Geol.Paläont.Mitt.Innsbruck	ISSN	0378-6870	8d.11	7	S.259-289	lbk.,	Juli	1982

A BASIC COMPUTER PROGRAM TO DETERMINE THE NAME OF AN AMPHIBOLE FROM AN ELECTRON MICROPROBE ANALYSIS

by A. Mogessie and R. Tessadri*)

Abstract

A BASIC computer program for naming an amphibole is presented, which employs STOUT's (1972) suggested modes of Fe³⁺-recalculation and the I.M.A.-nomenclature (International Mineralogical Association, LEAKE, 1978, compiler). Considering the two stoichiometric constraints of STOUT, the program calculates formulas and site occupancies for a given microprobe analysis of an amphibole; it classifies the amphibole into one of the four major groups on the basis of (Ca + Na)- and Na-values in the M4-site and determines the specific name on the basis of Mg/(Mg + Fe²⁺)-, Fe³⁺/ (Fe³⁺ + Al^{V1})-, Fe²⁺/(Fe²⁺ + Mg)-, Mn/(Mn + Fe²⁺ + Mg)- and Si-ratios, as defined by the I.M.A.-nomenclature.

Zusammenfassung

Ein BASIC-Computerprogramm zur Benennung von Amphibolen wird vorgestellt. Dabei werden die von STOUT (1972) vorgeschlagene Fe³⁺-Berechnung und die I.M.A.-Nomenklatur (International Mineralogical Association, LEAKE, 1978, compiler) verwendet. Das Programm berechnet Formeln und Gitterbesetzungen für eine Mikrosondenanalyse eines Amphibols unter Berücksichtigung der zwei stöchiometrischen Beschränkungen von STOUT; das Amphibol wird aufgrund der (Ca + Na)- und Na-Werte in der M4-Stelle in eine der vier Hauptgruppen eingeordnet. Der jeweilige spezifische Name wird, wie von der I.M.A.-Nomenklatur definiert, aufgrund der Mg/(Mg + Fe²⁺)-, Fe³⁺/(Fe³⁺ + AIVI)-, Fe²⁺/(Fe²⁺ + Mg)-, Mn/(Mn + Fe²⁺ + Mg)- und Si-Werte bestimmt.

 ^{*)} authors' address: M.Sc. Aberra Mogessie; Dr. Richard Tessadri, Institut für Mineralogie und Petrographie der Universität Innsbruck, Universitätsstr. 4, A-6020 Innsbruck

Introduction

Since the amphibole structure admits great flexibility of ionic replacement, the minerals of the group exhibit an extremely wide range of chemical composition (DEER et al., 1963; ERNST, 1968; COLVILLE et al., 1966). As a result the nomenclature of amphiboles has been difficult and confusing. LEAKE (1968, pp. 5) states that "attempts to classify amphiboles according to their optical properties are inevitably unsuccessful, because very different compositions can give very nearly identical optical properties." He suggested three important variables to define the main name to be given to an amphibole, namely the amounts of Si, (Ca + Na + K) and Mg/(Fe³⁺ + $Fe^{2+} + Mn + Mq$) in the half unit cell. Following this attempt in a compilation of I.M.A.-nomenclature (LEAKE, 1978), a procedure for naming an amphibole on the basis of chemical analysis is agreed upon. However the problem of using this procedure is that the ratio $Mg/(Mg + Fe^{2+})$ cannot be accurately obtained from electron microprobe analysis. Therefore one must critically examine the procedure to be used, in order to calculate the Fe²⁺ and Fe³⁺, when only the total Fe has been determined, as different procedures could give different names to the same chemical analyses.

Most papers written on amphiboles based on electron microprobe analysis state the problem involved in amphibole nomenclature, since Fe³⁺ cannot be determined and several assumptions have to be made for calculating Fe³⁺ from the total Fe obtained as Fe0. Several authors have used different methods to solve specific problems, such as HEITANEN (1974), who calculated 20% of the total Fe as Fe₂0₃ to agree with the approximate Fe₂0₃/(Fe0 + Fe₂0₃)-ratio in the host rocks, after an allowance to form epidote and accessories was made; GRAPES (1975) and GRAPES et al. (1977) took gravimetric analyses of a number of green hornblendes from the Hidaka metagabbro-amphibolite rocks and got a straight line plot when the total Fe as Fe0 was plotted against Fe₂0₃; thus it was possible to read the amount of unknown Fe₂0₃ directly from the graph and the total Fe as Fe0 (EMPA) adjusted accordingly.

As stated above these procedures may hold true for the specific problem at hand.

KLEIN (1968, pp. 286) states that the anthophyllite-gedrite analyses may be recalculated on the basis of 15 cations or on the basis of 23 oxygens, but neither approach is perfect. KLEIN (1969) also considered the problem of nomenclature and named all the sodium-amphiboles in his study with Al_20_3 -content ranging from about 6 to 12 weightpercent as glaucophane and stated that some would turn out to be crossite or ferroglaucophane if the Fe^{2+}/Fe^{3+} -ratios were known. STOUT (1972) proposed several modes of recalculation and showed that it is possible to bracket the amount of Fe^{3+} , present in the total Fe determined as Fe0 (EMPA), by calculating the minimum Fe^{3+} (normalizing all the cations in the formula to 15, except Na = Σ Ca) and the maximum Fe^{3+} (normalizing all the cations in the formula that are assumed to occupy the tetrahedral and octahedral sites to $13 = \Sigma$ Fm) on the basis of stoichiometric constraints. (The notations Σ Na, Σ Ca and Σ Fm are adopted from STOUT, 1972).

Since then many authors have adopted a similar approach (BRADY, 1974; DOOLAN et al., 1978; BROWN, 1977, among others). Several other procedures are also used (CZAMANSKE et al., 1973; ROBINSON et al., 1971; SPEAR, 1981; LAIRD & ALBEE, 1981, among others).

The objective of this paper is to outline a computer program written to determine the name of an amphibole from an electron microprobe analysis on the basis of STOUT's limiting recalculations of Fe^{3+} (1972) and I.M.A.-nomenclature compiled by LEAKE (1978).

Discussion

According to the I.M.A.-nomenclature the amphiboles are classified into four major groups, on the basis of the (Ca + Na)- and Na-values in the M4- or B-site (Fig. 1). However the detailed amphibole nomenclature employs the values Mg/(Mg + Fe²⁺), Fe³⁺/(Fe³⁺ + AI^{VI}), Fe²⁺/(Fe²⁺ + Mg) and Mn/(Mn + Fe²⁺ + Mg).

STOUT's (1972) Fe^{3+} -limiting recalculations are employed in order to determine the Fe^{3+} and Fe^{2+} from the total Fe determined as Fe0, thereby enabling one to calculate the ratios given above.

The two stoichiometric constraints suggested by STOUT (1972) i.e. restriction of Ca to the M4-site (Σ Ca = 15, implying minimum Fe³⁺) and only Ca and Na in the M4-site (Σ Fm = 13, implying maximum Fe³⁺) are considered. The calculation for minimum Fe₂0₃ maximizes the number of cations in the formula, minimizes Na in the M4-site and maximizes Na in the A-site, whereas the calculation for maximum Fe₂0₃ yields the minimum number of cations in the formula, minimum A in the A-site and maximum Na in the M4-site.

In order to evaluate the difference in the actual values of the cations in the recalculated formulas due to the different normalizations, one representative analysis from each major amphibole group is taken and subjected to several modes of recalculations (i.e. assuming all the Fe to be in the ferrous state, alle the Fe in the ferric state and then normalizing all the cations to 15 = Na, all cations except Na to 15 = Σ Ca, all cations except (Na + Ca) to 13 = Σ Fm; see also STOUT, 1972, table 2).

This is helpful as one can clearly see the similarity or difference between the formula calculated on the basis of 23 oxygens, where Fe is assumed to be in the ferrous state (a method generally adopted by most authors), and those calculated on the assumptions stated above.

In table 1 the results of the Fe³⁺-limiting recalculations of representative analyses of the four major amphibole groups are given. Comparison of the total sum of cations in the different modes of recalculation (indicated as Σ Na in table 1) shows that the cation sums, calculated on the basis of the ferrous assumption, are almost the same as those calculated on Σ Ca = 15 for the Fe-Mg-Mn-amphiboles and the calcic amphiboles (table 1a and 1b), and on the basis of Σ Fm = 13 for the calcic-sodic amphiboles and the alkaliamphiboles (table 1c and 1d). Therefore it is possible that for the Fe-Mg-Mn-amphiboles and the calcic amphiboles the formula calculated on Σ Ca = 15, and for the calcic-sodic amphiboles the formula based on Σ Fm = 13, can be used for detailed nomenclature.

Table 2 gives a summary of the criteria given by the I.M.A.-nomenclature (LEAKE, 1978) for determining the specific name of an amphibole. The values obtained in Σ Ca = 15 and Σ Fm = 13 for the same examples are given in table 1. A careful glance at the table shows that the values of (Ca + Na) and

Table 1 a: Limiting recalculation of a representative Fe-Mn-Mg-amphibole (GEDRITE) Reference: STOUT, 1972: Table 5 A, analysis GIL 2

			all ferrous	all ferric	2Na = 15	$\Sigma Ca = 15$	$\Sigma Fm = 13$
$Si0_2$	41.20	Si	6.1954	5.7876	6.0063	6.1810	5.3683
Ti0,	0.00	Ξ	0.0000	0.0000	0.0000	0.0000	0.0000
AI, Õ,	17.50	AI	3.1015	2.8973	3.0068	3.0943	2.6875
Cr_{20}	0.00	ŗ	0.0000	0.0000	0.0000	0.0000	0.0000
Fe,0,	0.00	Fe ³⁺	0.0000	3.0300	1.4047	0.1075	2.8113
Fe0	25.80	Fe ²⁺	3.2444	0.0000	1.7407	3.1294	0.0000
Mn 0	0.50	ЧN	0.0637	0.0595	0.0617	0.0635	0.0552
Mg 0	10.70	Mg	2.3978	2.2400	2.3246	2.3922	2.0777
Ca0	0.20	Ca	0.0322	0.0301	0.0312	0.0321	0.0279
К,0	0.00	¥	0.0000	0.0000	0.0000	0.0000	0.0000
Na ₂ 0	1.50	Na	0.4373	0.4085	0.4240	0.4363	0.3790
Total	97.40	ΣSi	6.1954	5.7876	6.0063	6.1810	5.3683
		ΣAI	9.2969	8.6849	9.0131	9.2753	8.0558
		ΣFm	15.0028	14.0144	14.5448	14.9679	13.0000
		ΣCa	15.0350	14.0445	14.5760	15.0000	13.0279
		ΣNa	15.4723	14.4530	15.0000	15.4363	13.4069

•

Table 1 b: Limiting recalculation of a representative calcic amphibole (TSCHERMAKITIC HORNBLENDE) Reference: KLEIN, 1968: Analysis 3-4 H

			all ferrous	all ferric	Σ Na = 15	Σ Ca = 15	ΣFm = 13
Si0,	45.70	Si	6.4818	6.2984	6.2465	6.4399	6.2338
T i0,	0.00	Ξ	0.0000	0.0000	0.0000	0.000	0.0000
AL,03	14.20	AI	2.3737	2.3066	2.2875	2.3584	2.2829
Cr, o	0.00	ں د	0.0000	0.0000	0.0000	0.0000	0.0000
Fe,0,	0.00	Fe ^{3 +}	0.0000	1.3020	1.6700	0.2974	1.2890
Feôč	11.30	Fe ^{2 +}	1.3403	0.0000	-0.3784	1.0343	0.0000
Mn 0	0.20	ЧN	0.0240	0.0233	0.0232	0.0239	0.0231
Mg0	15.60	Mg	3.2973	3.2040	3.1776	3.2760	3.1712
Ca0	10.40	Ca	1.5804	1.5357	1.5231	1.5702	1.5200
К,0	0.00	¥	0.0000	0.0000	0.0000	0.0000	0.0000
$N\dot{a}_2 0$	1.70	Na	0.4675	0.4543	0.4505	0.4645	0.4496
Total	99.10	ΣSi	6.4818	6.2984	6.2465	6.4399	6.2338
		ΣΑΙ	8.8555	8.5960	8.5340	8.7983	8.5228
		ΣFm	13.5171	13.1253	13.0264	13.4299	13.0000
		ъСа	15.0975	14.6610	14.5495	15.0000	14.5261
		Σ Na	15.5650	15.1153	15.0000	15.4646	14.9757

Table 1 c: Limiting recalculation of a representative calcic-sodic amphibole (BARROISITE) Reference: MILLER, 1977: Analysis T 258 / E 1

с

			all ferrous	all ferric	$\Sigma Na = 15$	$\Sigma Ca = 15$	ΣFm = 13
.i0,	47.40	Si	6.9307	6.6704	6.6402	7.2556	6.8255
۲i0,	0.31	Ξ	0.0344	0.0331	0.0330	0.0361	0.0339
١١, ô, I	12.10	A	2.0852	2.0069	1.9978	2.1829	2.0535
Ċr, o,	0.00	ں د	0.0000	0.0000	0.000	0.0000	0.0000
.e,0,	0.00	Fe ³⁺	0.0000	1.7283	1.9282	0.000	0.6982
eo ,	14.69	Fe ²⁺	1.7962	0.0000	-0.2073	1.8804	1.0708
An O	0.18	Чn	0.0223	0.0215	0.0214	0.0233	0.0220
0gh	10.70	Mg	2.3315	2.2440	2.2338	2.4408	2.2961
Ca 0	7.20	Ca	1.1280	1.0856	1.0807	1.1808	1.1108
۲,0	0.28	¥	0.0522	0.0503	0.0500	0.0547	0.0514
اa 20	4.50	Na	1.2757	1.2278	1.2223	1.3355	1.2564
[otal	97.36	ΣSi	6.9307	6.6704	6.6402	7.2556	6.8255
		ΣAI	9.0159	8.6773	8.6380	9.4385	8.8790
		ΣFm	13.1961	12.7042	12.6471	13.8191	13.0000
		ΣCa	14.3241	13.7898	13.7278	15.0000	14.1180
		ΣNa	15.6520	15.0679	15.0000	16.3901	15.4186

			all ferrous	all ferric	$\Sigma Na = 15$	$\Sigma Ca = 15$	Σ Fm = 13
Si0,	57.36	Si	8.0310	7.7315	8.0340	9.2260	8.0281
Ti0,	0.00	Ţ	0.000	0.0000	0.000	0.000	0.0000
AI,0,	11.44	٩I	1.8850	1.8164	1.8875	2.1675	1.8861
Cr, o,	0.00	с г	0.000	0.0000	0.0000	0.0000	0.0000
Fe,0,	0.00	Fe ³⁺	0.000	0.0000	0.0176	0.0000	0.0161
Fe0 ´	15.24	Fe ²⁺	1.7841	1.7165	1.8017	2.0488	1.7667
Mn 0	0.00	Mn	0.000	0.0000	0.000	0.0000	0.0000
Mg 0	6.25	Mg	1.3039	1.2548	1.3039	1.4973	1.3029
Ca0	0.35	Ca	0.0525	0.0505	0.0525	0.0603	0.0525
К,0	0.00	¥	0.000	0.0000	0.0000	00000	0.0000
Na_20	7.14	Na	1.9380	1.8650	1.9380	2.2255	1.9366
Total	97.78	ΣSi	8.0310	7.7315	8.0340	9.2260	8.0281
		ΣΑΙ	9.9160	9.7479	9.9215	11.3935	9.9142
		ΣFm	13.0040	12.5192	13.0095	14.9396	13.0000
		ΣCa	13.0565	12.5697	13.0620	15.0000	13.0524
		ΣNa	14.9945	14.4346	15.0000	17.2255	14.9890

Table 1 d: Limiting recalculation of a representative alkali-amphibole (FERRO-GLAUCOPHANE) Reference: KATAGAS, 1980: Table 1, analysis 1

Na in the M4-site, obtained on the basis of $\Sigma Fm = 13$ for the amphiboles in each of the four major groups, are within the limits given by LEAKE (1978).

On the basis of Σ Ca = 15 these values are in accordance with those of Leake (1978) for the Fe-Mg-Mn-amphiboles and calcic amphiboles, but not for the calcic-sodic amphiboles and alkali-amphiboles.

The Mg/(Mg + Fe²⁺)-, Fe²⁺/(Fe²⁺ + Mg)-, Fe³⁺/(Fe³⁺ + AlVI)-, Mn/(Mn + Fe²⁺ + Mg)- and Si-values differ in the different modes of recalculation!

This can be observed in table 2 and is also indicated by asterisk. The values obtained for the above variables on the basis of Σ Ca = 15 for the Fe-Mg-Mn-amphiboles and the calcic amphiboles and those obtained on the basis of Σ Fm = 13 for the calcic-sodic amphiboles and alkali-amphiboles are within the limits of the values given by the I.M.A.-nomenclature (LEAKE, 1978).

In line with the observations stated above, the computer program is written to determine the name of an amphibole (out of 60 names, see fig. 1) from a microprobe analysis.

Having taken a microprobe analysis of an amphibole in terms of weightpercentages of oxides, the program works as follows:

1) Calculating the formula of the amphibole

- a) assuming of all the Fe to be in the ferrous state
- b) assuming of all the Fe to be in the ferric state

In both cases the number of oxygens in the formula is normalized to 23.

- 2) Recalculating the Fe^{3^+} and Fe^{2^+} values on the basis of:
 - a) $\Sigma Na = 15$ (normalizing all cations to 15)
 - b) Σ Ca = 15 (normalizing all cations except Na to 15)

c) Σ Fm = 13 (normalizing all cations except Na and Ca to 13)

In the above three calculations the total amount of oxygen present in the formula is calculated by multiplying the normalized cation values by the respective number of oxygens in the different oxides and summing up the product.

In most cases the calculated oxygen-value is less than 23. Thus, 23 minus this amount of Fe³⁺ which combines with this oxygen is calculated. Fe²⁺ is then determined by subtracting the amount of calculated Fe³⁺ from the total Fe (table 3).

Where the total amount of oxygen in the formula exceeds 23, the total Fe is assumed to be equal to Fe^{2+} ; Fe^{3+} is taken as zero, since a negative Fe^{3+} implies that the value of Fe^{2+} is higher than the actual amount of total Fe.

3) Calculating the site occupancies for the cations on the basis of $\Sigma Ca = 15$ and $\Sigma Fm = 13$ according to LEAKE (1978), taking the general amphibole formula:

where A is the A-site, B the M4-site, C the octahedral site and T the tetrahedral site.

Table 2: Parameters used in determining the name of an amphibole

,

ibole COPHANE	LK	≧1.34	ţ	<0.50	0-1	0.0-0.3	1	
-GLAUC	ΣFm	1.9366	1.9890	0.0000	0.4245	0.0085	8.0281	-
alkal FERRO	ΣCa	* 0.0000	0.0603	* 2.2255	0.4222	I	9.2260	
mphibole I TE	LK	0.67-1.34	≥1.34	<0.50	0.5-1.0	•	6.5-7.5	
sodic a ARROIS	ΣFm	0.8892	2.0000	0.4187	0.6820	I	6.8260	
calcic- B/	ΣCa	* 0.0000	* 1.1808	* 1.3902	0.5648	I	7.2560	
ribole TIC HBL	LK	<0.67	<u></u> ⊒1.34	<0.50	0.5-1.0	I	6.25-6.5	
cic ampl ERMAKI	ΣFm	0.4496	1.9696	0.000	1.0000	I	* 6.2340	
calo TSCHE	ΣCa	0.0000	1.5702	0.4645	0.7600	1	6.4390	
ohibole E	LK	I	<1.34	I	0.1-0.9	1	6-7	
-Mg-amp EDRITI	ΣFm	0.3790	0.4069	0.0000	* 1.0000	I.	* 5.3683	
Fe-Mn-	ΣCa	0.0000	0.0321	0.4364	0.4332	1	6.1810	
		Na _B	(Ca + Na) _B	(Na + K) _A	Mg Mg + Fe ²⁺	Fe ^{3 +} Fe ^{3 +} + Al ^{vi}	Si	

* Values not within the range as defined by 1.M.A.-amphibole-nomenclature (LEAKE, 1978) $\Sigma Ca = 15$ indicates all cations except Na normalized to 15 $\Sigma Fm = 13$ indicates cations normally thought to occupy tetrahedral and octahedral (M 1, M 2, M 3) sites normalized to 13 LK = LEAKE, 1978 (specific values in the standard formula of an amphibole)

- a) Sum T to 8.00 using Si, then AI, then Cr³⁺, then Fe³⁺, then Ti⁴⁺
- b) Sum C to 5.00 using excess AI, Cr³⁺, Ti⁴⁺ and Fe³⁺ from (a), then Mg, then Fe²⁺, then Mn
- c) Sum B to 2.00 using excess Fe²⁺, Mg and Mn from (b), then Ca, then Na
- d) Excess Na from (c) is assigned to A, then all K. Total A should be between Ø and 1.00 inclusive.
- 4) The second phase of the program considers the detailed I.M.A.amphibole nomenclature (LEAKE, 1978, refer fig. 1).
 a) On the basis of the (Ca + Na)- and Na-values in the M4- or B-site (calculated on the basis of ΣFm = 13) the unknown amphibole is classified into one of the four major groups, according to the following criteria:
 - I) Fe-Mg-Mn-amphibole group (Ca + Na)_R < 1.34</pre>
 - II) Calcic amphibole group (Ca + Na)_R \geq 1.34 and Na_R < 0.67
 - III) Calcic-sodic amphibole group (Ca + Na)_R \geq 1.34 and 0.67 \leq Na_R < 1.34
 - IV) Alkali-amphibole group Na_R ≥ 1.34

b) After the major group, to which the amphibole analysis belongs, is known, the program considers the detailed nomenclature on the basis of $Mg/(Mg + Fe^{2+})$ -ratio:

- On the basis of SCa = 15 for the Fe-Mg-Mn-amphiboles and calcic amphiboles
- 11) On the basis of Σ Fm = 13 for the calcic-sodic amphiboles and alkali-amphiboles In the alkali-amphibole group the ratios Fe³⁺/(Fe³⁺ + Al^{VI}), Fe²⁺/(Fe²⁺ + Mg) and Mn/(Mn + Mg + Fe²⁺) are also considered, as the nomenclature of some amphiboles is dependent on these ratios (see table 3).

The program has been evaluated using series of analyses from the literature and works very well. In table 3 analyses are given from the literature; the names are determined using the present computer program. Original names or comments given by the respective authors are also included for comparative purposes. These names are found to be compatible with the names obtained using the program.

Of course one should realize the problem involved in naming the anthophyllite-cummingtonite groups only on the basis of chemical composition, as the basic difference is a structural one, which is more reflected in the optical properties than in chemistry. Thus for the anthophyllite-cummingtonite groups the program gives two names and for the specific name one has to study the mineral optically and determine whether the chemical analysis represents the orthorhombic or the monoclinic variety.

The lithium-amphiboles (holmquistites) are not included in the program as it is impossible to determine Li with an electron microprobe.

Out of the 60 names, considered in the present program, the authors were unable to find representative analyses for the following amphiboles: ferro-anthophyllite, ferro-winchite and magnesio-taramite. For the following amphiboles representative microprobe analyses were not found, eben though and extensive survey of the amphibole literature was made: ferro-gedrite, ferro-barroisite, kataphorite, taramite, eckermannite and kozulite. Thus the available wet chemical analyses of these minerals in the literature were taken. The Fe³⁺ was recalculated back to Fe²⁺ and added to the already determined Fe0, to obtain the total Fe, similar to the total Fe usually obtained with the microprobe as Fe0.

The total sum, excluding H_20 , Cl and F, is taken to represent a microprobe analysis. It is important to note, that the names obtained, using these analyses, are the same as those given by the authors (see table 3)!

A few analyses are not within the total sum-range given by LEAKE, 1968, but as these were the only available ones for the specific names they were taken as an example.

Conclusion

An attempt has been made to determine a name for an amphibole, whose chemical composition is obtained with an electron microprobe, using a computer program, which employs STOUT's (1972) methods of Fe^{3+} -limiting recalculations and the I.M.A.-amphibole nomenclature (LEAKE, 1978, compiler).

(Ca + Na)- and Na-values in the M4-site calculated on the assumption of maximum Fe³⁺ (Σ Fm = 13) are used for classifying the amphiboles into the four major groups. The Mg/(Mg + Fe²⁺)-ratio calculation determined, assuming minimum Fe³⁺ (Σ Ca = 15) and maximum Fe³⁺ (Σ Fm = 13) in the formula, is used for the detailed nomenclature of the first two groups (Fe-Mg-Mn-amphiboles and calcic amphiboles) and the last two major groups (calcic-sodic amphiboles and alkali-amphiboles) respectively. Justification for using these values is given in table 2.

Evaluation of the program, using a series of analyses in the literature, gave consistent and compatible names. For the 56 amphiboles out of the 60 given in fig. 1, representative analyses and the determined corresponding names along with the original references are given in table 3.

Table 3 a: Representative chemical analyses of Fe-Mg-Mn-amphiboles

	1	2	3	4
Si0,	60.00	52.50	49.01	40.80
Ti0 ₂	0.00	0.00	0.20	0.00.
Al ₂ 0 ₃	0.40	4.40	14.91	18.30
Cr ₂ 0 ₃	0.00	0.00	0.00	0.00
Fe0	0.40	20.40	0.55	25.00
Mn 0	0.60	0.30	0.00	0.40
Mg0	33.40	18.00	28.62	11.40
Ca0	0.20	0.50	0.23	0.20
K 20	0.00	0.00	0.00	0.00
Na ₂ 0	0.20	0.10	1.46	1.60
Total	95.20	96.20	94.98	97.70
Si	8.0861	7.6935	6.6776	6.0704
Ti	0.0000	0.0000	0.0207	0.0000
AI	0.0000	0.3665	1.3224	1.9296
AI ^{VI}	0.0635	0.4534	1.0719	1.2794
Cr	0.0000	0.0000	0.0000	0.0000
Fe	0.0451	2.5000	0.0627	3.1106
Mn	0.0685	0.0372	0.0000	0.0504
Mg	6.7079	3.9309	5.8112	2.5277
Ca	0.0289	0.0785	0.0336	0.0319
К	0.0000	0.0000	0.0000	0.0000
Na	0.0523	0.0284	0.3857	0.4616
Total	15.0523	15.0284	15.3857	15.4616
oxygen _{tot} .	23.1440	23.0876	23.0883	22.9057
Fe ²⁺	0.0451	2.5000	0.0627	2.9220
Fe ³⁺	0.0000	0.0000	0.0000	0.1886
Mg/(Mg + Fe ² +)	0.9933	0.6113	0.9893	0.4638
NaB	0.0000	0.0000	0.0000	0.0000
(Ca + Na) _B	0.0289	0.0785	0.0336	0.0319
(Na + K) _A	0.0523	0.0284	0.3857	0.4616

- 1: MAGNESIO-ANTHOPHYLLITE (KLEIN, 1968: Table 3, analysis 1, "anthophyllite")
- 2: ANTHOPHYLLITE (STOUT, 1972: Table 4 A, analysis GAB 1, "anthophyllite")
- 3: MACNESIO-GEDRITE (SCHREYER, 1976: Table 4, analysis GE 1, "magnesio-gedrite")
- 4: GEDRITE (STOUT, 1972: Table 5 A, analysis GK, "gedrite")

	5	6	7
Si0,	38.41	56.78	52.50
Ti0,	0.48	0.00	0.00
Al ₂ 0 ₃	19.72	0.96	1.60
Cr ₂ 0 ₃	0.00	0.00	0.00
Fe0	35.53	13.31	27.30
Mn 0	2.30	0.33	0.80
Mg0	0.03	24.71	14.70
Ca0	0.03	0.83	0.60
K 20	0.04	• 0.00	0.00
Na ₂ 0	1.16	0.12	0.10
Total	97.67	97.04	97.60
Si	6.1453	7.9572	7.8403
Ti	0.0583	0.0000	0.0000
AI	1.8547	0.0428	0.1597
AI	1.8639	0.1158	0.1219
Cr	0.0000	0.0000	0.0000
Fe	4.7538	1.5599	3.4094
Mn	0.3117	0.0392	0.1012
Mg	0.0072	5.1605	3.2715
Ca	0.0051	0.1246	0.0960
K	0.0082	0.0000	0.0000
Na	0.3598	0.0326	0.0290
Total	15.3680	15.0326	15.0290
oxygen _{tot} .	23.2470	23.0528	ູ 22.9956
Fe ²⁺	4.7538	1.5599	3.4005
Fe ³⁺	0.0000	0.0000	0.0089
Mg/(Mg + Fe ²⁺)	0.0015	0.7679	0.4903
Na _B	0.0000	0.0000	0.0000
(Ca + Na) _B	0.0051	0.1246	0.0960
(Na + K) _A	0.3680	0.0326	0.0290

5: FERRO-GEDRITE (YAMASAKI, 1957: Table 5, "aluminian ferroanthophyllite")

6: MAGNESIO-CUMMINGTONITE (WILKINSON, 1975: Table 4, analysis 1, "magnesio-cummingtonite")
7: CUMMINGTONITE (STOUT, 1972: Table 3 A, analysis 249 L 3,

7: CUMMINGTONITE (STOUT, 1972: Table 3 A, analysis 249 L 3, "cummingtonite")

Table 3 c:	Representative	chemical	analyses	of	Fe-Mg-Mn-amphiboles
------------	----------------	----------	----------	----	---------------------

	8	9	10
Si0,	49.55	50.60	55.27
T10,	0.00	0.00	0.00
AI,0,	0.12	0.04	0.34
Cr, 0,	0.00	0.00	0.00
FeÓ	40.14	36.10	4.52
Mn 0	1.84	5.80	16.62
Mq 0	4.89	6.40	19.18
Ca0	0.70	0.40	1.19
Κ,0	0.00	.0.00	0.00
Na ₂ 0	0.00	0.05	0.26
Total	97.24	99.39	97.38
Si	8,0040	7.9298	8.0190
Ti	0.0000	0.0000	0.0000
AI	0.0000	0.0074	0.0000
AIVI	0.0228	0.0000	0.0581
Cr	0.0000	0.0000	0.0000
Fe	5.4226	4.7311	0.5484
Mn	0.2518	0.7699	2.0424
Ма	1,1772	1.4947	4.1470
Ca	0.1212	0.0672	0.1850
К	0.0000	0.0000	0.0000
Na	0.0000	0.0152	0.0731
Total	15.0000	15.0152	15.0731
oxygen tot.	23.0158	22.9411	23.0847
Fe ^{2 +}	5.4226	4.6133	0.5484
Fe ³⁺	0.0000	0.1179	0.0000
Mg/(Mg + Fe ²⁺)	0.1784	0.2447	0.8832
Na _B	0.0000	0.0000	0.0000
(Ca + Na) _B	0.1212	0.0672	0.1850
(Na + K) _A	0.0000	0.0152	0.0731

8 : GRUNERITE (SCHREYER, 1978: Table 1, "cummingtonite") 9 : TIRODITE (BLACK, 1973: Table 1, "manganiferous grunerite") 10: DANNEMORITE (KLEIN, 1964: Analysis # 2, "Mn-cummingtonite")

Table	3	d :	Representative	chemical	analyses	of	calcic	amphiboles
-------	---	-----	----------------	----------	----------	----	--------	------------

	11	12	13	14
Si0,	46.73	44.07	52.93	53.00
Ti0 ₂	0.33	1.05	0.05	0.07
Al ₂ 0 ₃	10.10	12.86	6.01	2.97
Cr ₂ 0 ₃	0.00	0.00	0.00	0.01
Fe0	14.77	17.29	4.17	10.90
Mn 0	0.00	0.00	0.00	0.25
Mg 0	12.85	8.30	21.07	17.30
Ca0	11.70	11.38	12.86	13,70
K 20	0.20	0.08	0.48	0.06
Na ₂ 0	0.83	1.21	1.13	0.30
Total	97.51	96.22	98.70	98.56
Si	6.8105	6.6747	7.3029	7.4754
Ti	0.0365	0.1208	0.0052	0.0075
AI	1.1895	1.3253	0.6971	0.4937
AI	0.5454	0.9696	0.2802	0.0000
Cr	0.0000	0.0000	0.0000	0.0011
Fe	1.8002	2.1902	0.4811	1.2857
Mn	0.0000	0.0000	0.0000	0.0299
Mg	2.7909	1.8724	4.3323	3.6363
Ca	1.8270	1.8469	1.9011	2.0704
К	0.0372	0.0145	0.0845	0.0108
Na	0.2345	0.3539	0.3023	0.0820
Total	15.2717	15.3684	15.3868	15.0928
oxygen _{tot}	22.8504	23.1272	22.9902	22.7768
Fe ²⁺	1.5009	2.1902	0.4616	0.8392
Fe ³⁺	0.2993	0.0000	0.0196	0.4465
Mg/(Mg + Fe ²⁺)	0.6503	0.4609	0.9037	0.8125
Na _B	0.0000	0.0000	0.0000	0.0000
(Ca + Na) _B	1.8270	1.8469	1.9011	2.0704
(Na + K) _A	0.2717	0.3684	0.3868	0.0928

11: MAGNESIO-HORNBLENDE (LIOU et al., 1981: Analysis TPY 6617, "green hornblende")

12: FERRO-HORNBLENDE (LIOU et al., 1981: Analysis T-342, "hornblende")
13: TREMOLITIC HORNBLENDE (ADIB, 1982: Analysis A 2, "end member formula Ed₁₇Ho₃₃Tr₅₀")

14: ACTINOLITIC HORNBLENDE (PURTSCHELLER & RAMMLMAIR, 1982: Analysis IV-23, "hornblende")

Table 3 e: Representative chemical analyses of calcic amphiboles

	15	16	17	18
Si0,	48.72	59.40	52.80	50.60
	0.29	0.00	1.41	0.14
AI,0,	4.59	0.57	2.87	1.63
Cr, 0,	0.00	0.00	0.06	0.00
Fe0	20.15	0.43	10.60	25.77
Mn 0	0.39	0.00	0.18	1.34
Mg0	10.64	23.75	16.30	5.88
Ca0	11.29	13.25	11.10	11.56
K 20	0.40	0.00	0.08	0.00
Na ₂ 0	0.79	0.14	0.30	0.23
Total	97.26	97.54	95.70	97.15
Si	7.3459	8.0984	7,7267	7.8684
Ti	0.0332	0.0000	0.1568	0.0165
AI	0.6541	0.0000	0.2733	0.1316
AIVI	0.1616	0.0916	0.2217	0.1672
Cr	0.0000	0.0000	0.0069	0.0000
Fe	2.5407	0.0490	1.2972	3.3512
Mn	0.0498	0.0000	0.0223	0.1765
Mg	2.3908	4.8254	3.5547	1.3626
Ca	1.8239	1.9355	1.7404	1.9260
К	0.0769	0.0000	0.0149	0.0000
Na	0.2309	0.0370	0.0851	0.0693
Total	15.3079	15.0370	15.1001	15.0693
oxygen _{tot} .	22.9409	23.1627	23.1844	23.0690
Fe ² + .	2.4226	0.0490	1.2972	3.3512
Fe ³⁺	0.1182	0.0000	0.0000	0.0000
Mg/(Mg + Fe ²⁺)	0.4967	0.9899	0.7326	0.2891
Na _B	0.0000	0.0000	0.0000	0.0000
(Ca + Na) _B	1.8239	1.9355	1.7404	1.9260
(Na + K) _A	0.3079	0.0370	0.1001	0.0693

15: FERRO-ACTINOLITIC HORNBLENDE (SMULIKOWSKI, 1974: Table 1, analysis 4, "post-actinolite, blue hornblende") 16: TREMOLITE (HOINKES, 1976: Table 1, analysis # 1, "tremolite")

17: ACTINOLITE (PURTSCHELLER & RAMMLMAIR, 1982: Analysis IV-RV3, "hornblende")

18: FERRO-ACTINOLITE (DICKIN, 1981: Table 1, analysis CC 24, "ferro-actinolite")

Table 3 f	: Re	presentative	chemical	analyses	of	calcic	amphiboles
-----------	------	--------------	----------	----------	----	--------	------------

	19	20	21	22
Si0,	42.10	43.30	40.98	41.30
Ti0 ₂	0.30	0.30	0.36	0.33
Al ₂ 0 ₃	10.80	13.10	17.38	19.10
Cr ₂ 0 ₃	0.00	0.00	0.00	0.00
Fe0	17.40	19.60	19.38	17.73
Mn 0	0.00	0.00	0.10	0.34
Mg 0	11.30	8.70	9.43	6.29
Cau	12.30	12.30	8.85	11.35
K ₂ 0	0.30	0.50	0.43	0.59
Na ₂ 0	0.90	1.30	0.99	0.95
Total	95.40	99.10	97.90	97.98
Si	6.3387	6.3989	6.0523	6.1513
Ti	0.0343	0.0337	0.0404	0.0373
AI	1.6613	1.6011	1.9477	1.8487
AI	0.2552	0.6805	1.0776	1.5041
Cr	0.0000	0.0000	0.0000	0.0000
Fe	2.1909	2.4222	2.3936	2.2083
Mn	0.0000	0.0000	0.0125	0.0429
Mg	2.5354	1.9160	2.0755	1.3961
Са	1.9842	1.9475	1.4004	1.8112
K N-	0.0576	0.0943	0.0810	0.1121
Na	0.2627	0.3725	0.2835	0.2743
Total	15.3204	15.4667	15.3645	15.3864
oxygen _{tot} .	22.4914	22.8068	22.7876	23.0582
Fe ²⁺	1.1737	2.0358	1.9688	2.2083
Fe ³⁺	1.0171	0.3865	0.4248	0.0000
$Mg/(Mg + Fe^{2+})$	0.6836	0.4848	0.5132	0.3873
NaB	0.0000	0.0000	0.0000	0.0000
(Ca + Na) _B	1.9842	1.9475	1.4004	1.8112
(Na + K) _A	0.3204	0.4667	0.3645	0.3864

- 19: TSCHERMAKITIC HORNBLENDE (TAGIRI, 1977: Table 1, analysis 1 H, "hornblende")
- 20: FERRO-TSCHERMAKITIC HORNBLENDE (TAGIRI, 1977: Table 1, analysis HT 593/2 H, "hornblende")
- 21: TSCHERMAKITE (MOGESSIE, 1982: Unpublished analysis, sample F-89, Festkogel, Ötztal, Eastern Alps, Austria) 22: FERRO-TSCHERMAKITE (DOOLAN et al., 1978: Table 2, analysis 1-5,
- "aluminous amphibole")

,

	23	24	25	26
Si0,	47.20	44.58	44.42	42.56
Ti0,	0.00	1.78	0.40	0.89
Al, 0,	11.60	7.09	15.25	12.99
Cr, 0,	0.00	0.00	0.01	0.00
FeŌ	3.30	21.10	15.30	18.23
Mn 0	0.00	0.31	0.06	0.00
Mg0	17.60	9.28	10.28	7.45
Ca0	12.10	10.76	9.41	11.44
K 20	0.00	0.94	0.41	1.23
Na ₂ 0	3.50	1.33	1.54	1.21
Total	95.30	97.17	97.08	96.00
Si	6,8856	6.8546	6.6001	6.5720
Ti	0.0000	0.2079	0.0452	0.1038
AI	1.1144	1.1454	1.3999	1.4280
AIVI	0.8800	0.1395	1.2707	0.9361
Cr	0.0000	0.0000	0.0012	0.0000
Fe	0.3992	2.7131	1.9011	2.3541
Mn	0.0000	0.0404	0.0076	0.0000
Mg	3.8262	2.1264	2.2763	1.7132
Ca	1.8912	1.7726	1.4981	1.8927
К	0.0000	0.1844	0.0777	0.2413
Na	0.9900	0.3965	0.4437	0.3608
Total	15.9866	15.5809	15.5214	15.6021
oxygen _{tot} .	23.3777	22.9954	23.2418	23.1589
Fe ²⁺	0.4026	2.7040	1.9011	2.3541
Fe ³⁺	0.0000	0.0091	0.0000	0.0000
Mg/(Mg + Fe ²⁺)	0.9048	0.4402	0.5449	0.4212
Na _B	0.0000	0.0000	0.0000	0.0000
(Ca + Na) _B	1.8912	1.7726	1.4981	1.8927
(Na ⁺ K) _A	0.9900	0.5809	0.5214	0.6021

Table 3 g: Representative chemical analyses of calcic amphiboles

- 23: EDENITE (FEININCER, 1980: Table 6, analysis 7, "green magnesian amphibole intermediate between barroisite and hornblende")
- 24: FERRO-EDENITE (SMULIKOWSKI, 1974: Table 1, analysis 5, "brown hornblende")
- 25: EDENITIC HORNBLENDE (HOINKES, 1978: Table 3, analysis S 66, "hornblende")

26: FERRO-EDENITIC HORNBLENDE (LIOU et al., 1981: Analysis T-12A, "brown hornblende")

Table	3	h:	Representative	chemical	analyses	of	calcic	amphiboles
-------	---	----	----------------	----------	----------	----	--------	------------

	27	28	29	30
Si0,	40.90	39.40	43.70	49.10
Tio,	5.61	4.37	0.00	1.44
A1203	10.70	10.90	14.40	5.50
Cr ₂ 0 ₃	0.00	0.00	0.00	0.00
Fe0 ·	11.20	17.40	13.80	17.70
Mn 0	0.14	0.35	0.20	0.30
Mg0	13.20	9.36	14.10	12.10
Ca0	12.10	11.70	10.50	10.50
K ₂ 0	1.37	0.83	0.00	0.54
Na ₂ 0	2.33	3.17	2.00	1.65
Total	97.55	97.48	98.70	98.83
Si	6.1415	6.0992	6.2641	7.2910
Ti	0.6400	0.5140	0.0000	0.1625
AI	1.8585	1.9008	1.7359	0.7090
AI	0.0352	0.0878	0.6969	0.2536
Cr	0.0000	0.0000	0.0000	0.0000
Fe	1.4064	2.2525	1.6543	2.1980
Mn	0.0178	0.0459	0.0243	0.0377
Mg	2.9538	2.1593	3.0120	2.6776
Ca	1.9467	1.9406	1.6126	1.6706
К	0.2624	0.1639	0.0000	0.1023
Na	0.6784	0.9514	0.5559	0.4751
Total	15.9408	16.1153	15.5559	15.5773
^{oxygen} tot.	23.1988	23.1651	22.7584	23.2235
Fe ²⁺	1.4064	2.2525	1.1711	2.1980
Fe ³⁺	0.0000	0.0000	0.4832	0.0000
Mg/(Mg + Fe ²⁺)	0.6774	0.4894	0.7200	0.5492
Na _B	0.0000	0.0000	0.0000	0.0000
(Ca´+ Na) _B	1.9467	1.9406	1.6126	1.6706
(Na + K) _A	0.9408	1.1153	0.5559	0.5773

- 27: KAERSUTITE (SHEPPARD, 1977: Analysis 134/LH7, "titaniferous hornblende")
- 28: FERRO-KAERSUTITE (SHEPPARD, 1977: Analysis L 148, "titaniferous hornblende")
- 29: PARGASITIC HORNBLENDE (KLEIN, 1968: Table 5, analysis 4 H, "hornblende")
- 30: FERROAN PARGASITIC HORNBLENDE (PURTSCHELLER & RAMMLMAIR, 1982: Analysis III-RP4, "hornblende")

	31	32	33
Si0,	42.20	41.10	39.90
Ti0 ₂	2.20	0.43	0.00
A1203	12.80	17.40	16.30
Cr ₂ 0 ₃	0.08	0.00	0.00
Fe0	11.40	16.60	24.30
Mn 0	0.10	0.20	0.20
Mg 0	14.30	11.00	4.80
Ca0	11.90	8.60	10.80
K 20	0.46	1.54	0.00
Na ₂ 0	2.23	0.84	1.70
Total	97.67	97.71	98.00
Si	6.1636	6.0684	6.0869
Ti	0.2441	0.0482	0.0000
AIV	1.8364	1.9316	1.9131
AI	0.3670	1.0963	1.0176
Cr	0.0092	0.0000	0.0000
Fe	1.3924	2.0497	3.1001
Mn	0.0124	0.0250	0.0258
Mg	3.1125	2.4204	1.0912
Ca	1.8622	1.3605	1.7653
K Na	0.0857	0.2901	0.0000
Na	0.6315	0.2405	0.5028
Total	15.7172	15.5307	15.5028
oxygen tot.	22.8727	22.8958	22.8036
Fe ²⁺	1.1378	1.8413	2.7074
Fe ³⁺	0.2546	0.2084	0.3927
Mg/(Mg + Fe ²⁺)	0.7323	0.5679	0.2873
Na _B	0.0000	0.0000	0.0000
(Ca + Na) _B	1.8622	1.3605	1.7653
(Na + K) _A	0.7172	0.5305	0.5028

PARGASITE (EMBEY et al., 1981: Table 2, analysis 1, "pargasite")
 FERROAN PARGASITE (TESSADRI, 1981: Unpublished analysis, sample T 24, Sterzing, Eastern Alps, "pargasitic hornblende")
 FERRO-PARGASITE (KLEIN, 1968: Table 5, analysis 24 H, "hornblende")

278

Table 3 j: Representative chemical analyses of calcic amphiboles

.

3	34	35	36
Sio,	43.20	41.07	40.20
Tio,	0.00	0.79	0.42
AI, Ô,	12.80	10.96	10.00
Cr ₂ 0 ₃	0.00	0.00	0.00
Fe0	14.20	21.84	27.80
Mn 0	0.00	0.22	1.51
Mg 0	13.80	7.98	3.60
Ca0	11.30	11.81	10.60
K 20	0.00	0.32	1.27
Na ₂ 0	2.30	1.92	1.56
Total	97.60	96.91	96.96
Si	6.3015	6.3078	6.4455
Ti	0.0000	0.0922	0.0513
AL	1.6985	1.6922	1.5545
AIVI	0.5020	0.2917	0.3351
Cr	0.0000	0.0000	0.0000
Fe	1.7322	2.8051	3.7275
Mn	0.0000	0.0286	0.2051
Mg	2.9998	1.8265	0.8602
Ca	1.7660	1.9434	1.8210
K	0.0000	0.0627	0.2598
Na	0.6505	0.5717	0.4850
Total	15.6505	15.6219	15.7447
oxygen tot.	22.7270	22.7092	22.8138
Fe ²⁺	1.8161	2.2234	3.3551
Fe ³⁺	0.5461	0.5817	0.3724
Mg/(Mg + Fe ²⁺)	0.7166	0.4510	0.2041
Na _B	0.0000	0.0000	0.0000
(Ca + Na) _B	1.7660	1.9434	1.8210
(Na + K) _A	0.6505	0.6344	0.7447

34: MAGNESIO-HASTINGSITIC HORNBLENDE (KLEIN, 1968: Table 5,

34: MAGNESIO-HASTINGSTITC HORNBLENDE (REEIN, 1966: Table 5, analysis 14 H, "hornblende")
35: MAGNESIAN HASTINGSITIC HORNBLENDE (MOGESSIE, 1982: Unpublished analysis, Sölden/Otztal, Eastern Alps, Austria, "green hornblende")
36: HASTINGSITIC HORNBLENDE (FRISCH, 1976: Analysis 49, 074,

"hastingsitic hornblende")

Table 3 k: Representative chemical analyses of calcic amph	iboles
--	--------

	37	38	39
Si0,	42.90	39.38	39.40
Tio,	0.21	0.54	0.08
A1,0,	13.70	11.32	14.20
Cr, 0,	0.00	0.00	0.00
FeÖ	10.52	15.41	30.40
Mn 0	0.11	0.52	0.46
Mg0	16.10	11.05	2.70
Ca0	11.30	12.07	11.80
Κ,0	0.79	1.21	0.26
Na ₂ 0	1.66	2.85	2.60
Total	97.29	94.37	101.90
Si	6.1758	6.1622	5.9893
ті	0.0230	0.0642	0.0092
AI ^{IV}	1.8242	1.8378	2,0107
AI ^{VI}	0.5002	0.2499	0.5334
Cr	0.0000	0.0000	0.0000
Fe	1.2665	2.0165	3.8646
Mn	0.0134	0.0689	0.0592
Mg	3.4540	2.5768	0.6116
Ca	1.7429	2.0236	1.9219
К	0.1451	0.2415	0.0504
Na	0.4633	0.8647	0.7663
Total	15.6084	16.1062	15.8167
oxygen _{tot} .	22.6652	22.8234	22.6790
Fe ²⁺	0.5969	1.6633	3.2225
Fe ³⁺	0.6696	0.3533	0.6420
Mg/(Mg + Fe ²⁺)	0.8527	0.6077	0.1595
Na _B	0.0000	0.0000	0.0000
(Ca + Na) _B	1.7429	2.0236	1.9219
(Na + K) _A	0.6084	1.1062	0.8167

37: MAGNESIO-HASTINGSITE (CRAWFORD, 1980: Table 6, analysis B, "pargasitic amphibole")

38: MAGNESIAN HASTINGSITE (BROWN, 1978: Analysis 7, "hastingsite - magnesio-hastingsite")

39: HASTINGSITE (HONNOREZ et al., 1975: Table 3, analysis P 6707-33 Å, "chlor amphibole")

Table 3	31:	Representative chem	ical analyses	of	calcic-sodic	amphiboles
---------	-----	---------------------	---------------	----	--------------	------------

	40	41	42	43
Si0,	56.10	47.40	45.99	58.23
Ti0 ₂	0.04	0.31	1.00	0.21
AI,0,	1.70	12.10	5.77	0.15
Cr ₂ 0 ₃	0.05	0.00	0.00	0.07
Fe0	3.07	14.69	34.27	0.01
Mn0	0.07	0.18	1.08	0.02
Mg0	23.10	10.70	0.49	24.20
	9.03	7.20	4.93	0.09
	3.68	4.50	3.26	7.22
Total	97.57	97.36	97.69	97.28
Si	7.6587	6.8255	7.1500	7.9926
Ti	0.0041	0.0339	0.1181	0.0219
	0.2735	1.1/45	0.8500	0.0074
	0.0000	0.0790	0.1700	0.0109
Fe	0.3505	1.7690	4,4555	0.0011
Mn	0.0081	0.0220	0.1422	0.0023
Mg	4.6996	2.2961	0.1135	4.9501
Ca	1.3208	1.1108	0.8212	0.9839
К	0.1271	0.0514	0.2182	0.0840
Na	0.9741	1.2564	0.9827	1.9215
Total	15.4220	15.4187	15.0220	15.9894
oxygen _{tot} .	22.6738	22.6509	22.2000	23.0171
Fe ²⁺	0.0000	1.0708	2.8556	0.0011
Fe ³⁺	0.3505	0.6982	1.5999	0.0000
$Mg/(Mg + Fe^{2+})$	1.0000	0.6820	0.0382	0.9998
$Fe^{3+}/(Fe^{3+} + Al^{VI})$. 1.0000	0.4427	0.9036	0.0000
$Fe^{2}+/(Fe^{2}+Mg)$	0.0000	0.3180	0.9618	0.0002
$Mn/(Mn + Fe^{2+} + Mg)$	0.0017	0.0065	0.0457	0.0001
Na _B	0.6792	0.8892	0.9827	1.0161
(Ca + Na) _B	2.0000	2.0000	1.8039	2.0000
(Na + K) _A	0.4220	0.4187	0.2182	0.9894

40: WINCHITE (SMITH, 1977: Table 1, analysis 3, "tremolite - richterite")
41: BARROISITE (MILLER, 1977: Table 10 a, sample T 258/E 1, "barroisite")
42: FERRO-BARROISITE (HYTONEN & HEIKKINEN, 1966: Table 4, analysis #1,

"iron-rich alkali amphibole")

43: RICHTERITE (BEVAN, 1977: Table II, analysis 1, "richterite")

Table 3 m: Representative chemical analyses of calcic-sodic amphiboles

	44	45	46	47
Si0,	47.20	47.87	48.87	37.20
Τίο,	1.66	2.26	1.72	1.36
Al ₂ Õ ₃	1.71	4.48	3.86	12.13
Cr ₂ 0 ₃	0.00	0.00	0.00	0.00
Fe0	34.40	14.27	23.40	29.95
Mn 0	0.78	0.17	1.52	1.14
Mg0	0.15	13.94	6.13	1.42
Cau K 0	5.07	6.41	5.02	7.30
	1.20	6.20	6 52	2.43
	4.73	06.20	0.52	4.22
Total	96.90	96.67	98.07	97.21
Si	7.6557	7.0944	7.4992	5.9957
Ti	0.2046	0.2545	0.2005	0.1665
AI	0.3270	0.7825	0.5008	2.0043
AI	0.0000	0.0000	0.1973	0.2999
Cr	0.0000	0.0000	0.0000	0.0000
Fe Mar	4.6672	1.7686	3.0028	4.0368
	0.1072	0.0213	0.19/6	0.1550
Ca	0.0303	3.0787	0 8254	1 2710
K	0.2484	0.2023	0.2016	0.4996
Na	1.4879	1.7815	1.9399	1.3188
Total	15.6176	16.0017	15.9668	16.0894
oxygen _{tot} .	22.7752	22.7499	22.9448	22.4945
Fe ²⁺	4.2177	1.2683	2.8925	3.0259
Fe ³⁺	0.4495	0.5003	0.1103	1.0109
Mg/(Mg + Fe ²⁺)	0.0085	0.7082	0.3264	0.1013
Fe ³⁺ /(Fe ³⁺ + Al ^{VI})	1.0000	1.0000	0.3587	0.7712
$Fe^{2+}/(Fe^{2+} + Mg)$	0.9915	0.2918	0.6736	0.8987
$Mn/(Mn + Fe^{2+} + Mg)$	0.0246	0.0049	0.0440	0.0442
Na _B	1.1187	0.9822	1.1746	0.7290
(Ça + Na) _B	2.0000	2.0000	2.0000	2.0000
(Na + K) _A	0.6176	1.0017	0.9662	1.0894

44: FERRO-RICHTERITE (THOMPSON, 1976: Analysis # 1, "ferro-richterite")

45: MAGNESIO-KATOPHORITE (NIELSON, 1979: Table 3, analysis 10, "magnesio-katophorite")

46: KATOPHORITE (DEER et al., 1963: p. 360, analysis # 3, "katophorite") 47: TARAMITE (LEAKE, 1968: Analysis 926, "subcalcic-sodic-potassic

hastingsite")

Table	3	n :	Representative	chemical	analyses	of	alkali-amphiboles
-------	---	------------	----------------	----------	----------	----	-------------------

	. 48	49	50
Si0,	54.40	57.39	54.40
Ti02	0.00	0.00	0.00
Al ₂ 0 ₃	8.20	11.44	9.00
Cr ₂ 0 ₃	0.00	0.00	0.00
Feu	15.00	15.24	10.30
Man	0.00	6.25	12 20
Call	1.20	0.35	1.60
K ,0	0.00	0.00	0.00
Na ₂ 0	7.20	7.14	6.60
Total	95.40	97.81	94.10
Si	7.8610	8.0281	7.7036
Ti	0.0000	0.0000	0.0000
AI	0.1390	0.0000	0.2964
Al	1.2576	1.8861	1.2056
	0.0000	0.0000	0.0000
Mn	0 0000	0 0000	0.0000
Ма	1.8089	1.3029	2.5746
Ca	0.1858	0.0525	0.2428
К	0.0000	0.0000	0.0000
Na	2.0173	1.9366	1.8121
Total	15.2031	14.9890	15.0549
^{oxygen} tot.	22.7537	22.9918	22.6034
Fe ²⁺	1.4410	1.7667	0.4266
Fe ^{3 +}	0.4925	0.0161	0.7932
Mg/(Mg + Fe ²⁺)	0.5566	0.4245	0.8579
$Fe^{3+}/(Fe^{3+} + AI^{VI})$	0.2814	0.0085	0.3968
$Fe^{2+}/(Fe^{2+} + Mg)$	0.4434	0.5755	0.1421
$Mn/(Mn + Fe^{2} + Mg)$	0.0000	0.0000	0.0000
Na _B	1.8142	1.9366	1.7572
(Ca + Na) _B	2.0000	1.9890	2.0000
(Na + K) _A	0.2031	0.0000	0.0549

48: GLAUCOPHANE (PAPIKE et al., 1969: Table 1, analysis 201, "sodic amphibole")

,

49: FERRO-GLAUCOPHANE (KATAGAS, 1980: Table 1, analysis 1, "ferroglaucophane")

50: CROSSITE (FEININGER, 1978: Table 6, analysis 5, "glaucophane")

Table	3	о:	Representative	chemical	analyses	of	alkali-amphiboles
-------	---	----	----------------	----------	----------	----	-------------------

	51	52	53	54
Si0,	54.00	53.00	52.59	57.20
Ti0,	0.03	0.03	0.91	2.20
AI,0,	2.56	4.11	1.64	0.38
Cr ₂ 0 ₃	0.00	0.00	0.00	3.50
Fe0	24.00	27.10	18.72	0.44
Mn 0	0.12	0.31	0.60	0.05
Mg0	7.53	6.02	9.32	20.90
	1.26	2.59	3.41	3.70
	6.37	5.50	6.79	8.30
Total	95.94	98.70	96.04	97.87
Si	7.9382	7.6757	8.0180	7.9409
Ti _{ll}	0.0034	0.0033	0.1054	0.2320
AIV	0.0618	0.3243	0.0000	0.0591
Alt	0.3817	0.3773	0.2947	0.0030
Cr Tr	0.0000	0.0000	0.0000	0.3841
re	2.9504	3.2821	2.3868	0.0511
Ma	1 6496	1,2993	2.1176	4, 3239
Ca	0.1985	0.4019	0.5570	0.5503
ĸ	0.0131	0.0074	0.4006	0.2125
Na	1.8156	1.5444	2.0072	2.2341
Total	15.0272	14.9537	15.9649	15.9970 -
oxygen _{tot} .	22.2761	22.2076	23.0318	23.1697
Fe ²⁺	1.5026	1.6973	2.3868	0.0511
Fe ³⁺	1.4478	1.5848	0.0000	0.0000
$Mg/(Mg + Fe^{2+})$	0.5233	0.4336	0.4701	0.9883
$Fe^{3+}/(Fe^{3+} + AI^{VI})$	0.7914	0.8077	0.0000	0.0000
$Fe^{2+}/(Fe^{2+} + Mg)$	0.4767	0.5664	0.5299	0.0117
$Mn/(Mn + Fe^{2} + Mg)$	0.0047	0.0125	0.0169	0.0013
Na _B	1.8015	1.5444	1.4430	1.4497
(Ca + Na) _B	2.0000	1.9463	2.0000	2.0000
(Na + K) _A	0.0272	0.0074	0.9649	0.9970

51: MAGNESIO-RIEBECKITE (KOLLER, 1978: Table 1, analysis 9, "riebeckitemagnesio-riebeckite")

52: RIEBECKITE (KOLLER, 1978: Table 1, analysis 8, "riebeckite - magnesioriebeckite")

53: ECKERMANNITE (ESKOLA & SAHLSTEIN, 1930: Analysis # 2, "fluortaramite")

54: FERRO-ECKERMANNITE (BEVAN, 1977: Table II, analysis III, "richterite")

Table 3 p: Representative chemical analyses of alkali-amphiboles

	55	56	57
Si0,	49.74	49.30	51.38
	3.09	1.28	0.00
AI ₂ 0 ₃	3.13	0.99	1.69
$Cr_2 0_3$	0.00	0.00	0.00
Fe0	17.61	33.80	2.57
Min 0	0.48	0.98	27.96
	2 //0	0.25	2.71
	1 26	1 33	1 36
Na ₂ 0	8.55	5.89	8.41
Total	97.45	96.88	97.20
Si .	7.3827	7.9214	8.0241
Ti	0.3485	0.1563	0.0000
	0.5475	0.0786	0.0000
AI*'	0.0000	0.1088	0.3110
Cr	0.0000	0.0000	0.0000
Fe	2.1858	4.5417	0.3356
Ma	0.0603	0.1334	3.6985
	0 3817	0.0399	0.0307
K	0.2386	0.2726	0.7074
Na	2.4605	1.8349	2.5465
Total	16.0808	15.6343	16.0049
oxygentot.	22.7362	22.7519	22.7758
Fe ²⁺	1.6581	4.0455	0.0000
Fe ³⁺	0.5277	0.4962	0.3356
Mg/(Mg + Fe ²⁺)	0.5988	0.0146	1.0000
$Fe^{3+}/(Fe^{3+} + AI^{VI})$	1.0000	0.8201	0.5190
$Fe^{2+}/(Fe^{2+} + Mg)$	0.4012	0.9854	0.0000
Mn/(Mn + Fe ²⁺ + Mg)	0.0144	0.0315	0.8543
Na _B	1.6183	1.4732	1.8126
(Ca + Na) _B	2.0000	2.0000	2.0000
(Na + K) _A	1.0808	0.6343	1.0049

56: ARFVEDSONITE (THOMPSON, 1976: Table 1, analysis SK 887, "ferrorichterite - arfvedsonite")

57: KOZULITE (NAMBU et al., 1969, "kozulite")

Acknowledgment

This computer program is written as a part of an ongoing research, dealing with the petrology of the amphibolites of the Otztal-Stubai Old Crystalline Basement.

The authors wish to acknowledge gratefully the continual support, guidance and encouragement of Prof. Dr. F. Purtscheller. The authors would also like to thank Doz. Dr. Ch. Miller and Doz. Dr. G. Hoinkes for their critical comments and discussions during the preparation of the program and Dr. P. Müller (Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover) for reviewing the manuscript.

Appendix

The program is written on a Commodore BASIC computer (2001 series). The program itself is written in a very simple way; only few BASIC-commands have been used, in order to enable everyone to go through the program step by step.

An outprint of the program is available from the authors.

- BEVAN, A.W.R.; BEVAN, J.C. & J.G. FRANCIS (1977): Amphibole in the Mayo meteorite: first occurrence in an enstatite achondrite. - Min. Mag., 41, p. 531-534.
- BLACK, P.M. (1973): Mineralogy of New Caledonian metamorphic rocks.
 II. Amphiboles from the Ouegoa District. Contrib. Mineral. Petrol., 39, p. 55-64.
- BRADY, J.B. (1974): Coexisting actinolite and hornblende from west central New Hampshire. - Am. Min., 59, p. 529-535.
- BROWN, E.H. (1977 a): The crossite content of Ca-amphibole as a guide to pressure of metamorphism. Journ. Petrol., 18, p. 53-72.
- BROWN, P.E.; BROWN, R.D.; CHAMBERS, A.D. & N.J. SOPER (1978):
 Fractionation and assimilation in the Borgtindeme Syenite, East Greenland.
 Contrib. Mineral. Petrol., 67, p. 25-34.
- COLVILLE, P.A.; ERNST, W.G. & M.C. GILBERT (1966): Relationships between cell parameters and chemical compositions of monoclinic amphiboles. - Am. Min., 51, p. 1727-1754.
- CRAWFORD, A.J. (1980): A clinoenstatite bearing cumulate olivine pyroxenite from Howqua, Victoria. Contrib. Mineral. Petrol., 75, p. 353-367.
- CZAMANSKE, G.K. & D.R. WONES (1973): Oxidation during magmatic differentiation, Finmark Complex, Oslo Area, Norway, Part 2: The mafic silicates. - Journ. Petrol., 14, p. 349-380.
- DEER, W.A.; HOWIE, R.A. & J. ZUSSMAN (1965): Rock-forming minerals, Vol. 2: Chain-Silicates. - Longmans, London.
- DICKIN, A.P. & R.A. EXLEY (1981): Isotopic and geochemical evidence for magma mixing in the petrogenesis of the Coise Uaigneich granophyre, Isle of Skye, N.W. Scotland. - Contrib. Mineral. Petrol., 76, p. 98-108.
- DOOLAN, B.L.; ZEN E-AN & A.E. BENCE (1978): Highly aluminous hornblendes: compositions and occurrences from southwestern Massachusetts. - Am. Min., 63, p. 1088-1099.
- EMBEY-ISZTIN, A. & G. NOSKE-FAZEKAS (1981): Chemical zoning in the large phenocrysts of the Godoŕaŕ Tuff, Borzsöny Mts., Hungary. -Contrib. Mineral. Petrol., 77, p. 325-331.
- ERNST, W.G. (1968): Amphiboles: crystal chemistry, phase relations and occurrence. Springer-Verlag, 125 pp.
- ESKOLA, P. & T.G. SAHLSTEIN (1930): On astrophyllite bearing nephelite syenite gneiss. Bull. Comm. Géol. Finlande, 92, p. 77-88.
- FEININGER, T. (1980): Eclogite and related high-pressure regional metamorphic rocks from the Andes of Ecuador. - Journ. Petrol., 21, p. 107-140.
- FRISCH, T. & D. BRIDGEWATER (1976): Iron- and manganese-rich minor intrusions emplaced under late orogenic conditions in the proterozoic of South Greenland. - Contrib. Mineral. Petrol., 57, p. 25-48.
- GRAPES, R.H. (1975): Actinolite-hornblende pairs in metamorphic gabbros, Hidaka Mountains, Hokkaido. - Contrib. Mineral. Petrol., 49, p. 125-140.

- GRAPES, R.H.; HASHIMOTO, S. & S. MIYASHITA (1977): Amphiboles of a metagabbro-amphibolite sequence, Hidaka metamorphic belt, Hokkaido.
 Journ. Petrol., 18, p. 285-318.
- HEITANEN, A. (1974): Amphiboles pairs, epidote minerals, chlorite and plagioclase in metamorphic rocks, Northern Sierra Nevada, California.
 - Am. Min., 59, p. 22-40.
- HIMMELBERG, G.R. & J.J. PAPIKE (1969): Coexisting amphiboles from blueschist facies metamorphic rocks. - Journ. Petrol., 10, p. 102-114.
- HOINKES, G. & F. PURTSCHELLER (1976): Die Petrogenese der Karbonatgesteine im Schneebergerzug, Ötztaler Alpen, Tirol. – N. Jb. Miner. Mh., 10, p. 467–476.
- HOINKES, G. (1978): Zur Mineralchemie und Metamorphose toniger und mergeliger Zwischenlagen in Marmoren des südwestlichen Schneebergerzuges (Ötztaler Alpen, Südtirol). - N. Jb. Miner. Abh., 131, 3, p. 272-303.
- HONNOREZ, J. & P. KIRST (1975): Petrology of rodingites from the equatorial mid-atlantic fracture zones and their geotectonic significance.
 Contrib. Mineral. Petrol., 49, p. 233-257.
- HYTÖNEN, K. & A. HEIKKINEN (1966): Alkali amphibole of Otanmaki, Finland. - Bull. Comm. Géol. Finlande, 222, p. 145-158.
- IRVING, A.J. (1974): Megacrysts from the newer basalts and other basaltic rocks of southeastern Australia. - Geol. Soc. Am. Bull., 85, p. 1503-1514.
- KATAGAS, C. (1980): Ferroglaucophane- and chloritoid-bearing metapelites from the phyllite series, southern Peloponnese, Greece. - Min. Mag., 43, p. 975-978.
- KLEIN, C. (1964): Cummingtonite-grunerite series: a chemical, optical and X-ray study. Am. Min., 49, p. 963-982.
- KLEIN, C. (1968): Coexisting amphiboles. Journ. Petrol., 9, p. 281-330.
- KOLLER, F. (1978): Die Bildung eines Alkaliamphibols in Metagabbros der Bernstein-Rechnitzer Schieferinsel, Penninikum. - TMPM, 25, p. 107-116.
- LAIRD, J. & A.L. ALBEE (1981 b): Pressure, temperature and time indicators in mafic schist: their their appliation to reconstructing the polymetamorphic history of Vermont. - Am. J. Sci., 281, p. 127-175.
- LEAKE, B.E. (1968): A catalog of analyzed calciferous and subcalciferous amphiboles together with their nomenclature and associates minerals. - Geol. Soc. An. Spec. Paper, 98, 210 pp.
- LEAKE, B.A. (1978): Compiler for subcommittee on amphiboles, I.M.A. Nomenclature of amphiboles. - Am. Min., 63, p. 1023-1052.
- LIOU, J.G.; ERNST, W.G. & D.E. MOORE (1981): Geology and petrology os some polymetamorphosed amphibolites and associates rocks in northeastern Taiwan. ~ Geol. Soc. Am. Bull., Part II, p. 609-748.
- MILLER, C. (1977): Chemismus und phasenpetrologische Untersuchungen aus der Eklogitzone des Tauernfensters, Österreich. - TMPM, 24, p. 221-277.
- NAMBU, M.; TANIDA, K. & T. KITAMURA (1969): Kozulite, a new alkaliamphibole from Tanokata Mine, Iwate prefacture, Japan. - J. Jap. Ass. Mineral., 62, p. 311-328.

- NIELSEN, T.F.D. (1979): The occurrence and formation of Ti-aegirines in peralkaline syenites. Contrib. Mineral. Petrol., 69, p. 235-244.
- ROBINSON, P.R.; ROSS, M. & H. TAFFE (1971): Composition of the anthophyllite-gedrite series, comparisons of gedrite and hornblende, and the anthophyllite-gedrite solvus. - Am. Min., 56, p. 1005-1041.
- SCHREYER, W. & K. ABRAHAM (1976): Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as a part of a former evaporite deposit. - Contrib. Mineral. Petrol., 59, p. 111-130.
- SCHREYER, W.; STEPTO D.; ABRAHAM, K. & W.F. MÜLLER (1978): Clinoeulite (magnesian clinoferrosilite) in a eulysite of a metamorphosed iron formation in the Vredefort structure, South Africa. - Contrib. Mineral. Petrol., 65, p. 351-361.
- SEKI, Y. & M. YAMASAKI (1957): Aluminian ferroanthophyllite from the Kitakami Mountainland, northeastern Japan. - Am. Min., 42, p. 506-520.
- SHEPPARD, S.M.F., BROWN, P.E. & A.D. CHAMBERS (1977): The Lilloise intrusion, east Greenland: hydrogen isotope evidence for the efflux of magmatic water into the contact metamorphic aureole. - Contrib. Mineral. Petrol., 63, p. 129-147.
- SMITH, D. (1977): Titanochondrodite and titanoclinohumite derived from the upper mantle in the Buell Park Kimberlite, Arizona, USA. - Contrib. Mineral. Petrol., 61, p. 213-215.
- SMULIKOWSKI, W. (1974): Amphiboles and biotite in relation to the stages of metamorphism in granogabbro. - Min. Mag., 39, p. 857-866.
- SPEAR, F.S. (1981): An experimental study of hornblende stability and compositional variability in amphibolite. - Am. J. Sci., 281, p. 697-734.
- STOUT, J.H. (1972): Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway. Journ. Petrol., 13, p. 99-145.
- THOMPSON, R.N. (1976): Alkali amphiboles in the eocene high-level granites of Skye, Scotland. Min. Mag., 40, p. 891-893.
- WILKINSON, J.F.G.; DUGGAN, M.B., HERBERT, K.H. & G.I.Z. KALOGSAI (1976): The Salt Lick Creek layered intrusion, East Kimberley region, Western Australia. - Contrib. Mineral. Petrol., 50, p. 1-23.