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Abstract

Let D C IR2 be an arbitrary set. We consider the following question: What 
kind of assumptions on D imply that every additive function/ IR —> [R 
satisfying the condition

( x ,y )  e  D = > f(x )f (y )  = 0 ( 1)

is identically equal to zero? It is true if D is a non-empty open subset of 
!R" G. Szabo posed this problem for D = { ( x ,y ) ] x 2 + j/2 = 1} ([7]). We 
give an affirmative answer to Szabo’s question and, moreover, we give 
some sufficient conditions to obtain the above assertion in much more 
general spaces.

1.

Let X  and Y  be linear spaces over the rationals O. A function
f  X  —> Y  is called additive if  it satisfies the (Cauchy’s) equation

f ( x + y )  = f ( x )  + / ( j ) ,  x , y  E X . (2)
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Every additive function is uniquely determined by its values on a so- 
called Hamel base (i.e. a base of X over the rationals) and it fulfills the 
condition

f ( r x ) = r/(x), x  E X , r E Q,

(cf. [4], for example). We start our considerations with two examples.

Example 1. Let f  (R —̂ [R ([R is here and in the sequel the set off all 
reals) be a discontinuous additive function vanishing on a saturated non- 
measurable in the Lebesgue sense subset S  ([4] p. 58 and 297-Th. 7) and 
put D =  ( ^  X  R )U (IR  X  S). Evidently f  is not identically equal to zero 
and condition (1) is fulfilled.

The set D, though large in a sense, does not contain any segment. The 
following second example shows that even when D contains a segment it 
is possible to find a non-zero additive function fulfilling condition (1).

Example 2. Let/  (R be a discontinuous additive function such that 
the restriction of f  to the set of all rationals is equal to zero. If 
D = {(x, j/); max{|x|, |j|} = 1}, then f  satisfies condition (1) and is 
not identically equal to zero.

The set from Example 2 is a unit circle if we treat IR2 as a linear space 
endowed with the norm ||(x, j)|| : = max{|x|, | j|}. We shall show that 
the answer to our (Szabo’s) question is positive if  we take a different norm 
in R 2 We have the following

Remark 1. Let D = {(x , j )  E [R2; |x| + | j\ = 1} and let/  [R —> [R 
be an additive function fulfilling condition (1). Thenf  is identically equal 
to zero.

Proof. According to our assumptions we obtain

/ W / ( 1 _ x ) = 0) *  e  (0 ,1 ). (3)

I f / ( l )  = 0 it follows from (3) that f{ x )  =  0 ,x  E (0 ,1 ), and hence 
/  = 0. Assume

/ ( l )  + 0 (4)

and take an xq E (0 ,1 ) such that/ ( xq) = 0. For arbitrary ^ E R there 
exists an integer n such that nxo E (0 ,1 ). Thus

f i x  + nx0) f (  1 - z ~  nx0) = 0 , 

which, because of the additivity of f  yields the condition

/Od/X1 ~ z) = ° ’ Z e  U-
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Putting — ̂  instead of ̂  in this equality and adding both we get

T W O )  = 0 ,

which contradicts (4) and proves Remark 1.
A positive answer to Szabö’s question is contained in

Theorem 1. Let f  : R —> [R be an additive function fulfilling condi
tion (1) where D — {(x,j/) £ [R2; x 2 +jy2 = 1}. Then f  is identically 
equal to zero.

Proof: Take an arbitrary x E  (0,1) and choose a j  such that 
x 2 + J 2 = 1. Setting

3x  +  Ay Ax — 3y

we observe that

2 , 2  2 , 2  -I
U  +  V —  X  + J  =  1 .

By virtue o f (1)

/ M / M  = / (* )/ (  j )  = °- (5)

Moreover, by (5)

0 = / M / M  = ^  P / M  + 4/ ( j)]I4/ M  ~ 3/ ( j) ]

= - ^ ( / M 2 - / ( j ) 2)

and hence f  ( x  ) 2 = / ( j ) 2 On account o f (5)/( x) =  0. Due to the arbi- 
traryness o f x(G [0 ,1)),/  is identically equal to zero because it is additive.

Corollary 1. A  similar result holds true if  D — { M j )  £ IR2;
x 2 +j/2 — r 2}, where r  > 0 is an arbitrary constant.

Proof. The function F( x)  = f ( r x ) , x  £ [R fulfills all assumptions of
Theorem 1. We have also

Theorem 2. Let X  be a real normed space and let Y  be an arbitrary 
linear space. If/  X  —*• Y  is an arbitrary additive function fulfilling the 
condition

IMI2 + llj'll2 =  1 = > /M  = 0 or f ( y )  =  0, 

then f  is identically equal to zero.
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Proof: First let us assume that dim X  > 1. Take an arbitrary x  E X  such 
that ||*|| = and p u t j  = x. Then

IMI2 + IIjII2 = 1
and by our assumption we get

/ M  = 0 ,
which means thatf  vanishes on a circle C  = {x E X  ||x|| = Since 
dim X  > 2  for every » E X ,  there exist V\,V2 E C  such that
v\ + v2 = u ([1], see the proof of Lemma 1). Consequently

/ M  =/(*' i + v i) = / 0 i) + f ( v 2) = 0 .

Thus f  being an additive function vanishing on a ball, has to be identi
cally equal to zero.

If dim X  — 0, the assertion is trivial. If, finally, dim X  =  1 we may 
assume that X  — [R and that ||x|| = r _1|x| for some r  > 0. Thus for 
every linear functional ip Y  —> R the function ip o f  X  —>■ [R satisfies 
the assumptions of Corollary 1, implying that <p o f  = 0. But the linear 
functionals on Y  separate the points of Y. Thus/  = 0.

Let G be an abelian group and let IK be a field of characteristic zero. For 
mappings w G —» K and an element h E G the difference operator A  h is 
defined by

A/,w(x) : = iv(x + h) — w(x).

A mapping w G —»■ IK is called a generalized polynomial of degree less 
than n + 1 iff

A ,!h+1w(x) = 0 , x ,b  E G,

where denotes the k — th iterate of A.

Theorem 3. Let f  G —> IK be an additive function and let

D = { (y (x ) ,« '(x ))  E Ü x K ; x E  G)},

where v,w G —> IK are generalized polynomials such that linQ v(G) = 
linQ w(G) — IK. If f  fulfills condition (1), then it is identically equal to 
zero.

Proof: By our assumptions

f  (v (x ) ) f  {ip(x )) = 0 , x  E G. (6)

Since /  o p  and /  o w are generalized polynomials we can apply a result 
of F. Halter-Koch, L. Reich and J. Schwaiger ([3], Th. 2). Therefore
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f  o V = 0 or f  o w = 0. It follows from the equality liriQZ'(G) = 
lino w (G) = IK that /  is identically equal to zero.

Remark 2. The assumption lin® v[G) — linq  w(G) — IK is essential 
in Theorem 3.

This can be seen by taking v = id and w = f , where/ is a function as 
defined in Example 2.

Corollary 2. Let v,w IR —> IR be arbitrary (ordinary) polynomials of 
degree at least one. If/  (R —»■ IR is an additive function fulfilling condi
tion (6) then it is identically equal to zero.

This is so, since z>(IR) and «'(IR) are non-trivial intervals.
Condition (1) may be generalized by replacing the righthand side of the 

implication (i.e. f ( x ) f ( y )  = 0 for (x ,y )  G D ) by Q (f (x ) ,  f ( y ) )  = 0 
for all (x ,y )  G D, where Q  is a polynomial in indeterminates X  and Y 
over IR(j2 G IR[X, Y]). This means that we now are interested in condi
tions on D C IR2 such that

( x , j ) e D = > < 2 ( f ( x ) j ( j ) )  =  o ( l ' )

for an additive function/  IR —> IR implies/  = 0.
In this situation we will show

Theorem 3'. Let/  (R —̂ IR be additive and letp  and q be generalized 
polynomials of degree 1, i.e. p = g  + a ,q  — h + b, where g, h IR —> IR 
are additive and a, b real constants. Assume that />(IR) and ^(IR) contain 
Hamel bases. Furthermore, let Q  G IR[X, Y] such that no polynomial 
A X  + BY  + C  with^4B 7̂  0 dividesQ (X , Y ), and let

D : = {(p(u), q(u))\u G IR} C [R2

Then, if

( * j ) e » ^ j 3 (/ (4 / W )  =  o, ( l ' )

we have/  = 0.

Proof-. We have/ (/>(»)) = (/  0 g )M  + = (/  0 h)(u) + d,
where c = f ( a ) ,d  = f ( b ) . f  o g  and /  o h are additive, and since 
/>(IR), #([R) contain Hamel bases, the same holds for^(IR),/?(IR), and so 
f  0 g  7̂  0 ,/  0 b 7̂  0. By ( l 7) we have

J2 ( (/  0 g )(u) + '> (/  0 h)(u) + d) = °> u e U .

We denote by Q \ (X , Y) the polynomial j2 i(X , Y) \ = Q{X c,
Y + </), w herejg i ^  0 , j2 i ( (/  0 < §)M ,(/  0 ^ )W ) = 0 ,»  G IR.
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By [6, theorem 1] we get that/  ° g, f  ° h are linearly dependent over 
IR, i.e. there exists (A, fj,) G IR2, (A, fi) 7  ̂ (0 ,0 ) such that

K f  ° g )  + M /  ° h) =  °- (7)
Since f  ° £ 7  ̂ 0, /  we deduce that A ̂  0,/i ^  0. But then by
[6, theorem 2] we see that

XX + pY\Q\(X,  Y),

and therefore

\X + ß Y - { \ c  + ßd)\<2(X, Y),

where A/i 7  ̂ 0, which contradicts the assumption of the theorem. So we 
have necessarily f  = 0, which concludes the proof.

The set D from Example 1 is large in a certain sense; it is saturated non- 
measurable in the Lebesgue sense as well as it is a second category set 
without Baire property. However, we prove the following

Theorem 4. Letf  IR" —» [R be an additive function fulfilling condi
tion (1) and assume that D C IR2" is a Lebesgue measurable subset with 
positive measure. Then/is identically equal to zero.

Proof: The set

H  :=  {x G [R " ;/ M  = ° l

is a subgroup of IR" and since D C (H  x IR") U ([R;/ X  H ) the outer 
Lebesgue measure of H  is positive. It is not hard to check hat H  is dense 
in IR" By Smital’s lemma ([4], [5]) the set G : = (H  x  H ) + D is of full 
Lebesgue measure in [R2// (in fact; since IR" is separable there exists a 
countable subset Ho of H  which is dense in IR", and by Smital’s lemma 
the set (Ho x Ho) + D has full Lebesgue measure in IR2" and, of course, 
(H 0 x H 0) + D C G). Moreover, for every ( x , j )  € G we have x  = h\ + 
d \ ,J  = h2 + d2,h\ ,b2 E H , {d\,d2) G D, and h e n c e / (x )/ ( j)  = f(d \ )  
f { d i )  — 0. Therefore

G c ( H x  IR") U (IR" x H) = : S.

We will show that H  is measurable in the Lebesgue sense and of the full 
measure in IR2" By Fubini’s theorem the set

B : = {x 6  IR"; S x — { y  G IR"; (x ,y )  G 5”} is measurable}

is measurable in the Lebesgue sense and of full measure in IR". If B C H, 
then H  is measurable and of the full measure in IR". If B\H  7  ̂ 0, take an 
x  G B\H. Then S x = H  and x  G B. So, H  is measurable, too. Thus H,
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being a dense subgroup of full measure in IR", is equal to IR". (In fact, any 
subgroup of IR" of positive measure equals IR": Assume that H  is a full 
measure group in IR" Take an arbitrary *  from IR" Then the set x  — H  is 
also full measure in IR" and therefore by the Steinhaus theorem the inter
section H  D (x  — H ) is a nonempty set. Choosing a ̂  from this intersec
tion  we ge t th a t *  = % + (x  — b e lo n gs  to H  + H  = H. T hus
H  =  IR ".)

The proof of Theorem 4 is finished.
A topological analogue of Theorem 4 is also true. One can prove the 

following

Theorem 5. Let D be a second category subset of IR2" with the Baire 
property and let /  IR" —> IR be an additive function fulfilling condition 
(1). Then f  is identically equal to zero.

Proof: The proof is quite similar to the proof of Theorem 4 because 
Fubini’s theorem and Smital’s lemma have topological analogues ([2], [4]).

The results of Remark 1 and Theorem 1 can be viewed as special cases 
of the following.

Theorem 6. Let u,v T —> IR be such that for all t E T there is some 
t\ E T and some 2 X  2-matrix j2  with rational and nonvanishing entries 
a : b, c, d such that (#(/i), v (t))T Moreover let #(T) or
v{T) generate IR as a Q-vector space. Then we have that the condition

( /  ° u) ( /  ° v) =  0

implies /  = 0.

Proof: Fix t E T Without loss of generality we may suppose that 
f(u (t))  = 0. Choosing t\ and O as above and using the fact that
/ M 'l ) )  / M 'l ) )  = 0 w e get

0 = f{au [t) + bv(t))f(cu(t) + dv{t))

= ac f[u [t) ) 2 + adf{u{t))f{v{t)) + bcf(v{t))f{u{t)) + b d f(v (t))2 

= bdf(v (t) ) 2,

implying that f(v{ t)) — 0. Thus/  o u — f  o v = 0 which gives us the 
desired result.

Rem ark 3. Using u — cos and v = sin we get Theorem 1 with 
t\ = t + to where to is such that cos(/o) = 3/5  and sin(^o) = 4/5, for 
example. Remark 1 may be considered as the case T = ]0 ,1 [,#(/) = /, 
v(t) = 1 — t ,a  = b = c = d = 1/2.
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A different example (hyperbola) is given by u = cosh, v = sinh, 
t\ — t + /o, where now /o is choosen in such a way that both cosh(/o) 
and sinh(/o) are positive rationals (which of course is possible).
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