Geometrische Mittheilungen.

Von Dr. Emil Weyr,

Privatdocent an der Universität Prag.

П.

1. Legt man durch einen Punkt z_1 einer Curve C_4^3 dritter Ordnung mit einem Doppelpunkte δ Strahlen (X_1) , so scheidet jeder solche Strahl die Curve in einem Punktepaar z_2 , z_3 , welche Punktepaare auf der Curve eine centrale Involution zweiten Grades bilden ¹). Wenn man nämlich die Punktepaare z_1 , z_2 mit dem Doppelpunkte der Curve durch Strahlenpaare $\overline{\delta z_1}$, $\overline{\delta z_2}$ verbindet, so erhält man eine quadratische Strahleninvolution.

Den Punkt z_1 nennen wir das Centrum der auf obige Weise durch ihn auf der Curve gebildeten Punktinvolution. Von dem Centrum lassen sich an die Curve zwei (reale oder imaginäre) Tangenten legen, deren Berührungspunkte die Doppelpunkte der erwähnten Involution sind. Es sind dies zwei conjugirte Punkte der Curve, so daß die aus δ nach ihnen gehenden zwei Strahlen den Winkel der Doppelpunktstangenten harmonisch theilen.

Bezeichnen wir wieder als den Parameter eines Punktes z der Curve C_4^3 das Theilverhältniß ξ des vom Doppelpunkte nach dem Punkte z gehenden Strahles in Bezug auf den Winkel der Doppelpunktstangenten, so besteht nach der ersten Mittheilung zwischen dem Parameter η eines Punktes y der Curve C_4^3 und dem Parameter ξ seines Tangentialpunktes z die Gleichung:

$$\xi \eta^2 = k \tag{0}$$

wobei k eine nur von der Curve C_4^3 abhängige Constante ist.

¹⁾ Siehe "Theorie mehrdeutiger geom. Elementargebilde" II. Theil Art. 11.

Hiernach haben also die Doppelpunkte der centralen Involution, welche den Punkt z₁ zum Centrum besitzt, die Parameter

$$+ \sqrt{\frac{k}{\xi_1}}$$
 und $- \sqrt{\frac{k}{\xi_1}}$

Sind nun x_2 und x_3 die zwei Schnittpunkte einer beliebigen durch z_1 gehenden Geraden mit der Curve C_4^3 , so sind diese Punkte harmonisch bezüglich der Doppelpunkte der oben erwähnten Involution. Wenn man also consequenter Weise die Parameter der beiden Punkte z_2 , z_3 resp. mit ξ_2 , ξ_3 bezeichnet, so muß nach einer bekannten Gleichung 1):

$$\xi_2\xi_3 - \frac{1}{2}(\xi_2 + \xi_3)\left(\left|\left/\frac{\overline{k}}{\xi_1} - \left|\right/\frac{\overline{k}}{\xi_1}\right\right) + \left(\left|\left/\frac{\overline{k}}{\xi_1}\right)\right| \left(-\left|\left/\frac{\overline{k}}{\xi_1}\right\right)\right| = o$$

sein. Oder aber:

$$\xi_2 \xi_3 - \frac{k}{\xi_1} = o$$

und folglich:

$$\xi_1 \xi_2 \xi_3 = k. \tag{1}$$

Diese Gleichung drückt, da der Punkt x_1 und die durch ihn gelegte Gerade ganz beliebig war, folgenden bemerkenswerthen Satz aus:

"Das Produkt der Parameter der drei Punkte, in welchen eine beliebige Gerade unsere Curve C_4^3 schneidet, ist constant".

2. Man erkennt sofort, daß die Gleichung (0) nur ein specieller Fall der Gleichung (1) ist. Wird nämlich die schneidende Gerade eine Tangente der Curve, welche im Punkte η^2 berührt und im Punkte ξ die Curve schneidet, so hat man in (1) η statt ξ_1 und ξ_2 , und ξ statt ξ_3 , zu setzen, wodurch (1) unmittelbar in (0) übergeht.

¹⁾ Siehe Hesse, analyt. Geom. 1. Aufl. pag. 27.

³) Wir wollen der Kürze wegen einen Punkt der Curve C_4^3 mit demselben Buchstaben wie dessen Parameter bezeichnen.

3. Wir haben schon in der ersten Mittheilung die Inflexionspunkte der Curve C_{μ}^{3} in den Kreis unserer Betrachtungen gezogen.

Man gelangt einfach zu denselben, wenn man sich eine Inflexionstangente als eine Gerade vorstellt, welche die Curve in drei unmittelbar auf einander folgenden Punkten schneidet. Ist also etwa j der Parameter eines Inflexionspunktes, so liefert die Gleichung (1):

$$j^3 = k$$

woraus sich für die Parameter der drei Inflexionspunkte die Werthe: $j_1 = \sqrt[3]{k}, j_2 = \alpha \sqrt[3]{k}, j_3 = \alpha^2 \sqrt[3]{k}$ ergeben, wenn man mit α die imaginäre Kubikwurzel aus der Einheit bezeichnet.

Nun ist aber:

$$j_1 \cdot j_2 \cdot j_3 = \alpha^3 (\sqrt[p]{k})^3 = k$$

woraus das bekannte Resultat fließt: "daß die drei Inflexionspunkte in einer und derselben Geraden liegen".

4. Wir wollen an einigen Beispielen zeigen, wie einfach sich die meisten über Curven dritter Ordnung bekannten Sätze aus der Gleichung (1) ableiten lassen, um hiedurch die Fruchtbarkeit dieser Gleichung nachzuweisen.

Es werde die Curve C_4^3 von zwei Geraden G und G' geschnitten und zwar von der ersten in dem Punktetripel $\xi_1 \xi_2 \xi_3$ und von der letzteren in den Punkten $\xi_1' \xi_2' \xi_3'$. Wir verbinden nun je einen Punkt auf der einen Geraden mit einem Punkte auf der anderen, wodurch wir drei neue Gerade, etwa $\overline{\xi_1} \xi_1'$, $\overline{\xi_2} \xi_2'$, $\overline{\xi_3} \xi_3'$ erhalten. Diese drei Geraden mögen die Curve C_4^3 in drei neuen Punkten resp. ξ_1'' , ξ_2'' , ξ_3'' schneiden.

Dann zeigt sich leicht, daß diese drei letzten Punkte abermals auf einer Geraden liegen.

Wir haben zunächst nach unseren ersten Annahmen:

$$\begin{cases} \xi_1\xi_2\xi_3 = k \\ \xi_1'\xi_2'\xi_3' = k \end{cases}$$
 (a)

ferner ebenso:

$$\begin{cases} \xi_{1}\xi_{1}^{\prime}\xi_{1}^{\prime\prime} = k \\ \xi_{2}\xi_{2}^{\prime}\xi_{2}^{\prime\prime} = k \\ \xi_{3}\xi_{3}^{\prime}\xi_{3}^{\prime\prime} = k. \end{cases}$$
 (β)

Bildet man nun das Produkt der drei Gleichungen (β) und dividiert es durch das Produkt der Gleichungen (α), so ergibt sich sofort:

$$\xi_1'' \xi_2'' \xi_3'' = k,$$

woraus hervorgeht, daß wirklich die drei neuen Punkte $\xi_1'', \xi_2'', \xi_3''$ in einer und derseiben Geraden liegen.

"Verbindet man also die drei Schnittpunkte der Curve C_4^3 und einer Geraden durch drei gerade Linien mit den drei Schnittpunkten der Curve und einer zweiten Geraden, so schneiden die drei Verbindungslinien die Curve in drei auf einer dritten Geraden liegenden Punkten".

Es ist dieses Ergebniß, wie man sofort erkennt, nur ein specieller Fall des Satzes, daß alle Curven dritter Ordnung, welche durch acht feste Punkte hindurchgehen, auch durch einen neunten festen Punkt gehen.

5. Wenn die beiden Geraden G und G', von denen wir im vorigen Artikel ausgegangen sind, unendlich nahe zusammenrücken, so gelangen wir, da dann $\overline{\xi_1\xi_1'}$, $\overline{\xi_2\xi_2'}$, $\overline{\xi_3\xi_3'}$ Tangenten der Curve sind, zu dem bekannten Satze, daß die Tangentialpunkte dreier in gerader Linie liegenden Curvenpunkte wieder in einer Geraden liegen 1).

Man gelangt jedoch auch zu demselben Resultate, wenn man von der Gleichung (0) ausgeht. Sind nämlich η_1 , η_2 , η_3 drei Punkte in einer Geraden, so ist:

$$n_1 n_2 n_3 = k$$

und ferner sind die Tangentialpunkte der drei Punkte nach (0):

$$\frac{k}{\eta_1^2}, \ \frac{k}{\eta_2^2}, \ \frac{k}{\eta_3^2}$$

Da jedoch

$$\frac{k}{\eta_1^2} \quad \frac{k}{\eta_2^2} \quad \frac{k}{\eta_3^2} = \frac{k^3}{(\eta_1 \eta_2 \eta_3)^2} = \frac{k^3}{k^2} = k$$

1) Vergleiche Cremona, ebene Curven pag. 57.

ist, so liegen wirklich die drei Tangentialpunkte in einer und derselben Geraden, wie zu beweisen war.

6. Es seien auf der Curve C_4^3 vier beliebige Punkte ξ_1 , ξ_2 , ξ_3 , ξ_4 gegeben. Diese Punkte kann man als Ecken eines vollständigen Viereckes betrachten, dessen drei Gegenseitenpaare auf der Curve drei Punktepaare bestimmen, von welchen wir nachweisen wollen, daß sie eine centrale Punktinvolution bilden, d. h. daß ihre drei Verbindungslinien sich in einem und demselben Punkte der Curve schneiden.

Die drei Gegenseitenpaare des erwähnten vollständigen Viereckes sind:

$$\frac{\xi_1\xi_2}{\xi_2\xi_3} \text{ und } \frac{\xi_3\xi_4}{\xi_4\xi_1}$$

$$\frac{\xi_2\xi_3}{\xi_2\xi_4} \text{ und } \frac{\xi_4\xi_1}{\xi_1\xi_3}$$

und nach (1) sind die drei Punktepaare, in denen diese Linienpaare die Curve C_4^3 schneiden, der Reihe nach:

$$\frac{k}{\xi_1 \cdot \xi_2} \text{ und } \frac{k}{\xi_3 \cdot \xi_4}$$
$$\frac{k}{\xi_2 \cdot \xi_3} \text{ und } \frac{k}{\xi_4 \cdot \xi_1}$$
$$\frac{k}{\xi_2 \cdot \xi_4} \text{ und } \frac{k}{\xi_1 \cdot \xi_3}.$$

Die Verbindungslinien des ersten Punktepaares schneidet nach (1) die Curve C_{μ}^{3} im Punkte:

$$\frac{k}{\frac{k}{\xi_1 \cdot \xi_2}} \frac{k}{\xi_3 \cdot \xi_4}$$

d. h. also im Punkte:

$$rac{\xi_{1}\xi_{2}\xi_{3}\xi_{4}}{k}$$
 ,

und man erkennt sofort, daß sich derselbe Punkt der Curve als ihr Schnittpunkt mit den Verbindungslinien der beiden anderen Punktepaare ergibt. Hiedurch ist also der Satz bewiesen: "Die drei Gegenseitenpaare eines der Curve C_4^3 eingeschriebenen vollständigen Viereckes $(\xi_1 \xi_2 \xi_3 \xi_4)$ bestimmen auf der Curve drei Punktepaare einer centralen Involution, deren Centrum der Punkt $\frac{\xi_1 \cdot \xi_2 \cdot \xi_3 \cdot \xi_4}{L}$ ist".

Wir können diesen Satz auch in folgender Form aussprechen, in welcher er große Ähnlichkeit mit dem Satze von Désargues besitzt.

"Die drei Gegenseitenpaare eines vollständigen Viereckes bestimmen auf jeder dem Vierecke umschriebenen Curve dritter Ordnung mit einem Doppelpunkte eine centrale Involution".

Wenn je zwei Ecken des vollständigen Viereckes unendlich nahe zu einander fallen, so gelangt man zu dem Satze des letzten Artikels.

7. Wenn sich zwei Gegenseitenpaare des vollständigen Viereckes auf der Curve C_4^3 schneiden, so bilden sie ein der Curve eingeschriebenes vollständiges Vierseit. Die in den Schnittpunkten der erwähnten zwei Gegenseitenpaare an die Curve gelegten Tangenten müssen sich nach dem letzten Satze in einem Curvenpunkte schneiden, was dann selbstverständlich von allen Gegeneckenpaaren gilt ¹).

Dies gibt den bekannten Satz:

"Die drei Gegeneckenpaare eines der Curve C_4^3 eingeschriebenen vollständigen Vierseits sind conjugirte Punktepaare der Curve, d. h. die Tangenten der Curve in zwei solchen Gegenecken schneiden sich wieder auf der Curve".

8. Es seien α und β zwei feste Punkte der Curve C_4^3 , welche wir mit einem variabelen Punkte η der Curve durch zwei Strahlen $\overline{\alpha \eta}$, $\overline{\beta \eta}$ verbinden. Diese Verbindungslinien werden die Curve in zwei neuen Punkten resp. ξ_1 und ξ_2 schneiden, so daß wir dem Punkte ξ_1 den Punkt ξ_2 und umgekehrt als entsprechend zuordnen können.

Die zwei Schnittpunkte der beiden Gegenseitenpaare des Viereckes sind zwei Gegenecken des betrachteten vollständigen Vierseites.

Um die Natur dieser Verwandtschaft zu ermitteln, beachte man, daß die zwei Gleichungen

$$\alpha \cdot \eta \cdot \xi_1 = k$$

$$\beta \cdot \eta \cdot \xi_2 = k$$

gleichzeitig gelten, woraus sich

$$\frac{\alpha\xi_1}{\beta\xi_2} = 1$$

oder aber:

punktes sind.

$$\xi_2 = \frac{\alpha}{\beta} \cdot \xi_1$$

ergibt. Die letzte Gleichung lehrt jedoch, da in ihr die Parameter- ξ_1 und ξ_2 bloß linear vorkommen, daß die beiden Punktsysteme (ξ_1) und (ξ_2) zwei projectivische Systeme bilden.

Denn schreibt man die letzte Gleichung in der Form:

$$\frac{\xi_1}{\xi_2} = \frac{\beta}{\alpha}$$

so erkennt man sofort, daß linker Hand nichts anderes vorkömmt, als das Doppelverhältniß $(D_1 D_2 X_1 X_2)$ der vier Strahlen D_1 , D_2 , X_1 , X_2 , wobei die ersten zwei die Doppelpunktstangenten und die beiden letzten jene zwei Strahlen sind, welche den Doppelpunkt der Curve mit den beiden Punkten ξ_1 , ξ_2 verbinden. Da dieses Doppelverhältniß constant (gleich $\frac{\beta}{\alpha}$) ist, so erkennt man, daß die Strahlen X_1 , X_2 zwei projectivische concentrische Büschel bilden, deren Doppelstrahlen die beiden Doppelpunktstangenten sind. Es bilden somit die beiden Punkte ξ_1 , ξ_2 auf der Curve C_4^3 zwei projectivische Punktsysteme, deren Doppelpunkte die beiden Nachbarpunkte des Doppel-

"Projicirt man sämmtliche Punkte der Curve C_4^3 aus zwei festen Punkten derselben wieder auf die Curve, so erhält man zwei projectivische Punktsysteme, für welche die beiden Nachbarpunkte des Doppelpunktes der Curve die Doppelelemente sind".

Sitzb. d. mathem.-naturw. Cl. LXI. Bd. II. Abth.

۲ł

Unter den beiden Nachbarpunkten des Doppelpunktes sind hiebei die dem Doppelpunkte unendlich nahen Punkte zu verstehen, von denen jeder auf einem durch den Doppelpunkt gehenden Zweige der Curve liegt.

Aus der letzten Gleichung folgt, daß, wenn $\beta = \xi_1$ wird, $\xi_2 = \alpha$ werden müsse. Es entspricht also dem Punkte β , wenn man ihn zum Systeme (ξ_1) rechnet, der Punkt α des Systemes (ξ_2). Da sich nun die beiden Geraden $\overline{\alpha\xi_1}$ und $\overline{\beta\xi_2}$ in einem Punkte η der Curve C_4^3 schneiden, so kann man dieses Ergebniß in folgendem Satze zum Ausdruck bringen:

"Befinden sich auf der Curve C_4^3 zwei projectivische Punktsysteme, für welche die beiden Nachbarpunkte des Doppelpunktes Doppelelemente sind, so schneiden sich je zwei Gerade, welche zwei Paar entsprechender Punkte wechselseitig verbinden, in einem Punkte der Curve".

9. Besonders bemerkenswerth ist der Fall, wenn die beiden Punkte α und β zwei conjugirte Punkte der Curve C_4^3 sind. In diesem Falle ist nämlich $\alpha = -\beta$ und folglich $\frac{\beta}{\alpha} = -1$ und somit nach letzter Gleichung auch:

$$\frac{\xi_1}{\xi_2} = -1$$

oder aber:

 $\xi_1 = -\xi_2$

d. h. es sind dann auch die beiden Punkte ξ_1 und ξ_2 zwei conjugirte Curvenpunkte. Dies gibt den bekannten Satz:

"Projicirt man zwei conjugirte Punkte der Curve C_4^3 aus einem beliebigen Punkte der Curve wieder auf dieselbe, so erhält man abermals zwei conjugirte Punkte".

Die beiden projectivischen Systeme des vorigen Artikels gehen hier in die Involution conjugirter Punkte über.

10. Aus der Gleichung (0):

$$\xi \eta^2 = k,$$

welche die Beziehung zwischen einem beliebigen Punkte η und dessen Tangentialpunkte ξ darstellt, kann man leicht den Parameter eines beliebig vielfachen Tangentialpunktes ableiten.

Man erhält z. B. für den ersten Tangentialpunkt ξ_1 des Punktes η den Parameter:

$$\xi_1 = \frac{k}{\gamma_2};$$

für den zweiten Tangentialpunkt ξ_2 von η , d. h. für den ersten Tangentialpunkt von ξ_1 den Parameter:

$$\xi_2 = \frac{k}{\xi_1^2} = \frac{\eta^4}{k}.$$

Ebenso für den dritten Tangentialpunkt:

$$\xi_3 = \frac{k}{\xi_2^2} = \frac{k^3}{\eta^8}$$

u. s. w.

Man findet aus diesen Formeln, daß man sich ohne Aufhören dem Doppelpunkte der Curve C_4^3 nähere, wenn man die auf einanderfolgenden Tangentialpunkte des Punktes η construirt. Hiebei ist vorausgesetzt, daß der Doppelpunkt der Curve ein eigentlicher sei, und es zeigt sich, daß man an der Grenze von einem Zweige der Curve zum anderen abwechselnd überspringe.

Dies geht daraus hervor, daß die Parameterwerthe der auf einander folgenden Tangentialpunkte an der Grenze abwechselnd ∞ und O werden.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der</u> Wissenschaften mathematisch-naturwissenschaftliche Klasse

Jahr/Year: 1870

Band/Volume: 61_2

Autor(en)/Author(s): Weyr Emil

Artikel/Article: Geometrische Mittheilungen. II 819-827