
Ueber eine

Erweiterung der periodischen Reihen-

entwickelnng und deren physikalische

Deutnng.
Von Dr. A. T o e p 1 e r

,

Professor der Physik au der Universität in Graz.

Bekanntlich ist es durch die Reihe von Fourier möglich

geworden , eine beliebige periodische Bewegung als Summe ein-

facher Pendelschwingungen darzustellen. Es schien mir eine der

Untersuchung würdige Frage zu sein , ob nicht analoge Zerle-

gungen möglich seien, wenn man anstatt der Pendelschwingungen

andere periodische Partialbewegungen zu Grunde legt. Durch diese

Frage wurde die vorliegende Untersuchung veranlasst.*) In der-

selben wird der Nachweis geliefert, dass in der That Functionen,

welche nach Fourier in Reihen durch die sinus und cos ganzer

Vielfacher entwickelt werden können , in zahlreichen Fällen auch

darstellbar sind durch andere periodische Functionen. Man gelangt

dabei zu periodischen Reihen , welche in ihren Eigenschaften den

Reihen von Fourier durchaus entsprechen und daher an Stelle

dieser in den betreffenden Fällen angewendet werden können.

Ich habe zur Lösung der Frage vorläufig nur einen indi-

recten Weg aufgefunden. Derselbe leidet allerdings an einer Un-

vollständigkeit, mit welcher alle ähnlichen Methoden behaftet sind.

Meine Mittheiluug macht daher nicht den Anspruch einer abge-

schlossenen mathematischen Untersuchung. Die Beweiskraft meiner

Ableitung gilt in voller Strenge nur für Functionen , welche ge-

wissen in der Abhandlung genauer besprochenen Voraussetzungen

entsprechen. Wenn nun auch hierdurch bereits ein brauchbares

*) Eine vorläufige Bemerkung über den Gegenstand liabe ich bereits

im Anzeiger der kaiserl. Akademie in Wien dd, 11. April verött'entlicht.

Di
gi

tis
ed

 b
y 

th
e 

Ha
rv

ar
d 

Un
ive

rs
ity

, E
rn

st
 M

ay
r L

ib
ra

ry
 o

f t
he

 M
us

eu
m

 o
f C

om
pa

ra
tiv

e 
Zo

ol
og

y 
(C

am
br

id
ge

, M
A)

; O
rig

in
al

 D
ow

nl
oa

d 
fro

m
 T

he
 B

io
di

ve
rs

ity
 H

er
ita

ge
 L

ib
ra

ry
 h

ttp
://

ww
w.

bi
od

ive
rs

ity
lib

ra
ry

.o
rg

/; 
ww

w.
bi

ol
og

ie
ze

nt
ru

m
.a

t



65

Material von einigem Umfange geschaffen sein dürfte, so ist doch

von der Giltigkeit meiner Keihen eine noch grössere Allgemeinheit

zu vermuthen. In solchen Fällen nämlich, in welchen die in Fol-

gendem mitgetheilte Ableitung nicht mehr ausreicht, ist dennoch

die Zulässigkeit der erweiterten periodischen Keihen im Allgemeinen

nicht ausgeschlossen, wie die Untersuchung an bestimmten Bei-

spielen zeigt. Es bleibt also noch ein weites Feld zur Bear-

beitung offen.

Ich habe mich nichtsdestoweniger zur Veröffentlichung der

Resultate in ihrer jetzigen Form entschlossen, da ich glaube, die

weitere Determination des Gegenstandes den Fachmathematikern

überlassen zu dürfen. Für den mathematischen Leser sei bemerkt,

dass in den Paragraphen 2, 3, 6 und 7 das Wesentlichste zu

finden ist. Auch glaube ich in der Darstellung, wenngleich diese

für einen grösseren Leserkreis bestimmt wurde, den Anforderungen

der Strenge in dem Masse Rechnung getragen zu haben , wie es

zur Orientirung des Fachlesers nöthig ist. Sollte meine Mittheilung

zu weiteren Untersuchungen auf einem, wie ich glaube, dankbaren

Gebiete anregen, so hat dieselbe ihren Zweck erfüllt.

Wir verstehen in Folgendem unter periodischen Functionen

im weiteren Sinne solche Functionen, deren Werthe beim Wachsen
der unabhängig Veränderlichen in bestimmten, gleichen Intervallen

wiederkehren. Die Betrachtung wird wesentlich vereinfacht, wenn
wir zunächst mit solchen Fällen beginnen , in denen der Verlauf

der Functionen innerhalb eines Intervalles durch gewisse Bedin-

gungen eingeschränkt ist. Es ist dann leicht, auch die allgemeineren

Resultate zu überblicken.

Wir betrachten zunächst die bekannte periodische Function

(l) 2/ = «1 sin a; + «2 sin 2 ä; + . . . + «a sin w ;r -f

in welcher a, «g etc. coustante Zahlenwerthe bedeuten und die

Bogenwerthe unter dem sinus-Zeichen nach ganzen Vielfachen von

X fortschreiten. Da sin w (a; 4- 2 tt) = sin n x, so kehren dieselben

Werthe der Reihe wieder, wenn x um je 2 n wächst. Die Function

ist periodisch mit dem Intervall 2-n,

b
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Ausserdem tritt noch die Eigenschaft hinzu, dass sin n (

—

x) =
= — sin n X. Die Werthe der Keihe sind also entgegengesetzt

für entgegengesetzte x. Stellt man die Function graphisch als

Curve dar (Fig. 1), so ist der Zweig, welcher zwischen den Abs-

cissen — n und liegt, congruent mit dem Zweige zwischen

und n-, wenn man letzteren sowohl um die Abscissen- als Ordi-

natenachse umkehrt. Ausserhalb der Gränzen — n und + n wie-

derholen sich beide Zweige in der aus der Fig. 1 ersichtlichen

Weise.

Bekanntlich können nun nach den Sätzen von Fourier die

Coefficienten «i, «a . . . derart bestimmt werden, dass die "Werthe

von y zwischen den Gränzen x = und x = n übereinstimmen

mit den Werthen einer beliebig gewählten Function f {x). Aus-

geschlossen sind nur gewisse abnorme Fälle, welche ohnehin für

physikalische Betrachtungen kein besonderes Interesse haben; so

darf z. B. f {x) zwischen den angeführten Gränzen weder unendlich

werden, noch unendlich viele Maxima und Minima haben u. s w.

Man findet für diesen Fall die Coefficienten durch die Gleichung:

an = — I f(x) siünx dx

und dann ist für <Cx <i n

(2) / (ä;) = «1 sin ic + «2 sin 2 a; + «3 sin 3 a; -f-

Hierbei ist zu bemerken, dass f (x) ausserhalb der Gränzen

und TT im Allgemeinen nicht mehr durch die Reihe dargestellt

wird. Auch gilt die letzte Gleichung im Allgemeinen schon nicht

mehr für x = und x = n, da hier die Reihe stets die Werthe

liefert, während f (x) von Null verschieden sein kann.

Wenn nun ein solcher Fall vorliegt, dass nämlich die Werthe

der Reihe zwischen x =^ und n durch einen geschlossenen Aus-

druck f (x) wiedergegeben werden können, so lässt sich f{x) so

umgestalten, dass die Gleichung auch ausserhalb der obigen Gränzen

besteht. Schreibt man nämlich:

(3) y=±n±(^~^2n)]
X

wo (, diejenige ganze Zahl bedeutet, welche dem Werthe ^— am
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nächsten liegt, und führt man die Bestimmung ein, dass die oberen

oder unteren Zeichen zu gelten haben, je nachdem — ^ f^ ist, so

bedeutet der letztere Ausdruck ebenfalls eine periodische Wieder-

holung der zwischen x = und x r=. ir gelegenen Werthe von

f{x) in dem Sinne, wie es die Reihe verlangt. Es gilt auch hier

die graphische Darstellung Fig. 1. Ist nämlich das Stück der

Curve , welches zwischen x = und x = -V rt liegt , eine Dar-

stellung von f{x) innerhalb dieser Gränzen , so erhält man aus

Formel (3) auch alle übrigen Zweige. Sei z. B.

X \. X< a;< TT oder < ^- <<-^> so ist ? = und -5- > ?i

daher gilt hier ?/ = 4- f{x).

1 X
Ist TT < ä; < 27r oder -rr- <-— < 1 , so ist c = 1 und

J 'In

^ < C, daher gilt hier — /" [— (a^ — 27r)] oder da man hier

X — 2n = — z setzen kann , wo ;^ <, tt ist, so ist y = — fi^).

Ebenso findet man für 2n <C x <^Sn, wenn man wie oben

schliesst und x = 2n -\~ setzt, dass 2/ = + fi^)-

Für 3n <. X <Zin, wo x = in — z zu setzen ist , folgt

wieder y = — f {^z) u. s. w.

Man ersieht sofort, dass durch die Hilfsgrösse ^ die Functions-

werthe abwechselnd auf die beiden Strecken zwischen — n und

oder und -|- n zurückgeführt werden , wenn x um je ein n

wächst. Die Functionsbezeichnung (3) ist auch unterhalb x =
giltig, denn ist z. B.

\ X X— 7r<a;<0, so ist =r <?;— < 0, also ^ = und :7-<?,
z )in ^n

also gilt y = — f (— x) und setzt man x = — z ^ wo z den

Absolutwerth von x bedeutet, so hat man y = — f{z).

X 1
Wird — 271 < a; < — TT, so ist — 1< ^j- < — -^, also

^n i

X
? = — 1 und ö- >C, also giltt/ = f{x-\- 2n) und x=— 2n-^z

gesetzt, wo z positiv und kleiner als n ist, erhält man y = f (z).

Ebenso erhält man, wenn — 37r<a:< — 27r, in welchem

Falle X = — 2 TT — z gesetzt werden kann, y == — fi^) w- s. w.

5*
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Man sieht also, dass durch obige Functionsbezeichnung die

verlangte Periodicität dargestellt werden kann. Wir werden daher

von derselben an geeigneter Stelle Gebrauch machen. Die Hilfs-

grösse ? ist dabei selbst wieder eine Function von x, deren Werth

sprungweise je um eine Einheit wächst , während x die Werthe

7r(2Ä;-|-l) überschreitet, unter h alle ganzen Zahlen verstanden.

Bei dieser Darstellungsweise ergibt sich im Allgemeinen

eine Zweideutigkeit an den Stellen x = 0, + n, +2n....^]cn,
wie schon aus der Figur zu ersehen ist. Wir treflFen die Bestim-

mung, dass hier stets der Mittelwerth Null zwischen den beiden

entgegengesetzten Ordiuaten zu verstehen sei. Auch kann f{x) so

beschaffen sein , dass innerhalb der Strecke bis n eine oder

mehrere Sprungstellen vorkommen , so dass zu einer Abscisse je

2 Ordinatenwerthe gegeben sind. Hier ist auch stets das arith-

metische Mittel zu nehmen. Wir wollen, um jedem Missverständniss

vorzubeugen, uns kurz so ausdrücken, dass für alle Werthe des

X von — CO bis -+- CO die Gleichung erfüllt sein müsse

+ f [+ (ic — t 2 TT)] = «1 sin a: + «2 sin 2 a; + ,

wodurch jeder Zweifel an zweideutigen Stellen behoben ist, denn

die Keihe gibt an den Sprungstellen bekanntlich das arithmetische

Mittel aus beiden Ordinateu und es wird sich zeigen, dass unter

dieser Voraussetzung die Betrachtungen der folgenden Paragraphen

auch für Unstetigkeitsstellen ihre Giltigkeit behalten.

§2.

Wir wollen nun untersuchen, ob sich eine Function, welche

die im vorigen Abschnitt vorausgesetzten periodischen Eigenschaften

besitzt, benutzen lässt, um nach ihr andere Functionen in einer

analogen Weise in Reihen zu entwickeln , wie es nach Fourier

durch die sinus ganzer Vielfacher von x geschieht.

Es sei also eine beliebige zweite Function gegeben, welche

zwischen den Gränzen x = und x r=. n dargestellt werde durch

(4) F (x) = «1 sin X + «g sin 2 ^ + a^ sin 3 a; +
wo also

= —
I F{x) sin nx.dx ist.«a= — h
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Es fragt sich, ob nicht eine ähnliche Eeihenentwictelung

für F {x) möglich sei, in welcher wir an Stelle des sinus die com-

plicirtere Function treten lassen, deren allgemeiner Ausdruck durch

Gleichung (1) gegeben ist. Wir führen in diese einen veränder-

lichen Parameter m ein uud schreiben

(5) ym = «1 sin mx -\- ot.2 sin 2mx -f «., sin 3ma: + . . .

Lassen wir nun m die Reihe der ganzen Zahlen durchlaufen,

so erhalten wir eine unendliche Eeihe von solchen y. Jedes der-

selben multipliciren wir mit einem unbestimmten Coeificienteu A
und setzen die Summe aller Glieder == F{x). Es folgt, indem wir

die Summanden mit gleichen Bogenwerthen in den sinus unter-

einander schreiben:

6

' Ai yi= Äi [^^1 sin x + ''h sin 2a; + ^'3 sin Bx + «4 sin 4x+ «5 sin 5x + .

iJ.2i/2= J.2 [^-«i sin 2a; + «2 sin 4a; +
1^3 2/3= ^3 [r/, sin 3a;+
1^4 2/4

= Ai [«, sin 4a; +
Ä^ys = ul5[a, sin5a;-|- .

iF{x) = Äi «j sin X H- {Äi tx-, + 7I2 «1 ) sin 2x +
7

j
4- (J.1 «3 + Äi «1 ) sin 3a; -f- (^^ «4 + At or,^

-f- J.4 «j ) sin 4 ic 4-

( 4- (J-i «5 + J.5 «1 ) sin 5:r 4- . . .

Diese Eeihe, welche wieder nach den sinus ganzer Vielfacher

von X fortschreitet, wird identisch mit der Eeihe (4) für F{x),

wenn wir die Coefficienten gliedweise gleichsetzen und daraus die

Werthe der unbekannten A berechnen. Es ist zu bemerken, dass

bei der benutzten Additionsweise die Eeihenfolge der Glieder,

welche ein und demselben y angehören, nicht geändert wurde.

Zur Bestimmung der A hat man also die Bedingungs-

gleichungen :

«1 = A^ a.1

«2 = J-i ag 4- A^ «1

«3 = ^, «3 + ^3 «1

(8) I
^4 = ^J «4 + ^2 «2 + ^4 «1

«5 = ^i «5 + A «1

«6 = A «6 + ^2 «3 + A ^2 + ^6 «1

.

a]2= ^iaj2 + ^2a6 +^3^4 + ^4«3 + ^«2 + -^isai

u. s. w.
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Wie man sofort erkennt, so sind die zu suchenden Coeffi-

cienten durch diese Gleichungen vollkommen (eindeutig) bestimmt.

Die Bedingungsgleichung für Am z. B. ist unmittelbar gegeben,

indem man am gleichsetzt der Summe sämmtlicher Producte,

welche sich bilden lassen aus je einem Ä und einem a, deren

Indices multiplicirt m geben, wobei m und 1 selbst mitzurechnen

sind. Sind die dem Ä^a vorausgehenden Coefficienten bestimmt,

so ergibt sich unmittelbar J.m.

Schreiben wir die unter (6) summirten y in der Keihenfolge

der Verticalcolumne, so haben wir

(9) F(x) = 4, 2/1 + ^2 2/2 + ^3 2/j +
Diese Keihe gilt nur zwischen den Gränzen x == und

X = TT*), da ja die Keihe (4), welche mit (7) gleichgesetzt wurde,

nur zwischen diesen Gränzen allgemein giltig ist. Für x = und

X = n gibt die Reihe den Werth Null, da hier alle y verschwinden.

Wenn nun der Fall vorliegt, dass das y unserer Entwickelung

einer bestimmten gegebenen Function f{x) zwischen x = und

X = n nach Gleichung (2) entspricht , so lässt sich die durch

Gleichung (3) dargestellte periodische Functionsbezeichnung anstatt

der y in Reihe (9) einführen. Man hat nur zu schreiben

Vm = ±f[± i'^nx — ?m 27r)]

wo nun m die ganzen Zahlen durchläuft und ^^ immer diejenige

ganze Zahl bedeutet , welche dem Werthe -t:— am nächsten liegt,

und wobei die oberen oder unteren Zeichen zu gelten haben, je

nachdem -^— ^ e^ ist. Graphisch dargestellt bedeutet auch dieser

Ausdruck eine Curve von dem Ansehen der Fig. 1, nur hat man

sich diese in der Richtung der Xachse im Verhältniss m : 1 ge-

wissermassen zusammengedrückt zu denken, so dass alle Ordinaten,

welche in Fig. 1 auf den Strecken von je 27r vorkommen, nun-

*) Die obige Herleitung ist nicht allgemein zulässig, denn der Schritt

von der Keihenform (7) zur Form (9) enthält eine Vertauschung der Summa-

tionsweise und allerdings wäre erst von Fall zu Fall zu untersuchen, ob

Gleichung (9) an Stelle von (7) gesetzt werden darf. Im nächsten Paragraphen

werde ich jedoch die Voraussetzungen näher angeben, unter denen die obige

Betrachtung jedenfalls strenge Giltigkeit hat.
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2«
mehr auf das Intervall — zusammengedrängt scheinen , wovon

man sich durch nähere Untersuchung des Ausdruckes leicht über-

zeugt. Substituirt man diese Functionsbezeichnung, so erhält die

Keihe die Form:

AFix)= ±Ä, f[± (x-et 2n)±AJ[_±{2x~-e,2n)-]±
^ ^l ±Äj[±{Sx-^,2n)-\± ...

wobei selbstverständlich das Zeichen IjT an Stelle von + ausser-

halb des Functionszeichens zu treten hat, wenn das betreffende A
aus den Gleichungen (8) mit negativem Zeichen hervorgeht.

Es ist nun auch sehr leicht zu erkennen, dass die Reihe (9)

oder (10) ausserhalb der Gränzen x =^ und x -= n einen perio-

dischen Verlauf hat und zwar genau in demselben Sinne, wie die

Reihe (4) nach Fourier. Dies geht aus dem Umstände hervor, dass

alle Glieder der Reihe nach der Definition des § 1 entgegen-

gesetzte Werthe annehmen für entgegengesetzte Werthe von x und

dass der Werth eines jeden Gliedes wiederkehrt, wewi x um 2n

wächst. Die graphische Darstellung Fig. 1 gilt also auch für die

ganze Reihe ausserhalb der obigen Gränzen und wenn man in

Gleichung (10) anstatt F(x) linker Hand ebenfalls die periodische

Bezeichnung + ^ [+ (^ — Ci 2/:)] einführt, so gilt die Gleichung

nunmehr zwischen x = — co bis j' = + oo.

§3.

Es wurde oben bemerkt , dass der indirecte Weg , welchen

wir bei der Entwickelung einschlugen , im Allgemeinen keine

strenge Giltigkeit habe. Der Complex der Gleichungen (6) reprä-

sentirt eine Doppelreihe, welche wir in zweifacher Weise summirt

haben, einmal nach Formel (7), dann nach Gleichung (9) und wir

haben bisher diese Summationsweisen als gleichwerthig voraus-

gesetzt. Es fragt sich, unter welchen Bedingungen diese Voraus-

setzung jedenfalls in voller Strenge erfüllt, unsere Ableitung also

zulässig sei.

Die Doppelreihe wollen wir durch folgendes Schema veran-

schaulichen : Di
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Ä,

A^

^k

et, Sin X «m sin w a;

^i2/i+---A!/k

^k + i

Ol sin aJ + a^ sin 2 rc + «m sin mx

Die horizontalen Punktreihen bedeuten hierbei die einzelnen

y unserer Eeihensumme (6), welche nach der rechten Seite ins

Unendliche verlaufen. Dieselben überdecken in unserem Schema

einen Eaum, welcher nach links durch eine unter 45" geneigte

Gerade os abgegränzt ist. Links denke man sich in einer Vertical-

columne die Coefficienten J., mit welchen die correspondirenden

y zu multipliciren sind.

Es lässt sich nun beweisen, dass die Betrachtung des vorigen

Paragraphen jedenfalls Giltigkeit hat, wenn die Coefficienten A,

welche durch F{x) und / {x) bestimmt sind, eine absolut con-

vergente Keihe bilden; unter einer absolut convergenten Reihe

ist eine solche verstanden, bei welcher die Summe der A b s o 1 u t-

w e r t h e nach einem bestimmten endlichen Werth convergirt.

Wir nehmen also an, dass in irgend einem untersuchten Falle

aus (8) solche Werthe von A^, A^ etc. hervorgehen, dass

lim (^'k + , + ^'k + 2 + ^k+n) =
wo die Accente bedeuten, dass nur die absoluten Zahlenwerthe

zu verstehen sind. Die Coefficientenreihe convergirt dann auch bei

beliebiger Zeichenfolge.

Da die Horinzontalreihen unseres Schemas periodisch sind,

so schwankt der Werth einer jeden derselben bei wachsendem x
innerhalb gewisser Gränzen Nun ist aber nach den Erörterungen

des vorigen Paragraphen klar, dass der Maximalwerth , welchen

irgend eine der Horizontalreihen, z. B. y^, annehmen kann, nicht
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grösser ist, als der Maximalwerth von t/j. Sei dieser C, so gilt

er auch für «/m-

Wir wollen nun zunächst die in Gleichung (9) vertretene

Summationsweise unserer Doppelreihe versinnlichen. Zu dem Ende

schneiden wir unser Schema durch die Horizontale rt ab, welche

unterhalb des entfernten Coefficienten JL^. einsetzt. Alsdann reprä-

sentirt das, was oberhalb dieser Linie liegt, den Werth der Keihe

(9), wenn wir sie beim Jc^^^ Gliede abbrechen. Der Eest unterhalb

jener Horizontalen kann nach Obigem höchstens

(^'k + 1 + ^'k + 2 4- . . •) ^ ^6^<^ö^

und dies wird kleiner, als jede denkbare Zahl, wenn wir nur Je

gross genug wählen. Die Keihe (9) convergirt also.

Wollen wir die Summation (7) veranschaulichen, so durch-

schneiden wir die Figur durch eine Verticale iJ s , welche hinter

dem sehr weit entfernten mten Gliede der ersten Horizontalreihe

einsetzt und also auch noch das erste Glied der Reihe ym mit

abschneidet. Der Gesammtwerth links von p s bedeutet mithin die

Reihe (7), wenn wir sie beim m^en Gliede abbrechen, und diese

Reihe ist durch Gleichsetzung der Coefficienten identisch mit (4)

geworden. Man kann nun jedenfalls das m so gross werden lassen,

d. h. nöthigenfalls die Verticale so weit nach rechts verschieben,

dass der Werth im Räume upqt verschwindet; denn in diesem

Räume erscheinen die Coefficienten Äi bis A^ multiplicirt mit

gewissen Resten der ersten Je Horizontalreihen, welche Reste jedoch

bei hinreichend grossem m beliebig klein werden, da die Hori-

zontalreiheu convergiren. Sei s der grösste dieser Reste, so wird

der Werth im Raum upqt höchstens

(A'i 4- .4'2 + . . . . Ä\) ö werden können.

Da aber die Summe der Ä' nur einen endlichen Werth hat

und 5 beliebig klein wird bei wachsendem m, so verschwindet der

Werth des Raumes U2^qt in der Gränze.

Es ist nun auch unmittelbar klar, dass die Werthe in dem

dreieckigen Räume rqs verschwinden, da in demselben endliche

Theilwerthe der y multiplicirt erscheinen mit den Coefficienten

Ak + 1 bis Am , deren Summe selbst den Gränzwerth Null hat.

Daher wird bei hinreichend grossem Je und m die Summe der Doppel-

reihe nach beiden Additionsweisen mehr und mehr durch die in das
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Trapez opqr fallenden Glieder dargestellt. Beide Summen sind

convergent und gleichwerthig.

Wenn also dieKechnung eine absolut con-
vergente Reihe für die Coefficienten Ä ergibt,

seist der Schritt von Glch. (7) zu Glch. (9) und
(10) jedenfalls erlaubt und die Entwickelba r-

keit für diesen Fall bewiesen. Dies findet man denn

auch bei den später erläuterten Fällen bestätigt.

Wenn nun hierdurch die Möglichkeit der erweiterten perio-

dischen Reihenentwickelung bereits für sehr viele Fälle gegeben

ist, so muss ich doch noch Folgendes dazu bemerken:

Es ist mit dem Obigen durchaus nicht aus-
gesprochen, dass in solchenFällen, in welchen
die^ nicht absolut convergiren, dieEntwicke-
lung überhaupt unstatthaft sei. Vielmehr bleibt

für solche Fälle die Untersuchung nur eine
offene, es erlischt nur die Beweiskraft meiner indirecten Me-

thode! In der That stösst man am häufigsten auf solche Fälle,

und ich werde Beispiele derart in § 4 anführen, in denen die

Reihe nur mit Rücksicht auf das Vorzeichen der Glieder con-

vergirt. In diesen Fällen kann man die Zulässigkeit vorläufig nur

durch ein inductives Verfahren prüfen. Aus diesem Grunde scheint

es mir nicht wichtig, zu untersuchen, unter welchen Bedingungen

die absolute Convergenz der Coefficienten eintritt. Vielmehr glaube

ich, dass eine Ausscheidung derjenigen Functionen, für welche die

Reihe (9) oder (10) ihre Giltigkeit verliert, nicht eher möglich sein

werde, als bis die Ableitung der letzteren auf allgemeinerer Grund-

lage gelungen ist.

Meistens ist es bequem, die Function F{x) = a sin x nach

(10) in irgend einer anderen Function zu entwickeln, da hier in

der Rechnung alle a bis auf das erste verschwinden. Hiezu hat

Professor Boltzraann, welchem ich meine Resultate mittheilte, eine

weitere nutzbare Bemerkung gemacht.

Wenn bewiesen ist, dass sinx nach irgend
einem f [x) durch Reihe (10) entwickelbar ist, so

gilt sofort auch die Entwickelbarkeit nach f{x)

für alle diejenigen Functionen F{x), welche in

den sinus ganzer V ielf acher v on j* dargestellt
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(Fourier) absolut convergirendeCoefficienten
(«1, «2 . . .) li e f e r n.

Es sei z. B.

:

(11).

sin J- = tI, t/i 4- ^2 ^2 + ^3 ^3 + • • •
«nd

F(r) = ai sin i' + «2 sin 2 i* 4- % sin 3 T 4- . .

wo die a absolut convergiren, so erhält man, wenn für die sinus

ihre Keihen nach (11) substituirt werden, folgendes Schema, welches

nach dem Obigen ohne Weiteres zu verstehen ist.

«1 AVi + ^22/j +
<h A Vz +

»k

Amyvi

«j sin a; + . . a^ sin ka;

Hier bedeuten die D die Coefficienten der neuen Eeihe für

F{x). Man erkennt sofort, dass durch eine der früheren ganz

analoge Schlussweise die Giltigkeit der Reihe

F(r) = Di2/, +Ay2+A2/3 + -

bewiesen ist. Beim Beweis ist hier weder die absolute Convergenz

der A noch der D vorausgesetzt. Man kann dieser Folgerung die

folgende noch allgemeinere Form geben:

Wenn bei der Entwickeluug irgend einer
Fun c t i n F{t) gemäss Glch. (10) durch irgend
eine zweite Function/" (.r) eine absolut conver-
gente Coefficientenreihe zumVorscbein kommt,
so ist-F(a;) auch jedenfalls entwickelbar nach
allen Functionen ^ {jc) und ^(ar) etc., welche sich

zur Darstellung von f {x) als geeignet erwiesen
haben. Der Beweis führt sich genau nach dem obigen Schema.

Man sieht also , dass es trotz der ünvollkommenheit des

von mir eingeschlagenen Weges schon jetzt möglich ist, rasch
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eine grosse Zahl von Fällen aufzusuchen, in welchen die Zuläs-

sigkeit meiner Reihen nicht zu bezweifeln ist.

§4.

Ich will nun die voraufgegangene Entwickelung auf einige

Beispiele anwenden. Mehrere derselben sind absichtlich so gewählt,

dass ihre Richtigkeit unmittelbar einleuchtet. Ihre Uebereinstim-

mung mit der Rechnung kann dann als Bestätigung der letzteren

dienen.

Da die Handhabung unserer periodischen Punctionsbezeich-

nung bei der Anwendung auf specielle Fälle unbequemer erscheinen

könnte, als sie es bei einiger üebung ist, so will ich bemerken,

dass man sich die Sache durch Zuhilfenahme der graphischen

Darstellung sehr erleichtern kann. Es soll daher über diese noch

Folgendes vorausgeschickt werden. In den die Beispiele erläutern-

den Figuren (2, 3, 4 etc. bedeutet stets die oberhalb gezeichnete

Curve zwischen den Gränzen .r = und r = t: die darzustellende

Function F(x). Senkrecht darunter sind die ersten Glieder der

Reihenentwickelung graphisch dargestellt. Ich werde dieselben bei

der graphischen oder physikalischen Deutung stets periodische
Componenten von F{.r) nennen. Der Sinn der Zeichnungen

ist nun so aufzufassen, dass die Ordinaten der oberen (darzustel-

lenden) Curve hervorgehen aus der Superposition der senkrecht

darunter befindlichen Ordinaten der periodischen Componenten.

Man kann nun aus der Zeichnung zunächst unmittelbar

ersehen, welchem Index irgend eine der unterhalb dargestellten

Componenten in der Reihe entspricht; man braucht zu diesem

Zwecke nur die Anzahl der (abwechselnd aufrechten und ver-

kehrten) Zweige zu zählen, welche auf die Strecke bis n fallen,

wie ohne Beweis verständlich ist. So erkennt man z. B. aus Fig. 2,

wo die Componenten gerade , zur Xachse parallele Linien sind,

dass in der zugehörigen Reihe nur die Glieder vorkommen, deren

Indices 1, 2, 4, 8 etc. sind; alle übrigen sind bei der Rechnung

ausgefallen. Bei dem Falle Fig. 3 kommen nur Glieder mit un-

geradem Index vor u. s. w.

Die erste der Componenten, welche nur einen Zweig hat, ist

die darstellende f (x) selbst, da diese innerhalb der Gränzen x =
und X = n gleichwerthig ist mit + f[± {r — ^j 2n}].
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Aus der Figur ist auch die Zeichenfolge der Coefficienten

der dargestellteQ Reihenglieder zu erkennen. Denn da

+ / [+ (m i:-— ^m2 7r)] zwischen w= und x=— gleichwerthig ist

mit + / (m x), so würden, wenn z. B. alle Coefficienten Ä positiv

wären, die ersten Zweige linker Haod in der Zeichnung bei allen

Componenten die nämliche relative Lage zur Xachse haben. Die

Zeichenfolge der Coefficientenreihe ist also mit Leichtigkeit aus

der relativen Lage der ersten Zweige am linken Rande der Zeich-

nung zu entnehmen. Die aufrechten haben Coefficienten mit gleichem,

die verkehrten solche mit entgegengesetztem Vorzeichen,

Es sei noch vorausgeschickt , dass die Handhabung der

Hilfsgrösse c etwas ausführlicher in den beiden ersten Beispielen

erörtert ist. Diese dürften daher etwas breit erscheinen, was der

Leser mit Rücksicht auf den angestrebten Zweck entschuldigen

wolle.

Beispiel L Fig. 2. Sei gegeben F (x) = -^.

Diese Function sei in einer periodischen Reihe zu entwickeln

TT TT

nach der Function f{x) = -— x'^ = -—.

Die erste Function stellt eine zur Abscissenachse geneigte

Gerade dar. Entwickelt man sie nach sinus ganzer Vielfacher von

x^ so findet man die Coefficienten

K

2 rX . , cos W TT

^mnx dx =
2 n

Für die Grössen a^ , «2 , «3 , • • • in der Gleichung (4) hat

man daher der Reihe nach die Werthe: +1, — , -|_-—

,

2 o

1 1——, 4--F-1 • • • • emzusetzen; entwickelt man f{x) nach Fourier,

so erhält man

1 i — COS nn2 pn— I -T- sin nx dx =
n
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Die Werthe von «i, «g, «3, . . . sind also 1, 0, -g-, 0, -r-,

0, etc. Berechnet man nun aus (8) die Coefficienten ^,, Ä^, ^3, . .
.,

so ersieht man sofort, dass alle diejenigen gleich Null werden,

deren Indices nicht Potenzen von 2 sind. Man findet:

A, = -4r

^, = + 1

J.

2

Aa = :t- etc.

Die Keihe für F{üc) wird also

-f-
= ±

-f- [± (^ - Ci 2/r)]V -y t[± (2^ - ?2 27r)]" +

Da [+ (wj? — CdStt)]" stets
-f- 1 ist, so wäre die Reihe

j7 TT/ 1 1 \— =y(l-f. — + — + ), worin für jedes bestimmte a- eine

bestimmte Zeichenfolge gilt. Will man diese durch die Gleichung

selbst ausdrücken, so schreibt man

-f-
= T I

± *^'* "" ^«
^""^^ + 4 ^^"^ - ^' ^^^° +

4-^(4x- e. 27rr+ i- (8r - ^^ 2/r)« + . . . .

j

Die ersten 4 Glieder dieser Reihenentwickelung sind graphisch

in Fig. 2 dargestellt und unterhalb befindet sich das Resultat der

Superposition , wenn man bei dem 4. Gliede abbricht. Man er-

kennt ohne Weiteres die Zulässigkeit der Reihenentwickelung,

welche für diesen Fall auch nach § 3 mit Strenge bewiesen ist.

Will man durch Rechnung das Resultat für irgend einen

bestimmten Werth von x bestätigen , so handelt es sich nur um
die Bestimmung der Hilfsgrösse p und der Zeichenfolge. Pn ist

definirt durch die Gleichung
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nx .

17= «°±''

1
WO Cn eine ganze Zahl und -^ ">- ^ ">- sein muss. Die Bestim-

mung vollführt sich bei einem bestimmten x für die ganze Reihe

der Glieder sehr einfach, wenn man folgendermassen verfährt.

Da X zwischen und n liegt, so kann man es einen aliquoten

Theil von tt, z. B. — nennen. Dann lautet die Bedingung für ^^

n
'23 ?n i 5.

Man schreibe also zu der Reihe der Indices n die nächst-

gelegenen ganzen Vielfachen von 2z auf; diese Vielfachen e^ 2s

verglichen mit den n entscheiden über das Vorzeichen, denn nach

der Definition gelten in unserer Reihenentwickelung die oberen

nx
oder unteren Zeichen, je nachdem

nachdem w ^ ?n • 2^ ist,

t 1

gende Tabelle:

2n
^n, das heisst also, je

Wählt man z, B. i:* = -—
•, also ^ = 3, so erhält man fol-

o

n
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Die geometrische Reihe in der Klammer hat aber die Summe

-^, also ist y= -^, was den geforderten Werth von F{x) dar-
o b

stellt.

2 3
Für X = -^ n^ also z = -^, ergibt die Rechnung in ana-

loger Weise

Setzt man ferner der Reihe nach

T =—,-=-, -TT, jT-, .. ., so findet man für die Vorzeichen
5 7 9 11

der Glieder resp. Folgendes:

+ + + 4-H
+ H 1 H
4. ,_4_^ + + H

-l- h- + + H 1 h-
Die Absolutwerthe bleiben dabei stets die Potenzen von

1— und bekanntlich lassen sich diese Reihen mit periodischer

Zeichenfolge durch einen ähnlichen Kunstgriff summiren, wie es

bei der einfachen geometrischen Reihe geschieht. Man erhält für

die den obigen x entsprechenden Ordinaten die Werthe

TT n n TT

lÖ' 14' 18' 22' •

•

Bisher wurden nur solche Werthe des ^ gewählt, bei welchen

keine Sprünge der periodischen Componenten stattfinden; auch

an diesen Stellen gilt die Reihe. Wir setzen z. B. x = — und

suchen die Ordinate. Schon aus der Fig. ist ersichtlich, dass hier

ausser der ersten alle Componenten einen Sprung machen. Nach

§ 1 ist aber der Werth der periodischen Glieder an diesen Sprung-

stellen = Null zu setzen; es bleibt also nur das erste Glied der

Reihe und es findet sich sofort i^(j7) = — . Eine analoge Be-

trachtung gilt für die Stellen x = —, — etc.
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Es ist auch leicht einzusehen, dass, wenn man das x von

einer Sprungstelle aus um ein unendlich Kleines wachsen lässt,

der Werth der Function durch die Sprünge der Componenten nicht

einen endlichen Zuwachs erhalten kann. Wenn z. B. die Abscisse

zu dem Werthe — einen unendlich kleinen Zuwachs erfährt, so

ist schon aus der Zeichnung zu ersehen , dass dadurch in der

2*®° Componente ein positiver, in allen folgenden aber ein negativer

Zuwachs entsteht. Der Gesammtzuwachs von F{x) ist, wie man

leicht erkennt

-^(^_-l_i__-L_....) und dies ist in

der Grenze von Null nicht verschieden. Unsere Reihe stellt

die Function -^ vollkommen und zwar, wie man

sich leicht überzeugt, zwischen den Gränzen
— Ti und -\- -n dar; die Reihe gilt auch noch für
j:' = 0, nicht aber f ü r j:* = + tt.*)

Es sei hier die Bemerkung hinzugefügt , dass in den fol-

genden Beispielen die Bestimmung der Zeichenfolge ganz in der-

selben Weise stattzufinden hat ; nur erfordert die Bestimmung der

Absolutwerthe der periodischen Glieder, welche in dem vorliegenden

Falle sehr einfach war, eine besondere Beachtung.

Beispiel IL Wir wollen nun F{x) == sin x durch eine

Function darstellen, für welche die Entwicklung des § 2 eben-

falls zulässig ist. Sei y = f{x) die Bezeichnung einer gebrochenen

Geraden, deren Gleichung

y = X ist für <; j- <C 15- und

y = -n — ^ für -^ •< ^ •< TT.

Diese Linie stellt über der Strecke bis n der Abscissenaxe

ein gleichschenkliges Dreieck von der Höhe -^ dar.

*) Uebrigens ist die Reihe für den oben behandelten Fall an sich klar,

denn dieselbe enthält ja nichts Anderes, als die Regel zur Darstellung einer

beliebigen Zahl nach dem Zweiersysteni.

6
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Es ergibt sich bei der Entwicklung nach sinus ganzer Viel-

facher von cc zunächst

OTn = 2 P . 2 P^— jf{ir) sian X dx =— Ix sinnx dx -\-

IT

H / (^ — ^) sin nxdx.

7

4 sin
oder «n == — 2 ; es fehlen also die Glieder

n

mit geradem Index und es ist

-. . 4 /sin i? sinSj- sin 5j- _ \
/^w = V Ct^ 33- + -gl- + • • •)

Von den Coefficienten a der Entwicklung für F{x) werden

alle Null, bis auf den ersten, welcher -\- 1 ist.

Die Berechnung der Gleichungen (8) ergibt für die Coeffi-

cienten A folgende Gesetze:

1. Alle Glieder mit geradem Index werden Null; ausserdem

fallen alle diejenigen Coefficienten aus , deren Indices mehrere

gleiche Primfactoren enthalten. Z. ß.

:

A^ = A^ = Aq etc. =

Die übrigen Coefficienten haben zum Absolutwerthe den

reciproken Werth des Quadrates ihres Index multiplicirt mit -j*

2. Die Vorzeichen construiren sich nach folgender Kegel

:

Positives Vorzeichen haben ausser dem ersten Coefficienten alle

diejenigen , deren Indices unter der Porm 4 Ä — 1 erscheinen,

während diejenigen, deren Indices durch 4 /b -h 1 bezeichnet sind,

negativ werden ; Ai ist + -r-.

. 1 it . 1 n . 1 TT^ "~ P" * X ' ^ — "tT • X ' ^^ ~" 3F * T

'

1 n
Aqot >•231

231'^ • 4

.__J__7r__ 1 ^ A L_ JLA — ~ 52 • 4 '
^13— — J3T .-|-' '°» " 105^' 4

**
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Ausgenommen hiervon sind diejenigen Coefficienten, deren
Indices aus einer geraden Anzahl von (ungleichen)

Primfactoren bestehen. Diese erhalten das entgegen-

gesetzte von demjenigen Zeichen, welches aus der vorherigen Regel

folgen würde. Z. B.

. _ J_ JL 4 — i. A^ JL A — LiL
•' ~

lö-'
• 4 ' ^21 h 21<! • 4 ' ^35 35;. • 4 »

. _ 1 TT ,

Diese Coefficientenreihe ist absolut convergent, da die Summe

der reciproken Werthe aller Quadratzahlen mit jeder Zeichen-

folge nach einem bestimmten endlichen Werthe convergirt.*)

Für dieses Beispiel also ist die Giltigkeit unserer Reihenentwicklung

erwiesen. Für den vorliegenden Fall muss man, um die Reihe

hinzuschreiben, sich des Functionszeichens für das allgemeine Glied

bedienen, da f {x) nicht in gewöhnlicher Weise durch eine ein-

zige Gleichung ausdrückbar ist.

Zum Verständniss ist in Fig. 3 das Ergebniss durch graphische

Superposition der 4 ersten Componenten der Reihe dargestellt.

Wegen der Deutlichkeit ist der Massstab der Ordinaten vergrössert

angenommen gegen die Abscissßnwerthe. Man sieht, wie sich bei

Berücksichtigung weniger Glieder die durch Superposition erhaltene

gebrochene Linie schon enge an die sinus-Curve anschliesst.

Nebenbei sei bemerkt , dass aus diesem Falle convergente

1
Zahlenreihen für —- gewonnen werden können. Setzt man z. B.

TT

s = — und berechnet wie im vorigen Beispiel die ^ , so findet

sich, dass man das Zeichen für die Coefficienten vom Index 4 Ä; — 1

*) Bekanntlich ist

/
iQO

dx J__ J_ _!_ J_

Das Integral hat aber den Werth 1, daher convergirt die Reihe mit

jedem Zeichenwechsel, also auch, wenn wie oben eine unbegrenzte Zahl von

Gliedern fehlt.

6*
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umzukehren und mit -^ zu multipliciren hat. (Man ersieht dies

auch aus der Fig. 3.) Die Reihenentwicklung muss also liefern:

2 '
^^^

2

oder nach Substitution der Werthe für A1111 1

^3 -^ + ^5 4- — ^7 -|- ± •

= 1
3<' 5<^ 72 ir^ 13''

1

15''

Setzt man j- == — , so erhält man zur Berechnung der

Werthe der Glieder folgende Tabelle:
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Für X = -^ gilt folgende Tabelle:

Benachbarte Viel- Werth von

?n ±/[±(»i^-?n27r)]

TT

wobei Ä^ = A^^ = Ä^i = . . . = zu setzen sind; oder

^ = 1 - + -^
3 ^ 3'^

J_ _1_
5'^ ' 3

Die Gesetze für die Zeichenfolge dieser Zahlenreihen sind
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complicirt, lassen sich aber, wie man sieht, unmittelbar aus der

Coefficientenreihe herleiten. Bei Berücksichtigung der Glieder bis

zum Index 100 liefert die Berechnung dieser Eeihen die gefor-

derten Resultate bis auf Einheiten der 4. Decimale.

Beispiel III. Wir setzen F{a') = sm x-, f{x) = nx — x^;

das letztere bedeutet einen über der Strecke bis ix ausgespannten

1 71^

Parabelbogen vom Parameter -^ und der Scheitelhöhe —. Zur

Bestimmung der a haben wir in diesem Falle die Gleichung

/(nx — x'^) sin ns dx oder«n =

4 co^nn— 1

Für gerade n ist cos w rr = + 1 , also «n = 0. Für un-

A •, i A
4-281

gerade n ist cos n tt = — 1 und «„ = . —r-=— . —

r

Es ist also

^ , . 8 / . . sin 3 ir . sin 5 ir . \
t{x)^— (^mx +—^ + -^ + . ..)

Diese Reihe gibt, nebenbei bemerkt, einen Ausdruck für tt';

setzt man or = ~, so ist / {x) = -j-, also

^_l_i- . i-_jL+ J_:F:

Denkt man sich nun in unserem Theorem die Componenten

aus solchen (aufrechten und verkehrten) Parabelbögen gebildet

und entwickelt nach ihnen F{x) = sin x, so findet man folgende

Coefficientengesetze

:

1. Alle Coefficienten mit geradem Index fallen aus, des-

gleichen diejenigen, deren Indices mehrere gleiche Primfactoren

enthalten.

A^^: A^-=. A^ etc. =
^9 = ^„ = ^„ = A^^ etc. = 0.
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2. Die übrigen haben zu Absolutwerthen die reciproken Guben

ihrer Indices multiplicirt mit-Q-; hierbei sind die Vorzeichen ne-
o

gativ, wenn der Index Primzahl ist, (ausser dem ersten) oder

überhaupt, wenn der Index sich in eine ungerade Anzahl von

Primfactoren zerlegen lässt. Äi ist +-^-

._i7r. in.

^.05— i053'8' '"" 165^*8'

Lässt sich der Index in eine gerade Anzahl von Primfactoren

zerlegen, so ist das Vorzeichen positiv.*)

Die Coefficienten convergiren absolut und sehr rasch. Setzt

man j-=-^, so findet sich leicht, dass dann werden muss:

l= -r-{Äi ~ Ä3-\-ä^—'Ät +...) oder, wenn man für die

A ihre Werthe setzt,

7r3 ^^33 53^73^113 133 153 173^

+ -r777 +
1

193 ^213'"*

Es lässt sich vermuthen, dass auch noch andere parabolische

Curven, deren Scheitel in der Ordinate für j'^— liegen, rasch

convergente Entwicklungen für sini;" liefern werden.

Beispiel IV. (Fig. 4.) Ich wiU nun an dieser Stelle ein

Beispiel einschalten , für welches die Ableitung des § 2 nicht

*) Man kann dieses Coefficientengesetz durch eine einfache Formel

darstellen: Die Indices der in der Eeihe vorkommenden Coefficienten haben

die allgemeine Form (p.q.r. . .t), wo j9, g, etc. von einander verschiedene

Primzahlen mit Ausnahme von 2 sind. Ist l die Anzahl dieser Factoren des

Index, so ist der Werth des Coefficienten

^(jp.q.r...t)=—t^
{jp.q.r...tf
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ausreicht. Sei F(.r)= siuj' und /'(j')=—- . j*% so findet man für

die Coefficienten A folgende Regeln, welche mit denen des vorigen

Beispieles fast übereinstimmen.

1. Alle Coefficienten, deren Indices gerade Zahlen sind, oder

mehrere gleiche Primfactoren enthalten, werden Null; z. B.

^2=^4 =A etc. =0.

^= ^25= ^7= ^45 etc. =0.

2. Die übrigen haben zum Absolutwerth den reciproken

Werth ihres Index. Das Vorzeichen findet sich genau nach der

Regel des vorigen Beispiels; es ist negativ bei ungerader, positiv

bei gerader Primfactorenzahl des Index. Ausgenommen ist nur

^ = 1.

^3 =

Di
gi

tis
ed

 b
y 

th
e 

Ha
rv

ar
d 

Un
ive

rs
ity

, E
rn

st
 M

ay
r L

ib
ra

ry
 o

f t
he

 M
us

eu
m

 o
f C

om
pa

ra
tiv

e 
Zo

ol
og

y 
(C

am
br

id
ge

, M
A)

; O
rig

in
al

 D
ow

nl
oa

d 
fro

m
 T

he
 B

io
di

ve
rs

ity
 H

er
ita

ge
 L

ib
ra

ry
 h

ttp
://

ww
w.

bi
od

ive
rs

ity
lib

ra
ry

.o
rg

/; 
ww

w.
bi

ol
og

ie
ze

nt
ru

m
.a

t



89

Setzt man .r=-^, so muss

sin-^=-^jvli-^-|-A-A+^T-.-5 oder

4—= J.1 — J.3 + . . . werden.
n

Für ^= -n- ergibt sich die periodische Zeichenfolge

++ H und es niuss

^m^= ^\A^+A^-\-A,—A,— A,-A,^...\

2
oder —= A^-{-A.i-^A^—At werden u. s. w.

Die Rechnung liefert die entsprechenden Werthe mit einer

x4.nnäherung, wie sie bei der schwachen Decrescenz der Coefficienten

nicht besser erwartet werden kann, so z. B. bei der Gliederzahl

bis zum Index 100 im ersteren Falle 1,287 anstatt 1,273, im

zweiten 0,627 anstatt 0,636 u. s. f.

Einen besonderen Zweifel könnten die Spruugstellen der Com-

ponenten und deren Nachbarschaft veranlassen. Wir wollen daher

einige derselben prüfen. Die Reihe gilt für x= {) und T= 7r, da

hier alle Componenten nach der Definition Null sind. Wächst x

von dem Werthe um ein unendlich Kleines, so springen die

Componenten sofort auf die Werthe J., -j- , ^3-7-, A^-^^ etc.,

da ja für die ersten Zweige linker Hand in der Figur die oberen

Zeichen der Reihe gelten. Man erhält also durch Superposition

unendlich nahe beim Anfangspunkte der Coordinaten die Ordinate

y=^\A,^A,+A,+ ...\r=^.8.

Soll die Giltigkeit für diese Formel bestehen, so muss, da

sin X für verschwindende x selbst verschwindet, S den Grenzwerth

Null haben. Dies bestätigt nun sowohl eine directe Berechnung

sehr vieler Glieder, als folgende Betrachtung.*) Die Glieder der

*) Dieser Betrachtung will ich übrigens keinen höheren Werth hei-

messen, als der directen Berechnung vieler Glieder, denn die Darstellung

der vorliegenden Zahlenreihe in Form eines Productes ist nicht frei von

Einwänden.
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Summe S lassen sich nämlich auch darstellen, indem man das

fortlaufende Product aus Binomen

0-|)0-|)0-|)04)-
ohne Reduction ausmultiplicirt, wohei die Nenner die Primzahlen

durchlaufen. Es lässt sich zeigen, dass dieses Product verschwindet

bei unbegrenzter Factorenzahl. Zunächst ist der Grenzwerth des

Productes

in welchem die Nenner durch alle ungeraden Zahlen gebildet

werden, bekannt, denn es ist dieses Product beim /t^en Pactor

abgebrochen

3 5 ' 7 • 9 •2;b-|-l ^(2Ä;+1) {2k+ l){2k)l

Bekanntlich ist aber

1 oder 1cl= y^2nh.{—)

kl

für sehr grosse Ic. Dies auf unseren Fall angewandt, gibt

Ok = ^, ^
, oder —-l/^m der Gränze.

^ 2Ä;+ 1 2 r Je

Dies verschwindet aber, daher a in der Gränze Null wird.

Nun ist S kleiner, als der Werth, welchen er annimmt, wenn

man in letzterem Producte den 2., 4., 6. etc. Factor weglässt,

da diese Factoren jedenfalls viel dichter gedrängt sind, als die-

jenigen, deren Nenner nicht Primzahlen sind. Es ist kurz

2 6 10 ^^

Nun ist aber

(r=(y.y.Yj....)(y.yj3....) = v.M^, wobci offenban;<M;

und v'^<ivw. Da nun (r= v.wz=\[m-^y -y, also jedenfalls
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auch v^<liiii"2' r "^ oder 'y<V^ "ö" ^ X "'^^ -S^v, so

4

ist iS< 1/ -^y -T- oder bei wachsendem Je verschwindet S.

Die Reihe gilt also auch in unendlicher Nähe des Coordinaten-

anfaDgspunktes, desgleichen in der Nähe von ^= 7r.

Gehen wir nun zu einer Sprungstelle auf der Strecke zwischen

und n über. Für ^= -^ z. B. springen alle diejenigen Com-
o

ponenten, deren Indices Vielfache von 3 sind. Diese werden hier

Null und die Ordinate der darzustellenden Curve hat den Werth

oder es mnss—y^=Äi—A.-\-Ä.—Äii +... werden. Die

Rechnung gibt bis zum Index 100 die Zahl 1,102 anstatt 1,097.

Lassen wir .r noch um ein sehr Kleines über diese Sprung-

stelle hinaus wachsen, so erhält die Ordinate den Zuwachs

wie durch eine einfache Betrachtung zu finden ist. Setzt man aber

für die Ä ihre Werthe aus dem obigen Coefficientengesetze ein,

so ersieht man sofort, dass die Glieder der Summe s auch dar-

gestellt werden können durch Entwicklung des Productes

s= -^|l — —||l——)|l— —)...., in welchem die

Nenner durch die Reihe der Primzahlen gebildet werden. Daraus

würde folgen:

(^-1)
7 = S oder s=— ßf,

___ ^
3

unter S die oben bereits betrachtete Summe aller Ä verstanden.

Wenn diese verschwindet, so verschwinden auch .s und 2. Die

directe Berechnung von s bestätigt die Convergenz nach dem

"Werthe Null. Beim üeberschreiten der Sprungstelle j:= -^ er-
o
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fährt also die Ordinate keinen endlichen Zuwachs. Eine ähnliche

Betrachtung lässt sich auch bei allen übrigen Sprungstellen wieder-

holen.

Da die Reihe für die obigen Werthe von x gilt, so ist es

erlaubt zu schliessen, dass nun auch die Giltigkeit für jeden Werth

von X zwischen und n besteht, denn es gibt ja keinen Punkt

auf dieser Strecke, in welchem die darzustellende oder darstellende

Function durch irgend eine besondere Eigenthümlichkeit von den

bereits geprüften Stellen verschieden wären. Wenn nun auch diese

inductive Schlussweise nicht den Werth eines strengen Beweises

hat, so dürfte sich doch in dem vorliegenden Falle kaum ein

ernstlicher Einwand gegen dieselbe erheben lassen.

Es wäre nun weiter durch Anwendung des § 3 zu folgern,

dass auch die gebrochene Linie des Beispiels II und der Parabel-

bogen des Beispiels III durch / (i?)=
-^ periodisch darstellbar sind.

Beispiel V. Es sollen zum Schluss noch einige Beispiele

hinzugefügt werden, bei denen die darstellende Function f{x) oder

die darzustellende F{x) auf der Strecke bis n discontinuirlich

sind. Sei f{x) eine Function, welche folgenden Verlauf habe

= g- für 0<j:'<-^

n „.. 2n= -g fury<.r<7r;

_ f)_

hier macht also f{x) im x=— und -^ Sprünge und diese konmien
o o

natürlich auch in den einzelnen Zw^eigen aller übrigen periodischen

Componenten (s. Fig. 5) vor. Nun ist «„ gegeben durch die

Summe dreier Integrale

2 Pn . ^ 2 Pn . ^ 2 Pn .

,«„= — I —smnxdx-4— 1 -^smnxdx-\— 1 — smnxdx
nj 6 nj 3 nj 6

TT
2~

2 ii ,. nn . nn 1
j

oder «„=^5— — +-sm-7r-sm-^ — coswrr .

3n 2 2 6 2 \
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Dies ist Null für alle geraden n und solche, welche Viel-

fache von 3 sind; für alle übrigen Werthe von n ergibt sich

«0= —; es ist also
n

j, ^ . sinöj- sin 7^ . sin 11 j7 sin 13^

Die zu entwickelnde Function sei der Einfachheit halber

F{x) = — . Die zugehörigen a sind aus den vorigen Beispielen

bekannt. Für die A ergibt sich das einfache Gesetz

A =H-1

1

^,=+ 27
®*^'

Alle übrigen verschwinden. Die Fig. 5 zeigt die Superposi-

tion der 3 ersten Glieder. Da hier f{x) so gewählt ist, dass man

dieselbe zwischen und n nicht durch einen geschlossenen Aus-

druck darstellen kann, so muss man sich mit der Form

^(^)= |=±l-/[±(^-?i2;r)]±i/-[±(3^-?327r)]+....

begnügen, in welcher jedoch / die obige specielle Bedeutung hat.

1
Da die Absolutwerthe der Coefficienten die Summe — haben , so

ist die Entwicklung zulässig. Für a; = -^ ist beispielsweise

2'~3 9^27 81-'" 4'

An den Stellen, an welchen die Componenten springen, also

doppelwerthig sind, soll nach § 1 der Mittelwerth der beiden zu-

gehörigen Ordinaten genommen werden. So springt z.B. bei J'=-ö"

das erste Glied der Reihe von — auf -r. Bei der Superposition
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(Fig. 5) ist also der Werth — (-|- -|- ^) == -^ zu setzen. An dieser

Stelle springen alle übrigen Glieder von ihren positiven auf die

entgegengesetzten Werthe. Ihre Werthe sind Null und die Reihe

liefert also f(^)= 4-.

Ist s= —, so ist das erste Glied -r, das zweite -jt-I-tt4—rrir

= T^alle übrigen Glieder sind Null , also F(--\z=:-rT4--r^ = -r
12 ° 19/ 6 ' J2 4

u. s w. Es bestätigt sich also wiederum die Giltigkeit der Reihe

für die Sprungstellen, wenn man für diese nach der Definition

die Mittelwerthe gelten lässt.

Umkehrung. Wenn man in dem eben behandelten Bei-

spiel die darstellende Function zur darzustellenden, die dargestellte

zur darstellenden macht, so erhält man die Coefficienten

1

Äi = -{-l, Äi =— j.

Alle übrigen fallen aus und die nur aus 2 Gliedern beste-

hende Reihe entspricht der Fig. 6 ; ihre Giltigkeit ist daher selbst-

_ o _

verständlich. An den beiden Sprungstellen x= -^ und jr = —

—

ö ö

TT

ist der Werth des ersten Gliedes — , der des zweiten Null. Die
4'

Reihe liefert also Fix) = -j. An diesen Stellen springt die dar-

zustellende Function von -r auf — (und umgekehrt). Die Reihe

liefert also das arithmetische Mittel aus den benachbarten Functions-

werthen, wenn die zu entwickelnde Function discontinuirlich wird;

sie stimmt also in dieser Beziehung mit der Entwickelung

nach Fourier überein.

Beispiel VI. Wir wollen noch an einem zweiten sehr über-

sichtlichen Falle die Entwicklung nach der unstetigen Function

des vorigen Beispieles zeigen. Es sei darzustellen die geneigte

gerade Linie

„, , x . sin 2^', sin 3 a: sin4j' .

F{a^)= ^=smx 2-+-3 r~^'-'
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Die darstellende Function sei, wie vorher

/,, , . , sinöj- , sin7i7 , sinUr ,

f{x)= sms-\ g
1

^
1 ^j h---

Für unsere Coefficientenreihe gelten folgende Regeln:

1. Alle Coefficienten werden Null, deren Indices nicht aus-

drückbar sind durch Potenzen von 2 oder 3 oder durch Producte

dieser Potenzen

J.J = J.;=uäio=^ii etc. =0.

2. Die Absolutwerthe sind die reciproken Werthe der Indices.

Positives Zeichen haben hierbei die Potenzen von 3, alle übrigen

erhalten negatives Zeichen.111
^1 = 1, ^= -3, ^=-91 ^2:=^ etc.

Diese Coefficientenreihe absolut genommen lässt sich dar-

stellen durch Entwicklung des Productes der beiden Potenzreihen

^ ^2^ 4^ 8^ -'^ ^ 3^ 9^27^ / 2

Die Entwicklung ist also jedenfalls zulässig, was man leicht

für eine Anzahl von Punkten bestätigen knnn.

Auch J^(.r)= sini: gibt bei der Darstellung durch obige

unstetige Function ein einfaches Coefficientengesetz. Man erhält

dasselbe unmittelbar, wenn man von den Coefficienten des Bei-

spiels IV diejenigen Null setzt, deren Indices Vielfache von 3

sind. Dieser Fall muss wiederum durch eine Betrachtung für sich

bestätigt werden.

Beispiel VII. Es sei noch hinzugefügt, dass die darstel-

lende Function unter Umständen für rc= — einen kleineren Werth

haben darf, als an anderen Stellen der Strecke x= bis x = n.

Setzt man

Di
gi

tis
ed

 b
y 

th
e 

Ha
rv

ar
d 

Un
ive

rs
ity

, E
rn

st
 M

ay
r L

ib
ra

ry
 o

f t
he

 M
us

eu
m

 o
f C

om
pa

ra
tiv

e 
Zo

ol
og

y 
(C

am
br

id
ge

, M
A)

; O
rig

in
al

 D
ow

nl
oa

d 
fro

m
 T

he
 B

io
di

ve
rs

ity
 H

er
ita

ge
 L

ib
ra

ry
 h

ttp
://

ww
w.

bi
od

ive
rs

ity
lib

ra
ry

.o
rg

/; 
ww

w.
bi

ol
og

ie
ze

nt
ru

m
.a

t



96

= j für 0<a;<-|-

und entwickelt F{x) = —, so werden alle A zu Null, ausser

11 1
J.j=l, A-^=— —

,
J.9=:— , ^27 = — "öy ®''^-

Die Keihe ist auch hier anwendbar.

§5.

In der allgemeinen Betrachtung wurde die Wahl der zur

Keihenentwicklung benutzten Functionen ganz offen gelassen. Man

überzeugt sich leicht, dass für diese Wahl Beschränkungen existiren,

wenn auch ein allgemeiner Ausdruck für dieselben vorläufig nicht

gegeben werden kann. Unmittelbar einzusehen ist allerdings, dass

der erste Coefficient a, der darstellenden Function, wenn man

diese nach Fourier in den Sinus ganzer Vielfacher von x ent-

wickelt, nicht verschwinden darf, da sonst die A der Reihe (10)

unendlich werden.

Ausserdem findet man bei der Anwendung der Reihe manche

Fälle, in welchen dieselbe unbestimmte Werthe liefert. Hierbei

kommt es vor, dass die Reihe für gewisse charakteristische Punkte

der darzustellenden Curve giltig sein kann, während sie andere

Punkte unbestimmt lässt. Ich will dies der Vollständigkeit halber

wenigstens an einem Beispiele erläutern.

TT Qß

Beispiel VIII. Sei F{x) = -t, f(x)=— , so findet man,

dass ^j = 1, ferner:

^2 = ^4= ^8= ^16 etc. =-.

Alle übrigen Coefiicienten werden Null. Die Reihe ist graphisch

durch Fig. 7 verdeutlicht. Sie wäre zu schreiben:
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x—£^2n
,

1 2x— e^2n
,

1 4a;— e427r

2 ' 2

da die Doppelzeichen hier stets + liefern und die Vorzeichen

durch die Werthe des f an sich bestimmt sind. Obschon nun die

Coefficientenreihe divergirt, so werden alle Ordinaten an den Sprung-

stellen der periodischen Glieder richtig dargestellt.

für x= -Tr ist y= ~4-0-\-0—
2 4

n TT , TT

» ^=^j n 2/=g-4-g-hO....

Sn Stt TT
, ^

TT n . n . n

• "^=8
' 2'= l6 + 16+8+*^--

' ^=T " 2'=16+T6-8+*'-- -'•"

Für andere x erscheint der Werth der Reihe unter unbe-

stimmter Form, z. B. für 3^=-^
6

2/=l-jl+ l-H-l-l + ....j

Je nachdem man diese Summe beim 2¥^^ oder (2Ä;-f l)*^»!

Gliede abbricht, erhält man ^ oder ^, d. h. das Resultat schwankt
6 b

um den geforderten Werth -j herum; u. s. f.

X ' •

Auch F{x)= ^vü.x^ nach /(a;)=— entwickelt, gibt em

ganz ähnliches Resultat.

In den Beispielen des vorigen Paragraphen, in welchen die

Reihe als zulässig erwiesen wurde, war / {x) stets so gewählt, dass

Tt

ihre graphische Darstellung eine zur Ordinate bei ^= -^ symme-

trische Figur bildete, kurz es war stets f\i)= t{ß — ^)- Ic^

muss an dieser Stelle bemerken, dass diese Eigenschaft nicht mass-

gebend ist für die Zulässigkeit, wie man aus den Beispielen leicht

7

Di
gi

tis
ed

 b
y 

th
e 

Ha
rv

ar
d 

Un
ive

rs
ity

, E
rn

st
 M

ay
r L

ib
ra

ry
 o

f t
he

 M
us

eu
m

 o
f C

om
pa

ra
tiv

e 
Zo

ol
og

y 
(C

am
br

id
ge

, M
A)

; O
rig

in
al

 D
ow

nl
oa

d 
fro

m
 T

he
 B

io
di

ve
rs

ity
 H

er
ita

ge
 L

ib
ra

ry
 h

ttp
://

ww
w.

bi
od

ive
rs

ity
lib

ra
ry

.o
rg

/; 
ww

w.
bi

ol
og

ie
ze

nt
ru

m
.a

t



98

vermuthen könnte.*) Im Allgemeinen existirt eine solche Be-

schränkung jedenfalls nicht, da auch leicht Beispiele für das Ge-

gentheil anzuführen sind. Setzt man z. B. F{t)=— und

l für 0<a:<|
f{x)=

[
, so folgen die Coefficienten

^ für ^<x<Ti
b 2

11 1
Ai = l, Ä2=——, -ä^ =— , Ag= —— etc.

Die übrigen werden Null und es ist sofort ersichtlich , dass

die Reihe auch hier Giltigkeit hat.

Es scheint jedoch die Entwickelung nicht zulässig zu sein

in solchen Fällen , in denen die darstellende Function zwischen

j«= und n auf einer oder mehreren endlichen Strecken den con-

stanten Werth Null hat, während zugleich die darzustellende

innerhalb derselben Gränzen von Null verschieden ist; wenigstens

zeigte sich dies in einer grösseren Anzahl von untersuchten Bei-

spielen, deren Mittheilung zu weitläufig sein würde.

Die Mehrzahl der Beispiele, welche ich im vorhergehenden

Paragraphen zur Erläuterung anführte, hat keine specielle Be-

deutung für die physikalischen Zwecke der Untersuchung. Ich habe

dieselben dennoch wegen der eigenthümlichen Zahlenreihen mit-

getheilt, welche sehr häufig bei der Coefficientenberechnung zum

Vorschein kommen. Vielleicht können diese periodischen Reihen

unter Umständen in der Zahlenlehre brauchbare Dienste leisten.

Endlich sei noch bemerkt, dass die in Obigem durchweg

gebrauchte Bezeichnungsweise für die darstellenden periodischen

Functionen vielleicht etwas zu weitschweifig erscheinen mag; man

kann dieselbe ohne Schwierigkeit durch eine kürzere ersetzen.

Ich bin jedoch iu den folgenden Abschnitten bei der ursprünglichen

Form stehen geblieben, da dieselbe zu numerischen Berechnungen

ganz geeignet ist.

*) In meiner bereits oben citirten „vorläufigen Bemerkung" vermuthete

ich, dass eine solche Beschränkung bestehe, was hiermit seine Berichtigung

findet.
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§ 6.

Wir wollen nun unsere allgemeinen Betrachtungen fortsetzen

und zunächst auf Grundlage der Eigenschaften des Ausdruckes

ß
(12) 2/=-^+ ßiC0Sj'4 ß2Cos2a?+ ... +ßiiCosw^+ . ...

eine zweite erweiterte Keihenentwickelung ableiten. Die obige

Function ist periodisch mit dem Intervall 2 tt, weil cos w (t+ 2 tt)=
=:cosw:r ist; es ist aber auch cosw(— t)= coswj? , also sind

die Werthe der Function dieselben für entgegengesetzte x. Hieraus

folgt die graphische Darstellung Fig. 8. Die Zweige zwischen

x= 2n und j* == 3 ::, dann — 2 tt und — n, kurz zwischen x= 2kn

und a;= (2 Ä -f- 1) TT, wo ä; alle ganzen Zahlen bedeutet, sind Wieder-

holungen des Zweiges von j*--0 bis x = n; alle übrigen Zweige

erhält man, indem man das System der vorigen um die Ordi-

natenachse umgekehrt denkt.

Fallen die Werthe der Eeihe (12) zwischen a'= und a;= 7r

zusammen mit den Werthen einer bestimmten gegebenen Function

f{x), in welchem Falle

'-ißf(x)GOsnxdx

zu setzen ist, so kann man ähnlich, wie es im § 1 geschah, eine

periodische Functionsbezeichnung einführen, indem man schreibt:

(13) . . f[±{x~^2n)] = -^+ ?iC0sx-^?^G0s2x-{~ ;

hierbei hat ^ die Bedeutung, wie in den früheren Paragraphen,

desgleichen gilt für die Wahl des Vorzeichens dieselbe Eegel.

Auch bezüglich der Unstetigkeitsstellen gellen die im § 1 ge-

machten Bemerkungen.

Man kann nun wieder den Versuch machen, durch ein der

Betrachtung des § 2 ganz analoges Verfahren die eben definirte

periodische Function zur Entwickelung anderer Functionen in Reihen

zu benutzen. Sei also gegeben

(14) .... F(;r)— •^+ &, cos X -{-1)^0052 x-\ ,
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so setzen wir

(15) . F(^) =^+ -Bi2/i+-B23/.H---H-ßnt/n + . .

Die Glieder dieser Reihe sind definirt durch die Gleichung

i/n = -^ ~|- ßi COS w a: 4- ßj cos 2 w a; 4- ,

wo n die Reihe der ganzen positiven Zahlen durchläuft. Eine der

früheren ganz entsprechende Additionsweise ergibt

J5, j/,
= 5j

I
-^ -j- ß, cos a; -f- ßg cos 2 j:"+ ßg cos 3 rr -|- . . . 1

5a2/2 = ^2[y H-ßiCos2^+ ...
]

5:32/3== 53[y +ßiC0s3a; + ...]

75

Fügt man zu dieser Summe noch das unbekannte -^ hinzu

und setzt die Coefficienten der unter einander geschriebenen cosinus

mit denselben Bogenwerthen gleich den Coefficienten der Reihe

(14), so erhält man die Bedinguugsgleichuugen

&, = i?„ + ß,[5,+5,4-i?3 + ...J

&,= !?, ß.+ ^^ßj+ ^^ßi

aus denen , wie früher , die Coefficienten B zu bestimmen sind.

Bezüglich der Zulässigkeit der Reihe (15) gelten offenbar mutatis

mutandis die Bemerkungen des § 3, weshalb dieselben hier nicht

wiederholt zu werden brauchen.

Man erkennt hier sofort, dass die Summe {Bi -f- i^g 4- -^3 +• • •)

convergent werden muss, wenn B^, einen endlichen Werth haben

soll; indessen kann man hierin keine besondere Beschränkung

erblicken, denn es gilt ja auch für die Reihe (12) nach Fourier

eine analoge Bedingung; dieselbe gilt nämlich auch für x= 0,
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woraus folgt, dass die Summe (ßj -f- P2+ ßa + • • •) einen endlichen

Werth haben muss. — üebrigens könnte man zur Vereinfachung

p

der obigen Formeln y^
—K-^'^n setzen und nun nach -Sn ent-

wickeln.

Unsere Betrachtung führt also zu einer Keihe, welche sich

zur Darstellung von Functionen gemäss Gleichung (9) gerade so

verhält, wie die Entwickelung nach sinus ganzer Vielfacher (Fourier)

zu jener nach den cosinus. Durch Einführung von f{x) an Stelle

unserer y erhalten wir die Form

(17) ^

wobei die Bedeutung des ^n aus dem Früheren zu entnehmen ist.

In der graphischen Darstellung hat diese Reihe die Deutung,

dass die Ordinaten einer darzustellenden Curve hervorgehen aus

der Superposition der Ordinaten von periodischen Componeuten,

welche die an Fig. 8 erläuterten Eigenschaften haben.

Da, wie schon erwähnt, die Gleichung (12) auch für die

Gränzen x= und x= n giltig bleibt, da also, wie aus der

Fig. 8 zu ersehen, die einzelnen Zweige der periodischen Compo-

nenten sich stetig an einander schliessen, so ist keine besondere

Rücksicht auf diese üebergangsstellen zu nehmen; zwar wird im

allgemeinen Gliede

yn= f[±{n^—^n2T:)']

TT

für x= (2^+1)— der Werth des ^n zweideutig; denn es wird

hier TT—= ^+-77 , also Cn sowohl =ä;, als auch =ä;-|-1; wir

haben also, je nachdem wir wählen

^jj= ^, jt_|_ -^^^^ (Jas obere Zeichen, oder

^„= jt-|-l7 also ^H--^<CCni das untere Zeichen zu

setzen. Dann erhalten wir für y^ die beiden Werthe

/"rw(2Ä+l)-^-Ä;.27r]=/(7r) oder
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also in beiden Fällen denselben Functionswerth, wie auch un-

mittelbar aus der Figur hervorgeht. Bei zweideutigem ^ ist es

also gleichgiltig, welcher Werth gewählt wird und die Entwickelung

bleibt daher giltig bei allen üebergangsstellen der periodischen

Componenten.

Endlich ist zu bemerken, dass die Keihe (17) selbst wieder

die periodischen Eigenschaften der Keihe (12) besitzt; sie liefert

nämlich gleiche Werthe für entgegengesetzte x und ist periodisch

mit dem Intervall 2n. Schreibt man in (17) F[+{a^— Ci 27r)]

anstatt F{x), so gilt die Gleichung von sz=z— oo bis rK= 4-co.

Einige Beispiele werden genügen, um die Anwendung zu zeigen.

Beispiel IX. F{x)= cosx, f{x)= x oder nach (13) ent-

wickelt

,, . n Ar , cos3.r . cos5a: , t

Die Anwendungen der Gleichungen (16) ergeben das Kesultat,

dass die Coefficienten 5^ , B^, B^ . . . ihrem Absolutwerthe nach

mit den J.j , Ä^^ ^3 • - des Beispieles II in § 4 identisch sind.

Die Zeichenfolge erhält man, indem man in letzterem Beispiele

das Vorzeichen aller derjenigen A ändert, deren Indices die Form

4Ä-J-1 haben. So ist z. B.

B,= B^= B, etc. =0
B,= B,, = B,, = B,, etc. =0

Dieses Eesultat lässt sich durch Betrachtung der zu Bei-

spiel II gehörigen graphischen Darstellung (Fig. 3) sofort ver-

stehen. Denkt man sich dieselbe nämlich über xz=n hinaus

erweitert, so sieht man unmittelbar, dass der Verticalstreifen der

Zeichnung, welcher zwischen die Ordinaten für x= -^ u.x=-^

fallt, nichts weiter ist, als eine graphische Darstellung von cosa;

zwischen und n, erhalten aus der Superposition von periodischen
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Componenten, wie sie in dem vorliegenden Falle gefordert werden.

Nur sind diese periodischen Componenten in der Zeichnung, wenn

sie für diesen Fall passen sollen, je um eine gewisse Grösse in

der Kichtung der Fachse verschoben zu denken. Man hat hierbei

jede der Componenten so weit nach oben oder unten zu verschieben,

dass die Spitzen der Zickzacklinien, welche in Fig. 3 in der

Ordinate bei ^= -ö" liegen, auf die Xachse fallen. Dann stellen

dieselben die periodischen Glieder unseres Falles graphisch dar.

Man findet nun ferner

£q =— ;r (5, + i?3+ -Bj + . . .) oder nach obiger Bemerkung

= 7r(^, — J.3 + ^5 If ...), wo die A sich auf das Beispiel II

2
beziehen. Die eingeklammerte Summe wurde aber dort = — ge-

funden, daher ist B^= 2, also -ö^=1- Es sei nebenbei bemerkt,

dass dieser Werth von -^ hier nichts weiter ist , als die Summe

der Verschiebungen, welche wir in Fig. 3 mit den periodischen

Componenten vornehmen mussten, um sie unserem Beispiel anzu-

passen, wie sich ohne weitere Erörterung einsehen lässt.

Ueberhaupt ist zu ersehen , dass alle früher behandelten

Fälle , in welchen nur periodische Componenten mit ungeradem

Index vorkommen, sich in ähnlicher Weise sofort in die Form der

Keihe (17) bringen lassen und als Beispiele für diese letztere

gelten können.

Beispiel X. F(x)= j, Kx)= x', Man erhält £i=JB,=

= £3= ... — JBn= 0. Es bleibt nur das eine Glied

2 2'^4"

Die beiden behandelten Beispiele zeigen, dass bei Functionen,

für welche die Eeihe (10) unbrauchbar wird, die Anwendbarkeit

von (17) nicht ausgeschlossen ist. — Dasselbe gilt umgekehrt;

denn entwickelt man z. B.

F{x)=^x nach f{x)=^ gemäss Glchg. (17), so haben die B

den Werth 00, und für bestimmte x ergibt die Eeihe die unbe-
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stimmte Form: +00 — co. Die Eatwickelung (17) ist also nicht

zulässig, während (10) in Beispiel 1 zu einem couvergenten Re-

sultate führte. Dies ist übrigens a priori einleuchtend , denn

/'(fl;)=— stellt bei ihrer periodischen Wiederholung nach dem

Schema der Fig. 8 auch ausserhalb der Gränzen und n eine

unendliche Gerade parallel der Xachse dar und ebenso alle anderen

Glieder der Reihe, durch deren Superposition offenbar keine andere

Curve erhalten werden kann.

§7.

Im Allgemeinen und besonders bei physikalischen Anwen-

dungen wird die Eutwickelung von Functionen verlangt , die in

einem weiteren Sinne periodisch sind, als es bei den Reihen (10)

und (17) der Fall ist. Sie sollen nur der einen Bedingung genügen,

dass die Functionswerthe in gegebenen, gleichen Intervallen wieder-

kehren.

Zu dem Ende kann man eifie Combination der beiden Ent-

wickelungen (10) und (17) anwenden, welche ganz ähnlich der-

jenigen ist, durch welche man von den Reihen (2) und (13) zu

der allgemeinen Fourier'sehen Reihe gelangt, die gleichzeitig nach

sinus und cosiuus ganzer Vielfacher fortschreitet.

Zunächst kann man das Intervall bis tt, welches in den

Glchgn. (10) und (17) für die darzustellende Function massgebend

war , durch eine einfache Transformation in bekannter Weise

erweitern. Es sei z. B. gefunden, dass die Reihe (10) des § 2

giltig sei zwischen und n für zwei gewisse Functionen F{x)

und f(x). Will man nun statt dieser Gränzen die Gränzen und l

einführen, so setze man in der Eutwickelung a:= a;' . -y- ; man er-

hält, indem man die Accente gleich weglässt

z

. mnx -

sin —j— d X und

OLm=-T I f\-T-) Sm —j— dx.
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Es sind die Ä durch Substitution in (8) zu berechnen. Das

allgemeine Glied der Keihe (10) heisst nun

±f[±{;^-,^2n)]= ±f[±^MX-„a2l)l

WO nun (m diejenige ganze Zahl bedeutet, welche dem Werthe

-^rj- am nächsten liegt. Die Reihe heisst dann

(18) ;

±A/"[±y(2^-e221)]±..

und sie gilt natürlich in allen Fällen, in welchen die Giltigkeit

von (10) bewiesen ist. Man kann für den practischen Gebrauch

noch einen Schritt weiter gehen und den Factor y gleich mit in

die allgemeinen Functionszeichen F und f einrechnen, wodurch

man erhält:

l l

2 Pt^, , . mnx j 2 A., , . mnx ,
aai= -j- F{x)sm—

j

—dx u. ixm= -j- f {x)sm—^

—

ax^

(19) Fix)=±ÄJl±ix-^i2l)]±ulJ\_±{2x— ^^2l)]±..

Indessen muss ich zur Vermeidung von Missverständnissen

ausdrücklich hervorheben, dass, wenn für irgend 2 Functionen F
und f die Eeihe (10) giltig ist, nur die Transformation (18) als

unmittelbar bewiesen betrachtet werden darf. Bei der Formel (19)

haben sich die a und a, somit auch die Ä geändert, daher muss

die Zulässigkeit von Fall zu Fall wieder näher untersucht werden,

so lange keine allgemeineren Anhaltspunkte für die Beurtheilung

geboten sind. Jedoch gibt es auch Fälle, in denen (19) durch (10)

bewiesen ist und der Leser wird in dem Beispiele I des § 4 einen

Beleg dafür finden.

Für die Reihe (17) ist nun ohne Weiteres eine ganz analoge

Transformation auszuführen.

Zum Schluss wollen wir nun noch erwähnen, wie man zu

verfahren hat, um eine Function im weiteren Sinne periodisch

darzustellen. Der Kürze halber setzen wir das Intervall wieder
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= 2n. Sei die gegebene Function Y=F{x), so kann man die-

selbe in zwei Bestaudtheile Y, und Tj derart zerlegen, dass

„ F{x)-\-Fi-x)

V __ F{x)- F{—x) \

Y^ + ^i = ^ ist.

•^2 Ö

Hierbei hat Fi die Eigenschaft, für -4- x und — x dieselben

Werthe zu liefern, während Y^ für entgegengesetzte x auch ent-

gegengesetzte Werthe annimmt. Y^ und Y^ haben diese characteristi-

schen Eigenschaften mit den im § 2, resp. 6, behandelten Reihen

gemein. Daher kann Fi auf der ganzen Strecke von — n bis +n
nach den cos ganzer Vielfacher von x^ oder auch nach einer

hierzu etwa geeigneten anderen Function ^{x) gemäss der Reihe

(17) entwickelt werden. Desgleichen ist Y^ durch die sinus oder

irgend eine Function ']^{x) nach Schema (10) ebenfalls zwischen

— n und + T^ darzustellen. Man hat daher

F, = -^ -4- &1 COS a; -|- &2 COS 2 a;+ . . . und

Fg= ö^i sin a; -|- «2 sin 2 a;+ . .
.

, wobei

IT +ir

2 CF{x)+F{—x) , ^ CrPr s /r A
&in = —

/

\^
' cosmxdx—— I F(x)cosmxdx und

^J 2 nj

2 rF(x)— F(—x) . , 1
am:

71

Man habe nun 2 Functionen gewählt

IT +rt

2 rF{x)— F{—x) . , 1 Ttp/ N
• ^ • ^==— I

—^-^^—^r—

^

smmxdx=— I F(x)smmxax ist.

TTJ 2 V

Cp(T)=-^+ßlC0ST+ ß2C0S2ir+ ...

c|) (^)= «1 sin 2-+ «2 sin 2 2-+ . .
.

, worin

?jjj=;— /^(i')coswxc2j- u. «m =— /cJ;(cr)sinmirc2T,

und man habe sich überzeugt, dass die nach Substitution der
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h und ß, a und a aus den Gleichungen (16) und (8) hervorgehenden

Coefficienten B und Ä absolut convergiren, oder dass überhaupt

Fl und Zg durch 9(^) und 'h(x) periodisch darstellbar sind, so

ist bewiesen, dass

(20) < ^

(± A 4^ [± {-^ - ^1 2 TT)] ± -42 i [+ (2 jr— ?j 2 TT)] +

Diese Gleichung gilt für —n<Cx<C-{~n , nicht aber im

Allgemeinen für .r= — n u. +n selbst. Hier liefert die Reihe,

F(-\- tt) -h -F( 7r)

wie die Fourier'sche , den Werth — ^-—
-. DieWerthe

der Reihe, welche zwischen xz=^— tt u. a;= 4-7r liegen, wieder-

holen sich ausserhalb dieser Gränzen nach der positiven und ne-

gativen Seite in Intervallen von je 27r, wodurch also der gefor-

derten Periodicität entsprochen ist.

Unter Benutzung der §§ 4 und 6 lassen sich nun leicht

Beispiele für diese in weiterem Sinne periodische Reihe aufstellen.

Endlich sei bemerkt, dass Reihe (20) einer Erweiterung des Perio-

dicitäts-Intervalls ebenso fähig ist, wie es bei der Reihe (10) demon-

strirt wurde und es sind bei weiterer Transformation ganz dieselben

Rücksichten im Auge zu behalten, so lange kein directes Erken-

nungsmittel für die Zulässigkeit geboten ist.

§8.

In den voraufgehenden Abschnitten habe ich die formelle

Analogie der Reihen (10), (17), (20) mit den Fourier'schen nur

deshalb bis zum Ende verfolgt, um damit anzudeuten, wie

diese Reihen zu benutzen wären. Man kann dieselben unmittelbar

auf die Zerlegung der Schwingungen anwenden. Die Reihen bedeuten

nämlich nach Einführung der Zeitgrössen als Variable die Zerlegung

periodischer Bewegungen in periodische Componenten nach einem

allgemeinen Schema, und zwar sind diese Componenten periodisch

im Sinne der Functionen der §§ 2 resp. 6. Zur Vermeidung von

Weitschweifigkeit will ich mich hierfür der Ausdrucksweise „Perio-

dicität I resp. II" bedienen. Die gedachte Zerlegung soll zunächst

an einem Beispiel erläutert werden.

Es sei die einfache Pendelschwingung ^= c sin 2 n — zu zer-
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legen in periodische Bewegungen, bei denen der bewegte Punkt

mit constanter (aber abwechselnd positiver und negativer) Bahn-

geschwindigkeit um die Ruhelage oscillirt. Die gleichförmige

Bewegung wollen wir bezeichnen durch y=^2n -yp-, welcher Aus-

druck mit einer willkührlichen Constanten multiplicirt jeder Ge-

schwindigkeit entspricht. Soll diese Bewegung eine periodisch hin-

und rückgängige sein, so können wir dies mit den bisher benützten

Hilfsmitteln in zweierlei Weise ausdrücken.

Entweder denken wir uns den beweglichen Punkt zur Zeit

T
durch die Ruhelage gehen , zur Zeit ^= -j- die grösste Elon-

gation erreichen, welche daher =— ist; dann kehre der Punkt
ij

T
um, überschreite zur Zeit f= -^ wieder die Ruhelage, um bei

3 T
t= ^-r— die grösste negative Elongation zu erreichen u. s. f.

Dieser Vorgang ist nun darzustellen, indem man die Werthe der

Function

(24) =
2nj, für 0<^<|,

(—— i\ t T T
^.._2__^= n-2n-i^ für ^<^<Y-

T
ausserhalb der Zeitgränzen und -^ nach der Periodicität 1 wie-

derkehren lässt. Wir besitzen aber noch ein zweites Mittel, denselben

Bewegungsvorgang darzustellen. Wenn wir die gleichförmige Be-

wegung zur Zeit ^= mit der grössten negativen Elongation

(— -^) beginnen lassen, so dass die Ruhelage mit positiver Ge-

T
sehwindigkeit zur Zeit t= -j- durchlaufen wird u. s. w. , so ist

T
die Bewegung zwischen den Zeitgränzen und -^

<f(2n-^) = 2n4rT-^^

Di
gi

tis
ed

 b
y 

th
e 

Ha
rv

ar
d 

Un
ive

rs
ity

, E
rn

st
 M

ay
r L

ib
ra

ry
 o

f t
he

 M
us

eu
m

 o
f C

om
pa

ra
tiv

e 
Zo

ol
og

y 
(C

am
br

id
ge

, M
A)

; O
rig

in
al

 D
ow

nl
oa

d 
fro

m
 T

he
 B

io
di

ve
rs

ity
 H

er
ita

ge
 L

ib
ra

ry
 h

ttp
://

ww
w.

bi
od

ive
rs

ity
lib

ra
ry

.o
rg

/; 
ww

w.
bi

ol
og

ie
ze

nt
ru

m
.a

t



109

Wiederholt sich dies nach der Periodicität II ausserhalb der

T
Gränzen t^=0 und -^, so ist auch hiedurch die gewünschte Be-

wegung ausgedrückt. Eine andere Ausdrucksweise nach unseren

beiden Periodicitäteu ist nicht denkbar.

Unsere A-ufgabe, die Pendelschwingung in Componenten obiger

Art zu zerlegen, läuft also darauf hinaus, (indem wir 2n-yp- = z

setzen),

F{s)^=csmz zu entwickeln nach

cp(0)= ^—— und

^(^) =
z für 0<Cz<C—

4/

Dies geschieht mit Benutzung der Keihe (20). Es ist

, . 4 i . cos 3^ . cos 5^
\

, , , 4 ( . sin 3 ^ sin 5 , {

<K^) = -|sm^ _+__ + j,

wodurch die a und p für die Gleichungen (8) und (16) gegeben

sind. Ferner ist für diesen Fall

1 r • • ^1 r .=— / C Sil

und dies ist c für m= 1, jedoch Null für jedes andere m ; ferner ist

&m=— I csmzcosmzdz= 0,

— «

daher werden in Gl. (20) alle B gemäss (16) zu Null; es bleibt

nur der Theil der Keihe (20), welcher die cj) enthält, und zwar

ist das allgemeine Glied dieser Reihe

2n
±'\>l±'^{^^t-uT)~j,
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VH t
WO ija diejenige ganze Zahl bedeutet, welche dem Werthe -=-

am nächsten liegt und die oberen, resp. unteren Zeichen gelten,

fyi f

je nachdem -^ ^ (^m ist. Die Werthe der Coefficienten A in (20)

sind dabei, wie man aus Obigem sofort erkennt, das c-fache der

Coefficienten des Beispiels II im § 4; nennt man diese Werthe

allgemein 0, so hat man die Zerlegung:

csin27r-|-=±Qc!>[±^(^-e, T)] +

welche Keihe nach § 3 zulässig ist.

Nach dem Vorgange dieses Beispiels sind auch andere Zer-

legungen zu behandeln. Man sieht ohne Weiters, dass, wenn
eine gegebene periodische Bewegung gedacht wird

als zusammengesetzt aus Componenten einer be-

stimmten Form, nur eine einzige Art der Zerlegung
nach dieser Bewegungsform möglich ist.

Man erkennt ferner, dass, obwohl sich vorläufig nicht sagen

lässt , in welchem Zusammenhange die Zulässigkeit der Keihen

mit der Natur der darstellenden oder darzustellenden Functionen

steht , dennoch unzählige Fälle existiren , in denen sowohl nach

Pendelschwingungen, als nach anderen periodischen Componenten

zerlegt werden kann, da ja unzählige Eeihen mit absolut conver-

genten Coefficienten denkbar sind. Es wäre gewiss interessant zu

untersuchen, ob sich ausser den Pendelschwingungen noch andere

periodische Bewegungen finden, nach welchen jede andere zerlegt

werden kann.

Auch auf andere Aufgaben kann die Vorstellung von der

erweiterten Zerlegbarkeit übertragen werden. Es sei hier nur noch

das bekannte Beispiel der Saitenschwingung erwähnt. Der Zustand

eines Theilchens eines gespannten Fadens ist bekanntlich allgemein

gegeben durch die Gleichung

worin und W zwei ganz willkürliche Functionen bezeichnen.

Der Ausdruck hat die Deutung, dass zwei im Allgemeinen von
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einander unabhängige Bewegungsvorgänge sich mit entgegenge-

setzten, Constanten Geschwindigkeiten über den Faden fortpflanzen.

Soll der Anfangspunkt :r= des Fadens ein Fixpunkt sein, so

folgt daraus bekanntlich

= -^,

und ist noch ein zweiter Punkt im Abstände x= l fixirt, so

folgt, dass

(|)(m)= 0(w-4-2?),

d, h., dass die Function periodisch ist mit dem Intervall 21.

Man hat also für den in zwei Punkten befestigten Faden

y= (i}{ct~\~x)-'<J){ct— x),

wobei das periodische gegeben ist, wenn man den Anfangs-

zustand der Saite kennt. Die Function ist entweder darstellbar

in den sin und cos ganzer Vielfacher der Variablen oder aber in

zwei anderen hierzu geeigneten Functionen cp und c!> , so zwar,

dass nach Gl. (20)

m=l m=l

wobei man, um den Ausdruck für y herzustellen, ct-\-x, resp.

c f — ;r für w zu substituiren hat. Die Bedeutung des c , sowie die

Zeichenwahl ist nach dem vorhergehenden selbstverständlich.

um nun bei der obigen physikalischen Deutung der Reihen

einem möglichen Missverständniss zu begegnen , muss ich aus-

drücklich hervorheben, dass durch die Vorstellung einer erweiterten

Zerlegbarkeit der schwingenden Bewegungen die Grundanschauungen,

welche den meisten physikalischen , besonders den akustischen

Betrachtungen zu Grunde liegen , selbstverständlich keine Aen-

derung erfahren. In allen Fällen, in welchen die Kräfte mit

den Verschiebungen der Theilchen proportional sind (und mit

solchen Fällen hat es ja die Schwingungsichre meistens zu

thun) hat eine verallgemeinerte Zerlegung nur formelle Be-

deutung, da hier die Pendelschwingung thatsächlich die phy-

sikalische Grundlage der Erscheinungen bildet. Andere wenn auch

analytisch zulässige Zerlegungen wird man in diesen Fällen eben-

sowenig einführen wollen , als man in der Akustik die pendel-

artigeu Schwingungen zusammengesetzt denken wird aus je zwei

entgegengesetzten Kreisbewegungen, obgleich diese Betrachtung
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geometrisch erlaubt und in der Optik nutzbringend ist (Circular-

polarisation). Man wird überhaupt unter den denkbaren Zerle-

gungen nur solche anwenden, zu welchen die Thatsachen auffordern,

wie denn ja auch z. B. die progressive Bewegung durch das Kräfte-

parallelogramm nur nach denjenigen Kichtungen in Componenten

zerlegt wird, welche bei der bezüglichen Erscheinung oder Be-

trachtung einen bestimmten Sinn haben. Daher hat eine erweiterte

Anschauung von der Zerlegbarkeit der Schwingungen vorläufig

mehr Beziehung zur Phoronomie, als zur speciellen Physik.

Indem ich also nicht glaube , in diesem Punkte missver-

standen zu werden, bemerke ich, dass nichts desto weniger eine

mehrfache Zerlegung der Schwingungen auch reelle Bedeutung

haben kann. Zunächst dürfte es nicht schwierig sein, thatsächliche

Belege hiefür zu liefern.

Nach dem am Eingange dieses § gegebenen Beispiel kann

ein zum Ohr gelangender einfacher Ton entstanden sein aus dem

Zusammentreffen periodischer Luftbewegungen mannigfacher Art.

Solche Fälle dürften sich practisch ohne Zweifel verwirklichen

lassen und vielleicht am bequemsten in folgender Weise. Der

Klang der Lochsirene ist bei der gebräuchlichen Form der Oeff-

nungen kein einfacher Ton; die Art der periodischen Luftbewegung

kann bei diesem Apparate mannigfach modificirt werden durch die

Form der ruhenden und beweglichen Oeffnungen, ihren Abstand

u. s, f. Der oben behandelte Fall z. B., in welchem die Bewegung

der Lufttheilchen in dem austretenden Luftstrome in einiger Ent-

fernung von den Oeffnungen eine gleichförmige, hin- und hergehende

sein müsste, liesse sich wahrscheinlich durch sehr einfache Formen

der Oeffnungen mit grosser Annäherung erzielen,*) Denkt man

sich nun eine solche Sirene mit concentrischen Lochreiheu, welche

in ihren Dimensionen und Lochzahlen den periodischen Gliedern

der obigen oder einer anderen noch convergenteren Entwickelung

für die Function y= csm2n-jr entsprechen, so hätte man den

eigenthümlicben Fall einer Sirene, deren einzelne Lochreihen für sich

*) Prof. Boltzmann beabsichtigte schon vor längerer Zeit die Con-

struction einer Sirene, bei welcher der Klang durch die Form der ruhenden

und bewegten Oeffnungen modificirt werden kann. Dieser Gedanke liesse sich

filso bei obigem Versuche verwertheu.
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angeblasen einen bestimmten Klang mit deutlich wahrnehmbaren

Obertönen geben, während alle Lochreihen zusammen einen starken

einfachen Ton geben müssten , dessen Keinheit um so grösser

wäre, je mehr Glieder der Reihe man berücksichtigt. Schon bei

obigem Beispiel würden verhältnissmässig wenige Lochreihen ge-

nügen. Es dürfte jedoch bei einem solchen Versuche, wenn er ge-

lingen soll, die Resonanz des Windkastens zu beachten sein. Für

den Erfolg ist es natürlich ganz gleichgiltig, ob die Partialbewe-

gungen von ein und demselben Luftstrome erregt werden, wie bei

dem angedeuteten Versuch, oder ob dieselben aus verschiedenen

Quellen und verschiedenen Entfernungen herstammen , wenn sie

nur beim Ohr, oder beim Resonator anlangend die von der Reihen-

entwickelung geforderten Intensitäten und Phasen haben.

Bei diesem oder irgend einem anderen der Theorie noch

besser entsprechenden Verfahren würden weder das Ohr noch die

Resonatoren die Luftbewegung in die Componenten auflösen, aus

denen dieselbe hervorging, da von beiden die Pendelschwingung

nicht weiter zerlegt werden kann. Es könnte übrigens dieses

Factum, welches eintreten wird, so lange das Princip der Super-

Position gilt, durchaus nichts Befremdendes haben. Ohr und Re-

sonator können ja auch nicht unterscheiden, ob ein einfacher Ton

herstammt von einer irgendwo wirklich einfach erregten Luft-

schwingung oder durch das Zusammentreffen beliebig vieler solcher

einfachen Schwingungen von gleicher Wellenlänge und beliebiger

Phase, welche sich bekanntlich stets zu einer einfachen Schwingung

zusammensetzen. Ebensowenig kann das Ohr errathen, ob ein ein-

facher Ton entstanden ist durch das Zusammentreffen von perio-

dischen Luftbewegungen, deren Partialtöne zufällig solche Phasen

und Amplituden haben, dass sie sich alle bis auf einen einzigen

vernichten.

Wir denken uns in einem unbegränzten Medium, wie es die

Luft ist, kleine periodische Bewegungen wellenartig fortgepflanzt.

Wenn wir eine solche fortgepflanzte periodische Bewegung in der

mathematischen Theorie als eine Summe pendelartiger Schwingungen

betrachten, so ist dies zunächst nur eine willkürliche Fiction zur

Bequemlichkeit der Theorie eingeführt ohne eine reelle Bedeutung.*)

Eine solche gewinnt die Zerlegung erst durch Beziehung auf die

*) Helmholtz, die Lehre von den Tonempfindungen, Seite 220. u. a.

8
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Erscheinungen, welche mit der fortgepflanzteu Bewegung im Zu-

sammenhange stehen. Geschieht die Erregung durch ein System

pendelartig schwingender elastischer Körper, so hat es einen Sinn,

auch in der resultirenden Gesammtbewegung nach Pendelschwin-

gungen zu zerlegen, Oder aber, wenn die lebendige Kraft der

fortgepflanzten Luftbewegung (sei auch ihr Ursprung unbekannt)

auf mitschwingende elastische Systeme gelangt (Ohr, Resonatoren

etc.) , welche eben nur Pendelschwingungen aus der Bewegung

herausnehmen, so ist es durchaus vortheilhaft , sich die Pendel-

schwingungen , welche der Fourier'schen Zerlegung entsprechen,

auch in der fortgepflanzten Luftbewegung vorzustellen, da diese

Vorstellung in unmittelbarstem Zusammenhange mit den physio-

logischen Wirkungen steht. Das zerlegende (unbewaffnete oder

bewaffnete) Ohr erkennt auch Abweichungen vom Prinzip der

Superposition durch das Auftreten der Combiuationstöne in der

Eeihe der Partialbewegungen.

Das oben kurz augedeutete Beispiel der Sirene zeigt aber,

dass die thatsächlichen Verhältnisse auch zu anderen periodischen

Zerlegungen auffordern können und diese haben alsdann eine

reelle , wenn auch nicht physiologische Bedeutung. Man denke

sich eine bestimmte Luftbewegung , wie sie z. B. beim Er-

klingen eines musikalischen Instrumentes vorkommt, und für

diese Luftbewegung sei die Reihenentwickelung möglich nach

irgend einer nicht pendelartigen Form von periodischen Partial-

bewegUQgen. Es sei nun die Aufgabe gestellt, durch einen synthe-

tischen Versuch, entweder wie oben mit der Sirene, oder durch

ein noch besseres Hilfsmittel die gewünschte Luftbewegung wirklich

darzustellen. Man würde sich mathematischerseits zunächst durch

directe Anwendung der Reihen die nöthigen Daten verschaffen

und durch deren Befolgung beim Versuche aus einer Reihe von

gleich gefärbten, aber verschieden hohen Klängen einen Gesammt-

klang mit wesentlich verschiedener Färbung entstehen sehen. Da
hier die Partialbewegungen getrennt erregt werden, so ist man voll-

kommen berechtigt, sich diese und kein^ anderen in der entstehenden

Luftbewegung vorzustellen, so lange die Superposition gilt.*) Es

*) Auch Abweichungen von der Superposition darf man sich in diesem

Falle so vorstellen, als ob noch neue Partialbewegungen derselben Art zu

den direct erregten hinzuträten , wenn diese Abweichungen nämlich in der-

selben Reihenforra mathematisch darstellbar sind.
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wäre gewiss sehr gezwungen, wenn man sich in diesem Falle jede

Partialbewegung für sich in Pendelschwingungen zerlegen wollte,

um dann alle diese in der Vorstellung zu einer Gesammtbewegung

zusammenzusetzen. Mit Kücksicht auf die Erregung hätte dies

keinen Sinn.

Anders ist die Sache, wenn nun die Wirkung auf's Ohr

oder mitschwingende elastische Körper in's Auge gefasst werden

soll. Dieselbe Gesammtbewegung ist dann nach Fourier zu zerlegen.

Man hat also hier für ein und dieselbe Bewegungs-Erscheinung

zwei gerechtfertigte Zerlegungsarten, je nach dem Sinne, in welchem

die Erscheinung interpretirt werden soll Für die physiologische

Seite der Akustik bleibt unter allen Umständen die Bedeutung der

Fourier'schen Reihe unberührt.

Hierzu muss noch Folgendes bemerkt werden. Hat man

irgend eine Bewegungsform der Lufttheilchen vor Augen, welche

den Eindruck einer bestimmten Klangfärbung auf's Ohr macht,

so kann man den Partialpendelschwingungen beliebige Phasenver-

schiebungen ertheilen, ohne dass hiedurch die Klangfärbung ge-

ändert würde. Eine unendlich mannigfache Reihe von Bewegungs-

formen kann daher demselben Klange entsprechen. Dies ist ein-

leuchtend , da der zerlegende Apparat des Ohres eben nur nach

dem Yorhandeuseiu und der Intensität der einzelnen Pendel-

schwingungen fragt , und bekanntlich hat Helmholtz dieses von

ihm entdeckte Gesetz durch den directen Versuch bestätigt ge-

funden. Diese Unabhängigkeit der Klangfarbe von den Phasen der

Partialbewegungen lässt sich nun nicht etwa auf andere Zerlegimgs-

weisen einer gegebenen Luftbewegung übertragen, weil dieses Gesetz

eine Consequenz der factischen Zerlegung in Pendelschwin-

gungen ist. An bestimmten Fällen lässt sich das Gesagte leicht

einsehen. Wenn wir z. B. , wie im Anfang des § , die einfache

Schwingung nach anderen Partialbewegungen zerlegen, so genügt

die Verschiebung einer einzigen Componente, um als Resultat einen

für das Ohr sehr complicirten Bewegungsvorgang zu schaffen.

Will man an der Vorstellung der Pendelschwingungen in

den Luftbewegungen consequent festhalten, so kann man immerhin

die Entstehung des einfachen Tones durch eine unendliche Reihe

von Klängen als einen eigenthümlichen Fall von Inter-

ferenz auffassen. Man hat aber dabei die Mühe, das Aus-
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löschen der vielen Partialtöne von einem Reihengliede zum anderen

zu verfolgen.

Es wurde oben nur von der Verschiebung der Lufttheilchen

gesprochen. Das über die erweiterte Zerlegung Gesagte lässt sich

nun auch auf die periodischen Geschwindigkeiten und Accelera-

tionen bei den Schwingungen übertragen. Wenn man bestimmte

Bewegungen in bestimmter Weise zerlegt, so ist es in einzelnen

Fällen nicht uninteressant, die Reihen zu vergleichen, welche dabei

für die Verschiebungen, Geschwindigkeiten und Accelerationen zum

Vorschein kommen. Die Reihen der Beispiele III, IX und IV in

den §§ 4 und 6 stehen, wenn sie im Sinne der Mechanik gedeutet

werden, in einem solchen Zusammenhange; sie wurden zu einem

beabsichtigten Sirenenversuche berechnet. Ich werde hierauf an

einem anderen Orte zurückkommen , da ich hier nur allgemeine

Gesichtspunkte berühren wollte.

Aus der obigen Darstellung erhellt, dass die besprochenen

Reihen bei denjenigen physikalischen Erscheinungen Anwendung

finden können, bei welchen das Gesetz der Superposition gilt und bei

denen kleine Bewegungen mit constanter, von der Bewegungsform

unabhängiger Geschwindigkeit fortgepflanzt werden. Ich glaube

daher, dass es nicht ganz werthlos ist, auf die Möglichkeit von

Zerlegungen nach einem allgemeinen Schema, welches den Vor-

stellungen der Wellenlehre entspricht, und welches meines Wissens

bisher bei analytischen Untersuchungen nicht angewendet wurde,

aufmerksam gemacht zu haben.

Graz im Juni 1872.

Berichtigung.

Auf Seite 32, Zeile 3 v. o. ist anstatt Ög, S,o und ebenda, Zeile 4

V. 0. anstatt 10. Sternums, 8. Sternums zu lesen.

—»o«©t<8<»o-«-

Im Selbstverläge.

Druckerei : „Leykam-JoBefsthal" in Grax.
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