibarbis	135	24,7
m I	Harpalus aeneus	31	5,7
x I	Platynus dorsalis	60	11,0
	Individuen	547	
	Arten	41	
	Biovolumen/Ind. (mm³) Überwinterungstyp	17,3	
	imaginal (I)	230	63,0
	larval (L)	135	37,0
	Ökologische Gruppen		
	xerophile Arten (x)	60	16,4
	mesophile Arten (m)	305	83,6

2.10. Arthur-Bretschneider-Park (ABP), Größe: 8,9 ha Literatur zum Untersuchungsgebiet und zur Sammelmethodik: KLAUSNITZER et al. 1980, HENSEL 1981

Tabelle	•	^	
Labelle		υ	٠

	Jahr der Erhebung	1979		1980			
	Sammler	C. und		J. HEI	ISEL		
		F. KÖI	BERLEIN				
	dominante Arten	n	0/0	n	0/0	Summe	0/0
w (I)	Carabus nemoralis	37	14,2	17		54	7,3
m (I)	Bembidion properans	14	5,4	5		19	
h I	Asaphidion flavipes	17	6,5	55	11,5	72	9,7
m (L)	Harpalus rufipes	55	21,1	60	12,6	115	15,6
m I	Harpalus aeneus	70	26,8	130	27,2	200	27,1
w I	Platynus assimilis	21	8,0	114	23,8	135	18,3
m I	Amara aenea	19	7,3	6	•	25	ŕ
	Individuen	261		478		739	
	Arten	18		25		28	
	Biovolumen/Ind. (mm³) Überwinterungstyp	148,5		62,3		115,8	
	imaginal (I)	178	76,4	299	83,3	461	80,0
	larval (L) Ökologische Gruppen	55	23,6	60	16,7	115	20,0
	mesophile Arten (m)	158	67,8	190	52,9	315	54,7
	hygrophile Arten (h)	17	7,3	55	15,3	72	12,5
	Waldarten (w)	58	24,9	114	31,8	189	32,8

2.12. Baumgruppe bei Wiederitzsch (Ba) Literatur zum Untersuchungsgebiet und zur Sammelmethodik: HENSEL 1981

1980

Jahr der Erhebung

Tabelle 12:

	Sammler	J. HEN	ISEL
	dominante Arten	n	0/0
w L	Trechus secalis	240	21,2
m (L)	Trechus quadristriatus	47	4,1
m L	Pterostichus melanarius	172	15,2
w I	Pterostichus strenuus	207	18,3
w I	Platynus assimilis	80	7,1
m (I)	Amara communis	68	6,0
	Individuen	1 134	
	Arten	41	
	Biovolumen/Ind. (mm³) Überwinterungstyp	46,3	
	imaginal (I)	355	43,6
	larval (L)	459	56,4
	Ökologische Gruppen		
	mesophile Arten (m)	, 287	35,3
	Waldarten (w)	527	64,7

2.13. Uferböschung bei Wiederitzsch (U) Literatur zum Untersuchungsgebiet und zur Sammelmethodik: HENSEL 1981

Tabelle 13:

	Jahr der Erhebung	1980	
	Sammler	J. HEN	
	dominante Arten	n	0/0
m I	Bembidion lampros	45	16,1
m I	Bembidion obtusum	15	5,4
h I	Anisodactylus binotatus	19	6,8
m (L)	Harpalus rufibarbis	24	8,6
m L	Pterostichus melanarius	57	20,4
w I	Pterostichus strenuus	23	8,2
m L	Pterostichus niger	23	8,2
	Individuen	279	
	Arten	29	
	Biovolumen/Ind. (mm³) Überwinterungstyp	88,5	
	imaginal (I)	102	49,5
	larval (L)	104	50,5
	Ökologische Gruppen		
	mesophile Arten (m)	164	79,6
	hygrophile Arten (h)	19	9,2
	Waldarten (w)	23	11,2

2.14. Wiese bei Wiederitzsch (W)

Literatur zum Untersuchungsgebiet und zur Sammelmethodik: HENSEL 1981

Tabelle 14:

	Jahr der Erhebung Sammler	1980 J. HE	NSEL
	dominante Arten	n	0/0
m I	Bembidion lampros	78	9,7
m (I)	Bembidion properans	178	22,2
m I	Harpalus aeneus	49	6,1
h I	Poecilus cupreus	35	4,4
m L	Pterostichus melanarius	132	16,5
m (L)	Calathus fuscipes	91	11,4
m (L)	Calathus melanocephalus	40	5,0
	Individuen	801	

Individuen	801	
Arten	50	
Biovolumen/Ind. (mm³)	58,2	
Überwinterungstyp		
imaginal (I)	340	56,4
larval (L)	263	43,6
Ökologische Gruppen		
mesophile Arten (m)	56 8	94,2
hygrophile Arten (h)	35	5,8

2.15. Ruderale Flächen

In die Erhebung wurden auch zwei ruderale Flächen einbezogen, die bereits gesondert ausgewertet wurden (KLAUSNITZER 1983). Hier wird nur eine kurze Übersicht wichtiger Daten gegeben (Tabelle 15).

Tabelle 15:

Jahr	1979 (MB)	1980 (MB)	1980 (R)
Sammler	H. WOLFF	W. JOOST	J. HENSEL
Individuen-			
zahl	291	396	677
Artenzahl	32	31	40

3. Diskussion

3.1. Artenliste

Tabelle 16 gibt eine Übersicht der bisher aus dem Stadtgebiet von Leipzig und den Randlagen nachgewiesenen Carabidenarten. Insgesamt kennt man 175 Arten, aus dem Stadtgebiet 94 und vom Stadtrand 168. Der von OWEN und OWEN (1975) sowie anderen Autoren beobachtete besondere Artenreichtum am Stadtrand zeigt sich auch für Leipzig (gesamt: 179%, DIETZE: 193%, die neuen hier vorgelegten Ergebnisse: 192%, wenn das Stadtgebiet gleich 100% gesetzt wird) und ist wohl der Ausdruck eines Saumeffekts.

Die Zahl der von DIETZE nachgewiesenen Arten beträgt 152², bei unseren Erhebungen fanden wir 103 Arten. 72 Arten, die DIETZE meldet, wurden von uns nicht nachgewiesen.

Auch gibt es 15 Arten, die DIETZE vom Stadtgebiet nennt und die wir nur am Stadtrand fanden. Bei DIETZE fehlen 23 Arten, die wir sammelten.

Für die Unterschiede im Artenspektrum sind mehrere Gründe verantwortlich:

- Die Sammelzeit DIETZES ist bedeutend länger, in seiner Liste sind außerdem viele Funde anderer Coleopterologen enthalten.
- DIETZE und die anderen von ihm berücksichtigten Beobachter sammelten qualitativ, d. h. sie versuchten möglichst artenreiche Gebietsaufnahmen anzufertigen und untersuchten bevorzugt besonders attraktiv erscheinende Habitate.
- Wir sammelten ausschließlich mit Bodenfallen, eine Methode, die DIETZE wohl nie benutzte.
- Arten können seltener geworden oder ganz verschwunden sein, andere haben ihr Areal erweitert.

Das Fehlen von neueren Funden könnte bei den Calosoma-Arten und Carabus auratus vielleicht mit der vielerorts beobachteten allgemeinen Abnahme der Häufigkeit dieser Arten erklärt werden. Unklar ist die Ursache für die fehlenden Nachweise von Carabus hortensis, Broscus cephalotes, verschiedenen Bembidionund Harpalus-Arten, Acupalpus flavicollis, Anthracus consputus, Zabrus tenebrioides und einigen Agonum-Arten, Mehrere Arten, die heute im Stadtgebiet weit verbreitet sind, nennt DIETZE nur aus der Umgebung der Stadt, Besonders bemerkenswert scheint dies für Bembidion properans und Asaphidion flavipes zu sein, die in Leipzig offenbar eine Areal- bzw. Habitaterweiterung erfahren haben. Braducellus csikii, der jetzt an verschiedenen Stellen des Stadtrandes und auch im NJF gefunden wurde, fehlt bei DIETZE für das gesamte Leipziger Gebiet. Bemerkenswerte Neunachweise sind auch Pterostichus madidus, mehrere Calathus- und Amara-Arten.

Keller wurden bisher nur geringfügig neu untersucht, so daß das Fehlen von *Sphodrus leucophthalmus* und *Pristonychus terricola* erklärlich erscheint.³

² Die Fauna DIETZEs ist unvollendet. Für die Gattungen Agonum, Platynus, Masoreus, Lebia, Demetrias, Dromius, Syntomus, Lionychus, Microlestes, Odacantha und Brachinus sind keiné Angaben veröffentlicht. Nach den Belegen in der Sammlung DIETZE wurde ein Nachtrag angefertigt (KLAUSNITZER 1983).

Bei einer Erhebung durch BLEY (1983) in den Jahren 1982 und 1983 wurden beide Arten nicht nachgewiesen.

Tabelle 16:	DIETZE, Stadtgebiet	DIETZE, Stadtrand Stadtpebiet 1978—1981	Stadtrand 1978–1981	Fundorte (1978 Stadtgebiet	I–1981) Stadtrand
1 Calosoma inquisitor (L.)		+			
2 Calosoma sycophanta (L.)	+				
3 Calosoma auropunctatum (HBST.)	+				NYTO NI A TO
4 Carabus coriaceus L. 5 Carabus auratus L.		+	+		NP, NA, B
6 Carabus granulatus L.		+	+		B, Ba, U
7 Carabus nemoralis MÜLL.	+	+ +		JP, ABP, BG, NJF	NP, NA, B, F, Ba, R, MB
8 Carabus hortensis L.		<u> </u>	•	, , , , , ,	, , , , , , , , , , , , , , , , , , , ,
9 Cychrus caraboides (L.)		+	+		NA, B, MB
10 Leistus rufomarginatus DUFT.		+	+		NP, NA, B, F
11 Leistus ferrugineus (L.)	+	+ +	- +	PST	NP, NA, B, F, Ba, W,
12 Nebria brevicollis (F.)	+	+ +	- +	PST, SP, JP, ABP, BG, NJF	R, MB NP, NA, B, F, Ba, W, U, R
13 Notiophilus pusillus WTRH.		+		DG, 1101	0,10
14 Notiophilus aquaticus (L.)		$\dot{+}$			
15 Notiophilus palustris (DUFT.)	+	+	+		NP, NA, F, W, R, MB
16 Notiophilus biguttatus (F.)	+	+ +	- +	PST, SP, JP, ABP, BG, NJF	NP,NA,B,F,Ba,R,MB
17 Blethisa multipunctata (L.)		+			
18 Elaphrus cupreus DUFT.		+			
19 Elaphrus riparius (L.)		+ .		CD ID ADD NIE	NA D D D W D
20 Loricera pilicornis (F.)	+	+ +		SP, JP, ABP, NJF	NA, B, F, Ba, W, R
21 Clivina fossor (L.) 22 Dyschirius aeneus DEJ.	7	+	+		Ba, W, U
23 Dyschirius tristis STEPH.		1			
24 Dyschirius globosus (HBST.)		+	+		NA
25 Broscus cephalotes (L.)	+	+	•		
26 Perileptus areolatus (CREUTZ.)		+			
27 Trechus secalis (PAYK.)		+	+		Ba, W, U
28 Trechus quadristriatus (SCHRANK)	1 +-	+ +	- +	PST, HD, JP, ABP, BG	F, Ba, W, R, MB
29 Trechus obtusus ER.		+			
30 Lasiotrechus discus (F.)	+	+ ,		DOM NAM ADD	Ba, W, U
31 Trechoblemus micros (HBST.) 32 Tachys bisulcatus (NICOLAI)	1	+ +	- +	PST, NJF, ABP	Ba, MB
33 Bembidion lampros (HBST.)	+	+ +		SP, NJF, BG, JP,	B, F, Ba, W, U, R, MB
33 Demotaton tampros (IIDS1.)	7-	7 7	- +	ABP	B, F, Ba, W, U, R, MB
34 Bembidion properans STEPH. ⁵		+	- +	PST, SP. NJF, JP, ABP	NP, F, Ba, W, U, R, MB
35 Bembidion punctulatum DRAPIEZ		+			
36 Bembidion dentellum (THUNB.)		+			
37 Bembidion obliquum STURM		++			
38 Bembidion semipunctatum DONOV		+			

als Dyschirius lüdersi WAGNER aufgeführt

als Bembidion lampros subsp. properans aufgeführt

	DIETZE, Stadtgebiet DIETZE, Stadtrand Stadtgebiet 1978–1981 Stadtrand 1978–1981	Fundorte (1978 Stadtgebiet	–1981) Stadtrand
39 Bembidion tetracolum SAY ⁶	++++	PST, ABP	F, Ba, W, U
40 Bembidion femoratum STURM	+ +		
41 Bembidion decorum (ZENKER in PANZER)	.1 .1		
42 Bembidion modestum (F.)	+ + + +		
43 Bembidion illigeri NETOLITZKY ⁷	++		
44 Bembidion assimile GYLL.	\dotplus \dotplus		
45 Bembidion quadripustulatum SERV			
46 Bembidion quadrimaculatum (L.)	+ + + +	PST, HD, NJF	NP, NA, F, W
47 Bembidion doris (PANZ.)	+ + .		
48 Bembidion gilvipes STURM	+		NA
49 Bembidion articulatum (PANZ.) 50 Bembidion octomaculatum (GOEZE	+) + +		
51 Bembidion obtusum SERV.	, ₊ ₊ ₊		F, Ba, W, U
52 Bembidion biguttatum (F.)	' ÷ ÷		Ba
53 Bembidion unicolor CHAUD.	+		
54 Bembidion guttula (F.)	+ +		NP, NA
55 Asaphidion flavipes (L.)	+ +	PST, SP, NJF, BG,	NP, NA, B, F, R
EC Datuchus atnoméric (CEDOERA)	1 1 1	JP, ABP	ND NA Do II
56 Patrobus atrorufus (STROEM) ⁸ 57 Perigona nigriceps (DEJ.)	++++	NJF	NP, NA, Ba, U
58 Anisodactylus binotatus (F.)	++++	NJF, BG	F, Ba, W, U, MB
59 Harpalus obscurus (F.)	' ' '	1.01, 20	1, 2u,, 0,2
60 Harpalus puncticeps STEPH.	÷		
61 Harpalus rufibarbis (F.) ⁹	+ + +	BG	F, Ba, W, U, R
62 Harpalus signaticornis (DUFT.)	+ +		
63 Harpalus griseus (PANZ.)	++	DOM OD NIE ID	E Da W D MD
64 Harpalus rufipes (DE GEER) ¹⁰	++++	PST, SP, NJF, JP, ABP	F, Ba, W, R, MB
65 Harpalus calceatus (DUFT.)	+ +	NJF, BG	
66 Harpalus aeneus (F.)	++++	PST, SP, HD, NJF,	NP, NA, F, Ba, W, R,
67 Hamalus distinguis dus (DYIFF)	1 1 1	BG, JP, ABP	MB
67 Harpalus distinguendus (DUFT.) 68 Harpalus latus (L.)	+ + + + + + + + +	JP	
69 Harpalus luteicornis (DUFT.)	+ + +		
70 Harpalus rubripes (DUFT.)	++++		w
71 Harpalus tardus (PANZ.)	++++		F, W, R
72 Harpalus anxius (DUFT.)	, , ,		. ,
73 Harpalus punctatulus (DUFT.)	+		R
74 Harpalus rupicola STURM	, +	NITO	R, MB
75 Harpalus melancholicus DEJ.	++	NJF	MB

⁶ als Bembidion ustulatum auct. aufgeführt

als Bembidion genei ssp. illigeri aufgeführt

⁸ als Patrobus excavatus PAYK, aufgeführt

⁹ als Harpalus brevicollis SERVILLE aufgeführt

¹⁰ als Harpalus pubescens MÜLLER aufgeführt

		DIETZE, Stadtgebiet	DIETZE, Stadtrand	Stadtgebiet 1978—1981 Stadtrand 1978—1981	Fundorte (1978- Stadtgebiet	–1981) Stadtrand
76	Harpalus atratus LATR.		+	+	ABP	
	Harpalus servus (DUFT.)			+		R
	Harpalus frölichi STURM	+	+			
	Stenolophus teutonus (SCHRANK)	+	+	+	PST	
80	Stenolophus skrimskiranus		,			
0.1	(STEPH).	+	++	. 1		117 TT
	Stenolophus mixtus HERBST Trichocellus placidus (GYLL.)	_	+	+ +		W, U Ba
	Bradycellus verbasci (DUFT.)		7-			MB
	Bradycellus harpalinus (SERV.)	4	+	1.		MD
	Bradycellus collaris (PAYK.)	+	+	+		R
	Bradycellus csikii LACZÓ		'	+ +	NJF	F, Ba, W, U, R, MB
	Acupalpus elegans (DEJ.)		+			, , , , ,
88	Acupalpus flavicollis (STURM)	+	+			
	Acupalpus meridianus (L.)	+	+	+		F, W
	Acupalpus dorsalis (F.)		++			
	Acupalpus dubius SCHILSKY ¹¹		+			
	Acupalpus exiguus (DEJ.)		+			
	Anthracus consputus (DUFT.)	+	+	1		NID NIA D. II
	Stomis pumicatus (PANZ.)		+	+	UD MIE ADD	NP, NA, Ba, U
	Poecilus cupreus (L.) Pterostichus vernalis (PANZ.)	+ +	+	+ + +	HD, NJF, ABP PST, NJF, ABP	NA, F, W, U, R, MB B, F, Ba, W, U
	Pterostichus macer (MARSHAM)	1	+		151, Nor, ADI	D, F, Da, W, O
	Pterostichus oblongopunctatus (F.)		+			
	Pterostichus niger (SCHALL.)		+	+		B, F, B a, W, U, MB
	Pterostichus melanarius					_, _ ,, , _ ,
	(ILLIGER) ¹²	+	+	+ +	NJF, JP	B, F, Ba, W, U, R, MB
101	Pterostichus nigrita (PAYK.)	+		++	PST, JP, ABP	NP, NA, B, U
102	Pterostichus anthracinus (ILLIGER))	+			
	Pterostichus gracilis (DEJ.)		+			
	Pterostichus minor (GYLL.)		+	+		В
105	Pterostichus strenuus (PANZ.)		+	+		NP, NA, F, Ba, W,
100	Diamaniahan dilimana (CTIIDM)			1		U, MB
	Pterostichus diligens (STURM) Pterostichus madidus (F.)		+	-1 -1	ABP	B
	Abax parallelepipedus			T T	ADP	F, R
100	(PILLER et MITTERPACHER)		+	+		NP, NA, B
109	Abax parallelus (DUFT.)		+	+		NA, B
	Synuchus nivalis (PANZ.)		'	+ +	SP, NJF	F, Ba, W, U, R
	Calathus fuscipes (GOEZE)		+	$\dot{+}$ $\dot{+}$	PST, NJF, BG, ABP	F, Ba, W, U, R, MB
	Calathus erratus SAHLB.			+	. , ,	MB
113	Calathus ambiguus (PAYK.)			+		W, R
	Calathus melanocephalus (L.)			+ +	NJF	F, Ba, W, R, MB
115	Calathus piceus (MARSH.)			+		NA, Ba, MB

 $^{^{\}rm II}$ als Acupalpus luridus auct. nec. DUFT. aufgeführt $^{\rm I2}$ als Pterostichus vulgaris auct. nec. L. aufgeführt

	DIETZE, Stadtgebiet DIETZE, Stadtrand Stadtgebiet 1978—1981 Stadtrand 1978—1981	Fundorte (1978 Stadtgebiet	:—1981) Stadtrand
116 Sphodrus leucophthalmus (L.) 117 Pristonychus terricola (HERBST) ¹³ 118 Agonum marginatum (L.) 119 Agonum mülleri (HERBST) 120 Agonum thoreyi (DEJ.) 121 Agonum gracilipes (DUFT.) 122 Agonum versutum (GYLL.)	+ + + + + + + + + + +	PST NJF	W, R MB
123 Agonum viduum (PANZ.) 124 Agonum livens (GYLL.) 125 Agonum moestum (DUFT.) 126 Agonum micans (NICOLAI) ¹⁴ 127 Agonum fuliginosum (PANZ.) ¹⁴ 128 Platynus assimilis (PAYK.)	+ + + + + + + + + +	ABP	MB NP, NA, B, Ba, W, U,
129 Platynus obscurus (HERBST) 130 Platynus ruficornis (GOEZE) 131 Platynus dorsalis (PONT.) 132 Zabrus tenebrioides (GOEZE)	+ + + + + + + + + + + + + + + + + + + +	PST JP PST, NJF, JP, ABP	MB MB B NP, F, Ba, W, U, R
133 Amara strenua ZIMMERMANN 134 Amara plebeja (GYLL.) 135 Amara similata (GYLL.) 136 Amara ovata (F.) 137 Amara curta DEJEAN	+++++++++++++++++++++++++++++++++++++++	ABP JP, ABP	Ba, W, R NP, F, Ba, W, MB NP, NA, B, F, Ba, W, R, MB MB
138 Amara montivaga STURM 139 Amara communis (PANZ.) 140 Amara lunicollis SCHIÖDTE 141 Amara aenea (DE GEER)	+ + + + + + + + + + + + + + + + + + + +	PST, SP, HD, NJF, BG, JP, ABP	Ba, W, U W, MB F, Ba, R, MB
142 Amara eurynota (PANZ.) 143 Amara familiaris (DUFT.)	+ + +	JP, ABP, BG	W, MB NP, B, F, Ba, W, U, R. MB
144 Amara ingenua (DUFT.) 145 Amara bifrons (GYLL.) 146 Amara brunnea (GYLL.)	+++++++++++++++++++++++++++++++++++++++	PST, NJF, ABP	F, R, MB F, W, R, MB
147 Amara apricaria (PAYK.) 148 Amara fulva (MUELL.)	+++	PST, NJF, JP, ABP	R, MB
149 Amara consularis (DUFT.) 150 Amara aulica (PANZ.) 151 Amara convexiuscula (MARSH.) 152 Amara equestris (DUFT.) 153 Amara convexior STEPH.	+ + + + + + + + + + + + + + + + + + + +	NJF NJF, ABP	F, W, R MB W, MB NA, B, F, W, U, R, MB
154 Amara anthobia VILLA 155 Amara tibialis (PAYK.)	+ +	PST	MB MB

als Aechmites terricola aufgeführt

als Europhilus micans bzw. fuliginosum aufgeführt

	DIETZE, Stadtgebiet DIETZE, Stadtrand Stadtgebiet 1978—1981 Stadtrand 1978—1981	Fundorte (1978 Stadtgebiet	:—1981) Stadtrand
156 Amara majuscula CHAUDOIR	+		W
157 Chlaenius nigricornis (F.)	+		
158 Oodes helopioides (F.)	+ +		NA
159 Badister unipustulatus BONELLI	+		
160 Badister bipustulatus (F.)	++++	JP	NA, B, F, Ba, W, U, MB
161 Badister sodalis (DUFT.)	+ +		В
162 Badister peltatus (PANZ.)	+		
163 Panagaeus crux-major (L.)	+ ,		E MD
164 Panagaeus bipustulatus (F.) 165 Demetrias atricapillus (L.)	+ +		F, MB
166 Dromius quadrinotatus (PANZ.)			В
167 Dromius notatus STEPH.	+ +		R
168 Dromius linearis (OLIVIER)	+		R
169 Dromius agilis (F.)	· +		
170 Dromius quadrimaculatus (L.)	- \		
171 Dromius sigma (ROSSI)	<u> </u>		
172 Syntomus foveatus (FOURCR.) 15	· +		R
173 Syntomus truncatellus (L.)	+++	JP, ABP	W, R, MB
174 Microlestes minutulus (GOEZE)	+ + +	HD	W, MB
175 Microlestes maurus (STURM)	+ +		W

Bei relativ vielen für die Carabidenfauna Leipzigs charakteristischen Arten hat sich das Bild ihrer allgemeinen Verbreitung in den letzten Jahrzehnten offenbar nur wenig verändert, z. B.: Carabus nemoralis, Leistus ferrugineus, Nebria brevicollis, Notiophilus biguttatus, Loricera pilicornis, Trechus quadristriatus, Bembidion lampros, Bembidion quadrimaculatum, Anisodactylus binotatus, Harpalus rufipes, Harpalus aeneus, Poecilus cupreus, Pterostichus vernalis, Pterostichus melanarius, Pterostichus nigrita, Amara similata, Amara ovata, Amara aenea, Amara familiaris, Amara bifrons und Badister bipustulatus.

3.2. Dominanzverhältnisse

3.2.1. Gesamtdominanz

Als Grundlage für eine Berechnung von Gesamtdominanzwerten wurden alle 7 709 Individuen herangezogen. Davon stammen 2 162 aus dem Stadtgebiet und 5 547 vom Stadtrand. Es bestehen erhebliche Unterschiede zwischen den Dominanzverhältnissen von Stadtrand und Stadtgebiet, auffällig ist die bedeutend gerin-

gere Summe der Gesamtdominanz am Stadtrand. Theoretisch war dieses Bild zu erwarten, weil an extremeren Habitaten (hier das Zentrum) im allgemeinen weniger Arten in größeren Individuenzahlen vorkommen, wodurch sich hohe Dominanzwerte ergeben.

3.2.2. Überwinterungstypen

Die Fauna des Stadtgebietes könnte durch einen höheren Anteil der sogenannten Herbstarten gekennzeichnet sein, deren Larven im Boden überwintern und dadurch weniger den städtischen Dezimierungsfaktoren ausgesetzt sind. Die Abb. 2 zeigt jedoch nur einen geringfügig erhöhten Anteil der relativen Individuenzahl der Larvalüberwinterer im Stadtgebiet.

3.2.3. Biovolumen

Im Stadtgebiet dominieren deutlich "kleinere" Arten, die wohl eher die stärkere Belastung (Bewirtschaftung und "Pflege" der Grünanlagen, Überbesatz durch Vögel) überstehen (Tab. 18).

3.2.4. Ökologische Gruppen

Die Verteilung aller dominanten Arten des Gesamtmaterials auf verschiedene ökologische

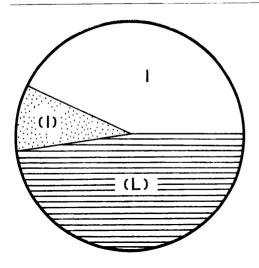
als Metabletus foveatus aufgeführt

ፐၵ	heli	10-1	۱7٠

	Art	Stadt- gebiet	Dominanz $\binom{0}{0}$	Stadt- rand	Dominanz $\binom{0}{0}$	Summe	Dominanz $\binom{0}{0}$
w (L)	Nebria brevicollis	362	16,7	307	5,5	669	8,7
m I	Harpalus aeneus	283	13,1	220	4,0	503	6,5
m (L)	Harpalus rufipes	243	11,2	144	2,6	387	5,0
w I	Platynus assimilis	135	6,2	152	2,7	287	3,7
h I	Asaphidion flavipes	129	6,0	24	sr	153	2,0
m (L)	Bembidion quadrimaculatum	109	5,0	5	sr	114	r
m I	Amara aenea	101	4,7	49	sr	150	r
m (L)	Calathus fuscipes	100	4,6	135	2,4	235	3,0
m (L)	Calathus melanocephalus	89	4,1	132	2,4	221	2,9
m I	Bembidion lampros	79	3,7	455	8,2	534	6,9
w (I)	Notiophilus biguttatus	72	3,3	64	r	136	r
w (I)	Carabus nemoralis	63	2,9	609	11,0	672	8,7
x I	Platynus dorsalis	50	2,3	92	r	142	r
m (I)	Bembidion properans	45	2,1	271	4,9	316	4,1
m L	Pterostichus melanarius	28	r	387	7,0	415	5,4
m (L)	Harpalus rufibarbis	1	sr	180	3,2	181	2,3
w I	Abax parallelepipedus	_	_	241	4,3	241	3,1
w I	Pterostichus strenuus			251	4,5	251	3,3
w L	Trechus secalis	_	_	255	4,6	255	3,3
x (L)	Harpalus melancholicus	1	sr	120	2,2	121	\mathbf{r}
	Summe der Individuen der dominanten Arten ($> 2^{0}/_{0}$) Gesamtdominanz	1 860		3 859		5 320	
	(> 4 %) (Summe)		71,6		54,0	4	5,3

Tabelle 18:

	Sta	adtgebiet	St	adtrand
	Volumen (cm³)	Durchschnittl. Volumen/Indi- viduum (mm ³)	Volumen (cm³)	Durchschnittl. Volumen/Indi- viduum (mm³)
Eudominante Arten				
$(>10^{0}/_{0})$	72,5	81,6	363,7	597,2
Dominante Arten				
$(5-10^{-0})$	9,6	25,9	88,0	76,6
Subdominante Arten				
$(2-5)^0/0$	50,4	84,1	140,1	66,7
Summe	132,5	71,2	591,8	153,4

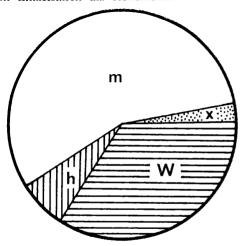

Typen ergibt eine erwartungsgemäß deutliche Zunahme der Waldarten zum Stadtrand, die vor allem wohl auf Kosten der mesophilen und hygrophilen Arten geht, die im Stadtgebiet gegenüber dem Stadtrand überwiegen (Abb. 3).

3.3. Gradientenanalyse

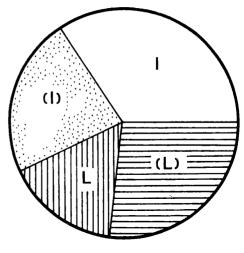
Die Existenz einiger Gradienten, die vom urbanen Bereich zum Umland bestehen, wurde bei der Auswertung entsprechenden Materials meist wenig berücksichtigt. Neben einer Reihe von mehr oder weniger speziellen und oder ab-

hängigen Gradienten kommt zweien ganz besondere Bedeutung zu. Zum einen ist dies der A-E-Gradient¹⁶, der den Übergang von Wald über Dauergrasland bis zur Steinwüste beschreibt (KLAUSNITZER 1982). In Übereinstimmung damit steht die zunehmend kontinentale Natur wichtiger Umweltfaktoren entlang dieses Gradienten. Der zweite wichtige Gradient ist ein komplexer Noxengradient, der

¹⁶ Abgeleitet von den Wörtern "Arboreal" und "Eremial"



Stadtgebiet


Abb. 2 Anteil der verschiedenen Überwinterungstypen im Stadtgebiet und am Stadtrand

- I = imaginale Überwinterer
- (I) = imaginale Überwinterer mit Herbstbestand
- L = larvale Überwinterer
- (L.) = larvale Überwinterer, z. T. mit Imaginalüberwinterung

aus einer Vielzahl von einzelnen Gradienten (jede Einzelnoxe) besteht, wohl aber als komplexer Gradient aufgefaßt werden sollte (additive und synergistische Wirkungen). Im Gegensatz zum A-E-Gradienten läßt er sich aber nur in Einzelfällen als Kontinuum vom Umland

Stadtgebiet

Stadtrand

zum Zentrum darstellen (Diskontinuitäten in Abhängigkeit von Emissionszentren).

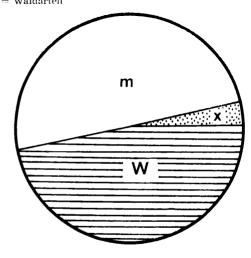

Im folgenden soll versucht werden, die Wirkung des A-E-Gradienten auf das Vorkommen der Carabidae zu analysieren bzw. den A-E-Gradienten anhand der Carabidae zu charakterisieren. Manche Städte, auch Leipzig, haben den Vorteil, daß vom umgebenden Wald her

Abb. 3 Verteilung der gesammelten Carabidae auf verschiedene ökologische Gruppen

x = xerophil - xerobiont

m = mesophil

h = hygrophilW = Waldarten

Stadtrand

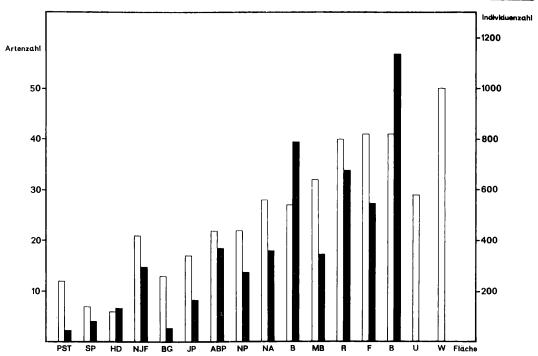


Abb. 4 Arten- und Individuenzahl auf den einzelnen Untersuchungsflächen (bei mehreren Untersuchungsjahren wird eine mittlere Zahl verwendet)

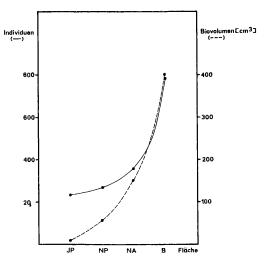


Abb. 5 Individuenzahl und Biovolumen entlang eines Transsektes zum Auwald hin

Sektoren bis zum Stadtkern reichen, die zunehmend anthropogen beeinflußt werden und besonders geeignet für eine Untersuchung des A-E-Gradienten sind.

3.3.1. Artenzahl

Abbildung 4 zeigt eine Zunahme der Artenzahl zum Stadtrand hin, die als Tendenz deutlich sichtbar ist. Bei den zwei- bzw dreijährigen Fängen im PST (22), SP (9), JP (21), NJF (30), ABP (28) und MB (48) erhöhte sich die Gesamtartenzahl (Werte in Klammern). Eine Erhöhung der Artenzahl wäre aber bei mehrjährigem Fallenfang sicher auch auf den anderen Flächen zu erwarten.

3.3.2. Individuenzahl

Die Individuenzahlen der verschiedenen Untersuchungsflächen sind nicht ohne weiteres miteinander vergleichbar, weil aus den bereits dargelegten Gründen eine mehr oder weniger starke Zerstörung von Fallen die Durchsetzung einer einheitlichen Erfassungskonzeption erschwerte. Dennoch scheint die Individuenzahl zur Peripherie hin anzusteigen (Abb. 4).

Vier Flächen eines Transsektes können hinsichtlich der Zahl der gefangenen Individuen gut miteinander verglichen werden, weil die Aufsammlung der Tiere keinen größeren Störungen unterworfen war. Es ergab sich ein deutlicher Abfall der Zahlenwerte, auch des Biovolumens nach dem Stadtzentrum hin (Abb. 5).

3.3.3. Gesamtdominanz und Dominanzindizes Nach THIENEMANNS Regeln müßte im Zentrum eine höhere Gesamtdominanz als am Stadtrand bzw. Umland erwartet werden. Die Ergebnisse bestätigen zum größten Teil diese Erwartung. Die Addition aller Dominanzwerte über 4% (Gesamtdominanz) zeigt besonders hohe Werte auf einigen Flächen des Stadtzentrums (SP, HD, BG, NJF), doch auch bei zwei der Peripherie zuzurechnenden Flächen (NP, B). Die niedrigsten Werte wurden in der Randzone beobachtet (F, MB, Ba, U, R).

Der BERGER-PARKER-Dominanzindex

$$(d = \frac{N \text{ max}}{N} \quad N_{\text{max}} = \text{Individuenzahl der häufigsten Art) wird in seinem Zahlenwert immer}$$

figsten Art) wird in seinem Zahlenwert immer kleiner, je ausgeglichener die Dominanzpyramide ist. Gleiches trifft auch für den Domi-

nanzindex nach SIMPSON zu (c =
$$\sum_{n_i=1}^{n_i^2} \frac{n_i^2}{N}$$
;
 n_i = Individuenzahl jeder einzelnen Art).

Nach Tabelle 19 zeigen die Werte für beide Indizes eine gleiche Tendenz. Ähnlich wie bei der Gesamtdominanz finden wir besonders hohe Werte auf extremen Flächen (HD, SP) und niedrige Werte an der Stadtperipherie (MB, U, Ba, W). Auffällige Abweichungen fallen besonders für den NJF und die PST auf. Für die erstgenante Fläche könnte man eine Erklärung in dem zunächst offenbar relativ ausgeglichenen Verhältnis der Populationen nach Abschlußtiefgreifender Umgestaltungsmaßnahmen se-

hen, die mit ungewöhnlich hohem Pflanzenentzug verbunden waren.

3.3.4. Diversität und Äquität

Die Speziesdiversitätswerte (${\rm H_S}$) liegen erwartungsgemäß innerhalb der Stadt im allgemeinen deutlich niedriger als im Umland, bei der Äquität (${\rm I_S}$) höher. Entlang des Gradienten ist eine fallende bzw. steigende Tendenz der beiden Werte zu verzeichnen.

Trockenes Grünland des Flugplatzes Köln/ Bonn ergab eine $H_s = 0.584$ und ruderalisiertes Grünland 0.763 (BECKER 1977), SCHÄFER und KOCK (1979) fanden in den Stadtparks eine deutlich niedrigere Diversität (0.523-1.449), als in den Wäldern der Umgebung (2,477-2,977). Auch Coleopterenuntersuchungen in Saarbrücken (KLOMANN 1977, 1978; MÜLLER 1980: MÜLLER et al. 1974) zeigen einen Abfall der Diversitätswerte nach dem Stadtzentrum. Die genannten Autoren sehen niedrige Speziesdiversitätswerte als Maß anthropogener Belastung an Bedenken hinsichtlich einer solchen Verwendung dieses Index äußerten u. a. THIELE und WEISS (1976), die nur Langzeitbeobachtungen auf der gleichen Fläche bei gleichzeitiger Veränderung der Umwelt gelten lassen möchten

3.3.5. Indizes für den Artenreichtum

und die Gleichmäßigkeit der Verteilung Verschiedene Indizes geben ein Maß für den Artenreichtum (richness) einer Zönose:

Tabelle 19: (für d und c bedeuten die Zeilen die einzelnen Sammeljahre, die Klammerwerte beziehen sich auf das Gesamtmaterial)

$\Sigma > 4^{0}/0$	PST 79,5 ¹⁷	SP 96.3 ¹⁷	HD 95,5	NJF 81,6 ¹⁷	BG 82.9	JP 75,2 ¹⁷	ABP 78.0 ¹⁷	NP 91,3	NA 78,6	B 90.3	MB 67,4 ¹⁷	R 73,9	F 66,8	Ва 71,9	U 73,7	W 75.3
		,-	,							,		,	,		,	,
d	0,183	0,370	0,739	0,529	0,358	0,434	0,268	0,385	0,501	0,414	0,206	0,269	0,254	0,212	0,204	0,222
	0,338	0,818		0,204		0,455	0,272				0,250					
	0,313															
	(0,234)	(0,683)		(0,181)		(0,445)	(0,271)				(0,175)	1				
	0,114	0,281	0,565	0,325	0,193	0,234	0,157	0,232	0,291	0,230	0,084	0,129	0,147	0,117	0,102	0,110
	0,200	0,680		0,110		0,241	0,165				0,127					
	0,219															
	(0.128)	(0,487)		(0,103)		(0,232)	(0,150)				(0,070)	1				

Tabelle 20: (für H_s und I_s bedeuten die Zeilen die einzelnen Sammeljahre, die Klammerwerte beziehen sich auf das Gesamtmaterial)

H_S	PST 2,073 1,689 1,264	SP 1,169 0,654	HD 0,859	NJF 1,419 2,423	BG 1,720	JP 1,755 1,893	ABP 2,038 2,145	NP 1,744	NA 1,799	B 1,874	MB 2,683 2,341	R 2,469	F 2,397	Ba 2,537	U 2,564	W 2,609
$\mathbf{I_S}$	(2,220) 0,867 0,764	(1,098) 0,851 0,332	0,502	(2,623) 0,615 0,741	0.777	(1,982) 0,714 0,669	(2,210) 0,742 0.706	0,576	0,564	0,564	(2,943) 0,817 0,716	0,697	0,662	0,700	0,819	0,691
	0,909 (0.785)	(0.503)		(0.758)		(0.681)	(0.682)				(0.791)					

Tabelle 21: (für r_1 , r_2 und e bedeuten die Zeilen die einzelnen Sammeljahre, die Klammerwerte beziehen sich auf das Gesamtmaterial)

PST	SP	HD	NJF	BG	JР	ABP	NP	NA	В	MB	\mathbf{R}	F	Ba	U	w
3,664	1,214	1,021	2,239	3,022	3,047	3,055	3,739	4,589	3,898	5,464	5,984	6,345	5,687	4,972	7,329
2,875	1,423		4,652		3,297	3,890				5,016					
1,803															
(4,243)	(1,569)		(4,537)		(3,442)	(4,088)				(7,195)					
2,066	0,962	0,518	1,179	1,786	1,508	1,114	1,327	1,478	0,962	1,876	1,537	1,753	1,218	1,736	1,767
1,612	0,683		1,328		1,239	1,143				1,558					
1,500															
(1,853)	(0,703)		(1,228)		(1,149)	(1,030)				(1,831)					
0,748	0,726	0,479	0,592	0,671	0,648	0,705	0,574	0,540	0,569	0,774	0,669	0,645	0,683	0,761	0,667
0,658	0,315		0,712		0,643	0,666				0,682					
0,705															
(0,718)	(0,500)		(0,771)		(0,651)	(0,663)				(0,760)					

$$r_1 \text{ (MARGALEFF-Index)} = \frac{s-1}{\ln N} = \frac{s}{N}$$

(S = Artenzahl). Je ausgeglichener die Verteilung der Individuen auf die Arten ist und je mehr Arten vorhanden sind, desto höher ist der Indexwert. In Richtung Stadtrand müßte er demnach ansteigen. Dies ist beim MARGA-LEFF-Index auch klar zu sehen, jedoch nicht bei r₂.

Der Index für die Gleichmäßigkeit (evenness) wird wie folgt berechnet:

 $e = \frac{H_S}{\ln S} \bullet \text{ Er zeigt gleichsinnige Abhängigkeiten} \\ \text{wie } r_1 \text{ und } r_2, \text{ jedoch geht die Artenzahl mit geringerem Gewicht in den Wert ein. Der evenness-Index zeigt für unsere Erhebungen keine deutliche Aussage.} \\$

3.4. Repräsentanzanalyse und Charakterarten In Tabelle 22 sind alle diejenigen Arten eingetragen, die auf wenigstens einer Fläche $>4\,{}^0/_0$ aller Individuen erreichten.

Die meisten Arten sind dispers verteilt. Doch zeigt sich bei diesen in mehreren Fällen eine Konzentration zwischen 40 und 70% auf einer einzigen Fläche (autodispers). In anderen Fällen ergibt sich ein gehäuftes Vorkommen (30-50%) auf 2 Flächen (syndispers), wobei dies nie auf benachbarten Flächen beobachtet wurde. Einige wenige Arten konzentrieren mehr als 90% der Individuen auf eine Fläche (exklusiv), andere zwischen 70 und 90 % (proximal). Aus dieser Analyse können Charakterarten für einzelne Flächen abgeleitet werden (Tabelle 23). Berücksichtigt man die aus technischen Gründen geringere Ausbeute der zentralen Flächen, indem man das Gewicht de" dort gesammelten Arten erhöht, ergeben sich weitere charakteristische Arten (in Klammern gesetzt).

Tabelle 22 zeigt ferner das unterschiedlich weite Vordringen von Arten ins Zentrum hinein. Recht auffällig ist dies für Abax parallelus. Carabus coriaceus. Abax parallelepipedus und Carabus nemoralis. Auch ist entlang des A-E-Gradienten eine Aufeinanderfolge von Carabidengesellschaften zu erkennen. In den zentralen Parks (PST, SP, NJF, BG, JP, ABP) lebt eine andere Assoziation als am anderen Ende des Gradienten (NP. NA. B). Der JP und ABP vermitteln teilweise wegen ihres Baumreichtums zwischen den beiden Endpunkten. Die zum Vergleich herangezogenen Flächen des Umlandes lassen Herkunftsgebiete für manche Arten des Zentrums erkennen, sind im übrigen aber teilweise sehr verschieden und soziologisch an Agrosysteme bzw. Ruderalsysteme anzuschließen.

Tabelle 23:

PST: exklusiv - Platynus obscurus; autodispers - (Amara aenea, Calathus fuscipes)

SP: syndispers - (Nebria brevicollis)

HD: proximal — Bembidion quadrimaculatum

NJF: proximal — Synuchus nivalis; autodispers — Calathus melanocephalus

ABP: autodispers — Platynus assimilis, Asaphidion flavipes, Harpalus aeneus

NP: autodispers - Leistus rufomarginatus

B: exklusiv — Abax parallelus; proximal —
Carabus coriaceus; autodispers — Abax
parallelepipedus, Carabus nemoralis

MB: exklusiv — Harpalus melancholicus, Calathus piceus, Amara convexiuscula; proximal — Microlestes minutulus; syndispers — Amara bifrons

R: proximal — Harpalus tardus; autodispers — Bembidion lampros; syndispers — Amara bifrons

F: proximal — Harpalus rufibarbis; autodispers — Platynus dorsalis

Ba: exklusiv — Trechus secalis, Amara communis; proximal — Pterostichus strenuus; autodispers — Trechus quadristriatus; syndispers — Pterostichus melanarius

Tabelle 22: Art	PST	SP	HD	NJF	ВG	JP	ABP	NP
4								
A. parallelus C. coriaceus								1,3
P. assimilis							47,0	0.3
A. parallelepipedus							41,0	13,3
L. rufomarginatus								48,5
A. ovata						10,9	4,7	17,2
C. nemoralis				0,1	0.1	1.0	8,0	10,0
N. brevicollis	0,6	16,7		9.9	0,6	22,4	3,9	15,8
N. biguttatus	0,7	0,7		11,0	14,0	16,9	9.6	14,0
A. flavipes	5.2	8,5		0,7	0,7	22,2	$\frac{3.0}{47.1}$	0,7
B. lampros	5,2	0.4		13,9	0,1	0,2	0,2	0,1
P. melanarius		0,1		5,1	0,2	1,7	0,2	
P. dorsalis	4,9			7,7		19,7	2,8	1,4
C. melanocephalus	1,0			40,3		10,1	2,0	-, -
H. rufipes	0,5	0.3		27,9		4,1	29,7	
S. nivalis	0,5	2,9		70,5		1,1	20,1	
B. properans	1,6	2,9		1,6		2,2	6,0	0.3
A. binotatus	1,0	2,0		2,2	20,0	-,-	0,0	0,3
H. aeneus	2,6	2,6	1,4	7,7	0,2	2,0	3 9,8	0,4
B. quadrimaculatum	5,2	2,0	86,8	3,5	٠,٥	_,.	30,0	0,9
A. familiaris	0,2		00,0	3,0	8,5	11,3	23,9	1,4
A. aenea	22,0	7,3	10,0	2,0	0,7	8,7	16,7	-,-
C. fuscipes	11,5	•,,5	10,0	28,1	2, 6	٥,.	0,4	
M. minutulus	11,0		8,0	-0,1	_,0		٠,٠	
P. obscurus	90,0		0,0					
H. rufibarbis	00,0				0,6			
T. secalis					0,0			
T. quadristriatus	2,4		5,9		1,2	1,2	1.2	
P. strenuus	۵, ۰		0,0		-,-	-,-	-,-	0,4
A. communis								-,-
B. obtusum								
P. niger								
P. cupreus			1,8				3, 6	
H. melancholicus			-,-	8,0			-,-	
C. piceus				.,-				
A. bifrons	0,8			11,3			8,0	
A. convexiuscula	-,-			,-			- 7 -	

H. tardus

-
∵
=
_
Ö
•
=
⊃
Ô
_
0
ă
gisc
⋍.
S
ä
-
he
ĕ
-
z
=
achri
o.
×
5
=
ď.
\sim
Ç
ゔ
=
ヹ
en
∹.
pund
un
_
_
\circ
_
ш
⋍
H
Ĭ.
Ż.
iric
irich
richt
richte
richte
richte,
ite,
ite,
richte, 27
ite,
ite, 27,
nte, 27, 1
ite, 27,
ite, 27, 1983
nte, 27, 1
ite, 27, 1983
ite, 27, 1983

NA	В	мв	R	F	Ba	U	w	Indivi- duenzahl
3,6	96,4							56
12,0	86,7							75
6,6	16,0	0,3			27,9	1,4	0,3	287
25,7	61,0	,						241
21,2	27,3			3,0				33
18,8	10,9	12,5	9,4	7,8	6,3		1,6	64
26,8	48,5	0,6	0,1	1,5	3,1			672
3,1	10,9	•	3,0	2,8	5,8	0,3	4,0	669
2,9	1,5	8,1	3,7	0,7	16,2			136
1,3	2,6		1,3	9,8				153
	0,2	0,9	34,1	26,0	0,9	8,4	14,6	5 34
	1,0	4,3	0,2	0,7	41,4	13,7	31,8	415
			9,9	42,3	9,9	0,7	0,7	142
		11,3	12,2	2,7	15,4		18,1	221
		7,5	19,6	4,9	0,5		4,9	387
			2,9	5,9	11,8	2,9	2,9	34
		15,2	9,2	3,5	0,6	0,6	53,5	.315
		20,0		6,7	2,2	42,2	6,7	45
0,2		6,0	21,1	6,2	0,2		9,7	503
0,9				1,8			1,8	114
	1,4	25,4	5,6	4,2	9,9	1,4	7,0	71
		26,0	4,7	0,7	1,3			150
		1,7	4,7	0,4	11,5	0,4	38,7	235
		72,4					19,5	87
		10,0						20
			8,3	74,6	1,7	13,3	1,7	181
					94,1	3,9	2,0	255
		2,4	2,4	15, 3	55,3		12,9	85
1,2		6,0		0,4	82,5	9,2	0,4	251
					93,2	4,1	2,7	73
				13,0	17,4	65,2	4,3	23
	4,8	4,8		2,4	4,8	54,8	28,6	42
1,8		1,8	1,8	8,9		17,9	62,5	56
		99,2						121
		100,0						61
		31,5	53,2	0,8			1,6	124
		100,0						34
			89,1	8,7			2,2	46
		100,0	89,1	8,7			2,2	

U: autodispers — Bembidion obtusum, Pterostichus niger, Anisodactylus binotatus

W: autodispers - Poecilus cupreus, Bembidion properans, Calathus fuscipes; syndispers - Pterostichus melanarius

Literatur

BARNDT, D. (1981): Liste der Laufkäferarten von Berlin (West) mit Kennzeichnung und Auswertung der verschollenen und gefährdeten Arten (Rote Liste). Ent. Bl., Sonderheft 77, 3–35.

BECKER, J. (1977): Die Carabiden des Flughafens Köln/Bonn als Bioindikatoren für die Belastung eines anthropogenen Ökosystems. — Decheniana. 20. 1—9.

BLEY, U. (1983): Ökofaunistische Untersuchungen in verschiedenen Kellertypen der Stadt Leipzig (und Dresden) als Beitrag zur Domicolfauna einer Großstadt. — Diplomarbeit KMU Leipzig, Sektion Biowissenschaften.

DIETZE, H. (1936): Die Cicindelidae und Carabidae des Leipziger Gebiets (Col.). — Mitt. Ent. Ges. Halle, 14, 37—52.

DIETZE, H. (1937, 1938, 1939, 1942, 1961): Die Carabidae des Leipziger Gebietes (Col.). — 2. Teil: Mitt. Ent. Ges. Halle, 15 (1937), 55—72; 3. Teil: ibid., 16 (1938), 41—48; 4. Teil: ibid., 17 (1939), 44—61; 5. Teil: ibid., 20 (1942), 20—33; 6. Teil: Mitt.bl. Ins.kde., 5 (1961), 22—26, 77—80, 122—127.

FAETH, H., und Th. C. KANE (1978) Urban biogeography. City parks as islands for Diptera and Coleoptera. — Oecologia, 32, 127—133.

FREUDE, H. (1976): Carabidae in: FREUDE, H., HARDE, K. W., und G. A. LOHSE. Die Käfer Mitteleuropas, Band 2. — Krefeld.

GOSPODAR, U. (1981): Statik und Dynamik der Carabidenfauna einer Trümmerschuttdeponie im LSG Grunewald in Berlin (West). — FU Berlin, Diss., 225 S.

HENSEL, J. (1981): Faunistisch-ökologische Untersuchungen der Carabiden an ausgewählten Habitaten in Leipzig-Eutritzsch und Leipzig-Wiederitzsch. – Diplomarbeit KMU Leipzig. HASS, H.-J. (1959): Beiträge zur Kenntnis der Fauna eines Müllplatzes in Hamburg. Übersicht über die ökologischen Verhältnisse. – Ent. Mitt. Zool. Staatsinstitut Zool. Mus. Hamburg Nr. 23, Bd. 2. 73–91.

KATH, B. (1981) Faunistisch-ökologische Untersuchungen der Carabidae an ausgewählten Habitaten Leipzigs. — Diplomarbeit KMU Leipzig, Sektion Biowissenschaften.

KLAUSNITZER, B. (1982): Zur Kenntnis urbaner Gradienten. — Tagungsber. 1. Leipziger Symp. urb. Ök. 1981, 13—20.

KLAUSNITZER, B. (1983): Carabidae aus der Sammlung H. DIETZE (Col.). — Ent. Nachr. Ber. 27, 25—27.

KLAUSNITZER, B. (1983): Faunistisch-ökologische Untersuchungen auf dem Neuen Müll

berg Leipzig-Möckern. 2. Beitrag: Carabidae. — Hercynia, 20, 392—402.

KLAUSNITZER, B. (1983) Zur Insektenfauna der Städte. – Ent. Nachr. Ber. 27, 49–59.

KLAUSNITZER, B., RICHTER, K., und J. LEH-NERT (1979) Zur Insektenfauna der Parkanlage am Schwanenteich im Zentrum von Leipzig. — Hercynia N. F 16, 213—224.

KLAUSNITZER, B., JOOST, W und H. WOLFF (1980): Faunistisch-ökologische Untersuchungen auf dem Neuen Müllberg Leipzig-Möckern. 1. Beitrag: Gesamtmaterial. — Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R. 29, 646—652

KLAUSNITZER, B., und K. RICHTER (1980): Qualitative und quantitative Aspekte der Carabidenfauna der Stadt Leipzig. — Wiss. Z. Karl-Marx.-Univ. Leipzig, Math.-Naturwiss. R. H. 6, 567—573.

KLAUSNITZER, B., RICHTER, K., KÖBER-LEIN, C., und F. KÖBERLEIN (1980) Faunistische Untersuchungen der Bodenarthropoden zweier Leipziger Stadtparks unter besonderer Berücksichtigung der Carabidae und Staphylinidae. — Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R. H. 6, 583—597.

KLAUSNITZER, B., RICHTER, K., und R. PFÜLLER (1980) Ökofaunistische Untersuchungen auf einem Hausdach im Stadtzentrum von Leipzig. — Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R. H. 6, 629—638.

KLAUSNITZER, B., und K. RICHTER (1983): Presence of an urban gradient demonstrated for carabid associations. — Oecologia, 59, 79—82. KLOMANN, U. (1977): Bodenarthropoden als Belastungsindikatoren in urbanen Räumen. — Verh. des Sechsten Int. Symp. über Entomofaunistik in Mitteleuropa 1975, 221—232.

KLOMANN, U. (1978) Untersuchungen an Carabidenpopulationen auf immissionsbelasteten Standorten im Stadtverband Saarbrücken. Jahresber. — Naturwiss. Ver. Wuppertal, 31. H., 140—144.

KOSLOWSKI, R., KUCKELKORN, B., PFÜLLER, B., PFÜLLER, R., und C. SÜSSENGUT (1980): Ökologisch-faunistische Untersuchungen an Araneae in Grünanlagen Leipzigs. — Wiss. Z. Karl-Marx-Univ. Leipzig. Math.-Naturwiss. R. H. 6, 561—566.

LOHSE, G. A. (1962) Über die Käfer eines Müllplatzes in Hamburg-Langenhorn. — Ent. Mitt. Zool. Staatsinstitut u. Zool. Mus. Hamburg 2, 205—211.

MÜLLER, P (1980) Anpassung und Informationsgehalt von Tierpopulationen in Städten. – Verhdl. Dtsch. Zool. Ges. Stuttgart, 57–77.

MÜLLER, P., KLOMANN, U., NAGEL, P REIS, H., und A. SCHÄFER (1974) Indikatorwert unterschiedlicher biotischer Diversität im Verdichtungsraum von Saarbrücken. — Verh. d. Ges. f. Ökol., Erlangen, 113—128. OWEN, J., und D. F. OWEN (1975): Suburban gardens: England's most important nature reserve? — Environ. conserv. 2, 53—59.

SCHAEFER, M., und K. KOCK (1979): Zur Ökologie der Arthropodenfauna einer Stadtlandschaft und ihrer Umgebung I. Laufkäfer (Carabidae) und Spinnen (Araneidae). — Anz. Schädlingskde., Pflanzenschutz, Umweltschutz 52. 85–90.

SCHWEIGER, H. (1962): Die Insektenfauna des Wiener Stadtgebietes als Beispiel einer kontinentalen Großstadtfauna. — 11. Internat. Kongr. Ent. Wien 1960, 3, 184—193.

THIELE, H. U., und H. E. WEISS (1976) Die Carabiden eines Auenwaldgebietes als Bioindikatoren für anthropogen bedingte Änderungen des Mikroklimas. — Schr.reihe f. Vegetationskde. 10, 359–374.

TOPP, W (1972) Die Besiedlung eines Stadtparks durch Käfer. — Pedobiologia 12, 336—346. WOLFF, K. (1982): Faunistisch-ökologische Untersuchungen der Carabidae an ausgewählten Standorten der Stadt Leipzig. — Diplomarbeit Karl-Marx-Univ. Leipzig, Sektion Biowissenschaften.

A b b i l d u n g e n 1. Umschlagseite

Carabus cancellatus beim Verzehren eines

Regenwurmes

Foto: M. Förster, Leipzig

3. Umschlagseite

oben: Carabus hortensis

unten: Carabus nemoralis an einem Stück Apfel

Fotos: M. Förster, Leipzig

4. Umschlagseite

obere Reihe: links, Nebria brevicollis

rechts, Calathus fuscipes

untere Reihe: links, Amara aenea

Mitte, Harpalus aeneus rechts, Amara plebeja Foto: M. Förster, Leipzig

Anschrift des Verfassers: Prof. Dr. sc. nat. Bernhard Klausnitzer Sektion Biowissenschaften der Karl-Marx-Universität DDR - 7010 Leipzig Talstraße 33

G. STÖCKEL, Neustrelitz

Zur derzeitigen Verbreitung von Sympetrum pedemontanum ALLIONI (Odonata) in der DDR

Summary The author gives any record know to him unto 1982 of S. pedemontanum in the GDR. By a map the dispersal during the different periods is made visible. Reasons for the fast dispersal of S. pedemontanum are discussed.

Резюме Автор называется все ему до 1982 годом известные местонахождения от Sympetrum pedemontanum в ГДР. С помощью карты нагладно иллюстрировано распространение вида в отдельных временных этапах. Обсуждаются причины, которые наверно обусловливали быстрое распространение S. pedemontanum.

Seit dem Erscheinen des ersten Beitrags zur Verbreitung der Gebänderten Heidelibelle (Sympetrum pedemontanum ALLIONI) in der DDR (STÖCKEL, 1974) sind rund zehn Jahre vergangen. Inzwischen sind weitere Arbeiten erschienen, in denen Fundorte von S. pedemontanum aufgezählt und beschrieben werden (BEUTLER 1977, 1981; DONATH 1979, 1980, 1982; HOYER 1979; MÜLLER 1977, 1980; MÜLLER, LOTZING, CIUPA, CONRAD, SPITZEN-

BERG 1982; MÜLLER, SPITZENBERG, LOTZING 1982; STACHOWIAK, MÜLLER, LOTZING, SPITZENBERG 1981). Von folgenden Personen wurde mir in den letzten Jahren eine Reihe von Fundorten, Beobachtungen, Hinweisen und Meinungen zu S. pedemontanum mitgeteilt. Dafür sowie für das Überlassen von Sonderdrucken möchte ich Fräulein G. WILKE (Rostock) sowie den Herren H. BEUTLER (Beeskow), H. D. BRINGMANN (Rostock),

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Entomologische Nachrichten und Berichte

Jahr/Year: 1983

Band/Volume: 27

Autor(en)/Author(s): Klausnitzer Bernhard

Artikel/Article: Faunistisch-ökologische Untersuchungen über die Laufkäfer (ColCarabid)

des Stadtgebietes von Leipzig 241-261