Directe Ableitung einiger Capillaritätsfunctionen

von

K. Fuchs.

(Mit 1 Tafel.)

Die wichtigsten Capillaritätsgrössen sind der Binnendruck im Innern einer Flüssigkeit und die Oberflächenspannung. Die Oberflächenspannung erläutert man gewöhnlich folgendermassen. Ein Molekül der Oberflächenhaut einer Flüssigkeit wird nach innen gezogen, weil nach aussen zu weniger Moleküle liegen, die es anziehen, als nach innen zu. Dieser Zug nach innen fällt grösser aus, wenn die Oberfläche der Flüssigkeit convex ist, und kleiner, wenn die Oberfläche concav ist. Von diesem Grundgedanken ausgehend, hat Laplace im Anhange an die Mécanique céleste den Druck berechnet, welchen die Oberflächenhaut normal zur Oberfläche auf die eingeschlossene Flüssigkeitsmasse ausübt und die Formel gefunden:

$$\frac{1}{4R}\pi\rho^2\int_{r_*}^{r_2}\!\!r_4f(r)\,\partial r.$$

Aus dieser Formel folgt, dass die Flüssigkeit sich so verhalten wird, "als wenn" in ihrer Oberflächenhaut eine Spannung bestünde vom Werthe:

$$\frac{1}{8}\pi\rho^2\int_{r_1}^{r_2}r^4f(r)\,\partial r.$$

Für uns handelt es sich hier um dieses "als wenn". Offenbar gibt nämlich obige Auffassung nicht den mindesten Anhaltspunkt, der auf eine reelle Spannung schliessen liesse. Bei der Laplace'schen Erläuterung sehen wir nicht, wie aus dem Zusammenwirken der zahllosen Einzelnanziehungen sich eine wirk-

liche Oberflächenspannung ergibt, und wir können also nicht sagen, dass Laplace die Oberflächenspannung "direct" berechnet habe.

Massieu hat einen anderen Weg eingeschlagen. Massieu argumentirt folgendermassen: Freie Oberfläche kann man bilden, indem man die Flüssigkeit zerreisst, wobei man ihre Cohäsion zu überwinden, folglich Arbeit zu leisten hat. Freie Oberfläche kann man aber auch dadurch bilden, dass man den Rand der vorhandenen Oberfläche erweitert. Da wir hiebei per Einheit der neu gebildeten Oberfläche nothwendig dieselbe Arbeit verrichten müssen, wie beim Zerreissen der Flüssigkeit, so muss nothwendig in der Oberflächenhaut eine Spannung vorhanden sein, die wir bei Erweiterung des Randes überwinden müssen, wobei wir Arbeit leisten. Dieser Gedanke führt wieder auf die Laplace'schen Formeln. Wir haben aber offenbar hier wiederum die Oberflächenspannung postulirt, nicht aber direct aus den Einzelnanziehungen abgeleitet.

Wenn wir so die zahlreichen bereits vorliegenden Berechnungen der Capillaritätsgrössen durchsehen, dann finden wir, dass dieselben regelmässig den Binnendruck, die Oberflächenspannung, den Randwinkel etc. indirect entwickeln, ohne einen tieferen Einblick in das Zusammenspiel der Einzelnanziehungen zu gewähren. In der vorliegenden Arbeit sollen einige Capillaritätsfunctionen auf möglichst directem Wege entwickelt werden.

Die Rechnungen gewinnen sehr an Klarheit, wenn wir die Molecularkräfte in Elementarkräfte zerlegen. Dies ist folgendermassen zu verstehen. Ein Molekül wirkt auf anderes Molekül anziehend, wenn ihre Entfernung zwischen einer kleinsten Entfernung r_1 und einer grössten Entfernung r_2 liegt. Möglicherweise ist $r_1 = 0$ und $r_2 = \infty$. Die Intensität der Anziehung ist eine Function der Entfernung. Wir nehmen nun an, dass die Molecularkraft eine Summe unendlich vieler Elementarkräfte sei, deren jede von einer gewissen Entfernung r nur bis zu einer unendlich wenig grösseren Entfernung $r+\partial r$ mit einer Intensität f(r) thätig ist, welche wir innerhalb des Intervalles ∂r constant denken. Jede Elementarkraft ist also nur in einer Kugelschale thätig, und diese Kugelschalen sind so in einander eingeschachtelt, dass sie zusammengenommen den ganzen Wirkungsbereich der Molecular-

kraft ausmachen. Wir werden jede Rechnung zuerst nur für eine einzige Elementarkraft durchführen.

Wir werden im Allgemeinen die gegebene Flüssigkeit in Schichten parallel der xy-Ebene zerlegen und für ein Volumelement $\partial x \partial y \partial z$ den Druck berechnen, welcher per Flächeneinheit auf jede seiner sechs Seiten wirkt. Wenn der Druck nicht für alle sechs Seiten gleich ist, dann liegt Spannung vor, welche sich berechnen lässt.

Die Wechselwirkung von zwei parallelen geraden Flüssigkeitsfäden.

Einleitungsweise betrachten wir einen dünnen, geraden, freien Stab (Fig. 1). Zwei Punkte im Abstande a von einander sollen sich mit einer Kraft p anziehen. Dann herrscht zwischen den zwei Punkten auf der ganzen Strecke a im Stabe der Druck p, während ausserhalb des Punktpaares keinerlei Druck oder Zug erzeugt wird. Nun soll es auf dem Stabe viele Punktpaare geben, deren Punkte je einander mit der Kraft p anziehen. Dann herrscht in irgend einem Punkte o des Stabes der Druck p so oft, innerhalb wie vieler Punktpaare o liegt. Punktpaare, welche den Punkt o nicht in sich fassen, haben auch keinen Einfluss auf den Druck in o. In Fig. 1 herrscht in o1 der Druck o2, in o2 und o3 der Druck o2, in o4 und o5 der Druck o5, in o6 der Druck o6.

Nun betrachten wir (Fig. 2) zwei dünne, gerade, endliche Flüssigkeitsfäden n_1 und n_2 von den Querschnitten ∂q_1 und ∂q_2 . Die Flüssigkeit A des Fadens n_1 habe die Dichte ρ_1 , während die Flüssigkeit B des Fadens n_2 die Dichte ρ_2 besitzt. Die Fäden können wir uns in dünne, unendlich lange Röhren gefasst denken. Die Moleküle des einen Fadens sollen auf die des anderen Fadens mittelst einer Elementarkraft vom Wirkungsradius r wirken.

Wir zerlegen nun den Faden n_2 in gleiche Theilchen von der Länge ∂s_2 , welche also die Masse $\mu_2 = \rho_2 \, \partial q_2 \, \partial s_2$ besitzen. Diese Masse denken wir je in den Mittelpunkt des betreffenden Fadenstückes concentrirt. Eine solche Masse μ_2 wirkt nun auf zwei Massenelemente μ_1 des Fadens n_1 . Wie man leicht findet, ist $\mu_1 = \rho_1 \partial r \partial q_1 / \sin \alpha$, wenn α der Winkel ist, den der Verbindungsradius von μ_1 und μ_2 mit dem Lothe macht. Die Intensität, mit der sich μ_1 und μ_2 anziehen, ist $k = \mu_1 \mu_2 f(r) \partial r$, wenn zwei

Masseneinheiten einander vermöge der Elementarkraft mit der Intensität f(r) anziehen. Wir finden durch Substitution $k = \rho_1 \rho_2 \, \partial q_1 \partial q_2 f(r) \partial r \, \partial s / \sin \alpha$. Die Horizontalcomponente ξ dieser Kraft ist $k \sin \alpha$ oder $\xi = \rho_1 \rho_2 \, \partial q_1 \, \partial q_2 f(r) \, \partial r \, \partial s$. Nichts hindert uns anzunehmen, dass die beiden Massen μ_1 im Abstande $2r \sin \alpha$ oder 2b einander mit der Kraft ξ anziehen.

Nun betrachten wir die beiden Fäden Fig. 3. Es ist sowohl n_1 als auch n_2 in gleiche Elemente von der Länge ∂s getheilt und die Massen dieser Elemente je in den Mittelpunkt des Volumelementes concentrirt gedacht. Von jedem solchen Massenpunkte sind die Radien nach den angezogenen Stücken des gegenüberliegenden Fadens gezogen.

Wenn wir von a_1 bis b_1 vorschreiten, dann treten wir successive in so viel Massenpaare μ_1 ein, wie oft ∂s in der Strecke a_1b_1 enthalten ist. Das sei z_1 -mal der Fall. Dann herrscht in b_1 der Druck $z_1\xi$ oder $\rho_1\rho_2\,\partial q_1\partial q_2\,f(r)\partial r\xi\partial s$. Nun ist $\xi\partial s$ nichts Anderes, als die Strecke a_1b_1 , welche wir mit ν_1 bezeichnen wollen. Der Druck in b_1 ist also $\nu_1\rho_1\,\rho_2\,\partial q_1\partial q_2\,f(r)\partial r$. Dieser Druck bleibt constant, wenn wir noch weiter nach links vorschreiten, da wir dann in jedem Momente aus ebensoviel Massenpaaren austreten, in wieviele wir gleichzeitig eintreten.

Auf ganz analoge Weise finden wir für den Druck, der in n_2 links von b_2 herrscht, den Ausdruck $\nu_2 \, \rho_1 \, \rho_2 \, \partial q_1 \partial q_2 f(r) \, \partial r$, wenn ν_2 das Stück $a_2 \, b_2$ ist.

Wenn wir $a_1c=b_2a_2$ zeichnen, dann finden wir, dass stets $\nu_1+\nu_2=2b$ ist. Die Summe der Drucke in n_1 und n_2 , oder

$$(\nu_1 + \nu_2) \rho_1 \rho_2 \partial q_1 \partial q_2 f(r) \partial r$$

ist also constant, d. h. unabhängig von der relativen Länge der Fäden. Wenn n_2 gegen n_1 sehr lang ist, dann ist $\nu_1 = o$, $\nu_2 = 2b$ und der Druck ist in $n_1 = o$, in n_2 aber gleich $2b \rho_1 \rho_2 \partial q_1 \partial q_2 f(r) \partial r$.

Wenn wir nun bestimmen wollen, welcher Druck im Faden n_1 (abgesehen vom Endstücke ν_1) herrscht, dann finden wir ein für künftige Überlegungen sehr nützliches Verfahren durch folgende Überlegung. Die Spannung in n_1 ist bekanntlich $\nu_1\rho_1\rho_2$ $\partial q_1\partial q_2f(r)\partial r$, wofür wir auch schreiben können $(2b-\nu_2)\rho_1\rho_2$ $\partial q_1\partial q_2f(r)\partial r$ oder

Nun bedeutet aber $2b \, \rho_2 \, \partial q_2$ die Masse M_2 , welche aus n_2 ausgeschnitten wird, wenn wir aus einem von a_1 ferne liegenden Punkte von n_1 eine Kugel K_2 vom Radius r beschreiben. Analog ist $\nu_2 \, \rho_2 \, \partial q_2$ die Masse m_2 , welche von n_2 abgeschnitten wird, wenn wir vom Endpunkte von n_1 aus eine andere Kugel K_1 vom Radius r beschreiben. Wir können also den Druck in n_1 auch schreiben

$$(\textit{M}_{2}\text{---}\textit{m}_{2})\,\rho_{1}\partial\,q_{1}\,f(r)\,\partial r.$$

Per Einheit des Querschnittes aber ist der Druck in n_1 gleich

$$(M_2-m_2) \rho_1 f(r) \partial r.$$

Wenn die Enden von n_2 senkrecht unter den Enden von n_1 liegen, dann ist $m_2 = \frac{1}{2} M_2$ und folglich der Druck in n_1 gleich

$$\frac{1}{2} M_2 \rho_1 f(r) \, \partial r.$$

Wenn hingegen n_2 gegen n_1 sehr lang ist, dann ist $m_2 = M_2$, d. h. in n_1 herrscht gar kein Druck. In n_2 herrscht dann, wie man leicht findet, der Druck $M_1\rho_2 f(r) \partial r$. Den Druck, den n_2 in n_1 erzeugt, können wir auch als contractive Spannung auffassen. Wenn nämlich das Rohr, in welchem sich n_1 befindet, sich erweitert, dann verkürzt sich der Faden und zieht sich mit einer Kraft gleich jenem Drucke zusammen. Wenn aber ein Faden unter Kraftäusserung sich contrahirt, dann sagen wir, er sei gespannt.

Wohin diese Entwicklungen zielen, das mag folgende Bestimmung des Binnendruckes in einem Punkte o einer homogenen endlichen Flüssigkeitsmasse von beliebiger Form klar machen (Fig. 8). Wir betrachten einen Flüssigkeitsfaden n_0 vom Querschnitte ∂q_0 , welcher durch den Punkt o bis an einen beliebigen Punkt der Oberfläche geht, und die umgebende Flüssigkeit bis zum Abstande r zerlegen wir in unendlich dünne, dem Faden n_0 parallele Fäden n. Hiebei bedeutet r den Wirkungsradius einer Elementarkraft. Jeder einzelne dieser Fäden n erzeugt in n_0 einen Längsdruck. Um diese Drucke zu bestimmen, beschreiben wir von o aus mit dem Radius r eine Kugel K_2 und eine gleiche Kugel K_1 vom Endpunkte des n_0 in der Oberfläche. Jeder einzelne Faden n liefert dann in n_0 einen Druck $(M-m) \rho \partial q_0 f(r) \partial r$, wobei

M und m die Massen der Fadentheile sind, die durch K_2 und K_1 aus dem Faden n geschnitten werden. Der Gesammtdruck in n_0 ist also $\Sigma(M-m)\rho \partial q_0 f(r) \partial r$ oder $\rho \partial q_0 f(r) [\Sigma M-\Sigma m] \partial r$. Nun ist aber ΣM und Σm nichts Anderes, als die von den Kugeln K_2 und K_1 eingeschlossenen Flüssigkeitsmassen. Es ist $\Sigma M = \frac{4}{3} \pi \rho r^3$ und bei ebener Oberfläche O ist $\Sigma m = \frac{2}{3} \pi \rho r^3$. Bei concaver Oberfläche O_1 ist zu diesem Werthe von Σm noch die Masse eines Meniscus hinzuzuaddiren, bei convexer Oberfläche O_2 aber abzuziehen. Für ebene Oberfläche ist also der Druck in n_0 per Einheit des Querschnittes gleich $\frac{2}{3} \pi \rho^2 r^3 f(r) \partial r$, und alle Elementarkräfte von $r = r_1$ bis $r = r_2$ zusammengenommen liefern bei ebener Oberfläche den Binnendruck

$$\frac{2}{3}\pi\rho^2\int_{r_1}^{r_2}r^3f(r)\,\partial r.$$

Die Wechselwirkung von zwei parallelen ebenen Flüssigkeitsschichten.

Die Flüssigkeitsschichten N_1 und N_2 (Fig. 4) im Abstande H_1 von den Dicken ∂H_1 und ∂H_2 und den Dichten ρ_1 und ρ_2 bestehen aus den Flüssigkeiten A (in N_1) und B (in N_2), deren Moleküle sich mittelst einer Elementarkraft vom Wirkungsradius r und dem Wirkungsintervall ∂r anziehen.

Zuerst berechnen wir die Kraft, mit der sich die beiden Lamellen per Flächeneinheit anziehen. In der Schicht N_2 entspricht einem Oberflächenelemente $\partial o_2 = \delta x \delta y$ ein Volumelement $\partial o_2 \partial H_2$ und das Massenelement $\rho_2 \partial o_2 \partial H_2$, welches wir uns in einen Massenpunkt m_2 zusammengezogen denken. Nun wirkt m_2 vermöge seiner Elementarkraft auf einen Ring in N_1 anziehend. Dieser Ring hat den Radius H tg α , den Umfang $2\pi H$ tg α , den Querschnitt $\partial r \partial H / \sin \alpha$, das Volumen $2\pi H \partial H_1 \partial r / \cos \alpha$ und die Masse $m_1 = 2\pi \rho_1 H \partial H_1 \partial r / \cos \alpha$. Jedes Element dieses Ringes wirkt unter dem Winkel α anziehend auf m_1 oder $\rho_2 \partial o_2 \partial H_2$. Die Summe dieser elementaren Anziehungen ist $m_1 m_2 f(r)$, und ihre normale Componente ist $m_1 m_2 f(r)$ oder $2\pi \rho_1 \rho_2 H \partial H_1 \partial H_2 \partial o f(r) \partial r$.

Lamelle n_0 befinde sich ein Flüssigkeitselement vom Volumen $\partial x \partial y \partial H$. Wir wollen für jede seiner sechs Flächen den Druck berechnen, dem sie per Flächeneinheit ausgesetzt ist.

Der verticale Druck.

Je zwei Schichten im Abstande H ziehen einander vermöge einer Elementarkraft per Flächeneinheit mit einer Kraft an, für die wir oben den Ausdruck gewonnen haben

$$2\pi \rho_1 \rho_2 H \partial H_1 \partial H_2 f(r) \partial r$$
.

Wenn die Schicht n_1 in der Höhe h_1 über n_0 , die Schicht n_2 aber in der Tiefe h_2 unter n_0 liegt, dann lautet diese Formel für uns

$$2\pi \rho^2 (h_1 + h_2) \partial H^2 f(r) \partial r$$
.

Diesen Druck überträgt die zwischenliegende Flüssigkeit als Verticaldruck auf n_0 . Wir finden den Druck, den n_1 durch Wechselwirkung mit der unter n_0 liegenden Flüssigkeit liefert, indem wir von $h_2 = o$ bei $h_2 = r - h_1$ integriren. Wir erhalten

$$\pi \rho^2 (r^2 - h^2) f(r) \partial r \partial H$$
.

Hier bemerken wir, dass $\pi \rho(r^2-h^2) \partial H$ die Masse der Scheibe ist, die durch eine von n_0 aus mit dem Radius r beschriebene Kugel aus n_1 ausgeschnitten wird. Wir können diese Masse mit S_1 bezeichnen. Eine Schicht n_1 über n_0 erzeugt also durch Wechselwirkung mit der Flüssigkeit unter n_0 den Druck in n_0

$$\rho S_1 f(r) \partial r$$
.

Den Druck, den alle innerhalb der Höhe r liegende Schichten n_1 in n_0 erzeugen, finden wir durch Integration von $h_1 = o$ bei $h_1 = r$ und erhalten

$$\frac{2}{3}\pi\rho^2r^3f(r)\partial r.$$

Hier ist nunmehr $\frac{2}{3}\pi\rho r^3$ die Masse der Halbkugel, welche durch eine von n_0 aus mit Radius r beschriebene Kugel aus der Flüssigkeit geschnitten wird. Wenn wir diese Masse mit M_r bezeichnen, weil sie die Höhe r hat, dann ist der Verticaldruck, den n_0 erleidet, gleich

$$\rho M_r f(r) \partial r$$
.

Alle Elementarkräfte von $r = r_1$ bei $r = r_2$ liefern dann einen Druck, für den wir durch Integration finden

$$\frac{2}{3}\pi\rho^2\int_{r_1}^{r_2}r^3f(r)\,\partial r.$$

Diesen Druck per Flächeneinheit erleidet unser Volumelement $\partial x \partial y \partial H$ an seiner oberen und unteren Fläche.

Der horizontale Druck.

Wir haben oben gefunden, dass in horizontalen Schichten, deren gerade Ränder senkrecht untereinander liegen und nach den x- und y-Axen orientirt sind, in den Richtungen der beiden Axen in einander den horizontalen Druck erzeugen

$$\frac{1}{2}\,\pi\,\rho_{\mathbf{1}}\rho_{\mathbf{2}}(r^{2}\!\!-\!\!H^{2})\,\partial H_{\mathbf{1}}\partial H_{\mathbf{2}}f(r)\,\partial r.$$

Wenn wir die eine Lamelle mit n_0 identificiren, können wir den horizontalen Druck, den eine Lamelle n in n_0 erzeugt, auch schreiben

$$\frac{1}{2}\pi\rho^2(r^2-H^2)\partial H^2f(r)\partial r.$$

Hiebei bedeutet aber $\pi \rho (r^2 - H^2) \partial H$ die Masse S einer Scheibe, welche eine von n_0 aus mit dem Radius r beschriebene Kugel K aus der Schichte n ausschneidet. Alle Schichten von H = -r bis H = +r liefern einen Druck in n_0 , welchen wir durch Integration finden. Wir erhalten per Flächeneinheit den Druck

$$\frac{1}{2}\frac{4}{3}\pi\rho^2 r f(r)\,\partial r.$$

Hier bedeutet $\frac{4}{3}\pi\rho r^3$ die Masse der Flüssigkeit, welche von jener Kugel eingeschlossen wird. Wenn wir diese Masse mit $2M_r$ bezeichnen, dann ist der horizontale Druck in n_0 sowohl nach der x-Axe als nach der y-Axe gleich

$$\rho M_r f(r) \partial r$$
.

Alle Elementarkräfte von $r=r_1$ bis $r=r_2$ liefern dann den Horizontaldruck

$$\frac{2}{3}\pi\rho_2\int_{r_1}^{r_2}r^3f(r)\,\partial r.$$

Diesen Druck per Flächeneinheit erleidet unser Element $\partial x \partial y \partial H$ auf jeder seiner verticalen Wände. Es ist derselbe Druck, den auch die obere und untere Seite erleidet. Die Kräfte halten sich folglich im Gleichgewicht. Wir können also sagen: Der Binnendruck im Inneren einer homogenen Flüssigkeit ist

$$\frac{2}{3}\pi\rho^2\int_{r_1}^{r_2}r^3f(r)\partial r.$$

Wir wollen das Integral das dritte Molecularintegral nennen, weil in ihm der Radius r in der dritten Potenz vorkommt, und wir wollen es mit J^3 bezeichnen. Der Binnendruck ist dann

$$\frac{2}{3}\pi\rho^2J^3$$

Das zweite und vierte Molecularintegral.

1. Oberflächenspannung.

Die Oberflächenspannung einer Flüssigkeit mit ebener Oberfläche, bei der die Dichte ρ in der Oberflächenhaut dieselbe ist, wie im Innern der Flüssigkeit, berechnen wir in genauem Anschluss an den vorigen Abschnitt. (Fig. 6.)

Der verticale Druck.

Wir nehmen an, dass die Schichte n_0 sich unter der Oberfläche in einer Tiefe h < r befindet. Von einem Punkte in n_0 aus beschreiben wir eine Kugel K mit dem Radius r, welche aus jeder Schicht innerhalb der Entfernung r eine Scheibe von der Masse S_1 ausschneidet. Wir haben gesehen, dass jede ober n_0 liegende Schicht durch ihre Wechselwirkung mit der unter n_0 liegenden Flüssigkeit in n_0 einen Druck erzeugt gleich

$$\rho S_1 f(r) \partial r$$
 oder $\pi \rho^2 (r^2 - h_1^2) f(r) \partial r \partial H$.

Capillaritätsfunctionen.

Alle über n_0 liegenden Schichten geben also einen Verticaldruck, den wir durch Integration von $h_1 = o$ bis $h_1 = h$ finden. Wir erhalten

$$\pi \, \rho^2(r^2h - \frac{1}{3} \, h^3) f(r) \, \partial r.$$

Hier bedeutet $\pi \rho(r^2h - \frac{1}{3}h^3)$ die Masse der Flüssigkeit, welche in Form einer abgestutzten Halbkugel oberhalb n_0 in unserer Kugel K liegt. Wir bezeichnen diese Masse mit M_h , da sie die Höhe h besitzt und schreiben den in n_0 herrschenden Verticaldruck

$$\rho M_h f(r) \partial r$$
.

Diesen Druck per Flächeneinheit erleidet unser Volumelement $\partial x \partial y \partial H$ auf seiner oberen und unteren Seite.

Der Horizontaldruck.

Jede Schichte n_1 innerhalb der Entfernung $h_1 < r$ liefert in n_0 den Horizontaldruck

$$\frac{1}{2}\pi\rho^2(r^2-h_1^2)\partial H^2f(r)\partial r,$$

wobei $\pi \rho (r^2 - h_1^2)$ wieder die Masse obiger Scheibe S_1 bedeutet. Alle Schichten von $h_1 = -r$ bis $h_1 = +h$ liefern einen Horizontaldruck, den wir durch Integration bestimmen

$$\frac{1}{2} \pi \rho^2 \left(\frac{2}{3} r^3 + r^2 h - \frac{1}{3} h^3 \right) \partial H f(r) \partial r.$$

Hier bedeutet $\pi \rho \left(\frac{2}{3}r^3 + r^2h - \frac{1}{3}h^3\right)$ die ganze Flüssigkeitsmasse M_{h+r} , welche in Form einer abgestutzten Vollkugel in unserer Kugel K enthalten ist. Den Horizontaldruck können wir also per Flächeneinheit auch schreiben

$$\frac{1}{2} \rho M_{h+r} f(r) \partial r.$$

Diesen Druck per Flächeneinheit erleidet also unser Element $\partial x \partial y \partial H$ auf jeder senkrechten Seitenfläche.

Die Spannung.

Der Druck, den $\partial x \partial y \partial H$ in verticaler Richtung auf der oberen und unteren Fläche erleidet, ist per Flächeneinheit

$$p = \pi \rho^2 (r^2 h - \frac{1}{3} h^3) f(r) \partial r.$$

Mit dieser Kraft sucht sich also die Flüssigkeit unseres Elementes in horizontaler Richtung zu expandiren, d. h. wir können sagen, dass in n_0 diese expansive Spannung herrscht. Der Druck auf die Seitenflächen unseres Elementes ist aber per Flächeneinheit

$$q = \frac{1}{2} \pi \rho^2 \left(\frac{2}{3} r^3 + r^2 h - \frac{1}{3} h^3 \right) f(r) \, \partial r$$

und dieser ist mehr als hinreichend, um den Verticaldruck zu paralysiren. Wir finden einen horizontalen Drucküberschuss q-p oder α gleich

$$\alpha = \frac{1}{2} \pi \rho^2 \left(\frac{2}{3} r^3 - r^2 h + \frac{1}{3} h^3 \right) f(r) \partial r,$$

Hier bedeutet, wie wir auch ohne Rechnung hätten finden können, $\pi \rho \left(\frac{2}{3}r^3 - r^2h + \frac{1}{3}h^3\right)$ die Masse, welche von unserer Flüssigkeitskugel M_{h+r} fehlt oder die Masse der Flüssigkeit, welche den über die Oberfläche ragenden Theil der Kugel K ausfüllen würde. Wir bezeichnen sie nach ihrer Höhe mit M_{r-h} . Der horizontale Drucküberschuss ist per Einheit des Querschnittes also

$$\alpha = \frac{1}{2} M_{r-h} f(r) \, \partial r.$$

Wenn die Schicht n_0 sich zusammenziehen könnte, so würde sie es mit der Kraft α thun. Darum können wir α als contractive Spannung der Schicht n_0 auffassen.

Die Spannung aller Lamellen zusammengenommen finden wir durch Integration nach h, wobei $\alpha \partial h$ die Spannung für die Lamellendicke ∂h ist. Wir erhalten

$$\int_{h=0}^{h=r} \alpha \, \partial h = \frac{1}{8} \pi \rho^2 r^4 f(r) \, \partial r.$$

Alle Elementarkräfte zusammengenommen liefern folglich die Oberflächenspannung

$$a = \frac{1}{8} \pi \rho^2 \int_{r_1}^{r_2} r^4 f(r) \, \partial r.$$

Wir wollen das Molecularintegral als viertes Molecularintegral J^4 bezeichnen, weil r darin in der vierten Potenz steht. Wir schreiben daher die contractive Oberspannung

$$a=\frac{1}{8}\pi \rho^2 J^4.$$

Für den Druck in einer bestimmten Tiefe h unter der Oberfläche haben wir zwei Werthe gefunden, einen horizontalen und einen abweichenden verticalen Druck. Nun kann aber doch füglich nur Ein Druck in einem gewissen Punkte herrschen. In der Rechnung haben wir den Flüssigkeitsblock als frei angesehen, und dann kann er nicht im Gleichgewichte bleiben. Wenn unser Block aber ein Bestandtheil einer im Gleichgewichte befindlichen Flüssigkeitsmasse ist, dann wird der Überschuss des horizontalen Druckes, d. h. die horizontale Spannung der Oberflächenhaut, durch den Gegenzug der umgebenden, d. h. fortsetzungsweisen Haut paralysirt, so dass der wirklich in einem Punkte der Oberflächenhaut vorhandene horizontale Druck dann gleich dem Verticaldrucke ist. Dieser ist nach einer Elementarkraft gleich $\pi \rho^2 (r^2 h - \frac{1}{3} h^3) f(r) \partial r$. Alle Elementarkräfte zusammen geben also in der Tiefe h unter der Oberfläche den Druck

$$\pi \rho^2 h \int_{r_1}^{r_2} r^2 f(r) \, \partial r - \frac{1}{3} \pi \rho^2 h^3 \int_{r_1}^{r_2} f(r) \, \partial r.$$

Symbolisch schreiben wir

$$\pi \rho^2 h J^2 - \frac{1}{3} \pi \rho^2 h^3 J^0.$$

Wir nennen J^2 und J^0 das zweite und nullte Molecular integrale.

2. Randwinkel.

Die Figur 7 zeigt die ebene Oberfläche o o' einer festen Wand B, und auf derselben liegt eine Flüssigkeit A, deren freie Oberflächen mit e und e' bezeichnet sind. Dieselben bilden mit o o' den Winkel φ , den wir berechnen wollen.

Die Cohäsion von A erzeugt in der ganzen Oberflächenhaut von A, also nicht nur in den aufsteigenden Theilen e und e', sondern auch in der horizontalen, der Wand aufliegenden Haut eine Spannung, welche wir mit

$$\frac{1}{8}\pi \rho_1^2 J_1^4$$

bezeichnet haben. Die Indices 1 bei ρ und J deuten an, dass vom ersten Stoffe, von der Flüssigkeit A die Rede ist.

Die Spannungen in *B* kümmern uns nicht weiter. Zu berechnen ist aber noch die Spannung, die die Anziehung der Wand auf *A* in den Grenzschichten von *A* erregt.

Suchen wir den verticalen Druck, den eine Schicht n_0 in A in einer Höhe h < r ober der Wandoberfläche durch die ober ihr bis zur Höhe r liegenden Schichten erleidet. Die Schicht n in der Höhe $r > h_1 > h$ in A erleidet durch die Schicht n_2 in der Tiefe h_2 unter oo' in B den verticalen Zug

$$2\pi\,\rho_{\mathbf{1}}\rho_{\mathbf{2}}\left(h_{\mathbf{2}}+h_{\mathbf{1}}\right)\partial h_{\mathbf{1}}\partial h_{\mathbf{2}}f_{\mathbf{3}}^{\boldsymbol{\cdot}}(r)\,\partial r.$$

Hier bedeuten ρ_1 und ρ_2 die Dichten von A und von B; der Index am Functionszeichen weist auf die Adhäsion hin (im Gegensatze zur Cohäsion).

Alle Schichten n_2 von $h_2 \equiv o$ bis $h_2 \equiv r - h_1$ liefern einen verticalen Zug, den wir durch Integration nach h_2 bestimmen, zu

$$\pi \rho_1 \rho_2 (r^2 - h_1^2) \partial h_1 f_3(r) \partial r.$$

Alle Schichten n_1 von $h_1 = h$ bis $h_1 = r$ liefern den Verticaldruck, den wir durch Integration nach h_1 bestimmen, zu

$$\gamma = \pi \, \rho_{\rm 1} \rho_{\rm 2} \left(\frac{2}{3} \, r^3 - r^2 h + \frac{1}{3} \, h^3 \right) f_{\rm 3}(r) \, \partial r.$$

Diesen Druck per Flächeneinheit erleidet n_0 auf seiner oberen Fläche. Mit dieser Kraft trachtet sich also n_0 horizontal auszubreiten.

Eine horizontale Spannung erzeugt die Wand B in n_0 nicht, da die Schichten in B unendlich sind in Bezug auf die Schichte n_0 , in welchem Falle, wie wir gefunden haben, die kleinere Schicht keine horizontale Spannung erhält. Die Wand erzeugt also in n_0 nur obige expansive Spannung γ . Nun haben wir früher gefunden, dass die Cohäsion von A in derselben Schicht n_0 eine contractive Spannung erzeugt

$$\alpha = \frac{1}{2} \pi \rho_1^2 \left(\frac{2}{3} r^3 - r^2 h + \frac{1}{3} h^3 \right) f_1(r) \partial r.$$

Die wirkliche Spannung in n_0 ist also in contractivem Sinne gleich $\alpha-\gamma$ oder

$$s = \frac{1}{2} \, \pi \, \Big(\frac{2}{3} \, r^2 - r^2 h + \frac{1}{3} \, h^3 \Big) \Big(\rho_1^2 f_1(r) \, \eth r - 2 \rho_1 \rho_2 f_3(r) \eth r \Big).$$

Wie wir sehen, kann diese Spannung sowohl positiv, als auch negativ, d. h. sowohl contractiv, als auch expansiv sein. Auf die Lamellendicke ∂h berechnet, ist diese Spannung gleich $s\partial h$, und für alle Lamellen von h = o bis h = r ist sie

$$\int_{h=0}^{h=r} s \, \partial h = \frac{1}{8} \pi \left[\rho_1^2 r^4 f_1(r) \, \partial r - 2 \rho_1 \rho_2 r^4 f_3(r) \, \partial r \right].$$

Alle Elementarkräfte zusammen liefern dann die Spannung, die wir durch Integration von $r=r_1$ bis $r=r_2$ finden. Wir erhalten

$$\frac{1}{8}\pi\rho_1^2J_1^4-2 \frac{1}{8}\pi\rho_1\rho_2J_3^4,$$

wofür wir kürzer schreiben können a-2c. Die Contacthaut kann also sowohl contractiv, als auch expansiv gespannt sein. Spannungslos ist sie für a=2c. Die freie Oberfläche e der Flüssigkeit, welche mit der Wand den Winkel φ bildet, hat die contractive Spannung a, und deren der Wand parallele Componente $a\cos\varphi$ muss der Spannung der Contactschicht das Gleichgewicht halten. So viel sehen wir sofort, dass $\varphi < R$ sein muss, wenn die

Contactlamelle contractiv gespannt, also a < 2c ist, dass aber $\varphi > R$ sein muss, wenn die Contactlamelle expansiv gespannt, d. h. a < 2c ist. Für a = 2c, d. h. wenn die Contactlamelle spannungsfrei ist, muss $\varphi = R$ sein. Wir haben im Allgemeinen die Bedingung

$$a-2c \equiv a\cos\varphi$$

oder

$$\cos\varphi = \frac{a-2c}{a}.$$

Das fünfte Molecularintegral.

1. Wir wollen nun Druck und Spannung in einem orthogonalen, nach den Hauptaxen orientirten Blocke (Fig. 6) einer Flüssigkeit betrachten, in welcher die Dichte ρ nach der z-Axe, also von unten nach oben sich ändert. Wir zerlegen wieder die Flüssigkeit in horizontale Schichten von der Dicke ∂H , wobei H nach der z-Axe gemessen ist. In einer Schicht n_0 betrachten wir wieder ein Flüssigkeitselement von dem Volumen $\partial x \partial y \partial H$ und berechnen für jede der drei Hauptrichtungen den Druck, dem das Element ausgesetzt ist.

Der verticale Druck.

Die Kraft, mit der zwei horizontale Lamellen n_1 und n_2 von den Dicken ∂H_1 und ∂H_2 , den Dichten ρ_1 und ρ_2 und den Höhen h_1 und h_2 über einer gegebenen Schichte n_0 sich vermöge einer Elementarkraft vom Wirkungsradius r und dem Wirkungsintervall ∂r per Flächeneinheit anziehen, ist

$$\mathbf{Z} = 2\pi \rho_1 \rho_2 (\mathbf{h_1} - \mathbf{h_2}) \partial \mathbf{H_1} \partial \mathbf{H_2} f(r) \partial r.$$

Da die Dichte mit der Höhe über n_0 sich nach irgend einem Gesetze ändert, diese Änderung aber in der Praxis innerhalb der geringen Wirkungsweite r einer Elementarmolecularkraft nur eine sehr geringe ist, so können wir annehmen, wenn ρ die Dichte der Flüssigkeit in n_0 ist,

$$\rho_1 = \rho + h_1 \rho' + \frac{1}{2} h_1^2 \rho'' + .$$

$$\rho_2 = \rho + h_2 \rho' + \frac{1}{2} h_2^2 \rho'' + .$$

Hieraus finden wir, wenn wir wieder nur bis zur zweiten Potenz der Abstände gehen, für das Product $\rho_1 \rho_2$

$$\rho_1 \rho_2 = \rho^2 + \rho \rho' (h_1 + h_2) + \frac{1}{2} \rho \rho'' (h_1^2 + h_2^2) + \rho'^2 h_1 h_2.$$

Wir vereinfachen uns die Rechnung, wenn wir einsetzen

$$h_1 = \zeta + \frac{1}{2}H$$
 $h_2 = \zeta - \frac{1}{2}H$.

Wir erhalten dann

$$\begin{split} (h_1 - h_2) &= H \quad (h_1 + h_2) = 2\zeta \quad h_1 h_2 = \left(\zeta^2 - \frac{1}{4} H^2\right) \\ h_1^2 + h_2^2 &= 2\left(\zeta^2 + \frac{1}{4} H^2\right) \cdot \end{split}$$

Diese Werthe eingesetzt finden wir, wenn wir das Product $\rho_1 \rho_2$ nach Potenzen von ζ ordnen

$$\mathbf{Z} = 2\pi \left(\rho^2 + \frac{1}{4} \left[\rho \rho'' - \rho'^2 \right] H^2 + 2\rho \rho' \zeta + \left[\rho \rho'' + \rho'^2 \right] \zeta^2 \right) H \partial H_1 \partial H_2 f(r) \partial r.$$

Wenn ζ zwischen $+\frac{1}{2}H$ und $-\frac{1}{2}H$ liegt, dann liegt stets die Schicht n_1 oberhalb, die Schicht n_2 aber unterhalb n_0 , und n_1 und n_2 liefern für n_0 eine verticale Druckcomponente. Die Summe aller Druckcomponenten, welche aus solchen Schichtenpaaren vom Abstande H resultiren, finden wir, wenn wir Z von $\zeta = -\frac{1}{2}H$ bis $\zeta = +\frac{1}{2}H$ integriren. Die Integration betrifft offenbar nur das Product ρ_1 ρ_2 , und wir müssen $\partial H_1 = \partial H_2 = \partial \zeta$ setzen. Wenn wir die Integration ausführen und die erhaltenen Glieder nach Potenzen von H ordnen, dann erhalten wir

$$\int_{-\frac{1}{2}H}^{+\frac{1}{2}H} Z = 2\pi \left(\rho^2 H^2 \partial H + \frac{1}{3} \left[\rho \rho'' - \frac{1}{2} \rho'^2 \right] H^4 \partial H \right) f(r) \partial r.$$

Hier haben wir $\Im \zeta$ wieder durch $\Im H$ ersetzt. Diesen Druck liefern in n_0 alle Schichtenpaare vom Abstande H. Den ganzen Druck, welchen alle Schichtenpaare von dem Abstande H = o

bis H=r liefern, finden wir durch Integration nach H von H=o bis H=r. Wenn wir integriren und nach r ordnen, dann finden wir den Druck in n_0

$$\frac{2}{3} \pi \rho^2 r^3 f(r) \, \partial r + \frac{2}{15} \pi \left(\rho \, \rho'' - \frac{1}{2} \, \rho'^2 \right) r^5 f(r) \, \partial r.$$

Den Druck, den alle Elementarkräfte von $r=r_1$ bis $r=r_2$ liefern, finden wir abermals durch Integration, und zwar von $r=r_1$ bis $r=r_2$; wir erhalten als Verticaldruck in n_0

$$p = \frac{2}{3} \pi \rho^2 \int_{r_1}^{r_2} r^3 f(r) \, \partial r + \frac{2}{15} \pi \left(\rho \, \rho'' - \frac{1}{2} \, \rho'^2 \right) \int_{r_1}^{r_2} r^5 f(r) \, \partial r.$$

Dem ersten Integral sind wir schon einmal begegnet und haben es als drittes Molecularintegral J^3 bezeichnet. Analog wollen wir das zweite Integral als fünftes Integral J^5 bezeichnen, nachdem es r in der fünften Potenz enthält. Wir schreiben also diesen Druck einfacher

$$p = \frac{2}{3} \, \pi \, \rho^2 J^3 + \frac{2}{15} \, \pi \left(\rho \, \rho^{\prime \prime} - \frac{1}{2} \, \rho^{\prime 2} \right) J^5.$$

Diesen Druck erleidet also unser Flüssigkeitselement vom Volumen $\partial x \partial y \partial H$ per Flächeneinheit auf seiner oberen und unteren Fläche.

Der horizontale Druck.

Eine Schicht n_0 zeigt unter der Einwirkung einer Schicht n_1 im Abstande H in jeder Richtung, also sowohl in der Richtung der x-Axe, als auch in der Richtung der y-Axe den Druck per Flächeneinheit

$$X = Y = R = \frac{1}{2} \pi \rho \rho_1 (r^2 - H^2) \partial H_0 \partial H_1 f(r) \partial r.$$

Für ρ_1 schreiben wir $\rho + h_1 \rho' + \frac{1}{2} h_1^2 \rho'' + .$ und für ∂H_1 folgerichtig ∂h_1 . Die Summe aller horizontalen Drucke, welche von allen Schichten n_2 von $h_1 = -r$ bis $h_1 = +r$ in n_0 erzeugt werden, finden wir durch Integration nach h_1 von $h_1 = -r$ bis $h_1 = +r$ und erhalten

$$\frac{2}{3}\pi\rho^2r^3f(r)\,\partial r+\frac{1}{15}\pi\rho\rho''r^5f(r)\,\partial r.$$

Für alle Elementarkräfte zusammengenommen finden wir

$$\begin{split} q &= \frac{2}{3} \pi \rho^2 \int_{r_1}^{r_2} r^3 f(r) \, \partial r + \frac{1}{15} \pi \rho \rho'' \int_{r_1}^{r_2} r^3 f(r) \, \partial r \\ &= \frac{2}{3} \pi \rho^2 J^3 + \frac{1}{15} \pi \rho \rho'' J^5. \end{split}$$

Die Spannung.

Unser Flüssigkeitselement vom Volumen $\partial x \partial y \partial H$ in der Lamelle n_0 erleidet den verticalen Druck p per Flächeneinheit an der oberen und unteren Fläche und den Druck q per Flächeneinheit an seinen verticalen Seitenflächen. Diese Drucke heben sich nur theilweise gegenseitig auf, und es resultirt ein horizontaler Drucküberschuss

$$\begin{split} s &= q - p = -\frac{1}{15} \pi \rho \rho'' J^5 + \frac{1}{15} \pi \rho'^2 J^5 \\ &= -\frac{1}{15} \pi (\rho \rho'' - \rho'^2) J^5. \end{split}$$

Dieser horizontale Drucküberschuss erscheint uns als horizontale Spannung per Flächeneinheit. Wir lesen aus der Formel:

In einer nicht homogenen Flüssigkeit zeigen die (ebenen) Schichten gleicher Dichte im Allgemeinen zwei Spannungen; die erste hängt von dem Gefälle ρ' , die zweite von ρ'' , also von der Krümmung der Dichtigkeitscurve ab.

Die Steigerung ρ' der Dichtigkeitseurve in irgend einer Schicht n_0 verursacht in derselben unbedingt contractive Spannung, welche dem Quadrate der Steigerung ρ' proportional ist.

Die Spannung, welche von ρ' abhängt, ist unbedingt contractiv; sie ist dem Quadrate des Gefälles der Dichtigkeitseurve proportional und ist unabhängig von der absoluten Dichte ρ der Flüssigkeit.

Die Spannung, welche von ρ'' abhängt, kann sowohl expansiv, als auch contractiv sein. Sie ist expansiv, wo die Dichtigkeitscurve concav verlauft, während sie contractiv ist, wo die Dichtig-

keitseurve convex ist; die Spannung ist der Dichte ρ der Flüssigkeit in der in Rede stehenden Lamelle proportional.

Die Spannung einer Lamelle ist = o, wenn $\rho'' = o$ und $\rho' = o$ ist, d. h. wenn die Flüssigkeit homogen ist oder wenn $\rho \rho'' = {\rho'}^2$ ist. Das kann also nur dort der Fall sein, wo die Dichtigkeitscurve concav verlauft.

Wieder taucht die Frage auf, ob im Elemente $\partial x \partial y \partial H$ der Druck p oder der Druck q herrscht, da doch nur einer von beiden herrschen kann, wenn Gleichgewicht vorhanden ist. Wenn unser Flüssigkeitsblock nur ein Theil einer grösseren Masse ist, dann wird der horizontale Drucküberschuss, d. i. die horizontale Spannung, durch den Gegenzug der sich nach allen Seiten anschliessenden gleichartigen Schichten paralysirt, so dass dann auf allen sechs Flächen nur der Druck p, d. i. der Verticaldruck herrscht. Dieser ist aber

$$\frac{2}{3}\pi\rho^2J^3 + \frac{1}{15}\pi\rho\rho''J^5 - \frac{1}{15}\rho'^2J^5.$$

Der Druck in einer Lamelle wird also durch das Gefälle der Dichtigkeitscurve unbedingt erniedrigt, und zwar ist diese Erniedrigung dem Quadrat des Gefälles ρ' proportional und von der absoluten Dichte ρ unabhängig.

13

Die Krümmung der Dichtigkeitscurve kann den Binnendruck sowohl erhöhen, als auch erniedrigen. Wo $\rho'' < o$ ist, d. h. wo die Curve convex verlauft, dort wird der Binnendruck erniedrigt, während er erhöht wird, wo die Curve concav verlauft.

Der Binnendruck ist derselbe, wie in der homogenen Flüssigkeit, wo $2\rho \rho'' = \rho'^2$ ist. Das kann also nur dort sein, wo die Curve concav verlauft.

2. Wir wollen nun annehmen, dass in einem Gefässe über der Flüssigkeit A sich die Flüssigkeit B befindet und dass an der Grenze der beiden sich eine Mischungsschicht gebildet hat. Wir wollen Druck und Spannung in dieser Mischungsschicht berechnen.

Der verticale Druck.

Wir zerlegen wieder die Flüssigkeit in Schichten von der Dicke ∂H . In einer Schicht n_0 seien die Flüssigkeiten A und B

derart gemischt, dass in der Volumeinheit von gleicher Mischung das Volumen ω_1 von A und das Volumen ω_2 von B enthalten wäre. Natürlich ist dann $\omega_1 + \omega_2 = 1$. Wenn reine Flüssigkeit A die Dichte ρ_1 besitzt, reine Flüssigkeit B aber die Dichte ρ_2 , dann hat in der Schicht n_0 die Flüssigkeit A die Dichte $\omega_1 \rho_1$, während B ebendaselbst die Dichte $\omega_2 \rho_2$ besitzt. In der Höhe h_1 über der Schicht n_0 befindet sich eine andere Schicht n_1 , wo die Dichte a_1 der Flüssigkeit A gleich ist

$$a_1 = (\omega_1 \rho_1) + h_1 \frac{\partial (\omega_1 \rho_1)}{\partial z} + \frac{1}{2} h_1^2 \frac{\partial^2 (\omega_1 \rho_1)}{\partial z^2} + \dots$$

Nun ist ρ_1 constant und nur ω_1 variabel, also

$$\frac{\partial (\omega_1 \rho_1)}{\partial z} = \rho_1 \omega_1' \qquad \frac{\partial^2 (\omega_1 \rho_1)}{\partial z^2} = \rho_1 \omega_1'',$$

so dass wir schreiben können

$$a_{1} = \omega_{1} \rho_{1} + h_{1} \rho_{1} \omega_{1}' + \frac{1}{2} h_{1}^{2} \rho_{1} \omega_{1}'' + \dots$$

$$= \rho_{1} \left(\omega_{1} + h_{1} \omega_{1}' + \frac{1}{2} h_{1}^{2} \omega_{1}'' + \dots \right).$$

Auf ganz ähnliche Weise finden wir die Dichte der Flüssigkeit B in n_1 gleich

$$b_1 = \rho_2 \left(\omega_2 + h_1 \omega_2' + \frac{1}{2} h_1^2 \omega_2'' + \dots \right)$$

Nun gilt wegen $\omega_1 + \omega_2 = 1$ auch $\omega_2' = -\omega_1'$ und $\omega_2'' = -\omega_1''$; also ist auch

$$b_{1} = \rho_{2} \left(\omega_{2} - h_{1} \omega_{1}' - \frac{1}{2} h_{1}^{2} \omega_{1}'' \right) \cdot$$

In einer zweiten Schicht n_2 in der Höhe h_2 über n_0 ist analog die Dichte von A oder a_2 gleich

$$a_2 = \rho_1 \left(\omega_1 + h_2 \, \omega_1' + \frac{1}{2} \, h_2^2 \, \omega_1'' \right)$$

und die Dichte b_2 von B gleich

$$b_{\rm 2} = \rho_{\rm 2} \Big(\omega_{\rm 2} - h_{\rm 2} \omega_{\rm 1}' - \frac{1}{2} \, h_{\rm 2}^2 \, \omega_{\rm 1}'' \Big) \cdot$$

Zwischen den Schichten n_1 und n_2 finden nun vier Anziehungen statt:

- I. Die A-Flüssigkeit in n_1 wird angezogen
- 1. durch die A-Flüssigkeit in n_2 ,
- 2. durch die B-Flüssigkeit in n_2 .

II. Die B-Flüssigkeit in n_1 wird angezogen

- 3. durch die A-Flüssigkeit in n_2 ,
- 4. durch die B-Flüssigkeit in n_2 .

Die erste und vierte Anziehung beruhen auf Cohäsionskräften, indem gleichartige Flüssigkeiten einander anziehen, während die dritte und zweite Anziehung auf Adhäsionskräften beruhen, nachdem ungleichartige Stoffe sich anziehen. Die allgemeine Formel für Verticalanziehung zweier Flüssigkeitsschichten per Flächeneinheit ist

$$2\pi \rho_1 \rho_2 H \partial H_1 \partial H_2 f(r) \partial r$$
.

Auf unsere vier obigen Anziehungen überschrieben, lautet die Formel

$$\begin{array}{lll} A_{1}A_{2} \colon & 2\pi\,a_{1}a_{2}\,(h_{1}-h_{2})\,\partial H_{1}\partial H_{2}\,f_{11}(r)\,\partial r\\ A_{1}B_{2} \colon & 2\pi\,a_{1}b_{2}\,(h_{1}-h_{2})\,\partial H_{1}\partial H_{2}\,f_{12}(r)\,\partial r\\ B_{1}A_{2} \colon & 2\pi\,b_{1}a_{2}\,(h_{1}-h_{2})\,\partial H_{1}\partial H_{2}\,f_{12}(r)\,\partial r\\ B_{1}B_{2} \colon & 2\pi\,b_{1}b_{2}\,(h_{1}-h_{2})\,\partial H_{1}\partial H_{2}\,f_{22}(r)\,\partial r \end{array}$$

Die vorgesetzten Symbole deuten die Flüssigkeiten an, welche sich anziehen; dasselbe deuten die Indices der Functionszeichen an. Im zweiten und dritten Falle ist von derselben Kraft die Rede, nämlich von der Adhäsion von A und B; darum ist auch in beiden Fällen die Indicirung dieselbe. Wir haben nun in obige vier Ausdrücke die Werthe a_1 a_2 , b_1 und b_2 einzusetzen. Wir berechnen zunächst nur die vier Producte a_1 a_2 , a_1 b_2 , b_1 a_2 , b_1 b_2 , wobei wir nur bis zur zweiten Potenz des h vorschreiten. Wir finden, wobei wir ω' und ω'' für ω'_1 und ω''_1 schreiben:

$$\begin{split} a_1 a_2 &= \rho_1^2 \Big(\omega_1^2 + [h_1 + h_2] \, \omega_1 \omega' + \frac{1}{2} \, [h_1^2 + h_2^2] \omega \, \omega'' + h_1 h_2 \, \omega'^2 \Big) \\ a_1 b_2 &= \rho_1 \, \rho_2 \, \Big(\omega_1 \omega_2 + [h_1 \omega_2 - h_2 \omega_1] \, \omega' + \frac{1}{2} \, [h_1^2 \omega_2 - h_2^2 \omega_1] - h_1 h_2 \, \omega'^2 \Big) \end{split}$$

$$\begin{split} b_1 a_2 &= \rho_1 \, \rho_2 \left(\omega_1 \omega_2 + [h_2 \omega_2 - h_1 \omega_1] \, \omega' + \frac{1}{2} \, [h_2^2 \, \omega_2 - h_1^2 \, \omega_1] - h_1 h_2 \, \omega'^2 \right) \\ b_1 \, b_2 &= \rho_2^2 \left(\omega_2^2 - [h_1 + h_2] \, \omega_2 \, \omega' - \frac{1}{2} \, [h_1^2 + h_2^2] \, \omega_2 \, \omega'' + h_1 h_2 \, \omega'^2 \right) \cdot \end{split}$$

In diese Formeln führen wir nun wieder ein

$$h_1 = h + \frac{1}{2}H$$
 $h_2 = h - \frac{1}{2}H$

und überdies noch vorkommenden Falles $\omega_2 - \omega_1 = n$. Unsere vier Producte nehmen dann die Formen an, wenn wir nach h ordnen

$$\begin{split} a_1 a_2 &= \rho_1^2 \left(\omega_1^2 + \frac{1}{4} \left[\omega_1 \omega'' - \omega'^2 \right] H^2 + 2 \omega_1 \omega' h + \left[\omega_1 \omega'' + \omega'^2 \right] h^2 \right) \\ a_1 b_2 &= \rho_1 \, \rho_2 \left(\omega_1 \omega_2 + \frac{1}{2} \, \omega' H + \frac{1}{4} \left[\frac{1}{2} \, \omega'' n + \omega'^2 \right] H^2 + \right. \\ & \left. + \left[\omega' n + \frac{1}{2} \, \omega'' H \right] h + \left[\frac{1}{2} \, \omega'' n - \omega'^2 \right] h^2 \right) \\ b_1 a_2 &= \rho_1 \, \rho_2 \left(\omega_1 \omega_2 - \frac{1}{2} \, \omega' H + \frac{1}{4} \left[\frac{1}{2} \, \omega'' n + \omega'^2 \right] H^2 + \right. \\ & \left. + \left[\omega' n + \frac{1}{2} \, \omega'' H \right] h + \left[\frac{1}{2} \, \omega'' n - \omega'^2 \right] h^2 \right) \\ b_1 b_2 &= \rho_2^2 \left(\omega_2^2 - \frac{1}{4} \left[\omega_2 \omega'' + \omega'^2 \right] H^2 - 2 \omega_2 \omega' h + \left[- \omega_2 \omega'' + \omega'^2 \right] h^2 \right) \end{split}$$

Wenn wir diese Werthe in den Ausdrücken für $A_1A_2...B_1B_2$ einsetzen, dann können wir dem h jeden Werth zwischen $+\frac{1}{2}h$ und $-\frac{1}{2}H$ geben, und stets fählt dann n_2 unter, n_1 aber ober n_0 , so dass sie auf n_0 druckerzeugend wirken. Durch Integration von $h=-\frac{1}{2}H$ bis $h=+\frac{1}{2}H$ finden wir den Druck, den alle Lamellenpaare von dem Abstande H in n_0 erzeugen. Wir erhalten

$$\begin{split} &A_{1}A_{2}\colon\ 2\pi\ \rho_{1}^{2}\left(\omega_{1}^{2}H+\frac{1}{3}\left[\omega_{1}\omega''-\frac{1}{2}\ \omega'^{2}\right]H^{3}\right)H\ \partial Hf_{11}(r)\ \partial r\\ &A_{1}B_{2}\colon\ 2\pi\ \rho_{1}\rho_{2}\left(\omega_{1}\omega_{2}H+\frac{1}{2}\ \omega'H^{2}+\frac{1}{3}\left[\frac{1}{2}\ \omega''n+\frac{1}{2}\ \omega'^{2}\right]H^{3}\right)H\ \partial Hf_{12}(r)\ \partial r \end{split}$$

$$\begin{split} &B_{1}A_{2}\colon\ 2\pi\rho_{1}\rho_{2}\left(\omega_{1}\omega_{2}H-\frac{1}{2}\,\omega'H^{2}+\frac{1}{3}\left[\frac{1}{2}\,\omega''n+\frac{1}{2}\,\omega'^{2}\right]H^{3}\right)H\,\partial Hf_{12}(r)\,\partial r\\ &B_{1}B_{2}\colon\ 2\pi\,\rho_{2}^{2}\left(\omega_{2}^{2}H-\frac{1}{3}\left[\omega_{2}\omega''+\frac{1}{2}\,\omega'^{2}\right]H^{3}\right)H\,\partial Hf_{22}(r)\,\partial r \end{split}$$

Die Schichtenpaare von allen möglichen Abständen von $H \equiv o$ bis $H \equiv r$ liefern in n_0 einen Druck, den wir durch Integration nach H von $H \equiv o$ bis $H \equiv r$ finden. Wir erhalten

$$\begin{split} &A_{1}A_{2}\colon \, 2\pi\,\rho_{1}^{\,2}\Big(\frac{1}{3}\,\omega_{1}^{2}\,r^{3} + \frac{1}{15}\left[\,\omega_{1}\omega'' - \frac{1}{2}\,\omega'^{2}\right]r^{5}\Big)f_{11}(r)\,\partial r\\ &A_{1}B_{2}\colon \, 2\pi\,\rho_{1}\rho_{2}\,\Big(\frac{1}{3}\,\omega_{1}\omega_{2}r^{3} + \frac{1}{8}\,\omega'r^{4} + \frac{1}{15}\left[\,\frac{1}{2}\,\omega''n + \frac{1}{2}\,\omega'^{2}\right]r^{5}\Big)f_{12}(r)\,\partial r\\ &B_{1}A_{2}\colon \, 2\pi\,\rho_{1}\rho_{2}\Big(\frac{1}{3}\,\omega_{1}\omega_{2}r^{3} - \frac{1}{8}\,\omega'r^{4} + \frac{1}{15}\left[\,\frac{1}{2}\,\omega''n + \frac{1}{2}\,\omega'^{2}\right]r^{5}\Big)f_{12}(r)\,\partial r\\ &B_{1}B_{2}\colon \, 2\pi\,\rho_{2}^{\,2}\Big(\frac{1}{3}\,\omega_{2}^{\,2}\,r^{3} - \frac{1}{15}\left[\,\omega_{2}\omega'' + \frac{1}{2}\,\omega'^{2}\right]r^{5}\Big)f_{22}(r)\,\partial r \end{split}$$

Alle Elementarkräfte von $r=r_1$ bis $r=r_2$ zusammengenommen liefern einen Druck in n_0 , den wir durch Integration nach r zwischen den obigen Grenzen erhalten. Wir finden

Ü

$$\begin{split} &A_{1}A_{2} \colon \ 2\pi \, \rho_{1}^{2} \bigg(\frac{1}{3} \, \omega_{1}^{2} J_{1}^{3} + \frac{1}{15} \bigg[\, \omega_{1} \, \omega'' - \frac{1}{2} \, \omega'^{2} \bigg] \, J_{1}^{5} \bigg) \\ &A_{1}B_{2} \colon \ 2\pi \, \rho_{1}\rho_{2} \left(\frac{1}{3} \, \omega_{1}\omega_{2} J_{3}^{3} + \frac{1}{8} \, \omega' J_{3}^{4} + \frac{1}{15} \bigg[\, \frac{1}{2} \, \omega'' n + \frac{1}{2} \, \omega'^{2} \bigg] \, J_{3}^{5} \right) \\ &A_{1}A_{2} \colon \ 2\pi \, \rho_{1}\rho_{2} \left(\frac{1}{3} \, \omega_{1}\omega_{2} J_{3}^{3} - \frac{1}{8} \, \omega' J_{3}^{4} + \frac{1}{15} \bigg[\, \frac{1}{2} \, \omega'' n + \frac{1}{2} \, \omega'^{2} \bigg] \, J_{3}^{5} \right) \\ &B_{1}B_{2} \colon \ 2\pi \, \rho_{2}^{2} \bigg(\frac{1}{3} \, \omega_{2}^{2} J_{2}^{3} - \frac{1}{15} \bigg[\, \omega_{2} \, \omega'' + \frac{1}{2} \, \omega'^{2} \bigg] \, J_{2}^{5} \bigg) \end{split}$$

Diese vier Ausdrücke zusammengenommen liefern den verticalen Druck, den ein in der Lamelle n_0 gelegenes Flüssigkeitselement vom Volumen $\partial x \partial y \partial H$ an seiner oberen und unteren Fläche per Flächeneinheit erleidet. Bei dem Buchstaben J deutet der untere Index 1 an, dass das Integral sich auf die Cohäsion der ersten Flüssigkeit A bezieht; in der zweiten und dritten Zeile hat J den unteren Index 3, welcher die Adhäsion der beiden

Flüssigkeiten andeutet, während in der letzten Zeile der Index 2 die Cohäsion von B andeutet. Ferner ist bekanntlich $n = \omega_2 - \omega_1$.

Der horizontale Druck.

Wir gehen nun auf die Bestimmung des horziontalen Druckes über, der in der Schichte n_0 herrscht. Derselbe ist für alle Richtungen, also auch für die Richtung der x und die Richtung der y derselbe, und zwar ist der allgemeine Ausdruck für denselben

$$q = \frac{1}{2} \pi \rho_{1} \rho_{2} (r^{2} - H^{2}) \partial H_{1} \partial H_{2} f(r) \partial r.$$

Als zweite Schichte wollen wir n_0 ansehen, also den Index 2 durch den Index o ersetzen.

Nun wiederholen sich die Überlegungen, die wir bei Bestimmung der Verticaldruckes machen mussten. Wieder haben wir zwischen n_0 und n_1 vier Wechselwirkungen. Es wirkt nämlich

$$A_1$$
 in n_1 auf A_0 in n_0
 A_1 n_1 B_0 n_0
 B_1 n_1 A_0 n_0
 B_1 n_1 R_0 n_0

Die Dichte von A_1 , B_1 , A_0 , B_0 ist

$$A_{1} \qquad \qquad \rho_{1} \left(\omega_{1} + H \, \omega' + \frac{1}{2} \, H^{2} \, \omega'' \right)$$

$$B_{1} \qquad \qquad \rho_{2} \left(\omega_{2} - H \, \omega' - \frac{1}{2} \, H^{2} \, \omega'' \right)$$

$$A_{0} \qquad \qquad \rho_{1} \omega_{1}$$

$$B_{0} \qquad \qquad \rho_{2} \omega_{2}$$

Die obigen vier Wechselwirkungen liefern nun durch successive Substitution im Ausdrucke für q in n_0 folgende vier horizontale Drucke:

$$\begin{split} B_{1}A_{0} \colon & \frac{1}{2} \pi \rho_{1}\rho_{2}\omega_{1} \left(\omega_{2} - H \omega' - \frac{1}{2} H^{2}\omega''\right) (r^{2} - H^{2}) \partial H_{1} \partial H_{2}f_{12}(r) \partial r \\ B_{1}B_{0} \colon & \frac{1}{2} \pi \rho_{2}^{2} \omega_{2} \left(\omega_{2} - H \omega' - \frac{1}{2} H^{2}\omega''\right) (r^{2} - H^{2}) \partial H_{1} \partial H_{0}f_{22}(r) \partial r \end{split}$$

Die Schicht n_1 kann nun alle Abstände H von n_0 von H = -r bis H = +r haben. Die Wirkung aller dieser zwischen diesen Grenzen liegenden Schichten zusammengenommen finden wir durch Integration nach H von H = -r bis H = +r. Wir erhalten folgende Werthe:

$$\begin{split} &A_{1}A_{0}\colon & \pi\,\rho_{1}^{2}\,\omega_{1}\left(\frac{2}{3}\,\omega_{1}\,r^{3} + \frac{1}{15}\,\omega''r^{5}\right)\!f_{11}(r)\,\partial r\,\partial H_{0} \\ &A_{1}B_{0}\colon & \pi\,\rho_{1}\rho_{2}\,\omega_{2}\left(\frac{2}{3}\,\omega_{1}\,r^{3} + \frac{1}{15}\,\omega''r^{5}\right)\!f_{12}(r)\,\partial r\,\partial H_{0} \\ &B_{1}A_{0}\colon & \pi\,\rho_{1}\rho_{2}\,\omega_{1}\left(\frac{2}{3}\,\omega_{2}\,r^{3} - \frac{1}{15}\,\omega''r^{5}\right)\!f_{12}(r)\,\partial r\,\partial H_{0} \\ &B_{1}B_{0}\colon & \pi\,\rho_{2}^{2}\,\omega_{2}\left(\frac{2}{3}\,\rho_{2}\,r^{3} - \frac{1}{15}\,\omega''r_{5}\right)\!f_{22}(r)\,\partial r\,\partial H_{0} \end{split}$$

Wenn wir den Druck auf die Flächeneinheit beziehen wollen, dann müssen wir den letzten Factor ∂H_0 überall durch 1 ersetzen. Alle Elementarkräfte zusammengenommen liefern einen Druck, den wir durch Integration nach r finden. Wir erhalten

$$\begin{split} &A_{1}A_{0}\colon & \pi\,\rho_{1}^{2}\,\omega_{1}\left(\frac{2}{3}\,\,\omega_{1}J_{1}^{3}+\frac{1}{15}\,\omega''J_{1}^{5}\right)\\ &A_{1}B_{0}\colon & \pi\,\rho_{1}\rho_{2}\,\omega_{2}\left(\frac{2}{3}\,\,\omega_{1}J_{3}^{3}+\frac{1}{15}\,\omega''J_{3}^{5}\right)\\ &B_{1}A_{0}\colon & \pi\,\rho_{1}\rho_{2}\,\omega_{1}\left(\frac{2}{3}\,\,\omega_{2}J_{3}^{3}-\frac{1}{15}\,\omega''J_{3}^{5}\right)\\ &B_{1}B_{0}\colon & \pi\,\rho_{2}^{2}\,\omega_{2}\left(\frac{2}{3}\,\,\omega_{2}J_{2}^{3}-\frac{1}{15}\,\omega''J_{2}^{5}\right) \end{split}$$

Die Spannung.

Wir wollen nun sowohl die verticalen, als auch die horizontalen Drucke zusammenstellen und hiebei folgende Abkürzungen anwenden:

$$ho_1^2 J_1^3 \equiv a \qquad \qquad
ho_1^2 J_1^5 \equiv a \qquad \qquad
ho_1 \rho_2 J_3^4 \equiv c \\
ho_2^2 J_2^3 \equiv b \qquad \qquad
ho_2^2 J_2^5 \equiv \beta \\
ho_1 \rho_2 J_3^3 \equiv c \qquad \qquad
ho_1 \rho_2 J_3^5 \equiv \gamma$$

Der verticale Gesammtdruck ist

$$\begin{split} Z &= + \; \frac{2}{3} \, \pi \, \omega_1^2 a + \frac{2}{15} \, \pi \left(\omega_1 \, \omega'' - \frac{1}{2} \, \omega'^2 \right) \alpha \\ &+ \frac{2}{3} \, \pi \, \omega_1 \omega_2 \, c + \frac{1}{4} \, \pi \, \omega' c + \frac{1}{15} \, \pi \left(\omega'' [\omega_2 - \omega_1] + \omega' \right) \gamma \\ &+ \frac{2}{3} \, \pi \, \omega_1 \omega_2 \, c - \frac{1}{4} \, \pi \, \omega' c + \frac{1}{15} \, \pi \left(\omega'' [\omega_2 - \omega_1] + \omega'^2 \right) \gamma \\ &+ \frac{2}{3} \, \pi \, \omega_2^2 \, b - \frac{2}{15} \, \pi \left(\omega_2 \, \omega'' + \frac{1}{2} \, \omega'^2 \right) \beta \end{split}$$

Der horizontale Gesammtdruck ist

$$\begin{split} X = Y = R = & + \frac{2}{3} \pi \omega_1^2 a + \frac{1}{15} \pi \omega_1 \omega'' \alpha \\ & + \frac{2}{3} \pi \omega_1 \omega_2 c + \frac{1}{15} \pi \omega_2 \omega'' \gamma \\ & + \frac{2}{3} \pi \omega_1 \omega_2 c - \frac{1}{15} \pi \omega_1 \omega'' \gamma \\ & + \frac{2}{3} \pi \omega_2^2 b - \frac{1}{15} \pi \omega_2 \omega'' \beta \end{split}$$

In der Lamelle n_0 erleidet also das Flüssigkeitselement vom Volumen $\partial x \partial y \partial H$ an der oberen und unteren Seite den Druck Z, während es an den vier verticalen Seiten den horizontalen Druck X = Y = R per Flächeneinheit erleidet. Der Druck R ist im Allgemeinen grösser, und er wird durch Z nicht vollständig paralysirt. Es erübrigt ein horizontaler Drucküberschuss R-Z, welcher als contractive Spannung von n_0 erscheint. Die Werthe von Z und R können wir zusammenziehen und finden dann

$$\begin{split} Z &= + \frac{2}{3} \pi (\omega_1^2 a + \omega_2^2 b + 2\omega_1 \omega_2 c) \\ &- \frac{1}{15} \pi (\alpha + \beta - 2\gamma) \omega'^2 \\ &+ \frac{2}{15} \pi (\omega_1 [\alpha - \gamma] - \omega_2 [\beta - \gamma]) \omega'' \end{split}$$

$$\begin{split} X = Y = R = & + \frac{2}{3} \pi (\omega_1^2 a + \omega_2^2 b + 2\omega_1 \omega_2 c) \\ & + \frac{1}{15} \pi (\omega_1 [\alpha - \gamma] - \omega_2 [\beta - \gamma]) \omega'' \end{split}$$

Für die contractive Spannung s per Einheit des Querschnittes erhalten wir dann den Werth

$$\begin{split} s &= + \textit{R} - \textit{Z} \\ &= + \frac{1}{15} \pi (\alpha + \beta - 2 \gamma) \omega'^2 \\ &- \frac{1}{15} \pi (\omega_1 [\alpha - \gamma] - \omega_2 [\beta - \gamma]) \omega'' \end{split}$$

Die Spannung in den Lamellen gleicher Mischung in der Mischungsschicht zweier Flüssigkeiten A und B setzt sich also hauptsächlich aus zwei Theilen zusammen: aus einer Spannung, welche vom Gefälle der Mischungscurve, also von ω' abhängt, und aus einer Spannung, welche von ω'' , also von der Krümmung der Mischungscurve abhängt.

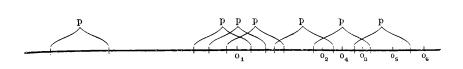
Das Gefälle ω' der Mischungscurve verursacht unbedingt contractive Spannung, wenn die Adhäsionsconstante γ kleiner ist, als das arithmethische Mittel der Cohäsionsconstanten α und β der beiden Flüssigkeiten A und B. Diese Spannung ist von der absoluten Dichte der Flüssigkeiten $\omega_1 \rho_1$ und $\omega_2 \rho_2$ unabhängig, aber dem Quadrate des Gefälles ω' proportional.

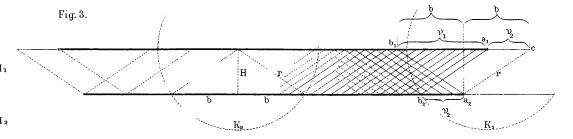
Die Spannung, welche von ω'' abhängt, ist eine interessante Function, deren Discussion aber zu weit führen würde.

Als Druck in irgend einem Punkte der Mischungsschicht haben wir wieder den Verticaldruck anzusehen. Der Binnendruck ist also

$$\begin{split} Z &= + \frac{2}{3} \pi (\omega_1^2 a + \omega_2^2 b + 2\omega_1 \omega_2 c) \\ &- \frac{2}{15} \pi (\alpha + \beta - 2\gamma) \omega'^2 \\ &+ \frac{2}{15} \pi (\omega_1 [\alpha - \gamma] - \omega_2 [\beta - \gamma]) \omega'' \end{split}$$

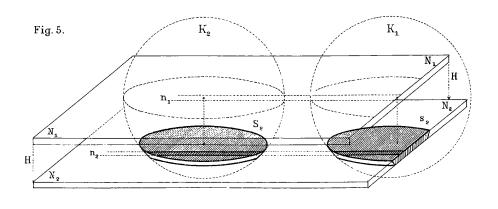
Fig. 1.





ds, ds





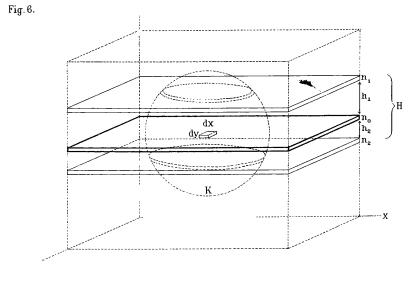
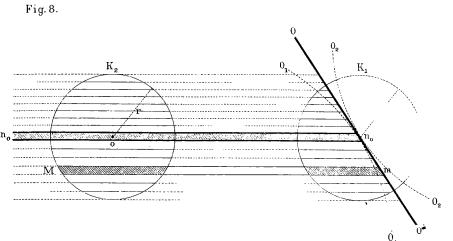


Fig. 7.



©Akademie d. Wissenschaften Wien: download unter www.biologiezentrum.at

Der Binnendruck ist also wieder vom Verlaufe des Dichtigkeitscurve abhängig.

Der Binnendruck in einem gewissen Punkte wird dem Quadrate des Gefälles ω' der Mischungscurve proportional unbedingt verkleinert, wenn die Adhäsionsconstante γ kleiner ist, als das Mittel der Cohäsionsconstanten α und β ; im umgekehrten Falle wird der Binnendruck unbedingt vermehrt.

Wenn die Mischung der beiden Flüssigkeiten homogen ist, also $\omega' = o$ und $\omega'' = o$ ist, dann ist der Binnendruck

$$\frac{2}{3}\pi(\omega_{1}^{2}a+\omega_{2}^{2}b+2\omega_{1}\omega_{2}c).$$

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der</u> <u>Wissenschaften mathematisch-naturwissenschaftliche Klasse</u>

Jahr/Year: 1889

Band/Volume: 98_2a

Autor(en)/Author(s): Fuchs K.

Artikel/Article: <u>Directe Ableitung einiger Capillaritätsfunctionen 1362-</u>1391