prolegs on A3 to A5, as do their sister clade. However, extra prolegs are missing in the larvae of *Dirce*. Both *Acalyphes* and two species of *Dirce* feed on primitive endemic conifers, whereas *D. solaris* and *D. lunaris* are associated with Epacridaceae and Myrtaceae respectively. *Archiearis* is placed well outside most of the Australian ennomine genera analysed in a wider study.

On this evidence we conclude that the Australian "Archiearinae" are derived from an endemic Australian ennomine group, and that feeding on

conifers is a derived rather than ancestral trait. Australian Myrtaceae are rich in essential oils such as alpha-pinene and cineole, so later adoption of conifers as foodplants may not be extraordinary. Their relationship to phenotypically similar southern Andean archiearine taxa, such as *Archiearides* Fletcher and *Lachnocephala* Fletcher, remains to be critically analysed. Extra prolegs in geometrid larvae appears to be a highly labile character, at least in some Australian higher taxa.

Some results of taxonomic research on larentiine moths from the Australasian region

Olga Schmidt

Schmidt, O. (2003): Some results of taxonomic research on larentiine moths (Lepidoptera: Geometridae) from the Australasian region. – Spixiana **26/3**: 204

Olga Schmidt, Münchhausenstr. 21, D-81247 München; e-mail: olgaschmidt@hotmail.com

The Larentiinae are very diverse in the Australasian region. In Australia, the subfamily comprises about 280 described species in 46 genera. Larentiine moths are found in a variety of habitats from dry sclerophyll areas to rainforests. In Australia they are particularly diverse in the south-eastern tablelands and mountains, including Tasmania.

The main part of my research interest focuses on understanding phylogenetic relationships within larentiine geometrid moths at a higher taxonomic level. Current classifications of the subfamily are mostly based on taxa from the Holarctic region but a wider geographical approach is required. Taxonomic revisions of groups from other zoogeographical regions will provide the basis for creating a natural classification. In this respect taxonomic studies of genera from the Australasian region are important. In Australia, I reviewed the genera *Anachloris* Meyrick, *Chaetolopha* Warren, *Parachaetolopha* Schmidt, and *Scotocyma* Turner, as detailed below.

The Australasian genus Anachloris now includes three species. Their larvae feed on several species of Hibbertia (Dilleniaceae). Colour dimorphism was observed in later larval instars. Study of external characters and genitalia, as well as male genitalia musculature, revealed that the genus Anachloris does not belong to the tribe Hydriomenini in which it is currently placed. Six Australian species were assigned to the genus Chaetolopha, while for eight Papuan high altitude species a new genus, Parachaetolopha, was erected. A phylogenetic analysis yielded strong support for the separation of Parachaetolopha from Chaetolopha and the monophyly of Parachaetolopha is supported by ten synapomorphies. The Australasian genus Scotocyma is diverse in tropical and subtropical regions. Larvae of the type species, S. albinotata, feed on Coprosma repens (Rubiaceae). The tribal position of the genus is investigated. Several morphological characters support its placement in the tribe Xanthorhoini.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie

Jahr/Year: 2003

Band/Volume: 026

Autor(en)/Author(s): Schmidt Olga

Artikel/Article: Some results of taxonomic research on larentiine moths from

the Australasian region 204