Feeding habits of two syntopic small mammals in northern Zimbabwe

By Sara Churchfield

Department of Biological Sciences, University of London

Receipt of Ms. 30. 7. 1984

Abstract

Investigated the feeding habits of two syntopic small mammals, the musk shrew (Crocidura hirta) and the multimammate mouse (Praomys natalensis) inhabiting Panicum grassland and Cyperus articulatus during the dry season by live-trapping and faecal analysis. Fourteen faecal samples from C. hirta were examined and 21 different food types were identified. 64 % of all dietary occurrences comprised adult insects, chiefly hemipterans, coleopterans, isopterans and formicids, but other invertebrates, particularly araneids, were eaten. Plant material, especially seeds, was also taken. Fifty faecal samples from P. natalensis were examined and 20 different food types were recognised. Approximately 44 % of all dietary occurrences comprised leaves and stems of grasses and dicotyledons, and 29 % was seeds. Approximately 27 % of the diet of P. natalensis was invertebrates, mainly insects such as hemipterans and isopterans. There was considerable dietary overlap between these small mammals in the variety and proportions of insects eaten.
Feeding habits of two syntopic small mammals in northern Zimbabwe

Introduction

Shrews are known to be voracious predators of a wide variety of invertebrates, particularly insects. Their predatory activities coupled with their frequent occurrence suggests that they may have an important role as secondary consumers (for example, Holling 1959; Pernetta 1976; Churchfield 1982a, 1984). Some of the most common and widespread of shrews belong to the genus Crocidura which is particularly well-represented in Africa. While numerous species of African crocidurines have been described, very little is known about their habits in the wild. For example, apart from the brief study of Churchfield (1982b), there have been no detailed studies of the feeding habits of wild crocidurines in Africa.

Shrews usually coexist with rodents but their interactions have seldom been studied. One potential area of overlap is feeding habits. While rodents are recognised as being primarily herbivorous, they frequently feed on invertebrates, especially insects (for example Holisova 1966; Flake 1973; Field 1975; Obretel et al. 1978; Périn 1980) and thus may compete with shrews, particularly in seasons of low food productivity. Together, these small mammals may have an important impact on invertebrate populations including potential pest species.

This paper reports the results of a brief study of the feeding habits and dietary overlap of two commonly-occurring and syntopic small mammals, the lesser red musk shrew, Crocidura hirta (Peters, 1852) and the multimammate mouse, Praomys natalensis (A. Smith, 1834) during the dry season at Kariba, north-west Zimbabwe.

Material and methods

Trapping the small mammals

Trapping was carried out in two areas of contrasting vegetation beside Lake Kariba at the University of Zimbabwe's Research Station at Kessesee, near Kariba, north-west Zimbabwe. One was an area of dry grassland dominated by Panicum repens and P. maximum and interspersed with tall mopane trees, Colophospermum mopane. Here, 30 Sherman live-traps were set singly at intervals of approximately 10 m to occupy an area of 2000 m². The other area was much damper and comprised a belt of vegetation dominated by Cyperus articulatus and C. involucratus occupying the shore-line of Lake Kariba. Nineteen Sherman live-traps were set singly at approximately 10 m intervals covering an area of some 1100 m².

The traps were baited with peanut butter and set for 8 days and nights during July/August 1983. They were checked each morning and evening for captures. Small mammals were marked by toeclipping and released at the point of capture. Faecal pellets produced by small mammals in the traps were collected and preserved in 75 % alcohol for examination of food remains.

Diet analysis

The diets of Crocidura hirta and Praomys natalensis were analysed by microscopic examination of food remains in faecal pellets collected from the traps. For C. hirta, as many pellets as possible were collected from each trapped individual and these constituted a single sample. A mean of 12 pellets per sample was collected (range 9–12). P. natalensis produced much larger and more discrete pellets which could be collected singly. A single pellet, selected at random from a trapped individual, constituted a sample. For further analysis and criticisms of the technique, particularly as regards sample numbers, see Churchfield (1982a, 1984).

The results of the diet analyses were expressed in terms of the percentage composition of the diet (the number of occurrences of a named food item divided by the total number of occurrences of all items). In addition, for P. natalensis, the relative volumes of invertebrates, seeds and green plant material in each sample was estimated.
Results
Captures of small mammals

A total of 14 individuals of *C. hirta* and 95 individuals of *P. natalensis* were captured in the two study areas. Both species were found in approximately equal numbers in each study area, with an overall capture rate of 3.6 per 100 trap nights for *C. hirta* and 24.2 per 100 trap nights for *P. natalensis*. All captures were sustained between dusk and the following dawn trap-round.

Diets of small mammals

Crocidura hirta

Fourteen samples of faecal pellets from *C. hirta* were examined, all of which contained identifiable food remains. Between 4 and 11 different food types were recognised in each faecal sample (mean 7). The variety of prey items found and their percentage composition are shown in Table 1, where results from both study areas are combined. Twenty-one different food types were recognised and all were invertebrate with the exception of some vegetable matter. The most important dietary occurrences were adult insects, particularly coleopterans, hemipterans, isopterans and formicids. It was not possible to count the numbers of each prey type found in a sample owing to the fragmentation of most of the remains. However, the numbers of isopterans and formicids could be estimated by counting the distinctive head capsules or mandibles which had remained undamaged: for example, 270 isopterans and 110 formicids were counted in one faecal sample.

The diets of shrews caught in the two study areas were much alike and any differences probably reflected the availability of certain prey items in the two sites. For example, isopterans and formicids were taken most frequently in the dry grassland, and coleopteran larvae and lumbricids in the damper *Cyperus* area. However, the small number of faecal samples collected did not permit a detailed analysis.

Table 1

<table>
<thead>
<tr>
<th>Food item</th>
<th>Number of samples</th>
<th>Percentage Composition 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysomelidae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carabidae</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Coleoptera indet.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hemiptera</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Culicidae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diptera indet.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Formicidae</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Other Hymenoptera indet.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Isoptera</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Blattidae</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Food item</th>
<th>Number of samples</th>
<th>Percentage Composition 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantidae</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coleoptera larvae</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera larvae</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Araneae</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Acari</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Diplopoda</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lumbricidae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plant material: seeds</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plant material: other</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Praomys natalensis

Fifty samples of faecal pellets of *P. natalensis* were examined. Between two and nine different food types were identified in each sample (mean 5). The percentage composition of different dietary items in the two study areas is shown in Table 2. The most frequently
Feeding habits of two syntopic small mammals in northern Zimbabwe

occurring food item was the leaves and stems of grasses, particularly Panicum spp. but dicotyledons were also taken including Polygonum senegalensis which was present in large clumps near the lake shore although it did not occur in either of the trapping areas. Seeds of grasses, Cyperus spp. and unidentifiable dicotyledons were taken in large numbers. The diet was not restricted to plant material for 24 and 30 % of all dietary occurrences in the Panicum grassland and the Cyperus areas respectively comprised invertebrates, mostly insects.

The diets of P. natalensis from the two study areas differed not so much in the variety of food types as in the relative occurrences of certain foods. For example, grasses were augmented by Cyperus spp. and dicotyledons in the more varied habitat of the lake-shore study area, and invertebrates were also taken more frequently here. In terms of volume, invertebrates contributed a mean of 31 % to the diet in the Panicum grassland but only 14 % in the Cyperus area. Seeds had a mean of 20 % and 30 % in the two areas respectively, and the remainder was green plant material.

Table 2

The diet of Praomys natalensis inhabiting Panicum grassland and Cyperus articulatus at Kariba, northern Zimbabwe, revealed by faecal analysis

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Percentage Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panicum 25</td>
</tr>
<tr>
<td>Plant material</td>
<td></td>
</tr>
<tr>
<td>Panicum spp., leaf/stem</td>
<td>19</td>
</tr>
<tr>
<td>Gramineae indet., leaf/stem</td>
<td>17</td>
</tr>
<tr>
<td>Gramineae indet., roots</td>
<td>0</td>
</tr>
<tr>
<td>Cyperus involucratus, leaf/stem</td>
<td>0</td>
</tr>
<tr>
<td>Polygonum senegalensis, leaf</td>
<td>1</td>
</tr>
<tr>
<td>Dicotyledons indet., leaf/stem</td>
<td>8</td>
</tr>
<tr>
<td>Panicum spp., seeds</td>
<td>3</td>
</tr>
<tr>
<td>Gramineae indet., seeds</td>
<td>3</td>
</tr>
<tr>
<td>Cyperus involucratus, seeds</td>
<td>4</td>
</tr>
<tr>
<td>Cyperus articulatus, seeds</td>
<td>1</td>
</tr>
<tr>
<td>Polygonum senegalensis, seeds</td>
<td>1</td>
</tr>
<tr>
<td>Dicotyledons indet., seeds</td>
<td>13</td>
</tr>
</tbody>
</table>

Animal material

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera, adults</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Hemiptera, adults</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Diptera, adults</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Formicidae, adults</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Other Hymenoptera, adults</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Isoptera, adults</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Lepidoptera, larvae</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Araneae</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Dietary overlap between C. hirta and P. natalensis

An index of similarity provides some direct assessment of the dietary overlap between these two coexisting small mammals. A modification of a simple estimate of Percentage Similarity based on Southwood (1975) was used to compare the composition of the food types in the diets. Here, Percentage Similarity is equal to the sum of the minimum percent compositions of each major food type in the diets to be compared.

If the vegetable component is included, then the overlap between the two species is only 35 % since plant material comprised the bulk of the diet of P. natalensis. When the animal
component of the diets is compared alone, the overlap amounts to 61 %. While the variety of invertebrate prey taken by *P. natalensis* was much smaller than that taken by *C. hirta*, there was considerable overlap in the types and proportions of insects eaten, particularly hemipterans and isopterans. However, coleopterans, which were a dominant prey item of shrews, were taken infrequently by *P. natalensis*.

Discussion

C. hirta is amongst the commonest of African shrews. Vesey-Fitzgerald (1962), Meester (1963), Sheppe (1973), Smithers and Lobão Tello (1976) and Rautenbach (1982) all report it to be abundant and widespread in eastern and southern Africa where it frequents a variety of habitats from marshes and forests to dry grassland and scrub. Despite being so common and widespread, very little is known about the ecology of this and other African crocidurines. This may be partly due to the fact that these shrews tend to be predominantly nocturnal and solitary (Rautenbach 1982) and they appear to have a low capture rate in traps. For example, Delany (1964) recorded a capture rate of various crocidurines of 3.6 per 100 trap nights which compares well with the present study. Rowe-Rowe and Meester (1982) record a capture rate of only 0.2 — 0.7 per 100 trap nights for *C. flavescens*.

Although a wide variety of prey were taken by *C. hirta* in the present study, this shrew was predominantly insectivorous. Plant-feeding hemipterans were an important prey item of this species and also of the larger *C. poensis* (Churchfield 1982b). Meester (1963) says that *C. hirta* is often found in termitearia and, indeed, termites were a major dietary item of these shrews in the present study, particularly in the *Panicum* grassland. Plant material, especially seeds, was also a frequent occurrence, indicating that this shrew is to some extent omnivorous.

Similarly, *P. natalensis* is quoted as being one of the commonest and most widespread rodents in Africa (Coetzee 1965). It can be an agricultural pest, and consequently its ecology is of considerable interest, particularly its feeding habits. Previous studies by Delany (1964), Hanney (1965), Field (1975), Wilson (1975) and Taylor and Green (1976) show that it is predominantly herbivorous, feeding mainly on seeds, fruits and green plant material including grasses and dicotyledons as in the present study. According to Wilson (1975), seeds of *Colophospermum mopane* are eaten, but this was not so in the present study. *P. natalensis* is also known to eat insects such as formicids, isopterans, orthopterans and coleopterans. However, there have been few detailed studies of its diet, particularly with respect to the importance of invertebrate prey. Field (1975) found that insects comprised 20 % by weight of its diet for much of the year which compares well with the proportions found in the present study. As in this study, Field (1975) also found that isopterans were the dominant insect in the diet.

There was some dietary overlap between *C. hirta* and *P. natalensis*, particularly as regards insect prey. This could lead to competition between shrews and rodents at high population densities, especially in the dry season when both fresh vegetation and insects are in short supply. Probably more significant is the combined impact of shrews and rodents as secondary consumers, particularly in the dry season when recruitment into insect populations is low. However, further work is required to discover the full extent of their predatory activities.

Acknowledgements

I am grateful to the Central Research Fund of the University of London for financial support. I am indebted to the University of Zimbabwe, Miss P. Jenkins at the British Museum (Natural History), Dr P. Denny, Professor J. Green and Dr D. Cartwright for their valuable help. Special thanks are extended to Mr and Mrs B. Brooke, Mr J. Lywood and all those at Little Court.
Zusammenfassung

Ernährungsgewohnheiten von zwei syntopen Kleinsäugern im nördlichen Zimbabwe

In 50 Kotproben von P. natalensis wurden 20 verschiedene Nahrungsbestandteile identifiziert. Etwa 44 % aller Anteile bestanden aus Grasblättern und -halmen sowie Dicotyledonen, und 29 % war Saat. Etwa 27 % der Nahrungsanteile von P. natalensis waren Evertrebraten, hauptsächlich Insekten (Hemipteren und Isopteren). Bei den Insekten ergeben sich einige Überschneidungen im Nahrungsspektrum dieser Kleinsäugerarten.

References

Author's address: Dr Sara Churchfield, Department of Biological Sciences, Chelsea College (University of London), Hortensia Road, London SW10 0QR, GB