
1 

Wulfenia 9 (2002): 1–7 
Mitteilungen des 

Kärntner Botanikzentrums 
Klagenfurt 

Fractals, self-similarity & structures 

Dmitry D. Sokoloff 

Summary: We present a critical discussion of a quite new mathematical theory, namely fractal 
geometry, to isolate its possible applications to plant morphology and plant systematics. In 
particular, fractal geometry deals with sets with ill-defined numbers of elements. We believe that 
this concept could be useful to describe biodiversity in some groups that have a complicated 
taxonomical structure. 

Zusammenfassung: In dieser Arbeit präsentieren wir eine kritische Diskussion einer völlig neuen 
mathematischen Theorie, der fraktalen Geometrie, um mögliche Anwendungen in der Pflanzen-
morphologie und Planzensystematik aufzuzeigen. Fraktale Geometrie behandelt insbesondere 
Reihen mit ungenügend definierten Anzahlen von Elementen. Wir meinen, dass dieses Konzept in 
einigen Gruppen mit komplizierter taxonomischer Struktur zur Beschreibung der Biodiversität 
verwendbar ist. 

Keywords: mathematical theory, fractal geometry, self-similarity, plant morphology, plant 
systematics 

Critical editions of Dean Swift’s Gulliver’s Travels (see e.g. SWIFT 1926) recognize a precise 
scale invariance with a factor 12 between the world of Lilliputians, our world and that one of 
Brobdingnag’s giants. Swift sarcastically followed the development of contemporary science 
and possibly knew that even in the previous century GALILEO (1953) noted that the physical 
laws are not scale invariant. In fact, the mass of a body is proportional to L3, where L is the 
size of the body, whilst its skeletal rigidity is proportional to L2. Correspondingly, giant’s 
skeleton would be 122=144 times less rigid than that of a Lilliputian and would be destroyed 
by its own weight if L were large enough (cf. e.g. GALILEO 1953). Cleverly Swift elsewhere 
recognizes, however, another option for the spatial structure of the association of living 
beings: 

"The vermin only teaze and pinch 
Their foes superior by an inch 
So, nat’ralists observe, a flea 
Hath smaller fleas that on him prey, 
And these have smaller fleas to bite ‘em, 
And so proceed ad infinitum.” 

(On Poetry: A rhapsody. See SWIFT (1958); original spelling of XVII century is given) 

Such a structure containing many similar structural levels with diminishing scale is described as 
self-similar. Further development of the concept of self-similarity has now resulted in a quite 
well elaborated theory referred to as fractal geometry. Now, as in the 18th century, this concept 
looks like a promising concept to understand the properties of living beings, and to originate a 
new quantitative method for plant morphology and plant systematics. Below we present a 
critical discussion of the real possibilities to apply the fractal geometry in a botanical context. 
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We find that these possibilities are rather limited but, however, may form a reasonable basis 
for botanical applications. 

Properties of self-similar objects are quite different to those of smooth curves, surfaces and 
other conventional geometrical figures. Mathematicians began investigation of self-similar 
objects in the middle of the 19th century and the corresponding results are widely presented in 
mathematical textbooks. However, due to a characteristic but bad habit of mathematicians, 
these results are usually presented as exotic examples of curves without length, surfaces 
without area and other peculiar members of the mathematical zoo. 

H. MINKOWSKI, who is widely appreciated as a founder of mathematical language for 
relativity theory, made an important step towards a quantitative description of self-similar 
objects (MINKOWSKI 1901). He suggested the following general definition for the length of a 
curve, area of a surface and volume of a body. Let A be a set in 3D space. Surround each 
point of this set by a sphere of small radius ε. A set Aε consisting of these balls is referred as a 
ε-neighbourhood of the set A. Let us now calculate the volume V(ε) of the set Aε. It is quite 
easy to demonstrate that V(ε) ≈ Nε3 provided that A consists of N points. For a curve with 
length L, one obtains V(ε) ≈ 2πLε2. For a surface with area S, we have V(ε) ≈ 2Sε, and for a 
body with volume V we obtain V(ε) ≈ V ε0. 

MINKOWSKI suggested that these relations could be considered as definitions of length, area 
and volume. A careful analysis demonstrates that MINKOWSKI’s definitions differ slightly 
from the corresponding canonical definitions from the textbooks of mathematical calculus; 
nevertheless they are quite adequate for many specific geometrical problems. 

Calculus textbooks tell us that there are curves without length, surfaces without area, and 
bodies without volume (one can also say that the concepts of length, area and volume are ill 
posed for such objects). A great mathematician, F. HAUSDORFF, stressed in 1918 that the 
standard examples of such exotic objects possess a scaling 

V(ε) ≈ Mεα, (1) 

however α is neither 3, as for a point, nor 2, as for a line, nor 1, as for a surface, nor 0, as for a 
body. He suggested a definition of fractal dimension, 

dim A = 3 - α, (2) 

and considered M as a measure, i.e. a generalisation of length, area and volume. Grateful 
contemporary workers refer to these as Hausdorff (fractal) dimension and Hausdorff measure. 
Hausdorff measure is measured in cmdim A and coincides with MINKOWSKI’s length; area or 
volume provided that the Hausdorff dimension is integer. Hausdorff dimension can be 
determined by plotting V(ε) in ln V – ln ε coordinates. Then the power-low scaling (1) 
corresponds to a straight line on the plot, its slope gives the dimension, and the interception 
the vertical gives the measure. 

According to HAUSDORFF, exotic curves without length, surfaces without area and bodies 
without volume should be normally considered as objects with a fractal dimension. An 
additional fruitful idea concerning fractal sets has been suggested by another well-known 
mathematician, O. HÖLDER. He demonstrated that the fractal behaviour is usually associated 
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with the lack of differentiability of a function, which gives, say, a fractal curve (HÖLDER 
1924). Recall that the derivative of a function f(x) is the limit of the ratio Δf/Δx for Δx → 0. 
If this limit does not exists (being, say, infinite), then the function is non-differentiable. 
However it can then occur that the limit 

f(μ)(x)=lim Δf/Δxμ, 

Δx → 0 

does exist. Then it is referred as a fractal (Hölder) derivative of order μ. The fractal dimension 
can be explicitly connected with μ. 

The concept of fractal dimension is fruitful for self-similar objects being formally applicable to 
a wider range of objects. The concept of fractal dimension is tied to the nature of similarity, 
and GALILEO’s arguments concerning the incompatibility of scaling invariance with physical 
laws fail because the concepts of volume and length are inadequate for the object under 
consideration. 

In the first half of 20th century fractal objects were recognized as things that occur in everyday 
life, rather than only in mathematical textbooks. Moreover, fractal geometry demonstrated 
some (specific) importance in practical life. According to the scientific folklore, the story can 
be presented as follows: A prominent English expert in hydromechanics, Richardson, being a 
model citizen tried to make a contribution to the defence of his country during the World War 
I. The government being slightly sceptical concerning his abilities restricted his duties to a 
problem, which seemed to everybody to be solvable. Based on available maps, Richardson was 
asked to calculate the length of British coastline, required for defence planning. Taking the 
problem seriously enough, Richardson recognized that the calculated length of the coastline 
crucially depends on the scale of the map used, and concluded that the British coastline has no 
length at all, being a fractal object. The official’s reaction on this result was not widely 
disseminated possibly because of intellectual preconceptions. A more important example of a 
fractal object is the trajectory of a Brownian particle or, speaking more mathematically, a 
Wiener process which has a Hölder derivative of order ½ and, correspondingly, a fractal 
dimension. 

Richardson exploited a slightly different definition of fractal dimension to that given by Eqs. 
(1, 2) (see e.g. ZELDOVICH & SOKOLOFF 1985; MOON 1987). Nowadays mathematicians 
exploit a wide range of various concepts for the dimension of self-similar objects. 

Unfortunately, the prominent mathematicians participating in the development of fractal 
geometry ignored the necessity to give an accessible and attractive presentation of the theory, 
and published it in a form unacceptable to the general public. More recently, B. MANDEL-
BROT invented the very word fractal and published several books concerning the fractal 
geometry of nature written in non-technical French and English (MANDELBROT 1975, 1977, 
1982, 1988) thus earning popularity greater than that of HAUSDORFF. Obviously, this fact 
hardly is well accepted by highbrow mathematicians. It illuminates however an important 
problem of modern times. Modern mathematical ideas now become inaccessible to the 
general reader, as well as to experts in neighbouring branches of mathematics. Thus, a well-
written presentation can open a new epoch of scientific development. We believe that this 
feature represents an obvious crisis of modern mathematics, connected with its inability to 
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give a wide synthesis of modern mathematical ideas and results comparable to that given by 
HILBERT at the very beginning of 20th century (cf. SADOVNICHY 2000). 

The concept of fractal geometry strongly impressed scientific society, and fractals began to be 
involved in explanations of various problems important for modern science. In particular, the 
structure of the lungs allowing a very effective oxygen exchange between blood and air due to 
its huge surface area and moderate volume became to be referred as fractal. The initial 
enthusiasm was, however, replaced gradually by a more realistic estimation of the abilities of 
fractal geometry. The scaling (1) can be valid in any practical situation for a limited range of ε 
only, and this range is usually not large enough to compel on the fractal nature of the object 
under consideration (see e.g. AVNIR et al. 1998). The following reason can be even more 
important. Suppose that careful morphological research gives us a specific value for the fractal 
dimension of a lung. Why is this result important for biology? How can the conclusion that 
the British coastline has dimension 1.3 (FEDER 1988) be exploited? Sometimes a result 
extracted from fractal geometry appears to be useful, say to compare quantitatively a random 
self-similar object and its computer simulation (e.g. ANUFRIEV & SOKOLOFF 1994); however 
in many cases the answer is rather unclear. 

Standard textbooks of fractal geometry usually avoid examples taken from botany. However 
naked eye recognition of pictures from an atlas of higher plants (e.g. ROTHMALER 1987) 
convinces the reader that the border of a leaf can be as meandering as the British coastline and 
that the fractal dimension could be an adequate indicator of this meandering. Of course, a lot 
of practical experience with this indicator is needed to be able to decide to what extent it can 
be useful for purposes of plant systematics. The concept of the pseudocycle can be considered 
as another example of a fractal object important in botany. This concept focuses attention on 
the appearance of very similar but non-homological structures of various scales in a sequence 
of comparable plants (see e.g. KUSNETZOVA 1988). In particular, an inflorescence can 
become to be very similar to an individual flower, and leads to the development of more and 
more complicated structural levels, similar to an iterative process leading to construction of 
fractal objects in mathematics. The numbers of such levels in botany is obviously quite 
modest and usually does not exceed 3–4, while mathematicians discuss an infinite number of 
structural levels with gradually diminishing scales, and a physicist would prefer to consider as a 
fractal an object with at least 10 structural levels. Of course, it is very nice to know that the 
concept of the pseudocycle can be embedded in the wider scientific context of fractal 
geometry, however a lot of practical experience is needed to be sure that fractal geometry can 
give something more than a new language for the pseudocycle concept. 

We believe that the following example demonstrate something less trivial concerning a 
possible role of fractal geometry for botanical studies. Suppose we are investigating a set A, 
which is initially thought as a collection of isolated points. If we observe this set with better 
and better resolution and see more and more points contained in it, we conclude that this set 
is self-similar with nonvanishing fractal dimension. It means implicitly that the question of 
how many points belong to this set is quite ill posed. Of course, any particular list of points 
belonging to A would contain a particular number of points, however this number would 
essentially depend on the resolution with this set is investigated. This situation looks quite 
familiar to what occurs in higher plant systematics. The answer to the question of how many 
species of, say, dandelion grow in the European part of Russia strongly depends on the 
concept of species used. Using finer and finer properties to isolate new species, more and 
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more species in this genus are obtained rather a stabilisation of the species number at some 
level of accuracy is observed. Possibly, it is better to say that the number of species in this 
genus is ill defined and to use something like Hausdorff dimension and measure to quantify 
the situation. Of course, a straightforward application of fractal geometry is constrained by an 
obvious necessity to take into account other complementary criteria for establishing the 
existence of a species besides morphological details, e.g. whether a reproductive isolation from 
other species is stable. 

We conclude that the concept of fractal geometry did suggest a new vision for understanding 
of nature; however the body of specific achievements of this theory is at the moment quite 
small. Apart from fractal geometry, modern mathematics suggests many other approaches to 
describe unusual spatial structures which could be interesting for biology. However the level 
of publicity given to these scenarios cannot be compared to that of fractal geometry. To be 
specific, we describe below briefly one possible application (ZELDOVICH et al. 1990). 

Consider a bacterial population which at the initial instant t=0 has a spatial distribution with a 
density φ0(x) (here x is a spatial coordinate). Let the living conditions of the bacteria be 
spatially inhomogeneous, so that their reproduction rate can be considered as a Gaussian 
random value U(x) (more precisely, as a Gaussian random field with a rapid decay of spatial 
correlations), with zero mean value and dispersion σ2. If we ignore other processes, the 
bacteria concentration grow then exponentially in time as 

φ(x, t) = φ0(x)exp(U(x)t). (3) 

At the first sight, the mean concentration of bacteria should grow exponentially as well as the 
concentration itself, and the growth rate is expected to be of order σ. Surprisingly, the mean 
concentration in fact grows much more rapidly, as 

<φ(x, t)> = φ0(x)exp(σ2t2/2). (4) 

In spite of the fact that Eq. (4) can be obtained from Eq. (3) by an explicit evaluation which 
follows the formal definition of mean concentration, this result strongly violates all qualitative 
ideas of statistical physics as well as common sense. To resolve the paradox, we note that the 
Gaussian value U is unbounded and obtains (with a very small probability) values which 
exceeds the value of σ by an arbitrary large factor. The maximal values of U are located in 
space at large distances away from each other, and more remote maximums give larger and 
larger values of the regeneration rate U. The mean concentration at a given moment is 
generally determined by a very remote maximum of U. 

Introducing one more effect, i.e. bacteria diffusion with diffusivity ν, we arrive at an evolution 
governed by the following equation 

∂φ/∂t = Uφ + ν Δφ, (5) 

which is quite similar to the famous Schrödinger equation of quantum mechanics. Eq. (5) is 
well-investigated in mathematical physics. 

Investigating Eq. (5), experts initially considered biological language as a reasonable tool to 
make results more acceptable to a general reader. However experts in microbiology 
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considered the results quite seriously. Moreover, the evolution of φ unpleasantly mimics the 
behaviour of human beings at, say, the initial epoch of industrial development as presented in 
the books of F. BRAUDEL (1979, 1986). At the initial stage, an isolated maximum of U 
produces a region of influence where the concentration φ is determined by diffusion from the 
maximum. Then regions of influence of various maxima begin to be in contact, and an epoch 
of concurrence between regions takes place. As a result, a region associated with a more 
pronounced maximum absorbs the neighbouring regions. The general shape of the evolution 
is very similar to the well-known scenario where Amsterdam, London and New York became 
leading centres of world economy. 

The example considered can be generalized in various respects. One can consider, say, a 
reproduction rate which is random in time as well as in space, and more complicated models 
give a more and more detailed simulation of the behaviour of human being. The similarity is 
so impressive that the natural question arises: do we really need more than a primitive model 
like (5) to explain our behaviour? 
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