Wärmesummen der Vegetationszeit für Stuttgart und Weinqualitäten in den Jahren 1800—1903.

Von Dr. Ludwig Majer, Gymnasialrektor a. D. in Tübingen.

Im Jahre 1900 hat der Verfasser dieses Aufsatzes in der Beilage des "Staatsanzeiger für Württemberg" einen Artikel veröffentlicht über Weinprognose, d. h. über die Frage, wie und wieweit sich im Sommer und Herbst über die Wahrscheinlichkeit der Qualität des werdenden Weines und im Herbst über die wirkliche Qualität des fertigen Weinmostes zum voraus ein einigermaßen sicheres Urteil bilden lasse. Damals standen dem Verfasser statistische Notizen, zurückgehend bis zum Jahre 1831, zu Gebot. Auf die Aufforderung von wissenschaftlichen Fachmännern habe ich mich entschlossen. auch die Jahre 1800-1830 in den Kreis meiner Betrachtung zu ziehen, so daß ich also einen Überblick über die Temperaturbewegung des ganzen 19. Jahrhunderts, soweit sie den Wein betrifft, zu geben imstande bin: natürlich habe ich die letzten 4 Jahre von 1900 an auch mit behandelt. Die darauf sich beziehenden Zahlen samt Angabe der Weinqualitäten habe ich nun in der unten folgenden Tabelle (Tab. I) zusammengestellt. Vorausgeschickt seien einige Bemerkungen darüber, weshalb ich die Sache nicht gleich nach Schluß des vorigen Jahrhunderts veröffentlicht habe, sondern das jetzt erst tue. Der eine Grund war der, daß in diesen Jahresheften im Jahre 1901 eine ähnliche Arbeit erschienen war über das Klima von Calw nach hundertjährigen Wetterbeobachtungen, von Dr. HERMANN MÜLLER, Rektor a. D. in Calw. Das Eigentümliche dabei ist das, daß bei Müller wie bei mir Vater und Sohn bei den Beobachtungen, beziehungsweise der Registrierung der Zahlen beteiligt waren. Der zweite Grund der späteren Veröffentlichung ist der, daß ich, von Jugend auf an Réaumur-Grade gewöhnt, welche für raschen Überblick über die sogenannten Sommertage bequemer waren, mich nur ungern entschlossen habe, zu den

nun offiziell eingeführten Celsius-Graden überzugehen; die Umrechnung machte natürlich keine sonderliche Mühe, nahm aber doch ziemliche Zeit in Anspruch. Wer die Temperaturzahlen in der später zu erwähnenden Tabelle (Tab. III) über Maifröste sich etwas genauer ansieht, wird mit Leichtigkeit erkennen, daß besonders die älteren Zahlen aus Réaumur-Graden in Celsius umgerechnet sind. noch einiges über die statistischen Quellen meiner Arbeit. Für die Zeit vom Jahre 1850 bis auf die Jetztzeit liegen zugrunde die Veröffentlichungen der meteorologischen Station, wie sie im "Staatsanzeiger für Württemberg" und im "Schwäbischen Merkur" veröffentlicht waren, alles für Stuttgart. Für die Zeit von 1831-1850 sind es Aufzeichnungen meines Vaters, teilweise beruhend auf den Mitteilungen des "Schwäbischen Merkur". Da diese Temperaturzahlen im allgemeinen im Vergleich mit anderweitigen Angaben sich als etwas hoch erwiesen, wurden von dem verstorbenen Prof. Zech in Stuttgart auch für einige Jahre dieser Zeit die Angaben der meteorologischen Station erbeten und erhalten und danach die Angaben des "Schwäbischen Merkur" für die ganze Zeit von 1831 bis 1850 verhältnismäßig etwas korrigiert. Dabei stellte sich heraus, daß die im "Schwäbischen Merkur" verzeichneten Ablesungen der Temperatur um 2 Uhr eines jeden Tages, die mit ungenaueren Instrumenten und vielleicht ohne gehörige Berücksichtigung des Ablesungsortes gemacht waren, mit den späteren Ablesungen der Maximaltemperaturen auf einem genauen Maximalthermometer ziemlich genau stimmten. Dagegen mußten die Minimaltemperaturen nach den Angaben der Station erheblich korrigiert werden, weil die Merkur-Notizen damals nur die Abendtemperatur von 9 Uhr enthielten. Dabei stellte es sich heraus, daß die Minimaltemperatur eines Tages ungefähr 0.9 der Abendtemperatur von 9 Uhr ergibt. Die Zahlen für die Jahre 1800-1830 habe ich mir auf der K. Landesbibliothek aus dem "Schwäbischen Merkur" herausschreiben lassen und bin dann auf dieselbe Weise verfahren, wie für die Jahre 1831-1850. Da es sich für den Zweck meiner Untersuchung nicht um im einzelnen genaue Zahlen, sondern nur um im allgemeinen wichtige Summen und Summenverhältnisse handelt, so glaube ich, daß man die auf diesem Wege gewonnenen Zahlen ganz gut auf eine Stufe stellen und für meine Zwecke zur Vergleichung miteinander benützen kann. Ich werde nun zuerst eine allgemeine Übersicht über den Gang der Wärmeverhältnisse der genannten Zeit geben, daraus einige Schlüsse ziehen, besonders auffallende Erscheinungen hervorheben

und charakterisieren; dann werde ich zu meinem Hauptthema übergehen, zu dem statistischer Nachweis des Satzes: daß die Weinqualität eines Jahres im wesentlichen mit der Wärmesumme der Vegetationsmonate zusammenstimmt, also von ihr abhängig ist. Und da ich gerade an der Entstehung der Zahlen bin, so will ich gleich hier bemerken, daß mir für die Zahlen der Weinqualitäten die Weinchroniken von Eßlingen und Heilbronn, sowie eigene Aufzeichnungen des Stadtschultheißen Titot in Heilbronn, die mir aus seinem Nachlaß durch die Güte des Herrn Gymnasialrektors Dr. Dürr zur Verfügung gestellt wurden, zu Gebote standen. Außerdem folgte ich den Aufzeichnungen meines verstorbenen Vaters, meiner eigenen Erfahrung, und schließlich zog ich die Preise der Flaschen der besseren Jahrgänge in Betracht. Viele Anhaltspunkte hat mir auch die Liste über Deutschlands Weinernten nach Menge und Güte seit 1820, bearbeitet auf Veranlassung der Firma Sturm in Rüdesheim von dem Generalsekretär des deutschen Weinbauvereins Dahlen in Wiesbaden, gegeben. Dieselbe umfaßt die Zeit von 1820-1895; Dahlen scheint aber für Württemberg nicht besonders gut bedient gewesen zu sein, denn die Angaben über die Weinqualitäten sind hier teilweise ganz falsch, teilweise sehr ungenau.

Weiter werde ich als drittes Thema die so viel gefürchteten Maifröste und die Frage der sogenannten Eismänner oder Wetterheiligen kurz behandeln, und zwar in einer etwas anderen Weise, als ich sie in meinem Aufsatz über Barometrische Minima und Kälterückschläge behandelt habe, der auch in der Beilage des "Staatsanzeiger für Württemberg" am 13. Mai 1897 erschien.

Was nun zunächst den Gang der Wärmeverhältnisse im vorigen Jahrhundert betrifft, so muß ich vorausschicken, daß ich wegen meines besonderen Zweckes, der Weinprognose, nur die Vegetationszeit, soweit sie für den Wein in Betracht kommt, ins Auge gefaßt habe, und zwar die Zeit vom 1. April bis 18. Oktober. Diese Grenzen sind gewählt, weil sie die Hauptvegetationszeit der edlen Gewächse, speziell des Weinstockes, einschließen. Märztemperaturen und solche der späteren Oktoberzeit sind erfahrungsgemäß hier und da, aber nur in ganz seltenen Fällen von einigem Einfluß; können daher im ganzen unberücksichtigt bleiben. Dagegen ist zu bemerken, daß unter Umständen auch die Aprilsonne ihre hohe Bedeutung hat, so gut wie die eines der Kochmonate. Wenn wir nun den Gang der Wärmeverhältnisse im allgemeinen betrachten, so finden wir einmal vor allen Dingen, daß sowohl die Fröste immer mehr abnehmen als auch

die Sommertage. Die in Betracht kommenden Fröste betreffen die Monate April, Mai, September und Oktober, worunter natürlich die vom Mai und September die gefährlichsten sind. Die Fröste im Frühjahre sind am häufigsten im Dezennium 1810-1819 (121); etwas weniger 1820-1829 (90); ziemlich gleich bleibt die Zahl für die Dezennien 1800-1809; 1830-1839; 1870-1879 (ca. 70). Dann sinkt die Zahl für 1840-1849 auf 44, für 1850-1859 auf 19, hebt sich dann wieder und erreicht für die Zeit 1870-1879 die Zahl von 66, um dann rasch wieder auf 16 von 1880-1889 zu sinken. und für 1880-1903 auf einen Durchschnitt von nicht ganz 0,8 im Jahre. Viele Herbstfröste (September bis 18. Oktober) erscheinen hauptsächlich 1803, 1814, 1815, 1817, 1820, 1830, 1840, 1842; ganz verschwinden die Herbstfröste von 1846-1863. Ausgezeichnet sind dann wieder durch Herbstfröste 1864, 1867, von da an verschwinden sie mit kleinen Ausnahmen. Wir sehen also im allgemeinen einen Rückgang der Fröste vom 2. Dezennium mit 121 Frösten, zum letzten Dezennium mit 4 Frösten. Ganz besondere Erscheinungen bieten aber die Jahre vor 1830; so das Jahr 1814, in welchem nach 3 Sommertagen vom 18.-20. April noch 3 Frosttage vom 29. April bis 1. Mai bis zu 2.5 unter Null erscheinen. Noch auffallender ist dieselbe Erscheinung im Jahre 1815, in welchem nach einer größeren Anzahl von Sommertagen im April und sogar am Ende des März noch 6 schwere Fröste vom 16.-21. April erscheinen. Etwas schwächer tritt die Erscheinung auf im April 1819, wo nach Sommertagen am 12., 13. und 16. noch Frosttage am 27., 28. und 29. vorkommen. Von da an kehrt diese Erscheinung nicht mehr wieder. Eine andere Wahrnehmung können wir in betreff der sogenannten Sommertage machen. Seit dem Jahre 1868 ist nur noch 1 Jahr, 1873, mit mehr als 60 Sommertagen zu verzeichnen, während es bis dahin 21 Jahre gab mit über 60 Sommertagen. Gehen wir nun weiter zur Vergleichung der Maximal- und Minimaltemperaturen. Die absolute Maximaltemperatur, d. h. die Summe der Maxima für die Vegetationszeit eines Jahres vom 1. April bis 18. Oktober, beträgt 4959 im Jahre 1865: die niederste Summe von Maxima hat das Jahr 1816 mit 3672. Die höchste Summe der Minima wurde im Jahre 1863 erreicht mit 2415 Graden, die niederste im Jahre 1814 mit 1683. Der Durchschnitt der höchsten und niedersten Maximalsumme beträgt 4315 Grade, oder wenn man wegen des kolossalen Überwiegens des außerordentlichen Jahres 1865 das normalere 1868 nimmt, so kommt als Durchschnitt 4168 herans. Der Durchschnitt des höchsten und niedersten Minimums ergibt die Zahl 2049. Die Summe der Maxima beträgt in den Jahren 1800—1819 9mal über 4200 Grade, 4mal über 4400. In den Jahren 1820—1839 8mal über 4200, 3mal über 4400; 1840—1859 6mal über 4200 und 3mal über 4400; 1860 bis 1879 10mal über 4200 und 2mal über 4400. Bis dahin bleiben also die in der Mitte sich bewegenden Summen ziemlich gleich; die höchsten nehmen allmählich ab. Nun tritt ein gewaltiger Umschwung ein. Die Zeit von 1880—1899 hat keine Summe über 4400 und nur eine über 4200, ebenso 1900—1903 keine 4200. Die Zahl 4400 kommt bis 1868 12mal vor, und dann nicht mehr. Die Zahl 4300 noch 2mal, im Jahre 1869 und knapp mit 4301 im Jahre 1895. Warme Aprile kamen vor in den Jahren 1800—1849 13mal; 1850 bis 1903 8mal; warme Mai 1800—1849 32mal, von 1850—1903 20mal.

Die Summe der Minima betrug im 1. Doppeldezennium 10mal unter 2000; im 2. 11mal; im 3. 3mal; im 4. 11mal unter 2000. Dagegen von 1880-1903 nur 2mal unter 2000; beidemal nicht weit davon entfernt, und 15mal über 2200. Der Durchschnitt beträgt für 1800-1829: 1997: für 1830-1879: 2020. Dagegen von 1880 bis 1903: 2212, und vollends von 1890-1903: 2264. Damit ist konstatiert ein entschiedenes Sinken der Maximalsummen und ein Zunehmen der Minimalsummen; im wesentlichen dieselbe Erscheinung wie vom Gesichtspunkte der Fröste und Sommertage aus. Die Extreme rücken immer näher zusammen. Wir haben seit 1889 keinen warmen, seit 1868 keinen heißen Mai, seit 1877 keinen heißen Juni mehr gehabt, sondern nur hier und da noch heiße Juli und August, aber in einem Jahre immer nur einen heißen Monat, während bis 1868 in manchen Jahren 2-3 heiße Monate vorkamen, in denen man dann wirklich von einem warmen Sommer sprechen konnte. Sollte diese Erhöhung der Minimaltemperatur gleichzeitig mit der Erniedrigung der Maximaltemperatur, wie sie ganz entschieden um das Jahr 1880 herum eingetreten ist, bloß zufällig sein, oder etwa einen tieferen natürlichen, aber auf menschlicher Tätigkeit beruhenden Grund haben?

Der Verfasser dieser Zeilen hat schon die Frage erörtert, ob nicht die gegen früher in viel größerer Menge erzeugte und in den Luftraum beförderte Masse von Dampf und Rauch die Ursache dieser Erscheinung sein könnte. Derselbe verhehlt sich nicht, daß der auf diese Weise infizierte Teil einen sehr kleinen Teil des unendlichen Luftmeeres ausmacht, aber in der Natur haben schon öfter verhältnismäßig minimale Erscheinungen große Veränderungen hervorgebracht.

Seit den 70er Jahren sind zahlreiche Fabriken entstanden, die täglich eine Menge von Dampf, Rauch, Ruß entwickeln und aus ihren Schlöten in den Himmelsraum entsenden; dasselbe tun die jedes Jahr sich vermehrenden Lokomotiven, Lokomobile, Automobile und hundert andere Arten von Maschinen. Wenn auch daraus nicht mit Sicherheit eine erheblich vermehrte Wolkenbildung sich ableiten läßt, so ist doch der Sonnenschein mit seiner Wärme auf Gegenden hervorragender Dampf- und Rauchentwickelung entschieden weniger wirksam als früher. Man sehe einmal auf eine große Stadt mit entwickelter Industrie von einer Anhöhe herunter, so findet man besonders abends ein dunstartiges Gebilde über der Stadt lagernd, welches die Sonnenstrahlen hemmen oder zum mindesten weniger wirksam machen muß. Da nun aber die Industrie sich nicht mehr auf die Städte beschränkt, sondern auch in eine große Anzahl von Dörfern eingezogen ist, und außerdem jeder Knotenpunkt seine Eisenbahn haben will, so wird die Menge des entsendeten Dunstes nicht so gering anzuschlagen sein, daß sie nicht zur Vermehrung und Verdichtung von Wolkendecken beitragen könnte; sind ja doch auch sonst durch menschliche Tätigkeit irgendwelcher Art, oder durch an sich unbedeutend erscheinende Naturereignisse, die langsam aber im stillen mit elementarer Gewalt wirken, klimatische Veränderungen in ganzen und in einzelnen Gegenden hervorgerufen worden. Die Wolkendecken verhindern ja bekanntlich, wie sie bei Tage der Wirkung der Sonnenstrahlen hemmend in den Weg treten, bei Nacht die reichlichere Ausstrahlung von Wärme, weshalb die Temperatur in der Nacht und am Morgen im allgemeinen nicht mehr so tief sinken kann, als vor etwa 50 Jahren. Ob man etwa die Vermehrung, nach manchen geäußerten Meinungen Versechsfachung der Zahl der Gewitter in Zusammenhang damit bringen darf, ist eine andere Frage.

Nun komme ich auf mein Hauptthema: Das Verhältnis der Summe der Maxima zu der Qualität des Weines. Ich habe zu dem Zweck zwei Listen angelegt, erstlich eine größere Hauptliste (Tab. I), in der für jedes Jahr die Summe der Maxima, Minima und der Sommertage für alle Vegetationsmonate angegeben ist; weiter dann die Totalsumme der Maxima, der Minima, und beider zusammen; dann die Durchschnittstemperatur auf Grund dieser Totalsumme, die Anzahl der Sommertage, die Weinqualität und endlich die Fröste der gefährlichen und gefährdeten Monate April, Mai, September, Oktober, die mit den Anfangsbuchstaben A. M. S. O. bezeichnet sind. Zur Übersicht habe ich dann noch eine zweite Liste angefertigt

(Tab. II), in welcher bloß die Summen der Maxima und die Weinqualitäten für jedes Jahr verzeichnet sind, und zwar geordnet nach der Summe der Maxima. Die Temperaturzahlen beziehen sich überall auf die Schattentemperatur von Stuttgart. Eine oberflächliche Betrachtung der Temperaturzahlen zeigt nun schon, daß die besten Weine des Jahrhunderts die höchsten Maximalsummen haben, und die schlechtesten Weine die niedersten. Diese Tatsache scheint ganz selbstverständlich zu sein, wird aber noch in ihren Konsequenzen immer wieder bestritten. Weiter fällt in die Augen, daß die Jahre, welche eine Maximalwärmesumme von unter 4000 Graden haben, alle geringe oder schlechte Weine erzielten. Der schlechteste mit der niedersten Summe war der von 1816, der beste oder wenigstens stärkste Wein, bei 5 heißen und 3 warmen Monaten und der höchsten Summe der von 1865. Die Jahre, in denen schädliche Fröste am Anfang oder Ende die Qualität verdarben, sind mit einem Stern bezeichnet. Weiter ist sofort ersichtlich, daß fast alle Weine I. oder annähernd I. Ranges eine Wärmesumme von mindestens 4350 Graden. auf der anderen Seite die mittelguten und schlechten eine solche unter 4150 haben. Zwischen diesen Grenzen 4150 und 4350 bewegen sich dann die Jahre mit gutem oder annähernd gutem Wein, und überall stimmen die Zahlen ziemlich genau mit der Qualität der Weine, vorausgesetzt, daß keine außerordentliche Störung eingetreten ist. Wenn nämlich in der 2. Hälfte des April, besonders nach vorhergehender guter Entwickelung, oder gar im Mai ein Frost oder mehrere eintreten, so ist die Zeit bis dahin ganz oder teilweise als verloren anzusehen. Im Jahre 1865, dem Jahre des stärksten Weines, war bis Ende April infolge der beispiellos hohen und bis jetzt einzig dastehenden Wärmeentwickelung dieses Monats ein reicher Traubenansatz vorhanden, der aber in den kalten Nächten am Ende des April und Anfang des Mai (neben hoher Mittagstemperatur) fast ganz zugrunde ging. Die nachgetriebenen Scheine, welche die überaus günstige Temperatur des Mai entwickelte, gaben dann noch den berühmten Wein, aber freilich in erheblich geschmälerter Quantität. Ähnlich war es mit dem Maifrost des Jahres 1886, in welchem Jahre aber viele Weingärtner in Württemberg zu früh lasen und die nachgetriebenen Trauben nicht mehr reif werden ließen. Von Weinen, die infolge von Frösten eine in auffallender Weise von der Wärmesumme differierende Weinqualität bekommen haben, will ich anführen den vom Jahre 1866, der durch zwei starke Maifröste am 22, und 23. Mai verdorben wurde; ebenso wurde der Wein von 1823 durch viele Fröste im

April und noch anfangs Mai qualitativ heruntergedrückt. Den von 1810 verdarben Oktoberfröste, den von 1820 Mai-, September- und Oktoberfröste; der von 1803 litt im Mai und September; der von 1864 im Oktober; der von 1867 im Mai und September; der von 1878 im Oktober; der von 1814 im Mai und Oktober.

Eine mir bis jetzt unerklärliche Erscheinung bietet der Jahrgang 1826, der, soweit ersichtlich, allein eine Ausnahme von der Regel macht. Er hat eine Wärmesumme von 4528 Graden bei 82 Sommertagen und folgt auf den 1825er mit 4510 bei 79 Sommertagen. Der letztgenannte hat wohl infolge von 10 Frösten im April, freilich meist im Anfang, und ebenso leichten Frösten im Anfang Oktober nur die Qualität II bekommen; der von 1826 hätte, da er durch keine Fröste verdorben sein konnte (er hat einige leichte im April und ebenso einen im September, letztern nur annähernd an 0), mindestens dieselbe Qualität wie der von 1818 oder 1842 bekommen sollen. Die Nähe von 1825, d. h. ein vorausgegangener guter Jahrgang, konnte nicht hinderlich sein, da mehrere gute Jahrgänge hintereinander auch sonst vorkommen; er bleibt also vorerst ein Rätsel. Vielleicht ist die Erklärung desselben in einem Punkte zu suchen, den ich später bei anderer Gelegenheit berühren werde.

Ich habe oben die Zahl 4150 als diejenige angegeben, bei der gerade noch ein guter Wein möglich sei. Für solche müssen dann, wenn sie noch die Qualität "gut" bekommen sollen, gewisse andere Verhältnisse günstig sein, die sich nicht in Zahlen ausdrücken lassen und für die auch keine allgemeinen Gesetze aufgestellt werden können, wie die Reife des Holzes vom vorigen Jahr her, die Beschaffenheit des Bodens, die Dauer des wirksamen Sonnenscheines, die Verteilung von Sonnenschein und Regen u. a. Solchen günstigen Verhältnissen haben die Jahre 1811, 1818, 1835, 1861—1863, 1858, 1874, 1893, vor allen 1862 eine höhere Qualität ihres Weines zu verdanken, als nach der Wärmesumme zu erwarten gewesen wäre. Besondere sogenannte Kochmonate beim Weine gibt es nicht. Die im April und Mai, in Ausnahmefällen auch die schon im März von der Sonne gespendete Wärme verbirgt sich in der Qualität ebensowenig, wie die im September und Oktober, sonst wären Weinqualitäten wie von den vorhin genannten 60er Jahren mit kühlen Sommern, besonders auch kühlen Septembern, aber mit warmem Frühjahr unerklärlich. Die Weine von 1800, 1818, 1893 haben ebenso ihre Qualität dem warmen Frühjahr zu verdanken. Auf der anderen Seite haben die außerordentlich warmen Oktober von 1873 und 1876 wegen zu kühlen Mais nicht mehr viel genützt. Hohe Apriltemperaturen in Verbindung mit warmen Maitagen haben immer gute Weine bewirkt, oft aber auch, wenn kühle oder kalte Maien folgten, für den Wein vorgearbeitet, vorausgesetzt, daß die Tätigkeit vom April im Mai nicht geradezu vernichtet wurde. So ist der Wein des Jahres 1874 mit einem auffallend kühlen Mai nach einem warmen April noch gut geworden, soweit die Trauben durch den Maifrost nicht verdorben waren. Zu einem mehr als guten Wein braucht man aber nicht bloß einen oder zwei heiße Monate, sondern einen durchweg warmen Sommer, zu dem mindestens drei heiße und dann noch einige wärmere Monate gehören, und bei dem ein kalter April nur dann erlaubt ist, wenn der Mangel seiner Tätigkeit nachher hereingeholt wird, wie im Jahre 1834, 1846 und 1857, und ein kalter Oktober dann, wenn der Wein schon vorher fertig ist, und keine Wärme mehr braucht, wie im Jahre 1842. Ebenso waren Jahrgänge wie 1865, 1868 schon Ende August gemachte, hervorragende Weinjahre. Dem Wein von 1865 hätte es vielleicht gut getan, wenn er keinen heißen September und dafür mehr Regentage gehabt hätte. Er hat zuviel Zuckergehalt bekommen und ist darum vielfach später essigsauer geworden. Weil die Hitze, besonders wenn sie lang fortdauert, dem Menschen höchst unangenehm und manchen Pflanzen in Beziehung auf ihr äußeres Wachstum unter Umständen schädlich, ja verderblich ist, soll sie nach der Ansicht vieler auch dem Weinstock schädlich sein, was in Wirklichkeit, abgesehen von vereinzelten Wirkungen an vorher nicht gesunden Trauben oder einzelnen Beeren, kaum einmal der Fall ist. Wie groß auch bei Weinbautreibenden die Abneigung gegen die Hitze ist, und wie unvernünftig sie sich äußert, geht aus einem Beispiel hervor, das hier angeführt werden soll. Im August 1882, der im ganzen für einen August viel zu kalt war und nur drei Tage mit mehr als 25 Graden hatte, sollten durch die Hitze des 13. und 14. mit 29 Graden die Trauben verbrüht und ungeheurer Schaden angerichtet worden sein. So konnte man hören und lesen, während umgekehrt in Wirklichkeit 20 weitere solche Tage den Wein von 1882 auf eine höhere Stufe gestellt hätten. Die Durchschnittstemperaturen, bei denen die Minimaltemperaturen und die Mitteltemperaturen des Lichttags besonders mitwirken, sind nicht so maßgebend als die Summen der Maxima, da bekanntlich in Gegenden von höherer Durchschnittstemperatur der Vegetationsmonate als Stuttgart sie hat, abgesehen von anderen Verhältnissen, hauptsächlich wegen der zu geringen Maximaltemperatur kein Wein mehr ordentlich gedeiht. Aus diesem Grunde wächst z. B. auch im Südwesten von England trotz einer Durchschnittstemperatur der Vegetationsmonate, die ziemlich höher ist als die von Stuttgart und in ähnlichen Klimaten, kein Wein. Statt der Summen der Maxima und Minima hätte ich natürlich die Durchschnittstemperaturen für einen Tag vom ganzen Sommer verwenden können, und ich habe diese Durchschnitte auch berechnet und in meiner großen Tabelle (Tab. I) beigesetzt: aber große Zahlen ohne Brüche lassen die Unterschiede und Extreme viel deutlicher hervortreten. Eine Differenzierung zwischen 3672 und 4959 für die Summe der Maxima oder zwischen 5578 und 7032 für Summe der Maxima und Minima zusammen tritt viel deutlicher hervor als zwischen 13,9 und 17,5 Graden. Wir bleiben also dabei, und das zeigt schon ein oberflächlicher Blick auf Tab. II, die Zahlen der Wärmesummen geben einen sicheren Anhaltspunkt für die Bestimmung der Qualität des Weines, einen viel sichereren als die Wägungen des süßen Weinmostes, welche in den besten Jahren oft auffallend niedere und in geringen Jahren verhältnismäßig hohe Zahlen ergeben. So hat z. B. die Wägung des Weines von 1856 (Qualität III) angeblich vielfach höhere Wägungszahlen ergeben als die von 1859, in welchem Jahre der rote Wein I. Ranges war und der weiße mindestens II. In früheren Jahren wurden die Wägungen von den Trauben der königlichen Weinberge und auch andere zuverlässige Wägungen von dieser oder jener Gesellschaft veröffentlicht. Es ist dies in den letzten Jahren seltener mehr vorgekommen, vielleicht deswegen, weil man der Ansicht von der Qualität des Weines in keiner Weise vorgreifen wollte, um, wie es hieß, den Produzenten den Weinpreis nicht zu ruinieren; vielleicht aber auch deshalb, weil manche Produzenten auf künstliche Weise, z. B. durch Auswahl und Wägung nur der reifsten Trauben, Zahlen herausbrachten, die dem Wein im ganzen nicht entsprachen, in einzelnen Fällen sogar bis ins Unglaubliche gingen. Während früher 70 bis 80 Grade für einen Weißwein als Zeichen eines guten Weines galten, 80-90 oder gar 100 Grade als Beweis für einen Wein l. Ranges, und die entsprechenden Zahlen beim Rotwein zwischen 65 und 90 Graden sich bewegten, haben vor etlichen Jahren Weinproduzenten in angeblich guten Jahrgängen, die sich später als kaum mittelgut erwiesen, öfter über 100 Grade, einer sogar einmal 130 Grade herausgebracht. Seither können wir nicht einmal mehr an die Wahrheit aller Wägungen, geschweige denn an ihre große Bedeutung glauben. Aber auch in der Zeit, als die Wägungen noch etwas zuverlässigere

Resultate darstellten, kamen oft ganz falsche Resultate und Qualitätsschätzungen heraus. Das war am auffallendsten im Jahre 1868, dem im allgemeinen Quantität und Qualität ineinander gerechnet weitaus ersten Weinjahre des Jahrhunderts, das den lieblichsten und süffigsten Wein in großer Menge geliefert hat. Der Sommer war im allgemeinen nach Sonnenschein und Regen sehr günstig für die Entwickelung der Trauben: die frühen Sorten waren im September schon reif und wurden auch in der Mitte des September gelesen. Dann folgte bei fortgesetzt warmer Temperatur und immer noch untermischt mit Sommertagen länger dauerndes Regenwetter, infolgedessen viele Trauben anfingen zu faulen. In der Angst dadurch Einbuße an Quantität und vielleicht auch an Qualität zu erleiden, haben viele Produzenten in Württemberg noch während der Regenperiode oder unmittelbar nach derselben gelesen, wodurch die Trauben einen ganz unnötigen Zusatz von Wasser erhielten, was sich dann bei den Wägungen in den niederen Zahlen der Grade kundgab und den Wein viel geringer erscheinen ließ, als er in Wirklichkeit war. Diejenigen Produzenten dagegen, welche die schönen warmen, sonnigen Tage am Ende des September und im Oktober den Trauben noch zugute kommen ließen, haben mit späterem Lesen einen Wein erzielt, der schon im Herbst von Kennern zu den Weinen I. Ranges gerechnet wurde. Aber die Mehrzahl der Produzenten hat nicht so lange warten können, und so ist der 1868er Wein in den Ruf eines Weines II. Ranges gekommen, während er in der Dahlen'schen Liste (s. oben) für alle andern hervorragenden Weinländer Deutschlands mit Recht als vorzüglich bezeichnet ist. Was nun die früheren zuverlässigen Weinwägungen betrifft, so hat der verstorbene Professor v. Zech in der Generalversammlung der Weinbaugesellschaft in Stuttgart einmal einen Vortrag über diese Wägungen und ihre Bedeutung für die Weinqualität gehalten und nachgewiesen, daß die Wagen von Öchsle u. a. nichts angeben als das spezifische Gewicht des Weines, daß freilich der Zuckergehalt und damit später der Alkoholgehalt bis zu einem gewissen Grad mit dem spezifischen Gewicht sich decken, daß aber daraus noch kein auch nur einigermaßen sicherer Schluß auf die allgemeine Qualität des Weines gemacht werden kann, weil eben zu einem guten Wein noch andere Eigenschaften gehören, die absolut nicht nach dem spezifischen Gewicht bemessen werden können, wie die größere oder geringere Säure und vor allem die feinen nach Traubensorten, Jahrgängen, Ländern sehr verschiedenen und schwer definierbaren Nüancen in Geruch und Geschmack des Weines. Man

kann freilich fast in jedem Jahre, das nicht ganz ungünstig für den Weinstock ist, durch Auswahl der Trauben in jeder Beziehung nach Sorten und Reifegrad, besonders dann, wenn man, den Ausfall an Quantität nicht scheuend, die Trauben bei einigermaßen günstiger Witterung (leichte Fröste im Oktober schaden nichts mehr) bis Ende Oktober oder Anfang November hängen läßt, einen guten Wein in kleinerem Quantum erzielen. Dies geschieht in den Rheinlanden sehr häufig, in Württemberg seltener; doch hat im Jahre 1867, einem ganz geringen Weinjahre, ein hervorragender, denkender Weinproduzent in Löwenstein bei Weinsberg, auf dem vorhin genannten Weg der späten Lesung mit Auswahl ein kleines Quantum ausgezeichneten Weins von hervorragender Stärke erzielt. Aber um solche Ausnahmen kann es sich bei unserer Frage nicht handeln, sondern um die allgemeine Qualität des ganzen Quantums eines Distrikts, wobei zu bemerken ist, daß in Beziehung auf die ganz guten und die ganz schlechten Weine für sämtliche Weindistrikte Deutschlands keine erhebliche Differenz eintritt, während bei den mittleren Qualitäten eine stärkere Differenz für die einzelnen Distrikte sich geltend macht. Kleinere Abweichungen der Qualifizierung um eine halbe Stufe, wie sie abgesehen von 1868 auch 1834, 1842, 1859, teilweise 1893 vorkommen, haben natürlich keine Bedeutung. Aber über einige merkwürdige Urteile der württembergischen Weinliteratur will ich noch einiges anführen. Die Weine von 1855 und 1856, welche nach meiner Aufzeichnung die Qualität IV und III-IV haben, wie sie ihnen von den Zeitgenossen und vollends später von Kennern gegeben wurde, besonders auch außerhalb Württembergs, haben nach der von Dahlen gemeldeten württembergischen Qualifizierung die Qualität II, also dieselbe wie im Jahre 1859, das einen der besten Rotweine des Jahrhunderts lieferte. Man muß dieses Urteil psychologisch oder wenn man will, gastrologisch erklären. Nach 1848 waren fast lauter schlechte oder höchstens in einigen Gegenden mittlere Weine gewachsen, die von 1855 und 1856 waren, der letztere besonders in Württemberg, ohne allen Zweifel wieder besser als das Gewächs der vorhergehenden Jahre, daher in der Freude die große Überschätzung. So ist auch nach vier geringen Weinjahren der 1874er, nach sieben geringen oder schlechten Weinen der 1884er überschätzt, der Wein von 1886 aber im Herbst unterschätzt und die niedere Schätzung trotz dem widersprechenden Urteil der Weinbaugesellschaft im Mai 1887 beibehalten worden, während der von 1886 in den Rheinlanden von Anfang an höher taxiert wurde. Die

fünf geringen Weine 1887-1891 haben in manchen Gegenden schon zu einer Überschätzung des Weines von 1892, noch mehr aber zu einer großartigen Überschätzung des 1893ers und nachher zu einer Unterschätzung des 1895ers geführt; später wurde dann der 1895er immer mehr hochgeschätzt, wie sich das besonders in den Preisen der Flaschenweine kundgab. Ähnliche Wirkungen vom Genuß eines großen Quantums neuen Weines, wie sie bei allen Weinen I. Qualität im Herbst vorkamen, sind weder vom 1893er noch vom 1895er berichtet worden. Wir haben eben seit 1868 keinen Wein I. Ranges mehr gehabt und infolge davon Sinn und Geschmack für solche Weine vollständig verloren. Wer von uns Ältern allen will sich beim Genuß eines Weines von 1900 oder 1902 noch erinnern, um wie viel besser der 1868er oder 1857er geschmeckt hat? Wir haben bei der Besprechung der für die Güte des Weines maßgebenden Momente von den vielen Feinden und Parasiten der Trauben absichtlich nichts gesprochen, weil diese Frage überhaupt nicht hierher gehört. Die Wirkung dieser Gäste kann man wenigstens sehen und sich daraus seine Schlüsse ziehen. Aber wer will denn jemals den Trauben ansehen oder anfühlen, wie reif sie sind, wer will im Ernste von einer günstigen Wirkung des Regens einen Erfolg in Beziehung auf die Qualität des Weines sehen? Man kann bei dem schwarzen und roten Gewächs sehen, ob die Färbung weiter vorgeschritten ist, bei allen Trauben, ob die Häute durchsichtiger geworden sind; man kann fühlen, ob die Beeren einigermaßen weicher geworden sind, aber das hat mit dem Fortschritt in Beziehung auf Zuckergehalt und vollends mit dem sich entwickelnden Aroma nichts zu tun. Daß im allgemeinen durch den Regen nicht bloß in der Blütezeit, sondern auch im August und September die Quantität vielleicht befördert, die Qualität meistens aber nur geschädigt wird, ist eine durch die Erfahrung festgestellte Tatsache. Der Hauptgrund dafür, daß nur der Regen und nicht die Trockenheit den Reben schadet, liegt in der Tiefe ihrer Wurzeln. Wenn nun also die Weinqualität mit wenigen Ausnahmen mit den Maximaltemperaturen so stimmt, daß alle anderen Verhältnisse viel weniger in Betracht kommen, so ist doch die Ablesung der Maximaltemperatur nicht ganz der adäquate Ausdruck der Wirkung der Sonne. Ein Tag im Herbst oder Frühjahr, hier und da auch im Sommer, kann eine Schattentemperatur von 20 Graden Maximum haben und zugleich eine Sonnenlichttemperatur, welcher ja im allgemeinen die Trauben oder wenigstens die Blätter ausgesetzt sind, von beinahe 50 Graden; eine solche ist für die Entwickelung

der Trauben viel wichtiger als ein Tag, der bei gedecktem Himmel eine Schattentemperatur von 25-30 Graden hat. Deshalb käme es mehr noch darauf an, die Zeit des wirksamen Sonnenscheins zu messen oder noch mehr die Dauer dieser Zeit in Verbindung mit der Höhe der in derselben gemessenen Sonnentemperaturen. Dann macht es aber wieder einen großen Unterschied, ob an einem bestimmten Platz die von der Hausmauer, von den Weinbergmauern oder von dem steinigen Boden zurückgestrahlte Wärme dazu kommt. und das hängt wieder davon ab, ob die so durch gestrahlte Wärme erwärmte Luft vom Wind rasch verweht wird oder nicht. Auch darüber hat man angefangen Beobachtungen zu sammeln, aber sie sind noch nicht reif genug, um daraus sichere Schlüsse ziehen zu lassen. Wie groß die Bedeutung der unmittelbaren Sonnenwärme ist, das kann man ja auch an anderen Produkten sehen, die aus Pflanzen gewonnen werden, vor allem am Honig. Dieser wird in sonnenreichen Jahren süßer und duftiger, als in kühlen und wolkenreichen. Wie ganz anders duften und schmecken die Äpfel, welche die ihnen nötige Sonnenwärme gehabt haben, als Produkte eines kühlen Sommers! Wie wenig sind gerade diese inneren Eigenschaften in obstreichen Jahren vorhanden, wie im Jahre 1888, wie herrlich entwickelt in dem gleichmäßig warmen, teilweise kühlen, aber trockenen Jahre 1862! Bei sonst ganz gleicher äußerer Erscheinung riechen die Rosen und andere Blüten in einem trockenen, warmen Jahre ganz anders als in einem kühlen und feuchten. Die Trauben können in einem geringen Weinjahre gleich schön, vielleicht schöner aussehen, als in einem guten, auch scheinbar ebenso süß schmecken, und welch ein Unterschied zeigt sich nachher in der Entwickelung des Weines! Darüber aber sollte sich jedermann klar sein, der sich ein Urteil über solche Verhältnisse bilden will, daß auch bei dem besten Gedächtnis die bloße Erinnerung nicht einmal für das verflossene Jahr, geschweige denn für frühere Jahrzehnte ausreicht. Deshalb sollte jeder Produzent, der ein Interesse an dem wahrscheinlichen Wert seiner Erzeugnisse hat, oder wer sich sonst für Derartiges interessiert, seine Listen anlegen auf Grund eigener Beobachtung oder der offiziellen im Staatsanzeiger oder Merkur veröffentlichten Zahlen, welche sich für Vergleichung besser eignen, weil die von mir gegebenen Zahlen auch auf Stuttgart sich beziehen. Die Differenzen in der Qualität zwischen der Stuttgarter Gegend und anderen Weinbaudistrikten Württembergs sind im allgemeinen nicht sehr groß. Ich glaube, daß in dieser Beziehung in Württemberg zu wenig geschieht,

und daß daher die vielfach ganz falschen Ansichten und Angaben über die Qualität des kommenden und fertigen Weines kommen. Auch ohne in die Vergangenheit gehende Listen läßt sich soviel sagen: wenn der April und der Mai beide in der Wärme unter Mittel sind, so tritt vornweg schon die Blüte zu spät ein, und wenn dann noch ein guter oder auch nur mittelguter Wein kommen soll, so müssen Wunder geschehen. Um nun einen Anhaltspunkt für die durchschnittliche Wärme jedes Monats zu geben, will ich hier anführen, daß die Summe der Maxima für den April schwankt zwischen 669 im Jahre 1865 und 290 im Jahre 1874. Da aber der April 1865 gar zu abnorm war, so läßt sich zur Vergleichung besser der April von 1800 anführen mit 619 Graden, so daß zirka 450 Grade als Mittel herauskommen. Der Mai hat als Maximum 816 im Jahre 1865 und 446 im Jahre 1902: der Juni 848 im Jahre 1822 und 568 als Minimum im Jahre 1871: der Juli entsprechend 906 im Jahre 1859 und 620 im Jahre 1885; der August 913 im Jahre 1842 und 613 im Jahre 1896; der September 783 im Jahre 1865 und 463 im Jahre 1847; der Oktober 1.-18. endlich 389 im Jahre 1876 und 184 im Jahre 1888. Die größten Differenzen finden statt im Mai und September, teilweise auch im April, wegen des Jahres 1865. Nimmt man nun obigen Zahlen entsprechend für den April 450, für den Mai 600, den Juni 700, Juli und August je 750, September 600 und Oktober 300, so kommt als Summe die oben angegebene Zahl von 4150 Graden heraus. Dabei sind alle Monate außer dem Oktober etwas unter dem oben sich ergebenden Durchschnitt gerechnet. Es handelt sich aber darum, abgerundete Zahlen herzustellen, die leicht im Kopf zu behalten sind. Die Zahl von 4150 Graden ist also die untere Grenze für die Möglichkeit eines guten Weines und ergibt wahrscheinlich einen mittelguten Wein. Haben April und Mai zusammen nicht wenigstens 1000 Grade (sie haben in allen sehr guten und fast in allen guten Weinjahren darüber gehabt, in allen mittleren und geringen, darunter), so ist ein sehr guter Wein ausgeschlossen und ein guter Wein schon sehr unwahrscheinlich. Ebenso muß für einen entschieden guten Jahrgang die Blüte der Trauben in den besseren Gegenden und Lagen schon Ende Mai angefangen haben, Mitte Juni vollendet sein, wie z. B. 1893. Diesem Umstand beziehungsweise der April- und Maitemperatur zusammen verdankt der Wein dieses Jahres seine Güte. Ist die Blüte erst Ende Juli vollendet, so ist ein guter Wein noch nicht gerade ausgeschlossen, wird aber immer unwahrscheinlicher, wenn nicht die Versäumnisse hereingeholt werden.

Wenn überhaupt z. B. am Ende des Juli, ohne daß ein Frühjahrsfrost vorhergegangen oder in der Blüte eine Störung eingetreten ist, die Trauben einigermaßen gleichmäßig entwickelt sind, so läßt sich aus den bis dahin sich ergebenden Wärmesummen ein sicherer Schluß ziehen auf die höchste möglicherweise zu erreichende Güte des Weines, wenn man nämlich von da an die höchsten erfahrungsgemäß vorkommenden Summen dazunimmt. Einige Beispiele: das Jahr 1892 hat im April und Mai zusammen 1046 Grade, also nicht zu wenig; bis Ende Juli war die Summe 4012 erreicht. Rechnete man nun einen hohen August und einen hohen September mit 1350 Graden dazu, so kam eine Summe von 3762 heraus und ein recht guter Oktober hätte die Zahl auf zirka 4150 bringen können, und damit wäre einige Wahrscheinlichkeit für einen guten Wein erreicht gewesen. Nun war aber der September nur mittel, der Oktober schlecht, deshalb blieb die Qualität eine geringere. Im Jahre 1900 hatten April und Mai zusammen nur 934, sämtliche andere Monate hatten die Mittelsumme überschritten oder beinahe erreicht, trotzdem wurde der Wein nur II. Ranges. Umgekehrt war im Jahre 1901 vom April und Mai her mit 1084 Graden die Möglichkeit eines sehr guten, die große Wahrscheinlichkeit eines guten Weines gegeben; da aber alle folgenden Monate unter mittel blieben, so wurde bloß die Qualität II—III erreicht. Die 4 Jahrgänge von 1900-1903 bieten in auffallender Weise ein Beispiel davon, wie die Qualität den Wärmesummen genau entspricht; die Zahlen sind der Reihe nach 4167 mit der Qualität II, 4104 mit der Qualität II-III, 3854 mit der Qualität III, und 3911 mit der Qualität III. Der Wein von 1903 ist nach allgemeinem Urteil um ebensoviel besser geworden, als der von 1902, als der Unterschied der Wärmesummen beider Jahre beträgt.

Nun noch einiges über die sogenannten Kälterückschläge im Monat Mai. Bekanntlich erfreuen sich die Tage des 12.—14. Mai, die sogenannten Wetterheiligen oder Eismänner, eines sehr schlechten Rufes in Beziehung auf ihre besondere Kälte und ihre schädliche Wirkung auf den Wein und andere edle Gewächse. Ich habe mir zur näheren Prüfung Listen angelegt in zweierlei Richtung. Erstlich habe ich verzeichnet für jedes Jahr seit 1800, welches das absolute Minimum des betreffenden Mai war und an welchem Tage es stattfand. Zweitens habe ich wieder für jedes Jahr von 1800 an die Minima des 12., 13. und 14. Mai notiert. Danach ergibt sich, daß in den ersten 30 Jahren von 1800—1829 die größte Kälte im 1. Drittel des Mai stattfand 17mal, im 2. 8mal, im 3. 3mal.

— 243 **—**

In der Periode von 1830-1859 fand die größte Kälte im 1. Drittel des Monats statt 19mal, im 2. Drittel 8mal, im dritten 3mal. In der Periode von 1860-1889 fand die größte Kälte im ersten Drittel des Monats 16mal, im zweiten 9mal, im dritten 5mal statt und endlich in der 4. Periode von 1890 an im ersten und zweiten Drittel je 7mal, im dritten Omal. Das ergibt für das 1. Drittel die Summe von 59, für das 2. von 32 und für das 3. von 13. In der ersten Periode war einmal die Zeit vom 12.-14. kalt, in der zweiten nie, in der dritten zweimal, 1871 und 1876, aber beidemal schwach. In der vierten Periode war 1 Kältetag im Mai des Jahres 1900. Damit ist die Sage von den Wetterheiligen gerichtet. Veranlassung dazu haben gegeben die drei gleich endigenden Namen der Heiligen; wahr an der Sache ist, daß in dieser Zeit ein Frost sehr schädlich wirken kann und daß Perioden von 3 Tagen mit der wesentlichen gleichen Temperatur in allen Monaten und so auch im Mai vorkommen.

Ta-

enthaltend für jedes Jahr 1. April bis 18. Oktober Summe der Maxima, der Minima; zusammen; den Durchschnitt für einen Tag aus der Summe der Maxima und Minima endlich Bemerkungen der Fröste für April (A.)

1800 -

	1800—														
	I A	April			Mai		,	Juni			Juli		A	ugust	;
Jahr	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer-
1800	619	298	5	688	369	9	601	309	5	778	398	17	844	391	18
01	454	139	0	633	330	3	612	370	8	740	535	10	758	505	15
02	425	166	0	639	251	7	773	397	19	742	421	14	886	492	23
03	571	180	3	513	233	1	663	393	8	823	461	24	801	431	22
04	423	156	1	653	324	9	740	378	14	758	425	13	706	386	10
05	414	96	0	545	223	3	650	309	6	716	375	13	688	380	8
06	349	96	0	683	331	11	666	332	8	741	408	13	723	385	12
07	394	120	0	671	337	14	688	340	11	883	446	28	919	508	25
08	398	92	0	742	335	17	626	360	7	838	424	24	779	429	20
09	327	83	0	676	300	10	677	327	10	764	402	17	770	421	1ā
1810	446	119	0	608	286	2	675	316	13	770	394	16	747	394	13
11	458	194	0	643	405	4	744	433	12	761	458	17	752	410	8
12	308	41	0	653	320	9	672	390	8	660	375	- 6	723	366	13
13	509	131	0	615	306	3	641	307	7	670	372	8	654	332	6
14	525	169	3	563	334	3	588	300	7	778	410	18	729	358	15
15	500	122	3	675	301	6	655	326	9	686	366	7	683	363	10
16	460	110	0	520	265	0	526	327	1	657	407	5	662	371	8
17	326	40	0	541	231	2	740	378	16	697	382	7	705	358	10
18	536	210	5	578	321	2	776	398	22	819	450	19	740	397	14
19	547	173	3	691	234	10	702	374	12	820	434	19	772	430	18
1820	551	150	4	644	288	9	610	311	6	732	366	14	827	409	25
21	525	198	5	574	221	0	626	278	2	699	464	9	772	419	15
22	511	163	2	715	343	14	848	474	25	805	360	19	749	420	13
23	461	104	0	707	294	12	641	324	8	736	366	10	800	390	17
24	403	86	2	585	269	2	669	305	9	806	416	19	741	403	13
25	525	144	3	660	235	. 10	707	318	16	809	360	18	771	404	18
26	462	131	0	593	231	3	725	366	13	835	477	25	866	453	26
27	497	171	0	664	328	9	651	388	11	812	442	26	704	379	11
28	467	153	0	647	265	6	719	375	15	750	471	11	707	351	7
29	447	163	0	619	262	2	638	321	8	737	421	10	684	362	7
1830	515	205	0	525	288	7	645	344	8	760	413	17	721	384	10
31	492	100	0	631	288	7	641	325	8	792	451	22	749	412	11
32	488	94	0	610	253	4	641	375	5	732	408	13	761	432	15
33	390	118	0	786	344	19	763	403	15	688	464	6	633	342	3
34	403	76	0	730	355	13	709	409	13	840	518	22	806	428	22

belle I,

Sommertage für jeden Monat; die Totalsumme der Maxima, der Minima und beide zusammen; die Zahl der Sommertage; die Qualität des Weines in 5 Stufen und Mai (M.), September (S.), Oktober (O.).

1834.

_	September Oktober 1,—18.												
Sej	pteml	oer	Okto	ber 1.	-18.	o X	'n i	0.	m.	age	Qualität	Bemerkungen,	
		-L			L	Summe der Max.	Summe der Min	Summe	Durchschn total	ert	des	besonders Fröste	Jahr
×	n.	tage	ы	-:	mmer	Sun	in in	yun bei	rel	uu	Weines	betreffend	Jani
Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	25	ਅ ਦੇ 	92	D _u	Sommertage	Weines	benend	
629	330	3	278	143	0	4433	2238	6671	16,6	57	I-II	_	1800
646	426	4	335	201	0	4170	2505	6675	16,6	40	IV	3 A.	01
669	315	8	338	140	2	4471	2186	6657	16,5	73	I-II	2 A.	02
586	205	2	261	98	0	4218	2000	6218	15,5	60	III	1 A. 2 M. 4 S. 2 O.	03
668	284	13	270	153	0	4218	2105	6323	15,7	60	II-III	1 A.	04
629	301	8	203	71	0	3845	1755	5600	13,9	38	V	9 A. 3 O.	05
606	291	4	267	116	0	4059	1960	6019	15,0	48	III—IV	11 A. 1 O.	06
558	286	3	319	150	0	4432	2189	6621	16,5	81	II	14 A.	07
571	299	2	219	95	0	4171	2060	6231	15,5	70	III	11 A. 1 O.	08
611	312	6	227	80	0	4044	1898	5942	14,8	58	IV	10 A. 2 M.	09
706	341	5	291	104	0	4244	1944	6188	15,4	49	III	8 A. 3 O.	1810
636	246	6	379	246	0	4323	2266	6589	16,4	47	I	5 A.	11
596	264	4	389	241	0	3921	1893	5814	14,5	40	III	21 A. 1 S.	12
560	235	3	384	238	0	3949	1825	5774	14,4	27	IV	2 A. 1 O.	13
585	203	4	276	46	0	4044	1683	5727	14,2	50	IV	2 A. 3 M. 8 O.	14
652	238	6	290	89	0	4137	1835	5974	14,9	41	IIIII	8 A. 1 S. 5 O.	15
564	306	2	306	160	0	3672	1971	5643	14,0	16	V	11 A.	16
677	293	7	195	56	0	3844	1734	5578	13,9	42	IV	19 A. 6 O.	17
622	283	7.	310	163	0	4383	2223	6606	16,4	69	I-II	8 A. 1 M.	18
645	262	7	310	119	3	4489	2025	6514	16,2	72	II	7 A. 1 M.	19
579	204	1	258	80	0	4225	1805	6030	15,0	59	III	5 A, 2 M, 1 S, 5 O.	1820
641	330	6	296	109	0	4135	1908	6043	15,0	37	IV	2 A. 1 O.	21
633	315	7	340	163	0	4603	2335	6938	17,2	80	I	6 A. 1 O.	22
633	278	5	285	94	0	4261	1851	6112	15,2	52	III—IV	11 A. 2 O.	23
671	312	10	300	131	0	4174	1916	6090	15,1	55	III—IV	14 A. 2 O.	24
690	315	14	344	105	0	4510	1888	6398	15,9	79	II	10 A. 2 O.	25
718	321	14	330	150	1	4528	2126	6654	16,5	82	III ?	6 A. 1 S.	26
649	240	7	317	110	0	4297	2066	6363	15,8	64	II	2 A. 1 S. 2 O.	27
624	245	3	276	131	0	4188	1991	6179	15,4	42	III	5 A. 2 S. 1 O.	28
509	300	1	226	89	0	3861	1912	5773	14,4	28	IV	4 A. 2 O.	29
538	261	1	270	90	0	3976	1984	5960	14,8	43	III	2 A. 6 O.	1830
576	313	1	371	175	0	4015	2088	6103	15,2	45	III	_	31
602	200	0	289	113	0	4125	1875	6000	14,9	37	III	2 A.	32
535	290	0	244	75	0	4038	1992	6030	15,0	43	III	4 A. 2 O.	33
728	295	14	350	103	0	4565	2185	6750	16,8	88	I	8 A. 1 M.	34
	į.												

Tabelle I (Forts.).

1835 -

		April	1		Маі			Juni			Juli		A	ugust	=
Jahr	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer-
1835	423	143	0	583	311	1	715	367	14	890	457	25	750	431	12
36	389	144	0	575	246	2	715	434	.12	768	447	19	776	439	16
37	313	78	0	491	255	3	740	408	19	739	431	10	805	475	19
38	356	58	0	655	288	9	678	388	10	747	435	16	713	392	10
39	294	81	0	589	276	4	799	471	24	800	469	19	690	378	11
1840	553	200	3	629	285	4	669	371	7	691	390	8	783	423	18
41	413	124	5	783	398	18	594	365	5	678	419	9	725	391	15
42	445	73	2	690	331	8	790	357	19	786	438	19	913	444	28
43	437	185	1	565	271	2	590	375	5	717	437	11	775	415	15
44	525	136	1	562	260	1	740	408	15	667	427	3	617	363	2
45	475	148	0	528	246	3	725	444	14	800	480	16	665	376	7
46	445	195	0	615	326	3	825	459	26	850	521	27	793	489	20
47	290	134	0	719	358	13	625	313	7	801	483	20	704	474	13
48	463	215	0	688	290	10	715	409	11	778	475	17	725	444	12
49	378	113	0	606	250	4	697	375	12	741	425	9	686	375	5
1850	428	200	0	514	250	0	661 676	408	10	704 675	428 419	8	684	419	7
51 52	416	194	0	459	225	7		367	7	792	419	6 21	704	444	10
53	365	83 126	0	465 530	294 275	1	645 656	380 386	4	775	464	13	639 735	441	7
54	342 468	126	0	589	275	0	618	381	4	751	435	12	683	402	9 7
55	383	135	0	560	239	4	667	384	12	708	443	9	747	460	15
56	379	173	0	501	226	1	675	404	10	698	375	8	805	469	19
57	406	148	0	643	275	5	728	353	15	844	511	22	805	450	19
58	486	189	0	528	259	1	838	430	22	719	408	13	713	408	11
59	456	170	0	574	313	1	713	386	11	906	460	28	858	500	24
1860	409	118	0	669	325	6	684	363	11	681	369	8	668	456	4
61	393	122	0	564	269	5	718	469	13	746	456	14	804	513	20
62	524	235	3	680	343	8	630	446	11	724	525	13	703	469	10
63	478	225	0	619	343	5	664	415	8	730	438	9	805	491	20
64	387	140	0	644	253	9	726	368	14	785	400	19	781	315	18
65	669	169	14	816	356	22	716	328	13	891	449	26	755	406	11
66	511	172	2	586	189	0	801	401	22	765	411	11	721	350	7
67	416	185	0	620	270	10	670	358	15	703	391	10	806	416	18
68	422	134	0	818	376	22	758	394	20	819	451	21	809	440	15
69	559	174	3	539	311	1	605	279	6	828	475	24	721	380	9
1870	489	110	0	654	278	9	689	351	11	835	455	23	657	378	4
71	430	124	0	531	165	3	568	269	3	764	421	16	716	396	16
72	500	151	0	601	248	1	663	319	8	792	399	18	742	346	5
73	394	128	0	474	213	0,	664	299	13	815	358	23	785	351	19
74	510	211	1	483	188	2	684	341	10	849	460	23	709	342	7

1874.

Ser	teml	er	Okto	ber 1.	-18.	a. 14		0	m.	rge	Qualität	Bemerkungen,	
		er-	1		er-	Summe der Max.	Summe der Min.	Summe beider	Ourchschn. total	Sommertage	des	besonders Fröste	Jahr
Мах.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Su	Su	Su	urc to	ш	Weines	betreffend	
IV	7	Ť.	N	2	ŭ			1	-	ŭ			
640	295	9	229	115	0		2119		15,8		II	3 A. 1 O.	1835
534	282	5	342	160	0	4099	2151		15,5		II—III	2 M.	36
533	243	2	260	121	0	3880	2009		14,7	53	1.	10 A. 2 S.	37
631	315	4	243	86	0		1959			49	III—IV	10 A. 2 M. 2 O.	38
637	334	7	325	246	0	4134			15,8	65	II—III	8 A. 2 M.	39
600	328	3	226	48	0		1940		15,1	43	III	7 A. 1 M. 7 O.	1840
630	332	8	255	194	1		2165		15,5		II—III	1 A.	41
603	311	5	208	50	0		1991		16,0		III	8 A. 6 O.	42
605	249	6	263		0	3952		6058	15,0	40	17.		43
613	351	4	275	150	0		2096		15,1	26	III	4 A.	44
613	292	4	278	146	1		2129	6113	15,4	45	III	1 A. 1 M. 2 O.	45
706	344	12	338	183	0		2516		17,2	86	I	-	46
463	316	6	188	134	0	3814		6025	15,0		III—IV	2 A.	47
594	300	6	261	,	0		2270		16,1		II—III	~~*	48
619	321	6		143	0	3991	1951	5942	14,8		III	2 A.	49
521	195	0		130	0	3739	2030	5759	14,4		IV—V	1 A.	1850
458	283	0	285	169	0	3675			14,3		V		51
547	324	0	233	89	0	3689		5749	14,3		IV	6 A.	52
574	303	0	276	134	0	3801		5941	14,8		17.	2 A.	53
630	258	7	300	160	1		2055		15,0		IV	3 A.	54
563	291	0	304	179	0		2143		15,1	40	III—IV	3 A.	55
556	319	1	345	183	0		2184		15,5		III	2 A.	56
670	350	9	310	148	1		2238	1	16,5		I		57
681	368	10	302	116	0		2174		16,0		II	1 M.	59
614	318	5	374	184	3	4497		6827	17,0		I—II IV	1 A. 1 A.	1860
550	355	1 5	246		$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$		2139		15,0		II	2 A.	61
609	380 370	5 2	370	203	0		2424	6627 6798	16,5		I—II	2 A.	62
626	335	0	305		0		2415	1	16,9 16,3		11-111		63
550 656	294	5	231	64	0	4212			1 '		IV	3 A. 10 O.	64
783	269	17	338		0	4959			/	103		5 A.	65
665	340	6	315		0	4375		6321	15,8		IV	1 A. 2 M. 2 O.	66
650	332	8	244			4116					IV—V	1 A. 3 S. 1 O.	67
731	327	14	307				2284		,	92	1	1 A.	68
703	341	11	323			4375					II—III	3 A. 1 O.	69
570	229	2	295		_		1895				III	6 A. 1 M.	1870
674	321	8	253				1756		/		IV-V	9 A. 1 M. 1 O.	71
661	316		276			4220						2 A.	72
587	238	1	340			4060			,		III	5 A.	73
688		1	330		1	4255						2 A. 1 M.	74
300		1			1	1200	1	0	20,0				

Tabelle I (Forts.).

1875-

		April			Маі			Juni		1	Juli		A	ngust	
Jahr	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage
1875	459	109	0	657	310	6	706	411	12	721	420	7	794	458	17
76	470	170	0	501	180	2	678	330	9	773	443	17	786	399	20
77	395	134	0	505	231	1	779	399	17	735	426	13	776	444	17
78	473	154	0	634	303	3	682	340	10	706	368	9	736	399	6
79	388	115	0	495	215	0	703	400	8	666	389	7	799	452	16
1880	438	201	0	570	270	3	638	380	5	790	481	18	718	441	11
81	381	150	0	575	267	1	657	388	8	800	511	20	717	463	12
82	443	161	0	590	303	4	624	350	6	685	415	10	655	406	3
83	414	121	0	610	307	0	672	388	10	693	436	13	704	405	11
84	377	130	0	660	292	11	570	314	3	819	475	19 13	756	430 375	15 6
85 86	501	186 192	0	503	238 274	7	621 578	403 365	17	620 620	439 449	15 15	687 735	445	4
87	435	130	0	496	248	1	690	368	11	818	497	21	731	401	12
88	334	123	0	613	278	4	691	408	10	647	396	2	670	404	8
89	385	164	0	663	395	5	730	464	15	716	485	9	683	430	8
1890	424	141	0	617	358	7	612	368	2	678	428	6	703	465	7
91	334	125	0	575	326	2	654	410	9	691	460	2	666	421	4
92	435	136	0	611	304	7	651	403	7	715	425	12	797	480	17
93	555	178	0	572	307	2	677	392	7	721	470	14	751	441	14
94	501	216	0	538	298	3	622	382	5	765	492	12	693	454	10
95	483	203	0	580	288	1	677	408	8	793	479	14	734	450	13
96	321	168	0	538	273	0	677	444	-8	738	488	14	613	417	0
97	413	200	0	523	287	2	720	449	16	744	483	11	728	485	10
98	427	199	0	563	299	1	657	395	7	669	414	7	818	494	19
99	417	199	0	558	307	3	660	378	7	729	465	14	778	463	16
1900	401	159	0	533	253	2	716	408	13	824	490	19	720	428	9
01	455	193	0	639	292	5	694	398	12	639	461	14	710	433	9
02	477	204	0	446	193	4	648	383	8	748	436	14	696	438	9
03	310	93	0	619	289	6	677	350	8	710	439	9	712	447	9
										1			i		
													3		

1903.

_													
Se	ptem	ber	Okto	ber 1	.—18.	- X	J		ım.	1ge	- Qualität	Bemerkungen,	
Max.	Min.	Sommer- tage	Max.	Min.	Sommer- tage	Summe der Max.	Summe der Min.	Summe	Durchschn.	Sommertage	des Weines	besonders Fröste betreffend	Jahr
641	292	8	265	123	0	4244	2115	6359	15,8	1	III—III	8 A.	1875
578	276	2	389	170	5	4176			15,3	1	II—III	2 A. 1 M.	76
514	216	1	236	55	0	3945	1904		14,5		IV-V	5 A. 2 M. 3 S. 3 O.	77
592	285	4	281	93	0	4101	1939		15,0		IV	6 A. 1 O.	78
615	330	8	245	94	0	3911	1982	5893	14,6		V	6 A. 1 M. 1 O.	79
630	349	8	260	153	0	4044	2283	6327	15,8	45	IIIIV		1880
520	300	0	189	60	0	3835	2133	5968	14,9	41	III	3 0.	81
517	315	2	271	159	0	3785	2108	5893	14,6	25	IV—V	4 A.	82
5 67	330	0	254	100	0	3914	2087	6001	14,9	39	III	1 A. 1 O.	83
624	321	5	224	128	0	4030	2096	6126	15,3	53	III—III	3 A.	84
5 80	324	ō	260	129	0	4022		6101	15,1		III		85
674	375	13	315	170	0	4145	2270	6315	15,9	49	11	2 M.	86
547	261	1	193	84	0		1989	5899	14,6	40	III	_	87
593	290	1	184	87	0			5715	14,3	25	IV-V		88
503	306	1		126	0	3913	2371	6284	15,6		III	1 A.	89
566	315	0	283	111	0	3881	2179	6060	15,0	22	IV	2 A.	1890
610	334	5	311	170	0	3836	2247	6083	15,1		IV	1 A.	91
604	388	ō		159	0	4074	2295	6369	15,9		II—III	_	92
575	295	1	303		0		2275	6431	16,0		II	_	93
528	295	1		128	0		2270		15,2		III—IV	_	94
739	382	14	295	155	0	4301	2361	6662	16,6		II	1 0.	95
570	379	1	273		0	3721		6052	15,0		IV	_	96
526	350	0	250		0		2383	6286	15,6		III—IV	_	97
650	337	9	270		0	4051	2308	6359	15,8		III	_	98
558	351	4	274		0		2286		15,6		III	_	99
647	343			148	1	4167	2228	6395	15,9	46	II	2 A.	1900
578	351	1	263		0		2260		15,8	41	II—III		01
582	314		259	139	0		2108	5962	14,8	39	III	2 A.	02
595	340	6	308	191	0	3911	2149	6060	15,1	38	III	11 A.	03
	1												

Tabelle II, enthaltend sämtliche Jahre mit Weinqualitäten nach den Wärmesummen geordnet.

Jahr	Summe der Max.	Qualität	Jahr	Summe der Max.	Qualität	Jahr	Summe der Max.	Qualität
1865	4959	I	1870	4178	Ш	1849	3991	III
1868	4665	Ī	1876	4176	II—III	1830	3976	III
1822	4603	Ī	1824	4174	III—IV*	1899	3972	III
1834	4565	Ī	1808	4171	III	1854	3964	IV
1826	4528	III?	1801	4170	14.5	1855	3959	VI—III
1825	4510	II	1900	4167	II	1843	3952	IV
1859	4497	II—1	1893	4156	II	1813	3949	IV
1819	4489	II	1840	4150	111	1877	3945	IV—V*
1802	4471	I—II	1863	4150	II—III	1812	3921	III
1800	4433	I-II	1886	4145	II	1883	3914	III
1842	4433	I—II	1815	4137	II—III	1889	3913	III
1807	4432	II	1821	4135	IV	1879	3911	1.*
1857	4405	I	1839	4134	II—III	1903	3911	III
1846	4395	1	1832	4125	III	1887	3910	III
1818	4383	I—II	1867	4116	IV-V*	1860	3908	17.
1866	4375	IV*	1901	4104	II-III	1897	3903	III—IV
1869	4375	II—III	1878	4101	IV	1890	3881	17.
1811	4323	I	1836	4099	II—III	1837	3880	V
1895	4301	II	1845	4084	III	1829	3861	IV
1827	4297	II	1841	4078	II—III	1894	3856	III—IV
1858	4269	II	1856	4074	III	1902	3854	III
1823	4261	III—IV*	1892	4074	II—III	1805	3845	L.*
1874	4255	II	1873	4060	III	1817	3844	11.*
1810	4244	III*	1806	4059	III—IV*	1891	3836	IV
1875	4244	II—III	1898	4051	III	1881	3835	III
1835	4229	II	1809	4044	IV*	1847	3814	III—IV
1820	4225	III*	1814	4044	IV*	1853	3801	77
1872	4220	III	1880	4044	III—IV	1882	3785	IV-V
1803	4218	III*	1833	4038	III	1850	3739	IV-V
1804	4218	II—III	1884	4030	II—III	1888	3731	IV_V
1848	4216	II—III	1885	4022	III	1896	3721	IV
1864	4212	IV*	1838	4019	III—IV*	1852	3689	17.
1862	4208	I—II	1831	4015	III	1851	3675	L.
1861	4203	II	1844	4000	III IV—V*	1816	3672	\
1828	4188	III	1871	3992	11-1-1			

^{*} bedeutet Frost.

Tabelle III.

Absolute Minima des Mai und Minima der sogen. Eistage 12.-14, Mai.

1	18	n	n	1	1.8	9	q	

1830-1859.

7	ahr	Tag	Min.		Mai		Jahr	Tag	Min.		Mai	
	anı	rag	141111.	12.	13.	14.	Jani	rag	1/11/11.	12.	13.	14.
1	800	19.	8,8	11,9	9,4	14,4	1830	11.	2,5	8,8	7,5	11,3
1	01	1.	5,6	5,0	8,8	12,5	31	11.	1,3	6,3	7,5	6,3
	02	17.	3,1	8,1	13,8	9,4	32	15.	0,6	6,3	3,1	3,8
	03	17.	1,3	6,3	8,8	5,0	33	2,	2,5	15,6	13,1	15,0
	04	16.	5,0	6,9	6,3	5,6	34	29.	5,0	16,3	13,8	11,3
	05	26.	3,1	6,3	8,1	8,1	35	6.	3,1	8,8	10,0	12,5
	06	2.	3,1	13,8	10,0	12.5	36	10.	0,6	3,8	11,3	5,6
	07	12.	3,8	3,8	12,5	12,5	37	6.	2,5	3,1	5,0	8,1
	08	1.	3,1	14,4	10,6	13,8	38	11.	-0,6	2,5	6,3	11,3
	09	7.	1,3	8,8	13,1	13,1	39	24, 26.	5,6	7,5	7,5	6,3
1	810	5.	4,4	12,5	10,0	7,5	1840	5.	1,9	8,8	8,8	11,3
	11	9.	6,9	13,1	13,1	14,4	41	10.	3,8	7,5	7,5	6,3
	12	2.	5,6	13,8	12,5	6,9	42	11.	2,5	3,8	8,8	8,8
	13	28.	6,3	9,4	13,8	12,5	43	12.	3,8	3,8	10,0	9,4
	14	1.	-1,9	0,0	0,0	2,5	44	1.	2,5	13,8	12,5	7,ŏ
	15	25.	4,4	12,5	14,4	11,3	45	10.	1,9	8,8	7,5	7,5
	16	16.	3,8	4,4	4,4	4,4	46	2.	2,5	10,0	10,0	7.5
	17	2.	3,1	5,6	10,0	9.4	47	2.	3,1	13,1	11,3	8,1
	18	31.	3,8	13.1	8,8	8,8	48	7.	3,1	10,0	8,8	8,8
	19	1.	0,6	5,0	7,5	10,6	49	13.	5,0	6,3	3,8	6,3
1	820	5. 6.	0,0	12,5	12,5		1850	3.	0,0	6,3	5,0	3,8
	21	29.	3,1	11,3	7,5	5,6	51	3,	1,9	6,9	9,1	8,1
	22	3.	2,5	13,8	11,9	11,3	52	7.	1,9	9,4	11,6	11,9
	23	1.	0,6	15,0	15,0	10,0	53	9.	1,9	2,8	11,0	8.1
	24	8. 9.	6,3	12,5	11,3	13,8	54	6. 21.	5,6	8,2	11,0	14,8
	25	16.	0,0	9,4	8,1	6,3	55	10.	1,3	7,8	5,5	7,0
	26	1. 17.	3,1	7,5	11,3	6,3	56	6,	0,9	7,8	11,3	10,7
	27	9.	7,5	10,0	11,3	11,3	57	2.	0,9	10,0	10,3	9,4
	28	3, 8,	3,8	7,5	6,3	6,3	58	11.	0,0	6,9	5,0	6,9
	29	1.	3,1	8,8	6,0	5,6	59	1.	5,6	9,4	6,0	5,3
						And the second						

r n 2. n 8 r r n 2. n n 8 r r n 2. n n 8 r r n 3. n n 5 r r n 3. n n n 3 r r n 3. n n 12.—14. Mai nur einmal kalt 1814 Keine Kälteperiode vom 12.—14. Mai.

Größte Kälte im 1. Drittel des Mon. 17 mal Größte Kälte im 1. Drittel des Mon. 19 mal

Tabelle III (Forts.).

Absolute Minima des Mai und Minima der sogen. Eistage 12.—14. Mai.

1	8	G	a	-1	8	R	Q	

1890-1903.

Jahr	Tag	Min	Min. Mai Jahr Tag Min, Mai 12. 13. 14.										
Oani	1 ag	Dilli.	12.	13.	14.	Jani	rag	Billi.	12.	13.	14.		
1860	5.	3,8	16,3	13,1	11,9	1890	5.	6,0	14,1	12,0	10,2		
61	1.	0,6	13,1	12.5	13,1	91	17.	2,7	13,0	10,2	13,0		
62	23,	7,5	8,8	8,8	11,3	92	2.	1,3	10,2	7,4	10,7		
63	12.	1,9	6,9	1,9	6,3	93	7.	2,0	5,3	8,8	12,0		
64	2.	4,4	11,3	10,6	11,9	94	õ.	2,0	11,3	8,0	8,0		
65	1.	0,5	6,3	11,3	8,8	95	17.	3,8	12,0	13,0	13,3		
66	22, 23.	-0,6	10,0	6,3	5,6	96	4. 17.	5,0	11,0	9,5	8,0		
67	4, 25.	1,3	10,6	14,4	10,0	97	11.	2,7	3,7	3,8	5,3		
68	2.	6,3	10,0	11,3	12,5	98	13.	5,3	7,0	5,0	8,0		
69	2.	4,4	11,3	11,3	13,8	99	4.	3,0	12,0	13,1	14,3		
1870	7.	0,0	8,8	9,4	13.1	1900	14.	0,7	3,8	5,7	0,7		
71	11.	0,6	2,5	3,1	2,5	01	9.	5,3	9,7	9,7	9,4		
72	12.	3,0	3,0	3,8	3,8	02	8.	1,3	4,3	6,0	4,0		
73	5. 9.	4,0	9,0	6,0	5,0	03	20.	2,4	6,0	9,0	5,3		
74	3.	-1,3	5,7	5,7	6,0						1		
75	28.	4,3	10,3	9,3	9,0								
76	14.	-0.7	2,7	3,8	0,7				0		0		
77	2.	0,3	9,5	7,0	11,0	Z		1.	2		3. Orittel		
78	9. 26.	4,5	12,2	8,8	11,0	sami		Drittel	Drit				
79	1.	0,3	4,3	6,4	6,4	1800-		17	8		5 3		
1880	8.	1,5	8,4	12,2	10,3	1830-		19	8 9		ə õ		
81	13.	3,0	5,7	3,0	6,8	1860 1890		16 7	7		0		
82	16.	2,0	11,3	6,4	3,7	1990—	-1905						
83	10.	3,0	8,8	10,3	9,7			59	32	1	13		
84	7.	5,0	13,2	12,2	11,0								
85	12.	2,7	2,7	5,0	3,0								
86	3.	-0,1	12,0	9,0	7,4			12,14,					
87	12. 20.	3,0	3,0	6,3	5,0	1 1	1876, 19	000, im §	ganzen	4mal			
88	12.	3,0	3,0	4,0	9,0								
89	2.	8,0	9,0	14,3	14,1								
Größte	Kälte ir	n 1. Drit	tel des	Mon.	al Größte Kälte im 1. Drittel des Mon. 7 mal								
**	20 **		"		, , , 2. , , , 7 ,								
77		_	77	29	5 ,	,,	29	., 3, .		22	0 "		
Schwa		teperiode	en 12.	-14.	Mai		ältetag	1900.					
Schwache Kälteperioden 12.—14. Mai Ein Kältetag 1900. Jahr 1871. 1876.													

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Jahreshefte des Vereins für vaterländische</u>
Naturkunde in Württemberg

Jahr/Year: 1904

Band/Volume: 60

Autor(en)/Author(s): Majer Ludwig

Artikel/Article: Wärmesummen der Vegetationszeit für Stuttgart

und Weinqualitäten in den Jahren 1800-1903. 227-252