Österreichische Akademie der Wissenschaften

Mathematisch-naturwissenschaftliche Klasse

Anzeiger

126. Jahrgang - 1989

Wien 1990

In Kommission bei Springer-Verlag Wien New York

Österreichische Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse

Anzeiger

126. Jahrgang - 1989

Wien 1990

In Kommission bei Springer-Verlag Wien New York

©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

Alle Rechte vorbehalten ISSN 0065-535 X Druck: Ernst Becvar, A-1150 Wien

Register

A. Selbständige Anzeigeraufsätze (vorläufige Mitteilungen)

Astronomie

Eichhorn,	Heinr	ich,	Filte	ring	wit	h Au	ıgme	entec	l Sets	of	\mathbf{E} stin	nated	
Paran	neters										• •		89
Hanslmeie	r, A.,	und	Sta	ngl,	М.,	Verl	auf	der	Gesar	nthe	lligkei	t des	
Mond	es wäh	rend	der 1	total	en Fi	inster	nis	vom	17. Au	ıgust	t 1989		109
Stangl, M.,	siehe 🛛	Han	slme	ier,	A.								

Geologie und Paläontologie

Brix, Friedrich, Zur Geologie und Lithostratigraphie der Sandgrube	
Götzendorf an der Leitha, Niederösterreich	33
Egger, Hans, Über einige geologische Beobachtungen in der Flysch-	
zone südlich von St. Peter in der Au (Niederösterreich)	59
Heritsch, Haymo, Kurzbericht über eine bemerkenswerte Kontaktbil-	
dung aus dem Nephelinbasanitsteinbruch in Klöch, Südoststeier-	
mark	117

Mathematik und Geometrie

Buchta, Christian, A Remark on Random Approximation of Simple	
Polytopes	17
Kozlowski, Michael, The Monge-Ampère Equation in Affine Differen-	
tial Geometry	21
Kozlowski, Michael, One Parameter Families of Improper Affine	
Spheres	81
Krattenthaler, Christian, Einige quadratische, kubische und quarti-	
sche Summenformeln für q-hypergeometrische Reihen	9
Mitrinović, Dragoslav S., und Pečarić, Josip E., On Two-Place Com-	
pletely Monotone Functions	85
Pečarić, Josip E., siehe Mitrinović, Dragoslav S.	
Winkler, R., Some Constructive Examples in Uniform Distribution on	
Finite Sets and Normal Numbers	1

IV

Mineralogie und Petrologie

Flügel, H.W., Vorläufige Mitteilung über Permische Korallen aus dem	
Nord-Karakorum	121
Miletich, Roland, Synthese des Zn-Endgliedes des Zemannits,	
$Zn_2[TeO_3]_3Na_xH_{2-x} \cdot yH_2O$ (x ≈ 2), und seine Kristallstrukturbe-	
stimmung	77
Wildner, Manfred, Ein kurzer Interpolyedrischer O-O Abstand in	
$NiSO_4$	29

Mechanik und Physik

Borejko, P., Long-Time Responses of a Layered Elastic Half-Space	
Predicted by the Generalized Ray Theory	93
Eder, Gernot, From a vacuum fluctuation to a Friedmann universe	43

B. Abhandlungen in anderen Akademiepublikationen

Aufgenommen wurden:

In die Sitzungsberichte, Abteilung I

(Biologische Wissenschaften und Erdwissenschaften)

Buffetaut, E.					67	Nachuzrisvili, G.S	25
Cernusca, A.					25	Pretzmann, G	83
Engenhart, M.					69	Punz, W	69
Franz, H					83	Tappeiner, U	25
Friedmann, H.					11	Zapfe, H	67

In die Sitzungsberichte, Abteilung II

(Mathematische, Physikalische und Technische Wissenschaften)

Christian, C	Koch, R
Degen, W 69	Krattenthaler, C 11, 69
Donato, S 83	Lesky, P
Eigenthaler, G 69	Nöbauer, W 69
Florian, A	Rosca, R 83
Giering, O	Sachs, H 83
Gruber, P.M 83	Stamou, G 67
Havlicek, H	Trendafilov, N.T 111
Hlawka, E	Walk, H

In den Catalogus Faunae Austriae

Franz, H.	•	·	•	•					•	•	•	•		•			•	•	•	•		•	•	•	•	•	•	67
-----------	---	---	---	---	--	--	--	--	---	---	---	---	--	---	--	--	---	---	---	---	--	---	---	---	---	---	---	----

In die Monatshefte für Chemie

Im 4. Quartal (88)											11-13
Im 1. Quartal (89)											69 - 71
Im 3. Quartal (89)											111 - 112

C. Zentralanstalt für Meteorologie

Seite		15, 16, 27, 28, 73, 74, 75, 76, 113, 114, 115, 116, 125, 126, 127,
		128, 129, 130, 131, 132

D. Wahlen

Seite	•	•	•	•	·	·	·	·	•	•	•	•	•	•	·	·	·	·	•	•	•	·	•	•	•	•	·	·	133
]	E.	P	re	isv	ve	rle	eih	u	ng	geı	n										
Seite																													134

©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN

MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Nr. 1

Sitzung vom 13. Jänner 1989

Das wirkliche Mitglied Edmund HLAWKA legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

Some Constructive Examples in Uniform Distribution on Finite Sets and Normal Numbers

> Von R. WINKLER Technische Universität Wien

Abstract

I. Ein metrisches, inkonstruktives Resultat von R.F.TICHY und P.KIRSCHEN-HOFER über die Existenz sehr gut vollständig gleichverteilter Folgen wird durch explizite Konstruktionen ergänzt.

II. Eine einfache Beziehung zwischen der Diskrepanz einer Folge $(\alpha_n)_{n\in\mathbb{N}}$ in der endlichen Menge $M = \{0, \ldots, m-1\}^t$ und Folgen im \mathbb{R}^t der Gestalt $(m^n \alpha)_{n\in\mathbb{N}}$, mit $\alpha = (\alpha^{(j)} = \sum_{i=1}^{\infty} a_i^{(j)} m^{-i})_{j=1,\ldots,t} \in \mathbb{R}^t$, $(a_i^{(j)})_{j=1,\ldots,t} \in M$ wird hergeleitet.

III. Mit Hilfe der Methoden von I. und II. werden Vektoren $\alpha \in \mathbb{R}^{t}$ konstruiert, so

daß die Diskrepanz der Folge $(m^n \alpha)_{n \in \mathbb{N}}$ die Größenordnung $O(N^{-\frac{1}{2+i}})$ nicht übersteigt. Das bedeutet eine Verbesserung gegenüber den bisher betrachteten derartigen Folgen, vgl. [6].

I. Completely Uniformly Distributed Sequences on Finite Sets

a) Introduction and Definitions

Let M be a finite set, w.l.o.g. consisting of the elements $0, 1, \ldots, m-1$. For a sequence $x = (a_n)_{n \in \mathbb{N}}$ in M and $a \in M$ we define

$$\begin{array}{l} A\;(N,x,a) := |\,\{n \leqslant N \,|\, a_n = a\} \,| \, \, \text{and} \\ A\;(N_1,N_2,x,a) := A\;(N_2,x,a) - A\;(N_1,x,a) \,\, \text{for} \,\, N_1 \leqslant N_2, \end{array} \tag{1.1}$$

the number of occurences of a among the first N members, respectively from the $N_1 + 1$ -th to the N_2 -th member. Furthermore we set $\mathbf{2}$

$$\Delta(N, x, a) := \left| A(N, x, a) - \frac{N}{m} \right|, \tag{1.2}$$

the difference from the "expectation value". The discrepancy D(N) now is defined by

$$D(N) = D(N, x) := \max_{a \in \mathcal{M}} \frac{m}{N} \Delta(N, x, a),$$
(1.3)

and the s-block-discrepancy $D_s(N)$ by

$$D_s(N) = D_s(N, x) := D(N, y), \qquad (1.4)$$

where $y := (x_n, \ldots, x_{n+s-1})_{n \in \mathbb{N}}$ is considered as a sequence in M^s , hence

$$D_s(N,x) = \frac{m^s}{N} \max_{\alpha \in \mathcal{M}^s} \left| A(N,y,\alpha) - \frac{N}{m^s} \right|.$$
(1.5)

It is easy to see that $D_s(N, x) \leq D_t(N, x)$ for $s \leq t$. The sequence x is called uniformly distributed on M iff

$$\lim_{N \to \infty} D(N, x) = 0, \qquad (1.6)$$

completely uniformly distributed iff

$$\lim_{N \to \infty} D_s(N, x) = 0 \text{ for all } s \in \mathbb{N},$$
(1.7)

s(N)-uniformly distributed iff

$$\lim_{N \to \infty} D_{s(N)}(N, x) = 0$$
 (1.8)

for an increasing sequence $(s(N))_{N \in \mathbb{N}}$ of positive integers. This concept gives a rather satisfactory discription of random sequences.

A result of P. FLAJOLET, P. KIRSCHENHOFER and R. F. TICHY, cf. [1], says that for $M = \{0, 1\}$ and the measure μ with $\mu(0) = \mu(1) = \frac{1}{2}$ almost all sequences are s(N)-uniformly distributed if s(N) satisfies $s(N) \leq \operatorname{ld} N - \operatorname{ld} \operatorname{ld} N - \varphi(N), \varphi(N) \to \infty$ and ld denotes the logarithm to the base 2. The converse is a result of K. GRILL, cf. [3]: If $\operatorname{ld} N - \operatorname{ld} \operatorname{ld} N - s(N)$ does not converge to infinity, the s(N)-uniformly distributed sequences form a set of measure zero.

The object of the following will be the confirmation of the metrical existence-assertion by an explicit construction. In the following lm denotes the logarithm to the base m = |M|.

THEOREM. Let be $s(N) = \lim N - \lim \lim N - \varphi(N)$, $\varphi(N) \to \infty$, a nondecreasing sequence of positive integers, then there exists an s(N)-uniformly distributed sequence on M, |M| = m, which can be constructed explicitly.

For the proof — consisting of the sections b), c) and d) — we proceed in the following way, modifying some ideas of M. GOLDSTERN, cf. [2].

b) Construction of an s-uniformly distributed block b_s of length m^s .

For every $s \in \mathbb{N}$ $G := \langle (a_1, \ldots, a_{s-1}), (a_2, \ldots, a_s) \rangle | a_i \in M \rangle$ defines an Euler graph on M^{s-1} . From graph theory it is well-known how to construct an Euler line, i.e. a closed sequence of edges $\langle p_1, p_2 \rangle$, $\langle p_2, p_3 \rangle, \ldots, \langle p_{m^*-1}, p_{m^*} \rangle, \langle p_{m^*}, p_1 \rangle$ which contains every edge exactly one time. In an obvious manner this sequence of edges gives rise to a finite sequence $b_s = a_1 a_2 \ldots a_{m^*}$ of length m^s which is s-block-uniformly distributed on M (after periodical continuation), that means every block of length s occurs in b_s with the same multiplicity, in our case exactly one time.

REMARK: If we take all words (a_1, \ldots, a_s) on $M = \{0, \ldots, m-1\}$ of length s in lexicographical order, i.e.

$$b_s = 00 \dots 00 00 \dots 01 \dots 00 \dots 0 (m-1) 00 \dots 10 \dots (m-1) \dots (m-1),$$

it is easy to see that we get a very simple example of an s-uniformly distributed block. But its length is sm^s instead of m^s , which would imply only a little bit weaker results than Theorem 1. Nevertheless also this construction principle seems to be worth noted because it is very easy to handle and its disadvantage is of "small order".

c) Construction of the sequence x by composing an appropriate sequence of the b_s -blocks from b)

For simplicity and w.l.o.g. we take a fixed $a_0 \in M$ and suppose b_s to begin with the word $a_0 \ldots a_0$ (s times) for every $s \in \mathbb{N}$. Now we construct our s(N)-uniformly distributed sequence by stringing k_1 copies of b_1 , k_2 copies of b_2 and so on:

$$x = (a_N)_{N \in \mathbb{N}} = b_1^{k_1} \dots b_s^{k_s} \dots,$$
(1.9)

where the integers k_s satisfy

$$k_{s(N)} \leqslant m^{\frac{\varphi(N)}{2}} \tag{1.10}$$

and

 $k_s \rightarrow \infty$ monotonously (not necessarily strictly) for $s \rightarrow \infty$. (1.11)

d) Proof of
$$D_{s(N)}(N, x) \rightarrow 0$$
.

We set

$$a_1 a_2 \dots a_N = b_1^{k_1} \dots b_{l(N)}^{k_{l(N)}} b_{l(N)+1}^r c, \qquad (1.12)$$

where $r < k_{l(N)+1}$ and c is an initial part of $b_{l(N)+1}$, therefore its length is less than $m^{l(N)+1}$.

 $\mathbf{4}$

First we note

$$s(N) \leq l(N)$$
 for sufficiently large N , (1.13)

which is a consequence of

$$\sum_{i=1}^{s(N)} k_i m^i \leqslant k_{s(N)} \sum_{i=1}^{s(N)} m^i \leqslant m^{\frac{\varphi(N)}{2}} m^{s+2} =$$

$$= m^{2 + \ln N - \ln \ln N - \varphi(N) + \frac{\varphi(N)}{2}} = N \frac{m^2}{\ln N m^{\frac{\varphi(N)}{2}}}$$

$$= o(N).$$
(1.14)

Hence the sequence has the form $b_1^{k_1} \dots b_{s-1}^{k_{s-1}} \underbrace{b_s^{k_s} \dots b_l^{k_l} b_{l+1}^{r}}_{II} c$, where the

"main part" H contains every s-block with the same frequency. Hence for every $a_0 \in M^{s(N)}$ we have

$$\begin{split} \mathcal{A}_{s(N)}(N, x, a_0) &= \frac{m^s}{N} \left| A(N, x, a_0) - \frac{N}{m^s} \right| \leq \\ &\leq \frac{m^s}{N} \left(\left| A\left(\sum_{i=1}^{s-1} k_i m^i, x, a_0\right) - \frac{\sum_{i=1}^{s-1} k_i m^i}{m^s} \right| + \\ &+ |A\left(\sum_{i=1}^{s-1} k_i m^i, \sum_{i=1}^{l} k_i m^i + r m^{l+1}, x, a_0\right) - \\ &- \frac{\sum_{i=s}^{l} k_i m^i + r m^{l+1}}{m^s} \right| + \\ &+ \left| A\left(\sum_{i=1}^{l} k_i m^i + r m^{l+1}, N, x, a_0\right) - \frac{\operatorname{length}(c)}{m^s} \right| \right) \leq \quad (1.15) \\ &\leq \frac{m^s}{N} \left(\max_{a \in M^*} A\left(\sum_{i=1}^{s-1} k_i m^i, N, x, a\right) + 0 + \frac{m^{l+1}}{m^s} \right) \leq \\ &\leq \frac{m^s}{N} \left(s(N) m^{\frac{\varphi(N)}{2}} + m^{l+1-s} \right) \leq \\ &\leq \frac{N \left(\operatorname{lm} N - \operatorname{lm} \operatorname{lm} N - \varphi(N) \right) m^{\frac{\varphi(N)}{2}}}{N \operatorname{lm} N m^{\varphi(N)}} + \frac{m^{l+1}}{N} = \\ &= o(1). \end{split}$$

At the last step we used $N \ge k_l m^l$, hence $m^{l+1} \le \frac{N m}{k_l}$, and (1.11). Now the proof of Theorem 1 is finished.

II. Relation between Completely Uniformly Distributed Sequences on Finite Sets and mod [0, 1)^t Uniformly Distributed Sequences

a) Definition

A sequence $x = (x_n)_{n \in \mathbb{N}}$ of points in \mathbb{R}^t is called uniformly distributed $\mod [0, 1)^t$ iff for every set $Q \subseteq [0, 1)^t$ of the form $Q = \prod_{i=1}^t [\alpha_i, \beta_i]$, $\alpha_i \leq \beta_i$, and its Lebesgue-measure $\lambda(Q) = \prod_{i=1}^t (\beta_i - \alpha_i)$ the relation

$$\lim_{N \to \infty} \frac{1}{N} |\{n \leq N \mid \{x_n\} \in Q\}| = \lambda(Q)$$
(2.1)

is valid. $\{x_n\}$ denotes the "fractional part" of x_n which means

$$\{x_n\} := (x_n^{(1)} - [x_n^{(1)}], \dots, x_n^{(t)} - [x_n^{(t)}])$$
(2.2)

for $x_n = (x_n^{(1)}, \ldots, x_n^{(t)}) \in \mathbb{R}^t$. One can show easily that $x = (x_n)_{n \in \mathbb{N}}$ is uniformly distributed if and only if the discrepancy

$$D(N,x) := \sup_{Q = \prod_{i=1}^{l} [\alpha_i, \beta_i] \subset [0,1)^{l}} \left| \frac{1}{N} | \{n \leq N | \{x_n\} \in Q\} | - \lambda(Q) \right| \quad (2.3)$$

converges to zero for $N \to \infty$.

b) Construction of a mod $[0, 1)^t$ uniformly distributed sequence $(x_n)_{n \in \mathbb{N}}$ by using a completely uniformly distributed sequence $(a_n)_{n \in \mathbb{N}}$ on a finite set.

We look for an appropriate $\alpha \in \mathbb{R}^{t}$ such that $(x_{n})_{n \in \mathbb{N}} = (m^{n} \alpha)_{n \in \mathbb{N}}$ is uniformly distributed mod $[0, 1)^{t}$, where $m \ge 2$ is an integer. We start with a sequence $(a_{n})_{n \in \mathbb{N}}$ on the finite set $M = \{0, \ldots, m^{t} - 1\}$ and a bijection $f: M \to \{0, \ldots, m - 1\}^{t}$, $a \mapsto (f^{(1)}(a), \ldots, f^{(t)}(a))$ and define the point $\alpha = (\alpha^{(1)}, \ldots, \alpha^{(t)})$ by setting $\alpha^{(i)} := \sum_{n=1}^{\infty} f^{(i)}(a_{n}) m^{-n}$. With other words, α has the *m*-adic representation

$$\alpha = \begin{pmatrix} \alpha^{(1)} \\ \vdots \\ \alpha^{(l)} \end{pmatrix} = \begin{pmatrix} 0, f^{(1)}(a_1) f^{(1)}(a_2) \dots \\ \vdots \\ 0, f^{(1)}(a_1) f^{(1)}(a_2) \dots \end{pmatrix}.$$
 (2.4)

We claim

THEOREM 2. Let $x = (x_n)_{n \in \mathbb{N}}$ and $a = (a_n)_{n \in \mathbb{N}}$ be as above. Then the inequalities

$$\frac{1}{m^{st}}D_s(N,a) \leqslant D(N,x) \leqslant \frac{2t}{m^s} + D_s(N,a)$$
(2.5)

hold for every $N, s \in \mathbb{N}$. Hence x is uniformly distributed $mod [0, 1)^t$ if and only if a is completely uniformly distributed in M.

PROOF: a) First inequality:

$$\begin{split} \frac{1}{m^{st}} D_s(N, a) &= \max_{\bar{a} \in M^s} \left| \frac{1}{N} \right| \{ n \leqslant N \mid (a_n, \dots, a_{n+s-1}) = \bar{a} \} \left| -\frac{1}{m^{st}} \right| = \\ &= \max_{\substack{Q = \prod_{i=1}^t [\alpha_i, \beta_i) \notin [0, 1)^t \\ \alpha_i = \sum_{j=1}^s f^{(i)}(\bar{a}_j) m^{-j} \\ \beta_i = \alpha_i + \frac{1}{m^s} \\ a = (\bar{a}_1, \dots, \bar{a}_s) \in M^s} \end{split}$$
$$&\leqslant \sup_{\substack{Q = \prod_{i=1}^t [\alpha_i, \beta_i) \in [0, 1)^t \\ i = D(N, x)}} \left| \frac{1}{N} \right| \{ n \leqslant N \mid \{x_n\} \in Q \} \left| -\lambda(Q) \right| = \end{split}$$

b) Second inequality: With similar ideas as in a) we compute

$$\begin{split} D\left(N,x\right) &= \max_{Q = \left[\prod_{i=1}^{l} \left[x_{i},\beta\right] \in \left[0,1\right)^{l}} \left| \frac{1}{N} \right| \left\{n \leqslant N \mid \left\{x_{n}\right\} \in Q\right\} \right| - \lambda(Q) \right| \leqslant \\ &\leqslant \max_{Q} \left(\sum_{T = \prod_{i=1}^{l} \left[\frac{k_{i}}{m^{t}}, \frac{k_{i}+1}{m^{t}}\right]}{\sum_{k_{i} \in \left\{0, \dots, m^{*}-1\right\}}} \right| \frac{1}{N} \left| \left\{n \leqslant N \mid \left\{x_{n}\right\} \in Q \cap T\right\} \right| - \\ &- \lambda(Q \cap T) \mid \right) \leqslant \\ &\leqslant \max_{Q} \left(\sum_{T \neq Q} \left| \frac{1}{N} \right| \left\{n \leqslant N \mid \left\{x_{n}\right\} \in T\right\} \mid -\frac{1}{m^{st}} \right| + \\ &+ \sum_{\emptyset \neq T \cap Q \neq T} \left| \frac{1}{N} \right| \left\{n \leqslant N \mid \left\{x_{n}\right\} \in Q \cap T\right\} \mid - \lambda(Q \cap T) \mid \right) \leqslant \\ &\leqslant \max_{Q} \left(\sum_{T \notin Q} \frac{1}{m^{st}} D_{s}(N, a) + \\ &+ \sum_{\emptyset \neq T \cap Q \neq T} \left(\frac{1}{m^{st}} + \frac{1}{m^{st}} D_{s}(N, a) \right) \right) \leqslant \\ &\leqslant D_{s}(N, a) + \max_{Q} \frac{\left| \left\{T \mid \emptyset \neq T \cap Q \neq T\right\} \right|}{m^{st}} \leqslant \\ &\leqslant D_{s}(N, a) + \frac{2t}{m^{s}}, \end{split}$$

where we have used $| \{T \mid \emptyset \neq T \cap Q \neq T\} | \leq 2t (m^s)^{t-1}$.

III. $m^n \alpha$ -Sequences with Small Discrepancy

Composing the ideas of I. and II. we first construct a sequence $a = (a_n)_{n \in \mathbb{N}}$ on the set $\{0, \ldots, m^t - 1\}$ in such a manner that the discrepancy of the corresponding sequence $x = (x_n)_{n \in \mathbb{N}} = (m^n \alpha)_{n \in \mathbb{N}}$ is small. Using the notations of I. we take

$$s(N) = \left[\frac{\operatorname{lm} N}{2+t}\right] \text{ and } k_{s(N)} = m^{s(N)}.$$
(3.1)

First we note

$$\sum_{i=1}^{s(N)} k_i(m^t)^i \leqslant k_s(N) \sum_{i=1}^{s(N)} (m^t)^i \leqslant N^{\frac{1}{2+t}}(m^t)^{s(N)+2} \leqslant m^{2t} N^{\frac{1+t}{2+t}} = o(N),$$
(3.2)

hence $s(N) \leq l(N)$ for sufficiently large N; so the considerations of I. are applicable. Computations as in (1.15) and Theorem 2 imply

$$D(N,x) \leq \frac{2t}{m^s} + \frac{m^{ts}}{N} \sum_{i=1}^{s-1} k_i + \frac{m^{t(l+1)}}{N}.$$
(3.3)

The first term satisfies

$$\frac{2t}{m^s} \leqslant \frac{2tm}{N^{\frac{1}{t+2}}} = 2tmN^{-\frac{1}{t+2}},\tag{3.4}$$

the second

$$\frac{m^{ts}}{N} \sum_{i=1}^{s-1} k_i \leqslant N^{\frac{t}{t+2}-1} \sum_{i=1}^{s-1} m^i \leqslant N^{-\frac{2}{2+t}} m^{s+1} \\ \leqslant m N^{-\frac{1}{2+t}}$$
(3.5)

and the last one

$$\frac{m^{t(l+1)}}{N} \leqslant \frac{m^{t}}{k_{l}} \leqslant \frac{m^{t}}{k_{s(N)}} \leqslant m^{t+1} N^{-\frac{1}{2+t}}$$
(3.6)

as in (1.15). Thus we have proved

THEOREM 3. Constructing a sequence $(a_n)_{n \in \mathbb{N}}$ on a finite set of cardinality m^t like in I. with (3.1) one gets a sequence which — in the manner described in II. — gives a vector $\alpha \in \mathbb{R}^t$ such that the sequence $x = (x_n)_{n \in \mathbb{N}} = (m^n \alpha)_{n \in \mathbb{N}}$ is uniformly distributed mod $[0, 1)^t$ with discrepancy D(N, x) satisfying

$$D(N,x) \le m(m^{t} + 2t + 1)N^{-\frac{1}{2+t}} = O(N^{-\frac{1}{2+t}})$$
(3.7)

for sufficiently large N.

References

[1] Flajolet, P., P. Kirschenhofer and R. F. Tichy: Deviation from Uniformity in Random Strings. Propab. Th. and Rel. Fields, to appear.

[2] Goldstern, M.: Vollständige Gleichverteilung in diskreten Räumen. Lecture Notes in Math. (Zahlentheoretische Analysis II) 1262, 46-49.

[3] Grill, K., manuscript.

[4] Hlawka, E.: "Theorie der Gleichverteilung". Bibl. Inst., Mannheim— Wien—Zürich, 1974.

[5] Kuipers, L., and H. Niederreiter: "Uniform Distribution of Sequences." John Wiley and Sons, New York, 1974.

[6] SCHIFFER, J.: Discrepancy of normal numbers. Acta Arith. 47 (1986), 175-186.

Reinhard Winkler Institut für Algebra und Diskrete Mathematik Technische Universität Wien Wiedner Hauptstraße 8—10 A-1040 Wien, Österreich Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse 126 (1989), 9-10

Das wirkliche Mitglied Edmund HLAWKA legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

Einige quadratische, kubische und quartische Summenformeln für q-hypergeometrische Reihen

Von Christian KRATTENTHALER

Gegeben seien die üblichen q-hypergeometrischen Notationen

$$(a;q)_{\infty} = \prod_{j=0}^{\infty} (1 - a q^j), \quad (a;q)_n = \frac{(a;q)_{\infty}}{(a q^n;q)_{\infty}},$$

und

$$(a_1, a_2, \ldots, a_r; q)_n = \prod_{j=1}^r (a_j; q)_n.$$

Mittels einer eigenen neuen Inversionsformel [3, (1.5)] erhalten wir, unter Verwendung von Jacksons berühmter $_{8}\varphi_{7}$ -Summe [4, S. 248], die folgenden neuen Summenformeln:

$$\sum_{j=0}^{\infty} \frac{1-a q^{3j}}{1-a} \frac{(a, b, c; q)_j}{(q^2, a q^2/b, a q^2/c; q^2)_j} \frac{(d, e, f; q^2)_j}{(a q/d, a q/e, a q/f; q)_j} q^j = P(a; b, c, d, e; q^2),$$
(1)

wo bc = q, $def = a^2q$ und b oder c gleich q^{-n} , oder d oder e gleich q^{-2n} , n eine nichtnegative ganze Zahl, ist. Dabei ist

$$P(a; b, c, d, e; q) = \frac{(b|a, c|a, d|a, e|a, b c d|a, b c e|a, b d e|a, c d e|a; q)_{\infty}}{(1|a, b c|a, b d|a, b e|a, c d|a, c e|a, d e|a, b c d e|a; q)_{\infty}}.$$

$$\sum_{j=0}^{\infty} \frac{1 - a q^{3j}}{1 - a} \frac{(d, e, f; q)}{(a q^2/d, a q^2/e, a q^2/f; q^2)_j} \frac{(a, b, c; q^2)_j}{(q, a q/b, a q/c; q)_j} q^j = P(a; b, c, d, e; q^2),$$
(2)

wo bc = qa, def = qa und d oder e gleich q^{-n} , oder b oder c gleich q^{-2n} ist.

$$\sum_{j=0}^{\infty} \frac{1-a q^{4j}}{1-a} \frac{(a,b;q)_j}{(q^3, a q^3/b;q)_j} \frac{(c,d;q^2)_j}{(a q^2/c, a q^2/d;q^2)_j} \frac{(e,f;q^3)_j}{(a q/e, a q/f;q)_j} q^j = P(a;b,c,d,e;q^3),$$
(3)

wo b c = q, $b d = q^2$, $ef = a^2 b$ und b, c oder d gleich q^{-n} , oder e gleich q^{-3n} ist.

$$\sum_{j=0}^{\infty} \frac{1-a q^{4j}}{1-a} \frac{(b,c;q)_j}{(a q^3/b; a q^3/c;q^3)_j} \frac{(a,a q;q^2)_j}{(q^2,q;q^2)_j} \frac{(d,e;q^3)_j}{(a q/d, a q/e;q)_j} q^j = P(a;b,c,d,e;q^3),$$
(4)

wo b c = q, d e = a q und b oder c gleich q^{-n} , oder d oder e gleich q^{-3n} ist.

$$\sum_{j=0}^{\infty} \frac{1-a q^{4j}}{1-a} \frac{(b,c;q)_j}{(a q^3/b, a q^3/c;q^3)_j} \frac{(a,a/q;q^2)_j}{(q^2,q^3;q^2)_j} \frac{(d,e;q^3)_j}{(a q/d, a q/e;q)_j} q^j = P(a;b,c,d,e;q^3),$$
(5)

wo $bc = q^2$, $de = aq^2$ und b oder c gleich q^{-n} , oder d oder e gleich q^{-3n} ist.

$$\sum_{j=0}^{\infty} \frac{1-a q^{4j}}{1-a} \frac{(e,f;q)_j}{(a q^3/e, a q^3/f;q^3)_j} \frac{(c,d;q^2)_j}{(a q^2/c, a q^2/d;q^2)_j} \frac{(a,b;q^3)_j}{(q, a q/b;q)_j} q^j = P(a;b,c,d,e;q^3),$$
(6)

we bc = aq, $bd = aq^2$, ef = b und $b = q^{-3n}$ oder c, d oder e gleich q^{-n} ist.

$$\sum_{j=0}^{\infty} \frac{1 - a^2 q^{5j}}{1 - a^2} \frac{(e, f; q)_j}{(a^2 q^4/e, a^2 q^4/f; q^4)_j} \frac{(b, c, d; q^3)_j}{(a^2 q^2/b, a^2 q^2/c, a^2 q^2/d; q^2)_j} \times \frac{(a^2; q^4)_j}{(q; q)_j} q^j = P(a^2; b, c, d, e; q^4),$$
(7)

wo b = a, c = aq, $d = aq^2$, ef = aq und b, c, d oder e gleich q^{-n} ist.

Die Spezialfälle (1), $d = q^{-2n}$ und (2), $d = q^{-n}$ finden sich schon in einer Arbeit von GESSEL und STANTON ([2, (1.4) und (6.14)]). (4) ist ein q-Analogon von Gospers Summation [1, (6.1)].

Literatur

[1] Gessel, I., D. Stanton: Strange evaluations of hypergeometric series. SIAM J. Math. Anal. 13, 295-308, 1982.
[2] Gessel, I., D. Stanton: Applications of q-Lagrange inversion to basic hyper-

geometric series. Trans. Amer. Math. Soc. 277, 173-201, 1983.

[3] Krattenthaler, C.: A new matrix inverse. Manuskript, 1988.
[4] Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press. London, 1966.

In die Sitzungsberichte, Abteilung I, wird aufgenommen:

"Untersuchung über die Ursachen von Radonkonzentrationsschwankungen in Quellwässern unter besonderer Berücksichtigung der Seismizität" von Harry FRIEDMANN (vorgelegt von k. M. Peter STEIN-HAUSER)

In die Sitzungsberichte, Abteilung II, wird aufgenommen:

"Verteilung von Punkten in einem Quadrat" von k.M.August FLORIAN

"Konforme Projektion aus einer Regelfläche mittels orthogonaler Parallelstrahlenbüschel" von Richard Косн (vorgelegt von k. M. Karl Strubecker)

"Counting lattice paths with a linear boundary I." von Christian KRATTENTHALER (vorgelegt von w. M. Edmund HLAWKA)

"Über Eilinien und mit ihnen verknüpfte Mittelpunktskurven" von Oswald GIERING (vorgelegt von w. M. Walter WUNDERLICH)

Im Zeitraum vom 1.10.—31.12.1988 wurden folgende Arbeiten in die "Monatshefte für Chemie" aufgenommen:

- ALBALAT, R., E. GOMEZ, M. SARRET, E. VALLES: Influence of the adsorption on the oxidation of oxalic acid on a gold electrode in acidic media
- BLUHM, K., H. MÜLLER-BUSCHBAUM: Eine neue Verbindung vom M₅Ti-B₂O₁₀-Typ mit geordneter Metallverteilung: Ni₅SnB₂O₁₀
- DOMINGUEZ, E., C. LABORRA, A. LINAZA, A. MADOZ, I. A. KATIME: A series of mono- and diesters of itaconic acid: Synthesis and structural determination
- FILLOL, L., R. MARTINEZ-UTRILLA, M. A. MIRANDA, I. M. MORERA: Photochemical versus aluminium chloride catalyzed Fries rearrangement of aryl hydrogen succinates. Synthesis of 2(3H)-furanones
- HASLINGER, E., S. RUDOLPH: Synthetische Umwandlung des Abietinsäuregerüstes. Abbau der Carboxylfunktion
- HUQUE, E. M.: New induced cholesteric micellar liquid crystals. Characterization and pitch determination
- IPSER, H., A. MIKULA, W. SCHUSTER: Lattice parameters and melting behaviour of the ternary B2-phase in the Co-Ga-Ni system
- KALEMBKIEWICZ, J., J.-P. BRUNETTE, M. J. F. LEROY: Effect of aniline derivatives on the extraction of cobalt with 1-phenyl-3-methyl-4benzoylpyrazol-5-one in toluene

- KROIS, D., H. LEHNER: On the fate of biliverdin-III α -dimethyl ester formed by scrambling during syntheses of biliverdin-IX α -dimethyl ester from bilirubin
- LIEBSCHER, J., A. HASSOUN, J. FABIAN: 1-Amino-2-hydrazinopyrimidin-N-ylides. Unusual tautomers of 1-aminopyrimidin-2-hydrazones
- LU, X., M. JARONIEC, R. MADEY, D. ROTHSTEIN, J.C. HUANG: Adsorption of propane and n-butane on polystyrene adsorbents
- MARKO, H., N. MÜLLER, H. FALK: Complex formation between biliverdin and apomyoglobin
- MEYER, A., K. SCHLÖGL, W. KELLER, C. KRATKY: Stereochemistry of planarchiral compounds, Part XII. Absolute chiralities of 2,2'-bi-(1,6-methano[10]annulenyl)s
- MITKOVA, M., Z. BONCHEVA-MLADENOVA: Glass forming region and some properties of the glasses from the system Se-Te-Ag
- MOSTLER, U., E. URBAN: Synthese und Konfigurationszuordnung eines potentiell antimikrobiellen 5,6-Dihydroxyisobenzofuranons
- MÜLLER, A., H. BÖGGE, U. SCHIMANSKI, M. PENK, K. NIERADZIK,
 M. DARTMANN, E. KRICKEMEYER, J. SCHIMANSKI, C. RÖMER,
 M. RÖMER, H. DORNFELD, U. WIENBÖKER, W. HELLMANN, M. ZIM-MERMANN: Darstellung und Röntgenstrukturanalyse von 26 Thiomolybdato- bzw. Wolframato- und eines Selenowolframato-Komplexes
- MÜLLER, A., E. PIPERAKI, C. HESS-RIECHMANN: Photometrische Rheniumbestimmung in industriellen Proben. Eine schnelle und einfache Methode mit hoher Selektivität
- NEUDECK, H.K.: Aromatische Spirane, 16. Mitt.: Darstellung von mono- und dianellierten 2,2'-Spirobiindan-1,1'-dionen
- NEUDECK, H. K.: Aromatische Spirane, 17. Mitt.: Darstellung von anellierten und substituierten 2,2'-Spirobiindan-1-onen und 4,5'-disubstituierten 2,2'-Spirobiindanen
- PIZZINO, T., A. FONTANA, F. MAGGIO: Cadmium(II) complexes of cytosine
- REISCH, J., M. IDING: Naturstoffchemie, 127. Mitt.: Synthese des (\pm) -Almeins aus Almeidea guyanensis
- SCHULZE, K., H. UHLIG: Riechstoffsynthesen mit Fencholenaldehyd
- SPERKA, G., H. P. FRITZER: Magnetic properties of group VI B hexacarbonyls. Suggestion of a new diamagnetic susceptibility standard
- STRNAD, J., K. HECKMANN, K. GOMPPER: Separation of plutonium from intermediate level liquid waste by precipitation with alkyl-pyridinium nitrates

- TOMA, H. E., C. CIPRIANO: Synthesis and spectroscopic characterization of the trinuclear [Ru₃O(O₂CCH₃)₆(pyrazine)₃]^{0,+} clusters
- WAGNER, U.G., C. KRATKY, T. KAPPE: Pyridazines with hetero-atom substituents in position 3 and 5. Part 1
- ZAFIROPOULOS, T.F., S. P. PERLEPES, J. PLAKATOURAS: Bis(1-methylbenzotriazole)dinitratocobalt(II): A pseudooctahedral complex with pseudotetrahedral magnetochemical and ligand field characteristics
- ZOBETZ, E., A. PREISINGER: Kristallstruktur und Phasenumwandlung von Betain-Borat (CH₃)₃NCH₂COO.B(OH)₃

©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

Decovaciumingen an der Zentralanstalt für Meteorologie und Geodynamik, Wien, Hohe Warte (20/ 5 m), in Mondt Tinnov 1020

Gr.
>
p.e
än
그
1
1.
2

ce.
reit
N-B
14.9'
0
48

14.9' N-Breite.		2.0	8.8 8.8	8.8	1.8	2.8	1.8	9.8 2.8	9.8 9.8	5.8	5.8	8.3 8.3	8.3	8.2	2 C	8.2	8.1	8.1	0.8	6.2	6.2	8.4
	der r ° C m	1.0	5.6 5.6	9.5	5.3	5.2	4.9	4 .8 5.0	5.1 5.2	5.2	5.1	5.1 5.1	5.1	2.0	4.4 8.8	4.5	4.4	4.4	4 4 2 5	4.1	4.0	4.6
	smittel mperatu iefe von	5.0	3.9 3.8	3.7	3.1	2.9	2.7	$3.1 \\ 3.6 \\ 3.6$	3.7	3.5	3.4	3.6	3.5	3.2	2.7	2.6	2.5	2.4	2.7	2.2	2.0	3.1
	Tage Bodente n der T	0.1	2.4 2.8	1.6	0.9	8.0	1.9	3.5	3.3	2.8	2.9	3 ^{.3} 2 ^{.6}	2.4	1.4	6.0	$1^{.4}$	6.0	2.0	2.0	9.0	9.0	1.7
48°		0.02	2.4 2.9	1.4	9.0	9.0	2.3	4 ^{.1} 3 ^{.5}	3.6 2.1	2.5	3.2	3.5 2.6	2.4	1.1	2.0	1.5 0.8	6.0	2.0	9.0 c n	0.5	9.0	1.7
	/erdun- stung,	0.3	0.4	0.3	0.1	0.0	$0.4 \\ 0.6$	$0.4 \\ 0.1$	0.4	1.3	0.0	0.5	0.4	0.1	$0.2 \\ 0.5$	0.4	0.2	0.1	0.2	0.1	10.7 Summe	
		Mit.	75 79	62	06 89	87	88 88	77 83	76 93	79	72	70	72	95	91 85	75 80	80	78	86 86	28/2	0/ 78	81
	ive keit %	21 ^h	75 85	73	92 92	86	91	90 68	89 93	77	69	82 79	76 83 83	95	. 91	78 92	79	87	86	86	79	83
	Relat uchtig	14h	66 61	689	87	85	08 86	70	67 93	64 75	59	57 63	69 45	95	82 82	65 60	74	69	86	99	00 68	74
	Fe	Ţћ	83 90	96	90 90	89	87	72 92	71 93	95 91	88	71 93	72 84	44 S	87	81 89	88	62	86	83	87	86
		Mit.	5.6 5.6	4.6	4.4 4.3	5.4	5 / 8 1	8.2 7.0	6.6 6.1	6.6	0.2	6.6 5.8	5.4	5.2	4.4	5.6 4.9	4.7	4.4	4.9	4.6	6.9	9.9
	druck a	21 ^h	6.0 4.9	3.9	4.4 4.9	2.9	9.1	7.7	5 ^{.7} 6 ^{.1}	6.9	7.2	6.4 5.6	5.5	5.2	5.2	4.8 5.2	4.3	4.5	4 4 9 9	4.3	4 o 9.9	5.7
86	Dampf hp	14^{h}	5.9 5.1	5.1	4.5	4.5	6.L	8.5 7.1	6.4 6.3	7.1	7.2	6.8 6.1	6.3 4.7	5.2	4 4 8 4 8	6.0	4.7	4.5	4.4 8.4	4.9	2.9	5.7
r 19		Дh	5.7 6.8	4.6	4.0	4.6	5.2	8.3	7.7	6.3	2.9	6.2	5.2	4.6	4.5	6.1	5.1	4.3	4.4	4.7	4.4 9.4	5.2
Jänne	Aus- strah- ung °C ⁴	Ţћ	-4.0 1.9	0.9-	-10.0	-7.5	-1.2	5.0 - 1.7	$1^{-5.0}$	-0.2	-3.0	0.2	-1.9	6.9		-2.0	-3.0	-5.3	-2.1	-2.1	0.2-	-3.3
nat		Min. ³	$0.9 \\ -1.8$	-3.7	4.6	4.0	3.5	$2.6 \\ 1.6$	0.3	6.0- 8.0	2.3	-0.1	-0.5	-2.4	-2.3	-1.4	-2.2	-2.6	-7.7	-3.1	-3.7	-1.1
Mo	85 m	4ax. ³]	5.0	3.0	2.1	3.6	7.3	10.9 8.2	8.3	6.6	10.6	0.8	5.8	-0.2	1.0	6.2 3.8	0.4	6.0	0.0 0	3.2	0.9	4.5
imi	in 1°8 den	dit. A	3 ^{.5} 2 ^{.2}	-0.5		0.0	5.6	7.9 4.6	5.1 0.9	4.8	0.2	6.3	3.5	-1.5	4 -0-0-	2.9	2.0-	-1.0		0.3	3.3	1.8
	ur, ° C dem Bo	21 ^h /	3.9 -0.8	-1.6	-3.6	3.3	3.2 6.9	4.8 8 ^{.1}	$0.7 \\ 1.1$	4.6	2.8	3.4 2.2	3.4	-1.4	0.1	-0.1	-1.5	-2.1	 	-2.2	2.0	1.4
	temperat über	4h	5.2 4.4	2.6	-2.1	-1.8	1.6 5.6	10.0 3.5	6.4 1.4	9.8	10.0	9.9 9.6	5.4 7.4	-1.0	9.0-	3.6 3.6	0.3	8.0	-1.0	2.8	2.5	3.3
	Luft	1		2	4 .0	4	s io	0. E.	.1.	.1.	.2	8.0.	0.0	0	n 	0.6.	0.	9.	o .	:	c 6.	9.
		Ţћ	-	90	∯ 4	7	04	60	× 0	10	ŝ	ωO	ς Ο Ο	ςı σ		ς, <u>1</u>	1	7 0	77	7.	79	0
	3	Δ^2	14 ^{.8} 19 ^{.5}	20.6	17.6 10.3	-4.3	-3 ⁻⁹	2^{0}	7 ^{.2} 9 ^{.3}	13.8	16.5	15°1 11°7	15.6	14.6	2.6	16 ^{.3} 15 ^{.9}	16.1	15.9	20.7	22.5	22.3	12.9
	1	Mit.	1008.9 1013.6	1014.7	1011.7 1004.6	0.066	992.8	996:4 996:1	1001 ^{.7} 1003 ^{.8}	1008.3	1011.0	1009`6 1006`2	10101110101	1009.1	1003 2	1010.7 1010.3	1010.5	1010.3	1015.0	1016.8	1016.6	1007'3
e v. Gı	uftdruck ¹ hpa	$21^{\rm h}$	1008°8 1016°0	1013.6	1009.8	987.4	994.2	6.266	1004.4	1011.4	1009.8	1008.8	1011'8	1008.0	1001 /	1011.1	1010.5	1011.6	1016 1	1018.0	1016.9	1007.7
E-Läng	Li	14h	1007.8	1014.1	1011.7	987.4	992.5	0.966	1002.7	1008.4	1010.6	1009.1	101011	0.6001	1002 6	1010.9	1010'3	1009.4	1014.5	1016.1	1016.4	1007.0
21.7' I		Ţћ	010.0	016'3	013.5	995.2	2.166	996°3 994°6	002.9	005.1 1	012.5	010.8 1 005.9 1	010.7	010.3	6.666	010.2 1	010.6	010.01	014.8	016.2	016.6	007:3
16°	Tag		2.1	3.1	5. 1	9.	. 8	9. 10.	11.	13. 1	15. 1	16. 1 17. 1	18. 1 19. 1	20. 1	22.	23. 1	25. 1	26. 1	28. 1	29. 1	31. 1 31. 1	Mittel 1

24stündiges Temperaturmonatsmittel: 1'5 Grad

©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

Bemerkungen zum Wetterverlauf	Intensität 0,1,2,= leicht, mäßig, stark	$ \begin{array}{c} \bigcup_{i=1}^{n} \Gamma_{i}, \sigma^{0}(6^{29}, m \bigcup -1) 18^{35-40}, \sigma^{0}, 19^{55}, \sigma^{0}, \Gammarabd; \\ \infty^{0-1} n_{-3}, \sigma^{1} \Gamma_{r4}^{03}, m \bigcup -0^{415}, \sigma^{0-1}, \omega^{0-1}, \alpha^{0-1}, \alpha^{0-$	$\begin{array}{c} = \cdots \\ {\bf w}_{0} \bullet^{0} {\bf O}_{0} {\bf U}_{1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf w}_{0-1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf w}_{0-1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf w}_{0-1} \bullet^{0} {\bf U}_{1-3} = 5^{3} \bullet_{1-1} \bullet^{0-1} {\bf U}_{2-3} {\bf U}_{1}, \\ {\bf w}_{1-1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf w}_{0-1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf w}_{0-1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf w}_{0-1} \bullet^{0} {\bf U}_{1} = 0, \\ {\bf u}_{0-1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf u}_{0-1} = 0, \\ {\bf u}_{0-1} \bullet^{0} {\bf U}_{1-3} = 0, \\ {\bf u}_{0-1} = 0, \\ {$	•Тr• ⁰ 7 ²⁶⁻⁴⁹ • ¹⁻² . 810•Tr• ⁰ . 8 ³⁵ , Ω ⁰⁻¹ ¹ np; L ¹ n-fr.=∞1 ⁻² fr-np,915 ⁴⁵ .181 ³ ; =∞3 ⁿ -fr, 5 ³⁰ -mU-•Tr• ⁰ 0, ¹⁰ -7 ³⁰ , L ⁰⁻¹ abd-np; L ⁰⁻¹ n-fr.=∞ ² fr-∞ ¹ - ² m-abdi, •Tr• ⁰ 20 ¹⁹ -21 ³⁵ , npi; •Tr11L ⁰⁰ ff;	سالة-25, ممارتر. ∩الم: 10-11، -2, مع ² زن. ما عامن: 11-00 ²⁰ ، -10_2, 12-25, 11-0 ⁻⁰ , 2 ²⁵ i, معارت, مع ⁰ p, abd: 11-26, 2006, -2-2005, -2-2005, -2-200, 11-55-201, 16-30-244; 10-21, -2006, -2-2005, -2-2010, -2011, 55-201, 16-30-244;	Δ ⁰ ni,= ² n-ω ² na-ω ¹ np, s a, FFI× ⁰ 13 ⁵⁰ _14 ¹² , ω ⁰⁻² n-np,sna-8 ¹⁵ 1, V ⁰ fr-a; ω ⁰⁻² n-m ¹⁰ ω ⁰ np; ^{10²2n-a.ω¹⁻²n-mα²abd-=np; =n-∞⁰⁰⁻²na-np;}	$\begin{aligned} & & & & & & & & & & & & & & & & & & &$	Tage mit: $\bullet_{9} \times \clubsuit \equiv 0^{-2}$ R (R) ES $\mu_{-} \mu_{-}$	m Mittell. ³ Aus der Registrierung von 0−24 Uhr. ⁴ Temperatur- ⊿Reif, V Rauhreif, ~ Glatteis, ℝ Gewitter über Ort, ([ß) Gewitter ±r i mit Unterbrechungen, na frühmorgens, fr früh, a vormittags,
Schnee-	none		· •• · ·					тì	ngjährig« ∟ , nU ⊂
mm Form	Sum. ⁸	0.0 €.0 9.0	3.7 ₩ 6.0	$\begin{array}{c} 1.6\\ 0.3\\ 0.0\\ 0.0\\ 0.0\end{array}$	0.0 0.0 ♣ 0.1 △	• <u>+</u> 0.0	0.0 ★0.0	15.4	ung vom la ebelreißen, <i>t</i> 8 und mehr
ilag in ie und	21 ^h	0.0 *	2.8 ₩ ₩ 1.1.7 ₩ ₩ 	0.0		* 0.0		6.2	Abweich _{nst,} ≣:N indstärke
Viedersch	14 ^h		0.1*	0.0	0.0 ♣ 0.1 △	• • • • • • • •	▼0.0 *0.0	2.5	$pa. ^{2} \Delta = \frac{1}{h} in cm.$ = Nebeldur ehr, w Wi
N A	Дı		0.2 • 0.0 • 1.0	0.0	0.0	∇ 0.0			c=0.00 h 0. ⁹ Um 7 Nebel, =
lgeschwin- it, m/sek	Maximum ⁷	W 1133 W 1133 ESE 97 SE 376 W 833	NW 10.8 W 13.6 NW 16.1 W 12.8 VNW 16.1 7NW 9.4	NW 16'1 SSW 6'7 W 16'4 W 14'2 W 17'8	W 15 ⁻³ W 15 ⁻³ W 16 ⁻⁹ SE 8 ⁻³	SSE 7'8 W 9'4 NNW 9'2 SE 6'1 ESE 7'8	ESE 9.4 E 4.2 SSE 7.2 W 7.5 W 4.2 W 10.8	- 10.8	$= +0.25 \text{ hpa}, B$ $= +0.25 \text{ hpa}, B$ $\text{Non } 7^{\text{h}} \text{ bis } 7^{\text{h}}$ $\text{n.} \triangleq \text{Eisregen}, \equiv$ e, $\checkmark \text{Windstärke}$
Wind digke	Mit.6	2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	3.3 3.3 3.0 1.9 W	3.1 2.6 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	2.553 2.53 2.53 2.53 2.53 2.53 2.53 2.53	3.0 2.9 2.9 0 2.9	3.10 3.10 3.10 8 3.10 8 8	2.8	ktur. Ge lickswert Graupel nneedeck
-stärke Grade)	21 ^h 1	W W W S W Z W Z W Z	WNW 3 W 4 W 4 SE 1 WNW 3	WW SSE 2 WW WW 3 SSE 2 WW 3 SSE 2 SW 3 SW 3 SW 3 SW 3 SW 3 SW 3 SW 3 SW 3	W 2 W 4 WSW 2 ESE 3	SSE 3 SW 2 NNW 1 NNE 1 ESE 2	E 1 E 1 SW 1 NNW 1 NNW 1 NNW 1	- 2.1	umentenkorre ttel. ⁷ Augenb e, ▲Hagel, △ flocken, ⊠ Scl
htung und Beaufort-C	14 ^h	W N H H H H H H H H H H H H H H H H H H	SE 2 WNW 1 W 4 W 2 ESE 1	WNW 1 ESE 2 W 4 E 1 W 4	W 2 W 3 WNW 2 ESE 3	SE 2 NNW 2 SE 3 ESE 3	E BERE 1 SSE 2 NNW 2 SE 1 SE 1 W 1	- 2.1	ind mit Instr tündiges Mit eln, ¥ Schnee ¥Fl Schneel
Windric (0–12	Дh	WNW 2 SE 2 WNW 1 NF 1	WNW 3 WNW 3 WNW 3 E 1	WSW 3 NNE 1 S 2 NNE 1 E 1	WNW 2 ENE 1 W 5 W 3 ENE 1	SE 2 SSE 2 WNW 3 C 0 E 2	SE 3 SSE 2 SSE 2 SW 1 W 4	- 1.9	ckorrektur 1 unden. ⁶ 24s egen, 9 Niese egentropfen
Son- nen-	schein	8.04 0.0 0.04 0.0	0.000	3.5 5.0 5.0	0.0 2 0.0 2 0.00000000000000000000000000000000000	0.04 °C 0.07 °C 0.07 °C	$\begin{array}{c} 0.3\\ 0.0\\ 0.0\\ 3.8\\ 5.1\\ \end{array}$	81°5 2°6	t Schwer uer in St gen: •R, st, •Tr R
–10, nin	Mit.	6.7 3.7 3.7 3.7 10.0 9.0	10.0 9.3 10.0 6.3 9.7	$ \begin{array}{c} 4.3 \\ 4.3 \\ 3.0 \\ 3.0 \\ 3.0 \\ \end{array} $	4.7 5.3 6.7 6.7	10.0 100 7.0 7.3 7.3 7.3	9.7 10.0 7.0 3.7 6.0	2.9): 3. ¹ Mi den. ⁵ Da ıbkürzun , ∞ Duns
Menge 0 te ^{0–2}) zum Terr	21 ^h	$\begin{array}{c} 9^{1}\\ 0\\ 10^{2} \\ 8^{1} \end{array}$	410 ¹ • 10 ² • 10 ² •	$0 \frac{101}{2}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 10^2 \Delta \end{array}$	$ \begin{array}{c} 10^{1}\\ 10^{1}\\ 10^{1}\\ 1^{0} \end{array} $	$\begin{array}{c} 10^{1}\\ 10^{1}\\ 8^{1}\\ 0\\ 10^{1}\end{array}$	- 5.7	4 ^h +21 ^h dem Boc en und A fleuchten
völkung (Dich ⁷ itterung	14 ^h	$ \begin{array}{c} 91 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$10^{2} \times 10^{2} \times 10^{2} \times 10^{1}$	$^{+}_{70}^{-101}$	$\begin{array}{c} 7^{0}\\ 1^{0}\\ 1^{0}\\ 1^{0}\equiv \Delta \end{array}$	$10^{2} \pm 10^{1}$ 8^{1} 5^{1} 10^{1}	$\begin{array}{c} 91\\ 10^2\\ 3^1\\ 1^0\\ 7^1\end{array}$	6.9 -	cl (7 ^h + 1 cm über te Zeicht & Wetter
Beu	Дh	2^{1} 10 ¹ 10 ²	10 ¹ ▲ 10 ¹ 10 ¹ 10 ¹	91 101 21 21	0 1 9 0	10 ¹ 10 ²	$\begin{array}{c} 101\\10\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	- °	agesmitt um in 6 erwende gebung,
Tag		-004m	0198919	112212	202118 202128 202128	22222	328282	Summ Mittel	T minim V V n U m

egangene Nacht. wenn n allein steht).

Jänner 1989

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN

MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Nr. 2

Sitzung vom 2. März 1989

Das korrespondierende Mitglied Peter M. GRUBER legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

A Remark on Random Approximation of Simple Polytopes Von Christian Buchta

Recently, the question of determining the asymptotic behaviour of the expected number $E_n(d, r)$ of extreme points of the convex hull of n random points chosen independently and uniformly from a d-dimensional polytope P with r vertices has attracted considerable interest.

In the plane, according to a classical result of RÉNYI and SULANKE [4],

$$E_n(2,r) \sim \frac{2}{3}r\log n \ (n \to \infty).$$

In the three-dimensional case, if P is a simple polytope, it follows from a result of the author [1] that

$$E_n(3,r) \sim \frac{3}{16} r \log^2 n \ (n \to \infty).$$

Improving earlier work by himself and KANNAN [3], DWYER [2] indicated that for any d-dimensional polytope P with r vertices

$$E_n(d,r) \leqslant c_1(P) \log^{d-1} n \ (n \to \infty) \ .$$

If at least one vertex lies in exactly d facets, then, additionally,

$$E_n(d,r) \ge c_2(P) \log^{d-1} n \ (n \to \infty).$$

The occurring constants are given explicitly: $c_1(P)$ is $2^d d (d + 1)$ times the (minimal) number of simplices into which P can be partitioned, and $c_2(P) = 1/d^{d-1}$.

If all vertices lie in exactly d facets, i.e. if P is simple, VAN WEL [5] sketched how to derive the asymptotic formula

$$E_n(d,r) \sim c_3(d) r \log^{d-1} n \ (n \to \infty),$$

where $c_3(d)$ is given by a $(d^2 - d)$ -fold definite integral. It follows immediately that $c_3(2) = 2/3$, and not very long calculations yield $c_3(3) = 3/16$. Already for d = 4, the occurring integrations seem to be rather tedious.

Very recently, Fernando AFFENTRANGER and John André WIEACKER informed the author that they are able to deduce that

$$E_n(d,r) \sim \frac{d}{(d+1)^{d-1}} r \log^{d-1} n \ (n \to \infty)$$

for any simple d-dimensional polytope with r vertices. Considering that Affentranger and Wieacker describe their intended proof as rather sophisticated, it might be worth mentioning that very elementary arguments yield the following estimate:

THEOREM. Denote by $E_n(d, r)$ the expected number of extreme points of the convex hull of n random points chosen independently and uniformly from a simple d-dimensional polytope with r vertices. As n tends to infinity,

$$\frac{1}{d^{d-1}}r\log^{d-1}n \leqslant E_n(d,r) \leqslant \frac{1}{(d-1)!}r\log^{d-1}n.$$

Proof. We use an idea of DWYER [2]. However, the proof given here is much easier than Dwyer's reasoning.

It is intuitively clear and easily verified that the asymptotic behaviour of $E_n(d, r)$ is determined only by those random points which are contained in arbitrarily small neighbourhoods of the vertices of the given polytope. Consider the neighbourhood of such a vertex. As the expected contribution of the random points in this neighbourhood to the expected number of extreme points of the convex hull is invariant under nonsingular affine transformations, we may assume that the volume of the polytope is one and that the edges meeting at the vertex are orthogonal, i.e. we may assume that the vertex is the origin and that the corresponding edges are contained in the positive coordinate-axes.

One of the random points with coordinates x_1, \ldots, x_d , say, certainly is an extreme point of the convex hull if the simplex bounded by the hyperplanes

$$H_i = \{(\xi_1, \dots, \xi_d) : \xi_i = 0\} \ (i = 1, \dots, d)$$

and

$$H_{d+1} = \{(\xi_1, \dots, \xi_d): \frac{\xi_1}{x_1} + \dots + \frac{\xi_d}{x_d} = d\}$$

does not contain any of the other n-1 points. As the volume of the simplex is $d^d x_1 \ldots x_d/d!$, this event occurs with probability $(1 - d^d x_1 \ldots x_d/d!)^{n-1}$. The argument is the same for any of the *n* random

points. We conclude that the expected number of extreme points of the convex hull in the neighbourhood of the considered vertex is bounded from below by

$$n\int_0^\varepsilon \dots \int_0^\varepsilon (1-d^d x_1\dots x_d/d!)^{n-1} dx_1\dots dx_d$$

for some sufficiently small $\varepsilon > 0$.

On the other hand, if the point with coordinates $x_1, \ldots x_d$ is a vertex of the convex hull, at least one of the 2^d orthants defined by the hyperplanes

$$H'_{j} = \{(\xi_{1}, \ldots, \xi_{d}): \xi_{j} = x_{j}\} \ (j = 1, \ldots, d)$$

does not contain any other random point. It is easy to see that the probabilities are negligible that an orthant not containing the origin is empty, because we are only interested in the asymptotic behaviour as n tends to infinity. The volume of the polytope bounded by the hyperplanes H_i (i = 1, ..., d) and $H'_j (j = 1, ..., d)$ is $x_1 ... x_d$, therefore the orthant containing the origin does not contain any of the other n - 1 points with probability $(1 - x_1 ... x_d)^{n-1}$. Thus we see that, asymptotically, the expected number of extreme points of the convex hull in the neighbourhood of the considered vertex is bounded from above by

$$n\int\limits_0^{\circ}\ldots\int\limits_0^{\circ}(1-x_1\ldots x_d)^{n-1}\,dx_1\ldots dx_d$$

for some sufficiently small $\varepsilon > 0$.

The appearing integrals may easily be evaluated:

$$n \int_{0}^{t} \dots \int_{0}^{t} (1 - c x_{1} \dots x_{d})^{n-1} dx_{1} \dots dx_{d} \sim$$

$$\sim n \int_{0}^{1} \dots \int_{0}^{1} (1 - c x_{1} \dots x_{d})^{n-1} dx_{1} \dots dx_{d} =$$

$$= \frac{1}{c} \int_{0}^{1} \dots \int_{0}^{1} \frac{1 - (1 - x_{1} \dots x_{d-1})^{n}}{x_{1} \dots x_{d-1}} dx_{1} \dots dx_{d-1} =$$

$$= \frac{1}{c} \int_{0}^{1} \dots \int_{0}^{1} \sum_{k_{d-1}=0}^{n-1} (1 - x_{1} \dots x_{d-1})^{k_{d-1}} dx_{1} \dots dx_{d-1} =$$

$$= \frac{1}{c} \sum_{k_{d-1}=1}^{n} \frac{1}{k_{d-1}} \int_{0}^{1} \dots \int_{0}^{1} \frac{1 - (1 - x_{1} \dots x_{d-2})^{k_{d-1}}}{x_{1} \dots x_{d-2}} dx_{1} \dots dx_{d-2} =$$

$$= \dots = \frac{1}{c} \sum_{k_{d-1}=1}^{n} \frac{1}{k_{d-1}} \sum_{k_{d-1}=1}^{k_{d-1}} \frac{1}{k_{d-2}} \dots \sum_{k_{2}=1}^{k_{3}} \frac{1}{k_{2}} \sum_{k_{1}=1}^{k_{2}} \frac{1}{k_{1}};$$

and from $\sum_{k=1}^{n} \log^{m} k/k = \log^{m+1} n/(m+1) + 0$ (1) $(n \to \infty)$ we conclude that this sum is asymptotically equal to $\log^{d-1} n/c (d-1)!$. Putting $c = d^d/d!$ yields the lower and putting c = 1 the upper bound in the claimed estimate

$$\frac{1}{d^{d-1}} r \log^{d-1} n \leqslant E_n(d, r) \leqslant \frac{1}{(d-1)!} r \log^{d-1} n \ (n \to \infty)$$

References

[1] Buchta, C.: A note on the volume of a random polytope in a tetrahedron. Illinois J. Math. 30, 653-659 (1986).

[2] Dwyer, R.A.: On the convex hull of random points in a polytope. J. Appl. Probab. 25, 688-699 (1988).

[3] Dwyer, R.A., and R.Kannan: Convex hull of randomly chosen points from a polytope. Math. Res. 38, 16-24 (1987).

 $[4\overline{]}$ Řényi, A., and R. Sulanke: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrsch. Verw. Gebiete 2, 75–84 (1963).

[5] Van Wel, B. F.: The convex hull of a uniform sample from the interior of a simple d-polytope. Manuscript, 1988.

Anschrift des Autors: Christian Buchta Institut für Analysis Technische Mathematik und Versicherungsmathematik Technische Universität Wiedner Hauptstraße 8—10 1040 Wien Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse **126** (1989), 21-24

Das korrespondierende Mitglied Heinrich BRAUNER legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

The Monge—Ampère Equation in Affine Differential Geometry

Von Michael Kozlowski

Choose a fixed coordinate system in the three dimensional affine space. Suppose Q is a region in the plane and an affine surface $\Sigma: Q \to A_3$ in A_3 is given as a graph over Q

$$\Sigma(x,y) = \begin{pmatrix} x \\ y \\ z(x,y) \end{pmatrix}.$$

An improper affine sphere is characterized by a constant affine normal. If this normal is parallel to the z-axis the function $z: M \to R$ satisfies the Monge—Ampère equation (cf. for references [CA], [SCHN], [SI])

$$z_{xx} z_{yy} - z_{xy}^2 = 1. (1)$$

From (1) we obtain those improper affine spheres which consist only of elliptic points.

Improper affine spheres are of particular interest because they are surfaces with vanishing affine mean curvature, i.e. affine maximal surfaces.

In this paper we describe a special class of improper affine spheres. We obtain a sequence of improper affine spheres tending in a fixed neighbourhood of a point to a plane.

One sequence of this kind is given by elliptic paraboloids

$$n \, z = x^2 + y^2.$$

Here the boundary plane is independent of n.

Assume that a solution of (1) is of the following form

$$z(x, y) = (b x + c) g(y) + h(x).$$
(2)

Here g and h are functions of only one variable and b, c are real constants.

For example the well-known elliptic paraboloid

$$z(x,y) = \frac{x^2 + y^2}{2}$$

is of the form (2).

From (2) we get

$$z_{xx} = h''(x), \ z_{xy} = b \dot{g}(y), \ z_{yy} = (b x + c) \ddot{g}(y).$$

Now using (2) the Monge—Ampère equation (1) leads to the differential equation

$$(b x + c) \ddot{g}(y) h''(x) - b^2 (\dot{g}(y))^2 \equiv 1.$$
(3)

(3) implies

$$(b x + c) h''(x) = 1 + b^2 (\dot{g}(y))^2$$

 $\ddot{g}(y)$

Thus there is a constant d such that

$$(b x + c) h''(x) \equiv d.$$
⁽⁴⁾

Because of (1) $h''(x) \neq 0$ and hence $d \neq 0$. The case b = 0 leads to the above mentioned elliptic paraboloids.

For $b \neq 0$ (4) gives

$$h(x) = \frac{d}{b^2}(bx+c)\ln(bx+c) + rx + t, \ r, t \in \mathbb{R}.$$
 (5)

Combining (3) and (4) yields

$$\ddot{dg}(y) - b^2 (\dot{g}(y))^2 \equiv 1.$$
(6)

It follows from (6)

$$\dot{g}(y) = \frac{1}{b} \tan\left(\frac{b}{d}y + e\right), \ e \in R,\tag{7}$$

$$g(y) = -\frac{d}{b^2} \ln\left\{\cos\left(\frac{b}{d}y + e\right)\right\} + f, \ f \in \mathbb{R}.$$
(8)

Using (2), (5) and (8) we finally have

$$b^{2} z = d \left\{ (b x + c) \left[\ln (b x + c) - \ln \left\{ \cos \left(\frac{b}{d} y + e \right) \right\} \right] + a x + k \right\}, \ a, k \in \mathbb{R}.$$
(9)

(9) provides us with a class of improper affine spheres given as solutions of (1).

For example consider $a = n^3$, b = n, c = 0, d = 1, e = 0, f = 0, $n \in \mathbb{N}$:

$$z_n(x,y) = n x + \frac{x}{n} [\ln (n x) - \ln \{\cos (n y)\}].$$
(10)

For n sufficiently large this sequence of surfaces tends in a fixed neighbourhood of a point to a plane.

From (9) one gets for b = 1, d = 1, c = 0, e = 0, a = 0, k = 0 the surface given by

$$x = \exp\left[\frac{z}{x}\right] \cos y. \tag{11}$$

It is defined in the half-strip

$$Q := \left\{ (x, y) \in \mathbb{R}^2: \ x > 0, \ -\frac{\pi}{2} < y < \frac{\pi}{2} \right\}$$

and it is symmetric with respect to the positive x-axis. The surface is unbounded in the half-strip and we have

$$\lim_{x \to 0} z(x, y_0) = 0, \ 2 \ y_0 \in (-\pi, \pi),$$
$$\lim_{x \to 0} z(x_0, y) = \infty, x_0 > 0.$$

As (11) solves the Monge—Ampère equation (1) it only consists of elliptic points.

We get other solutions of the Monge—Ampère equation (1) by the following exact differentials

$$dz = \operatorname{tg} x \sqrt{\cos^2 x + y^2} \, dx + \operatorname{arsh}\left[\frac{y}{\cos x}\right] dy, \qquad (12)$$

$$dz = e^{x} \sqrt{1 - y^2 e^{-2x}} dx + \arcsin(y e^{-x}) dy,$$
(13)

$$dz = \operatorname{th} x \sqrt{\operatorname{ch}^2 x - y^2} \, dx + \arcsin\left[\frac{y}{\operatorname{ch} x}\right] dy, \tag{14}$$

$$dz = 2xy^{2}$$

$$1 - \sqrt{1 - 4x^{2}y^{2}}dx + -1 + \sqrt{1 - 4x^{2}} \subset \overset{\not>}{=} 2y\,dy.$$
(15)

These differentials determine functions z(x, y) which satisfy the Monge—Ampère equation (1).

References

[CA] Calabi, E.: Hypersurfaces with maximal affinely invariant area. Amer. J. Math. 104, 91-126 (1982).

[SCHN] Schneider, R.: Zur affinen Differentialgeometrie im Großen I. Math. Z. 101, 375-406 (1967).

[SI] Simon, U.: Zur Entwicklung der affinen Differentialgeometrie nach Blaschke. In W. Blaschke: Gesammelte Werke, Vol. 4. Thales Verlag, Essen, 1985, p. 35-88.

Michael Kozlowski Fachbereich Mathematik der Technischen Universität Berlin Sekr. MA 8–3 Straße des 17. Juni 135 1000 Berlin 12, FRG In die Sitzungsberichte, Abteilung I, wird aufgenommen:

"Bestandsstruktur und Lichtklima ausgewählter Pflanzenbestände der subalpinen Stufe des Zentralkaukasus" von Ulrike TAPPEI-NER, Alexander CERNUSCA und k. M. Gia S. NACHUZRISVILI (vorgelegt von w. M. Walter LARCHER)

In die Sitzungsberichte, Abteilung II, wird aufgenommen:

"Hyperoskulierende Kegelschnitte in Pappos-Ebenen der Charakteristik zwei" von Hans Havlicek (vorgelegt von k.M. Heinrich BRAUNER)

"Über die monadisch-galaktische Struktur des der Nonstandard-Analysis zugrundeliegenden (cauchysch-nichtarchimedischen) Körpers der hyperreellen Zahlen" von w. M. Curt CHRISTIAN ©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

n),	n), e.	der r ° C 1m			2.0	7.7 7.7 8.7	7.5	7.5 7.6 7.6	9.L 9.L 9.L	9.L 9.L	7.7 8.7 8.7 8.7					
1.2.2	Breit		1.0	$3.9 \\ 4.0 \\ 4.1 $. 4 . 4 . 4 . 4 . 4 . 4 . 5 . 4 . 4 . 5 . 4 . 5 . 4 . 5 . 5	7.4 7.4 7.4 7.4 7.9 6.4 9.4	4.9 4.9 5.0 5.2	5.4 5.7 5.9 5.9 6.1	6.3 6.5 5.0							
(20	207 N-1	smittel mperatu iefe voi	5.0	2.1 2.3 2.6 2.7 2.7 2.7	3.3 3.5 3.5 3.5	3.5 3.4 3.6 3.9 3.6	3.7 3.8 3.8 3.9 3.9 4.8	5.2 5.5 5.5 6.0	6:3 6:2 5:9 4:0							
te	14.9	Tage Bodentei n der T	0.1	$\begin{array}{c} 1.5\\ 1.9\\ 2.0\\ 1.8\\ 1.9\end{array}$	3.0 3.0 3.0 3.0	2.7 2.5 2.8 2.8	3.6 3.3 3.1 4.9 6.6	6.5 7.2 7.2 7.2	6.7 5.9 3.9							
Var	48°		0.02	2.1 2.2 2.3 1.9 2.1 2.1	3.7 3.6 3.1 3.2 3.1 3.1	2.8 3.8 4.1 2.5 3.1	3.9 3.5 3.3 5.8 7.5	6.7 5.5 7.3 7.9	6.9 6.1 6.1 4.3							
0		erdun- tung,		$\begin{array}{c} 0.1\\ 0.2\\ 0.3\\ 0.3\\ 0.9\end{array}$	$\begin{array}{c} 0.7 \\ 0.3 \\ 0.4 \\ 0.4 \\ 1.0 \end{array}$	$\begin{array}{c} 0.5 \\ 1.1 \\ 0.9 \\ 0.6 \\ 1.2 \end{array}$	$\begin{array}{c} 0.5 \\ 0.7 \\ 0.2 \\ 0.8 \\ 1.6 \end{array}$	0.5 1.0 0.3 1.8	0.8 1.0 1.2 21.0 21.0							
Hoh		7 2	Ait.	87 88 88 88 88 68	75 82 94 72	63 80 63 82 63 82	71 59 83 68 68	73 76 84 62 64	70 61 62 75 s							
L, F		ve eit %	21 ^h A	94 90 86 79	84 88 93 72	88 61 69 69	60 62 74 65	79 80 88 50 76	58 56 77 75							
/ien		Relati chtigk	44	88 83 83 83 84 84 84 85 84 84 84 84 84 84 84 84 84 84 84 84 84	68 65 84 63	66 55 88 88 66	80 70 56 56	76 58 79 47 45	61 44 41 67							
×] Feuu	7h 1	84 86 87 81 81 81 81	72 95 95 82	85 77 69 88 74	74 65 87 88 88 82	64 86 90 72	92 83 69 82							
mik			Ait.	6.7 6.5 5.6 5.7 5.7	7.5 7.1 6.6 6.8 5.6	5.8 5.3 5.3 5.3	6.6 63 63 999	6.4 6.3 7.9 8.0 8.4	772 573 61 66							
ynai		ruck	21 ^h]	6.9 6.4 5.1 6.8	7.7 7.2 6.5 7.1 5.6	5.5 6.4 5.9 7.9	53 473 999	6.4 6.8 8.7 9.5 9.5	5.6 6.9 6.7							
poe	89	ampfd hpa	44	7'3 6'7 5'6 5'9 4'7	7'9 6'8 7'1 5'6	6.3 6.3 6.7 5.7	7.6 4.5 6.1 9.9	6.8 6.4 8.1 8.4 7.3	6.3 5.5 6.7							
Ğ	r 19	Ď	7h 1	6.0 6.4 6.0 5.5 4.7	6.9 6.4 6.3 5.6	5.6 6.0 5.5 5.5	6.8 5.1 5.5 0.4 1 0.0	6.0 5.6 8.0 8.4	9.7 5.6 6.0 6.5							
pun	ie und Februa	s- th- °C4		0.8 1.8 0.0 3.9	2.5 3.8 1.5 1.5	2.1 2.1 2.1	2.9 2.1 4.5 1 2.5 1 2.5 1		4.3 1.5 0.4							
ie		Au stra lung	3 7	e 15 86 - 10	010400	<u>-4004</u>	0 10 4 1- 10	<u> </u>	1 3 5 4							
log	onat	Lufttemperatur, °C in 1`85 m über dem Boden	³ Min.	1 00775	1.0.1.1.3	<u></u>	ω 0.4.9	8 ni 15 0 ni	5 5 7 3							
corc	M_{0}		Max.	3.52	10.1 2.5 5.6 5.6	6.3 7.7 4.4 6.4	7.3 6.9 13.6 13.6	9.0 9.6 8.8 15.5 14.9	9.6 9.6 11 ⁻⁴ 8 ⁻¹							
Acto	im		Mit.	3.3 2.7 1.1 3.9	7.1 5.1 1.8 2.9 3.5	2.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5.8 4.1 3.0 11.7 12.9	$\begin{array}{c} 5.1 \\ 4.5 \\ 6.0 \\ 11.4 \\ 11.3 \end{array}$	7.1 5.4 7.1 5.3							
ür N			$21^{\rm h}$	2.7 2.2 1.0 5.0	5.6 3.3 3.3 3.3	0.4 7.6 3.5 5.8 5.8	5.2 3.0 3.6 12.6 13.3	$3.9 \\ 4.8 \\ 6.8 \\ 13.3 \\ 10.$	6.4 5.3 5.2							
lt f			Lufttemper übei	Lufttemper übe	4h	5.0 3.2 1.4 0.8 7.6	9.2 9.6 2.1 5.4 5.4	$ \begin{array}{c} 6.1 \\ 6.0 \\ 3.2 \\ 5.0 \\ \end{array} $	6'3 5'8 5'0 13'0 15'4	5.4 8.6 7.4 15.8	7.2 8.8 11.1 7.3					
ısta	Lufite				Luftt	Lufit	Luftta	Luftt	Luftt	Luftı	Luftı	Lufti	÷	06972	49402	00044
ralaı			Дh	-1.00.2.2	1.1.1.0	0 7 0 0 7	6.003.0	6.0°.0°.	3. 5. 1.							
Zenti								Δ^2	20.4 16.3 15.4 14.2 10.8	15.0 16.0 14.5 11.8 15.6	21.1 16.0 11.1 1.7 2.9	$^{-1.9}_{6.3}$	$6.9 \\ 4.1 \\ -5.6 \\ -19.3 \\ -33.7 \\$	-42.0 -29.0 -21.1 3.1		
ler	cr			Ait.	14.5 10.4 09.5 08.2 04.8	08°9 09°9 08°2 05°5 09°2	14.7 09.5 04.6 95.0 96.1	91.2 98.3 99.2 00.5 98.2	99°3 96°4 86°5 72°7 58°0	49.5 62°3 69°8 96°1						
achtungen an d 21.7' E-Länge v. Gr.	ck ¹	V	3 10 7 10 7 10 7 10 7 10 7 10		4 10 10 10 10 10 10 10 10 10 10 10	6 0 9 10 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9								
	uftdru hpa	$21^{\rm h}$	$\begin{array}{c} 1013\\ 1009\\ 1010\\ 1007\\ 1005 \end{array}$	$\begin{array}{c} 1010\\ 1009\\ 1007\\ 1005\\ 1011\end{array}$	$\begin{array}{c} 1015\\ 1006\\ 1003\\ 997\\ 992\end{array}$	994 999 999 998	998 993 983 968 952	954 964 971 995								
	Γ	$14^{\rm h}$	$\begin{array}{c} 1014.4\\ 1010.0\\ 1009.3\\ 1008.0\\ 1003.4\\ 1003.4 \end{array}$	$\begin{array}{c} 1008.8\\ 1009.6\\ 1008.3\\ 1008.3\\ 1005.1\\ 1009.2\\ \end{array}$	1014°8 1009°5 1004°7 993°2 996°5	990'8 998'7 999'4 1000'7 996'8	9990.0 996.4 986.0 971.8 958.9	947`6 962`3 968`6 995`8								
		Ţh	015.8 011.5 009.0 005.3	$\begin{array}{c} 007.3\\ 010.9\\ 008.9\\ 006.1\\ 006.9 \end{array}$	013'9 012'6 005'4 994'6 999'0	988°3 997°5 998°8 999°9	998.9 998.9 977.9 963.1	946.9 959'8 969'3 996'7								
Beob	16°	Tag		1.2.6.4.7.	6. 10. 10. 10.	11. 12. 13. 14. 15.	16. 17. 18. 20.	21. 22. 23. 25.	26. 27. 28. Mittel							

24stündiges Temperaturmonatsmittel: 5'1 Grad

00
0
-
1
2
1
4
2
5
-
L.L.
1

Bemerkungen zum Wetterverlauf	Intensität ⁰ , ¹ , ² ,=leicht, mäßig, stark	$\begin{array}{l} \mathfrak{g}(5^{-}\mathfrak{S}^{25}_{1},=\infty^{1-2}\mathfrak{n}_{1}=\frac{1}{2}\mathfrak{h}d=-\infty^{2}\mathfrak{n}\mathfrak{p};\\ =\infty^{2n}-\mathfrak{n}_{2}\mathfrak{p}_{2}\mathfrak{l}^{2}_{1},=\mathfrak{p}_{2}\mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{q}_{1}\mathfrak{p}_{2}\mathfrak{q}_{2}\mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{q}_{2}\mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{q}_{2}\mathfrak{p}_{2}$	$ \bullet^{Tm,m_{s}} \bullet^{0} 2^{2^{3/2} - 3t_{1}} \bullet^{Tr} fr_{fr, \Delta} (^{b-1} a b d - n p; \\ \bigtriangleup^{1} n - \sqcup^{n_{2} - fr}, \infty^{2} = fr - \infty^{1} m, \infty^{0-2} a b d - n p_{1, \Delta} 0 n p; \\ = n^{-2m_{2} - 1} a - u^{-2m_{2} - n p_{3}} \delta^{20, 2} 4i; \\ = 0^{-0} \delta^{2}, \alpha^{2n_{1} - m_{1} - n} p_{1, \Delta} 0 fr; \\ \infty^{2m_{2} - m_{2} - m} p_{1, \Delta} 0 fr; \\ \end{array} $	$\begin{array}{l} \varpi^0n_{-\infty}2r_{-m}n_{-0}r_{1}r_{1}\theta^{42},\\ \omega^{-2}n_{-n}-\omega^{-1}r_{1}\theta^{32},\\ \omega^{-2}n_{-n}-\omega^{-1}r_{1}\theta^{32},\\ \omega^{-2}n_{-n}-\omega^{-1}r_{1}\theta^{22},\\ \omega^{-2}n_{-1}\theta^{-2}n_{-1}\theta^{22},\\ \omega^{-2}n_{-1}\theta^{-2}$	 ⁰Iniνnae^{0-14051310.e^TIre⁰14⁴⁵-16¹⁷i;} × FH10⁴⁸⁻⁵⁰; × FH10⁴⁸⁻⁵⁰; × FH10⁴⁸⁻⁵⁰; × Pol²⁰-11⁴²⁰-11⁴²⁰-11-24,=np; =nna.e⁰⁻¹⁰-10²⁰10²⁰-10²¹⁰0.⁹⁰⁻¹¹3³⁸,e⁰p,e¹Fre⁰npi; ⁰10⁵⁴-11⁴⁶, pi₁, ⁰⁰20³⁷-0¹²20⁵⁻³⁵e⁰⁻²⁵. 	$ \begin{array}{l} \bullet^0 m; \bullet^{Tr} \bullet^0 m: a Tr \bullet^0 n = m U \bullet^{-0} 10^{10} - 12^{55}, \bullet^{T} r p_1; \\ \square^{0} na - f_1 cos f_{R} - a_1; \\ \omega^{D-2} Tr - p_1; \\ \infty^{D-2} Tr - p_1; \\ = \infty^{D-2} n = p_1; \\ = 0^{1-2} a = 1^{1-2} n = 1^{1-2} n^{1-2} n^{1-2$	$\begin{array}{c} \bullet^{-1}5^{5}6_{-6}^{40}\bullet^{0}_{-1}fri,\bullet Tr\bullet^{0}9^{14}_{-m}U_{-\bullet}^{2}_{10}^{27}_{-55}^{55}_{-7}Tr\bullet^{0-1}_{-1}_{15}^{55}_{-1}_{-1}^{305};\\ \hline \bullet \\ \bullet 0_{19}^{22-32}; \end{array}$	Tage mit: $\bullet_{\bullet} \star \triangleq \equiv^{0-2}$ R (R) Ed $\downarrow_{\mu} \downarrow_{\mu}$	en Mittel. ³ Aus der Registrierung von 0–24 Uhr. ⁴ Temperatur- ∟Reif. V Rauhreif. ~ Glatteis, K Gewitter über Ort, (tʃ) Gewitter er imt Unterbrechungen, na frihmorgens, fr früh, a vomittags.
Schnee	none							τ. T	ngjährig ⊃ Tau, L , mU od
mm Form	Sum. ⁸	0.0 0.0 0.0 1.5	0.0 0.0 0.0	· 1.0条 1.0条 1.0条 1.6条	22.8 0.0 1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.1 1.5	4.9 .00	28.9	ung vom lar ebelreißen, <i>e</i> 8 und mehr
hlag in he und	21 ^h	0.0		0.0 0.1 ★ ∠ 0.1	0.0 0.0 0.0	0.0 · · 0	0.0	4.2	Abweich nst, ≣iN ïndstärke
Viedersci asserhö	$14^{\rm h}$	• * 0.0 0.0 0.0	0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.0	4.6	12.6	pa. $^{2}\Delta =$ ^h in <i>cm</i> . = Nebeldu ehr, $\overline{W}W$
I M	Дh	0.0	0.0 8.0	0.1 • • • • • • • • • • • • • • • • • • •	0.0 .0 .0 .0 .0 .0	1.2	1.3	12.1	tc=0.00 h n. 9 Um 7 ≡ Nebel, =
lgeschwin- cit, m/sek	Maximum ⁷	W 6'1 SSE 5'0 SSE 4'7 SE 6'7 W 17'2	W 18'6 VNW 5'0 ESE 5'0 ESE 10'8 SE 15'0	SE 9.2 W 11.1 7NW 14.2 WNW 19.7 W 16.7	W 18'9 W 8'3 W 15'3 W 15'3	N 9.2 SSE 11.4 SSE 6.7 S 15.8 SSE 19.2	SSE 18'9 W 11'1 VNW 14'2	- 12.0	= +0.25 hpa, B = +0.25 hpa, B = 8 Von 7 ^h bis 7 ^l n, \triangleq Eisregen, \equiv e, \forall Windstärke
Wino digke	Mit.6	1.1 2.1 4.1 7 7	5:5 5:50 0 0 0 0 0 0 0 0 0 0 0 0 0	2.1 2.4 2.4 2.4 2.4 0 4.6 4 0 4.6	6.1 6.1 7 8 1 7 8 7 8 1 7 8 7 8 1 8 7 8 7 8 7	6.3	5.5 2.7 3.5 V	3.4	ektur. Ge olickswert ∆ Graupel
-stärke Grade)	21 ^h	ESE 2 SE 2 NNE 1 SSE 2 SSE 2 SSE 2	SSW 1 WSW 1 SE 2 ESE 3 SE 4	W 2 W 3 W 3 W 3 W 3 W 3 W 3 W 3 W 3 W 3 W 3	WNW 3 E 1 SSW 1 WNW 2	C O C O SSE 2 SSE 2 SSE 4 1 SSE 3 3	SW 224	2.4	umentenkori tel. ⁷ Augenl e, ▲ Hagel, 4 flocken, ⊠ So
htung und Beaufort-(14 ^h	E 2 SSE 2 WNW 2 E 2 W 4	W 4 ENE 1 ESE 1 ESE 4 ESE 4	NNE 2 WW WW WW A A A A A A A A A A A A A A A	WSW 3 NW 3 ESE 2 W 4 W 5	SW 2 SSE 3 ESE 1 SSE 4 SSE 5	W 3 WSW 3 SE 3	- 2.9	nd mit Instr ündiges Mit In, ¥ Schne ¥Fl Schnec
Windric (0–12	Дµ	SW 1 SSW 2 E 1 W 1 ESE 2 W 1	W 4 SW 1 E 1 ESE 3 ESE 3	ESE 1 WSW 1 VNW 4 WSW 1 WSW 1	W 4 WSW 3 NNE 1 W 5 SW 1	NE 1 NE 1 SE 2 SE 2 SSE 4	SSE 3 W 2 WSW 3	- 2.2	korrektur u nden. ⁶ 24st gen, 3 Niese gentropfen,
Son- nen-	schein	0.0 0.0 7.4 7.4	0.9 0.1 0.9 0.9	5:0 6:7 0:0 0:0	0.2	0.0 1.2 0.6 0.6	3.0	60 ^{.3} 2 ^{.2}	Schwere ier in Stu gen: • Re t, •Tr Re
-10, tin	Mit.	$10.0 \\ 100 \\ 100 \\ 100 \\ 4.7 \\ 4.7 \\$	$ \begin{array}{c} 6.0 \\ 0.3 \\ 0.3 \\ 9.0 \\ 5.7 \\ 5.7 \\ \end{array} $	0.0 8.0 9.3	7.3 8.7 9.3 0.6	$ \begin{array}{c} 10.0 \\ 4.0 \\ 9.3 \\ 8.3 \end{array} $	0.2 0.9 2.8	L.L -	: 3. ¹ Mit en. ⁵ Dau bkürzung ∞ Dunsi
Menge 0- te ^{0–2}) zum Term	21 ^h	$10^{1} \equiv 10^{1} \equiv 10^{1} = 10^{2} = 10^{2}$	0 0 10 ¹ 0 0	$\begin{smallmatrix}&0\\&&&\\10^1\\10^1\\10^1\end{smallmatrix}$	$3^{1}_{9_{1}}$	$\begin{array}{c} 10^1\\ 6^1\\ 9^1\\ 8^1\end{array}$	6^{0}_{141}	- 7.3	4 ^h +21 ^h); dem Bod en und A
wölkung (Dich Vitterung	14h	$\begin{array}{c} 10^{1}\\ 10^{2}\\ 10^{2}\\ 2^{0}\end{array}$	81 0 71 71 71	$\begin{smallmatrix}&0\\&0\\10^1\\10^1\end{smallmatrix}$	91 91 101 101	10^{1}_{91}	$\begin{array}{c} 10^1\\ 8^0\\ 8^0\end{array}$	- 2.6	cel (7 ^h + 1 cm über ete Zeiche
Bei M	Дh	10^{1}	$\begin{array}{c} & 10^{2} \\ & 7, \\ & 7, \\ & 10^{2} \\ & 10^{2} \\ & 10^{2} \\ & 10^{2} \\ & 10^{2} \end{array}$	0 38 3 3 8 0 *	$\begin{array}{c} \begin{array}{c} & 10^{1} \\ & 7 \\ & 7 \\ & 7 \\ & 9^{1} \\ & 8^{1} \\ \end{array} \\ \begin{array}{c} & 01 \\ & 8^{1} \\ & 8^{1} \end{array} \\ \end{array}$		5. 102 . 7. 61 8. 91	e – 8.1	agesmitt num in 6 rerwende gebung,
Tag		~~ (4(0) T (0)	21.00.01		121202	55555	5228	Summ Mittel	T minim V in Um

m mittags, p nachmittags, abd abends, np spätabends, n nachts (bezicht sich auf die vorangegangene Nacht, wenn n allein steht).

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN

MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Nr. 3

Sitzung vom 7. April 1989

Das wirkliche Mitglied Josef ZEMANN legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

EIN KURZER INTERPOLYEDRISCHER O-O ABSTAND IN NiSO,

Von Manfred WILDNER

(Institut für Mineralogie und Kristallographie der Universität Wien)

Im Rahmen laufender Arbeiten über kurze interpolyedrische (= van der Waals'sche) O-O Abstände in anorganischen Kristallen (vgl. ZEMANN, 1986) wurde die Kristallstruktur von NiSO₄, dessen Strukturtyp bereits prinzipiell bekannt war (DIMARAS, 1957; POLJAK, 1957), mit Einkristallröntgendaten auf einen gewichteten R-Wert von 3,9% verfeinert.

Einige Kristalldaten sowie Details der Intensitätsmessung und Strukturverfeinerung sind in Tabelle 1 zusammengefaßt. Tabelle 2 zeigt die Atomkoordinaten und anisotropen Temperaturfaktoren. Tabelle 3 enthält einige wichtige interatomare Abstände und Winkel. Die Abstände im NiO_{6} -Oktaeder als auch im SO_{4} -Tetraeder entsprechen gut

8
Moka-Strahlung, Graphit-Monochromator
Meßbereich: $2^{\circ} < 2\theta < 70^{\circ}$
Gemessene Reflexe: 1708
Einfacher Datensatz: 333 Reflexe
Reflexe mit $F_0 > 3 \sigma(F_0)$ (Verfeinerung): 263
22 Variable
Absorptionskorrektur: Psi-scans
erwarteter R-Wert: 0,061
R = 0.049
$R_{_{W}}=0,039~(w=1/[\sigma(F_{_{0}})]^{2})$

Tabelle 1: Wichtige Kristalldaten sowie Einzelheiten der Intensitätsmessung und Strukturverfeinerung
30

Tabelle 2: Atomkoordinaten und Temperaturparameter ($\times\,10^4)$ in ${\rm NiSO_4}$

$$\begin{split} ATF &= \exp{[-2\,\pi^2\sum_{i=1}^3\sum_{j=1}^3U_{ij}a_i^*\,a_j^*\,h_ih_j]};\\ U_{iso} &= 1/3\sum_i\sum_jU_{ij}a_i^*a_j^*a_j^*a_ia_j. \end{split}$$

Ni	S	01	02
4 a	4 c	8 f	8 g
$2/\mathrm{m}$	mm	m	m
0	0	0	0,2344(7)
0	0,3537(4)	0,2531(7)	0,4654(6)
0	1/4	0,0579(6)	1/4
203(4)	148(7)	198 (16)	189(15)
197 (8)	178(13)	137(26)	148(27)
248(6)	240(10)	258(23)	209(18)
0	0	0	-43(20)
0	0	0	0
-7(6)	0	-23(21)	0
216	189	198	182
	Ni 4 a 2/m 0 0 203 (4) 197 (8) 248 (6) 0 0 -7 (6) 216	$ \begin{array}{c cccc} {\rm Ni} & {\rm S} & & & \\ {\rm 4a} & {\rm 4c} & & \\ {\rm 2/m} & {\rm mm} & & \\ 0 & {\rm 0} & & \\ 0 & {\rm 0,3537(4)} & \\ 0 & {\rm 1/4} & \\ {\rm 203(4)} & {\rm 148(7)} & \\ {\rm 197(8)} & {\rm 178(13)} & \\ {\rm 248(6)} & {\rm 240(10)} & \\ 0 & {\rm 0} & & \\ 0 & {\rm 0} & & \\ -{\rm 7(6)} & {\rm 0} & \\ {\rm 216} & {\rm 189} & \\ \end{array} $	$\begin{array}{c ccccc} {\rm Ni} & {\rm S} & {\rm O1} \\ {\rm 4a} & {\rm 4c} & {\rm 8f} \\ {\rm 2/m} & {\rm mm} & {\rm m} \\ {\rm 0} & {\rm 0} & {\rm 0} \\ {\rm 0} & {\rm 0,3537(4)} & {\rm 0,2531(7)} \\ {\rm 0} & {\rm 1/4} & {\rm 0,0579(6)} \\ {\rm 203(4)} & {\rm 148(7)} & {\rm 198(16)} \\ {\rm 197(8)} & {\rm 178(13)} & {\rm 137(26)} \\ {\rm 248(6)} & {\rm 240(10)} & {\rm 258(23)} \\ {\rm 0} & {\rm 0} & {\rm 0} \\ {\rm 0} & {\rm 0} & {\rm 0} \\ {\rm 0} & {\rm 0} & {\rm 0} \\ {\rm -7(6)} & {\rm 0} & {\rm -23(21)} \\ {\rm 216} & {\rm 189} & {\rm 198} \\ \end{array}$

Tabelle 3: Ausgewählte interatomare Abstände [Å] und Bindungswinkel [°] in $NiSO_4$

NiO ₆ Oktaeder:			SO_4 Tetraeder:		
$ \begin{array}{c} \mathrm{Ni} - \mathrm{O1} \\ \mathrm{Ni} - \mathrm{O2} \\ \langle \mathrm{Ni} - \mathrm{O} \rangle \end{array} $	2,020(5) 2,118(2) 2,085	$\begin{array}{c} 2 \times \\ 4 \times \end{array}$	$\begin{array}{c} 8-01\\ 8-02\\ \langle 8-0\rangle\end{array}$	1,455(4)1,495(4)1,475	$2 \times 2 \times$
$\begin{array}{c} 01 - Ni - 02 \\ 01 - Ni - 02' \\ 02 - Ni - 02'' \\ 02' - Ni - 02'' \end{array}$	$\begin{array}{c} 89,38(15)\\ 90,62(15)\\ 80,75(13)\\ 99,25(13) \end{array}$	$\begin{array}{c} 4 \times \\ 4 \times \\ 2 \times \\ 2 \times \end{array}$	$\begin{array}{c} 01 - S - 01' \\ 01 - S - 02 \\ 02 - S - 02' \\ \langle 0 - S - 0 \rangle \end{array}$	$\begin{array}{c} 114,27(17)\\ 108,54(16)\\ 108,25(17)\\ 109,45 \end{array}$	$1 \times 4 \times 1 \times$
$\begin{array}{c} 01 - 02 \\ 01 - 02' \\ 02 - 02'' \\ 02' - 02'' \end{array}$	$\begin{array}{c} 2,911(6)\\ 2,943(5)\\ 2,744(7)^{\rm a}\\ 3,227(2)\end{array}$	$\begin{array}{c} 4 \times \\ 4 \times \\ 2 \times \\ 2 \times \end{array}$	$\begin{array}{c} 01 - 01' \\ 01 - 02 \\ 02 - 02' \end{array}$	2,444 (8) 2,395 (5) 2,422 (7)	$1 \times 4 \times 1 \times$
a: gemeinsame H zwei NiO ₆ -Oktae	Kante zwisch dern	en	interpolyedrisch: $01 - 01'$	$2,\!687(2)$	$2 \times$

den kristallchemischen Erfahrungen. Ein interpolyedrischer O-O Abstand ist jedoch bemerkenswert, da er nur 2.687(2) Å mißt, während solche Abstände meist größer als 2,9 Å sind. Er zählt damit zu den kürzesten bekannten Kontakten dieser Art (vgl. ZEMANN, 1986).

Literatur

Dimaras, P.I., 1957: Morphology and structure of anhydrous nickel sulphate. Acta Cryst. 10, 313–315. Poljak, R.J., 1957: On the structure of anhydrous nickel sulfate. Acta Cryst.

Poljak, R.J., 1957: On the structure of anhydrous nickel sulfate. Acta Cryst. 11, 306.

Zemann, J., 1986: The shortest known interpolyhedral O-O distance in a silicate. Z. Krist. 175, 299-303.

©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse **126** (1989), 33—42

Das wirkliche Mitglied Helmuth ZAPFE legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

Zur Geologie und Lithostratigraphie der Sandgrube Götzendorf an der Leitha, Niederösterreich

Von Friedrich BRIX¹

1. Die geologische Position

Das Gebiet nordwestlich des Leithagebirges bei Mannersdorf, in dem die Sandgrube Götzendorf liegt, gehört zum Südlichen Wiener Becken. Wie aus einer früheren Bearbeitung durch K. FRIEDL und durch die laufende Kartierungstätigkeit von F. BRIX auf Blatt Eisenstadt (77) zu erkennen ist, begleiten den West- und Nordwestbereich des Leithagebirges gegen das Becken zu einige Bruchstaffeln, die alle mit ihren Bruchflächen gegen Westnordwesten bis Nordwesten einfallen. Die Sprunghöhen sind beträchtlich, wie aus der Tiefbohrung Götzendorf 1, die etwa 3,6 km nordnordwestlich der Sandgrube Götzendorf liegt, zu erkennen ist.

Das Profil der Tiefbohrung Götzendorf 1, gebohrt 1966 von der ÖMV AG, wurde von K. KMOCH, I. MAURER und K. TURNOVSKY bearbeitet:

Seehöhe Gelände rund 169 m über Adrianull

0—1 m	Quartär
$1 - 408 \mathrm{m}$	Pont
408—748 m	Pannon E
748 — $963\mathrm{m}$	Pannon B—D
763—1340 m	Sarmat
l 340—2370 m	Baden
2370—2413 m	Semmeringmesozoikum, Beckenuntergrund,
	Quarzite und bunte Tonschiefer des Keuper

Das Pont besteht vorwiegend aus Sandlagen und führt häufig Flöze und Linsen aus Weichbraunkohle im tieferen Teil. Das Pannon E (= früheres Mittelpannon) ist, so wie im übrigen Wiener Becken fast durchwegs in einer Tonmergelfazies mit typischer Ostrakoden- und Molluskenfauna entwickelt. Kohlige Lagen kommen praktisch nicht vor, dünne Sandlagen sind selten. Diese Fazies ist auch immer wieder in Aufschlüssen am Beckenrand anzutreffen.

¹ Anschrift: Prof. Dr. F. BRIX, Donhartgasse 98, 1140 Wien

 $\mathbf{34}$

Der Beckenuntergrund liegt, unter Berücksichtigung der Verkürzung durch die Bohrlochabweichung, bei —2197 m. Die tiefste aufgeschlossene Stelle mit Gesteinen des kristallinen Untergrundes am Beckenrand bei Mannersdorf hat eine Seehöhe von + 230 m. Daraus ergibt sich eine Gesamtabsenkung von rund 2430 m zwischen dem Beckenrand bei Mannersdorf und dem Beckenuntergrund bei der Bohrung Götzendorf 1. Da die jungtertiären Schichten alle nur flach gegen das Becken einfallen, wie auch in der Sandgrube Götzendorf zu sehen ist, ist der Großteil dieser Teufendifferenz durch die Bruchtektonik zu erklären.

Die Schichten des Baden und des Sarmat bilden am Leithagebirge bei Mannersdorf nur einen schmalen Saum, sodaß an der Erdoberfläche gegen das Becken zu rasch wesentlich jüngere Ablagerungen folgen, die synsedimentär mit der Bruchtätigkeit abgelagert wurden. Eben diese Brüche begrenzen jeweils die obertägige Verbreitung von Baden-Sarmat, Pannon B-E und Pont F-G. Die Sandgrube Götzendorf liegt im Bereich des Pont, wie später näher dargelegt wird.

2. Aufschlußbeschreibung der Sandgrube Götzendorf

Die Lokation liegt etwa 800 m südsüdöstlich der Kirche von Götzendorf an der Leitha an einem gegen Westen bis Nordwesten schauenden Hang. Dieser stellt den östlichen Erosionsrand der Leitha einschließlich eines Nebenbaches dar. Der obere Rand dieses Hanges liegt zwischen 6 und 12 m über dem Flußbett. Die Entfernung der Lokation vom Rand des Leithagebirges im Südosten bei Mannersdorf beträgt etwas mehr als 4 km.

Die Sandgrube besteht aus mehreren Grubenteilen, bildet also einen Komplex. Einige ältere Abbaue werden derzeit als Müll- und Schuttdeponie verwendet. Ein anderer Teil wird von einem Teich eingenommen, was darauf hinweist, daß dort dichte Lagen vorhanden sein müssen. Wieder andere Teile des Grubenkomplexes, die offenbar schon seit vielen Jahre nicht mehr abgebaut wurden, sind durch Buschwald überwuchert. Nur ein relativ kleiner Teil, der etwa in der Mitte aller Abbaue und mehr gegen Osten zu liegt, ist derzeit (1989) noch in Betrieb. Von hier stammen die nachfolgend genannten Daten.

Die in der offenen Sandgrube aufgeschlossenen Sedimente zeigen eine unruhige Lagerung mit einem durchschnittlichen Einfallen von 3—4° gegen Nordnordwesten. Die Gesamtmächtigkeit aller Sedimente, die im Aufschluß selbst zu beobachten ist, beträgt etwa 12—13 m. Die Schichtfolge setzt sich aus folgenden Gliedern zusammen (von oben nach unten):

0,0—1,80 m Humus z. T. lehmig; Mächtigkeit stark schwankend 1,8—7,80 m Sand, hellgrau, feinkörnig, kreuzgeschichtet, gelegentlich mit Fossilsplittern Probe 1 und Probe 2 wurden ca. 3—4 m unter der Sandoberkante entnommen, die beiden Stellen sind etwa 30 m voneinander entfernt, liegen aber etwa im gleichen Niveau

	8
7,8—8,20 m	Sand mit weißen Konkretionen, rostroten Lagen und
	Bändern, viel Fossilgrus; unregelmäßig gelagert
8,2—8,40 m	Weiße Konkretionen und Feinsand, teilweise in hell-
	grüngrauen, feinsandigen Mergel übergehend
8,4—9,40 m	Feinsand, grau bis hellgrau, mit dünnen, weißgelben
	konkretionären Lagen. Probe 3 aus einer Feinsand-
	lage (leicht mergelig)
9,49,60 m	Sand, rostrot umkrustet, Lagerung wellig
9,6—10,80 m	Feinsand, grau, mergelig
10,8—10,90 m	Mergel, grau bis hellgrau
10,9—12,90 m	Feinsand, grau, z. T. kreuzgeschichtet; reicht bis zur
	Wasseroberfläche des Teiches; Probe 4 wurde etwa
	1 m unter der Schichtoberkante entnommen.

Es wird bemerkt, daß es sich bei dem eben beschriebenen Profil um eine Kombination der Gegebenheiten von mehreren Aufschlußteilen handelt, da das Gesamtprofil nirgends vollständig aufgeschlossen ist. Hervorzuheben ist die Art der Sedimentation, die auf rasch wechselnde Ablagerungsverhältnisse hinweist, wie sie bei starker Sedimentzufuhr, bewegtem Wasser und bedeutenden Umlagerungsvorgängen aufzutreten pflegen.

3. Sedimentologische Untersuchungen

Der Autor hat, wie schon bei der Profilbeschreibung der Sandgrube Götzendorf erwähnt, 4 Proben genommen, die im Labor für Aufschluß und Produktion der ÖMV AG von Herrn Dr. R. SAUER untersucht wurden. Dafür sei Herrn Chefgeologen Dr. G. WESSELY und Herrn Dr. SAUER herzlicher Dank gesagt.

Tabelle 1:SandgrubeGötzendorf,Schwermineraluntersuchungen
ausgeführt von R. SAUER, 1989

Schwerminerale in Stück — $\%$	Probe 1	Probe 2	Probe 3	Probe 4
% Zirkon % Rutil % Turmalin % Granat % Staurolith % Disthen % Epidot und Zoisit % Hornblende	$egin{array}{c} 1 \\ 2 \\ 1 \\ 36 \\ 5 \\ 1 \\ 32 \\ 20 \end{array}$	$ \begin{array}{r} 1 \\ 2 \\ 54 \\ 5 \\ 1 \\ 19 \\ 13 \\ 13 \\ \end{array} $	$ \begin{array}{c} 1\\1\\2\\48\\-\\-\\32\\12\end{array} \end{array} $	$egin{array}{c} 1 \\ 1 \\ 51 \\ 3 \\ 1 \\ 34 \\ 4 \end{array}$
% Apatit	2	4	4	4

36

In Tabelle 1 sind die Ergebnisse der Schwermineraluntersuchungen dargestellt, wobei Minerale mit weniger als 1% hier nicht berücksichtigt wurden. Es fällt zunächst auf, daß alle beprobten Sande eine sehr ähnliche Schwermineralassoziation zeigen, was wohl auf ein einheitliches Liefergebiet hindeutet. Sodann spricht die geringe Anreicherung der stabilen Minerale Zirkon, Rutil und Turmalin für ein relativ nahes Liefergebiet. Es kommt zunächst der kristalline Anteil des Leithagebirges, der einen meist monotonen Gesteinsbestand aufweist, in Frage. Es sollen jedoch entsprechend den wahrscheinlich küstenparallelen Strömungsverhältnissen zumindest für Teile der angelieferten Sedimente auch andere Liefergebiete in Betracht gezogen werden.

Tabelle 2: Sandgrube Götzendorf, Leichtminerale aus der Sandfraktion, ausgeführt von R. SAUER, 1989

Gemengteile in Stück — %	Probe 1	Probe 2	Probe 3	Probe 4
Monokristalliner Quarz	38	39	50	41
Polykristalliner Quarz	12	11	9	5
Feldspäte — Kalinatronfeldspat, Kalifeldspat, Mikroklin, Plagioklas, z. T. gefüllt	10	11	9	8
Gesteinsbruchstücke — Quarz- Chlorit-Klinozoisitaggregate, Glimmerschiefer, z. T. granatführend, Quarz- Glimmeraggregate, Quarzit	14	13	6	4
Glimmer, Chlorit	8	7	17	31
Schwerminerale	1	2	2	_
Opake Substanz		_	2	2
Sedimentgesteinsbruchstücke — Hornstein, Siltstein, Metaarenit	1	2	1	1
Sparitischer Kalk			1	
Dolosparit	16	15	3	8
Vorwiegend Kristallinkomponenten	83	83	95	91
Vorwiegend Komponenten aus Sedimentgesteinen	17	17	5	9

In Tabelle 2 werden die Ergebnisse der Untersuchung der Leichtminerale aus der Sandfraktion wiedergegeben. Unter den kristallinen Gesteinsbruchstücken wird auf das Vorkommen granatführender Glimmerschiefer aufmerksam gemacht, was gut mit dem relativ hohen Granatanteil der Schwermineralfraktion übereinstimmt. Am Ende dieser Tabelle hat der Autor eine Gegenüberstellung der Komponenten aus dem kristallinen und dem sedimentären Bereich vorgenommen. Als aus dem kristallinen Lieferbereich stammend wurde angenommen: Monound polykristalliner Quarz, verschiedene Feldspäte, sodann Glimmer, Chlorit, opake Substanzen, kristalline Gesteinsbruchstücke und die Schwerminerale. Als aus dem sedimentären Lieferbereich stammend wurde angenommen: Dolosparit, Kalkstein. Sedimentgesteinsbruchstücke.

Ein Problem stellt der hohe Quarzanteil dar, weil dieser z. T. auch aus jungtertiären Sanden stammen könnte. Einen gewissen Hinweis dürften die wohl umgelagerten Fossilgruslagen geben, die wahrscheinlich aus Sandschichten kommen. Läßt man diese Überlegungen außer Betracht, so fällt der ziemlich gleichmäßig hohe Anteil aus dem Kristallinbereich auf, ebenso wie die praktische Identität der Proben 1 und 2, die aus derselben Schicht stammen. Der geringe Anteil aus dem sicheren sedimentären Lieferbereich spricht dafür, daß zur Zeit der Ablagerung der Sedimente der Sandgrube Götzendorf in der näheren Umgebung offenbar nur wenig ältere Sedimente abgetragen wurden. Der Dolomitanteil dürfte von Gesteinen des Semmeringmesozoikums abzuleiten sein.

Korngrößenklassen	Probe 1	Probe 2	Probe 3	Probe 4
0,5—0,3 mm 0,3—0,2 mm 0,2—0,1 mm 0,1—0,05 mm kleiner als 0,05 mm	0,67,282,82,27,2	$2,0 \\ 19,6 \\ 70,4 \\ 2,8 \\ 5,2$	$0,0 \\ 0,4 \\ 58,0 \\ 30,4 \\ 11,2$	$1,0 \\ 1,0 \\ 24,8 \\ 26,4 \\ 46,8$

Tabelle 3:	Sandgrube Götzendorf, Korngrößen in Gew%, Einwaage
	50 g, ausgeführt von R. SAUER, 1989

In Tabelle 3 sind die Korngrößenverhältnisse angegeben. Die Daten zeigen, daß es sich bei allen 4 Proben um feinkörnige bis sehr feinkörnige Sande handelt. Dies könnte einerseits auf mehrfache Umlagerungen hindeuten, da bei der relativen Nähe des möglichen Liefergebietes Leithagebirge (etwa 4 km bis zum Kristallin von Mannersdorf) gröbere Komponenten zu erwarten gewesen wären. Nimmt man aber andererseits einen Ferntransport an, so könnte sogar der Bereich Wechsel—Bucklige Welt als Liefergebiet in Frage kommen. Es sei bemerkt, daß vergleichsweise vom Flußsystem Pitten—Leitha kristalline Komponenten weit ins Wiener Becken hinein wohl schon seit dem Pliozän und erst recht im Quartär transportiert worden sind.

4. Die Bohrung CF Trautmannsdorf 25

Weitere für das Verständnis der Lithostratigraphie sehr wichtige Informationen stammen aus Counterflush (CF)-Bohrungen der näheren und weiteren Umgebung der Sandgrube Götzendorf. Eine CF-Bohrung ist eine Flachbohrung bis etwa 400 m Bohrtiefe, bei der der Spülungsstrom zwischen Bohrlochwand und Bohrgestänge in die Tiefe gepreßt wird, um dann, beladen mit dem durch den Meißel erbohrten Gesteinsmaterial, durch das hohle Bohrgestänge wieder zutage zu gelangen. Der Bohrmeißel hat in der Mitte seiner Aufstandsfläche auf der Bohrlochsohle ein 2—3 cm großes Loch. Das erbohrte Gesteinsmaterial gelangt dadurch in das Bohrgestänge hinein und daher in den wieder aufsteigenden Spülungsstrom. Der Bohrgeologe erhält damit ein praktisch lükkenloses Bild von der durchbohrten Strecke.

Die der Sandgrube am nächsten gelegene Bohrung dieser Art ist CF Trautmannsdorf 25 (= CF T 25). Sie wurde vom 21. März bis 25. März 1942 von der damaligen Rohöl-Gewinnungs AG niedergebracht, liegt in einer Seehöhe von etwa 180 m und hat eine Endteufe von 223,5 m. Etwa 300 m westlich dieser Bohrung liegt der Steilhang mit der Sandgrube Götzendorf. Auf der Geologischen Karte der Republik Österreich, Blatt 60, Bruck an der Leitha, liegt die Bohrung in der Südweststrecke und trägt die laufende Nummer 7.

In der Abbildung 1 wird ein Überblick der stratigraphischen Zuordnung von CFT25 gegeben, wobei außerdem fossilführende und lignitische Lagen (= Weichbraunkohle) angegeben sind. Die Bohrung beginnt in den Unteren Neufelder Schichten (F. BRIX 1988) mit der lignitischen Serie F_2 , die bis zur Bohrteufe 93,0 m reicht. Darunter folgt bis 146,2 m die lignitfreie Serie F_1 . F_2 und F_1 gehören zum Unteren Pont, das ist Pannon F nach A. PAPP 1951. Ab 146,2 m bis zur Endteufe von 223,5 m verbleibt die Bohrung im Pannon E, d. h. im früheren "Mittelpannon".

In der Abbildung 2 ist in vergrößertem Maßstab die Bohrstrecke von 0-25,0 m detailliert mit nur geringen Vereinfachungen dargestellt. Lignitlagen treten schon ab 4,3 m (besonders im Bereich von 5,4-5,6 m) auf.

Die eben geschilderten stratigraphischen Zuordnungen des Bohrprofils entsprechen den Erfahrungen, die der Autor bei der Bearbeitung der Bohrungen im südlichen Wiener Becken gemacht hat, wobei natürlich auch die Literatur berücksichtigt wurde. So wurden im Raum östlich Wiener Neustadt zahlreiche durchgekernte Kohlenbohrungen bearbeitet und mit den Kartierungsergebnissen des Autors am West- und Ostrand des südlichen Beckens in Einklang gebracht (F. BRIX 1981 und 1988). Eine große Zahl von CF-Bohrungen und seismischen Schlußbohrungen auf Blatt Eisenstadt (77) südwestlich der Sandgrube Götzendorf, weisen immer wieder gleichartige Schichtfolgen auf, sodaß sehr wohl aus dem Raum östlich Wiener Neustadt bis in den Raum Götzendorf an der Leitha korreliert werden kann. Das gleiche gilt für die

9 Zusammengestellt September 1988 von F. BRIX

Abb. 1: Stratigraphisches Profil der Bohrung CF-Trautmannsdorf 25

LSP

223.5 Endteufe

LT

Abb. 2: Lithologisches Profil der Bohrung CF-Trautmannsdorf 25 von 0-25 m

Flachbohrungen und Tiefbohrungen im Südteil des Kartenblattes Wien (59).

Ein Beispiel möge dies erläutern. So verläuft im Nordosten des Kartenblattes Eisenstadt (1:50000) eine Aufeinanderfolge von 9 CF-Bohrungen. Diese Bohrserie beginnt etwa 800 m südöstlich der Kirche Reisenberg und endet 1300 m nordnordöstlich der Kirche von Hof, unmittelbar am östlichen Blattrand, ist daher 4500 m lang. In diesen 9 CF-Bohrungen (CF-Leithagebirge 17, 18, 19, 20, 21 und 27, CF-Reisenberg 2, 3 und 4) sowie in weiteren, südlicher gelegenen Bohrungen sind die geologischen Verhältnisse vom Bereich nahe dem östlichen Beckenrand bis zum Ostrand der Mitterndorfer Senke zu studieren. Es ist deutlich zu erkennen, daß über der kohlenführenden Serie der Unteren Neufelder Schichten ziemlich unmittelbar die mächtigen Sandlagen der Oberen Neufelder Schichten folgen, die keine Weichbraunkohle mehr führen.

Eine wichtige Frage ist daher, ob die in der Bohrung CF T 25 durchbohrten Schichten in der etwa 300 m westlich liegenden Sandgrube Götzendorf wiederzufinden sind oder nicht. Nach dem Studium des Aufschlusses und der Bohrdaten ist zu schließen, daß die Sande der Sandgrube Götzendorf stratigraphisch höher liegen müssen, als dem höchsten Punkt der Bohrung entspricht. Nimmt man nämlich ein Einfallen von 3° von der Bohrung in Richtung Sandgrube an, was durch die Messungen in der Sandgrube durchaus berechtigt ist, so lägen die obersten Schichten der Bohrung bei der Sandgrube in rund 16m Tiefe, gerechnet von der Oberkante der Grube. Diese Oberkante und die Geländehöhe der Bohrung wurden durch eine barometrische Messung des Autors miteinander verglichen und gefunden, daß beide etwa gleich hoch sind. Das bedeutet zunächst, daß die kohlenführende Serie erst einige Meter unter der Sohle der Sandgrube zu liegen kämme, da in der Sandgrube nur eine Gesamtmächtigkeit von etwa 13 m aufgeschlossen ist. Diese Überlegung gilt aber nur, wenn zwischen Bohrung und Sandgrube ein stetes Einfallen von 3° besteht und keine Bruchstörung vorliegt. Im letzteren Fall würde die kohlenführende Serie noch um die Sprunghöhe des Bruches tiefer liegen.

Ein Nachsuchen des Autors im Archiv der ÖMV AG ergab nun, daß 140 m und 600 m südwestlich von CF T 25 zwei seismische Schußbohrungen vorliegen, deren Spülproben von Frau Dipl.-Geol. S. KövEs beschrieben wurden. In beiden Bohrungen wurden im Bereich bis 24 m Teufe Lignitreste angetroffen. Da diese beiden Schußbohrungen knapp östlich und südlich der Sandgrube Götzendorf liegen, in der keine Lignite angetroffen wurden, bedeutet das, daß knapp südöstlich der Sandgrube ein Südwest—Nordost streichender Bruch durchziehen muß, der allerdings nur eine Sprunghöhe von 5—10 m haben dürfte und gegen Nordwesten einfallen sollte. Dazu kommt, daß im Bohrprofil von CF T 25 die mächtigen Sandlagen der Sandgrube nicht vorhanden sind, was ebenfalls dafür spricht, daß Sandgrube und CF T 25 nicht miteinander korreliert werden können. Daraus ist der Schluß abzuleiten, daß die kohlenführenden Schichten von CF T 25 erst etwa 8—13 m unter der tiefsten Abbausohle der Sandgrube Götzendorf liegen dürften.

42

5. Die lithostratigraphische Einordnung der Sandgrube Götzendorf

Die bisherigen, oben geschilderten Beobachtungen und Überlegungen lassen eine lithostratigraphische Einordnung der in der Sandgrube Götzendorf aufgeschlossenen Schichten zu.

Es besteht kein Zweifel, daß aufgrund der Lagerungsverhältnisse und des Schichtbestandes in der Sandgrube sowie aufgrund des Studiums der Tiefbohrung Götzendorf 1, der CF-Bohrung Trautmannsdorf 25 und zahlreicher anderer Bohrungen, das Alter dieser Schichten in der Sandgrube jünger sein muß als Pont F_2 (= Untere Neufelder Schichten, Pannon F nach A. PAPP). Weiters haben die sedimentologischen Untersuchungen ergeben, daß doch eher mit einer größeren Transportweite der Ablagerungen gerechnet werden muß, wenn auch ein Teil aus dem Leithagebirge stammen dürfte. Von Bedeutung ist die Schlußfolgerung, daß erhebliche Umlagerungen stattgefunden haben müssen, bevor die Sedimente endgültig zur Ablagerung kamen. Was den Fossilbestand der etwa 40 cm mächtigen Lage von 7,8–8,2 m in der Sandgrube betrifft, sollten zur Altersbestimmung daher nur die jüngsten Formen herangezogen werden, alle älteren Fossilien liegen offenbar auf heterochronallochthoner Lagerstätte.

Nach den lithostratigraphischen Vergleichen, die der Autor angestellt hat, gehören die Schichten der Sandgrube Götzendorf in die Oberen Neufelder Schichten (= Pannon G nach A. PAPP), das heißt in das höhere Pont.

6. Danksagungen

Abschließend möchte ich der ÖMV-Aktiengesellschaft und der Rohöl-Aufsuchungs G.m.b.H. für die Erlaubnis danken, einige Bohrdaten in diesem Artikel verwenden und publizieren zu dürfen. Den Herrn Dr. G. WESSELY und Dr. R. SAUER sei nochmals für ihre Hilfsbereitschaft gedankt. Ich danke Herrn Prof. Dr. H. ZAPFE, der die Anregung zu dieser Arbeit gegeben hat.

Literatur

Brix, F., 1981, in B. Plöchinger und F. Brix: Arbeitstagung der Geologischen Bundesanstalt 1981, Thema: Blatt Wr. Neustadt der Geologischen Karte der Republik Österreich 1:50000. Geologische Bundesanstalt, Wien 1981.

Brix, F., 1988, in F. Brix und B. Plöchinger: Erläuterungen zu Blatt 76 Wiener Neustadt. Geologische Bundesanstalt, Wien 1988.

Fuchs, W., 1985: Geologische Karte der Republik Österreich 1:50000, 60, Bruck an der Leitha. Geologische Bundesanstalt, Wien 1985.

Papp, A., 1951: Das Pannon des Wiener Beckens. Mitt. Geol. Ges. in Wien, 39.-41. Band, Jg. 1946-1948, S. 99-193, Wien 1951.

Papp, A., F. Steininger und F. Rögl, 1971: Bericht über die Ergebnisse der 3. Sitzung der Arbeitsgruppe Parathethys des Committee Mediterranean Neogene Stratigraphy 1970 in Wien. Verh. Geologische Bundesanstalt, Jg. 1971, S. 59-62, Wien 1971. Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse **126** (1989), 43–57

Das korrespondierende Mitglied Gernot EDER legt für die Aufnahme in den Anzeiger eine von ihm verfaßte Arbeit vor:

FROM A VACUUM FLUCTUATION TO A FRIEDMANN UNIVERSE

Von Gernot EDER, Wien

Zusammenfassung

Von einer Vakuumschwankung zu einem Friedmannuniversum. Eine expandierende Elektron-Positron Vakuumschwankung kann in ein expandierendes Friedmannuniversum übergehen. Im allgemeinen zerfällt eine solche Schwankung sehr bald. Sind aber gewisse Bedingungen erfüllt, so wächst die Teilchenzahl über Elektron-Photonkaskaden so lange an, bis die Gravitation wirksam wird.

Abstract

An expanding electron-positron vacuum fluctuation may have a transition to an expanding universe of the Friedmann type. In general, such a fluctuation decays very soon, but under certain conditions the particle number increases by electron-photon cascades until gravitation becomes effective.

1. Introduction

In a preceeding paper the possible transition from a vacuum fluctuation of electrons to a universe of the Friedmann type has been presented qualitatively [1]. In this paper a quantitative description of the vacuum fluctuation is given and the meaning of electric forces for the initial phases is shown. By the conditions for a smooth transition between the various phases of expansion the possible ways of evolution are strongly restricted.

The dynamics of a vacuum fluctuation of $0.5 N_e$ positive electrons (e^+) and $0.5 N_e$ negative electrons (e^-) is dominated by the electromagnetic interaction (section 2). The total life-time τ_0 of an unperturbed fluctuation is in the order of 10^{-24} s. Within the expansion time $0.5 \tau_0$ the fluctuation may become unstable with respect to electron pair creation. Then the radius R of the fluctuation is a linear function of the time t (proper time of a mass element, arbitrarily chosen within the volume of the fluctuation). In this linear phase the dynamics of the fluctuation is dominated by bremsstrahlung in the variable electrostatic field. The total number N of electrons and photons increases from N = 2 to $N = 10^{62}$ within a time of 2×10^{-4} s. The mass density remains unchanged. The linear phase corresponds to the steady theory of F. Hoyle with the only difference that in this case electromagnetic and not gravitational forces dominate (section 3).

In the exponential phase gravitation is stronger than the electric force. If a vacuum fluctuation reaches the exponential phase, then one can speak of a universe. Within a time 5×10^{-3} s the total particle number N grows from 10^{62} to 4×10^{111} . The exponential phase is a type of inflationary universe. The only difference to the standard theory lies in the fact that there is a cold expansion (temperature T = 0) because by the speed of expansion the probability of collisions is strongly suppressed and no thermodynamic equilibrium is possible (section 4).

The transition from the exponential phase to the first thermal phase — the meson phase — takes place if the electron pair annihilation becomes as frequent as the electron pair creation. Now the total particle number N remains constant, and thermodynamic equilibrium is established at a temperature of $T = 6 \times 10^{12}$ K. This is the highest temperature in the history of the universe. During the expansion the temperature decreases. The electron phase and the photon phase follow; they are treated in the same way as in the standard theory [2] (section 5). Å dust phase of the universe is possible because in the linear phase and in the exponential phase proton pairs are created as a byproduct of electron pair production. Protons (p) and antiprotons (\tilde{p}) condense separately at nuclear densities in p-clusters and in \bar{p} -clusters because the nuclear pp-force is attractive and the nuclear $p\bar{p}$ -force is repulsive. The Coulomb energy of the *p*-clusters and \bar{p} -clusters is unimportant because it is compensated by the high density of positive and negative electrons. This early baryonic clustering is the deeper reason for the inhomogeneous matter distribution in space during the dust phase. In the cold and in the thermal phases the baryons play an unimportant role for the dynamics and for the homogenity within the gas of photons and relativistic leptons. But in the later dust phase these inhomogenities dominate the matter distribution.

Still in the exponential phase the baryonic clustering at nuclear densities is finished. Now the clusters separate, the Leidenfrost phenomenon between p- und \bar{p} -clusters because $p \bar{p}$ -annihilation processes lead to a high heat production. p-clusters and \bar{p} -clusters grow separately with a mean radial velocity of about $1.2 \times 10^3 \text{ ms}^{-1}$. In the dust phase the isolated p- and \bar{p} -clusters determine the dynamics of the universe. They evolve to galaxies and to nebular clusters (section 6). The signatures of a universe that started as an e^+e^- -vacuum fluctuation can be expressed by universal constants. The characteristics of the various phases are summarized in a time-table of the universe (section 7).

2. Vacuum fluctuation

A vacuum fluctuation of N electrons

$$N(e^+) = N(e^-) = 0.5 N, \quad N(e^+) + N(e^-) = N$$
 (1)

in a volume

$$\mathbf{V} = 2\,\pi^2\,R^3\tag{2}$$

is characterized by the Einstein-equation

$$\dot{R}^2 + c^2 = (N/2 \pi^2)^{4/3} A_0 (\alpha h c/4 \pi \rho R^4)$$

+
$$(8\pi/3) G_{\varrho} R^2$$
, $(A_0 = 1.747565)$ (3)

where ϱ , c, α , h, G and A_0 are the mass density, the velocity of light, Sommerfeld's number (fine-structure constant), Planck's constant, Newton's gravitational constant, and Madelung's constant (for a simple cubic lattice), respectively. The Compton wave length $2\pi/\varkappa$ of the electron, the rest mass m_e of the electron, and the mean Lorentz factor γ of an electron are connected by the equations

$$\begin{aligned} \kappa &= (2 \pi \, m_e \, c/h) \\ V \varrho \, c^2 &= N \, \gamma \, (h \, c \, \kappa/2 \, \pi) \,. \end{aligned} \tag{4}$$

For a small particle number $(N \ll 10^{62})$ the last term in equation (3) can be neglected. Using the time-parameter η the solution of this equation can be written in the following way

$$t = (b_0/c) (1 - \cos \eta) \qquad 0 \leq \eta \leq \pi$$

$$R = b_0 \sin \eta \qquad \dot{R} = c \cot \eta$$

$$\gamma = \gamma_0 \sin \eta \qquad \varrho = \varrho_0 (\sin \eta)^{-2} \qquad (5)$$

$$b_0 = (N/2 \pi^2)^{1/3} (A_0 \alpha/2 \varkappa \gamma_0)$$

$$\varrho_0 = (2 \gamma_0/A_0 \alpha)^3 (h \varkappa^4/2 \pi c) \gamma_0.$$

The special type of fluctuation is characterized by the electron number N and by the parameter γ_0 . For real electrons there is $\gamma \ge 1$. Thus the fluctuation starts at the time-point $t = t_0$ and vanishes again at $t = t_0 + \tau_0$ with a finite volume $V(t_0) = V(t_0 + \tau_0)$

$$\begin{split} t_0 &= (N/2\,\pi^2)^{1/3}\,(A_0\,\alpha/2\,c\,\varkappa\,\gamma_0) \quad [1 - (1 - \gamma_0^{-2})^{1/2}] \\ t_0 + \tau_0 &= 2\,b_0/c - t_0 \\ \tau_0 &= (N/2\,\pi^2)^{1/3}\,(A_0\,\alpha/c\,\varkappa\,\gamma_0)\,(1 - \gamma_0^{-2})^{1/2} \\ V\,(t_0) &= N\,(A_0\,\alpha/2\,\varkappa\,\gamma_0^2)^3. \end{split}$$

For the time-interval $t_0 \leq t \leq t_0 + 0.5 \tau_0$ the fluctuation is expanding. For $t_0 + 0.5 \tau_0 \leq t \leq t_0 + \tau_0$ the fluctuation is contracting again. τ_0 is the total life-time of an unperturbed fluctuation. It is in the order of

$$(\alpha/c \varkappa) = 9.40 \times 10^{-24} \,\mathrm{s}.$$

46

3. Linear phase

Within the expansion time $0.5 \tau_0$ of a fluctuation the system may become unstable with respect to the production of electron pairs and photons. For simplicity it shall be assumed that the ratios of particle numbers are the same as in a relativistic gas of fermions and bosons

$$N_e = 2 N(e^+) = 2 N(e^-) = 0.6 N, \quad N_{\gamma} = 0.4 N.$$
 (6)

Equation (3) has to be modified

$$\dot{R}^2 + c^2 = (3 N/10 \pi^2)^{4/3} (A_0 \alpha h c/4 \pi \varrho R^4).$$
(7)

The gravitational part can be neglected again. The solution

$$\begin{split} R &= \beta \, c \, t & t_2 \leqslant t \leqslant t_3 \\ \dot{R} &= \beta \, c = R_2 / t_2 & N = N_2 \, (t/t_2)^3 \\ \varrho &= (3 \, N_2 / 10 \, \pi^2)^{4/3} \, [A_0 \, \alpha \, h/4 \, \pi \, c \, (1 + \beta^2) \, R_2^4] \end{split} \tag{8}$$

contains the constant velocity βc of the expansion. R_2 and N_2 are the initial radius and the initial particle number, respectively. The special evolution of the system is fixed by the parameters N_2 , β and t_2 . The total energy of a fluctuation vanishes. It can be separated into a collective part (c) and a local part (l) or into a kinetic part (k) and a potential part (p)

$$W_{ck} + W_{lk} + W_{cp} + W_{lp} = 0$$

$$W_{ck} = -W_{cp} = V \varrho \dot{R}^2, \quad W_{lk} = -W_{lp} = V \varrho c^2.$$
(9)

The collective and the local motion can be treated independently. The local potential energy

$$- \, (\,V\, arrho\, c^{\,2}/2\, N_{_{e}}) = \, - \, (5\, \pi^{2}\, eta^{3}\, c^{5}\, t^{\,3}/3\, N)\, arrho$$

of an electron decreases in time for a constant particle number N. Therefore, each electron is accelerated by the surrounding electrostatic field. It emitts electron pairs and photons (bremsstrahlung), and thus the potential energy remains constant on the average in time.

The mean Lorentz factor γ is given by the relations

$$W_{lk} = V \varrho c^2 = (N \gamma h c \varkappa / 2 \pi)$$

$$\gamma = (3 N_2 / 10 \pi^2)^{1/3} [3 A_0 \alpha / 10 (1 + \beta^2) \varkappa R_2].$$
(10)

By bremsstrahlung an electron moving in z-direction has an energy loss given by the Heitler-expression

$$(d\gamma/dz) = -(4\gamma \alpha^3/3\kappa^2) [3\ln(2\gamma) - 1] (dN_e/dV)$$
(11)

for a static distribution of N_e electrons. According to the equations (8) for an expanding system the electron number density has to be multiplied by the ratio t_2/t . The energy balance yields the condition

$$\gamma^{-1} (\gamma^2 - 1)^{1/2} [3 \ln (2\gamma) - 1) = (\beta/N_2 \alpha^3) (5 \pi \varkappa R^2)^2$$
(12)

for a self-consistent solution of equation (7).

4. Exponential phase

At the end of the linear phase $(t = t_3)$ the gravitational interaction becomes as strong as the electrostatic interaction

$$3 (N/2 \pi^2)^{4/3} A_0 \alpha h c = 32 \pi^2 G \varrho^2 R^6$$
 for $t = t_3$.

In the following exponential phase $(t_4 \leq t \leq t_6)$ the gravitational interaction dominates the dynamics, and the electrostatic interaction can be neglected. The Einstein-equation of motion

$$\dot{R}^2 + c^2 = (8 \pi G/3) \varrho R^2 \tag{13}$$

has the solution

$$R(t) = (c/\lambda) \cosh(\lambda t) \qquad (t_4 \le t \le t_6)$$

$$\dot{R}(t) = c \sinh(\lambda t)$$

$$\varrho = (3\lambda^2/8\pi G)$$

$$N(t) = \gamma^{-1}(t) (3\pi^2 c^4/2 h G \lambda) [\cosh(\lambda t)]^3.$$
(14)

The constant λ is of the dimension of an inverse time. The mean Lorentz factor $\gamma(t)$ increases from

$$\gamma(t_4) = \gamma_1$$
 to $\gamma(t_6) = \gamma_6$.

The condition (12) and the conditions for a smooth transition from the linear to the exponential phase imply the following relations

$$\begin{split} \beta \lambda t_{3} &= \cosh\left(\lambda t_{4}\right) = (1 + \beta^{2})^{1/2} \\ N_{3} &= N_{4} = N_{2} (1 + \beta^{2})^{3/2} (\beta \lambda t_{2})^{-3} \\ \lambda &= (2 N_{2} \gamma_{1} h G \varkappa / 3 \pi^{2} \beta^{3} c^{4} t_{2}^{3})^{1/2} \\ N_{2}^{1/3} &= (10 \pi^{2} / 3)^{1/3} (2 \beta / \alpha) (1 + \beta^{2})^{-2} \gamma_{1} f(\gamma_{1}) \\ f(\gamma) &= 0.6^{5} (0.75 A_{0})^{2} \gamma^{-2} (\gamma^{2} - 1)^{-1/2} [3 \ln (2 \gamma) - 1]^{-1} \\ \varkappa c t_{2} &= 0.6 A_{0} (1 + \beta^{2})^{-3} f(\gamma_{1}) \end{split}$$
(15)

An exponentially decreasing solution of equation (13) (gravitational collapse) can be excluded, and a self-consistent treatment of the exponential phase is possible if the increase of the particle number shows a smooth transition too. This further condition and the relations (15) determine the numerical values of β and γ

$$\beta = 0.7989, \ \gamma_1 = \gamma (t_1) = \gamma (t_3) = \gamma (t_4) = 2.7078$$

$$f(\gamma_1) = 1.78 \times 10^{-3} \text{ for } N_2 = 2.$$
 (16)

A comparison to the equations (5)

$$\cot \eta_1 = \beta, \ \gamma_0 = (1 + \beta^2)^{1/2} \gamma_1, \ N = 2$$
 (17)

shows that only a very specific vacuum fluctuation can evolve to a universe.

The asymptotic value γ_6 of the Lorentz factor is determined by a condition similar to the condition (12) for γ_1 in the linear phase. At the end of the exponential phase the annihilation rate is as large as the production rate for e^+e^- -pairs. Here one has to take into account the annihilation cross section and the retardation for an exponentially expanding target. Both conditions together lead to the relations

$$\begin{split} \gamma (t_6) &= \gamma_6 = 2.4506 \\ \gamma (t) &= \gamma_1 + (\gamma_6 - \gamma_1) \tanh [\lambda (t - \tau_4)] \\ \cosh (\lambda t_6) &= 0.4266 \, c \, \varkappa / \lambda = 4.20 \times 10^{16} \end{split}$$
(18)

and to the numerical values

$$N(t_6) = 4 \times 10^{111}, t_6 = 4.94 \times 10^{-3} \,\mathrm{s}$$

$$R(t_6) = 1.60 \times 10^{21} \,\mathrm{m}.$$
(19)

5. Thermal phases

The k-th thermal phase (k = 1, 2, 3) can be characterized in the following way

$$t = (b_k/c) (1 - \cos \eta) = (b_k/2 c) \eta^2$$

$$R = b_k \sin \eta = b_k \eta = (2 b_k c t)^{1/2}$$

$$\varrho = (3 c^2 b_k/8 \pi G R^4)$$

$$R k_B T = (45 h^3 c^7 b_k^2/32 \pi^6 G g_4)^{1/4}$$

$$\sqrt{2} N = \zeta (3) g_3 (90 c^3 b_k^2/\pi^2 h G g_4)^{3/4}$$

$$\zeta (3) = 1.2020569$$

$$g_3 = 0.75 \sum_i g_{Fi} + \sum_i g_{Bi}$$

$$g_4 = 0.875 \sum_i g_{Fi} + \sum_i g_{Bi}.$$
(20)

 b_k is the largest radius possible within the k-th thermal phase. k_B is Boltzmann's constant. $\zeta(x)$ is Riemann's Zetafunction. In all cases there is $R \leq b_k$. Therefore, the time-parameter η can be eliminated. g_3 and g_4 are the weighting functions for the total particle number N and the mass density ϱ , respectively. g_{Fi} and g_{Bi} are the products of the spinand charge-multiplicities for the *i*-th fermion and the *i*-th boson, respectively. Photons, all leptons and mesons, for which the inequality

$$m_i c^2 \leq k_B T$$

holds, contribute to the gas of relativistic particles.

The first thermal phase is the meson phase (k = 1). The transition from the exponential phase to the meson phase is determined by the smooth behaviour of the quantities R and N because the thermalization becomes effective by two-body reactions which do not change the total particle number. The transition between two thermal phases is assumed to be an adiabatic transition (smooth behaviour of R and $g_4 T^3$). Table 1 shows the characteristical parameters for the various thermal phases. Each phase has its specific time-scale t. In a cosmic time-scale t_c one has to add the periods of the different phases. At the end of the electron phase the decay of the electron pairs increases the photon temperature only. Therefore, the neutrino temperature T_r becomes smaller than the photon temperature T, and the functions g_3 and g_4 have to be modified to effective functions \tilde{g}_3 and \tilde{g}_4 . In the photon phase and in the dust phase the total number N_r of neutrinos remains constant in time

$$N = 4.08 \times 10^{111}$$

$$N_{\gamma} = (11/17) \quad N = 2.64 \times 10^{111}$$

$$N_{\gamma} = (6/17) \quad N = 1.44 \times 10^{111}$$

$$= 4 N (\nu_{\alpha}) = 4 N (\bar{\nu}_{\alpha}) = 4 N (\bar{\nu}_{\alpha}).$$
(21)

Table 1: Parameters of the thermal phases

$$\begin{split} k &= 1: \text{ Meson phase } (t_7 \leqslant t \leqslant t_8) \\ b_1 &= 2.40 \times 10^{39} \,\mathrm{m}, \, g_3 = 19, \, g_4 = 20.5 \\ t_8 &- t_7 = 4.79 \times 10^{-5} \,\mathrm{s}, \, k_B \, T_8 = \mathrm{m} \mu \, c^2 = 105.66 \, \mathrm{MeV} \\ k &= 2: \text{ Electron phase } (t_9 \leqslant t \leqslant t_{11}) \\ b_2 &= 2.75 \times 10^{39} \,\mathrm{m}, \, g_3 = 8, \, g_4 = 9 \\ t_{11} - t_9 &= 3.09 \,\mathrm{s} \qquad k_B \, T_{11} = \mathrm{m}_e \, c^2 = 0.51100 \, \mathrm{MeV} \\ k &= 3: \text{ Photon phase } (t_{12} \leqslant t \leqslant t_{14}) \\ b_2 &= 3.07 \times 10^{39} \,\mathrm{m}_\mu, \, \tilde{g}_3 = 34/11, \, \tilde{g}_4 = 2.9084 \\ t_{14} - t_{12} = 1.44 \times 10^4 \, a_t, \, T_\nu = (4/11)^{1/3} \, T \\ \mathrm{tropical \ year} \, a_t = 3.1557 \times 10^7 \,\mathrm{s}, \end{split}$$

50

Only electron- and muon-neutrinos, but not tauon-neutrinos contribute to the background radiation.

In the linear and in the exponential phases also baryons, protons and antiprotons, are produced. As the Coulomb energy is strongly suppressed, the nuclear asymmetry energy is fully effective, and roughly half of the protons and half of the anti-protons decay into neutrons (n) and anti-neutrons (\bar{n})

$$p \rightarrow n + e^+ + \nu_e, \quad \bar{p} \rightarrow \bar{n} + e^- + \bar{\nu}_e.$$

In the thermal phases the nucleon numbers are related to each other according to a canonical energy distribution. As the baryon production is a by-product of electron pair creation, one expects for the total baryon number N_b the proportionality

$$N_b \propto (m_e/m_p)^2 N_6$$

where m_p is the proton mass. A part of the protons becomes annihilated when the *p*-clusters and the \bar{p} -clusters collide. To reproduce the numerical value of Hubble's constant [3]

$$H = \dot{R}/R = (53 \pm 2) \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$$

1 Mpc = 3.0857 × 10²² m (22)

for the present state of the univierse, one has to use the value

$$N_b = (0.51/\pi^3) (m_e/m_p)^2 N_6.$$
(23)

This means

$$\begin{split} N_b / N_\gamma &= (0.77/\pi^3) \ (m_e / m_p)^2 = 7.41 \times 10^{-9} \\ N_b &= 1.95 \times 10^{103} \\ M_b &= 3.26 \times 10^{76} \, \mathrm{kg}. \end{split}$$

The total baryonic mass M_b can be evaluated under the assumption that the relative atomic mass of primary matter has the mean value 1.006 [4].

6. Dust phase

In the dust phase $(t_{15} \le t \le t_{21})$ the baryonic mass density $\varrho = \varrho_b$ dominates the dynamics of the universe

$$\begin{split} \dot{R}^{2} + c^{2} &= (8 \pi G/3) \varrho R^{2} \\ t &= (b_{4}/c) (\eta - \sin \eta \cos \eta) \\ R &= b_{4} (\sin \eta)^{2}, \quad \dot{R} = c \cot \eta \\ \varrho &= (3 c^{2} b_{4}/8 \pi G R^{3}) \\ R k_{B} T &= 2.59 \times 10^{11} \text{Jm} \\ b_{4} &= (4 G M_{b}/2 \pi c^{2}) = 1.03 \times 10^{49} \text{m.} \end{split}$$

$$\end{split}$$

For the end of the photon phase $(t = t_{14})$ and for the beginning of the dust phase $(t = t_{15})$ the $\gamma \nu$ -mass density and the baryonic mass density have the same value

$$R_{14} = R_{15} = b_3^2/b_4 = 9.14 \times 10^{29} \,\mathrm{m}$$

$$T_{14} = T_{15} = 2.05 \times 10^4 \,K$$

$$t_{14} = (R_{14}^2/2 \,b_3 \,c) = 1.44 \times 10^4 \,a_t = t_{c14} = t_{c15}$$

$$t_{15} = (4 \,R_{15}^3/9 \,c^2 \,b_4)^{1/2} = 1.92 \times 10^4 \,a_t.$$
(26)

The present state of the universe $(t = t_{19})$ is characterized by the temperature of the electromagnetic background radiation [5]

$$T_{19} = 2.76 \text{ K} \qquad R_{19} = 6.79 \times 10^{33} \text{ m}$$

$$H_{19} = (1.5 t_{19})^{-1} = 53 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

$$t_{19} = t_{c19} = 12.30 \times 10^9 a_t \qquad (27)$$

$$\varrho = \Omega \, \varrho_c, \qquad \varrho_c = (3 \, H^2 / 8 \, \pi \, G)$$

$$\Omega = 1, \qquad \varrho_{c19} = 5.28 \times 10^{27} \text{ kg m}^{-3},$$

where Ω and ρ_c are the density parameter and the critical mass density, respectively.

The astrophysical dates from the dynamics of nebular clusters suggest a density parameter $\Omega \approx 0.1$. But it may well be that there are still hidden masses or that the local group of galaxies is located in the outer region of a nebular super-cluster. Therefore, the local mass density may be reduced by one order of magnitude in comparison to the critical mass density ϱ_c . Also the anisotropy of Hubble's constant is consistent with the assumption that the mass concentration is much higher in distant parts of nebular super-clusters. Wagoner and others have shown that a value $\Omega_{19} \approx 0.1$ is consistent with the experimental abundances of primary nuclides [6]. This is right for a static universe. If one takes into account the reduction of the deuteron fusion rate in an expanding gas of protons however, then a value of $\Omega_{19} \approx 1$ is compatible with the experimental abundances of primary nuclides [7].

7. Conclusion

The astrophysical facts are compatible with the assumption that the universe has its origin in an $e^+ e^-$ -vacuum fluctuation. Anisotropy and inhomogenity of the matter distribution in the present state of the universe can be connected to the p- and \bar{p} -clusters in the first millisecond. By the Leidenfrost phenomenon these clusters expand in size and in mass with a mean radial velocity of 2.5×10^6 m s⁻¹ and reach the dimensions of nebular superclusters in the present state of the universe. The Leidenfrost phenomenon still is effective in the collisions of p-type and \bar{p} -type galaxies in the periphery of superclusters. Those collisions have the energy output of quasistellar objects and suggest a simple explanation of the energy source. There is no singularity in temperature because the first three phases are cold phases. The first thermal phase (the meson phase) starts with a finite temperature

$$T_7 = 6.37 \times 10^{12} \,\mathrm{K} = m_n c^2 / k_B.$$

Thus the η -meson is the heaviest particle contributing to the hot gas of elementary particles.

In positronium ($e^+ e^-$ -bound states) the ratio ξ of the electrostatic and the gravitational force amounts

$$\xi = (2 \pi \alpha c^3 / G h \kappa^2) = (25/6) \times 10^{42}.$$
⁽²⁸⁾

P. A. M. Dirac and P. Jordan were aware of the fact that this number has something to do with the total particle number in the universe. However, this connection cannot be found in a time-dependent "constant" G, but in the fact that the initial phases of the universe are dominated by electric forces and not by gravitation at all. There is no singularity in space because the vacuum fluctuation starts with a finite volume $V(t_0)$

$$V(t_0) = 2 \pi^2 R_0^3, R_0 = 9.56 \times 10^{-17} \,\mathrm{m} = 1.05 \,(\alpha/\pi^3 \,\kappa).$$
 (29)

There is not singularity in time either, because the effective lifetime t_{c1} and the expansion time $0.5 \tau_0$ of the unperturbed $e^+ e^-$ -vacuum fluctuation are given by the values

$$t_{c1} = t_1 - t_0 = 0.387 \ (\alpha/\pi^2 c \varkappa)$$

= 0.348 (\tau_0/2) = 3.68 \times 10^{-25} s (30)
$$0.5 \, \tau_0 = (10 \, \alpha/9 \, \pi^2 c \, \varkappa) = 1.06 \times 10^{-24} \, \text{s}.$$

Not the Planck time

$$t_p = (h G/2 \pi^2 c^5)^{1/2} = 5.39 \times 10^{-44} s$$
 (31)

is important, but the fluctuation period

$$\tau_0 = (20 \,\alpha/9 \,\pi^2 \,c \,\varkappa) = (20/9 \,\pi^2) \,(\alpha \,\xi)^{1/2} \,t_p. \tag{32}$$

Also the other parameters can be expressed by fundamental constants

$$\begin{split} t_{c3} &= t_{c4} = 1.45 \, (\alpha^2/c \,\varkappa) \, \xi^{1/2} &= 2.03 \times 10^{-4} \, \mathrm{s} \\ R_3 &= R_4 = 1.16 \, (\alpha^2/\varkappa) \, \xi^{1/2} &= 4.87 \times 10^4 \, \mathrm{m} \\ N_3 &= N_4 = 1.65 \, \alpha \, \xi^{3/2} &= 1.03 \times 10^{62} \\ t_{c6} &= t_{c7} &= 1.16 \, (\pi^3 \, \alpha^2/c \, \varkappa) \, \xi^{1/2} &= 5.05 \times 10^{-3} \, \mathrm{s} \\ R_6 &= R_7 &= 1.10 \, (\alpha^4/\pi \, \varkappa) \, \xi &= 1.60 \times 10^{21} \, \mathrm{m} \\ N_6 &= N_7 &= 2.19 \, \pi \, \alpha^8 \, \xi^3 &= 4.00 \times 10^{111} \\ N_{\gamma} &= 1.44 \, \pi \, \alpha^8 \, \xi^3 &= 2.64 \times 10^{111} \\ N_{\nu} &= 0.79 \, \pi \, \alpha^8 \, \xi^3 &= 1.44 \times 10^{111} \\ N_b &= 1.12 \, \alpha^8 \, \xi^3 \, (m_e/\pi \, m_p)^2 &= 1.95 \times 10^{103} \\ b_4 &= 1.49 \, (\alpha^9 \, \xi^2/\pi^3 \, \varkappa) \, (m_e/m_p) &= 3.41 \times 10^{33} \, a_t. \end{split}$$

For the initial dust phase $(t \ll t_{c21})$ of a universe that evolved from a vacuum fluctuation, it is characteristical that

- (I) matter is concentrated in baryonic clusters
- (II) there is a co-existence of *p*-super-clusters and \bar{p} -super-clusters (matter and antimatter)
- (III) there are only electron- and muon-neutrinos contributing to the background radiation
- (IV) the neutrino mass m_{ν} must be very small $M_{\nu} < 0.3 M_b$, $m_{\nu}c^2 < 4 e V$ (34)
- (V) the space is flat

(VI)
$$H = (2/3t)$$

(VII) $\rho = \rho_b = \rho_c, \ \rho_c = (3 H^2 / 8 \pi G)$

(VIII)
$$N_b/N_{\gamma} = (0.77/\pi^3) (m_e/m_p)^2 = 7.41 \times 10^{-9}$$
 (35)

(IX)
$$(k_B T)^3 H^{-2} = 1.10 \pi^2 h^3 c \times \xi (m_p/m_e)$$

= $1.88 \times 10^{-32} J^3 s^2$. (36)

The last two equations show in a very specific way the interplay of electrical and gravitational forces; they can be tested experimentally and they would change drastically if, for example, muons would be substituted instead of electrons. 54

The following time-table gives a view over the cosmic evolution. Time-points t_{ci} (i = 0, 1, 2, 3, ...) refer to a cosmic time-scale, where the full periods of the various phases are summed up. Time-points t_i refer to the specific time-scale within a special phase. R, N, and T are the world-radius, the total particle number, and the temperature, respectively.

Time-table of the universe

 $t_{c0} = 0$: Beginning of the $e^+ e^-$ -vacuum fluctuation $t_0 = 4.70 \times 10^{-26}$ s, $R_0 = 9.56 \times 10^{-17}$ m, $N_0 = 2$

 $t_0 \leq t \leq t_1$: Expanding vacuum fluctuation with a constant particle number (N = 2). Electrostatic interaction only.

 $t_{c1} = 3.68 \times 10^{-25}$ s: The vacuum fluctuation becomes unstable with respect to particle creation (bremsstrahlung).

$$t_1 = 4.15 \times 10^{-25} \text{ s}, R_1 = 2.59 \times 10^{-16} \text{ m}, N_1 = 2$$

 $t_{c2}~=3.68\times10^{-25}\,{\rm s}$: Beginning of the linear phase $t_2=5.47\times10^{-25}\,{\rm s},~R_2=2.59\times10^{-16}\,{\rm m},~N_2=2$

 $t_2\leqslant t\leqslant t_3$: Linear phase (Hoyle phase). Constant velocity of expansion, constant mass density, electrostatic interaction.

 $t_{c3} = 2.03 \times 10^{-4}$ s: End of the linear phase. Electrostatic and gravitational energy are equal.

 $t_3 = 2.03 \times 10^{-4}$ s, $R_3 = 4.87 \times 10^4$ m, $N_3 = 1.03 \times 10^{62}$

 $t_{c4}=2.03\times 10^{-4}\,{\rm s}:$ Beginning of the exponential phase (inflationary phase)

$$t_4 = 9.28 \times 10^{-5}$$
 s, $R_4 = 4.87 \times 10^4$ m, $N_3 = 1.03 \times 10^{62}$

 $t_4\leqslant t\leqslant t_6$: Exponential phase (inflationary phase). Gravitation dominates. Cold expansion (T=0).

 $t_{c5} = 4.21 \times 10^{-3}$ s: Beginning of the Leidenfrost phenomenon for clusters of nucleons and clusters of anti-nucleons

$$\begin{split} t_5 &= 4.10 \times 10^{-3} \, \mathrm{s}, \; R_5 = 2.11 \times 10^{18} \, \mathrm{m}, \\ N_5 &= 5.30 \times 10^{108}, \; N_{e5} = 3.18 \times 10^{108} \\ N_{b5} &= 2.59 \times 10^{100} \end{split}$$

 $t_{c6} = 5.05 \times 10^{-3}$ s: End of the exponential phase. Annihilation processes are as frequent as creation processes.

$$\begin{split} t_6 &= 4.94 \times 10^{-3}\,\mathrm{s}, \ R_6 = 1.60 \times 10^{21}\,\mathrm{m}, \\ N_6 &= 4.00 \times 10^{111}, \ N_b = 1.95 \times 10^{103}, \ T_6 = 0 \end{split}$$

 $t_{c7} = 5.05 \times 10^{-3}\,{\rm s}$: Beginning of the thermal phases. Thermodynamical equilibrium is established

$$\begin{split} t_7 &= 1.77 \times 10^{-6} \, \text{s}, \ R_7 &= 1.60 \times 10^{21} \, \text{m}, \\ N_7 &= 4.00 \times 10^{111}, \ N_b = 1.95 \times 10^{103}, \\ T_7 &= 6.37 \times 10^{12} \, \text{K} \\ t_7 &\leqslant t \leqslant t_8 \text{: Meson phase. } \pi\text{-}, \ \eta\text{-} \text{ and K-mesons exist.} \end{split}$$

 $t_{c8} = 5.10 \times 10^{-3}$ s: End of the meson phase. Mesons and muons decay into leptons and photons.

$$t_8 = 4.79 \times 10^{-5} \,\mathrm{s}, \ R_8 = 8.29 \times 10^{21} \,\mathrm{m},$$

 $T_8 = 1.23 \times 10^{12} \,\mathrm{K}$

 $t_{c9} = 5.10 \times 10^{-3}$ s: Beginning of the electron phase.

 $t_9 = 4.17 \times 10^{-5} \,\mathrm{s}, \ R_9 = 8.29 \times 10^{21} \,\mathrm{m},$

 $T_9 = 1.61 \times 10^{12} \,\mathrm{K}$

 $t_9 \leq t \leq t_{11}$: Electron phase. Positive and negative electrons are the only charged particles remaining in the hot gas of relativistic particles.

 $t_{c10}=1.09\,{\rm s}:$ Beginning of the free neutron decay. $\mu\text{-}$ and e-neutrinos constitute the background radiation

 $t_{10} = 1.09$ s, $R_{10} = 1.34 \times 10^{24}$ m, $T = 10^{10}$ K = $T_y = T_y$

 $t_{c11} = 3.10$ s: End of the electron phase. Electron pairs decay into photons.

$$t_{11} = 3.09 \,\mathrm{s}, R_{11} = 2.26 \times 10^{24} \,\mathrm{m}, T_{11} = 5.93 \times 10^{9} \,\mathrm{K}$$

 $t_{c12} = 3.10$ s: Beginning of the photon phase.

 $t_{12} = 2.77 \text{ s.} \ R_{12} = 2.26 \times 10^{24} \text{ m}, \ T_{12} = 8.31 \times 10^{9} \text{ K}$

 $t_{12} \leq t \leq t_{14}$: Photon phase. Photons and neutrinos determine the dynamics of the universe.

$$T_{\gamma} = T, \ T_{\nu} = (4/11)^{1/3} T.$$

 $t_{c13} = 191$ s: Beginning of the pn-fusion to deuterons. Beginning of the evolution of primary elements.

$$t_{13} = 191 \text{ s}, P_{13} = 1.87 \times 10^{25} \text{ m}, T_{13} = 10^{9} \text{ K}$$

- $t_{c14} = 1.44 \times 10^4 a_l$: End of the photon phase. The baryonic mass density ρ_b reaches the mass density $\rho_{\gamma\gamma}$ of the radiation field $(\rho_b = \rho_{\gamma\gamma})$.
 - $$\begin{split} t_{\rm 14} &= 1.44 \times 10^4 \, a_{l}, \ R_{\rm 14} = 9.14 \times 10^{29} \, {\rm m}, \\ T_{\rm 14} &= 2.05 \times 10^4 \, {\rm K} \end{split}$$

$$\begin{split} t_{c15} &= 1.44 \times 10^4 \, a_i: \text{Beginning of the dust phase.} \\ t_{15} &= 1.92 \times 10^4 \, a_i, \ R_{15} &= 9.14 \times 10^{29} \, \text{m}, \\ T_{15} &= 2.05 \times 10^4 \, \text{K} \end{split}$$

 $t_{15} \leq t \leq t_{21}$: Dust phase. Gas pressure can be neglected. The baryonic mass density $\rho = \rho_b$ dominates the dynamics of the universe.

- $$\begin{split} t_{c16} &= 2.41 \times 10^5 \, a_i: \text{condensation of proto-galaxies of a uniform baryonic} \\ \text{type (either nucleons or antinucleons only). Still expanding systems} \\ t_{16} &= 2.46 \times 10^5 \, a_i, \ R_{16} &= 5.00 \times 10^{30} \, \text{m}, \\ T_{16} &= 3.75 \times 10^3 \, \text{K} \end{split}$$
- $t_{c17}=3.38\times 10^5\,a_{i}$: Formation of neutral atoms. Photons contribute to the background radiation

$$t_{17} = 3.43 \times 10^5 a_t, R_{17} = 6.25 \times 10^{30} \text{ m}, T_{17} = 3 \times 10^3 \text{ K}$$

 $t_{c18} = 2.88 \times 10^7 \, a_i$: Galaxies reach a stationary state and separate from each other in space

$$t_{18} = 2.88 \times 10^7 a_l, R_{18} = 1.20 \times 10^{32} \text{ m}, T_{18} = 156 \text{ K}$$

$$\begin{split} t_{c19} &= 12.30 \times 10^9 \, a_t \text{: Present state of the universe} \\ t_{19} &= 12.30 \times 10^9 \, a_t \text{, } R_{19} = 6.79 \times 10^{33} \, \text{m} \text{, } T_{19} = 2.76 \, \text{K} \\ \varrho &= \varrho_c = 5.28 \times 10^{-27} \, \text{kg m}^{-3} \text{, } H_{19} = 53 \, \text{km s}^{-1} \, \text{Mpc}^{-1} \end{split}$$

 $t_{c20} = 1.71 \times 10^{33} a_i$: End of the expansion

$$\begin{split} t_{20} &= 1.71 \times 10^{33} \, a_l, \ R_{20} = 1.03 \times 10^{49} \, \mathrm{m} \\ T_{20} &= 1.82 \times 10^{-15} \, \mathrm{K} \\ \varrho_{20} &= 1.52 \times 10^{-27} \, \mathrm{kg} \, \mathrm{m}^{-3}, \ H_{20} = 0 \\ t_{20} &\leqslant t \leqslant t_{21} \text{: Time of contraction} \end{split}$$

 $t_{c21} = t_{21} = 3.41 \times 10^{33} a_i$: End of the universe

References

[1] Eder, G.: Friedmannuniversum als Vakuumschwankung. Anz. Österr. Ak. d. Wiss. 122 (1985) 83.

[2] Gamow, G.: Nature 162 (1948) 680. Gamow, G.: K. Danske Vidensk. Selsk. Mat. Fys. Medd. 27, nr. 10 (1953). Weinberg, S.: The First Three Minutes, Basic, New York 1977. Dolgov, A.D., and Y. B. Zeldovich: Rev. Mod. Phys. 53 (1981) 1. Close, F.: The Cosmic Onion, Heineman, London 1983.

[3] Tammann, G.A.: IAU Colloq. 37 (1977) 43.

[4] Rolfs, C.E., and W.S. Rodney: Cauldrons in the Cosmos, University Chicago Press, Chicago 1988.

[5] Penzias, A.A., and R.W.Wilson: Astrophys. J. 142 (1965) 419. Miller,
M.F., M.McColl, R.J. Pederson and F. L. Vernon: Phys. Rev. Lett. 26 (1971) 919.
[6] Wagoner, R.V.: Astrophys. J. 179 (1973) 343. Audouze, J.: Nuclear Astrophysics (Wilkinson, D., ed.) Pergamon, Oxford 1981. Audouze, J.: Astrophysical

Cosmology (Brücke, H. A. et al., ed.) Pont. Acad. Sci. Scripta Varia 48 (1982) 395. [7] Eder, G.: Fusion reactions in the early universe, Kerntechnik 53 (1989) 207. ©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

. .

Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse **126** (1989), 59–66

Das korrespondierende Mitglied Alexander TOLLMANN legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

Über einige geologische Beobachtungen in der Flyschzone südlich von St. Peter in der Au (Niederösterreich)

Von Hans Egger¹

Mit 1 Abbildung und 1 Tabelle

In der vorliegenden Arbeit wird über erste tektonische und stratigraphische Ergebnisse von Untersuchungen berichtet, welche im westlichsten Teil der niederösterreichischen Flyschzone im Gange sind. Außer der Karte von ABEL und TILL (1913) existierten bislang keine geologischen Aufnahmen dieses Gebietes, das — wie jetzt gezeigt werden konnte — einen nordvergenten Schuppenbau aufweist. Die tektonischen Einheiten, darunter auch ein Schürflingsfenster mit ultrahelvetischer Buntmergelserie, werden von Norden nach Süden vorgehend im folgenden kurz beschrieben. Die Position der im Text erwähnten Proben ist in der Übersichtskarte (Abb. 1) vermerkt, ihr Fossilinhalt in der beigestellten Tabelle.

1. Die Nördliche Schuppenzone

Am Nordrand der Flyschzone steht mit einer Ausstrichbreite von bis zu 800 m ultrahelvetische Buntmergelserie und damit verschuppter Unterkreideflysch an. Diese Schuppenzone ist auf der Karte von ABEL und TILL (1913) als Streifen von "schwarzen Sandsteinen, bunten Tonen und Fleckenmergeln" eingezeichnet. Einen verhältnismäßig guten Einblick in diese insgesamt schlecht aufgeschlossene Gesteinsvergesellschaftung erhält man im Bachergraben, im Dachsbach und im Blümelsberger Graben.

Im westlichsten dieser Gräben, im Bachergraben, wurden nur kleine Schuppen und Späne von Neokom- und Gaultflysch gefunden, welche in der Übersichtskarte nicht im Detail dargestellt werden konnten. Vorherrschend ist in diesem Graben die Buntmergelserie mit roten, seltener auch grauen und grünen Mergeln und Kalkmergeln. Die individuen- und artenreichen Nannofloren belegen vor allem das Campan (s. Probe 25), gelegentlich das Maastricht und nur in einem Fall das Tertiär (Probe 28).

¹ Anschrift des Verfassers: Dr. Hans Egger, Lindenweg 1, A-5061 Elsbethen, Salzburg, Österreich.

Abb. 1

In den weiter östlich gelegenen Grabeneinschnitten des Dachsbaches und des Blümelsberger Baches überwiegen in der Nördlichen Schuppenzone die Unterkreidegesteine des Rhenodanubikums. Die neokomen Tristelschichten bilden eine karbonatreiche Gesteinsabfolge mit bis zu 25 cm mächtigen turbiditischen Hartbänken, welche durch graue Kalkmergel getrennt werden. Ein Leitgestein sind hier Feinbrekzien ("Tristelbrekzie"), welche fast ausschließlich Karbonatkomponenten enthalten; aufgrund eines sparitischen Zements glitzern die Bruchflächen der Tristelbrekzie spätig auf. Das Unterkreidealter dieser Gesteinsabfolge konnte durch Nannofloren mehrfach belegt werden (s. Probe 61). Wie es meist in den Proben aus der Flyschunterkreide der Fall ist, so bestehen auch hier die Nannofloren beinahe ausschließlich aus Individuen der Art *Watznaueria barnesae* (BLACK), während andere Arten nur vereinzelt auftreten.

Der Gaultflysch wird von dunkelgrauen bis schwarzen Tonsteinen und Siltsteinen dominiert, in welche sich Hartbänke von bis zu 0,5 m Mächtigkeit einschalten. Diese zeigen oft Parallel- und Kreuzschichtung und sind durch ihre grünliche, auf einen Glaukonitgehalt zurückgehende Farbe gekennzeichnet. Auch die typischen, splitterig brechenden und auf frischen Bruchflächen fettig glänzenden "Ölquarzite" (glaukonitführende Quarzsandsteine) wurden mehrfach beobachtet. Blöcke eines polymikten Konglomerats, welche im Blümelsberger Graben umherliegen, gehören vermutlich ebenfalls zum Gaultflysch.

Im Bachergraben und im Dachsgraben ist der tektonische Kontakt der beschriebenen Schuppenzone zur ihr aufgeschobenen campanen Zementmergelserie aufgeschlossen. Unmittelbar unter der Zementmergelserie tritt hier jeweils Buntmergelserie, in Form von einigen Metern mächtigen, hellgrauen Kalkmergeln des Maastricht auf.

Die Nördliche Schuppenzone setzt sich vermutlich noch weiter gegen Westen hin fort: Aus der gleichen tektonischen Position werden aus dem Zauchagraben (ÖK 51, Steyr) von SCHNABEL (1978, A55) grünliche Mergel mit einzelnen Sandsteinbänken beschrieben, welche ebenfalls zur Buntmergelserie gehören. Das Alter dieser Gesteine ist oberpaleozän bis untereozän. Westlich des Ennstales befindet sich nach BRAUNSTINGL (1988, 241) wieder campane Buntmergelserie an der Stirn der Flyschzone.

Gegen Osten hin verbreitert sich die Nördliche Schuppenzone noch weiter bis zur Ybbs und ist dann anscheinend von quartären Ablagerungen verhüllt (s. ABEL und TILL, 1913). Aufgrund ihrer Position und wegen der vorherrschenden Unterkreideschichtglieder ist es naheliegend, in der Nördlichen Schuppenzone eine Fortsetzung der Nordzone der Greifensteiner Decke (Tulbinger Schuppenzone nach TOLLMANN, 1985, 404) zu vermuten; diese ist bisher sicher bis in die Gegend von Kilb (ÖK 55) nachgewiesen.

Alter 10774	AN. 157	4.4	sr	>	<u>ر</u>	۹ ₄	DA.	√		R	A		
Nannofossilien: Probe		0	2	2	~	- - -	s/2			3/0). 2/4	Ņ	X
Nannotetrina alata)			\uparrow)	Ľ	Ľ	Ľ	L,
Discoaster gemmifer	•	 					\square	1	t			-	
Discoaster germanicus	•	-				t				\vdash			
Discoaster barbadiensis	•	1	T			\uparrow					1		
Discoaster binodosus	•					1							
Discoaster multiradiatus		•											
Reticulofenestra dictyoda	•							Γ					
Heliolithus cantabriae				•									
Fasciculithus ulii				•									
Fasciculithus bitectus				\bullet			L						
Fasciculithus involutus		•											
Fasciculithus tympaniformis		•	۲	•									
Toweius eminens		•						\Box					
Chiasmolithus grandis	•							Γ					
Chiasmolithus consuetus		•											
Chiasmolithus danicus		•											
Cruciplacolithus primus large		•											
Prinsius bisulcus			•								-		
Ericsonia cava	•	•	•	•									
Thoracosphaera sp.			•	•		1	1						
Arkhangelskiella cymbiformis		Γ	•	•	•	•	•	•					
Aspidolithus parcus			T				•	٠	•	•	•	•	
Braarudosphaera bigelowii			•				•						
Micula decussata			•	•	•	•	•	•	•	•	•	•	
Quadrum trifidum		1					•						
Quadrum gothicum	Γ		•					•	•	•	•		
Quadrum gartneri		Γ										•	
Eiffellithus turriseiffeli	Γ					•	•						
Eiffellithus eximius			•	•				•		•	•	•	
Reinhardtites anthophorus							•						
Ceralithoides aculeus			Γ					•	•				
Calculites obscurus				•			•	•	Γ	•	•		
Calculites ovalis						Ι				•			
Lucianorhabdus cayeuxi			\bullet	•			\bullet	•	•	•	\bullet	ullet	
Lucianorhabdus maleformis										•			
Lithraphidites carniolensis					•		\bullet			\bullet			•
Marthästerites furcatus												•	
Eprolithus floralis			[ullet	
Prediscosphaera cretacea			•				\bullet	\bullet	\bullet	\bullet	ullet	ullet	
Cribrosphaerella ehrenbergii					\bullet		•	\bullet				ullet	
<u>Chiastozygus striatus</u>										•			
Microrhabdulus decoratus		\bullet	1		\bullet		\bullet			\bullet			
Zygodiscus spiralis						۲	•						
Watznaueria barnesae				\bullet	•	•	•	•			•	●	•
<u>Stradneria crenulata</u>		_	•		L_	•	٠	•		•	•	•	
Zeugrhabdotus embergeri	L		\vdash			L						•	•
Nannoconus kamptneri				1	L								•

2. Die Blümelsbergschuppe

Die namensgebende Lokalität für diese Flyschschuppe ist der 526 m hohe Blümelsberg (s. Abb. 1), welcher rund 3 km SE vom Markt Seitenstetten gelegen ist. Die Blümelsbergschuppe, welche die oben beschriebene Schuppenzone nordvergent überschiebt, erreicht im hier betrachteten Gebiet eine Ausstrichbreite von 2 km.

Als ältestes Schichtglied tritt campane Zementmergelserie (s. Proben 32 und 64) mit einer Mächtigkeit von rund 150 m auf, während die santonen Anteile dieser Serie nicht erhalten sind. Die Schichtfolge der Zementmergelserie besteht aus einer sehr regelmäßigen Wechsellagerung von bis zu 0,6 m mächtigen Hartbänken mit den namensgebenden, bis 2 m mächtigen Kalkmergeln. Diese mittelsteil in südliche Richtung einfallenden Gesteine bauen die Hügelreihe vom Weinbergkogel zum Blümelsberg auf. Im Süden dieser Erhebungen deutet die Morphologie auf weiche, leicht erodierbare Gesteine hin. Vermutlich handelt es sich dabei um die Pernecker Schichten (Oberste Bunte Schiefer), von denen aber bislang hier noch keine Aufschlüsse entdeckt werden konnten.

Die Altlengbacher Schichten sind mit einer Mächtigkeit von rund 1000 m aufgeschlossen; ihr hier erhaltener Schichtbestand umfaßt das Maastricht und das gesamte Paläozän (s. Proben 36, 48, 49, 66). In der Blümelsbergschuppe konnte eine lithofazielle Abfolge in diesem mächtigsten Schichtglied des Rhenodanubikums nicht erkannt werden. Vielmehr scheint durchwegs eine monotone Wechsellagerung von bis zu 2 m mächtigen Hartbänken mit grauen, oft siltigen Peliten vorzuliegen; das Verhältnis Psammite: Pelite beträgt ungefähr 1:1.

Sowohl ihre Lithofazies als auch ihre Mächtigkeit unterscheidet die Altlengbacher Schichten der Blümelsbergschuppe von jenen der weiter südlich gelegenen Flyschschuppen. So konnte EGGER (1985, 123) im südwestlich anschließenden Gebiet zeigen, daß dort allein der Maasstrichtanteil der Altlengbacher Schichten mindestens 1300 m mächtig wird und eine Gliederung in vier lithofazielle Formationen zuläßt. Auch in der Schädlbachschuppe (s. u.) ist die Mächtigkeit dieses Schichtglieds schon größer als in der Blümelsbergschuppe und zeigt auch eine etwas andere Lithofazies.

3. Die Schädlbachschuppe und das ultrahelvetische Schürflingsfenster südlich von St. Michael am Bruckbach

Erstmals wurde die Schädlbachschuppe westlich der Enns von BRAUNSTINGL (1986, 73) beschrieben, welcher an der Basis dieser Einheit auch noch Gesteine der Buntmergelserie (Hochhubfenster) nachweisen konnte. Das Hochhubfenster liegt in der streichenden Fortsetzung des zuletzt von MAURER (1972, 142) beschriebenen Nußbachfensters westlich des Steyrerflusses. Östlich der Enns konnte die Überschiebung der Schädlbachschuppe von EGGER (1987, Abb. 1) weiter verfolgt werden, welche auch hier durch einige kleine Vorkommen von ultrahelvetischer Buntmergelserie markiert wird.

Diese Struktur wurde jetzt auch am Nordhang des Plattenberges identifiziert, von wo aus sie sich weiter gegen Osten fortsetzt, sodaß sie bislang im Streichen über eine Strecke von mehr als 35 km nachgewiesen werden konnte. An der Basis der Schädlbachschuppe treten hier tektonische Späne sowohl von Unterkreide- als auch von Oberkreideflysch auf (s. Abb. 1). Die wichtigste Entdeckung war aber ein neues Vorkommen von Buntmergelserie im Grabeneinschnitt südlich von St. Michael am Bruckbach; es handelt sich dabei um vorwiegend hellrote, seltener grüne Mergel, welche reiche Nannofloren des Campan enthielten. Die in der Tabelle angeführte Florenliste (Probe 53) belegt den Grenzbereich Santon-Campan.

BRAUNSTINGL (1988, 241f.) versucht die im Hochhubfenster aufgeschlossene Buntmergelserie als parautochthones Hangsediment zu interpretieren: dieses soll an einer aktiven Subduktionszone auf einem sich bildenden Akkretionskeil abgelagert worden sein; im Zuge der andauernden Subduktion wären diese Pelite dann an den Bewegungsbahnen des Akkretionskeils eingeklemmt worden. Die Buntmergelserie, für welche im Liegenden der Schädlbachschuppe mehrfach Oberkreidealter nachgewiesen wurden, müßte dann aber ein fazieller Vertreter der altersgleichen Gesteine des Rhenodanubikums sein, was auch schon KRAUS (1932: 1944) postulierte. Sowohl im Arbeitsgebiet von BRAUN-STINGL (1987) als auch in den daran angrenzenden Gebieten (MAURER. 1972; EGGER, 1987) liegt jedoch das Campan durchwegs in Form der Zementmergelserie und der Pernecker Schichten vor, das Maastricht und Paläozän in Form der Altlengbacher Schichten. Die Ansicht von BRAUNSTINGL (s. o.) ist daher unhaltbar. Vielmehr handelt es sich bei diesen Vorkommen von Buntmergelserie um typische Schürflingsfenster, welche an Überschiebungen innerhalb der durchwegs aufrecht gelagerten und südfallenden Flyschgesteine gebunden sind.

Die ungestörte Schichtfolge der Schädlbachschuppe beginnt mit den obercampanen Pernecker Schichten (s. Probe 70). Diese werden von den Altlengbacher Schichten stratigraphisch überlagert, welche hier aber eine andere Faziesausbildung als in der weiter nördlich gelegenen Blümelsbergschuppe zeigen: sie setzen mit einer etwa 200 m mächtigen Abfolge von dickbankigen (bis 5 m) und grobkörnigen Sandsteinen und Feinkonglomeraten ein, in welcher pelitische Gesteine fast völlig fehlen; die Hartbänke zeigen keine Boumaabfolgen. Aus diesen fluxoturbiditischen Basissandsteinen der Altlengbacher Schichten, welcher auf der Karte von ABEL und TILL (1913) noch als Greifensteiner Sandstein ausgeschieden sind, beschreibt VETTERS (1925) umgelagerte kretazische Korallenreste.

Über den Basissandsteinen, welche früher in mehreren kleinen Steinbrüchen als Bausteine gewonnen wurden, folgt eine Lithofazies, in welcher die einzelnen Hartbänke von Pelitgesteinen getrennt werden; charakteristisch sind dabei vor allem harte Kalkmergel vom Typ der Zementmergel. Im Gebiet des Dobrabaches konnte auch in der Schädlbachschuppe Paläozän (s. Probe 252) nachgewiesen werden; es handelt sich dabei wieder um Thanet, welches in der gleichen Einheit bereits in einer ähnlichen Ausbildung südlich von Steyr entdeckt werden konnte (EGGER, 1987, 150). Im Hangenden des Paläozänvorkommens vom Dobrabach folgt eine Sandsteinfazies, aus welcher noch keine altersweisenden Fossilien gewonnen werden konnten; möglicherweise handelt es sich dabei um Greifensteiner Sandstein, es könnten aber auch ältere Teile der Altlengbacher Schichten sein, welche infolge einer gestörten Schichtfolge in dieser Position auftreten. Diese Sandsteinabfolge der Schädlbachschuppe wird am Nordhang des Schusserberges von Pernecker Schichten und Altlengbacher Schichten der Höllbachschuppe überschoben (s. EGGER, 1987, 149).

Mit einer Ausstrichbreite von beinahe 3km erreicht die Schädlbachschuppe im Arbeitsgebiet eine wesentlich größere Breite als im unmittelbar westlich anschließenden Gebiet, wo sie nur als schmaler Streifen auftritt. Diese plötzliche Verbreiterung hat ihre Ursache darin, daß an einem großen NW-SE-streichenden Bruchsystem - der Kleinraminger Störungszone --- die Ostscholle um bedeutende Beträge vertikal gehoben wurde; dadurch fielen hier die höheren Überschiebungseinheiten in viel stärkerem Maß als auf der Westscholle der Erosion zum Opfer, wodurch die tektonisch tieferliegenden Einheiten flächenmäßig an der Erdoberfläche an Bedeutung gewinnen. Die spätorogene Bruchtektonik an der Kleinraminger Störung, welche den wahrscheinlich im Oligozän geschaffenen Schuppenbau des Rhenodanubikums versetzt, orientiert sich vermutlich an bereits mesozoisch aktiven Strukturen: denn im Untergrund der Flyschzone liegt hier an einem entsprechenden Bruch die mächtige Oberkreide des Haller Beckens im Westen neben dem Kristallin der Böhmischen Masse im Osten (s. BRIX et al. 1977, Abb. 1).

Literatur

Abel, O., und A. Till: Geologische Spezialkarte der Österreichisch-Ungarischen Monarchie, 1:75000, Blatt 4753, Enns und Steyr. — Wien (Geol. R.-A.) 1913.

Braunstingl, R.: Geologie der Flyschzone und der Kalkalpen zwischen Ennsund Steyrtal. — Unpubl. Diss. natwiss. Fak. Univ. Salzburg, 162 S., 55 Abb., 2 Beil., Salzburg 1986.

Braunstingl, R.: Die Flyschzone südwestlich von Steyr (Oberösterreich): Geologischer Bau und Überlegungen zum Ultrahelvetikum. — Jb. Geol. B.-A., 131, H.2, 231—243, 4 Abb., Wien 1988.

Brix, F., A. Kröll und G. Wessely: Die Molassezone und deren Untergrund in Niederösterreich. — Erdöl-Erdgas-Z., 93, Sdb., 12-35, 8 Abb., Hamburg/Wien 1977.

Egger, H.: Neue Erkenntnisse zur Geologie der Nördlichen Kalkalpen und der Flyschzone in den oberösterreichischen Voralpen zwischen Ennstal, Pechgraben und Ramingbach. — Anz. österr. Akad. Wiss., math.-natwiss. Kl., 122, 119—124, 1 Abb., Wien 1985.

Egger, H.: Die Geologie der Rhenodanubischen Flyschzone südöstlich von Steyr (Oberösterreich, Niederösterreich). — Jb. Geol. B.-A., 130, 139—151, 5 Abb., Wien 1987.

Kraus, E.: Der bayrisch-österreichische Flysch. — Abh. geol. Landesunters. bayer. Oberbergamt, 8, 82 S., 16 Abb., 3 Taf., München 1932.
Kraus, E.: Über den Flysch und den Kalkalpenbau von Oberdonau. — Jb. Ver. Ldkd. Heimatpflege Oberdonau, 91, 179—254, 8 Abb., 2 Tab., Linz 1944.

Maurer, H.: Zur Geologie des Helvetikums und der Flyschzone zwischen dem Steyr- und Kremstal. — Mitt. Geol. Ges. Wien, 64 (1971), 137—172, 4 Taf., Wien 1972.

Schnabel, W.: Bericht 1977 über geologische Aufnahmen in der Flyschzone auf Blatt 51, Steyr (Westliche Niederösterreichische Voralpen). — Verh. Geol. B.-A., 1978,

A55-A56, Wien 1978.

Tollmann, A.: Geologie von Österreich, Band 2. – 710 S., 286 Abb., 27 Tab., Wien (Deutike) 1985.

Vetters, H.: Über kretazeische Korallen und andere Fossilreste im nordalpinen Flysch. — Jb. Geol. B.-A., 75, 1—18, 2 Abb., 1 Taf., Wien 1925. In die Sitzungsberichte, Abteilung I, wird aufgenommen:

"Pongidenzähne (Primates) aus dem Pontien von Götzendorf, Niederösterreich" von w. M. Helmuth ZAPFE.

"Erster Nachweis von Choristodera (Reptilia, Diapsida) in der Oberkreide Europas: Champsosaurierwirbel aus den Gosau-Schichten (Campan) Niederösterreichs" von E. BUFFETAUT (vorgelegt von w. M. Helmuth ZAPFE.

In die Sitzungsberichte, Abteilung II, wird aufgenommen:

"Über die isotropen Geradenkongruenzen im einfach isotropen Raum" von Georg STAMOU (vorgelegt von k. M. Heinrich BRAUNER).

In den Catalogus Faunae Austriae wird aufgenommen:

"Teil XIXa: Fam. Tipulidae, Limoniidae. Clindrotomidae, Ptychopteridae" von w. M. Herbert FRANZ. ©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Sitzung vom 27. April 1989

In die Sitzungsberichte, Abteilung I, wird aufgenommen:

"Zur Vegetation auf Blei—Zink-Halden im Raum Niedere Tauern" von Wolfgang Punz und Manfred Engenhart (vorgelegt von w.M. Karl BURIAN).

In die Sitzungsberichte, Abteilung II, wird aufgenommen:

"Darbouxsche Doppelverhältnisscharen auf Regelflächen" von Wendelin Degen (vorgelegt von w. M. Walter WUNDERLICH).

"Counting lattice paths with a linear boundary II: q-ballot and q-Catalan" von Christian KRATTENTHALER (vorgelegt von w. M. Edmund HLAWKA).

"Über die mit einem Polynom vertauschbaren linearen Polynome" von Günter EIGENTHALER und Wilfried NÖBAUER (vorgelegt von k. M. Peter M. GRUBER).

Im Zeitraum vom 1.1.—31.3.1989 wurden folgende Arbeiten in die "Monatshefte für Chemie" aufgenommen:

- ALVAREZ-VALDÉS, A., A. H. BRAVO, M. J. CAMAZÓN, N. MENÉNDEZ, M. C. NAVARRO-RANNINGER and J. TORNERO: Mössbauer-, farinfrared and Raman spectra of tetrachloro[1,4-di(p-methoxyphenyl)-2,3-dimethyl-1,4-diazabutadiene]tin(IV)
- CIECHANOWICZ-RUTKOWSKA, M., J. GROCHOWSKI, A. LÉVAI, G. PUZI-CHA, P. SERDA and G. SNATZKE: Oxazepines and thiazepines, XX. CD-Spectra of optically active 2-phenyl-2,3-dihydro-1,5-benzothiazepin-4(5H)-ones and related 3-phenylthio-3-phenylpropionic acid derivatives, and X-ray diffraction of one phenethylamide
- DÖLLING, W., A. VOGT und M. AUGUSTIN: Synthese von 1,3-Dithiol-2thion-Derivaten durch Phasentransfer-Dithiocarboxylierung von CH-aciden O-Alkyl-dithiokohlensäure-diestern
- ELBANOWSKI, M., S. LIS and J. KONARSKI: The quantum efficiency of the luminescence of Eu(III), Tb(III), and Dy(III) in aqueous solutions

Nr.4

- FALK, H., K. GRUBMAYR und M. MARKO: Beiträge zur Chemie der Pyrrolpigmente, 82. Mitt.: Wasserlösliche Polymere mit kovalent gebundenen violinoiden und 2,3-dihydro-verdinoiden Gallenfarbstoffen
- FLEISCHHACKER, W., B. RICHTER und E. URBAN: Synthese von Cotarniniodid
- GIESTER, G.: Crystal structure of Li₂Cu₃(SeO₃)₂(SeO₄)₂
- GRAUBAUM H., H. SEEBOTH and P. ZALUPSKY: 5-Amino-1,2,3,4,-thiatriazole: its acylation with chloroformates and chlorothioformates as a route to 1,2,4-thiadiazoles and 1,6,6a, λ 4-trithia-3,4-di-azapentalenes
- GUTMANN, V., E. SCHEIBER and G.RESCH: Supercooled water. Considerations about the system organization of liquid water
- JUNEK, H., M. KLADE und H. STERK: Über Dicyanmethylen-aminoindene, Indano-pyrazine und Indano-pyridine
- KAPPE, C. O. and T. KAPPE: Synthesis of substituted 3-pyridinecarbonitriles with potential biological activity
- KINDT, P., W. DÖLLING und M. AUGUSTIN: Dithiocarboxylierung von alpha-Stickstoff-Carbanionen
- KOSTOVA, I., and S. SIMOVA: Preparation and stereochemical characterization of some N-acyl [1]benzopyrano[3,4-c]pyrazole derivatives from rotenoids
- KROIS, D., and H. LEHNER: Restricted helix inversion in chiral 2,18bridged biliverdins
- LAND, C. und H. MÜLLER-BUSCHBAUM: Über ein neues Oxoiridat(IV): $Ba_7Ir_6O_{19}$
- LIS, S., B. MARCINIAK and M. ELBANOWSKI: On the role of the ground state Tb(III)/acetylacetone complex in sensitized emission of Tb(III) in ethanol solution
- MAGER, S., M. HORN, I. GROSU und M. BOGDAN: Stereochemie und 1H-NMR-Spektren einiger von Petaerythrit abgeleiteter Spiro-1,3dioxane
- MAZURKIEWICZ, R.: Synthesis and rearrangement of 4-imino-4H-3,1benzoxazines
- REISCH, J., R. A. SALEHI-ARTIMANI und G. HENKEL: Acetylenchemie, 12. Mitt.: Synthese und Kristallstruktur des 11-Isopropyliden-1a, 10b-dihydro-1H-1,6-methano-dibenzo[b,f] cyclopropa[d]azepin
- ROSSMANITH, K., und UNFRIED, P.: Neuuntersuchung der Methode der thermischen Zersetzung zur Auftrennung von Yttererdnitraten in großem Maßstab
- SÁNCHEZ, A., M. L. QUIJANO, M. MELGUIZO and M. NOGUERAS: Synthesis of 5-glucopyranosylaminopyrano[2,3-d]pyrimidin-2-one derivatives

- SCHMIDTKE, H.-H., and M.A.ATANASOV: An angular overlap model treatment of mixed valence Pt(II)-Pt(IV) haloamine chain complexes
- SCHUBERTH, H.: Vorhersage alyotroper Effekte in ternären flüssigen Systemen
- SEPÚLVEDA-ARQUES, J., M. MEDIO-SIMÓN and L. PIQUERES-VIDAL: Cycloaddition reactions of 1-tert-butyl-4-vinylpyrazole
- VARVAERI, F.S., J. NIKOKAVOURAS, A. MANTAKA-MARKETOU and M. MICHA-SCRETTAS: Synthesis of terminally substituted 9-alkylidene-10-methyl-acridans
- Wojsz, R., and M. Rozwadowski: Comments on correct determination of structural parameters for adsorbents on heterogenous micropore systems

©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

(r .;		0.7	6.L	0.8	0.8	0.8	0.8	8.1	8.5	7.0	8.2	8.3	8.3	8.3	8.4	5.8	9.8	9.8	0.0	2.8	2.8	x .	0 0	6.8	0.6	0.6	1.6	9.2	6.3	5.8
To reite	er ° C m	0.	5.9	5.9	5.9	5.9	9.9	2.9	6.9	0.2	7.1	0.2	7.2	7.2	7.3	7.3	7.4	2.0	0.0	8.1	8.1	2.2	7.0	8.3	5.8	9.8	9.8	9.1	6.3	9.2
707 N-F	mittel d tperatur efe von	.2.(6.9	6.9	6.9	6.9	6.2	5.9	9.9	9.9	2.9	2.9	6.9	0.4	6.9	8.9	7.1	2.0	C 0	8.1	8.1	0.8	7.0	8.3	2.8	8.8	6.8	7.6	0.4	2.2
.c (Tages todenten der Ti	0.1 (6.5	2.2	9.9	5.9	0.2	0.2	6.9	0 4 7.9	2.9	7.2	7.5	8.9	7.1	6.2	8.4	1.6	4 0.0	8.2	8.2	5.8	0 ° °	9.6	8.6	5.6	6.6	2.1	2.9 1	8.2
Vart 48°	Targeomint dr. Targeomint dr. ber dam Boden Targeomint dr. ber dam Boden Targeomint dr. math Targeomint dr. ber dam Boden Targeomint dr. math Targeomint dr. math Targeomint dr. area Targeomint dr. area Targeomint dr. area Targeomint dr. area Targeomint dr. Targeomint dr. area Targeomint dr. area Targeomint dr. Targeomint dr.														9.0	1 / 1	[4.0]	9.8												
>	erdun- tung,		1.3	1.1	0.4	1.0	1.0	1.0	6.0	0.1	8.0	8.0	0.4	5.0	1.0	1.2	1.0	1.3	0.0	L.0	6.0	6.0	7.1	1.7	1.5	1.4	1.5	1.3	2.0	33°7
HOL	7 4	Mit.	55	59	84	75	60	99	19	C/	59	66	79	89	56	58	60	99	70	82	80	62	10/	60	47	52	55	64	57	66
1, 1	ive seit %	21 ^h]	52	69	93	17	63	62	64 1	00	64	65	89	93	58	54	61	65	200	88	99	75	105	76	44	48	28	55	62	67
Vict	Relati uchtigk	14 ^h	39	47	79	99	45	45	47	50	38	52	71	84	46	39	45	53	16	44	82	51	ςς 86	3 48	36	38	39	59	28	55
2	Fer	Ţћ	75	61	79	83	72	90	06	ŝ	76	81	78	91	64	82	74	80	4 0	80	92	09	63	57	62	70	69	50 78	81	76
kinn		Mit.	9.9	2.8	L.L	8.1	2.9	9.2	9.9	C /	2.8	0.2	6.L	8.3	6.5	6.1	9.8	1.6	ο	c.8	5.8	0.2	0.1	£.8	6.9	0.9	7.2	0.01	10.3	5.2
yna	druck 1	21 ^h	5.2	6.5	L.8	8.1	6.9	5.9	2.9	0 4 0.7	6.9	7.5	8.4	9.1	9.9	6.9	8.8	2.6	0.7	9.2	6. <i>L</i>	8.4	1.9 1.9	0.8	5.1	6.9	8.1	10.3	11.1	L.L
60d	ampfo hpo	$14^{\rm h}$	5.2	2.2	0.8	8.3	6.3	2.9	7.1	7.7	6.4	7.2	6.L	2.8	6.1	9.9	0.8	6.6	1.7	c 0	8.8	2.2	0.4	9.5	6.1	9.2	e. 9	13.3	8.8	L.L
19 19	Г	Ţћ	6.1	2.2	6.3	0.8	6.9	6.4	0.9	1.9	2.6	6.3	2.2	7.1	6.1	2.2	9.1	5.6	8.0	0 4 7.1	2.8	5.3	C Q	9.2	6.5	5.2	0.9	c 8 1.6	11.1	0.2
une März	Aus- strah- tng °C ⁴	Ţh	0.5	-1.5	8.0-	2.4	9.0-	-1.9	-3.6	1.6-	-3.0	0.0	3.5	-0.1	1.7	-2.1	4.7	5.9	7.7	-0.1-	8.0	-2.3	0.0	5.4	3.6	-4.0	-1.6	0.4 0.4	4.3	2.0
nat		din. ³	3.6	2.7	3.0	5.4	4.6	1.7		c 1	2.3	3.2	4.8	3.3	3.4	1.6	9.4	9.2	/	5 C	5.1	4.4	4 · c 4 · t	9.2	6.1	1.7	3.6	× 4	10.3	4.6
Mo	5 m	$[ax.^3]$	1.8	1.6	8.4	1.5	2.2	3.1	4.4	/ 0.0	1.2	1.9	8.4	9.4	1.3	3.0	6.9	7.1	11	0.5	8.6	3.5	1.6	4.2	5.8	2.2	0.6	1 22.0	5.5	3.8
eteo im	in 1 ^{.8}	fit. M	1.61	6.8	9.9	8.3	6.8	7.5	7.3	0 6 9	7.3	6.2	6.9	2.2	1.6	8.2	2.8	3.0	0./	7.4 1	6.L	2.2	8.0	2.4	0.0	6.2	1.6	4 C	7.5	6.1
W	r, °C em Bod	h N	9.2	4.4	6.9	8.2	8.4	8.L	7.5	2.6	8.1	6.8	6.1	5.9	6.4	0.2	2.4 1	3.1 1	010	7.5	9.6	8.2 2.8	ς c 1.0	9.2 1	9.0 1	0.0	2.1 1	6.5 1	5.7 1	6.8
für	iperatu über de	5		0.	.2	4	.8	8.		20	0.0	L.	4		.1	4	6.	4 0	<i>ب</i> د	10	0.	<u>.</u>	4 -	+ 1-	.1	.1	<u></u>	<u>- ic</u>	.5	9.
stalt	ufttem	14 ^h	11	10	2	10	11	12	13	ז ת	11	11	8	2	11	12	15	16	Q 7	6	8	12	x 5	16	15	15	18	19	25	12
alan		Дh	4.1	0.9	3.6	9.9	9.9	2.0	1.2	27	2.7	3.2	6.5	3.4	6.9	1.8	10'0	9.6	2.0	0.7 5.4	6.3	2.3	9.6	11.4	9.L	3.4	2.0	c.6	11.6	2.8
Zenti		Δ^2	-11.6	-4.0	-9.1	2.8	10.8	11.7	4.8	0.0	0 / 11.5	10.9	7.2	1.8	6.5	-5.6	5.6-	-9.2	40.0	° 0 −1.6	-3.0	3.5	4 - 0 - r	1.4 4.1	8.6	6.6	0.9	ο 9 8.2	2.6	2.9
ler		Ait.	1.62	86.3	81.0	7.26	00.5	01.3	94.3	88 4	L.00	0.00	6.3	6.06	94.8	83.3	4.62	1.62	426	87.2	8.58	92.3	5 56	2.06	9.86	2.86	94.8	C C6	61.3	92.1
Gr.	uck ¹	V	8.		6.	4	.8 10	.2 10	9	2 1	2010.	.3 10		4	4	<u> </u>	5 9.	5	- :	11	5 9.	6.	4 :	2.0	0.1	4	5.0	x 0.	. 5	4
n a ge v.	uftdru hpa	21 ^h	981	988	981	266	1000	1001	066	10001	1001	666	966	991	993	980	978	626	166	c44 984	987	992	866	993 993	666	266	993	766 266	988	992
ungc 3-Läng	1	14 ^h	6.626	L.986	980.4	992.3	1000.4	1001.0	6.866	0.786	1000.4	1000.0	8.266	2.686	6.466	6.186	978.3	9.626	0.466	2.986	985.2	992.4	6.166	9.886	0.866	9.866	994.9	c 466 096.3	5.166	9.166
acht		Ţћ	976.3	984.0	9.086	988.4	000.3	7.100	5.866	1.786	8.000	2.000	8.966	992.2	1.966	987.4	981.4	6.626	1.686	9 8 8 9 9 9 0 1 1	984.6	2.166	1.686	6.886	6.866	2.000	2.566	998.3	994.3	992.3
16°	ag		-	0	3.	4	5. 1	6. 1	2	xi o	10.	1	12.	13.	14.	15.	16.	17.	18.	20.	21.	22.	23.	25.	26.	27. 1	28.	30.	31.	littel
4																														2

24stündiges Temperaturmonatsmittel: 9'1 Grad

8
0
T
N
34
V
\sim

Bemerkungen zum Wetterverlauf	Intensität 0,1,2,= leicht, mäßig, stark	$ \begin{array}{l} \bullet Tr_{\bullet}0_{21}^{15-50},\\ \bullet_{013}^{16-36}, \bullet Tr_{15}^{22-30},\\ \bullet Tr_{\bullet}0_{52}^{26}, \bullet_{01}^{21} - 8^{45}, \bullet^{0117-1} + 3^{30} - m U - 18^{65} \operatorname{abdi};\\ \bullet Tr_{\bullet}0_{51}, \bullet Tr_{10}, \bullet^{11-6} - 8^{45}, \bullet^{01135-40}, \bullet^{-1130}, m - p_{1}(R) p_{10}, \bullet^{0264},\\ \bullet 0^{228-35}, \end{array}$	$\begin{array}{c} \Box^{0-1} f_{t,\infty} \sigma^{0-2} f_{t-n} p_{t;} \\ \Box^{0-1} n_{-} \Omega^{n-1} n_{t-1} f_{t-\infty} \sigma^{0-1} p_{-n} p_{-} \Omega^{0} p_{t;} \\ = T n_{-} \Delta^{-1} n_{0} + 1 \eta^{8-n} \Omega^{-0} \sigma^{0-1} 1 2^{22-1} \eta^{6} \sigma_{T-1} 8^{40} n_{pi} p_{t;} \\ = T m_{0} \sigma_{T} \sigma^{0} \eta^{1/2} \Omega^{-1} \sigma_{T-pi} abdi; \\ \Box^{0} f_{t,\infty} T \sigma^{0} \eta^{7/2} - 20^{20} \eta; \end{array}$	$\begin{array}{l} & \Delta^0 \mathbf{f}_1, \mathbf{\sigma}, \mathbf{T}, \mathbf{m}, p, \mathbf{n}; \\ \bullet \mathbf{T} = 0^{-1} \mathbf{Y}_2, \mathbf{T} = 1^{20} \mathbf{U}_{-1} \mathbf{U}_{-1} 1^{21} \mathbf{Q}^{20} \mathbf{U}_{-1} \mathbf{U}_{-1} 1^{11} 1^{613-00}; \\ \bullet \mathbf{T} = 0^{-20} \mathbf{U}_{-1} \mathbf{U}_$	$\begin{split} \bullet Trn, 8^{12}-mU-8^{25}\circ 0-9^{30}\bullet Tr_{-11}(0^{5};\\ \bullet^{0}(0^{11}-mU-e^{0-1})6^{52}-2^{08}\bullet Traiai, \infty^{1}fr-a_{12}dad, \bullet Trm;\\ \bullet^{0}(0^{12}-mU-e^{0-1})6^{52}, Traia, 0^{1}(0^{1-1})2^{43}e^{1}, e^{1}(0^{1-2})e^{1}e^{1}e^{1}e^{1}e^{1}e^{1}e^{1}e^{1}$	$\begin{split} &= & \mathbf{\sigma}^{2n-\mathbf{\omega}^{D-2}} \mathbf{P} = & \mathbf{b} \mathbf{d}, \mathbf{T} \mathbf{r} \bullet & \mathbf{b} \mathbf{g}^{45}, \\ & \boldsymbol{\Omega}^{2n} \mathbf{b} \mathbf{d} - & \mathbf{p}; \\ & \boldsymbol{\Omega}^{2n} \mathbf{b} \mathbf{d} - & \mathbf{p}; \\ & \boldsymbol{\Omega}^{2n-\mathbf{n}} \mathbf{f}_{\mathbf{r},\mathbf{\sigma}} \mathbf{T} \mathbf{r} \bullet & \mathbf{p} 1 2^{2n} 1 2^{2n} \mathbf{d} 1 2^{2n}, \\ & \boldsymbol{\Omega}^{2n-\mathbf{n}} \mathbf{f}_{\mathbf{r},\mathbf{\sigma}} 1 1 3^{n-\mathbf{d}-1} 1 2^{2n} 1 2^{2n}, \\ & \boldsymbol{\Omega}^{2n-\mathbf{n}} \mathbf{f} \mathbf{r} \mathbf{r} \mathbf{n} \mathbf{p} \mathbf{n} \mathbf{r} \mathbf{p} \mathbf{r} \mathbf{n} \mathbf{r} \mathbf{p} \mathbf{n} \mathbf{r} \mathbf{n} \mathbf{n} \mathbf{r} \mathbf{n} \mathbf{r} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{r} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{r} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n$	$\begin{array}{l} & \Omega^{0-2}abd\mbox{-np;}\\ & \Omega^{2}n\mbox{-fr,} \mbox{-fr,} \Omega^{0}fr, \infty^{0}fr,\\ & \Omega^{n-1}(fr, \infty^{0}fr,\\ & \Omega^{n-1}(fr, \infty^{0}fr,\\ & \Omega^{2}n\mbox{-1}g^{1}(1^{2})\mbox{-n}^{-1}(1^{2})^{2}) \\ & \Omega^{0-2}n\mbox{-np,} \Omega^{-2}abd\mbox{-np;}\\ & \Omega^{-2}n\mbox{-fr,} \Omega^{0}abd\mbox{-np;}\\ & \Omega^{-2}n\mbox{-fr,} \Omega^{0}abd\mbox{-np;} \end{array}$	Tage mit: $\bullet_{\bullet} \star \blacktriangle \equiv^{0-2}$ If (If) Ed $\downarrow_{\mu} \downarrow_{\mu}$	n Mittel. ³ Aus der Registrierung von 0–24 Uhr. ⁴ Temperatur- "Reif, V Rauhreif, \sim Glatteis, R Gewitter über Ort, (ŋ) Gewitter r i mit Unterbrechungen, na frühmorgens, fr früh, a vormittags,
Hum Form Schnee- höhe ⁹								1 1	ngjährige ∟ Tau, ∟ mU ode
mm Form	Sum. ⁸	0.0 0.0 0.6●∆ 0.6●∆	$\begin{array}{c} \cdot \\ \cdot \\ 0.1 \\ 0.0 \end{array}$	$ \begin{array}{c} 0.0\\ 1.2\\ .\\ 0.0\\ \end{array} $	0.0 2.4 0.0	0.7 . 4.4 0.0			tung vom lar ebelreißen, ∠ 8 und mehr,
Niederschlag in n Wasserhöhe und F	21 ^h	0.0 0.0	$11.1 \\ 0.0$	$ \begin{array}{c} 0.0 \\ 1.1 \\ . \\ 0.0 \\ \end{array} $	· · 0.4	$\begin{array}{c} 0.1 \\ 0.2 \\ 0.2 \\ 1.0 \end{array}$	· · · 4· ·	- 9.6	: Abweich ınst, ≣: N 'indstärke
	14 ^h	0.0 0.5 0.1•∆	0.5 0.1	0.0 0.1 0.0	0.0 2.0 0.0	0.6			pa. 2 △ = ph in cm.= Nebeldu(chr, wW
	Дh	0.0 0.0 .0	0.0	0.0 4.1	0.0 5.0 0.0		0.1 0.4	5.1	$t_r = 0.00 \text{ H}$ h. $^{\circ} \text{ Um } 7$ $\equiv \text{Nebel}, = \text{Nebel}, = 0.00 \text{ H}$ $t_r = 0.00 \text{ H}$
Windgeschwin- digkeit, m/sek	Aaximum ⁷	^v SW 16 ^{.4} W 19 ^{.2} SW 3 ^{.3} NW 10 ^{.6} NW 10 ^{.6}	ESE 81 NE 42 W 1922 W 183 NW 72	S 5:0 E 5:3 W 14:2 NW 16:9 VSW 9:2	W 92 W 1922 NW 1444 NW 72 SE 136	чw 12°5 W 12°8 чw 16°9 W 16°7 W 20°3	NW 12'2 E 6'1 SE 7'2 W 11'9 NW 7'2 SW 6'4	_ 11.7	= +0.25 hpa, E * Von 7 ^h bis 7 * Δ Eisregen, \equiv , Δ Windstärk, or Nacht, wer
	Mit.6 N	4.2 W 4.3 2.3 W 3.3 W 2.4 W	6.3 6.3 6.3	2.1 W	325 320 W	6 .122 6 .12	3.54 W 1.59 W 1.59 W	- 2.9	ktur. Ge- lickswert. A Graupeln hneedecke angegange
-stärke 3rade)	21 ^h	W W C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSE 2 WW 1 SSE 3 SSE 1	E N N SW 2 SW 2 SW 2	SE WN NW	WNW 3 WSW 2 WNW 3 WSW 4 NW 4	WNE 2 SSE 2 ENE 1 NW 1 WW 1 WW 1	2.0	umentenkorre tel. ⁷ Augenb 2, ▲ Hagel, ∠ flocken, ⊠ Sc h auf die vor
htung und Beaufort-C	14 ^h	WSW 4 WW 4 NW 3 NW 3 NW 2	ENE 2 ENE 1 WWE 2 NNE 2	SE 2 SSW 1 ESE 3 W 4 SSW 2	SE 23 NW 22 SE 4 22 SE 4 22	WW SSE 4 3 3	NW 3 ENE 2 SE 2 W 3 ESE 1 W 2 ESE 1	- 2.7	nd mit Instri tündiges Mit In, & Schnee &FI Schneed s (bezieht sic
Windric (0–12	Дh	WSW 3 W 3 E 1 NW 2 WNW 3	NNE 1 NE 2 SW 4 1 SW 1	SE 232 CWSE 211 CWSE 222	SW 2 WW 1 WNW 2 ESE 3	W 2 W 2 W 3 W 3 W 3	WNW 3 WSW 1 C 0 SSE 1 SSE 1	1.8	ekorrektur u unden. ⁶ 24si egen, 9 Niese egentropfen, nds, n nacht
Son- nen-	schem	8.9 6.1 1.0 3.2	$9.1 \\ 0.3 \\ 0.3 \\ 0.3 \\ 2.3 \\ 2.3 \\ 0.3 $	$ \begin{array}{c} 1.6 \\ 0.0 \\ 3.1 \\ 1.5 \end{array} $	3.3 9.3 1.8	$ \begin{array}{c} 0.0 \\ 7.9 \\ 9.9 \\ 6.2 \\ \end{array} $	10.6 9.8 9.6 9.6	145°3 4°7	t Schwer uer in St gen: • Re it, • Tr Re
-10, nin	Mit.	$ \begin{array}{c} 4.7\\ 3.7\\ 10.0\\ 9.0\\ 7.0\end{array} $	0.3 6.7 7.3 7.3 7.3	$ \begin{array}{c} 7.3 \\ 9.7 \\ 6.0 \\ 6.0 \\ 9.3 \\ 9.3 \\ \end{array} $	7.9 7.9 7.0 7.0 7.0	10 ⁰ 6 ³ 8 ⁰ 3 ³ 7 ³	$2.0 \\ 0.3 \\ 1.0 \\ 1.0 \\ 3.0 \\ 3.0 $	- 6.2	: 3. ¹ Mii len. ⁵ Da bkürzun o Duns bends, nj
völkung (Menge 0–10 Dichte ^{0–2}) 'itterung zum Termin	21 ^h	$\begin{array}{c}10^1\\0\\10^1\\9^1\\7^1\end{array}$	$\begin{smallmatrix}&0\\&1\\10^1\\10^1\end{smallmatrix}$	$\begin{array}{c}101\\91\\91\\91\end{array}$	370^{-10}	101 50 81 91	000100	- 0.9	4 ^h +21 ^h) dem Bod en und A fleuchten, gs, abd a
	14 ^h	$\begin{array}{c} 2^1\\ 7^1\\ 8^2\\ 5^1\\ 5^1\end{array}$	$\begin{array}{c}1_{0}\\6_{0}\\9_{1\bullet}\\10^{1\bullet}\end{array}$	10^{1}_{-10} 10^{1}_{-10} 6^{1}_{-10}	$\begin{array}{c} 4^{0}\\ 10^{1}_{\bullet}\\ 9^{1}\end{array}$	$\begin{array}{c} 10^{1} \bullet \\ 8^{1} \bullet \\ 10^{1} \bullet \\ 3^{0} \bullet \\ 6^{2} \end{array}$	$^{8}5^{0}_{0}^{0}^{1}_{0}^{0}^{0}_{0}^{0}_{0}^{0}$	9.9	el (7 ^h + 1 cm über te Zeiche & Wetter achmittag
Beu	Дh	$\begin{array}{c} & 2^1 \\ & 4^0 \\ & 10^2 \\ & 9^1 \\ & 9^1 \end{array}$	<i>5</i> , 5, 6, 0	$\begin{array}{c} & . & . \\ & . & . \\ & . & . \\ & . & . \\ & . & .$	$\begin{array}{c} 10^1\\ 8^1\\ 6^1\\ 10^1\end{array}$	$\begin{array}{c} 10^{1} \\ 6^{1} \\ 6^{1} \\ 7^{1} \\ 7^{1} \end{array}$	10^{-11}	- 0.9	agesmitt um in 6 erwende gebung, ags, p n
Tag		−004u	910,9876	11 12 12 12 12 12 12 12 12 12 12 12 12 1	11 11 20 0 20 0	22 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	31028 31008 310008 31008 31008 31008 31008 31008 31008 31008 31008 310000 310000 3100000 310000000000	Summe	T. Minim V. V. Min Mitt

1),	
5 m	
. 40	
(5(
te	
/ar	
Þ	
he	
H	
J,	
/iei	
×	
ik,	
am	
yn:	
po	(
G	0
p	
un	
ile	
log	
DIO	į
stee	
Me	
ir	
ff	
talt	
Inst	
rala	
nti	
Z	
er	
p q	
an	
ten	
gut	
htu	
Dac.	
cot	
B	

16°21'7' E-Länge v. Gr.

im Monat April 1989

48° 14'9' N-Breite.

			_	-	_	_	-	_	-	-			_	_	_	_	_	-	-	-	-	-			-			_		_	
		2.0	9.4	9.4	5.6	9.6	2.6	8.6	6.6	10.0	10.1	10.1	10'2	10.3	10.4	10.4	10.5	10.6	10.7	0.01	10 9	11.0	11.1	1111	11.2	11.3	11.4	11.5	11.5	11.6	10.5
Tagesmittel der Bodentemperatur /° C in der Tiefe von m	0.1	9.6	6.6	0.1	0.0	6.6	8.6	0.0	0.5	0.3	2.0	8.0	1.2	1.2	1.5	1.6	1.2	1 00	- !	1	1.7	1.9	0.7	2.1		10.0	2.1	2.0	1.8	1.1	
	S.	1.0	1.1	0.51	16.6	6.6	0.2	0.3 1	0.51	1.2 1	1.6	2.0 1	2.3 1	2.6 1	2.5 1	2.2 1	2.5 1	2.61		107	2.41	2.7 1	197	1 0.2		1 1.0	2.41	1.91	1.4 1	1.7	
	1 0	.0 1	4	.8 1	0.0	6.0	.9 1(.4 10	.010		.8 1	111		16.	41	16.	.4	01	11		4	6 1	17	211	· ·	· ·	. 19	.31	.7 1		
,	Bot in a	0.2	.6 13	5 11	9.	7 10	.4 10	·4 10	.0 11	.9 12	7 12	.0 13	.1 14	.6 14	2 13	.2 12	2 13	2 14	6 12	11	61 6	1 14	0 13	11	5 13	0.13	1 1 1 2	2 11	2 10	5 6.	.1 12
		0.0	2 13	6 11	2	4 10	8 11	3 11	5 12	7 12	$\begin{vmatrix} 3 \\ 0 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 1$	9 15	5 15	5 15	5 14	0 12	0 15	7 15	4 12	212	5 14	3 15	0 14	2 13	2 13	2 14	1 2	7 11	6 10	4 9	4 13 ^{ne}
	Verdur stung mm		.1	ö	0	0		1.				5.	3.	3.			1.				-	. 13				· ·	n ċ	• · •	0.0	.0	44 [.] Sumn
-	%	Mit.	75	69	8	5	65	72	57	65	55	42	50	50	67	79	65	67	2 x	0,0	89	9	23	99	61 61	40	P L	82	62	88	67
	tive keit	21 ^h	84	86	94	72	60	77	65	63	4 4 4	34	51	43	75	74	69	65	86	4	99	58	95	69	5.85	с С	62	06	78	90	69
	Rela uchtig	14h	76	54	91	99	47	56	35	46	46 36	27	38	45	60	75	54	48	99	60	48	45	55	52	52	33	55	68	70	89	55
l Feuc		Ţћ	64	68	81	93	87	83	70	85	67 84	99	62	61	99	88	72	88	287	<u>, </u>	16	78	65	1	73	63	35	89	60	84	78
		Mit.	6.0	2.2	7.1	8.0	9.2	9.4	9.2	0.6	0.6	8.2	9.4	9.2	6.6	9.8	2.0	0.3	7.5	7.0	1 0	0.0	2.8	9./	C /	0.0	0.6	8.1	7.2	8.2	8.8
	ruck	21h /	0.1 1	8.9	5.2	1.7 1	8.1	6.6	0.8	6.8	6.8	7.2	9.6	8.1	6.8	8.4	1.5 1	9.7 1	2.2	x x	[د ۱	0.3 1	0.0	9./	× .8	2.0	0.0	2.2	7.1	6.L	8.8
	impfdi hpa	4h 2	2.7 1	5.1	6.L	2.5 1	9.1	L.6	6.9	2.6	6.8	0.8	0.0	2.0	1.6	5.8	1.9 1	6.6	9.2	1 6.0	1 6 6	9.6 1	8.01	51	2.6	1 7.8	x		7.1	8.3	0.6
Da	7h 1	1 0.0	2.1	0.9	8.1 1	0.3	5.8	6.2	4.8	9.6	6.6	8.7 1	8.7 1	9.2 1	8.8	8.7 1	1.2	2.2	x .	4 4	0.0		6.1	7.00	7.8	+ °.C	0.8	7.3	7.3	5.8	
	C4 -		.1 1	4	6.0		.81	6.0	8	5	6.0		1	0.	9	6.	6.	.1	4	n i	n	.61	in i	6.0	0.0				6.1	<u> </u>	
	Aus stral lung °	Ţh	9	2	0	<u>(</u>)	4	0	CI	0	200	4	4	ιn.	4	ſ	9	3	() (7		~	0,					7	. (1	ŝ	<i>c</i> 0
		Min. ³	4.5	2.1	1.7	3.6	8.3	2.0	0.2	4.5	6.9 6.7	6.8	10^{2}	11.2	9.4	2.9	9.8	0.2	2.7	0.1	6 9	9.2	6.2	2 1 1	0 ic	1 U.O		0.5	3.8	4.6	0.9
	C in 1.85 m oden	Max. ³	19.6	6.4	5.2	16.9	18'3	16.3	17.9	19.8	18.0 20.7	24.5	22.7	20.7	17.6	6.4	19.4	19.3	9.1	15.8	18.2	19.6	14.1	13.0	16.7	7.10	16.1	6.6	6.2	6.2	15'9
		Mit.	12.6	4.2	3.8	12.1	12.6	11.1	12.1	12.5	13 ⁵ 15 ⁵	18.2	16.8	16.4	12.8	8.1	14.5	13.8	6.2	0.0	13 3	15.0	10.2	5.6	11.5	8.91	2.0	6.9	5.6	5.4	11.4
	r, °C m Bc	h	9.6	3.2	3.6	4.4	1.6	9.0	6.6	2.2	1.8	8.5	5.9	8.9	5.6	2.8	4.6	3.1	5.0	c 6	4	5.2	2.8	4.0	9.2	L. L	9.2	4.5	5.2	5.1	6.0
	ber de	2	2	-	6	-	6	2	10	4			2	4	0		0	<u>~</u>	0	<u>, ,</u>	<u>~</u>	<u>~</u>	10.0		0 00	<u> </u>	-	1 00	. —	6	
	fttemp ü	$14^{\rm h}$	14"	.9	4	16''	16.	15.7	17.	18.	20.	24.	22.	20.	17.0		19.(17.		51	1/	18.	12.	12	1.10	.10	10	.6		.0	14.
	Lu	ч	3.6	3.0	2.8	5.1	9.4	7.4	8.8	8.9	1.6	2.2	1.8	2.0	2.0	0.2	8.6	5.0	4.7	7.7	8.1	9.0	0.3	1.3	4.2	V. F	1.0	2.6	4.1	5.1	8.4
		7	+	10	~	<u>,0</u>	9	~	8	4	<u>+ 0</u>	1	1	9	1		01	1	011		+	1	-	20 1	" 			1		9	~
		Δ^2	-2.	.c-	-7-	-10.6	-13.	.9	0.0	.0	7 12		9	-12.	-11	-1-1-1	8	-13.	7	- 6	5	T	4		7 "	10.1			о. С	3.	9.C-
		t.	3.3	5.2	6.4	8.1	5.1	2.4	5.6	9.1	1.1	7.4	1.9	8.9	9.2	3.0	5.0	2.2	7.5	4.0	1.2	L.L	4.8	9.0	C		7.6	3.1	1.9	2.4	6.4
		M_{1}	98	98	98	67	67	98	98	98	66.86	- 68	98	97	- 97	98	98	61	86	66 8		98	86	66.8	66 86	0	20	× 86	66	66	6
	ftdruck hpa	$21^{\rm h}$	982.4	986.1	985.1	8.826	6.626	982.6	9.166	0.286	992 ^{.2} 986 ^{.4}	0.286	980.1	974.6	980.4	983.7	6. <i>LL</i> 6	6.926	991.3	8.686	990.4	984.7	6.286	7.166	0 066	1.920	0.280	1.986	993.3	7.266	0.586
grip	Lu	म	2.1	4.8	6.4	6.4	2.4	1.8	9.6	8.4	1.9	7.1	1.2	0.9	2.9	3.2	0.3	6.4	8.4	1.0	6.0	0.8	4.6	2.0	у 0 7. 7.	· · · ·	7.0	4.0	1.6	2.2	4.5
		14	1 98	98	86	97	6 5	98	1 98	86	86 86 86 86	96	1 98	61	97	66 (98	97	86 8	46 99	66 1	1 98	98	66 0	66	6	200	86	66	66 1	- 38
1 17	1	Дh	985.4	984.6	3.286	1.626	673.5	982.6	4.786	3.166	9.686	0.886	984.4	5.116	975.6	982.(983.3	3.476	982.5	7.166	7.266	7.066	984.0	3.686	5.886	1.000	002	5.086	3.066	7,766	2.586
DT I	Tag	L	1.	5	3.	4.	S.	6.	7.	8.	9. 10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.		.07	28.	29.	30.	Mittel

Sommerzeit (+1 Stunde) nicht berücksichtigt!

68
361
11
pr
\mathcal{T}

Bemerkungen zum Wetterverlauf	Intensität 0,1,2 , = leicht, mä β ig, stark	$\begin{split} \bullet Tre^{0}m-mU-e^{0-1}13^{25-30}e^{0}-mU-e^{1-2}14^{09-25}e^{0}-p_{11}R^{0}p,\\ \bullet^{0}ni, \Re^{0}na, \bullet Trmi, \bullet Tre^{0-1}abd-24; e^{0}16^{08}, mU-18^{30}e^{0-1}-24;\\ \bullet Tre^{0}n-nai, \bullet Trfri, sp-mU-e^{0-1}22^{25-24}, \equiv 0 + 22^{25}-24, = 0 + 22^{25}$	Δ ⁰⁻² n-fr,Δ ⁰⁻¹ abd-np; Δ ¹ n,Δ ⁰⁻¹ abd-np; Δ ¹⁻²ⁿ -fr,∞0fr,Δ ¹ np; Δ ⁰⁻¹ n-fr,∞1fr,Δ ¹ np; Δ ¹⁻²ⁿ -fr,∞1fr ₆ , ⁰⁰ -mU– ⁰ ⁰⁻¹ 7 ³⁴ –8•Tr–8 ¹⁰ ,Ω ⁰ abd-np; Δ ¹⁻²ⁿ -fr,∞ ¹ fr ₆ ;	Δ ⁰ ha-fr; Δ ⁰⁻¹ ha-fr;∞ ⁰ abd; Δ ^{17,3} ber, 2 ^{12,2-25} , (ff) ⁰ 1,4 ⁰⁵⁻¹⁵ , ⁰ ¹ 1,5 ¹⁸ -17 <i>i</i> ; Δ ⁰ fr, 2 ⁰ ha, ² 71-2 ¹²³ , (ff) ⁰ 1,4 ⁰⁵⁻¹⁵ , ⁰ ¹ 1,5 ¹⁸ -17 <i>i</i> ; 4 ⁰⁻² 1-671, ²⁰ 835-11. ³⁰ 1,λmai, fr, 9 ⁵⁰ -22. ³⁰ 1, ²⁰ 17-016-18 ²² , npi;	$\begin{array}{l} \varpi^{0}{}^{a}bd-mpi, \Box^{b-1}abd-mp;\\ \Box^{1-2}n-ft, \omega^{1-2}ft, = T {\rm rabd}, = T {\rm re}^{0}2^{0}3^{0}0^{-0} {\rm -}^{-2}21 {\rm -}22^{2}^{0}3^{0},\\ \Box^{1-2}n-m(1-\sigma^{3})^{0-3}5^{-1}{\rm re}^{0-1}2^{2}^{0}{\rm r}^{1}{\rm p}^{2},\\ \bullet^{T}{\rm Tr}-m(1-\sigma^{3})^{0-3}{\rm r}^{2}{\rm r}^{2},\\ \Pi^{n-2}n;\\ \Box^{0-1}{\rm na}^{-ft}, \omega^{1-2}{\rm r}^{1}, \end{array}$	$\begin{array}{l} & \Box^{-1} r_{f,\bullet} T_{r,\bullet}^{-1} r_{\bullet}^{01} (s^{27-50}_{r,1} 1r^{30-55}_{r,21} 2s^{8}_{r,22} 2s^{8}_{r,1} \\ & \bullet^{0} a_{1,\bullet} O^{-1} (s^{0+4}_{r,\bullet} - v^{-2} (s^{48}_{r,\bullet} - Tr(8-18^{10}_{r,\bullet} - Tr_{\bullet} 0^{-1} 19^{11}_{r,0} 1r) \\ & \bullet^{1} r_{\bullet} \delta(s^{45}_{r,\bullet} s^{40}_{r,0} - Tr_{r,a1} 12^{24}_{r,1} 13^{25}_{r,1} \alpha^{0-2} abd-np; \\ & \bullet^{1-2n-f_{r,o}} (r_{r,o} - abd-np; \\ & \Box^{-2n-f_{r,o}} (r_{r,o} - abd-np; \\ & \Box^{-1n-f_{r,o}} (s^{0} - tr_{r,o} - s^{0}_{r,0} - tr_{r,o} - s^{0}_{r,0} - s^{0}_{r,0} - s^{0}_{r,0} \\ \end{array}$	$\begin{array}{l} {}^{\bullet}{\rm Tr}_{6}{}^{50-57};\\ {}^{\bullet}{\rm Tr}_{6}{}^{0}{\rm t1}{}^{21-1}{}^{255}, {}^{\bullet}{}^{0}{\rm t4}{}^{31-1}{}^{516}, {}^{\bullet}{}^{0-2}{}^{023}, {}^{22}{}^{24};\\ {}^{\bullet}{\rm Tr}_{6}{}^{0-1}{}^{0-2}{\rm t0}, {}^{\bullet}{\rm Tr}_{6}{}^{0-1}{}^{0-1}{}^{630}, {}^{073}, {}^{\bullet}{\rm Tr}_{34}, {}^{\bullet}{}^{-2}{\rm t5}{}^{52}{}^{-24}, {}^{\mu\nu}{\rm abdi};\\ {}^{\bullet}{\rm e}{}^{0-1}{}^{0-1}{}^{-21}{}^{15-3}{}^{30}, {}^{0-1}{}^{-4}{}^{640}, {}^{\rm Tr}_{6}{}^{0-1}{}^{-3}{\rm abdi};\\ {}^{\bullet}{\rm Tr}_{6}{}^{0-1}{}^{-1}{}^{0-2}{}^{12}{}^{-2}{}^{23};\\ {}^{\bullet}{\rm Tr}_{6}{}^{0-1}{}^{0-2}{}^{0-2}{}^{24}; \end{array}$	Tage mit: $\bullet_{\bullet} \star \triangleq \equiv^{0-2}$ R (R) Ed \downarrow_{\bullet} \downarrow_{\bullet}	:n Mittel. ³ Aus der Registrierung von 0–24 Uhr. ⁴ Temperatur- LReif, VRauhreif, ~ Glatteis, R.Gewitter über Ort, (ß) Gewitter er i mit Unterbrechungen, na frühmorgens, fr früh, a vormittags,
Schnee	hone					••,•••		1 1	ginrig L , Tau, د mU od
mm Form	Sum. ⁸	4.6 米 2.9 1.8 0.2	0.0	0.0 6.3 1.0	· 4.2 4.2	0.0 0.0 0.0	4'7 21'9 1'3 34'6	8.88	ung vom lar ebelreißen, <i>e</i> 8 und mehr,
hlag in he und	21 ^h	2.4 0.9 3		0.0	0.0	6. č 0.0	$\begin{array}{c} \cdot \\ 0.1 \\ 111.0 \\ 0.0 \\ 9.3 \end{array}$: Abweich ınst, ≣: N 'indstärke
Niedersc Vasserhö	14 ^h	0.0 0.0 0.0	2.0	1.0	0.4	0.0	$\begin{array}{c} \cdot \\ 0.1 \\ 1.0 \\ 1.3 \\ 6.0 \end{array}$		pa. 2 △ = ph in cm. = Nebeldu chr, $u W$
Z	Дh	1.9 * 1.5	0.0	0.0	0.0	0.0	$\begin{array}{c} 0.0\\ .\\ .\\ 9.9\\ 0.0\end{array}$	- -	k = 0.00 h h. 9 Um $\Xi \text{ Nebel, = 0.00 \text{ h}$ E out m k = 0.00 m
schwin- m/sek	aximum ⁷	A 12.8 NE 8.3 E 10.6 E 16.7 E 16.7	SE 9.7 V 14.7 SE 10.6 V 17.2 SE 15.8	SE 12.2 SE 18.3 SE 14.2 V 24.2	C 17.2 C 15.3 E 10.3 E 9.4	SE 13°3 V 18°3 VW 11°1 VW 11°1 VW 11°1 E 17°2	E 15.8 V 18.3 V 20.8 V 17.5 V 17.5	- 14.3	+0°25 hpa, B Von 7 ^h bis 7 ^j ▲ Eisregen, ≡ ▲ Windstärke c Nacht, wer
Windge digkeit,	lit.6 M	22.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	3.94 ES	0.9 VV	223332 22300 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 2200000 200000 20000 2000 2000 2000 2000 2000 2000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 2000000	3.1 E3 4.6 VN 1.6 NN 1.6 NN	4.4 5.1 5.7 7.1 7.1 7	4.0	tur. Gc= ckswert. ⁸ 3raupeln, needecke, J
-stärke rade)	$21^{\rm h}$ M	VNW 2 E 2 SE 3 SE 2 VNW 1	ESE 2 WSW 1 ESE 1 S 3 S 3	SSE 3 SSE 3 ESE 4 W 5 M 7 1	SE 2 WSW 4 VNW 1 ESE 1 SE 2	S 1 S 1 S 1 S 1 S 2	SSE 3 W 3 WNW 3 WNW 3	- 2.6	mentenkorrek el. ⁷ Augenbli, ▲Hagel, △(ocken, 弼 Schi ocken, I auf die vorai
ıtung und . Beaufort-G	14h	N 3 P E 1 ESE 3 SE 3 SSE 4 V	E SE 3 SE 4 SE 4 SE 4 SE 4 SE 5 SE 4 SE 5 SE 5	SE 3 SE 5 E 4 S 3 WSW 6	E 2 SSE 3 7 WNW 3 R SE 3 ESE 3	ESE 4 WSW 3 V W 2 V NE 2 V SE 4	SSE 4 W 4 WW 3 VNW 4	3.3	nd mit Instru ündiges Mitte In, & Schnee, & Fl Schneefl
Windrich (0–12	Ţh	WNW 1 NNE 2 ENE 2 SE 3 SE 3 NW 1	ENE 1 W 4 W 5 W 5 ESE 1	NN NE ESE NN N S	ENE 1 ENE 1 ENE 1 ENE 1 ENE 1	SEWWE	SE 2 WSW 4 W 3 W 4 V 4	2.2	ckorrektur u unden. ⁶ 24st sgen, 5 Niese egentropfen, nds, n nacht
Son- nen-	schein ⁵	, 4.0 0.0 5.3 3 7.3	7.0 8.7 6.2 7.1	7.7 7.7 0.8 0.2	10.5 6.7 0.7 8.3 9.9	6.4 6.6 3.1	$\begin{array}{c} 0.5 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	140°4 4°7	: Schwer uer in St gen: •R tt, •Tr R
-10, 1im	Mit.	$ \begin{array}{c} 8.0 \\ 10.0 \\ 8.3 \\ 8.3 \\ 2.3 \end{array} $	6.3 6.3 6.3	7.0 7.3 7.7 9.7	0.7 6.3 6.3	7.7 6.4 0.3 7.7	$ \begin{array}{c} 10.0 \\ 9.7 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ \end{array} $	- 8.9	: 3. ¹ Mii len. ⁵ Da bkürzun ∞ Duns >conds, np
Menge 0- te ⁰⁻²) zum Tern	21 ^h	101 102 81 21 21	61005	$ \begin{array}{c} 10^{0} \\ 9^{1} \\ 10^{1} \\ 9^{0} \end{array} $	$\begin{array}{c} 0 \\ 10^{1} \\ 6^{1} \\ 6^{1} \end{array}$	$ \begin{array}{c} 10^{1}\\ 10^{2}\\ 0\\ 0 \end{array} $	10^{1} 10^{1} 10^{1} 10^{2}	- 6.4	4 ^h + 21 ^h) dem Bod en und A fleuchten, gs, abd al
völkung (Me Dichte ^{0.} ⁷ itterung zun	14h	10 ² 10 ² ≡9	$ \begin{array}{c} 01 \\ $	$\substack{90\\19\\10}$	6°	$\begin{array}{c} 10^{1}\\ 10^{1}\\ 3^{1}\\ 10^{1}\end{array}$	10^{1} 10^{1} 10^{1} 10^{2}	7.3	el (7 ^h +1 cm über te Zeiche & Wetter achmittag
Ber	Ţh	$ \begin{array}{c} 10^{1} \\ 10^{2} \\ 3^{0} \end{array} $	04 L 04 L 01	20 101 101	$\frac{10^2}{5^0}$	8 0 . 8 0 .	10^{2} 9^{1} 10^{2} 10^{2} 10^{2}	9.9	agesmitt um in 6 crwende gebung, tags, p n
Tag		-004v	9601	112010	116 118 20 20	222222	22 28 29 30 29 29	Summe	T N N M M M M M

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Nr. 5

Sitzung vom 23. Juni 1989

Das wirkl. Mitglied Josef ZEMANN legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

 $\begin{array}{l} \mbox{Synthese des Zn-Endgliedes des Zemannits,} \\ \mbox{Zn}_2[{\rm TeO}_3]_3{\rm Na_xH_{2-x}}\cdot y{\rm H}_2{\rm O}~(x\approx2), \\ \mbox{und seine Kristallstrukturbestimmung} \end{array}$

Von Ronald MILETICH

(Institut für Mineralogie und Kristallographie der Universität Wien)

Zemannit, $\{(Zn, Fe)_2[TeO_3]_3\}$ Na_xH_{2-x}·yH₂O ist ein zeolithartiges Telluritmineral (MANDARINO & WILLIAMS, 1961; MATZAT, 1967; MAN-DARINO, MATZAT & WILLIAMS, 1969, 1976). Die Kristallstruktur wurde von MATZAT (1967) bestimmt. Über eine Synthese wurde bisher weder für Zemannit selbst, noch für das Fe-reiche Glied Kinichilit (HORI, KOYAMA & NAGASHIMA, 1981) berichtet.

Die Synthese des Zn-Endgliedes gelang unter hydrothermalen Bedingungen in mit Teflon ausgekleideten Stahlautoklaven (V ≈ 6 cm³): 2 g von einem Gemenge aus ZnO und TeO₂ (Molverhältnis 2:3) wurden mit 1,5 ml ~ 10 N NaOH in den Reaktionsraum gebracht. Nach Erhitzen auf 470 bis 510 K über ca. 75 Stunden und einer Abkühlzeit von 12—24 Stunden bildeten sich hexagonale, klare, farblose, prismatische nach [00.1] gestreckte Kristalle, deren Morphologie durch die Formen {1010}, {1011}, seltener auch {0001} bestimmt ist (Indizes bezogen auf die Elementarzelle). Entscheidend für die Synthese ist die Verwendung geringer Mengen (V $\approx 1,5$ ml) einer konzentrierten NaOH-Lösung (~ 10 N); ein zu großer Füllungsgrad bzw. die Verwendung von NaOH geringerer Konzentration führt zur Bildung von rhombischem ZnTeO₃ (HANKE, 1967) neben einer flüssigen Phase. Die Identifikation als Zn-Endglied des Zemannits erfolgte über eine Strukturbestimmung aus Röntgen-Einkristalldaten.

Die Messung der Röntgenbeugungsintensitäten eines Einkristalles $(0,15 \times 0,15 \times 0,4 \text{ mm}^3)$ erfolgte (in Luft) mittels eines Vierkreisdiffraktometers: Mo-K α -Strahlung, Graphitmonochromator, $2\vartheta/\omega$ -scan, 45

mer)	U_{23}	0	0	0	0,0097(12)		
gen in Klam	$U_{_{13}}$	0	0	0	0,0025(12)		
rdabweichun	U_{12}	0,0141(2)	$= 1/2 U_{}$	0,0098(20)	0,0133(18)		
nits (Standaı	U_{33}	0,0178(2)	0,0135(3)	0,0184(16)	0,0244(14)		
i des Zemanı	U_{22}	0,0232~(3)	= U	0,0258(24)	0,0319(19)		
n-Endgliedes	$U_{11}/U_{ m iso}$	0,0249~(3)	0,0235(3)	0,0183(22)	0,0318(20)	0,0638(25)	0,0431 (131)
meter des Zı	z/c	1/4	0,0621(1)	1/4	0,0700(4)	0,0379(13)	1/4
peraturpara	y/b	0,4703(1)	2/3	0,4898(6)	0,1415(5)	0,2459(13)	0,1866(85)
sotrope Tem	x/a	0,5107~(1)	1/3	0,1595(5)	0,4792~(5)	0,0798(14)	0,1124(76)
ten und anis	Besetzung	1,00	1,00	1,00	1,00	0,33	0,10
Ortskoordina	Punkt- lage	6 h	4f	0 h	12i	12i	6 h
Tabelle 1	Atom	Te	\mathbf{Zn}	0(1)	0(2)	Na	$O(3)^{a}$

$$\begin{split} \text{ATF} &= \exp\left(-2\,\pi^2\sum_{i=1}^3\sum_{j=1}^3 U_{ij}\,h_i\,h_j\,a_i^*a_j^*\right)\\ ^* \text{ im Kanal, offenbar } H_2^{0} \text{ O} \end{split}$$

Schritte pro Reflex, Schrittweite 0,03°, Meßzeit 0,5 bis 1,5 sec pro Schritt, Meßbereich 2° < 2 $\vartheta \leq 70^{\circ}$. Die Beugungsintensitäten wurden für Absorption (entsprechend der Kristallgestalt) sowie Lorentz- und Polarisationseffekte in üblicher Weise korrigiert. R = 0,047, wR = 0,049 für 887 symmetrieunabhängige Reflexe mit $F_o \geq 3 \sigma F_o$. Gitterkonstanten (aus 63 genau gemessenen 2 ϑ -Werten): $a_0 = 9,395(1)$ Å, $c_0 = 7,733(1)$ Å, Raumgruppe $P6_3/m-C_{g,t}^2$, Z = 2.

Die von MATZAT (1967) gegebene Beschreibung der Struktur als zeolithartige Verbindung mit einem negativ geladenen Gerüst $\{Zn_2[TeO_3]_3\}^{2-}$ konnte bestätigt werden. Je zwei über Flächen miteinander verknüpfte ZnO_6 -Oktaeder bilden mit drei TeO_3 -Pyramiden verknüpft Ketten || [00.1]. Diese sind untereinander über die TeO_3 -Gruppen zu einem bienenwabenartigen (negativ geladenen) Gerüst so verbunden, daß || [00.1] Kanäle mit einem Durchmesser von 8,06 Å verlaufen, die H₂O und die für den Ladungsausgleich notwendigen Na-Atome enthalten.

Für die Strukturverfeinerung nach der Methode der kleinsten Fehlerquadrate wurde von den von MATZAT (1967) bestimmten Ortsparametern der Gerüstatome ausgegangen. In einer anschließenden Differenzfouriersummation waren im Kanal zusätzlich lediglich zwei Maxima eindeutig lokalisierbar, deren Intensität etwa 1/3 bzw. 1/10 der Elektronendichte eines Sauerstoffatomes entspricht. Bei nach kristallchemischen Überlegungen vernünftig erscheinender Besetzung dieser Punktlagen im Kanal mit Natrium (Besetzungsfaktor 0,33) und mit Sauerstoff (O (3): Besetzungsfaktor 0,1) verbesserten sich die R-Werte um 0,5% auf die oben angegebenen Werte. Die neuen Strukturparameter sind in Tabelle 1 angeführt. Zu bemerken ist, daß die interatomaren Abstände der Gerüstatome innerhalb der 3fachen Standardabweichungen mit den von MATZAT (1967) angegebenen übereinstimmen.

Weitere Untersuchungen (Na- und H₂O-Analysen) sowie Synthesen von möglichen isotypen Alkali- und Ag-Verbindungen, die zur Klärung der Atomverteilung im Kanal beitragen sollen, sind im Gange.

Literatur

Hanke, K. (1967): Zinktellurit: Kristallstruktur und Beziehungen zu einigen Seleniten. Naturwissenschaften 54, 199.

Hori, H., E. Koyama and K. Nagashima (1981): Kinichilite, a new mineral from the Kawazu mine, Shimoda City, Japan. Min. Journ. (Japan) 10, 333-337.

Mandarino, J. A., E. Matzat and Ŝ. J. Williams (1969): Zemannite, a new tellurite mineral from Moctezuma, Sonora, Mexico. Canad. Min. 10, 139–140 (Abstr.).

Mandarino, J. A., E. Matzat and S. J. Williams (1976): Zemannite, a zinc tellurite from Moctezuma, Sonora, Mexico. Canad. Min. 14, 387-390.

Mandarino, J.A., and S.J. Williams (1961): Five new minerals from Moctezuma, Sonora, Mexico. Science 133, 2017.

Matzat, E. (1967): Die Kristallstruktur eines unbenannten zeolithartigen Telluritminerals $\{(Zn, Fe)_2[TeO_3]_3\}$ Na_xH_{2-x}·yH₂O. Tschermaks Mineral. Petrogr. Mitt. 12, 108–117.

©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse **126** (1989), 81-82

Das korrespondierende Mitglied Heinrich BRAUNER legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

One Parameter Families of Improper Affine Spheres Von Michael Kozlowski

One subclass of affine maximal surfaces is formed by improper affine spheres. Hence it is quite natural to consider a deformation of an improper affine sphere such that the deformed surface is still an improper affine sphere (cf. [CAL], [SCHN, [SI]).

Here we will describe two one parameter families of improper affine spheres. One family contains the elliptic paraboloid; thus we obtain deformations of the elliptic paraboloid such that the constant affine normal is the same for every member of the family.

Suppose Ω is a region in the plane and an affine surface $\Sigma: \Omega \to A_3$ is given by a differentiable function $z: \Omega \to R$ as a graph over Ω

$$\Sigma(x,y) = \binom{x}{\binom{y}{z(x,y)}}.$$

 $\varSigma\colon \Omega\to A_3$ is an improper affine sphere if $z\colon\Omega\to R$ solves the Monge—Ampère equation

$$z_{xx}z_{yy} - z_{xy^2} = 1. (1)$$

A one parameter family $\{z(t)\}$ of improper affine spheres consists of solutions of the Monge—Ampère equation (1) such that the members of the family depend continuously on one parameter. Of course such a family is a deformation of the improper affine sphere given by z(0).

Consider the family

$$z(t) = \frac{(1-t)x^2}{2} + \frac{tx^3}{3} + \frac{y^2}{4tx + 2(1-t)}.$$
 (2)

By direct calculation we get that every member of the family (2) is a solution of the Monge—Ampère equation (1).

Furthermore we have

$$z(0) = \frac{x^2 + y^2}{2},$$

and so the elliptic paraboloid is deformed.

The second example is given by

$$z(\tau) = y \operatorname{arsh}\left[\frac{y}{\tau \cos x + (\tau - 1)\sin x}\right] - \sqrt{y^2 + \{\tau \cos x + (\tau - 1)\sin x\}^2}.$$
 (3)

82

Direct calculation shows that every member of (3) solves the Monge— Ampère equation (1).

References

[CA] Calabi, E.: Hypersurfaces with maximal affinely invariant area. Amer. J. Math. 104, 91-126 (1982).

[SCHN] Schneider, R.: Zur affinen Differentialgeometrie im Großen I. Math. Z. 101, 375-406 (1967).

[SI] Simon, U.: Zur Entwicklung der affinen Differentialgeometrie nach Blaschke. In W. Blaschke: Gesammelte Werke, vol. 4. Thales Verlag, Essen, 1985, p.35-88.

Michael Kozlowski Fachbereich Mathematik der Technischen Universität Berlin Sekr. MA 8—3 Straße des 17.Juni 135 1000 Berlin 12 FRG In die Sitzungsberichte, Abteilung I, wird aufgenommen:

"Scydmaeniden (Coleoptera) aus Tanzania in Ostafrika" von w. M. Herbert FRANZ.

"Speziation der mediterranen Süßwasserkrabben" von Gerhard PRETZMANN (vorgelegt von k. M. Friedrich Bachmayer).

In die Sitzungsberichte, Abteilung II, wird aufgenommen:

"Verallgemeinerte parabolische Schiebzykliden des einfach isotropen Raumes $I_3(1)$ (vorgelegt von k. M. Heinrich BRAUNER).

"The only convex surfaces with planar distance circles are spheres" von k. M. Peter M. GRUBER.

"Structure Conformal Vector field on an Almost Para-Contact Manifold with Parallel Structure Vector" von Santi DONATO und Radu Rosca (vorgelegt von k. M. Peter M. GRUBER). ©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

.

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Nr. 6

Sitzung vom 12. Oktober 1989

Das wirkl. Mitglied E. HLAWKA legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

ON TWO-PLACE COMPLETELY MONOTONE FUNCTIONS

By Dragoslav S. MITRINOVIĆ and Josip E. PEČARIĆ

By a two-place completely monotone function we mean a function f on $[0, +\infty)^2$, all of whose partial derivatives of all orders exist and satisfy

$$(-1)^{n+m} D_1^n D_2^m(f) \ge 0, \quad n, m = 0, 1, 2, \dots$$
 (1)

Note that we have (1) if and only if there exists a two-place distribution function φ satisfying ([1]):

$$f(x,y) = \int_{0}^{1} \int_{0}^{1} u^{x} v^{y} d\varphi, \quad (x,y) \in [0,+\infty)^{2}.$$
 (2)

It follows that

$$D_1^n D_2^m f(x, y) = \int_0^1 \int_0^1 u^x (\log u)^n v^y (\log v)^m d\varphi, \quad n, m = 0, 1, 2, \dots$$
(3)

First, we shall prove the following theorem:

Theorem 1. Let $i, j, \alpha m, \beta m, \alpha n, \beta n \in N_0 = \{0, 1, 2, ...\}$, where n and m are positive numbers such that $n \leq m$. If f is a two-place completely monotone function on $[0, +\infty)^2$, then

$$((-1)^{i+j+m(\alpha+\beta)}D_{1}^{i+\alpha m}D_{2}^{j+\beta m}f(x,y))^{\frac{1}{m}}((-1)^{i+j}D_{1}^{i}D_{2}^{j}f(x,y))^{\frac{1}{n}-\frac{1}{m}} \ge$$

$$\ge ((-1)^{i+j+n(\alpha+\beta)}D_{1}^{i+\alpha n}D_{2}^{j+\beta n}f(x,y))^{\frac{1}{n}}.$$
(4)

Proof. The inequality (4) is equivalent to

$$\left(\frac{\int_{0}^{1}\int_{0}^{1}\left[(-\log u)^{\alpha}(-\log v)^{\beta}\right]^{m}(-\log u)^{i}(-\log v)^{j}u^{x}v^{y}d\varphi}{\int_{0}^{1}\int_{0}^{1}(-\log u)^{i}(-\log v)^{j}u^{x}v^{y}d\varphi}\right)\right) \ge \left(\frac{\int_{0}^{1}\int_{0}^{1}\left[(-\log u)^{\alpha}(-\log v)^{\beta}\right]^{n}(-\log u)^{i}(-\log v)^{j}u^{x}v^{y}d\varphi}{\int_{0}^{1}\int_{0}^{1}(-\log u)^{i}(-\log v)^{j}u^{x}v^{y}d\varphi}\right)^{\frac{1}{n}}$$

which is the well-known inequality between means of order m and n. For n = 1, m = 2, (4) becomes:

$$((-1)^{i+j+2(\alpha+\beta)} D_1^{i+2\alpha} D_2^{j+2\beta} f(x,y)) ((-1)^{i+j} D_1^i D_2^j f(x,y)) \ge \ge ((-1)^{i+j+\alpha+\beta} D_1^{i+\alpha} D_2^{j+\beta} f(x,y))^2,$$
(5)

from which we have the following results:

(i) The sequence

$$a_i = (-1)^{i+j-1} D_1^{i-1} D_2^j f(x, y) \quad (i = 1, 2, 3, \ldots)$$
(6)

is logarithmically convex;

(ii) The same is valid for sequence

$$a_{i} = (-1)^{i+j} D_{1}^{i-1} D_{2}^{i-1} f(x, y) \quad (i = 1, 2, 3, \ldots).$$
(7)

(We suppose that the above sequences are positive.)

By using the above results we can get results similar to those in [2] and [3].

Theorem 2. Let $a_i, b_i (i = 1, ..., n)$ be nonnegative integers. If f is a two-place completely monotone function on $[0, +\infty)^2$, then the following inequalities are valid:

$$|D_1^{a_i+a_j}D_2^{b_i+b_j}f(x,y)|_n \ge 0,$$
(8)

$$|(-1)^{a_i+a_j+b_i+b_j} D_1^{a_i+a_j} D_2^{b_i+b_j} f(x,y)|_n \ge 0,$$
(9)

where $|a_{ii}|_n$ denotes a determinant of order *n* with elements a_{ii} .

Proof. We shall give only a proof of (8). This inequality is equivalent to

$$\int_{0}^{1} \int_{0}^{1} [(\log u)^{a_{i}} (\log v)^{b_{i}}] \cdot [(\log u)^{a_{j}} (\log v)^{b_{j}}] \cdot u^{x} v^{y} d\varphi|_{n} \ge 0$$

which is a special case of the well-known Gram inequality.

Of course a proof of (9) is similar.

A simple consequence of Gram's inequality is also:

Theorem 3. Suppose f is a two-place completely monotone function on $[0, +\infty)^2$, and x_i, y_i (i = 1, ..., n) are nonnegative numbers. Then

$$|f(x_{i} + x_{j}, y_{i} + y_{j})|_{n} \ge 0.$$
(10)

For n = 2, we have

$$f(x_1, y_1)f(x_2, y_2) \ge f(\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2))^2,$$
(11)

i.e. f is a logarithmically convex function.

Note that the last result is a generalisation of a result from [4, p. 167].

Remark. As in [5, pp.260-262] we can give the following definition:

A function f on $(a, b) \times (c, d)$ is exponentially convex if it is continuous and all forms

$$\sum_{i,j=1}^{n} f(x_i + x_j, y_i + y_j) \xi_i \xi_j \quad (n = 1, 2, \dots; x_i + x_j \in (a, b), y_i + y_j \in (c, d),$$
$$i, j = 1, 2, \dots; n = 1, 2, \dots)$$

are nonnegative.

This is equivalent to (10) for n = 1, 2, 3, ..., so a two-place completely monotone function f is also exponentially convex.

Theorem 4. Suppose f is a two-place completely monotone function on $[0, +\infty)^2$, x_i, y_i (i = 1, ..., n) are nonnegative numbers, p_i are positive numbers such that $1/p_1 + ... + 1/p_m = 1$, and r_{ij}, s_{ij} are positive numbers such that $\sum_{i=1}^m r_{ij}/p_i = 1$, $\sum_{i=1}^m s_{ij}/p_i = 1$. Then

$$f(x_1 + \ldots + x_n, y_1 + \ldots + y_n) \leq \prod_{i=1}^m f(\sum_{j=1}^n r_{ij} x_j, \sum_{j=1}^n s_{ij} y_j)^{1/p_i}.$$
 (12)

Proof. As a consequence of Hölder's inequality we have

$$\prod_{i=1}^{m} f(\sum_{j=1}^{n} r_{ij} x_j, \sum_{j=1}^{n} s_{ij} y_j)^{1/p_i} =$$

$$= \prod_{i=1}^{m} (\int_{0}^{1} \int_{0}^{1} (u^{\sum_{i=1}^{n} r_{ij} x_j/p_i} v^{\sum_{j=1}^{n} s_{ij} y_j/p_i})^{p_i} d\varphi)^{1/p_i} \ge$$

$$\ge \int_{0}^{1} \int_{0}^{1} u^{\sum_{i=1}^{n} \sum_{j=1}^{n} r_{ij} x_j/p_i} v^{\sum_{i=1}^{n} \sum_{j=1}^{n} s_{ij} y_j/p_i} d\varphi$$

$$= \int_{0}^{1} \int_{0}^{1} u^{\sum_{i=1}^{n} x_j} v^{\sum_{i=1}^{n} r_{ij}/p_i} v^{\sum_{i=1}^{n} s_{ij} y_j/p_i} d\varphi$$

$$= \int_{0}^{1} \int_{0}^{1} u^{x_1 + \dots + x_n} v^{y_1 + \dots + y_n} d\varphi = f(x_1 + \dots + x_n, y_1 + \dots + y_n).$$

88

For $s_{i1} = r_{i1} = 1$ (i = 1, ..., m), $s_{ii} = r_{ii} = p_i$ $(i \neq 1)$, $s_{ij} = r_{ij} = 0$ in the other cases, and m = n, we get

$$f(x_1 + \ldots + x_n, y_1 + \ldots + y_n) \leq f(x_1, y_1)^{\frac{1}{p_1}} \prod_{i=2}^n f(x_1 + p_i x_i, y_1 + p_i y_i)^{\frac{1}{p_i}}.$$

This is a generalization of an inequality from [6].

References

[1] Kimberling, C.H.: Two-dimensional comp diagonalization. Amer. Math. Monthly 80 (1973), 789-791. Two-dimensional complete monotonicity with

[2] Fink, A.M.: Kolmogorov-Landau Inequalities for Monotone Functions. J. Math. Anal. Appl. 90 (1982), 251-258.

[3] Pečarić, J.E.: Remarks on Some Inequalities of A.M. Fink. J. Math. Anal. Appl. 104 (1984), 428-431.

[4] Widder, D.: The Laplace Transform, Princeton, 1946.
[5] Akhiezer, N.I.: Klassičeskaja problema momentov. Moskva, 1961.

[6] Kimberling, C.H.: A Probabilistic Interpretation of Complete Mono-tonicity. Aequat. Math. 10 (1974), 152-164.

Authors' addresses: D.S. Mitrinović, Smiljanićeva 38, YU-11000 Beograd, Yugoslavia, and J. E. Pečarić, Faculty of Technology, University of Zagreb, Ive Lole Ribara 126, YU-41000 Zagreb, Yugoslavia.

Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse 126 (1989), 89-91

Das korrespondierende Mitglied Heinrich EICHHORN übersendet für die Aufnahme in den Anzeiger die folgende Arbeit:

FILTERING WITH AUGMENTED SETS OF ESTIMATED PARAMETERS¹

By Heinrich EICHHORN

Space Telescope Science Institute, Baltimore²

Abstract: An algorithm for filtering is outlined which allows not only for an improvement of existing estimates of a set of parameters by the incorporation of new information, but also for the first estimation of previously not considered parameters.

1. Introduction: The basic idea of filtering

The process of filtering, introduced by KALMAN (1960) is, essentially, the improvement of existing estimates \hat{x} of a vector x of statistical variates by the incorporation of equations of condition which have become available since the estimation was made. Solving a completely new set of equations for obtaining the new estimate would involve the inversion of a matrix of the same order as that of the vector of variates, and all the work that went into obtaining \hat{x} would practically be lost. Filtering avoids this.

Suppose \hat{x} is the solution of the system

$$Q x = l. \tag{1}$$

This equation can always be scaled such that Q^{-1} is the covariance matrix of \hat{x} . Let

$$A x = m \tag{2}$$

be a set of new condition equations, with P being the covariance matrix of m. The normal equations whose solution will be the revised estimates \hat{x}_r are obviously

$$(Q + A^T P^{-1} A) x = l + A^T P^{-1} m.$$
(3)

If the number of rows of A is smaller than the order of x, the system matrix of equation (3) can be inverted by taking advantage of the inversion lemma

$$(Q + A^T P^{-1} A)^{-1} = Q^{-1} - Q^{-1} A^T (P + A Q^{-1} A^T)^{-1} A Q^{-1}.$$
 (4)

The matrix Q^{-1} was computed in the course of the solution of equation (1); note that contemporary practice considers the communication of the complete covariance matrix (and not only the variances or standard errors) of a set of estimates as essential. The inverse of the system matrix of equation (3) can therefore be computed by equation (4), which requires only the inversion of a matrix of order P, presumably smaller than that of Q.

¹ Contribution of the Department of Astronomy of the University of Florida No. 138.

² On leave from the Department of Astronomy, University of Florida, Gainesville.

2. Extension to augmented parameter sets

Now assume that we have additional equations of condition, not of the form of equations (2) but

$$(BC)\binom{x}{y} = n. \tag{2'}$$

Let R be the covariance matrix of n. The vector y now stands for those adjustment parameters which enter the system in addition to the already present x. Again, we assume that the number of additional condition equations furnished by equation (2') is smaller than the order of Q. In addition, we assume that the elements of l and those of n are uncorrelated. Under the circumstances, the normal equations for the estimation of x and y, had all the now available conditions been used from the very beginning, would have been

$$\begin{pmatrix} Q + B^T R^{-1} B & B^T R^{-1} C \\ C^T R^{-1} B & C^T R^{-1} C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} B^T \\ C^T \end{pmatrix} R^{-1} n.$$
(5)

With Q^{-1} known, the inversion lemma (eq. [4]), now allows one to invert the matrix of the system of equations (5) without having to invert explicitly a matrix of an order higher than that of R or $C^T C$, whichever of these is of larger order. This is so, because the explicit formulas for the inversion of a matrix which is partitioned into four submatrices (cf., e.g., EICHHORN 1988) can be carried out in terms of $(Q + B^T R^{-1}B)^{-1}$ and $[C^T R^{-1} C - C^T R^{-1} B (Q + B^T R^{-1}B)^{-1} B^T R^{-1} C]^{-1}$; this latter term, however, equals $[C^T (R + B Q^{-1} B^T)^{-1} C]^{-1}$, again by equation (4). We see therefore, that the problem of inverting the system matrix of equation (5) is reduced (provided Q^{-1} is known) to newly inverting only matrices of small order.

3. Application to block adjustments

We have block adjustment iterations in the overlapping-plate problem, also in the problem of rigorously compiling a complete star catalogue (i.e. one which contains positions and proper motions for each star). The latter can be formulated as follows: Given a "system" catalogue, which is a complete catalogue listing estimates of the star parameters (position and proper motion components) for each star (The FK5, say). Let there be a number of "independent catalogues", each containing a list of estimates of positions of stars at various epochs, some of which may have their positions listed in the system catalogue as well. Assume that for the *v*-th catalogue, there is a formula $\alpha_s = \alpha (\alpha_c, \delta_c, m, c; p_n, \dots, p_m)$ (analogous for δ) which converts the catalogued estimates α_c, δ_c to the system. *m* and *c* are magnitude and color of the star, respectively and p_{r_1}, \ldots, p_{r_m} are the "catalogue parameters" which must be estimated in the course of the calculations. The construction of a complete compilation catalogue is now completely analogous to the overlapping-plate problem: The system catalogue plays the rôle of the list of reference stars, the individual catalogues are analogous to the plates, the catalogue parameters act as do the plate parameters and the star parameters (positions and proper motions) retain their rôle.

Unless there is a perfect central overlap, each plate added to the complex of overlapping plates will require the estimation of new star parameters and in any case, the estimation of its own parameters as well as the reestimation of the parameters of the plates already in the complex. By the algorithm outlined above, this can be done one plate at a time.

References

Eichhorn, H., 1988: Ap. J. **334**, 465. Kalman, R. E., 1960: Journ. Basic Eng., Ser. **82D**, 35.

Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse **126** (1989), 93–99

Das korrespondierende Mitglied Franz ZIEGLER legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

LONG-TIME RESPONSES OF A LAYERED ELASTIC HALF-SPACE PREDICTED BY THE GENERALIZED RAY THEORY

By P. Borejko

(Institut für Allgemeine Mechanik der Technischen Universität Wien, Wiedner Hauptstraße 8-10/201, A-1040 Wien)

The long-time limit of the solution to a dynamic problem of wave propagation renders asymptotically the solution to the related static problem. Therefore, in particular, the total response at some fixed receiver of a layered elastic half-space perturbed by a transient source should tend to zero as time increases without limit. However, it turns out, that the individual components of the total response diverge in the long-time limit.

Introduction

The problem of reflection and transmission of a spherical compressional pulse at a plane interface separating two dissimilar isotropic homogeneous elastic half-spaces was investigated in detail by CAGNIARD [1]. The total solution at some fixed receiver in the adjacent half-space consists of a compressional component and a shear component. The convolution of each component with a function specifying the time-behaviour of the transient source diverges in the long-time limit, while the sum of convolutions of the two components representing the total solution tends to zero (cf. [1, chap. 8]). DUNKIN [2] investigating head waves in a layered half-space noted that the individual components of the total solution, the so-called rays, contain divergent factors. SPENCER [3] provided a recipe for arranging these rays into groups, each group response function tends to zero in the long-time limit even though its component parts diverge. A similar problem has been encountered by ABRAMOVICI and ALTERMAN [4] who studied transient waves in a layered half-space. The contributions to the total field of multireflected rays were by many orders of magnitude larger than the total field itself what made impossible the numerical computation of individual rays. Therefore they grouped the individual rays in such a way that the contribution given by each group was of the same order of magnitude as the total field.

The theory of generalized ray [5] provides the exact representations for transient responses at some fixed receiver of a layered elastic half-space. In this paper the long-time behaviour of these representations is studied. For an extension of the theory to dipping layers see [6].

Long-Time Responses in the Generalized Ray Theory: The Two-Dimensional Problem

A half-space defined by $-\infty < x < \infty$, $-\infty < y < \infty$, and $z \ge 0$, where x, y and z are the Cartesian coordinates with the z axis being directed downwards is considered. The surface of the half-space, defined by the plane z = 0, is assumed to be traction free. The half-space is composed of isotropic, homogeneous and parallel layers of different elastic constants and densities separated by the interfaces perpendicular to the z axis. The half-space is perturbed at time t = 0 by the line source of explosion represented by the distribution of the body force \mathbf{F} . measured per unit mass, of the form

$$\mathbf{F} = \operatorname{grad} \left[f(t) \,\delta(x) \,\delta(z - z_0) \right],$$

(cf. [5, eqs. (2.4) and (2.24)]) and located at the depth z_0 . Here grad denotes the gradient operation, f(t) is the function specifying the time-behaviour of the source, and $\delta(x)$ and $\delta(z - z_0)$ are the Dirac delta functions. The source radiates a compressional cylindrical pulse and, since the distributions of \mathbf{F} is uniform with respect to the y axis, the problem is two-dimensional and satisfies the conditions of plane strain, i.e. all field variables are independent of the y coordinate and the non-vanishing components of the displacement vector **u** are $u_{x}(x, z, t)$ and $u_{i}(x, z, t)$, repectively. The exact representations for the horizontal u_{i} and vertical u_{i} displacements at the fixed receiver (x, z) are provided by the theory of generalized ray in the form of sums of convolution integrals

$$u_{x}(x, z, t) = A \sum_{j=1}^{k} [H(t - t_{Aj}) \int_{t_{Aj}}^{t} \ddot{f}(t - \tau) I_{xj}(x, z, \tau) d\tau],$$

$$u_{z}(x, z, t) = -A \sum_{j=1}^{k} [H(t - t_{Aj}) \int_{t_{Aj}}^{t} \ddot{f}(t - \tau) I_{zj}(x, z, \tau) d\tau],$$
(1)

(cf. [5, eqs. (4.9) and (7.1)]). It has been assumed that $f(0^+) = 0 = \dot{f}(0^+)$ and $\ddot{f}(0^+) = 0$. Here $A = (4 \pi c^2)^{-1}$, c is the speed of the compressional wave in the layer in which the source is located, H(t) is the Heaviside unit step function, t_{A_i} is the arrival time of the disturbance associated with the j-th generalized ray, t is the actual observation time, τ is the integration variable and a dot denotes the time differentiation. In the relations (1) $I_{xi}(x, z, t)$ and $I_{zi}(x, z, t)$ are defined by

$$I_{xj}(x,z,t) = 2 \operatorname{Im} \int_{0}^{\xi_1(x,z,t)} \xi E_{xj}(\xi) d\xi, \quad I_{zj}(x,z,t) = 2 \operatorname{Re} \int_{0}^{\xi_1(x,z,t)} E_{zj}(\xi) d\xi, \quad (2)$$

where Re and Im stand for the real and imaginary parts, respectively (cf. [5, eq. (7.2)]). The path of integration in (2) is along the contour in the complex ξ plane [5, § IV] and the integrands are given by

$$i\,\xi\,E_{xj}(\xi) = S_p(\xi)\,\pi_j(\xi)\,D_x(\xi), \quad E_{zj}(\xi) = S_p(\xi)\,\pi_j(\xi)\,D_z(\xi), \tag{3}$$

(cf. [5, p.206]) where $i^2 = -1$. Here $S_p(\xi) = (\xi^2 + c^{-2})^{1/2}$, is the emittance function of the source, where c being the speed of the compressional wave in the layer in which the source is located, $\pi_j(\xi)$ is the product of reflection coefficients which will be subsequently specified, and the displacement receiver functions $D_x(\xi)$ and $D_z(\xi)$ are listed in Table 1 (cf. [5, pp.202–203]). In Table 1,

and

$$R^{pp} = [4 \eta \zeta \xi^{2} + (\xi^{2} + \zeta^{2})^{2}]/[4 \eta \zeta \xi^{2} - (\xi^{2} + \zeta^{2})^{2}],$$

$$R^{ps} = \varepsilon (i 4 \xi \eta) (\xi^{2} + \zeta^{2})/[4 \eta \zeta \xi^{2} - (\xi^{2} + \zeta^{2})^{2}],$$
(4)

are the reflection coefficients at the traction-free surface z = 0, $\varepsilon = 1 (-1)$ when the ray hitting the receiver is directed downwards (upwards), $\eta = (\xi^2 + c^{-2})^{1/2}$ and $\zeta = (\xi^2 + C^{-2})^{1/2}$, c and C are, respectively, the speeds of the compressional and shear waves in the layer in which the receiver is located.

Table 1

Displacement receiver functions for plane strain Receiver at an interior point

(i) last segment is a P-ray

$$D_{x}(\xi) = i \xi$$
$$D_{z}(\xi) = -\epsilon \eta$$

(ii) last segment is an S-ray

$$D_{x}(\xi) = \varepsilon \zeta$$
$$D_{z}(\xi) = i \xi$$

Receiver at the traction-free surface z = 0

last segment is a coalescent P-ray

$$D_x(\xi) = i\xi + i\xi R^{pp} + \zeta R^{ps}$$
$$D_z(\xi) = \eta - \eta R^{pp} + i\xi R^{ps}$$

Fig. 1: Homogeneous half-space with a buried source at $z = z_0$ and an interior receiver station at (x, z). The total solution is the sum of the contributions from the *P*-, *Pp*- and *Ps*-rays.

1. In a homogeneous half-space with the buried source at $z = z_0$ an interior receiver at (x, z) as shown in Fig. 1 is considered. In this situation eqs. (1) representing the total solution can be written as

$$u_{x}(x, z, t) = u_{x1}(x, z, t) + u_{x2}(x, z, t) + u_{x3}(x, z, t),$$

$$u_{z}(x, z, t) = u_{z1}(x, z, t) + u_{z2}(x, z, t) + u_{z3}(x, z, t),$$
(5)

where

$$u_{xj}(x, z, t) = A H (t - t_{Aj}) \int_{t_{Aj}}^{t} \dot{f}(t - \tau) I_{xj}(x, z, \tau) d\tau,$$

$$u_{zj}(x, z, t) = -A H (t - t_{Aj}) \int_{t_{Aj}}^{t} \dot{f}(t - \tau) I_{xj}(x, z, \tau) d\tau, \quad j = 1, 2, 3,$$
(6)

and eqs. (3) simply become

$$\begin{split} i\,\xi\,E_{x1}\,(\xi) &= S_{p}\,(\xi)\,D_{x}\,(\xi), \quad E_{z1}\,(\xi) = S_{p}\,(\xi)\,D_{z}\,(\xi),\\ i\,\xi\,E_{x2}\,(\xi) &= S_{p}\,(\xi)\,R^{pp}\,D_{x}\,(\xi), \quad E_{z2}\,(\xi) = S_{p}\,(\xi)\,R^{pp}\,D_{z}\,(\xi)\,,\\ i\,\xi\,E_{x3}\,(\xi) &= S_{n}\,(\xi)\,R^{ps}\,D_{x}\,(\xi), \quad E_{z3}\,(\xi) = S_{n}\,(\xi)\,R^{ps}\,D_{z}\,(\xi)\,. \end{split}$$

Here R^{pp} and R^{ps} are given by eqs. (4), and the appropriate displacement receiver functions $D_x(\xi)$ and $D_z(\xi)$ for the interior station can be read off Table 1 (cf. [5, pp. 204—206]). From the relations (7) it follows in the limit

$$\lim_{\xi \to \infty} \xi E_{x1}(\xi) = 1, \quad \lim_{\xi \to \infty} E_{z1}(\xi) = 1, \tag{8}$$

$$\lim_{\xi \to \infty} \xi E_{x2}(\xi) = \infty, \quad \lim_{\xi \to \infty} \xi E_{x3}(\xi) = -\infty, \tag{9}$$

$$\lim_{\xi \to \infty} E_{z2}(\xi) = -\infty, \quad \lim_{\xi \to \infty} E_{z3}(\xi) = \infty, \tag{10}$$

In the long-time limit ξ becomes proportional to t [5, § IV] and the definitions (2) together with the relations (8) imply that asymptotically $I_{x1}(x, z, t)$ and $I_{z1}(x, z, t)$ are linear functions of time. When f(t) is assumed to be the parabolic ramp function [5, eq. (7.10)] then the

convolution integrals in (6) representing the displacements $u_{x1}(x, z, t)$ and $u_{x1}(x, z, t)$ corresponding to the source *P*-ray tend to zero for large t [7, Fig. 3]. The definition (2)₁ together with the relations (9) imply that the convolution integrals in (6)₁ representing the horizontal displacements $u_{x2}(x, z, t)$ and $u_{x3}(x, z, t)$ corresponding to the *Pp*- and *Ps*-rays diverge to ∞ and $-\infty$, respectively, while their sum tends to zero for large t. The definition (2)₂ together with the relations (10) imply that the convolution integrals in (6)₂ representing the vertical displacements $u_{x2}(x, z, t)$ and $u_{z3}(x, z, t)$ corresponding to the *Pp*- and *Ps*-rays tend to $-\infty$ and ∞ , respectively, while their sum tends to zero for large t. Therefore, although the individual components of the total solution corresponding to the *Pp*- and *Ps*-rays diverge in the long-time limit, the total solution given by the relations (5) tends to zero.

2. In a homogeneous half-space with the buried source at $z = z_0$ a surface receiver at (x, 0) as shown in Fig. 2 is considered. In this situation eqs. (1) representing the total solution are

$$u_{x}(x,0,t) = A H (t - t_{A1}) \int_{t_{A1}}^{t} \ddot{f}(t - \tau) I_{x1}(x,0,\tau) d\tau,$$

$$u_{z}(x,0,t) = -A H (t - t_{A1}) \int_{t_{A1}}^{t} \ddot{f}(t - \tau) I_{z1}(x,0,\tau) d\tau,$$
(11)

and eqs. (3) read

$$i \xi E_{x1}(\xi) = S_p(\xi) D_x(\xi), \quad E_{z1}(\xi) = S_p(\xi) D_z(\xi).$$
 (12)

The appropriate displacement receiver functions $D_x(\xi)$ and $D_z(\xi)$ for the surface receiver and the coalescent *P*-ray are given by taking the limit $z \rightarrow 0$ in eqs. (6) with j = 3. They can be read off Table 1 (cf. [5, pp. 204-206]). From the relations (12) it follows that

Fig. 2. Homogeneous half-space with a buried source at $z = z_0$ and a surface receiver at (x, 0). The total solution is represented by the coalescent *P*-ray.

Fig. 3. Half-space overlain by a surface layer. A source is situated at a depth $z_0 = h/2$, *h* being the thickness of the layer, and a surface receiver is located at (x, 0). The first group of rays is represented by the coalescent *P*-ray and the second group of rays consists of the *pP*- and *pS*-rays. Higher order rays not shown.

Since the right hand sides of (13) and (8) are identical, we conclude that the convolution integrals in (11) representing the surface displacements $u_x(x, 0, t)$ and $u_z(x, 0, t)$ corresponding to the coalescent *P*-ray tend to zero for large t [7, Fig. 5].

3. An elastic layer in welded contact with the underlying homogeneous half-space of different elastic constants and density is considered. The receiver is located at the traction-free surface at (x, 0) (see Fig. 3). The presence of the material interface gives rise to the multireflected rays contributing to the total response at the surface receiver at (x, 0) [5, § III C]. These rays can be put into the groups, each groups containing the rays undergoing the same number of reflections at the interface and at the free surface before reaching the receiver [8]. Thus, for the situation shown in Fig. 3, the first group contains only one member, the coalescent P-ray. The second group has two members, the pP- and pS-ray. The third group, which is not shown in Fig. 3, includes four members, the PpP-, PpS-, PsP- and PsS-ray. It has been observed [8] that the ray integrals corresponding to the pP- and pS-ray diverge in the long-time limit while their sum tends to zero. The pairs of rays belonging to the third and higher order groups also exhibit the same property; particularly, in the third group, the pair composed of the PpP- and PpS-ray as well as the pair composed of the PsP- and PsS-ray. Therefore, when the total response is computed, the rays must be arranged into the pairs with respect to the last segment in order the partial sum at an intermediate stage of computation goes to zero in the long-time limit. The time behaviour is of special importance when applying the fast Fourier transform algorithm followed possibly by the elastic-viscoelastic correspondence principle [9]. Hence, the material damping may be considered subsequently.

References

[1] Cagniard, L.: Reflection and refraction of progressive seismic waves (translated and revised by Flinn, E. A., Dix, C. H.). New York: McGraw-Hill 1962.

[2] Dunkin, J.W.: A study of two-dimensional head waves in fluid and solid systems. Geophysics 28, 563-581 (1963).

[3] Spencer, T.W.: Long-time response predicted by exact elastic ray theory. Geophysics 30, 363-368 (1965).

[4] Abramovici, F., and Z. Alterman: Computations pertaining to the problem of propagation of a seismic pulse in a layered solid. Methods of Computational Physics, Vol. IV, 349-379, New York: Academic Press 1965.

[5] Pao, Y. H., and R. R. Gajewski: The generalized ray theory and transient responses of layered elastic solid, in: Physical Acoustics, Vol. 13 (Mason, W. P., Thurston, R. N., eds.), pp. 183–265. New York: Academic Press 1977.

[6] Ziegler, F., and Y. H. Pao: A note on transient elastic cylindrical waves in a dipping layer on top of a half-space. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 193, 501-512 (1984).

[7] Borejko, P.: Application of the generalized rays to transient waves in an elastic half-space due to a buried line source. Acta Mechanica 67, 79–90 (1987).

[8] Borejko, P.: Application of the generalized rays to the study of the screening effect of seismic signals by the reinforced soil. ZAMM. Z. angew. Math. Mech. 68, T161—T162 (1988).

[9] Borejko, P., and F. Ziegler: Surface waves in an isotropic viscoelastic halfspace. The method of generalized rays, in: Recent Developments in Surface Acoustic Waves (Parker, D. F., Maugin, G. A., eds.), pp. 229–308, Springer Series on Wave Phenomena, Berlin: Springer-Verlag 1988. ©Akademie d. Wissenschaften Wien; download unter www.zobodat.at

In die Sitzungsberichte, Abteilung II, werden aufgenommen:

"Über eine invariante Differentialform für Strahlensysteme" von N.K. STEPHANIDIS (vorgelegt von w. M. Walter WUNDERLICH)

"Über die Drehkegel durch vier Punkte" von U.Strobel (vorgelegt von w. M. Walter Wunderlich)

"Gleichungen über nichtassoziative Graphenprodukte" von Gert SABIDUSSI (vorgelegt von w. M. Edmund HLAWKA)
n),	ا ز		2.0	11.6	11.6	11.7	11/	2.1	11.7	11.7	11.8		6.11	2.1	12.1	2.2	2.3	2.5	2.6	2.7	2.8	3.0	3.1	3.3	3.4	5.5	3.7	3.9	i	2.2
-5 I		er °C m	0.	1.5	1.2	1.0	1.0		1.8	1.9	2.01	1 1	c 7 C	3.2	3.5	3.7	3.8	3.71	4.1	4.5 1	4.7	5.31	5.41	5.2	5.7 1	1 0.5	6.11	6.3 1 6.4 1		3.6]
207		nittel d peratur fe von	.5	0.5 1	0.1 1	0.2 1	1.71	1 9.0	2.41	2.2 1	2.51	1 0.0	1 2.7	5.1 1	5.2 1	4.8 1	4.61	4.91	5.7 1	6.2 1	6.7 1	7.01	7.01	7.2 1	7.3 1	7.61	1 6.2	8.11		4 / 1
) o.v		Tagesi dentem der Tie	.1	8.6 1	9.4 1	1.3 1	1 1 1 1 1 1 1	0.7	2.71	3.2 1	4.61		1 2.2	111	5.2 1	2.1	1.61	11.	8.41	9.3 1	7 10	2.1 1.2 1.2	8.51	3.9 1.	8.81	1 2 1	0.01.	81 0.0		4
art 19°1	2	Bc in	02 0	8.4	8.6	2.61	101	0.0	3.11	t 0 1:			10.0	.1.2.1.	5.1	11.	1.7	81 10 9. 9 19	.5 18	.5 16	7 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 6.8	.7 18	7 18	7 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	.2 50	15 19 16 20		3 16
3	'	un- 18,		8.0	9.	.3 12	111		+	.8 1	.5 19		01 01 01	.18.	.916	7 15	.5 14	2 12	.2 19	.2 20	.5 20	3194	.3 16	.0 16	.0 15	4 2 4 2	0 21	.9 20 .4 20		me 17
ohe		Vera	t.	36 (1	40	2 4		10	1	<u>7 0</u>		+ -		33	1	5	1 1	. 1	1	0.1	04	10	1	9		10	0 1	1	4 51
H		%	Mi	3	1	<u>10</u>	2 1 0		<u>, 6</u>	80	00 4			20	9	6	6.	<u>6 0</u>	00	5	9	0 01	- LO	<u>80</u>	5	6 0 7 0	<u>, 1</u>	200	1	9
en,		lative igkeit	21 ¹	6 8	7	9,00			2 10	0	<u>00</u>	1 -	- 0 00	06	5	2	4	200	6	8	33	0 0 4 4	0	4	6	2 2	2 0	910		9
WI		Re ⁷ eucht	14 ^h	9 8	4	10	<u>~ ~ ~</u>) (- 10	9	<u>10 a</u> 4 a			20	6	4	<u>. 00</u>	<u>2 0</u> 4 4	4	5	<u>.</u>	- m	ŝ	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	4	7 7	n in	4.0	ì	<u>~</u>
k,		Η	Дh	õ	9	i O	~ '0		0	ñ	96		- 0		ř	~	6	~ ~	7	2	Řì	n' ìn	39	<u></u>	90 i	~ ~	2	27	Í	~
inna			Mit.	8.1	7.2	10.3	10.9	C.01	1.1	7.2	9.4	0.11	14.0	13.2	12.4	9.6	11.6	12.0	13.8	15.1	13.5	0 0 0 0	9.4	10.1	10.8	12.0	12.8	13.5	0.11	11 2
iyn		fdruck a	$21^{\rm h}$	5.8	7.5	11.7	10.01	2.9	6.9	7.3	9.7		2 21	12.7	11.9	6.2	11.1	12.9	13.2	15.9	12.3	/ .9	9.6	5.6	10.5	11.9	13.2	13.2		111
20		lamp) hp	14 ^h	6.L	7.3	10.7	9.6	11.1	L.L	7.1	6.6	10.61	2.01	13.5	13.2	1.6	12.4	11.6	13.5	15.5	14.4	e 4 8	6.8	10.0	11.3	11.6	11.3	13.5	0.1	11 2
100	77	Ι	Дъ	0.8	8.9	8.2	c [1]	13.1	8.9	7.1	8.7	1.01	9.21	13.3	12.1	10.3	11.2	11.6	14.7	6.61	13.7	0.8	9.6	2.01	5.01	6.C	14.0	13.6		
und	INTA	us- ah- °C4	zh	6.6	2.0	6.1	0.3	0.0	3.3	4.2	2.2	, r	9.9	0.00	6.1		9.1	1.1	5.6	8.4	0.0	0.4 6.6	4.2	3.8	5.7	4.9	0.2	8.8	i	0
sic .	7 110	A str lung	.3	6.	5.	9.		, u	6.	.3	0.		5.0	20	9.	S	22	0.4	0.	8	57		6	6	2	0.6		1		
Bold	UNTA	2	³ Mir	3 4	7 7	6 6	1 12		2 10	6 7	6 7 7 7		<pre>10 10 10</pre>	4 11	8	9	2	2 11	3 13	4 12	5 13	4 00 1 00	3	8	6 9	10	0 11	1 12	•	0 10
core	7 111	u 58. l	Max	8	13.	17.	22.	1 .	13.	15.	19.	3 5	7 .	18.	17	17.	14.	27.	23.	22.	23.	19.	21.	52.	21.	47 5	25.	25.		07
Act		C in Soden	Mit.	6.1	11.5	14.0	18.0		8.6	11.9	14.9	0.71	16.5	14.5	13.0	14.1	11.5	1/ /	18.4	17.4	19.0	15.5	16.1	17.7	17.3	18.6	19.5	19.0	1.1.	c cI
ir N		tur, ° (dem B	21 ^h	7.2	12.7	13.6	15.2	0.9	9.4	10.4	14.9	L. 1	4 CI	12.0	10.1	14.8	12.0	16 5 18 4	16.0	14:7	18.8	14.3	15.2	17.2	16.8	c /1 15.7	18.9	15.1		14 4
t fi		mpera über	ч	9.9	3.5	9.9	9.9		2.2	9.9	8.8		7.1	1.0	5.0	1.9	8.2	9.7	2.2	2.2	5.2	0.1	0.1	4	0.1	0.0	2.4	3.1		6
Istal		Luftte	14		1			1		1		1 7		1		-	1	0 0	101	6	51 7		0	1	00		i À	3 2		<u> </u>
alar			Ţћ	2.0	.0	11	13.(3.2	9.6	11.1	01	10.01	16.0	13.4	10.6	3.6	14 (16.5	15.4	15.6	13.0	12.2	13.6	14.0	15.0	15.5	16.4		151
Zenti			Δ^2	3.0	5.2	0.8	1.6		1 2.8	4.6	1.9		0.4	-1.0	6.3	13.1	13.1	9.0 10.1	5.8	9.9	2.0	13.4	12.9	11.3	8.6	04 У.Г.	1.8	-3.6	[/ c
cr			it.	8.1	4.3	6.9	0.2	1 0	C.4	3.8	1.0	0.1	0.1	1 7	2.2	2.3	2.3	0.0	8.2	6.1	5.1	5.6	2.2	6.0	9.4	6 0 2.7	1.5	6.9	0.1	4 4
D d	Jr.	k^1	Μ	66 1	66	4 99	6 6		+ 66	56 5	<u>66</u> 80		0,00	88	66 2	9 100	2 100	901 00	66	1 99	66	3 100	5 100	3 100	66 0	+ 66	66	98 98 98	00	66
n an	e v. (uftdruc hpa	$21^{\rm h}$.266	. 566	7.266	.866		. 266	.266	.886	001	1.780	.066	.666	1001	1001	3.266	G.266	1.966	1.966	1002 3	1001	1000.3	2.866	5.866	4.066	983.6	5.100	994 9
nge	-Lang	T	14 ^h	6.166	6.866	9.966	0.666	3.200	t. 106	993.4	8.066	0.000	1.780	9.286	994.0	002.5	002.6	0.860	2.796	6.466	94.1	03.0	0.200	2.000	99°4	2.260	8.066	985°7	1.10	C 466
htu	н Ц			8.0	5.2	80	C1 00			.2	5.0	1 1	0.5		8	.5 1(.0 10	N	.9	.5	<u></u>	5 10	.8 10	.8 1(5.0	1.9	0.01	io io 2, 2	Ļ	0
bac	17		Ţh	966	993	966	366	100	994	994	566	200	080	986	992	1002	1003	1001 999	966	266	995	1003	1003	1001	1000	395	993	989	100	C66
Bcc	16	Tag		1.	6	ς.	4. r.	; v		8.	6.0		11.	13.	14.	15.	16.	17.	19.	20.	21.	23.	24.	25.	26.	28.	29.	30. 31.	Mittel	IMITTEL

24stündiges Temperaturmonatsmittel: 15'0 Grad

Sommerzeit (+1 Stunde) nicht berücksichtigt!

Bemerkungen zum Wetterverlauf	Intensität ^{0,1,2} ,= leicht, mäßig, stark	$\begin{array}{l} & \Phi^{D-2} D-6^{17} \bullet Trfe^{-4} \bullet Tre^{04} \bullet \Phi^{0-2} 10^{38} - 15^{40} \bullet Tre^{0-1} - npi, \\ & \bullet Trm-m U - \bullet^{D-1} \bullet Tr4^{12} - 10^{42}; \bullet Tre^{0} abdi, \bullet Trnpi; [_\mu^{4D} - abdi; \\ & \varpi^{0-1} fr-npi; \\ & \varpi^{0} fr. \\ & \varpi^{0} fr; \end{array}$	$\begin{array}{l} & \overset{0-2}{} \mathbb{R}^{0}n_{a}, \overset{0-1}{} \mathrm{fri}_{a}, \overset{0}{}_{a}, \mathbb{R}^{1}(\mathbb{R})^{0}m, \bullet \mathrm{Tr}_{a}^{0-2}1^{1}^{108}-1^{435}, \bullet \mathrm{Tr}_{p}, \mathrm{abd}, \\ & \overset{0-2}{} \mathrm{o}^{22}5^{2}, \bullet \mathrm{Tr}_{a}^{0}\mathbf{p}; \\ & \overset{0-1}{} \mathrm{np}; \\$	$\begin{split} \bullet Tm_{\bullet} \bullet Tm_{\bullet} \bullet T_{3} \bullet ^{-56}, 17^{45} - mU - \bullet 18^{16-19} \bullet^{0} - 19; \\ &\equiv ^{0-1} n_{\bullet} - f_{\bullet} \circ^{-10} 0^{-2}, 21^{90} \bullet^{0} - 22^{37}, n_{F}; [\bullet Tre^{0} - abdi, \bullet Tmpi; \\ \bullet Tre \bullet 0, \bullet , m_{\bullet} , 16^{7-9} \bullet Tre \circ 0^{13}, 1-mU - \bullet^{0-1} 18^{32} - 19^{40} \\ &= 0^{-1} n_{\bullet} - f_{\bullet} \cdot m_{\bullet} \circ^{-2} 13^{-1} 2 - 3; \\ \bullet ^{-1} (n_{\bullet} - 2^{56} + Tre)_{\bullet} \circ^{-3} \circ Tmai (f_{\bullet} a_{\bullet}) (T^{56} - 2^{15} - 2^{15}) \\ &= 0^{-1} (n_{\bullet} - 2^{56} + Tmai (f_{\bullet} a_{\bullet}) (T^{56} - mU - \bullet^{0}) (T^{56} - 2^{15}) \\ \end{split}$	$\begin{array}{l} \bullet^{0-1}q^{(0)}-7^{(0)}e^{1-2}-g^{(2)}e^{0-1}-g^{(2)}e^{0-ai},pi;\\ \bigtriangleup^{0-1}n-fr, \varpi^{0}fr, \bigtriangleup^{0-2}abd-np;\\ \bigtriangleup^{1-2}n-fr, \varpi^{0}fr, \bigtriangleup^{1-b}n;\\ \bigtriangleup^{0-1}n-fr, \varpi^{1-2}n-a;\\ \bullet^{1}r-\theta^{1}n-fr, \varpi^{1-2}n-a;\\ \bullet^{1}re^{0}ni, R^{(R)}(abd-npi, \bullet^{1}re^{0}l_{2}^{28+50}\bullet^{0-2}-21^{55}, \bullet^{1}re^{0}np;\\ \end{array}$	$\begin{matrix} - \\ \Delta^{0}\mathrm{na}_{-\mathbf{f}_{1},\mathbf{O}}\mathrm{O}^{-1}\mathrm{abd}_{-\mathrm{np}}; \\ \Delta^{1}\mathrm{na}_{-\mathbf{f}_{1},\mathbf{O}}\mathrm{O}^{-1}\mathrm{abd}_{-\mathrm{np}}; \\ \Delta^{1-2}\mathrm{n}_{-\mathbf{f}_{1},\mathbf{O}}\mathrm{O}^{-1}\mathrm{n}; \\ \Delta^{0-1}\mathrm{n}_{-\mathbf{f}_{1},\mathbf{O}}\mathrm{O}^{-1}\mathrm{n}; \end{matrix}$	$\begin{array}{l} \Delta^{0-1} nf_1, \omega^1 f_1, \Delta^0 n_F; \\ \Delta^{0-1} nf_1, \omega^1 f_1, \Delta^0 n_F; \\ \Delta^{0-1} nf_1, \omega^1 f_1, \Delta^0 n_F; \\ \Delta^{1-1} -f_1, \omega^1 f_1 - \lambda^{1-1} n_F; \\ \Delta^{1-1} -f_1, \omega^1 -f_1 - \lambda^{1-1} n_F; \\ \Delta^{1-1} -f_1, \omega^1 -f_1 - \lambda^{1-1} n_F; \\ \Delta^{1-1} -f_1, (\eta^1 2^3) \Delta^4, \delta^{-1} - \eta^{1-2} \partial^{-1} 2^{1+2} \partial^{-1} 2^{1+2} \partial^{-1} 2^{1+2} \partial^{-1} \partial^{-1}$	Tage mit: ●→★▲ ≡ ⁰⁻² R (R) BB
Schnee Lahe9	Note:							1 1
mm Form	Sum. ⁸	5:3 0:4 7 [.] 2	111.8 0.4 2 3.8	$\begin{array}{c} 0.3\\ 0.7\\ 0.9\\ 23.2\\ 4.3\end{array}$	3.3 5.6		0.0	
chlag in ihe und	21 ^h	2.5 0.1	$\begin{array}{c} 0.1 \\ 0.0 \\ . \\ . \\ 18.2 \end{array}$	$\begin{array}{c} 0.3 \\ 0.6 \\ 0.9 \\ 0.3 \\ 0.3 \end{array}$	0.1 3.6		0.0	- -
Niederse Vasserhö	14 ^h	2.2 0.3	11.7 0.4	0.0 0.0	3.2		0.0	17.8
4	Дh	19.3 0.6 	0.0	$5.6 \\ 0.1 \\ 0.0 \\ 10.5 \\ 10.5 $	4.0 	5.0	0.0	49:3
chwin- m/sek	ximum ⁷	20'6 W 18'6 W 11'4 W 11'4 V 12'5	W 23.9 W 17'8 W 14'2 W 6'7 W 14'4	W 10.0 W 10.0 W 15.0 W 14.2	W 10.0 5.8 7.2 E 10.0	E 11.4 11.1 9.2 8.3 8.3 10.6	E 11.1 E 13.1 11.9 11.9 11.4	- 11.9
Vindges igkeit,	6 Ma:	1 7 7 WN NW NW NW NW NW NW	9 NN 3 NN 0 NN 0 NN	9 4 0 0 WN NNN NNN	846 846 NN NN SSE	9 ESI 8 ESI 8 ESI	4 PNNN 3 WW	1
A A	Mit	00 10 4 00 4	44000	0.0.4.4.0	0.0000	0.0000 0.000 0.000	0.0.1.1.0.0	3.
l -stärke Grade)	21 ^h	MNW WNW WNW	WNW WNW SSE W	WSW SW NW	WNW NN S N N	NNW N SSE SSE	NW NW SSW WNW	2.2
htung und Beaufort-	14h	WNW 3 NNW 4 NNW 4 NNW 3	WNW 4 WNW 4 WNW 3 ENE 2 ENE 3	S S S S S S S S S S S S S S S S S S S	WSW 2 NNE 1 E ENE 2 NNE 2	NNW 3 NNE 3 ESE 3 ESE 3 ESE 3 ESE 3	ESE 3 ESE 3 ENE 2 NE 2 SE 3 SE 3 SE 3 SE 3 SE 3 SE 3 SE 3 SE 3	- 2.9
Windric (0–12	Дp	WNW 5 WNW 4 WNW 3 NW 2 WNW 3	WSW 2 WNW 4 WNW 4 E 1 E 1	C C 0 C NNW 2 WNW 2 WNW 4	WNW 2 NW 1 E 1 NNE 1 WNE 1	WNW 2 NNW 2 E 1 ENE 1 ESE 1	$ \begin{smallmatrix} E & 1 \\ E \\ R \\ S \\ S \\ M \\ S \\ W \\ Z \\ W \\ Z \\ Z \\ Z \\ Z \\ Z \\ Z \\ Z$	- 1.9
Son- nen-	schein	0.01 5.1 12.1 12.1	0.7 7.3 10.8 11.7 11.0	6.0 1.91 0.470	$ \begin{array}{c} 0.5 \\ 12.4 \\ 12.4 \\ 9.6 \\ 9.6 \\ \end{array} $	6.9 14.3 14.3 13.9 13.8	$\begin{array}{c} 10.5\\ 113.9\\ 113.3\\ 7.0\\ 7.6 \end{array}$	240°7 7°8
10, in	Mit.	$ \begin{array}{c} 10.0 \\ 9.3 \\ 8.0 \\ 9.3 \\ 9.3 \\ 1.0 \\ \end{array} $	7.0 2.7 8.7	6.3 6.7 9.7 9.3	9.3 1.0 3.0 7.3	$ \begin{array}{c} 6.0 \\ 1.0 \\ 0.3 \\ 1.3 \\ 1.3 \\ \end{array} $	2.0 0.3 1.3 8.7 8.7	5.2
Menge 0– e ^{0–2}) zum Term	21 ^h	$ \begin{array}{c} 10^{2} \\ 9^{1} \\ 7^{1} \\ 10^{1} \\ 1^{1} \end{array} $	10^{2}	$\begin{array}{c} 4^1\\ 10^1_{\bullet}\\ 8^1\\ 10^2_{\bullet}\\ 10^1_{\bullet}\end{array}$	$\begin{array}{c} 8^{0}\\ 0\\ 4^{1}\\ 10^{2} \end{array}$	00000	10^{8}	5.2
völkung (. Dicht 7itterung 2	14h	$ \begin{array}{c} 10^{2}\\ 10^{1}\\ 1^{2}\\$	102 52 80 80	$^{91}_{10^{-10}}$	10^{1}_{10}	31^{00}_{10} 10^{00}_{10} 32^{00}_{10} $32^{$	8 ⁶ 6719	- 2.6
Beu	Дh	$\begin{smallmatrix} 102\\9\\9\\1\\0\\1\\0\\1\\0\\1\\0\\1\\0\\1\\0\\1\\0\\0\\1\\0$	102 . 71 80 80	10^{2}	$\frac{102}{31}$	10876	71 0 71 0 71 0 71	1 .4
Tag		-0.04 v	96.01	11 13 15 15	11 19 20 20	222322	30.28 30.28 31.28	Summe Mittel

Mai 1989

(207°5 m)	
Warte	
Hohe	
Wien,	
Geodynamik,	
pun	
Meteorologie	
für	
Zentralanstalt	
der	
an	
Beobachtungen	

16°21'7' E-Länge v. Gr.

im Monat Juni 1989

48° 14'9' N-Breite.

	_						ė	•			F	4.00	ſ	5	-	┝	6			L	L	F	acmitte	dor		_
T_{a}	8		Luftdruck hpa	1.		Ē	ıjttempera üben	atur, U r dem Bo	u I u	mcs	11	strah- tug °C ⁴	A	ampjar hpa	uck		ке Feuchi	lative igkeit	%	Verdun- stung,	-	Boden in der	temperat Tiefe vo	ur/°C mm		
	Дh	14 ^h	21 ^h	Mit.	Δ^2	Ţћ	$14^{\rm h}$	21 ^h	Mit. A	$4ax.^3$ N	Ain. ³	Ţћ	7h	14 ^h 2	1^{h} M	lit. 7 ¹	14	1 21 ^h	Mit.		0.02	0.1	0.5	1.0	2.0	_
	1. 987	3.986 8.	985.4	2.986	-3.2	12.0	16.9	17.2	15.4	19.5	10.7	10.0 1	2.4]	14.0 1	5.7 14	0.1	89 7	3 8(81	0.5	19.6	19.2	18.3	16.5	14.1	_
	2. 983	.3 982.0	6.886	983'1	6.9-	15.2	17.8	12.6	15.2	18.1	11.7	14.3 1	6.4]	12.6 1	2.4 14	6.1	95 7	8	86	2.0	19.2	19.0	18.2	16.4	14.2	_
	3. 985). 586 9.	984.2	984.9	-5.1	13.2	18'2	13.7	15.0	19.0	6.01	9.1 1	2.1	12.7 1.	4.4 13		80 6	1 91	F	1.0	19.5	18.7	18.0	16.5	14.3	_
	4. 985	3.986 9.	2.986 8	986.4	-3.6	13.0	13.4	10.8	12.4	17.4	10.2	8.8	1 2.0	13.7 1	1.7 12	0.0	72 8	6 6	84	9.0	18.1	17.9	17.8	16.4	14.4	-
	5. 986	.3 984.2	2.986	985.7	4.4	14.3	17.2	10.4	14.0	19.4	9.6	6.5 1	1.7	14.5 10	0.8 12		72 7	4 86	1	1.3	18.2	18.1	17.5	16.4	14.5	_
	6. 988	5.986 9.	9.586	0.286	-3.1	13.0	16.8	13.3	14.4	18.1	5.6	6.1	6.6	2.01	9.7 10	.1	66 5	9 9	F 62	1.5	18.2	17.9	17.2	16.3	14.6	
	7. 986	.3 987.2	3.686	2.286	-2.4	14.7	20.2	16.4	17.1	21.4	10.3	6.5 1	0.0	9.7 10	0.0	6.0	60 4	1 54	F 52	1.8	19.5	18.6	17.2	16.2	14.7	_
	8. 994	.5 994.4	1 995.1	994.7	4.4	10.6	17.1	12.8	13.5	18.3	10.3	8.8	1.5	6.1	9.9 10	.5	90 4	6	67	1.2	18.6	18.4	17.4	16.2	14.7	_
	.966 .6	.4 995.2	994.7	995.4	5.1	14.4	21.2	15.0	16.9	22.0	6.6	6.1 1	1.2	9.1 10	0.3 10	.5	68 3	9 9	22	1.8	20.3	19.4	. 17.6	16.3	14.7	_
-	0. 995	.66 9.	6.866 (994.5	4.2	15.0	23.8	16.1	18.3	24.2	8.6	6.4 1	2.1	10.1	0.8 11	0.	71 3	4 55	55	1.6	21.4	1 20.4	. 17.9	16.3	14.8	-
1	1. 996.	.3 995.6	966.3	996.1	5.7	18.0	24.0	19.0	20.3	24.5	12.1	0.6	1 2.0	10.9	2.1 11	.5	52 3	7 55	48	2.3	22.3	21.2	18.4	16.6	14.9	-
-	2. 997	3.266 0.	997.4	2.966	6.3	17.0	22.5	16.2	18.6	22.8	14.2	10.5 1	0.3	1 6.6	1.9 1(L.(53 3	9 9	F 51	3.0	22.4	1 21.5	19.0	16.8	15.0	-
-	3. 995	.966 6.1	996.4	996.1	2.2	14.3	16.1	15.4	15.3	16.5	14.1	12.0 1	3.1	14.3 1	3.1 13	5.0	81 7	8	78	1.1	19.7	19.7	19.1	17.1	15.1	_
-	4. 995	9.266 9.0	6.966 (8.266	5.4	15.7	20.8	16.8	17.8	22.8	12.8	12.2 1	1.2	0.01	5 9.4	9.0	63 4	1 4(48	2.6	21.2	20.4	. 18.8	17.1	15.2	
-	5. 996.	9.266 6.	L.166 9	2.966	6.2	13.8	17.2	14.2	15.1	21.9	2.8	4.2	9.6	11.3	8.8	6.0	61 5	8 54	1 58	2.2	20.3	20.1	18.8	17.2	15'2	
	.966	5.966 8.	8.266	2.266	2.9	11.3	15.9	14.7	14.0	18.1	6.3	4.7 1	0.3 1	8.01	8.9 10	0.0	76 6	0 54	F 63	1.6	20.0	19.4	18.7	17.2	15.3	-
1	7. 994	.9 994.8	\$ 995.5	995.1	4.6	12.0	13.6	13.6	13.1	14.3	11.9	9.5 1	2.1 1	1.6.7	3.9 13	0.	87 8	3 89	86	0.3	17.8	17.9	18.4	17.2	15.4	
	8. 993	.3 993.4	1.266	994.1	3.6	14.6	16.8	13.8	15.1	19.0	12.8	12.0 1	4.6	16.9	1:3 15	4	90 8	8 9(89	0.4	17.9	17.7	17.8	17.1	15.5	-
-	. 608 .	1 997'2	2.966	6.266	8.9	16.1	19.6	16.3	17.3	23.3	11.6	8.0 1	5.2 1	1.1 1.	1.8 15	L.	84 7	5 8(80	1.0	19.7	18.9	17.6	16.9	15.6	
C1	.966 .0	.4 995.1	994.2	995.2	4.5	14.0	19.0	15.1	16.0	6.61	11.5	10.4 1	3.1 1	3.7 12	2.5 13	<u>.</u>	81 6	2	72	8.0	19.5	19.0	17.8	16.7	15.6	-
(1	1. 991	.166 8.	0.066	1.166	0.4	14.0	18'2	16.1	16.1	20.2	12.7	11.7 1	4.8	5.9 1	57 15	5	93 7	6 86	85	9.0	19.1	18.7	18.0	16.8	15.7	
(1	2. 988.	0.886 2.	0.886 (988.2	-2.5	18.2	25.4	18.3	20.6	50.6	14.0	10.9 1	6.7 1	5.7 10	51 16	.7	80 4	8	68	1.5	21.9	20.2	18.1	16.9	15.7	_
(1)	3. 987	0.886 8.	989.3	988.4	-2.3	19.2	19.0	14.5	17.6	22.1	14.1	11.0 1	6.3 1	3.7 1	2.4 14		73 6	20	21	5.0	21.7	20.8	18.6	17:0	15.7	_
10	4. 989 5. 992	2 066 7.	6 066	C.066	1.1	18.6	9.70	0.06	1/1	5.50	6.2	1 0 71	1 6.9	1 2.2	114	4 0	0 9/	8 5	4 89	1.6	7 0.00	0 61	18.7	1/ 2	15.7	
4 (1 1/1		0.01													3	- ·			101		, UL	
10	-000 266	2 066 5.	0 066	1 166	2.6	10.21	C 07	1 17	6.17	20.07	C 7	1 0.21	1 7.0	1 0.2	11 1	<u>.</u>	0 20	207	20	n i	4 07	0.77	10.7	1/4	0.31	
10	8 086	2.006 2.	7.000	1 /06		1 61	9.51	417.0	0.11	c	P.P	14.31	1 1.9	1 6.7	112.8	1 1	0 2 2	+ C	604	1 5	0 07	C 77	1.00	1/ /	2.31 0.31	
10	9 993.	8.066 1.	0.066	0 101	9.0	17.1	5.00	16.3	18.6	0.20	7.6	1 2.6	1.7	1 6.0	11 6.0		80 4			1.6	9.10	0.0C	9.61	18.1	16.0	
10	0. 991	2 991.4	9.766	2.466	6.0	17.6	21.3	18.8	19.2	23.6	12.0	8.1 1	2.8 1	4.1 17	1.5 15		5. 5	000	62	1.6	22.0	20.6	19.6	18.1	16.1	
Mi	tel 991.	. 166 8.	2.166	9.166	1.2	15.3	19.5	15.7	16.9	21.2	12.2	9.7 1	3.1 1	3.3 12	2.8 13		75 6	0 72	69	41.7 Summe	20.4	. 19.7	18.4	16'9	15.2	
24st Son	ündiges ımerzeit	Tempera (+ 1 Stu	turmona ınde) ni c	tsmittel: sht berü	16.5 Gr cksichtig	ad																				

Bemerkungen zum Wetterverlauf	Intensität 0,1,2,=leicht, mäßig, stark	⁰⁰⁻¹ 0-6•Tt-8i, θ ⁰ ai,16 ³² -17 ³⁵ i,npi; •Tt• ⁰⁻² tt-mU-6 ³⁸ .0 ⁻² -10 ³³ , ⁹⁰ mi;p-abd, •Tt• ⁰ 19 ²⁴ - ⁰ 0-2 m0-mis + 00+11-20 1-2 00-30.0 mod 5 mod 5 mod 5 mod 5 mod 5	$(V_1)^{-1}(V_2) = (V_1 - V_2)^{-1} = (V_2 - V_2)^{-1}(V_1 - V_2)^{-1}(V_2 - $	[Ω ¹ n-na; Ω ⁰ n-fr.⊕Trabdi.⊕Tre ⁰ 22 ¹⁰ -23 ⁰⁵ i:	$Tr=0,12-205$; $Tr=1,17$, $Tr=0,1705-18^{35}$; $22^{23}-24$; Tr=0,0,12-205; 345 ,	$\mathbf{Tr}_{11310-20, [r0](0)01333-14i, 0^{-1}13^{27-59}i, Ttp;}$	•Tru,• ⁰ na,•Trfr-mU-e ⁰⁻¹ 7 ²⁵⁻⁴⁰ eTr-ai,• ⁰⁻¹ a-mi,R ⁰ p,• ⁰ pi;	• I t $^{-1}$ t $^{-1}$ 10 1 1 = 1 t $^{-1}$ abdi, e 1 mp; • T t $^{0-1}$ n $^{-1}$ N $^{-0-1}$ 8 ²⁵ $^{-1}$ 3 ³⁰ , 15 ²⁷ $^{-1}$ 7 ⁴⁰ ; (f) 0 R $^{0-1}$ p;	●01337_1430,((()0),●0-11449_1510,●Trp—0 ⁻² 1624-43, ●Trn,●0 ⁻¹ 150_440,●Tra,●1 ⁻² 1128-59,((()0m,●Trm,npi,	• ¹⁻² 0-• ⁰ 2 ¹⁵ -nai,•Trfr-mU-•Tr• ⁰ a-pi; [• ⁰⁻¹ 22 ³³ -24;	$ \overset{\texttt{o}\text{ni}}{_{-}}(\texttt{I},\texttt{0}^{\texttt{p}}\texttt{i},\texttt{e}^{\texttt{o}}\texttt{1}\texttt{4}^{\texttt{27-33}}, \texttt{e}\text{Trpi}, \Box^{\texttt{o}-\texttt{2}}\texttt{a}\texttt{b}\texttt{d}\texttt{-}\texttt{np}; \\ \frown^{\texttt{1-2}}_{\texttt{n}} \overset{\texttt{f}}{_{-}} \overset{\texttt{v}}{_{-}} \texttt{1}^{\texttt{f}} \overset{\texttt{30-1}}{_{-}} \texttt{9}; $	● Tr920-45,●0-11048-1115,●Tr1412-20,∞0abdi; ● Tr920-45,●0-11048-1115,●Tr1412-20,∞0abdi; (Rt00p0445-16206,●04635-1737; ∧1m;	$\sim 0^{-2}$ m fr $co^{1/2}$	$ \Box^{0-1} \mathbf{n} - \mathbf{f}^{*}, \boldsymbol{\omega}^{-1} \mathbf{n} = \mathbf{n}, \boldsymbol{\omega}^{0} \mathbf{n} \mathbf{p}; $	$\Box^{1} \infty^{1} m_{1} m_{3} \circ Tre^{0} fri, \circ Tra-mU - e^{0-1} 10^{30-46}, \circ Tre^{0} 11^{10} - 18^{15} i;$	Δ^{n_1} = r_r , Δ^{n_1} = r_r , Δ^{n_1} = r_r = r_r , Δ^{n_1} = r_r = r_r	Tage mit: ●9★▲ ≡ ⁰⁻² R (R) ⊠ →	16 1 6 7 0 2 0	n Mittel. ³ Aus der Registrierung von 0–24 Uhr. ⁴ Temperatur-	JReif, VRauhreif, ~ Glatteis, RGewitter über Ort, (R) Gewitter 1: mit Unterbrechungen, na frühmorgens, fr früh, a vormittags,
Schnee- Lates	ионе		• •	•		•			•		•		•	• •		•	Ŷ		•	I	I	ngjährige	Lau, L mU odd
mm Form	Sum. ⁸	4.8 12.4 5.0	2.9		2.6 0.0		0.0	0. <u>3</u>	9.0	1.3	12 ⁰	5.5 10'6	5.0	0.0	0.0	»	0.0	0.2	0.0	82.2	I	hung vom lai	Vebelreißen, 1 e 8 und mehr,
hlag in he und	21 ^h	9.0 0.0	1.6 16.4				0.0	0.0	0.0	0.1	9.L	2.2	0.0	0.0	0.0	,		0.3		35.3	I	= Abweic	lunst, ≣i l Windstärk
Niedersc Vasserhö	14h	8. <u>/</u> 0.0	$1.3 \\ 0.6$		0.0			0.0	5.0	1.1	0.4 4.4	$0.0 \\ 1.3$	0.4		0.2			0.2	0.0	19.8	Î	hpa. ²∆ 7 ^h in cm.	= Nebeld mehr,
Z	Дh	4.6 4.8	0.0	0.1	2.6			0.0	ר סי	0.1	2.4	3.3	6.3	0.1				0.0		31.7	I	Bc = 0.00	≡Nebel, ke 6 und 1
dgeschwin- :eit, m/sek	Maximum ⁷	N 4.4 W 18.3 W 0.2	W 15.3 W 18.3	WSW 9.2	W 12.5 W 11.1	NNNE 6.9	W 8'9 N 13'1	WNW 13.1	W 13.1	N 10.8	WNW 10.6 NNE 13.1	WNW 10.8	W 7.2	W 9.4	W 15.3 W 8.1	н 7.2 Е 7.2	S 61	W 18.3	W 1011	I	11.4	Gc = +0.25 hpa,	peln, ≜Eisregen, cke, w Windstär
Win digk	Mit.6	1.3 4.0	4.0.0 4.0.0	3.8	5.00	1.9	2.2	4.4 4 0	3.0	3.0	4.6 4.4	3.1 2.3	1.4	2.5		2. 0	1.4	4.7	3.2	1	3.2	orrektur. Ablicksw	∆ Grau Schneede
l -stärke Grade)	21 ^h	S 1 W 4	WSW 1 WWSW 1	W 3	WSW 3 WNW 1	WNW 1 W 1	WNW 3 N 2	NW 3	NNE 2	WNW 2	WNW 2 WNW 2	WNW 3 NNE 1	W 2	NNW 1 WW 5	W 4 NNW 1	Е. 3 Е. 3	SE 1	W 3	A M M	I	2.3	strumentenko	nee, ▲ Hagel, eeflocken, ⊠ sich auf die v
htung und Beaufort-	14 ^h	E 4 1	SWE SWE	M 2	WNW 3 WNW 2	NWN	NW 3	WNW 3	WNW 3	NW 2	WNW 3	WNW 3 NNW 3	NW 2	W 3	WNW 2	ESF 2	S 1	W 4	WSW 4	Ì.	2.7	t und mit Ins derindioes N	seln, ¥ Schn n, ¥Fl Schn hts (bezieht
Windric (0–12	Дh	NNE 1	ENF 1	WNW 3	W 3	н н	NNE 1 NNW 3	NW 3	ENE 1	WNW 3	WNW 3	WSW 3 WNW 2	SW 1	NE 1 W 3	M 22	ENF 1	E 2	W 3	WSW 2	I	2.2	erekorrektur Smuden 6.2	Regen, Nic Regentropfe hends. n nac
Son- nen-	schein ⁵	1.2	1.6	0.00	3.7	14.4	12.7	0.0	9.6	2.0	1.1	8.4	1.9	0.8	0.5	9.9	4.5	0.2	9.2	182.1	6'1	fit Schw	ingen: • nst, •Tr nv späta
)–10, min	Mit.	6.6 0.6	0.8	0.0	9.0	1.7	$3.3 \\ 4.0$	10.0	5.7	0.6	10 0 6.3	5.0 6.3	8.7	5:3	9.3	0.2	7.3	0.6	0.2	1	6.9	h): 3. ¹ N	Abkürzu Abkürzu 2n, ∞ Du abends.
(Menge (hte ^{0–2}) zum Ten	1 21 ^h	10 ¹ • 10 ¹ •	3 ¹	70	10^{1}	10	14 14	101	-1 o	91	301	750	91	1 0 0 0	0 16 12	61	20	810	01 01	1	0.2	- 14 ^h + 21	terleuchte
wölkung Dicl Vitterung	14 ^h	• 10 ¹	/- 102- 72-	101	46	31	30.73	101	6 6	92	6 ¹	9 19 18	81	<u>6</u> 8	101	61	000	101	< 1 4	- Ľ	7.4	ttel (7 ^h +	lete Zeic , & Wett
Bei	Дh	1. 8 ¹ 2.102≣	0.4.K	. os	0.0	9. 0 0. 1º	00%	3. 101	-11 21	6. 92	/. 10 ²	9. 1 ¹	1. 91	¹⁰ ¹⁰	101	01 5	7. 91	6 6 6	0.81	1c	a 6.3	Tagesmit	Verwend ngebung
Tag						1				÷÷		й н	0	00	1010	1 0	101	00	49	Sumn	Mitte	ninim	in Ur in Ur

Juni 1989

°			0	00	4	6 2	11	~ 00	60		2	3	1 10	9	- oc	00	6	6 0	6	6	0	0 -		00	3 6	4
E	ite.	_	2.(16.	16	16	16	16.	16.	17.	17	17.	17.	17	17.	17.	17	17.	17.	17.	18	18.	18.	18.	18.	17
5.1	Bre	der r/°C m	1.0	18.2	18.4	18.5	0.61	19.4	2.61	0.07	20.1	20.5	20.7	20.1	6.61	9.61	19.4	6.61	6.61	5.61	8.6]	6.61	0.07	20.1	0.00	5.6
207	ź	nittel peratu fe von	ŝ	7.6	0.2	0.6	41	n	2.0	5.3	4.7	0.0	0.00	Ξ	6.0		6.6	.12	0.1	4	×	00 ir	1.	50 :	4 4	
9	,6.	agesn entemp r Tiej	0	919	4 2(4 9 2 1 2 1	7 21	6 23	9 22	2 23	0 23	1 22	275	4 21	9 20	1 50	0 19	8 50	N 10 N 10 N 10	3 21	0 21	6 21 4 21	6 21	5 21	121	8 21
rte	° 14	T Bode in de	1.0	21.	52.	53. 53	23.	2.42	24.	24.	24.	24.	57.7	21.	212	50.	21.	21.	37.	24.	24	525.	52.	22.	21.	22.
Wa	48		0.02	22.9	23.6	24.7	24.5	25.7	25.9	25.2	24.5	25.1	51.0	22.1	27.3	20.2	21.7	22.8	24.5	25.3	0.57	22.8	23.0	22.8	20.7	23.5
-	1	rdun- ung,		$2.0 \\ 1.4$	1.4	1.7	2.0	3.6	2.5	1.2	1.2	2.7	1.9	2.2	1.4	2.0	1.6	5.0	5.2	1.4	1	0.0	1.1	1.6	c.1	6.1
ohe		Ve	t.	220	1	8 3	13	0.6	29	8	5			1		21	5	00 7			6	00 1		33	10	4 5 Su
Ï		%	Mi	4 00	3	60			4 20	10	10		<u>74</u>	5	<u>7</u> 4		4	101		20	~			0	• • •	
čn,		ative gkeit	21 ^h	άř	1	õ ŭ	່ທີ່		96	õõ	2	in v	ÓÓ	30	м ж	ŝ	Ň	ίΩ Ì	ñ ñ	21	~		. 30	3 î	/ 8	96
Wie		Reli uchti	14^{h}	46	64	50	46	ç 4	4 82 82	59	68	45	49	50	8 8	94	36	4	5 4	52	69	76 41	89	46	1c 89	53
5		Fe	Ţћ	76 76	75	84 75	57	78	62 65	90	88	74	58	63	63	62	99	47	52	88	68	82 7,82	78	76	60	73
mik			Ait.	5.2	8.2	0.2	5.2	8.6	0.0 6.2	0.0	9.1	5.2	9.0	1.2	9 .6	6.6	1.5	3.0	2.0	9.4	1.6	¢.9	9.9	4.2	2.6	2.2
naı		ıck	h A	·31 41	.5.1	1 1	.31	16.	.7 1.	72	.61	<u>1 6 1</u>	16.	.4 1	<u>γ</u>	6.	.3 1	.61	14	0 1	6 1	.3 1	.1	.0 1	31:	.5 1:
dy		pfdrı ıpa	21	7 15 3 16	6 18	1 21 1 14	9 15	$\frac{1}{1}$ 18	3 18 0 20	5 20	6 17	7 13	8 10	80	1 9 14	1 9	7 12	3 11	8 16	7 18	3 19	8 17 9 17	5 15	14	2 13	9 15
Geo	89	Dam	$14^{\rm h}$	14.	19.	19.	15.	20.	17.	19.	19.	14.	10.	13.	9.4	10.	10.	13.	11	19.	19	13.	17.	13.	15.	15.
F	19		7ћ	15°5 17°5	16.4	19.7 18.4	14.4	20.4	17.6	19.9	20.0	17.9	10.1	11.6	10.9	9.6	11.6	14.1	11.7	20.5	18.5	16.7	17.3	15.1	18.3	15.8
nne	Juli	lus- rah- g °C ⁴	Zh	11.3	13.1	14.5	11.8	14.5	17.5	16.1	18.1	15.8	0.6	5.6	6.5	2.2	9.2	9.1	2.01	15.7	0 4	1.9	14.7	12.0	4.6 4.9	12.6
rie	iat.	st st	m.			6.3	.0.	0 0	<u></u>	00	5	4 o	0 00		<u>, -</u>	1	5	80 0	<u>> 00</u>	6	21	<u>~ 0</u>	6	6	0.00	0
olog	Moı	1	³ Mir	0 16 9 16	1 16	5 18 7 18	7 18	0 18	8 20 9 19	3 17	5 19	8 18 1 18	12	4 14	1017	11	2 12	2 12	9 14	18	1	7 18	117	3 15	× 14 4 14	4 16
COLC	m	n 28 ⁻	Max.	26°	25.	28.	26	32.0	29.62	27.3	24.5	26.8	50.0	23.	19.7	20.1	25.3	25.2	5.8	29.5	24	21.7	22.1	24.	18.3	25.7
Acto	1	c in 1 oden	Mit.	21 ^{.1} 20 ^{.8}	21.6	23'4 24'1	23.3	26.5	24.9	21.8	21.0	22.7	16.5	19.2	15.3	15.8	19.7	19.7	23.7	23.0	8.07	19.4	20.1	19.7	c 12 15°8	6.02
N .		r, °C em Bo	4	0.5 8.3	4.17	0.8	2.2	1.0	3.6	9.0	0.2	1.3	1.0	2.8	4 4	4.9	9.6	8.2	3.7	8.0	1.3	4.0	9.6	0.8	4.5	8.6
fùr		eratu ber de	5				(1)	1 (1		(1		~ ~				. —	_		- (1	~ ~	. \	- 0	1	(
alt		ttemp ül	14h	25°0 24°4	24.5	29:3 28'3	26.6	31.2	26'6	25.8	23.4	26.3	19.0	22.7	20.6	19.0	24.0	24.4	28.0	28.3	23 0	19.1	21.6	23.7	20 2 15.1	24.2
nstä		Lufi		L 80	6.	0 N	0	4 6	21		2	50	4	0	0 4	. 9	4	00 0	14	0	N	9 %	50	4 0	> ∞	2
cala			Дh	17	18.	50.50	21.	51. 7	53.53	19.	19.	50.	15.	16	Ω Υ	13.	15.	16	19.	20.	18	19.	19.	17.	17.	18.
cnti			5	6.0	1.7	3.9 6.4	7.4	0.4	2.1	2.4	2.9	0.5	4.5	2.2	0.1	4.2	6.1	9.2	6.1	4.5	5 O	4.1	4.7	5.7	2.2	6.2
Ň			4									l			1										1	
ler			Ait.	6.68	92.5	94.7 97.2	98.2	90.4	92.9	93.2	2.26	9.06	1.26	93.3	1.96	0.26	6.96	98.4	6.96	95.3	8 66	94.9	5.26	5.96	85 4	2.26
0	Gr.	k^{1}	V	86	6	66	9	+ 9	9 6	6	6	00	6	9	- 2 - 2	6	6	6	<u>v 4</u>	40	<u>ر</u>	100	6	00	9 9	
ar	v. (fidruc hpa	21 ^h	.686	666	.266	.266	.686	.266	.266	. 666	. 686	364	994	.066 .066	966	.966	.666	.966	. 266) (166	. 266	.266	. 266	C86	. £66
cen	nge	Luj		2.73	.4	0. 0	4 :	n .0	<u>∞ -</u>		.4	i w	- 6.		× c	·	2	6.0	vi v	0.0	x		· 4	4 :	0 <u>0</u>	4
gun	E-Lä		$14^{\rm h}$	986 986	992	993 996	998	066	992 995	992	993	989	994	992	569 689	995	966	7997	966	995	666	995	995	966	986 986	993
chti	Ι,Δ.		-	2.6 6.6	2.0	4.4 7.6	9.8	1.7	2.4	3.8	4.1	2.2	5.4	3.5	9.6	3.2	2.2	8.5	6.4	9.9	c 0	4.5	1.21	6.1	1.4	4.3
bad	° 21		7	96 86	66	66 66	66	66	66	.66	66	66	66	66	66	66	66	66	66	66	66	66 06	66	66	98 86	66
Beo	16	Tag		1.	i ε.	4. 10.	9.0	~ 8	9.	11.	12.	13.	15.	16.	18.	19.	20.	21.	23.	24.	.57	26.	28.	29.	31.	Mittel
				1																						

24stündiges Temperaturmonatsmittel: 20'5 Grad Sommerzeit (+1 Stunde) nicht berücksichtigt!

ŝ
6
-
17
1

Bemerkungen zum Wetterverlauf	Intensität ⁰ , 1, 2, = leicht, mäßig, stark	$\begin{array}{c} \Delta^0n_3-fr;\\ \Delta^0n_3-fr;\\ \alpha^{(0)}=6^{(0)}, 2^{(2)}-6^{(0)}, 2^{(2)}-5^{(0)},\\ \bullet^{(0)}+3^{(0)}, 8^{(0)}, 8^{(1)}+5^{(4)}-16, np;\\ \bullet^{(0)}+4^{(0)}-5^{(1)} R^{(0)}(R^{(0)})-4^{(1)}-5^{(1)} R^{(4)}-3^{(1)}-3^{(1)},\\ \bullet^{(1)}+4^{(1)}-6^{(1)}-5^{(1)} R^{(1)}-1^{(1)}-5^{(1)},\\ \bullet^{(1)}=0^{(1)}, \Delta^{(1)}-1^{(1)}-1^{(1)}-1^{(1)}-1^{(1)}-1^{(1)},\\ \bullet^{(1)}=0^{(1)}, \Delta^{(1)}-1^{(1)}-1^{(1)}-1^{(1)}-1^{(1)}-1^{(1)}-1^{(1)},\\ \bullet^{(1)}=0^{(1)}, \Delta^{(1)}=0^{(1)}, \Delta^{(1)}=0^{(1)},\\ \bullet^{(1)}=0^{(1)}, \Delta^{(1)}=0^{(1)}, \Delta^{(1)}=0^{(1)},\\ \bullet^{(1)}=0^{(1)}, \Delta^{(1)}=0^{(1)},\\ \bullet^{(1)}=0^{(1)},\\ \bullet^{(1)}$	Δ ⁰ fr; Δ ⁰⁻¹ na-fr,α ⁰⁻² fr-a,Δ ⁰ np; α ² fr,Δ ¹ (η,0), ω ₁ = 0 ⁻² 14 ⁰⁸ - 15 ⁰⁷ , ω ¹ Tmp, ζabd-(ft) ⁰ np; φ ² (n,1) ⁽²¹ -(ft) ⁰), ω ¹ = 0 ⁻² 23-24i; φTrm-nai, ω ¹ Tra ⁰⁻¹ a-mi, ft ⁰ (ft) ⁰ , η ₀ , ω ₁ = 0 ⁻² 23-24i;	$\begin{split} & \bullet^{D-1}0^{-1} i^{6} s^{0} h d_{1} \bullet Tr e^{0} j 2^{24} - 21 l^{0} (R)^{0} h d-npi, e^{1}T 2^{1} 3^{4} - mU -\\ & \bullet^{1}0^{-25} \bullet 5^{-24} \cdots i_{5} na, e^{T} Tp, abd, e^{T} t^{e} npi; \end{split} $	$\begin{array}{l} \bullet Tre^{0}2^{0}9^{0}-4^{3}0_{1},\bullet Trna,np;\\ \bullet Trni;\\ \bullet ^{0}11^{2}-mU-e^{0-1}1_{3}1^{2}-4^{5}0^{-}p_{1},\bullet^{0-1}1_{6}^{2}2^{-1}7^{38},(0)^{0}p,\bullet Tre^{0}abdi;\\ \bullet ^{17}e^{0}2^{-5}5^{18};\\ \Box ^{0-1}n-fr;\end{array}$	$\begin{array}{l} \Box^{0-1}n^-f_{1}, \varpi^{0}f_{1}, \Box^{0}np;\\ \Delta^{0}n^-f_{1};\\ \bullet Tm, \bullet^{0}21^{45}, 22^{54}, 22^{54}, 22;\\ \bullet Tm, \bullet^{0-1}4^{23-37}, \bullet Tr_{0}p_{1}R^{0}p, \zeta(f_{1})R^{1}npi, \bullet^{0}23-\bullet^{1-2}23^{25}-24;\\ R^{0}nai, \bullet^{0-1}R^{0-ni}, R^{0-1}\zeta_{n}, \bullet Trai;\\ \bullet^{-2}0-0^{35}, \bullet 2ni, R^{0-1}\zeta_{n}, \bullet Trai; \end{array}$	$\begin{array}{l} \varpi^{0-2}_{n-1p} \bigtriangleup^{0}_{r_{1}} \circ^{0}_{s} S^{2, l-1} 1^{26}, \bigtriangleup^{0-1}_{a} b b d-np;\\ \bigtriangleup^{1-2n-f_{1}} : \varpi^{0-1}_{n-f_{1}};\\ \bigtriangleup^{0} : \delta^{1}_{s} i b d-np;\\ \varpi^{0-2n-s} : \Gamma^{e} \circ^{0-3} S^{1/2}_{s} : \Sigma^{1/2}_{s} w^{1}_{s} db d-np;\\ \varpi^{1-2n-s} : \Gamma^{e} \circ^{0-3} S^{1/2}_{s} : \Sigma^{1-2n-s}_{s} : \Sigma^{1-2n-s}_{s};\\ \omega^{-2n-s} : \Gamma^{e} \circ^{0-3} S^{1/2}_{s} : \Sigma^{1-2n-s}_{s} : \Sigma^{1$	Tage mit: $\bullet \bullet \star A \equiv 0^{-2}$ R (R) EA $\mu \mu$ $\mu \mu$ 16 0 7 9 0 0	n Mittel. ³ Aus der Registrierung von 0–24 Uhr. ⁴ Temperatur- IReif, VRauhreif, «Clatteis, R.Gewitter über Ort, (f) Gewitter ri mit Unterbrechungen, na frühmorgens, fr früh, a vormittags,
Schnee-	лоне					••••••		1 1	ngjährige ⊃ Tau, ∟ , mU ode
mm Form	Sum. ⁸	0.5 1.7 3.5 0.0	$\begin{array}{c} \cdot \\ 0.1 \\ 2.0 \\ 11.1 \end{array}$	$\begin{array}{c} 2.0\\ 0.1\\ 0.2\\ 0.1\\ 0.1\end{array}$	0.0	0.0 0.4 0.0	0.5 0.0 0.0 3.3 12.9	- 20.2	chung vom la Nebelreißen, <i>i</i> ce 8 und mehr
chlag in ihe und	21 ^h	0.0 3.5		$\begin{array}{c} 0.2 \\ 0.0 \\ . \\ 1.7 \end{array}$	1	0.	9.0	- 9.6	= Abweii lunst, ≣i l Windstärk
Niederse Vasserhö	14 ^h	0.0	0	$0.0 \\ 0.0 $		0.0	0.5 0.0 12.3	15`4 _	hpa. ${}^{2}\Delta$ 7^{h} in <i>cm</i> . = Nebeld mehr, m , in steht).
А	Ţћ	1.7 0.0	0.0	$ \begin{array}{c} 10.7 \\ 1.8 \\ 0.1 \\ . \end{array} $	$\begin{array}{c} 0.1 \\ 0.0 \\ 0.0 \end{array}$	0.0 6.4	0.0 3.3	25.7	Bc = 0.00 7^{h} . 9 Um \equiv Nebel, ke 6 und 1
lgeschwin- eit, m/sek	Maximum ⁷	SE 81 W 103 VNW 83 E 1000 R 78	N 72 ESE 1111 SE 1000 W 1422 W 811	VNW 975 VNW 775 VNW 1114 W 1422 VNW 1000	VNW 16'9 N 13'1 W 15'0 VNW 15'6 W 9'2	N 7.2 E 6.4 E 7.8 E 9.2 ENE 6.1	W 9.2 W 1000 W 7.2 W 203	- 10 ⁻⁵	2c = +0.25 hpa, rt. ⁸ Von 7 ^h bis eln, \triangle Eisregen, ike, $-w$ Windstär ngene Nacht, we
Win digk	Mit.6	2.1 2.1 2.1 2.1	1.80 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.0	12440 2227 200 100 200 200 200 200 200 200 200 200	2.50V	11:00 11:00 11:00 11:00	22.7 22.7 4.1	- 2.6	rektur. (blickswe ∆ Graup chneedee orangega
-stärke Grade)	21 ^h	NW 2 SSW 1 NW 2 NW 2 NW 2 NW 2 NW 2 NW 2 NW 2 NW 2	WNW 2 SSE 2 SSE 2 W 3 NNW 1	WNW 2233 WNW 2223	NNW 22112	N ^{EE} EN SE	WWW WWW 000004	- 1.9	rumentenkor ittel. ⁷ Auger ee, ▲ Hagel, eflocken, ⊠ S ich auf die ve
htung und Beaufort-C	14 ^h	E WNW E NNW 2 NNW	NW 1 S 3 SE 3 WSW 3 NNE 1	A&&A	W 4 WSW 4 WNW 3 WNW 3 WNW 3	NNE 3 ENE 1 ENE 1 ENE 3 NNE 2 NNE 2	WNW 2 WSW 1 WSW 1	- 2.4	und mit Inst lstündiges M seln, ¥ Schn 1, ¥Fl Schne nts (bezicht s
Windric (0–12	Дh	NR NNE NNE NNW 31 2 2 1 2 31 2 1 2 31 2 1 2 31 2 31 2	NE 112 NE 112 WE 122 NE 122	NE WNW 3332 WNW 3322	WNW 4 ESE 1	E E SE NNE WSW	ESE 2 NW 2 WSW 2 WS 2 SW 2 SW 2	- 1.9	erekorrektur Stunden. ⁶ 24 Regen, 9 Nie Regentropfet oends, n nach
Son- nen-	cheins	11.0 2.6 8.5 8.5 8.2	$700 \\ 1100 \\ 805 \\ 601 \\ 601 $	4.0 9.0 7.0 7.0	$ \begin{array}{c} 2.9 \\ 2.5 \\ 6.0 \\ 10.1 \end{array} $	12.5 12.0 5.1 3.3	$\begin{array}{c} 0.2\\ 12.2\\ 0.1\\ 7.4\\ 0.0\end{array}$	209°8 8'9	fit Schwe Dauer in S ingen: • I nst, • Tr] np spätab
)–10, min	Mit.	5.3 8.0 6.3 5.0	6.0 6.0 6.0	7.0 3.7 3.3 3.3	9.3 5.7 7.0 3.7	9.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	10.0 2.3 3.0 8.3 8.3	0.9	h): 3. ¹ N oden. ⁵ L Abkürzu n, ∞ Du abends,
(Menge ('tte ^{0–2}) zum Ten	21 ^h	$\begin{array}{c} 8_1\\ 9_1\\ 10_1\\ 5_0\end{array}$	6^{10}_{10}	10^{1}_{91}	$\begin{array}{c} 10^1\\2^1\\8^1\\7\\1\\7\end{array}$	$\begin{array}{c} 2^{1}\\ 8^{0}\\ 10^{1}\\ 10^{1}\end{array}$	$\begin{array}{c} 101\\ 091\\ 0\\ 6\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$		- 14 ^h + 21 r dem B hen und erleuchte iags, abd
wölkung Dich Vitterung	14 ^h	61 91 21 21 21 21	$\tilde{v_1} \overset{\sim}{\otimes} \overset{\sim}{\partial} \tilde{v_2} \overset{\circ}{\otimes} \overset{\circ}{\otimes}$	49944	$\begin{array}{c} 81\\8\\1\\7\\1\\3\\1\end{array}$	$ \begin{array}{c} 41\\ 0\\ 0\\ 0\\ 12$	10^{1}_{91} 3^{1}_{91} 3^{1}_{10}	- 6.2	6 cm übei lete Zeicl , 5 Wetti nachmitt
2 Bei	Дh	5.4.3.2. 81.0.88120 81.08120	0.22 22007 212007	$\begin{array}{c} 1.\\ 2.\\ 3.\\ 3.\\ 3.\\ 3.\\ 3.\\ 5.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 2.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0$	$\begin{array}{c} 6. \\ 10^{1} \\ 7. \\ 7^{1} \\ 9. \\ 9. \\ 8^{1} \\ 9. \\ 1^{0} \end{array}$	22.432	$\begin{array}{c} 6. \\ 10^{1} \\ 7. \\ 8. \\ 10^{1} \\ 9. \\ 0. \\ 0. \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	^{lic} - 1	Tagesmit num in (Verwend ngebung ttags, p
Tag			5		66666	~~~~~~	0000000	Sumn Mitte	in Un minir

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Nr. 7

Sitzung vom 10. November 1989

Das wirkliche Mitglied Hermann HAUPT legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

> Verlauf der Gesamthelligkeit des Mondes während der totalen Finsternis vom 17. August 1989

Von A. HANSLMEIER and M. STANGL Inst. für Astronomie, Franz-Franzens Universität Graz

Abstract

We observed a magnitude decrease of 10^m for the totally eclipsed moon during the total eclipse of Aug. 17, 1989.

Die Totale Mondfinsternis vom 17. August 1989 wurde unabhängig von 2 Beobachtern mit Hilfe von Silberkugelphotometern an den Beobachtungsorten Observatorium Lustühel Graz (Hanslmeier) und Pleschkogel (Stangl) registriert. Die zum Saros 128 gehörige Finsternis war unvollständig sichtbar, da der Mond nach Ende der Totalität unterging. Durch die geringe Höhe über dem Horizont während der Totalität waren Helligkeitsmessungen ab Beginn der totalen Phase nicht mehr möglich. Die Extinktionsbeiträge für die Vergleichssterne und den Mond sind aus den Tabellen für Potsdam von G. MÜLLER [1] entnommen. Die Datenreduktion erfolgte analog den früheren Beobachtungen von H. HAUPT [2].

Die Abb. 1 zeigt den Helligkeitsabfall zur Totalität, wobei die vollen Punkte die Beobachtungen von Hanslmeier und die Kreise jene von Stangl wiedergeben. Daraus kann man eine Amplitude von 10 Größenklassen ableiten. Die Größe der Finsternis betrug 1,6; man konnte den Mond während der totalen Phase noch schwach rötlich erkennen, aber aus den erwähnten Gründen waren Helligkeitsmessungen nicht mehr durchführbar.

Abb. 1: Verlauf des Helligkeitsabfalls des Mondes bei der Finsternis am 17. August 1989. $E_{\kappa} = \text{Eintritt in den Kernschatten}, E_{\tau} = \text{Eintritt in die Totalität. Beobachtungen von Hanslmeier (Punkte) und Stangl (Ringe).}$

Folgende Vergleichssterne mit ihren RHP-Helligkeiten und MK-Spektraltypen wurden verwendet:

Stern	Helligkeit	Spektrum
αLyr αAur αUMi γUMi δUMa βUMa αUMa	$0,14 \\ 0,21 \\ 2,00 \\ 3,14 \\ 3,31 \\ 2,36 \\ 1,95$	A0 V G5 III F8 Ib A3 II—III A3 V A1 V K0 II—III
Jupiter	-1,65	_

Wir danken Herrn Univ.-Prof. Dr. H. Haupt für Diskussionen zu dieser Arbeit.

Literatur

[1] Müller, G.: Mittlere Extinktionstabellen, Handbuch der Astrophysik II/1, 264, Springer, Berlin 1929.

[2] Haupt, H.: Die Gesamthelligkeit des Mondes während der totalen Mondfinsternis vom 16. September 1978, Anz. d. math.-nat. Klasse der Österr. Akad. d. Wiss., Wien, 116, 154 (1979) = Mitt. Univ. Sternwarte Graz Nr. 57.

In die Sitzungsberichte, Abteilung II, wird aufgenommen:

"Die Vervollständigung der diskreten klassischen Orthogonalpolynome" von Peter LESKY (vorgelegt von k. M. Leopold VIETORIS)

"The Pettis integration via uniform distributed sequences and its application" von Nickolay T. TRENDAFILOV (vorgelegt durch w. M. Edmund HLAWKA)

Im Zeitraum vom 1.7.—31.9.1989 wurden folgende Arbeiten in die "Monatshefte für Chemie" aufgenommen:

- ALVARO, M., V. BALDOVÍ, H. GARCÍA, M. A. MIRANDA and J. PRIMO: Influence of β -substitution on the photochemistry of α , 2-diacetoxystyrenes. Irradiation of phenyl, vinyl, and benzyl derivatives
- BARTEL, H.-G.: Die Konstruktion von elektronischen Superiorstrukturen
- BRUNI, P., C. CONTI, E. GIORGINI and G. TOSI: Molecular interactions between arylazopyridines and N-hydroxyindoles
- DOYLE, T. R., and O. VOGL: A facile synthesis of fluorochlorobromoacetic acid
- FAKHARI, E., and T. SCHÖNFELD: Ion exchange behaviour of polymeric zirconium cations
- FALK, H., und G. SCHOPPEL: Beiträge zur Chemie der Pyrrolpigmente, 84. Mitt.: Darstellung und Lumineszenz bichromophorer 5-Aryldipyrrin-Derivate
- FALK, H., und H. Wöss: Beiträge zur Chemie der Pyrrolpigmente,
 83. Mitt.: Zum Einfluß geladener Zentren auf die Absorptionsspektren von 1,19-Bilindionen
- FENG, T. L., J. M. TSANGARIS and A. R. BARRON: Complexes of aluminium(III) with picolinic and pipecolinic acids. An Al 27 — NMR investigation
- GOSPODOVA, T.S., and Y.N. STEFANOVSKY: Epimerization and kinetic protonation as factors determining the stereochemistry of the Michael reaction
- GRUNDON, M. F., W. PROBST and J. REISCH: Natural product chemistry, Part 132. Synthesis and oxidative cyclisation of 1,3-dihydroxy-10-methyl-4-(3-methylbut-2-enyl)-9(10H)-acridinone (glycocitrine-II)
- KREMMINGER, P., W. WEISSENSTEINER, C. KRATKY, G. HUNTER and R. L. MACKAY: Observation of slowed rotation about the (η6-arene)-chronium bond in the chromium tricarbonyl complex of the syn-anti-syn trimer of bicyclo[2.2.1]hept-2-yne
- MAUTNER, F. A., und H. KRISCHNER: Verfeinerung der Kristallstruktur des Dicäsium-Tetraazido-Zinkates $Cs_2Zn(N_3)_4$ und die Kristallstrukturen komplexer Zinkazide

112

- PETKOV, I., A. BOJILOVA and P. MARKOV: Photochemical dehydrogenation of 3-acetyl-3,4-dihydrocoumarin
- PINDUR, U., and H. WITZEL: First electrophilic substitution of 4-methoxyindole with triethyl orthoformate as an a1-synthon
- REISCH, J., R. A. SALEHI-ARTIMANI und G. HENKEL: Acetylenchemie, 14. Mitt.: PTC-Umsetzung von 9(10H)-Acridinon mit 3-Chlor-3phenyl-1-propin und 3-Brom-1-phenyl-1-propin
- $\begin{array}{l} {\bf Reischl}, W.: A \ convenient \ preparation \ of \ 8R, 25 dihydroxy 9, 10 seco-4, 6, 10(19) cholestatrien 3 one \end{array}$
- SEPULVEDA-ARQUES, J., M. J. ALVAREZ DE LAVLADA and M. MEDIO SIMON: Cycloaddition reactions of 5-deutero-1-phenyl-4-vinylpyrazole. Stereoselective cis-"ene" and simplification of nmr spectra of mixtures of cycloadducts
- ZALEWICZ, M.: Preparation and examination of properties of lanthanide chloride salts with hexamethylenetetramine

Warte (207 ⁵ m),	48° 14'9' N-Breite.	Tagesmittel der Bodentemperatur / ° C in der Tiefe von m	0.02 0.1 0.5 1.0 2.0	.6 20.6 20.2 20.6 20.0 18 ^{.3} .4 19 ^{.2} 19 ^{.2} 20 ^{.1} 19 ^{.7} 18 ^{.4}	·2 18'9 18'8 19'6 19'4 18'4 • 10'0 10'0 10'1 10'1 10'5	2 20.5 19.6 18.8 18.9 18.5	.5 21.9 21.0 19.2 18.8 18.5	9 22.8 22.1 20.4 19.0 18.4	8 2077 2077 2075 1973 1874 4 2179 2172 2072 1973 1874	3 22.4 21.7 20.4 19.3 18.4	.9 23 ² 22 ³ 20 ⁶ 19 ³ 18 ⁴	1 22.7 22.3 20.8 19.5 18.4	.9 24.7 23.6 21.3 19.7 18.6	.4 24.9 24.0 21.6 20.0 18.6	2 25 1 24 2 21 9 20 1 18 6 2 24 9 24 1 22 2 20 3 18 6	2 22.9 22.7 22.2 20.3 18.7	0 23.6 22.7 21.8 20.4 18.7	1 24 2 23 3 21 8 20 4 18 8 2 24 2 23 5 21 0 20 4 18 8	8 24 2 23 5 22 1 20 5 18 9	2 23.4 22.9 22.1 20.6 19.0	7 22.0 21.8 21.9 20.6 19.1	0 22'6 22'1 21'6 20'6 19'1	.8 20.6 20.6 21.4 20.5 19.1	8 16 0 16 7 19 6 20 0 19 2	7 61 6 61 8 81 6 /1 6 81 6	.4 22.0 21.5 20.8 19.8 18.7
ohc		Verdu stung	t.	1 1 1 1	76 1 75	1 1	88	1 0	88 0 55 1	4 1	1	1 1	11	5 3	1 2	0.0	1	1 1	11	1 0	1 0	1	<u>2 0</u>	10	- 2	2 43 [.]
H		t %	h Mi	67 6	080	62	73	4 12	81 81 81	1	73 6	1 22	69	62	69	94	88	82	81	62 65	192	93 8	20	2.22	40	75 7
ien,		elative ıtigkei	ph 21	63	62	36 2	43	6 23	89	58	46	40 1	20	45	84 4	94	20	55	22.7	39	62	64	22	- 52 : - 52 :	. .	20
M		R Feuch	h 14	66 74	85	87	87	6 7 8	93	87	17	82	89	87	91	94	95	92	14	67	74	84	64	5 88 i	4	81
nik,			lit. 7	5. 6.(6.	n 8.	2.5	0.0	3.4	5.2	5.2	9 1	.3	.1	6.0	.5	.4	4.(0.0	L.0			1.1	× •	4	0	4.9
nar		uck	1^{h} M	0.5 11	11 71	7.2 14	7.5 16	8.4 19	5.4 18 5.4 16	7.3 17	7.9 17	8.3 18	2.3 22	0.8 21	3.0 17	9.2 19	0.5 19	0.0 20	0.0 16	7.6 16	5.6 13	7.3 17	0.8 11 0.6	11 6.0		5.5 16
(poc	89	mpfdr hpa	4h 2	1.6 1(1.3 1)	1.7 1	2.3 17	4.7 17	9.5 18	9.6 16 5.5 16	7.7 15	6.9 17	8.8	2.9 22	0.4 20	9.5 18	9.6 19	8.9 2(0.9 20	0.6	3.7 14	3.7 15	8.4 17	0.8 10	5.1	0	5.5 16
Ğ	198	D^{a}	ћ <u>1</u> .	2.4 1	1.4 1	+.8	5.3 1	9.6	9.1 19 6.4 19	7.5 1	7.6 10	8.7 18	1.0 IS	2.1 2(C C.	6.8	8.8 18	.3 2(9.3 10	3.6 1	2.0 1:	5.5 18	7 10		Ē	5.2 16
pun	ısnsı	s- h- °C4		7.8 1 7.8 1	8.1 1.	8.01	9.6 10	3.4 1	6.4 1 2.2 1	2.3 1.	2.6 1	6.2	4.5 2	3.7 2	0.5	5.7 18	2.4 18	2.4 1	+ 10.5	3.1 1.	2.1	3.2 15	3.7 1.	9.51	1 3 1	2.3 10
ie 1	t A u	Au stra lung	.a 71	0 10	, , ,	10	6.0		11	4	0		<u></u>	9 1:	91	4	3 15	<u>8 0</u>	- 1 - 1	<u>- 1</u>	2	5		0 4	0	5 13
olog	опа	1	³ Min	3 11 ⁻ 8 10 ⁻	8 11.	5 12.	2 13	9 17.	7 17.0	7 16	8 17	1 17	1 19.	6 18	0 18. 0 18.	4 17	7 16	8 16.	6 19.	8 17 ⁻ 9 16 ⁻	4 14.	1 15.	0 13.	10.		1 15.
core	и М	1.85 n	Max	20.20	16.	9 26	1 27	26.	2 21. 4 26.	5 25.	5 27	52.	1 30.	1 31.	29.	3 20.	1 26	7 28.	21.	4 24.	19.	7 24	18.	13.	14	7 24.
Met	ir	C in Boden	Mit.	15.5	14.(19.61	21.	51.5	18.2	20.1	22.6	50.2	52.67	26.]	22	17.8	21.	22	53.6	20.7	12.0	18.	12.0	11	cI o	19.7
ùr		atur, ° r dem	$21^{\rm h}$	13.6	12.8	18.8	20.4	20.8	17.6 20 [·] 3	19.5	20.7	19.2	22.3	26.1	24.3	17.8	20.0	21.5	20.8	19.3	17.8	16.4	13.7	11.2	C CI	18.8
talt f		ıfttemper übei	14^{h}	$16.2 \\ 14^{\circ}0$	16.7	26.0	26.4	24.9	19.0	24.5	27.5	23.7	29.4	31.0	26.3	18.1	26.0	28.2	27.2	24.2	19.0	23.4	13.7	12.7	18 3	23.0
ulans		Lt.	Ţћ	16.6 13.1	12.6	15.0	16.4	19.9	$18.0 \\ 18.6$	17.6	19.7	19.5	20.7	21.3	23.0	17.6	17.3	18.4	21.1	17 ^{.8}	14.3	16.3	15.2	10.4	1.5.1	17'3
Zentra			Δ^2	-7.8	-2.4	7-4-0	4.6	-1 y -1.1	8.0-	-3.7	-3.3	9.0	5.6	2.6	3.9	6.9	3.7	4.3	6.6	2.5	-2.8	-8.2	6.4-	-1.7	8 - 8	6.0-
der 2			Mit.	983.1 987.1	5.886	6.986	0.986	8.686	990°1	987.2	9.286	990.3	8 066 994.0	2.866	9.366	0.866	6.466	995.5	995.2	993.5	2.886	983.4	984.0	990.4	c 066	6.066
an	. Gr.	ruck ¹ va	, q	8.5	0.0	5.2	6.2	6.6	9.4	2.9	L.L	0.0	1.7	2.4	6.5 4.6	8.9	4.2	5.3	6.9	0.10	0.8	2.3	6.4	0.2	9 1	0.4
en	nge v	Luftd h _l	2	36 0 1 36	6 6	7 80	86	0 80 0 80	96 96 96	8	4 98	200	6 6	4 99	00	9	9	5 99	5 99	7 95	36	96 98	6 0 8 6	26.5	0	1 99
gun	E-Läı		14h	982	.080	.986	985	.686	.066	.986	.286	.066	.666	.666	.866	.866	994	. 400	994.	993	.686	982	983	.066	486	.066
bacht	° 21.7′		Дh	982 ^{.4} 986 ^{.1}	987.5	8.886	6.586	2 226	992.4	0.886	8.286	5.066	8.866	995.2	2.866	9.866	0.966	8.566	1.266	5.886	989.2	985.2	983.3	1.000	4 066	5.066
Beo	16'	Tag		1.	ю. <i>т</i>	v.	ı 6	~ %	9. 10.	11.	12.	13.	15.	16.	17.	19.	20.	21.	23.	24.	26.	27.	28. 20.2	30.	31.	Mittel

24stündiges Temperaturmonatsmittel: 19^{.4} Grad Sommerzeit (+ 1 Stunde) **nicht** berücksichtigt!

-
9
ŝ
~
5
1
*
S
3
5
-
-
∇
~

Bemerkungen zum Wetterverlauf	Intensität °, 1, 2, = leicht, mäßig, stark	سار 10-20, قرير 17-17-25, عامل قرار في 2019-00-12, 12-22 ⁵ -0-npi; فاين ها-1-6-11 ا ¹⁴ -17-2-6-11 20-23 12-33-12 ³⁵ , jui, abd; فاین 2 ² -6-Trai, פTr-6-11 91 ⁵ -23 10-0-24; eTra, 0 ⁶ 2 ⁸ -mU-6 ¹⁷⁴⁵ -91 ⁵ وTr-0 ⁻ mi, npi; eTrn, co ¹ fr-4, c ¹ np;	$\begin{array}{l} & \Box^{1-2n-ft,\varpi^{0-1}ft,-a}\varpi^{0}abd, \Box^{0}abd-np;\\ & \Omega^{0-ft},\varpi^{0+ft},-\Omega^{1-4}abd-np;\\ & \Omega^{0-ft},\varpi^{0+1},\Omega^{0-1}abd-np;\\ & \bullet Tte^{0}na-mU-e^{0-e^{0-1}g25-q_{0}-1}g25-q_{0}-1g25-q_{0}-1g14,\\ & \bullet Tte^{0-1}ni,\bullet Tte^{0}3^{90}-mU-e^{1-2}g15-e^{2}10^{15}-e^{2}10^{15}-g^{-1}12^{25}-13^{11},\\ & \Theta^{-1}n-ft,abd-np,\varpi^{0-1}abd-np;\\ \end{array}$	$\begin{array}{l} & \Box^{1-2n-f_1,\infty} e^{2t_245\dots} e^{2t_245\dots} e^{2t_245\dots} e^{2t_245\dots} e^{2t_245\dots} e^{2t_245\dots} e^{2t_24\dots} e^{$	Δ ¹⁻² π-fr.∞ ⁰⁻² na-a; (R) ⁰ μr; (R) ⁰ μr; - 0 ⁻² 0 ⁴⁶ -1 ³⁵ -Tr.e ⁰⁻¹ -mai, σTr.e ⁰ dad-npi; (R) ⁰ Pui, σTr.e ⁰⁻² 0 ⁴⁶ -1 ³⁵ -Tr.e ⁰⁻¹ -11 ⁴⁵ ; R ⁰ 0a, R ⁰⁻¹ m. σTr.e ⁰⁻² 12 ⁹⁸ - = ⁻²⁰ fr;	$\begin{array}{l} & \Omega^{2n} - f_{1-} \infty^{2} f_{1-} \infty^{1} - m \omega^{0-1} p - m p_{1, \square} \Omega^{-2} a b d - n p; \\ & \Omega^{2n} - f_{1-} \infty^{0-2} n a - n p_{1, \square} \Omega^{-1} a b d - n p; \\ & \Omega^{-1} n - f_{1, \square} (n) p - n U - n (2^{-1} 1 S^{-1} g^{-1} g^{-$	$\begin{split} & \mbox{Trainer} \mathbf{T}^{*} \mathbf{r}^{*} $	Tage mit: $\bullet_{\bullet} \star \blacktriangle \equiv 0^{-2}$ 17 (17) 28 \downarrow_{\bullet}
Schnee-	none					• • • • •		1 1
mm Form	Sum. ⁸	0.8 2.7	0.2 59.5	0.0 9.0	6.6 5.1 16.3	0.0	$\begin{array}{c} 0.0\\ 9.3\\ 0.0\\ 14.5\\ 14.4 \end{array}$	142.0
chlag in öhe und	21 ^h	0.0 0.0	0.0		0.0		0.0 8.4 0.0 7.6	19.9
Nieders Vasserhö	14h	2.5●▲ 0.4 1.6	59.5	0.0 0.0			0.0 0.0 2.2	- - 87.6
4	Дh	· 0.8 0.0 0.0	$\frac{1}{3.6}$	9.0 .0	6.6 5.1 0.0		$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 14.5\\ 1.3\end{array}$	34.5
win- sek	тит ⁷	19.7 16.4 13.9 13.6 7.5	$\begin{array}{c} 7.2\\11.1\\11.1\\10.0\\7\\8.9\end{array}$	$7 \begin{array}{c} 6.7\\ 9.2\\ 4.7\\ 8.1\\ 8.1 \end{array}$	12.2 20:3 11:4 5:8	7 4.2 4.2 13.1 13.9	10.0 16.1 14.7 7 17.5 7 17.5 7 14.2	- 22
ndgesch keit, m	Maxi		MNW MNW	SSW WNW W SSE SSE	SSE NW E E	WNW E WSW W	MN MN MN MN MN MN MN MN MN MN MN MN MN M	1 1
Wi dig	Mit.6	1.5 1.5 1.5 1.5	100004	2.120	123072	3.5	1.8 2.0 7.0 7.0 7.0	3.0
1 -stärke Grade)	21 ^h	WSW 2 NN 1	WNW 1 WSW 2 W 3 SE 1	WSW 1 WSW 1 WSW 1 WSW 1 WSW 1	SSE 3 NNW 1 WNW 2 WNW 2 WNW 2 WNW 2	WNW 2 WW 3 WW 3	SSW 1 WSW 1 W 5 WNW 4 NNW 2	2.1
htung und Beaufort-I	14h	W 4 WSW 3 W 3 W 2 W 3	NNE 2 WWE 3 WNW 3 NE 1	SSE 2 W 3 SSW 1 ENE 1 SE 3	SSE 4 WW 3 WNW 2 ENE 2	Н Н П Н П Н П Н П Н П М М Н Н М М Н Н И С Н Н И С Н Н И С Н С И С Н С И С Н С И С С И С О С О С О С О С О С О С О С	SSE 2 ESE 2 WNW 3 WNW 5 WNW 4 NNW 3	2.6
Windric (0–12	Ţћ	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	$\stackrel{E}{\overset{WSW}{\overset{WSW}{\overset{WSW}{\overset{UN}{\overset{UN}{\overset{UN}{\overset{UN}{\overset{UN}{\overset{U}{U$	SE 4 1 NNE 22 NNE 1	е СС СС СС С С С С С С С С С С С С С С	N 1 S 2 W 3 WNW 5 WNW 3	2.1
Son- nen-	schein	$5.2 \\ 7.4 \\ 0.1 \\ 0.1 \\ 10.2$	7.6 7.8 3.6 1.8 10.0	9:3 9:3 0:3	12.3 8.7 8.8 8.8	$ \begin{array}{c} 10.9 \\ 7.3 \\ 6.3 \\ 9.4 \end{array} $	7.0 ⁷	187°0 6°0
)–10, min	Mit.	$9.0 \\ 5.0 \\ 9.7 \\ 9.7 \\ 10.0 \\ 3.7 $	3.0 6.3 7.0 4.0	6.3 6.0 5.0	$\begin{array}{c} 0.3\\ 7.7\\ 8.0\\ 3.7\\ 3.7\end{array}$	$1.7 \\ 3.0 \\ 3.0 \\ 4.7 \\ 4.7 \\ 1.7 $	$10.0 \\ 8.7 \\ 9.3 \\ 9.7 \\ 9.7 \\ 10.0 \\ 6.7 \\ 6.7 \\ 6.7 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.$	0.9
(Menge (hte ^{0–2}) zum Ter	21 ^h	$\begin{array}{c} 10^{1} \\ 3^{1} \\ 10^{2} \\ 2^{0} \end{array}$	3°_{\circ}	0%00%	0^{101}_{-100}	00408	$\begin{array}{c} 10^2\\ 9^1\\ 10^1_{\bullet}\\ 10^1_{\bullet} \end{array}$	5.2
wölkung Dich Vitterung	14 ^h	$\begin{array}{c} 91\\ 10\\ 10\\ 10\\ 10\\ 10 \end{array}$	90 21 18 21 9 70 14	50 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7	10 30 102• 102•	00 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0	$\begin{array}{c} 10^2\\ 6^1\\ 9^1\\ 10^1\\ 7^1 \end{array}$	- 9
g Bei	Дh	$\begin{array}{c} 11. \\ 22. \\ 23. \\ 10^{2} \\ 5. \\ 4^{0} \end{array}$	6. 7. 91 0. 0. 0. 0.	$\frac{10}{10^{10}}$	$\begin{array}{c c} 6. \\ 7. \\ 9. \\ 9. \\ 0. \\ 8^{1} \\ 8^{1$	1064 14064	$\begin{array}{c} 6. & 10^{1} \\ 7. & 10^{1} \\ 8. & 10^{2} \\ 9. & 9^{1} \\ 0. & 10^{2} \\ 1. & 9^{1} \end{array}$	e
Tag			1		00000	00000	0000000	Mitte

Tagesmittel ($7^{h} + 14^{h} + 21^{h}$); 3. ¹ Mit Schwerekorrektur und mit Instrumentenkorrektur. Ge = +0.25 hpa, Be = 0.00 hpa. ² $\Delta = Ab$ weichung vom langiährigen Mittel. ³ Aus der Registrierung von 0–24 Uhr. ⁴ Temperaturminn min 6 *cm* über dem Boden. ⁵ Dauer in Stunden. ⁶ 24stündiges Mittel. ⁷ Augenblickswert. ⁸ Von 7^{h} bis 7^{h} . ⁹ Um 7^{h} in *cm*.

),	1			00	00	1		- 0	6 00	00	<u>> 80</u>	19	9	99		2 4	4 .	4 4	4	10.10	010	10.10	
E	e.		2`0	19.	19.	19.	19.	16.	18.18	18.	10. 10	18.	18.	18.	x 18.	18.	18.	18.12	18.	18.	18.	18.	18.
ŝ	reit	S €	0	.76	200	2.5	. 5	.0	∞ ∞	00	20 0	8	9.	9.9	000	` .				0.0	× .00	9.0	0.
Ľ	PP P	l der tur / on	1.	19	18	1 90 1	18	1 20 1	117	11	11	17	17	117	111	18	18	18	18	18	17	17	18
(2)	Z	mitte ipera	5.(9.8	8.8	6.1	9.2	2.2	9.2	7.8	0.8	7.5	7.4	7.6	- 7 . 8	2.8	8.8	x 9.8	8.4	8.3	9.2	7.1	0.8
<u> </u>	,6.	ages ntem r Tic	0	1111	21	61	71	11	3101	51	917	4 8	0 1	91	- 	01	61	5 1 6 1	5 1	4 7 7	11	6 9 1	0
rte	14	T Bode in de	0.1	18.	18.	16.	17.	17.	17.	18.	17.	17.	18.	18.	20.	20.	19.	18.	18.	18.	16.	15.	18.
/aı	ŝ		02	4 %	.1.	.9	ю. г		. 9	2.0		9.	.00	0.0	- 6 .	2 1	0.1	<u> </u>	.00	6. ") <u>.</u> 00	4 %	.4
\geq	T		.0	19	181	19	18	181	11/1	19	181	11	18	20	302	50 6	20	2 18	18	18	12	151	18
o		rdun- ung,		1.1	4.0	0.0	1.1		1.0	1.7	1.0	5.0	1.0	1.0	1.6	. 1.	2.4	2.0	0.4	1.0	5.0	0.8	9.6
hd		Ve		0.0	10	0	60		N 4	00	7.7	9 1	00	04	1014	- 00		0 6		90	000	10	2 St
Ĭ		.0	Mit	00	6 0	0 00	9				20 1-			x x			9	01	00	10	00	× 1	7
_		e 1 %	4	76	90	73	81	22	85	74	32	72	82	92	22	81	99	87 /0	92	81	86	73	79
Sn.		ıtiv Şkei	21														• •		•				
/ie		Reld	4h	46	89	00	51	55	55	54	76 65	74 80	64	60	543	58	41	4 1 66	74	61	60	82 64	65
\geq		Еен	-	0.4	41	- 1 -	90	6	30	61	9	30	00	4 4	6 4	5 10	εı	04	4	10	00	4 %	~
		I	Дъ	80	6 0	0 00	L 0	00	66	00 0	20 1-	8 1	8	6 6	000	6	6.0	x x	6	00 00	∞	00 1-	òo
lik			t.	04	L a	0.4	4 x	6	6 6	3	0	1 4	0	<u>∞</u> v	000			0.0	0	30	1.0	9	6
an			Mi	11.1	13.	12.1	11.	11.	13.	14.	121	13.	16	19	18.1	17.	15.	15.	15.	14.	1.1	. 11 .	13.
'n		uck	1 н	4.7	1.2	.9.1	5.1	9.1	9.9	8.1	0.10	2.1	4.9	2.6		L.1		x 6.1	1.9	0.1	6.	7.0	8.9
dj	89	ofdr pa	0	11	11	17	===	1	~ +	17	10	11	16	110	101	11	11	17	11	1 1	11	0,0,	
e0	96	amp h	14 ^h	1.1	14.8	13.1	1.1	5.0	4.4	14.0	4 4	8.4	.91	.0		5.6	3.6	2.9	0.9	4 u		0.0	.4
5	r 1	D		69	N 4	1 10	N	- 10	40		40	<u>σ</u> 10	9	96	000	2 10	41	10	0	1 00		107	-2-
	bei		γh	9.	13.	12.	11.	11.	12.	14.	14.	14.	15.	15.	17.	17.	16.	13.	14.	14.	11.	9.	13.
1II (ша	U. 1		9.0	6 i	<u>.</u>	6.	1	50.01	<u>.</u>	0 1	0.		. 1.	0.7	÷ .		- 2	0.	<u>∞ .</u>	.4	4.	٢.
1	pte	Aus- strah mg°	ζh	പപ	10	10	10	- 10	99	∞;	8 11	10	12	6 X	° 11 c	11	6	71	8	00 00	∞	4	8
ile	Se	4	۴.	0 1	9 1	9	0 L	0 00	1 5	9	4 0	19	-	1 6	200	5 0	9	N 00	3	40	3	16	0
80	at		Min	11.	11	11.	11.8	o oo	10^{-10}	12.	12.	12.	14.	13.	16.	15.	14.	11.	12.	13.	10.	6 x	12.
0	2110	ш	¢.3	£.9	4 4	0.6	9.	.9	9.0	9.	4 10	0.0	ŝ	0 x	o oo u	6.	<u>.</u>	o .9	ŝ	21		.1	
OL	Μa	582	Map	21	16	15	19	20	20	22	17	18	22	25	26	24	26	21	19	20	12	$13 \\ 14 \\ 14 \\ 14 \\ 12 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13$	20
Ste	1]	n 1 :n	it.	5.1	.1.	9.9	8.1	1.0	3.5	1.1	6.0	8.0	3.2	4.6	.9.	0.0	4.(2.0	9.9	L		.8.9	0.9
M	iп	C ii 30de	Μ	16	÷ ;	1	17		19	1			18	100	125	ы Б	50	10	13	16	1	11	16
2		, ° (m H	д	4.4	2.0	3.8	2.1	4.6	5.7	7.4	5.0	5.5	7.4	2.8.7	6.0	1.6	0.0	1.0	5.1	2.5	1.6	7.1 7.7	5.2
ür		atur r de	21					- -		÷.,	-		-		- 0 -		0 4			~ ~			Ţ
Ч,		pera		1.0	r 0	71	L 4	- 1-	0.0	00 1		5 9		80	1 4 α	9	~ ~	- 4	~	6 %	0	8 8	3
lt		tem	4 ^h	20	4 0	44	19.	19.	20.	21	18.	15	21.	24.	38.	24.	25	21.2	18.	19.	11.1	11.	19.
Sto		Luft																					
an			4	3.2	2.2	2.4	3.5	6.0	1.1	3.8	4.6 2.6	5.1	9.9	4.6 5.9	9.7	6.5	5.2	3.72	3.0	2.0	4.0	2.6	3.2
ral			2							- ·			-						1			1	
ntı					.1	6.	1.0	·	5	4	4	4.	.8	0.9		• -	ю :	01	6.	Γ.	6.	ις Γ	
Cel			Δ^2	77	90	4	00 Lr	, 6	ዋግ	9,	9	4 9	1	1			- 0	7 ~	-	0	10	300	-
				07	500		0 0	0	00 10	00	<u> </u>	00 4	10	60		.	10.0	2 00	0	<u>\0 \</u>	0.00	<u>m 01</u>	
er			fit.	90	.06		. 10	63.	.68	92.	92.	. 68	91.1	.46	.96	8 00	. 46	26	.26	.00	.66	.96	. +6
9	÷	_	N	99	60	9 9	10	0	6 6	6	99	6.6	6	6.6	00	10	6	9.9	6	6.0	6	9.9	6
H	G	uck	_	8.0	.1.	1.8	9.2	9.0	8.0	3.1	1.0	1.2	9.8	4.4	1.0	2.2	6.8	0.9	t.5	200	4.4	2.8	t.5
(Q	ν.	ftdr hp	21	66	66	666	000	66	986 990	66	966	986	66	66	66	66	66	966	766	66	66	666	766
cn	ıge	Ľч		20	3	00	8 0	01	0 0		9	10	0	7 6) 4 C		6 (n xo	~	2 4	6	n n	8
60	Lär		44	.06	.06	.86	.00	92.	.68 .68	92.	95.	.06	91.	93.	32.	3 8	93.	32.	94.	93.	63.	.96	.66
ur	E-	J	-	6.6	60	70	10	6	6 6	6	5 6	6.6	6	6 ð	60	10	6	90	6	6 0	0	6 6	6
ht	۲.			2.3	6.6	5.0	1.2	2.2	7.5	2.7	3.8	0.5	2.6	4.8	1.9	2.6	1.5	0.2	0.9	7.4	3.2	4.7	4.2
ac	21		71	66	86	66	100	66	98 98	66	66	66	98	66	66.0	100	66	66	66	99	66	66	66
of	.9	50	L	1-1 6	i ω, τ	4 . r.	9.1	. %	9.0	.; ·	ci m	4.0	6.	<u>۲</u> α		; ;;	ci o	υ. 4.	5.	9.7	. %	.0	tel
Be	1	$T_{a_{\circ}}$							-	Ţ .			-			10	00	20	2	00	101	20	Mit
				•																_			

24stündiges Temperaturmonatsmittel: 15'8 Grad Sommerzeit (+ 1 Stunde, bis 24.9. 02 Uhr MEZ) **nicht** berücksichtigt¹

Bemerkungen zum Wetterverlauf	Intensität ^{0,1,2} ,=leicht, mäßig, stark	$\begin{array}{l} \Box^{1-2}m-f_{1,} \Delta^{0-1} abd-np; \\ \Delta^{1-1}m-f_{1,} \alpha^{0}n_{2,} abd; \\ \Gamma^{0,0}n_{2,} \partial^{1-2} bds; \\ \mathbf{r}_{1,n} \mathbf{r}_{1,n} \mathbf{r}_{1,n} \mathbf{r}_{2,n} \partial^{1-2} (\mathbf{r}_{2,n} \mathbf{r}_{2,n} \mathbf{r}_{1,n} \mathbf{r}_{1,n} \mathbf{r}_{1,n} \mathbf{r}_{1,n} \mathbf{r}_{1,n} \mathbf{r}_{1,n} \mathbf{r}_{2,n} \mathbf{r}_{2$	$\begin{array}{l} \Delta^0 (f_r, \omega^{-1} - \Delta^{-2} a b d - n p; \\ \Delta^{-2} n - m, \omega^{0-1} (f_{r-m}, \omega^{0} b d d, n p, \Delta^{0-1} a b d - n p; \\ \Delta^{0-2} n - a, \omega^{0-2} n - m, \omega^{0} a b d - n p i, \Delta^{0-1} a b d - n p; \\ \Delta^{0-2} n - f_r, \omega^{1-2} n a - f_r, \Delta^{0-2} a b d - n p; \\ \Delta^{1-2} n - f_r, \omega^{0-1} n a^{-a}, \Delta^{0-1} a b d - n p; \end{array}$	$\begin{array}{l} \Box^{0-2}\varpi^{-1-2}r_{-3}, \varpi^{0-1}p_{-1}p_{1}\Omega^{0}abd_{-n}p;\\ \varpi^{0-1}n_{-}\varpi^{1-2}f_{r-n}p_{r}\Gamma^{1}(0^{N_{0}-1}1^{25}k, \Omega^{0-1}abd_{-n}p;\\ \Box^{0-1}n_{-}f_{r}, \varpi^{0-2}n_{-}\Omega^{0-1};\\ \Box^{0-1}n_{-}f_{r}, \varpi^{0-2}n_{-}1^{24}S_{-}D_{r-n}D_{-}1^{47}, \Omega^{0}np;\\ \varpi^{1}r_{0}\Omega^{1}r_{-}Dr_{-}\sigma^{1-1}2^{45}-1^{26}S_{-}Tr_{0}0^{-}\sigma^{1-1}1S^{9}U_{-}17^{10}\sigma^{1}D_{0}dt;\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} \Box^0 - 3n - m, \omega^2 n = 0^{-2} fr - \omega^{0-2} - n p_1 \Delta^{0-2} a b d - n p_1 \\ \Box^0 - 3n - a, \omega^{0-2} n - m, \Delta^{0-1} a b d - n p_1 \\ \Box^0 - 1n - fi \omega^{0-1} - n - \Delta^{0-1} a b d - n p_1 \\ \Box^0 - 1n - a, \omega^{0-2} fr - n p_1 \omega - 1 b d - n p_1 \\ \Box^{1-2} n - a, \omega^{1-2} n - \infty^2 fr - \omega^{0-2} a b d - n p_1, \Delta^{0-2} a b d - n p_1 \end{array}$	$\begin{array}{l} \Box^0 \mathcal{P}_{T-a_1=\infty}^{-1} \cdots \sigma^{1-2} \cdots \eta_1 \mathcal{D}^{0-1} \mathrm{abd} \cdot \eta_1; \\ \bullet^{0-2} (_2 \mathcal{D}_{-1})^{3/8} \cdot \mathrm{Tr} e^{0-1} \mathrm{4}^{3/9} \circ e^{0-2} \cdot \mathrm{1}^{5/9} \cdot \mathrm{Tr} e^{0-1} \mathrm{D}^{-2} \mathrm{D}^{2/2}; \\ \bullet^{1-6} (_1 \mathcal{D}_{-1})^{3/8} \cdot \mathrm{Tr} - \eta_{11} \cdot \mathrm{D}^{-1} \mathrm{D}^{-1} \mathrm{D}^{-1}; \\ \bullet^{1-1} \cdots \bullet^{1-1} \mathrm{D}^{-1} \cdot \mathrm{D}^{-1} - \mathrm{D}^{2/2}; \\ \Box^0 ^{-1} \cdots f_n \cdot \mathrm{Tr} e^{0} \mathrm{H}^{-1} - \mathrm{D}^{0} \cdot \mathrm{Tr} \mathrm{H}^{-1} \mathrm{H}^{0} \mathrm{H}^{-1} \mathrm{D}^{1/2}; \\ \Box^0 ^{-1} \cdots f_n \cdot \mathrm{Tr} e^{0} \mathrm{H}^{-1} - \mathrm{H}^{0} \cdot \mathrm{Tr} \mathrm{H}^{0} \mathrm{H}^{-1} \mathrm{H}^{0} \mathrm{H}^{0} \mathrm{H}^{-1} \mathrm{H}^{0} \mathrm{H}^{0} \mathrm{H}^{-1} \mathrm{H}^{0} \mathrm{H}^{0} \mathrm{H}^{-1} \mathrm{H}^{0} \mathrm{H}^{0} \mathrm{H}^{0} \mathrm{H}^{-1} \mathrm{H}^{0} \mathrm{H}^{0} \mathrm{H}^{0} \mathrm{H}^{-1} \mathrm{H}^{0} $	Tage mit: $\bullet_{\bullet} \star \blacktriangle \equiv^{0-2}$ If (I() Ed \downarrow_{μ} \downarrow_{μ}	m Mittel, ³ Aus der Registrierung von 0–24 Uhr. ⁴ Temperatur- LReif, VRauhreif, ~Chateis, RGewitter über Ort, (R) Gewitter Für mit Unterbrechuneen, na frühlnorvers, fr frühl, a vormittens.
Schnee- 1524-9	ионе		· · · · ·			· · · · ·		I I	ngjährige ∟ ,us⊤ ⊂ mU ode
mm Form	Sum. ⁸	3.1 5.8 0.1		$\begin{array}{c} \cdot \\ 0.0 \\ 0.3 \\ 0.3 \\ 1.0 \end{array}$	0.0		$\begin{array}{c} \cdot \\ 18.8 \\ 0.0 \\ 0.1 \\ 0.0 \end{array}$	55:3	thung vom lar Nebelreißen, ∠ ee 8 und mehr,
chlag in öhe und	21 ^h	2.6 0.1		0.0 2.1			· 7.1 0.0 0.0	21.5	= Abweid Junst, ≣i I Windstärk
Niederse Vasserhö	$14^{\rm h}$			0.3 0.3	0.0 · · · ·		· 8.5 0.0 0.0	14.8	hpa. $^{2}\Delta$ 7 ^h in <i>cm</i> . = Nebelo
4	Дh	$\frac{1}{2}$		0.0	.1 4.		3.2 0.0	19.0	Bc = 0.00 7^{h} . $\circ Um$ $\equiv Nebel,$ ke 6 und
ldgeschwin- seit, m/sek	Maximum ⁷	WNW 8'3 NNW 8'6 NNW 9'7 WNW 12'5 WNW 12'5	WNW 10'3 N 5'8 ESE 8'1 SE 10'8 WNW 7'2	NNE 6.7 NNE 6.7 ESE 9.2 W 12.8 W 18.3	W 16'9 ESE 8'1 ESE 8'1 SSE 14'4 NW 6'7	ESE 8'9 SSE 15'0 SSE 15'0 SSE 10'6 NNW 3'1 NE 5'3	W 772 W 1000 W 1474 W 1311	- 10.2	Gc = +0.25 hpa, ert. ⁸ Von 7 ^h bis peln, \triangle Eisregen, cke, \cancel{W} indstärl
Wir digh	Mit.6	0.0.0.4.0 0.0.08	1.758177	2.1 2.3 3.8 5.7	$ \begin{array}{c} 6.1 \\ 1.2 \\ 1.3 $	$1.9 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.9 $	0.1. 6 .4.0 0.0. 6 .4.0	- 2.9	rrektur. nblicksw ∆Grau Schneede
-stärke Grade)	21 ^h	N NW 2 WNW 4 WNW 4	WNW 2 N 2 ESE 2 NE 1 WNW 3	NNE 3 NW 1 SSE 2 W 4 W 4	W 3 SSW 1 SSW 1 W 1	SE 1 SSE 3 SW 1 NNW 1 SW 1	WNW 3 WNW 4 WNW 4 WNW 4	2.4	trumentenko iittel. ⁷ Auger ee, ▲ Hagel, eflocken, ⊠3
htung und Beaufort-0	14 ^h	NWW 2 NWW 2 NW 2 NW 3 WNW 4	NW 2 N 2 E 2 ESE 3 NNW 2	NE 2 E 1 WSW 3 WSW 3	W E A A SE 12 SSE 33 SSE 33 P N 23 P N 24 P N 25 P N 24 P N 25 P N 24 P	ESE 3 SSE 4 ESE 4 ENE 2 N 22	WNE 1 WW 4 WNW 2 WNW 3	- 2.5	und mit Ins lstündiges M seln, ¥ Schn n, ¥Fl Schne
Windric (0–12	Дh	WNW 3 C 0 NW 3 WNW 3 WNW 3 4	NW 3 ESE 1 ESE 1 ENE 1 SSW 1	WE 2 NNE 2 NE 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	W 4 C 0 SSE 2 E 1	NNE 1 SE 1 SE 1 ENE 1 C 0	WNW 2 C 0 WNW 3 WNW 3	- 1.8	erekorrektur Stunden. 622 Regen, 9 Nie Regentropfei
Son- nen-	schem	11.7 9.3 0.0 0.0	$3.3 \\ 11.0 \\ 10.2 \\ 7.2 \\ 10.5 $	$\begin{array}{c} 9.1\\ 0.0\\ 1.3\\ 0.1\\ 0.0\end{array}$	$ \begin{array}{c} 5.8 \\ 7.9 \\ 7.9 \\ 3.7 \\ 3.7 \\ \end{array} $	8.1 9.2 0.9 7.7	2.5 0.0 1.6	151°8 5°1	lit Schwart auer in angen: •]
-10, min	Mit.	$\begin{array}{c} 0.3\\ 6.7\\ 6.7\\ 9.3\\ 9.7\\ 9.7\end{array}$	6.3 0.77 0.77 0.77	$ \begin{array}{c} 1 \\ 10 \\ 8 \\ 0 \\ 9 \\ 0 \\ 9 \\ 0 \\ 0 \\ 1 \end{array} $	6.0 1.3 0.0 3.0 3.0	3.7 6.0 2.7	$\begin{array}{c} 4.3\\ 10.0\\ 8.0\\ 8.0\\ 6.7\end{array}$	- 5.2	¹): 3. ¹ N oden. ⁵ D Abkürzu n, ∞ Du
(Menge 0 te ^{0–2}) zum Ter	21 ^h	$\begin{array}{c} 0 \\ 9^1 \\ 8^1 \\ 10^2 \end{array}$	000050	$\begin{smallmatrix}&&0\\7_0^{-}\\8^{-}\\8^{-}\end{smallmatrix}$	0001	00000	$\begin{smallmatrix} 101\\6^1\\6^1 \end{smallmatrix}$	- 3.6	14 ^h +21 ^l dem Bc ten und J
wölkung (Dich Vitterung	14 ^h	$\begin{array}{c} 1^{0}\\ 8^{1}\\ 10^{2}\\ 10^{1}\\ 10^{1}\end{array}$	$\begin{array}{c} 91\\ 2\\ 2\\ 2\\ 2\\ 1\end{array}$	$\begin{array}{c} 2^0\\ 10^1\\ 9^2\\ 10^1_\bullet\end{array}$		0 0 0 0 0 0 0 0 0 0	3^{1} 102 102 91 91	- 2.8	ttel (7 ^h + 5 <i>cm</i> über ete Zeich C Wette
g Bei	7h	$\begin{array}{c} 11. \\ 22. \\ 33. \\ 102. \\ 91. $	$\begin{array}{c} 6. \\ 10. \\ 7. \\ 9. \\ 0. \\ 0. \\ 0 \end{array}$	$\begin{array}{c} 11. \\ 22. \\ 10^{1} \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ $	$\begin{array}{c} 6. \\ 10^{-} \\ 9. \\ 0. \\ 2^{-} \\$	$\begin{array}{c} 11. \\ 22. \\ 33. \\ 50. \\ 81 \\ 81 \\ 81 \\ 81 \\ 81 \\ 81 \\ 81 \\ 8$	$\begin{array}{c} 6. \\ 10^{-} \\ 7. \\ 10^{-} \\ 9. \\ 10^{-} \\ 5^{-} \\ 10^{-} \\ 5^{-} \end{array}$	i 6.1	Fagesmit num in (Verwend 1gebung,
$T_{a_{j}}$,		00	000000	งงงังดั	Sumn Mitte	minir in Un

m mittags, p nachmittags, abd abends, np spätabends, n nachts (bezicht sich auf die vorangegangene Nacht, wenn n allein steht).

September 1989

ANZEIGER

DER

ÖSTERREICHISCHEN AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE

Jahrgang 1989

Nr. 8

Sitzung vom 13. Dezember 1989

Das wirkliche Mitglied Haymo HERITSCH legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

Kurzbericht über eine bemerkenswerte Kontaktbildung aus dem Nephelinbasanitsteinbruch in Klöch, Südoststeiermark

Vor mehr als 20 Jahren erhielt ich ein kleines, unregelmäßig pyramidales Handstück (Basis etwa 5×3 cm, Höhe etwa 7 cm) aus dem Steinbruch Klöch, Südoststeiermark, von dem damals sehr bekannten Mineraliensammler W. Philippek, da auf diesem Stück eine weiße Kruste von derbem Thaumasit auffiel. Eine nähere Untersuchung zeigte aber, daß es sich — viel interessanter als der Thaumasit — um ein äußerst kompliziert gebautes Kontaktstück zwischen einem Nephelinit und einem stark verunreinigten lichtgrauen Kalzit-Dolomit-Gestein handelt.

Von der Spitze des unregelmäßig pyramidalen Handstückes bis etwa 3,5 cm gegen die Basis reicht das Karbonatgestein, dann beginnt eine, rötlich und grau ganz unregelmäßig durchgeknetete, mineralreiche Kontaktzone. Schließlich ist an der Basis ein etwa 3-4 cm³ großer Bereich von Nephelinit ausgebildet.

Mit den damals mir zur Verfügung stehenden Untersuchungsmethoden (mikroskopisch-optische und röntgenographische Pulvermethoden) war eine Klärung des Mineralbestandes unmöglich. Erst mit Hilfe der Elektronenstrahlmikroanalyse in Kombination mit den vorhin erwähnten Methoden war es möglich, die wesentlich hier auftretenden Mineralphasen festzustellen.

Ein durch die Basis gelegter Dünnschliff umfaßt den Nephelinit und die kompliziert gebaute Kontaktzone. Parallel zum Dünnschliff entnommene Gesteinsplättchen dienten dann als Proben für halbquantitative Elektronenstrahlmikroanalysen, wobei reichlich Mineralien bekannter chemischer Zusammensetzung als standards herangezogen

118

wurden. Ebensolche Plättchen lieferten die Pulver für die Röntgenaufnahmen.

Der Nephelinit an dem vorliegenden Handstück zeigt einen Typus ohne Plagioklas, also Olivin, Klinopyroxen, Nephelin, Magnetit und viel Glas, ein Typus, wie er aus dem Vulkangebiet von Klöch schon lange bekannt ist (SCHOKLITSCH, 1932, 356) und wie er immer wieder, besonders in der Nähe von Basaltgläsern, gefunden wird.

In der Kontaktzone selbst ist ein Lagen- oder Zonenbau zu beobachten, wobei aber auffällt, daß die Zonen nicht parallel zu der Nephelinitgrenze liegen, sondern teilweise sogar senkrecht dazu stehen.

Eine schmale, verhältnismäßig grobkristalline Zone (Korndurchmesser etwa 0,4–2 mm) enthält Melilith, etwas Wollastonit, Kalsilit, Perowskit und Glastropfen.

Daran schließt eine breitere, feinstkörnige (Korndurchmesser um 0,01-0,02 mm) Zone mit Gehlenit, Mayenit, Brownmillerit, Periklas, Korund, Apatit, Wilkeit, Spinell und einer Phase der Zusammensetzung 4 CaO \cdot 3 Al₂O₃ \cdot SO₃. Diese Verbindung ist aus Klinkern bekannt (vgl. etwa TROJER, 1965, 7); ihre Struktur ist ebenfalls bekannt, es handelt sich um ein Aluminium-Analogon zu Sodalith mit der Strukturformel Ca₄ [Al₂O₄]₃ [SO₄] (PONOMAREW et al. 1970). Soweit die Literatur überhaupt noch überblickt werden kann, ist diese Verbindung in natürlichen Kontaktgesteinen noch nicht beobachtet worden. Ferner erscheint in diesem Bereich reichlich Glas, in das die genannten Phasen eingebettet sind.

Darauf folgt eine noch größere Zone ohne wesentliches Glas mit Korndurchmesser um 0,05 mm mit Larnit, Mayenit, Brownmillerit und selten der Verbindung $4 \operatorname{CaO} \cdot 3 \operatorname{Al}_2 \operatorname{O}_3 \cdot \operatorname{SO}_3$.

Trotz aller Bemühungen konnten einige der allerdings selten auftretenden Phasen nicht bestimmt werden.

Es handelt sich somit um einen ungewöhnlich mineralreichen Kontakt auf kleinstem Raum zwischen einem verunreinigten Kalzit-Dolomit-Gestein und Nephelinit. Der vorhandene, verknetete Zonarbau läßt auf eine starke Deformation während eines plastischen Zustandes im flüssigen Magma schließen.

Eine ausführliche Darstellung wird später an anderer Stelle erfolgen.

Auch an dieser Stelle danke ich dem Zentrum für Elektronenmikroskopie Graz (Leiter Hofrat W. Geymaier) und dem Institut für Technische Geologie und angewandte Mineralogie der Technischen Universität Graz (Vorstand Univ.-Prof. G. Riedmüller) für die Herstellung der Elektronenstrahlmikroanalysen bzw. der Röntgendiffraktometeraufnahmen. Sonst standen mir die Einrichtungen des Institutes für Mineralogie und Petrologie der Universität Graz (Vorstand Univ.-Prof. E. M. Walitzi) zur Verfügung.

Literatur

Ponomarew, W.I., D.M. Cheiker, N.W. Below, 1970: Die Kristallstruktur von $4 \operatorname{CaO} \cdot 3 \operatorname{Al}_2 \operatorname{O}_3$ — dem Aluminium Analogon des Sodalithes. — Kristallographija, 15, 918-921.

Schoklitsch, K., 1932: Beiträge zur Kenntnis der oststeirischen Basalte, 1. Teil.

 Neues Jb. Min., Geol. und Paläont., 63. Beilage Bd., Abt. A, 319-370.
 Trojer, F., 1965: Der gegenwärtige Stand des Phasenaufbaues der Portland-zementklinker, Kolloquiumsvortrag im Min. Petrogr. Inst., Universität Heidelberg am 9. Dez. 1965. — Forschungsinstitut des Vereines österr. Zementfabriken, Wien, 3–31.

Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse 126 (1989), 121

Das wirkliche Mitglied Helmut FLÜGEL legt für die Aufnahme in den Anzeiger die folgende Arbeit vor:

> Vorläufige Mitteilung über Permische Korallen aus dem Nord-Karakorum

Von H. W. Flügel

Die Kenntnis permischer Rugosa des N-Karakorum ist gering. Im Rahmen der italienischen geologischen Expeditionen 1986, 1988 konnte Prof. Dr. E. GAETANI, Milano im oberen Hunza-Gebiet im Nordpakistan und im tibetischen Gebiet des Shakagam Tales (China) an verschiedenen Fundpunkten neue Aufsammlungen durchführen. Die Fauna besteht aus Yatsengia hangchovensis (HUANG), Paracaninia similis (SCHINDEWOLF), Duplocarinia sp., Ufimia hunzensis n. sp., Lophophyllidum (Lophbillichium) martini (SCHOUPPÉ & STACUL), Verbeekiella australis (BEYRICH), Allotropichisma (Allotropichisma) biseptata n. sp., Amandophyllum (?) sp., Euryphyllum sp., Petraphyllum hunzaianum n.g. et n. sp. und Petraphyllum columnum n.g. et n. sp. Die genannten permischen Rugosa gehören in das hohe Artinsk bzw. Kungur, lassen jedoch keine gesicherte Alterstrennung zu. Auffallend ist das Fehlen waagenophyllider Rugosa und das Auftreten kleiner solidärer Formen, die der Lytvolasma-Faunenprovinz der chinesischen Literatur zugeordnet werden müssen. Diese charakterisiert das Artinsk der Lhasa-Platte, der Himalaya-Zone südlich der Zangbo-Sutur, das allochthone Perm von Timor, sowie das Unterperm der Kunlun-Platte. Die Zuordnung der Korallenfaunen des N-Karakorums zu dieser Kaltwasserprovinz wirft biogeographisch-großtektonische Probleme auf. Im Gegensatz zur bisherigen Ansicht scheint es, unter Berücksichtigung der bearbeiteten Korallenfauna, möglich, daß der gesamte Bereich zwischen Kunlun-Platte und dem Himalaya bis in das hohe Artinks noch ein Teil des nordgondwanischen Kaltwasserschelfes gewesen ist, von dem sich erst mit dem Maokou die Lhasa- und Qiangtang-Platte trennten.

Eine ausführliche Darstellung ist in Vorbereitung.

In die Sitzungsberichte, Abteilung II, wird aufgenommen:

"Zur Radontransformation" von w. M. Edmund HLAWKA.

"Eine Bemerkung zur klassischen Syllogismuslehre" von w.M. Curt Christian

"Zur Konvergenzgeschwindigkeit eines rekursiven Penalisationsverfahrens der stochastischen Optimierung" von H. WALK (vorgelegt durch w. M. Leopold SCHMETTERER)

Warte (207 ^{.5} m), 48° 14 ^{.9′} N-Breite.	Tagesmittel der Bodentemperatur / ° C in der Tiefe von m	0.02 0.1 0.5 1.0 2.0) 151 150 161 170 184 140 147 159 167 184	6 14.1 14.3 15.6 16.6 18.3	0 13 ⁻⁵ 13 ⁻⁶ 15 ⁻¹ 16 ⁻² 18 ⁻³ 5 12 ⁻⁸ 12 ⁻⁸ 14 ⁻⁷ 16 ⁻⁰ 18 ⁻²	4 12.6 12.5 14.2 15.7 18.1 13.0 13.0 14.3 15.4 18.1	9 12.7 12.6 14.0 15.2 18.0	9 12°9 12°7 13°8 15°1 17°9 1 13°0 12°8 13°8 14°9 17°8	2 11.8 11.9 13.6 14.8 17.7	7 12.2 11.9 13.3 14.6 17.6	8 12.9 12.5 13.2 14.3 17.4	2 12 8 12 5 13 3 14 3 17 3	9 12.2 12.0 13.1 14.2 17.2	2 12 3 12 0 12 9 14 1 17 2 5 12 3 11 9 12 7 13 9 17 1	t 12'2 11'8 12'7 13'8 17'0 11'6 11'5 13'7 13'8 17'0		12 4 11 9 12 5 13 / 16 8 4 12 7 12 3 12 6 13 6 16 7	2 13 3 12 7 12 7 13 6 16 7	5 13 5 12 9 12 8 13 6 16 6 5 13 8 13 3 13 1 13 6 16 5	5 13.8 13.3 13.2 13.7 16.5	13.4 13.1 13.3 13.7 16.4	12'8 12'7 13'2 13'7 16'3	8 13°0 12°8 13°2 13°7 16°3 8 13°4 13°1 13°1 13°7 16°3	8 13°0 12°8 13°6 14°6 17°3
ohe	Verdum stung,	t.	0.1	1.	6 1.0 6 0.6	7.0 6.	5.0	20.0	7 1.2	0.0	0.0	9 1.2	0.0	1 1 1 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.0		3 0.7	1.2	0.0	5.0 0	1.2 0 4 1.2	4 0.0	3 1.3	4 26.3
H ,	e it %	h Mi	76 6 64 6	57	82 6	84 7 0	74	81 7	73 6	78	20/ 7	75 6	76 7	86 7	84 80	2 2	86 8	67	64 87 7	86	94 78 7	82	69 92 6	20 2
/ien	<i>kelativ</i> htigkei	4h 21	54	38	51	58	t 89	61 54	52	67	16	52	59	22	65	10	09 89	54	55	28	54	99	47	28
× (Feuc	7h 1	78 79	87	67 94	94	68	80	75	85	94 94	79	78	91	91	с <u>к</u>	95 95	95	96 86	95	91	75	77 56	85
umik		Mit.	6.01 0.5	7.2	7.5	9.5	9.5	6.8	6.L	10.0	8.6	9.8	8.3	9.1	10.2	C 01	11 4	12.2	12.4	12.1	12.6	11.1	9.7	10.0
lyna	łruck 1	21 ^h	8.3	2.9	6.L	11.1	6.1	£.6	8.8	10.0	10.7	8.2	0.8	10.0	11.1	4 4	12.5	12.4	11 6	12.4	13.2	11.2	12.9	10.3
eod 989	ampfu hpc	14h	9.2	2.2	7.1 7'9	10.1	9.6	9.1 8 ^{.3}	6.9	10.1	10.01	9.2	9.1	9.5	11.3	10 A	12 1	13.3	11 2 13.2	13.2	14.1	11.2	8.7	10.3
1 G er 1.		Дh	11.2	9.1	8.9	7.2	6.8	6.8 2.8	8.1	6.6	0 00	2.6	6.2	7.7	8.3	- · · ·	10.4	10.8	11.3	10.8	11.7	10.8	8.3	5.6
und Atob	Aus- strah- tng °C ⁴	Ţћ	0.2	6.5	2 ^{.0}	-1.7	2.1	4.6 5.4	2.1	6.6	1.7	7.3	2.5	2.2	1.5	0 0	3.1 4.6	3.5	5.5	3.8	3.6	3.3	5.8	3.5
ogie 1at C		Min. ³	7.9	- 8.5	4 ^{.5}	2.5	2.9	7.7	6.4	6.2	2.6	8.2	5.9	4.2	5.3	c /	6.9	5.8	6 5 10 ⁻²	2.8	8.6	8.4	10.7	7.2
orol Mor	85 m	Max. ³	15.9	13.5	12 ^{.8} 13 ^{.6}	15.7	12.2	$13.6 \\ 13.5$	13.0	14.5	18.5	13.4	13.9	16.4	15.9	1 71	17.2	21.1	22 8 22 8 20.7	19.9	17.5	17.4	16.8 17.2	16.2
lete im	in 1 ⁻ oden	Mit.	11.9	6.6	7.3	6.6	9.6	$10.1 \\ 10.4$	L.6	11.0	11 2	10.5	9.4	6.6	10.7	0 2	12.5	15.3	15 1 14.6	13.7	12.7	13.0	14.7	11.6
ir N	tur, °C dem Bc	21 ^h	8.2	9.1	6 ^{.1}	11.0	10.0	9.2 9.4	8.6	10.6	12.1	8.8	7.8	9.1	11.1	0 0	12.5	16.3	16.1 12.8	12.5	12.0	11.6	16.5 10.9	10.8
lt fi	emperal über	44	15.2	13.0	12.2	15.3	7 11	13 ^{.0} 13 ^{.4}	11.2	13.2	1/4	12.8	13.4	16.9	15.3	C 11	17.2	6.02	20.5	19.7	0.00	15.0	16 ^{.5} 16 ^{.1}	15.5
nsta	Luftt	-	ю. О	9.9	m 4	ŝ	10	0.10		10	- 0	0		0 10	90	>	<u>n n</u>	00	14	8	0 7	4	0 80	4
rala		Дh	12	1	10	ю <u>г</u>	11	∞ ∞	8	6	o io	10		x 4	in d	ות	> 00	òo i	10	8	6 0	12	11	õ
Zent		Δ^2	4.2 _1.0	0.1	10.3 10.8	3.7	0.6-	-4 ⁻⁵	-0.2	4.6	-1.9	4.0	13.1	8.3	2.3	0 0	6.6	8.9	7.8	2.6	4.0	0.5	-0'5 2'4	3.3
der		Mit.	2.100	992.5	1002.7	0.966	983.1	987`6 988`4	8.166	6.966	9 466	0.966	0.2001	1000 2	994.2	0 766	6.1001	8.866	8.666	6.266	2.100	9.766	991'6 994'5	995.4
an v. Gr.	îdruck ¹ hpa	21 ^h	9.686	2.266	004.0	6.166	6 + 26	988°4 989°6	8.866	2.266	2.886	8.000	005.5	998.6	992.5	6 666	5.000	5.266	6.666	9.266	995.2 090.5	994.3	995°2	9.566
1gen Länge	Luf	4h	9.96	92.2	02.7 1 002.9 1	6.26	82.5	87.1	1.06	97.1	89.5	94.9	04.7 1	1 7.60	94.1	/ 16	00 4 1 000 00 1 1 000 000 000 000 000 00	98.4	2.86	6.79	6.26	92.3	94.1	6.76
chtur .7' E-		-	5 0.9	5 2.2	11.3 10 4.3 10	0.1 5	6 1.1	8.0 9	1.4 9	5 0.9	5.5 C.2	5.3	4.8 10	2.2 9	5 0.9		2.7 10	5 9.0	5 1.6 5 1.6	5 2.8	5 8.9	6 1.1	3.4 5 4.3 9	5.2
oba(5°21	<u> </u>	12	96 90	86	4. 100 5. 100	5. 100	· · · · · · · · · · · · · · · · · · ·	<u>, 98</u>	. 99	66 00	- 66 	. 66	5. 100	₹. 100	66 .0		100	3. 100	+ 100 100	. 99	26 . 2	. <u>.</u> .		el 99
1(Tag		1- 0	4 (*)	4 U)	Ur	- 00	10	11	11	14	11	16	181	10	4	22	121	52 63	26	2 0	in Ki	31 31	Mitt

Bemerkungen zum Wetterverlauf	Intensität ⁰ , 1, 2, = leicht, mäßig, stark	Δ ⁰ n-ft,Δ ⁰⁻¹ abd-np; Δ ⁰⁻¹ n-ft,Δ ⁰ hp.a ⁻¹ 29 ⁽²⁾ 2. Tre ³ d ² -mU- ⁰⁻¹ 5 ¹⁰ .6≜0, ⁰ -2.6 ²⁰ 0 ⁻² -7 ²⁶ Tr ₂ ⁰ -mU- ¹ - ² Δ ^{10a-2} n-2. ^{10a-1p;} Δ ⁰¹⁻² n-2. ^{10a-1p;} (g ¹⁶⁻²⁵ -Tr-a,(g) ⁰ ft; Δ ⁰⁻² n-a,- ¹ An-ft,∞ ² ft,∞ ⁰ a,Δ ⁰⁻¹ abd-np;	Δ ¹⁻² m-fr.L.θna-fr.«Tre ⁰ 20 ⁵⁴ -mU-e ⁰⁻¹ 22 ¹⁸ .23 ³⁰ , eTre ⁰ fui.« ⁰⁻¹ 6 ¹⁰⁻⁴ l8 ¹⁵ -9 ¹⁰ « ⁰⁻¹⁻⁴⁰ 13 ¹⁰⁻⁵⁹ , eTrpi.« ⁰ 20 ²¹⁻³³ , 	@655-7, eTre ⁰ 13 ²⁰ .17 ⁴⁴ ;	Δ ⁰⁻¹ Ir-a,abd-np; Δ ¹ Ir-ft,Δ ⁰⁻¹ ln; Δ ¹⁻² Ir-a,∞ ⁰⁻¹ ft-m,abd-np,Δ ⁰⁻¹ abd-np; Δ ⁰⁻² Ir-m,∞ ¹⁻² Ir-eft-∞ ⁰⁻² a-p,Δ ⁰⁻² abd-np; Δ ⁰⁻² Ir-npi,∞ ⁰⁻² Ir-eft-∞ ⁰⁻² Ir-np;	$\begin{array}{l} & \Omega^{0,2} = \omega^{1-2}n^{-3}, \Omega^{0-1}\omega^{0} \mathrm{abd} - \mathrm{np}; \\ & \Omega^{0,2}n = \omega^{0,2}n - p_{1,0}\Omega^{-2} \mathrm{abd} - \mathrm{np}; \\ & \Omega^{0,2}n = \omega^{0,2}n - \Omega^{-1} \mathrm{np}; \\ & \Omega^{0,2}n - \mathrm{mo}^{0,2}n = \frac{2}{2}^{2} \partial_{3} \partial_{3} \Omega^{0-1} \mathrm{abd} - \mathrm{np}; \\ & \Omega^{1,2}n = \omega^{1-2} (n - 1 \omega^{0-1} \mathrm{abd} - \mathrm{np}; \end{array}$	$\begin{array}{l} & \Box^{0-2}n-m, \varpi^{0-1}n-npi, \Box^{0-1}abd-np;\\ & \Box^{1-2}n-m, \varpi^{0-2}fr-np, \Box^{0-2}abd-np;\\ & \Omega^{0-2}n-m, \varpi^{0-2}n-mpi, \Omega^{0-1}abd-np;\\ & \Omega^{0-1}n-f_1e^2(12^{00}, 15^{00}, e^{-1}p_1)^{20}d^{-1}p_1)\\ & \omega_n, e^{17}e^{0}y^{21}-(\delta^{4}, 72-m)-e^{18^{0}\delta}e^{-9^{0}}y^{0-1}-1^{13^{5}}e^{Trabd},\\ & \omega_n, e^{17}e^{0}y^{21}-(\delta^{21}, 72-m)-e^{18^{0}\delta}e^{-9^{0}}p_1);\\ & e^{17}e^{0}v^{1-1}q^{4^{5}}-2^{0}2^{0}e^{1}T-abdi, e^{1}Te^{0}np; \end{array}$	Tage mit: $\bullet_{9} \star \triangleq \equiv^{0.2}$ If (I() EQ _24
Schnee- hähe9	1011							1 []
mm Form	Sum. ⁸	7.7~* 1.4	1.5 5.2 0.0	0.0 0.0 0.0			 0.3 5.4	25'3
hlag in he und	21 ^h		0.0 0.0 0.0	0.0			0.1 2.4	2.7
Niedersc Vasserhö	14 ^h			0.0				9.4
И	Д			8.0 0.0				10'2 -
Windgeschwin- digkeit, m/sek	t.6 Maximum ⁷	wnw 13.6 Wnw 15.3 Wnw 15.3 Wnw 21.1 Si wnw 12.2 Wnw 12.2 Wnw 12.2 Wnw 12.2	10 SSE 4.4 50 W 12.2 56 NNW 9.2 4.5 WNW 11.7 4.3 WNW 11.7	71 W 20'8 11'5 W 12'5 8 W 11'4 11'9 NW 11'9	252 WNW 1111 255 W 866 308 ENE 379 111 S 417 270 E 472	(10) W 6.7 E 5.8 E 5.8 E 11.4 SE 11.4 SE 11.4 SE 11.4 SE 12.2 W 12.2	0.7 NE 3.1 (22 ESE 4.7 SE 13.1 S 3 W 178 S 3 W 178 S 3 W 178 S 3 W 178	
-stärke rade)	21^{h} M_{1}	WWW 4 WWW 4 WWW 4 1 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	WSW 1 WSW 3 NW 3 WW 3 WNW 3	88888 48188	ESE C WW	NE N	NE 1 SSE 1 S	- 5 -
chtung und Beaufort-G	14 ^h	WNW 4 NW 3 NW 3 NW 3 NW 3	ENE 2 SSW 2 NE 2 WNW 3 WNW 3	W 5 WSW 3 SSW 2 WSW 3 WNW 3	WNW 2 W 2 NE 1 SSE 2 NE 1	SE 1 E 2 SE 3 E 2 E 2 E 2	E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2	2.4
Windri (0–12	Дh	WNW 4 WNW 5 WNW 3 WNW 3 C 0	W 1 SW 1 NE 1 WNW 4 WNW 4	W 3 WNE 1 WSW 1 WSW 3	WNW 3 W W C 0 C 0 C 0 SE 1 ESE 1	ENE 1 SW 1 NNE 1 E 1 SW 1	SSW 1 NW 1 ESE 2 WSW 2 SSW 2 SSW 2 SSW 2	- 1.9
Son- nen-	cuiaus	5.5 0.9 8.7 8.7 8.7	9.6 2.7 5.5	3.7 3.8 9.0 3.1 3.1	2.56 8.88 2.56	2.2 5.0 8.1 8.7 8.7	$ \begin{array}{c} 8.7 \\ 7.7 \\ 8.2 \\ 0.0 \\ 3.3 \\ 3.3 $	179°0 5°8
10, min	Mit.	4.7 9.0 3.7 0.7	3.0 8.3 6.7 7.7	8.3 6.0 9.0	4.4 7.7 7.7 8 7.7 7 8 7 7 7 7 7 7 7 7 7 7 7	6.7 5.3 3.3 0.7	0.0 0.0 8.3 8.3	4.7
(Menge (te ^{0–2}) zum Ter	21 ^h	00083	61 71 71 81	$\begin{array}{c} 10^1\\ 1^0\\ 0\\ 8^1\\ 8^1\end{array}$	°0%00	40%00	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 10 \\ 10 \\$	3.6
völkung (Dich 7itterung	14h	$\begin{array}{c}10\\1\\2\\2\\2\\2\end{array}$	$\begin{array}{c} 0 \\ 10^{2} \\ 6^{1} \\ 8^{1} \end{array}$	993399	04%60	°°000	$\begin{smallmatrix}&&0\\&&0\\1&&&0\\1&&&1\\0&&&1\\1&&&&1\\0&&&&&1\\0&&&&&&&&$	1 <u>5</u> 1
1g Ben	Дh	$\begin{array}{c} 1. \\ 2. \\ 2. \\ 3. \\ 10^{2}_{\bullet} \\ 5. \\ 0 \end{array}$	$\begin{array}{c} 6. \\ 7. \\ 8. \\ 9. \\ 70 \\ 9. \\ 70 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 9$	$\begin{array}{c} 111. & 6_1 \\ 112. & 8_1 \\ 113. & 3_0 \\ 114. & 0 \\ 15. & 10^1 \end{array}$	$\begin{array}{cccc} 16. & 10\\ 117. & 80\\ 119. & 0\\ 20. & 10^1 \end{array}$	221. 91 222. 80 224. 10 ¹ ≡ 25. 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ttel 5.4
L								Mi

m mittags, p nachmittags, abd abends, np spätabends, n nachts (bezicht sich auf die vorangegangene Nacht, wenn n allein steht).

Oktober 1989

(207 ^{.5} m),	
Warte	
Hohe	
Wien,	
Geodynamik,	. 1000
pun	in all all all all all all all all all al
Meteorologie	in Monat Ma
für	
Zentralanstalt	
der	
an	C
seobachtungen	

¢ 。 、 、

CLIN /0.7 7 .07

نه		2.0	16.3	16.3	16.2	16.2	16.2	16.1	16.1	16.0	15.9 7.0		15	15	15.6	ר <u>ר</u>	15.4	15.3	15.2	15.1	15.0	14.9	14.7	14.6	+ ; + ;	4 1 5 0 5	4	13.9	ς Σ	9 CI	0.4 13.0	, L	2
Sreit	יי היי "C היי	0.	3.7	3.7	3.7	3.5	3.3	3.1	2.9	2.7	2.2	7 7	6.1	1.6	4		<u>- 0</u>	5.0	0.5	6.4	6.6	0.6	2.8	20 0	7	 	0	4	4	21	- 8.9		†
Ż	iittel d eratur e von	5 1	5.3 1	3.31	6.0	2.2	11	<u>10</u>	1	2	16.0	1 0 1	0.0	101	31	1 6 3		3.2 1	7.8 1	0	5.0	6.0	80		2 :	<u>.</u>	1	2	0	0	1 0		+
γ.	Tagesn lentemp er Tiej	1 0	213	112	:5 12	<u>.0</u>	<u>6.</u>	.19	11	<u></u>			<u>4</u>	4	4 :			∞ 	<u>.</u>	9		<u>.</u>	<u>.01</u>	<u></u>	- <u>.</u>	<u>v i</u>		<u>; ()</u>	<u>י</u> ע		<u>-io</u>	-	1
1	Bod in de	2 0.	5 13	9 12	2 11	1 11	9 10	5 10	5	<u>. 9</u>	5 7 7 7		7 0	<u>- 1</u>	N 0		<u>9</u>	9 6	1 4	<u>7</u>	<u> </u>	<u>8</u>	13	<u>, v</u>	<u>, </u>	4 v 7 v	N 0	20	<u>2</u>		20		0
4		0.0	13	12.	11	.11	10.	10.	6	6	2 0	o i	- i	<u> </u>	i i	<u>,</u>	in 	ŝ	.4	<u> </u>	i 1		ŝ		v č	10	1			2	- 0	:	0
	Verdun- stung, mm		<u>5</u> .0	5.0	0.3	<u>5</u> .0	3.0	9.0	1.0	8.0	9.0		0	0 0	0	0	5.0	8.0	5.0	1	8.0	Þ.0	6.0				0	<u>.0</u>	0				LO 4 Summe
	, 0	Mit.	79	75	6	87	73	87	74	69 i	66	1	20.0	% 3	8 i	ς i	67	65	99	23	89	80	89	50 5	25	S H	Ċ,	62 1	4 ;	3 [۲ 8 2 8	ì	с С
	ive keit 9	21 ^h	68	75	94	73	61	89	78	12	22	~ ~ ~	5.5	ŝ	82	20	F	63	70	60	22	84	95	38	7,2	9 9 9	60	80	8	3,	88	ł	с(
	Rela schtig	14 ^h	99	58	84	91	74	88	67	62	76	ς ι	8/	81	81	ŧ;	65	56	58	4 8	90	20	85	8 4	1 5	47	8	35	2	ζ,	6 8	Ļ	6
	Fei	7h	83	93	91	8	83	83	78	13	<u> </u>	70	68	66	32	8	64	76	71	2	22	85	86	3 5	1	1 5	R	2	8	66 (0 81	ç	20
		Mit.	12.5	9.01	10.3	10.4	0.6	9.6	7.1	7.2	6.4	0	6.2	6.9	9.9	2 2	8	5.5	4.0	3.8	4.7	5.4	5.7	000		7	4	3.3	0 0	4 0	3.1		70
	lruck 1	21 ^h	12.01	9.1	10.4	 8.2	8.8	7.7	7.1	7.5	4.7 9.7	<u>, , , , , , , , , , , , , , , , , , , </u>	- 1		0.9	ر د	6.4	5.1	4.0	3.7	4	5.3	0.9	6.9	4 (⊃i	7	10	5:1	2.0	3.1	3.3		0
202	ampfo hpa	14h	12.3	11 '2	11.5	12.7	9.2	10.7	7.1	7.1	х хі х		1	6.9	6.9	Ċ Ċ	0.9	5.3	4.1	3.7	4 i 0	9.9	5.5	0.9	0 C	0 1	, .	2.1	6 G	40	3.2 /		¢
120	D	7h	3.2	1.6	6.8	6.6	2.8	0.3	7.2	6.9	2.2	0	5.5	0 /	6.9	5 5	4.6	0.9	4.0	3.6	3.7	5.2	2.6	2.5	4 c	2 2	, ,	2.8	2 2	6.9	00 00 10 10		7 0
emt	5- th- C4	æ	8.5 1	5.2]	2.0	1.7	0.5	5.5	6.6	2.4	1.5	0 0 1 1	0.2	0.7	2.2	000	3.6	2.0	5.8	6.3	6.1	5.4	2.8	1.00	- 0 1 1	1 /	0	2.3	0.7	0.4	ر 1.0	2	777
10N	At stra lung	3 ⁵	4	0	2	2	ñ	0	2	2	5 4	 	ו <u>ה</u>	1		 	<u>ک</u>	<u>.</u>	 9	۱ ر		 x	1		1	 	 	7	1	4 0	<u>די</u>		
t at		Min.	10.	òò	in 	<u>و</u>	<u>к</u>	'n	ŝ	4	4 ć	4	9	-	; ;	7			T	7	Ϋ́	9	9	<u> </u>	7 3	٦ i	ĥ	φ	_	T i	ŕħ	; 	>
V101	m 58.	Max. ³	16.6	18.8	12.6	12.0	12.7	10.6	2.6	5.6	10.01		0	4	4 0	x	6.9	0.2	5.3	3.6	3.1	3.6	1.0	5 C	70	∞	7	1.2	4 i 0 i	2.2	2 90 7 7 7	í	0
1 W 1	c in 1 oden	Mit.	13'9	12.3	6.8	5.6	10.2	8.3	6.4	<u>7.6</u>	7.0 7.1	1 0	2.0	4 0		ۍ 4	2.0	4.5	-0.1	2.0	0.4	1.4	9.0	1.1	0.0	υ iα	 7	-2.0	2 8	2.5	1 7 7		r S
	r, °C em Ba	ць. Ть	11.4	2.6	5.8	9.2	12.4	5.1	9.9	9.2	8.6	0	8 0	4	2.1	8	S	3.8	6.0	0.5	0.2	0.4	0.4	2.0		2 2		0.4	4		4 in 1 00	;	۰ ۱
	peratu iber d	2	4	6	9	6	~	6	80	0		-		<u>x 1</u>	N	0	0	1	0	<u>.</u>	00	x	80	20	- 	<u>، ر</u>	່ ົ	5	- 1	<u>,</u>	x 0		
	ufttem,	14 [,]	16	16.	.11	11.	10.	.6	ř	.6			ŝ	4	4 č	×	 0	.9	N	3	ŝ	Έ	0	άċ	i v	< ;	ī	9	n.	4 (γiς	i	n
	Lı	ų	3.8	0.2	2.9	7.3	9.2	0.0	8.9	6.3	4 7 0 7	+ +	4	2.9	3.0	7 7	3.4	3.7	-1.4	-1.3	-7.0	0.1	2.0	, 0 0	/	9.0	0	-2.8	1.3	3.3	י י י י י		4
		~	<u></u>	<u>8</u>	4		4	4	6	0	<u> </u>				N 7	-	9	-	2	6	- ∞ (~	- 9		4 6	<u></u>	<u>.</u>	<u>.</u>	-	<u>0 10</u>		
		Δ^2	<u>ب</u>	-	1	6	-12.	-15	Ϋ́	Ϋ́	ις Έ		12	12	12.	ۍ ز	Ň.	ŕ	10.	σο i	4 (9	i 4	- ;	Ŕ	7	9	4		<u>י</u> 19	;	-
		it.	5.2	6.6	6.6	2.6	6.6	6.9	5.4	1.8	4.0	0	4	۲ ا	4.6	9 1	5.1	9.6	9.0	4	7.5	5.5	0.0	8.1	0	4 ç 4 u	<u> </u>	0.3	<u>2</u>	6.4	- 6		4 -
Ľ.	41	Μ	6	<u>6</u>	86	86	6	-0	86 +	66	26 00		100	100	100	100	66	66	9 100	100	66	<u>~</u>	66	60	<u> </u>	200	<u> </u>	66	8	66 .		2	~~
۰. ۲	ftdruci hpa	21 ^h	5.266	.966	.986	982.2	2.626		7.686	992.2	000		004	ິ ເຄິຍ ເ	004	~ 666).966	0.100	002.6	001.1	997.1	994).886	9.876	/96	486		987.1	7.186	003	800		444
ange	Lu	स	6.4	4.3	0.5	2.2	6.5	6.5	5.4	1.3	6.9	1 0	0 0	4	4 2	9 [4	9.8	3.1	1.2	7.1	5.3	8.6	4 .1	0;	<u>, i c</u>	2	8.2	x x	4.1	16.8	ţ	
H H		1	2 95	36	<u>%</u>	<u>3</u>	2	7 97	36	<u> </u>	<u> </u>		100	5 10C			<u>8</u>	2 95	9 100	7 100	<u> </u>	<u>8</u>	36	<u>6</u>	* 8	7 8	*	36	5	<u> </u>	2 <u>10</u>	- 2	<u>بر</u>
/ 17		٩Ĺ	.966	. 166	3.266	983	981		981 .). 166	994 (7001	1004	1004	1005 (1003	8. +66	.666	1002.5	1001		3.966	992.	981	505		1 006	995	. 686	2.986	1001) +74
10	ag			6	ы.	4	ъ.	6.	7.	œ́ (17	13.	4	15.	16.	17.	18.	19. 19.	50.	21.	57	32	47 12	Ç	26.	.12	8	67 F	1	
	L																													_			2

24stündiges Temperaturmonatsmittel: 3'8 Grad

Bemerkungen zum Wetterverlauf	Intensität °,1,2,=leicht, mäßig, stark	$\begin{array}{l} \bullet^{0-1}(n^{-1}(0^{5} \circ \Gamma r \bullet^{0} - \mathfrak{m} U - 4^{22}, \mathbb{C}^{U-2} abd - np;\\ \bigtriangleup^{D-2}n - a, \mathbb{C}^{U-1} abd - np;\\ \bigtriangleup^{1} - a, \infty^{U-2} + r-p_{1} \subset \mathbb{C}^{U-2} abd - np;\\ \mathfrak{m}_{n} = 2^{4}(r, \circ T 1 (0^{24} - \mathfrak{m} U - \bullet^{0-1} 1 (1^{25} - \mathfrak{m} T e^{0}) 2^{40-55}, 18^{44} - 19^{10}; np;\\ \mathfrak{m}_{n} = 2^{4}(r, \circ T 1 (0^{24} - \mathfrak{m} U - \bullet^{0-1} 1 (1^{25} - \mathfrak{m} T e^{0}) 2^{40-55}, 18^{44} - 19^{10}; np;\\ \mathfrak{m}_{n} = 1^{6}(r, r, r) + r_{n}^{2}, r_{n}^{2} + r$	$\begin{split} & Tr8^{12}-mU-8^{20} - Tre^{0}-mU-12^{40} e^{D-2}-2125 e Tre^{0}-mU-\\ & = Tre^{0}(p_{-1}3^{3};,,,m^{11}15^{-25}; \\ & = 0^{17}; e^{0}(p_{-1}13^{12},,m^{11}15^{-25}; \\ & = 0^{17}; e^{0}a_{12}, e^{D-1}a_{12}; \\ & = 0^{-1}a_{12}; e^{0}a_{12}, e^{0}a_{13}, e^{1}Te^{0}a_{14}^{11-31}, abd; \\ & = 0^{-1}a_{12}a_{12} - a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} \\ & = 0^{-1}a_{12}a_{12} - a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} \\ & = 0^{-1}a_{12}a_{12} - a_{12}b_{12} - a_{12}b_{12} \\ & = 0^{-1}a_{12}a_{12} - a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} \\ & = 0^{-1}a_{12}a_{12} - a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} \\ & = 0^{-1}a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} \\ & = 0^{-1}a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12} \\ & = 0^{-1}a_{12}b_{12} - a_{12}b_{12} - a_{12}b_{12$	$\begin{array}{l} \Box^{1}(\mathbf{n}, \mathbf{n})^{-1}\mathbf{n}, \mathbf{f}_{1}, \boldsymbol{\omega}^{0-2}\mathbf{f}_{1}, = \overset{0}{\mathbf{u}}^{0-2}abd-\mathbf{n}p, \boldsymbol{\Omega}^{0-2}abd-\mathbf{n}p;\\ \boldsymbol{\Delta}^{1-2}\mathbf{n}-\mathbf{a} = \overset{0}{\mathbf{u}}-\mathbf{n}-\boldsymbol{\omega}^{1-2}\mathbf{n}-\mathbf{n}p;\\ = \overset{0}{\mathbf{u}}^{2-2}\mathbf{n}-\boldsymbol{\omega}^{1-1}abd-\mathbf{n}p;\\ = \overset{0}{\mathbf{u}}^{2-1}\mathbf{n}-\mathbf{u}^{2-2}\mathbf{n}-\boldsymbol{\omega}^{2-1}abd-\mathbf{n}p;\\ \boldsymbol{\Omega}^{0-1}1\mathbf{n}-\mathbf{u}^{2-2}\mathbf{n}-\mathbf{u}^{2-2}\mathbf{n}-\mathbf{n}p;\\ \boldsymbol{\omega}^{0-2}\mathbf{f}_{1}\mathbf{n}-\mathbf{n}p; \overset{0}{\mathbf{u}}^{2-2}\mathbf{n}-\mathbf{n}p; \end{array}$	•Tr13 ³⁷⁻⁴² ,17 ^{07-09, .} 	_0 ¹ -fr.∞ ² =n = ⁰⁻² 23 ^{0,2} 4; ≡ ⁰⁻² n-na=∞ ² -abd,● ^{0,4} ,0 ¹⁻¹ 16 ¹⁷ -18 ¹⁵ ⁹ 0 ⁻¹ -¥Fl2 ⁰³⁻⁴² ; × ^{0812-20,1} /abd-np; L ⁰⁰ -fr; =∞ ² fr-a, ¥Fl≯t ⁰ 165_4 ⁰⁰ ⊀0 ¹⁻¹ -10 ²⁰ XFF1×0.14 ¹⁵ ;	$\begin{split} \mathcal{M}_{0}(14^{30}-20^{50}); & \mathcal{M}_{0}(15^{-15}\times l-18^{30}\times 0^{-1}-20^{30}\times 0^{-1}\mathrm{pr}; \\ & \mathcal{M}_{0}(\mathrm{na}^{-7})^{61}; & \mathcal{H}_{1}\mathrm{B}^{-111} \stackrel{\circ}{\rightarrow} \mathrm{C}^{1}_{1}-\mathrm{M}_{2}^{21}; \\ & \mathcal{M}_{0}\mathrm{na}^{-1} \mathrm{s}^{1}_{1} + \mathrm{C}^{1}_{1} + \mathrm{C}^{2}_{1} + \mathrm{S}^{1}_{1} + \mathrm{M}_{1} + \mathrm{C}^{2}_{1} + \mathrm{S}^{1}_{1} + \mathrm{M}_{2}^{2} + \mathrm{S}^{1}_{1} + \mathrm{M}_{2}^{2} + \mathrm{S}^{1}_{1} + \mathrm{M}_{2}^{2} + \mathrm{S}^{1}_{1} + \mathrm{M}_{2}^{2} + \mathrm{S}^{1}_{2} + \mathrm{M}_{2}^{2} + \mathrm$	Tage mit: ●>>★▲ ≡ ⁰⁻² R (R) ⊠ → → →
Schnee-	none					••••	4 7 4	П
mm Form	Sum. ⁸	 1.5	12.9 : 0.0	0.0	0.0		2.5 米 1:5 米 0.1 ₩ Δ	24.2
chlag in öhe und	21 ^h	0.0	9.1 0.0	0.0	0.0	2.6 ≱ 0.0¥	2.4 0.0	14.1
Nieders Vasserhö	14h	1.	1.6	^с а	0.0	0.0 1.8*	0.0 ● ★	
4	Ţћ	3.0 0.1 0.1			0.0		0.1★ 1.5★	- 8.2
win- Isek	тит ⁷	10.8 14.2 8.1 8.1 15.6 14.2	$\begin{array}{c} 16.9\\ 19.2\\ 13.6\\ 11.1\\ 8.3\end{array}$	4.7 7.5 7.8 14.7	75 75 1275 1179 83	$\begin{array}{c} 5.0\\ 16.1\\ 1772\\ 7.8\\ 7.8\\ 10.8\end{array}$	26.9 20.3 23.6 8.3 5.0	.5
ndgesch keit, m	Maxi	s we we	M M M M M M M M M M M M M M M M M M M	NNW NNW NWW NWW	WNW SE SE SE SE SE	WNW WNW WSW NNW	WNW E W	12
Wi dig	Mit. ⁶	22.4 2.5 2.4 2.4	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	$ \begin{array}{c} 0.9 \\ 1.2 \\ 1.9 \\ 1.8 \\ 5.9 \\ \end{array} $	4.5 2.45 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.	35.28 35.34 5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32	8.8 77 1.3 1.3	3.5
irke le)	21 ^h	40101	V 5 V 3 W 1 V 3 V 3 V 1 V 1	E 2 VE 1 VE 2 V 2 V 2 V 4	NW 2 E 3 SE 3 SE 3 SE 3 SE 3	ЧЕ 1 VW 4 VE 3 VE 1 VE 3 VE 3 VE 3	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5.2
nd -sti t-Grau		ZZZ220	23352 WNVV	NN	$\frac{00440}{N}$	NV NI	NNX10	
htung u Beaufor	14 ^h	WSW NW ENE	ESE WNW N	NNE N WNW WNW	NNW E ESE SE SE	NNE S WNW WW	WSW W ENE ENE	- 2.6
Windric (0–12	Дh	W SW SW SW 1 SSE 2 SW 1 S 2 2 2	ESE 3 W 5 WNW 4 NNE 1 NNE 1	NNE 12 NNE 12 WNE 12 A	NW 3 NN 2 ESE 3 ESE 3 SE 2	NW 2 3 4 11 NW 2 3 4 11	W 4 W 4 WNW 3 F 1 E 1	2.4
Son- nen-	schein	0.6 1.3 0.0 2.4	0.0 0.9 8.7	8.2 0.0 0.1 0.1	3.1 8.0 7.5 0.0	$ \begin{array}{c} 0.0 \\ 0.2 \\ 7.5 \\ 1.6 \\ 1.6 \\ \end{array} $	$\begin{array}{c} 1.3\\ 6.5\\ 6.5\end{array}$	3.3
–10, min	Mit.	$7.0 \\ 9.0 \\ 7.7 \\ 10.0 \\ 6.7$	10.0 7.0 6.7 9.0 0.3	$ \begin{array}{c} 3.3 \\ 3.3 \\ 10.0 \\ 6.3 \\ 7.3 \\ 7.3 \end{array} $	0.0 0.0 7.7	$10.0 \\ 9.7 \\ 9.7 \\ 1.0 \\ 6.0 \\ 6.7$	6.7 9.3 6.0 0.0	5.8
Menge 0 _e ^{0–2}) 'um Teri	21 ^h	$\frac{30}{70}$	10^{1}_{20}	$\begin{array}{c} 10^{1} \equiv 0 \\ 0 \\ 10^{1} \bullet \end{array}$	01000	10^{1}_{2}	$^{10^{1}}_{0}$	- 2.0
ölkung (1 Dichtı itterung 2	14 ^h	$^{9}_{10}^{9}_{101}^{101}_{101}$	$ \begin{array}{c} 10^{2}, \\ 6^{1}, \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0\\ 9_1\\ 9_2\\ 9_2\\ 9_1\\ 9_2\\ 9_1\\ 9_2\\ 9_1\\ 9_2\\ 9_2\\ 9_1\\ 9_2\\ 9_2\\ 9_2\\ 9_2\\ 9_2\\ 9_2\\ 9_2\\ 9_2$	91 ⁰ 008	$\begin{smallmatrix} 101\\9\\6\\1\\8\\8 \end{smallmatrix}$	$\begin{array}{c} 9^{1}\\ 10^{2}\\ 1^{0}\end{array}$	
Bew W.	Дh	$91 \\ 91 \\ 10^2 \equiv 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31$	$\begin{smallmatrix} 10\\ 8\\ 8\\ 1\\ 9\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	3^{0}_{0} 3^{0	10000	10^{1} 3^{1} 3^{1} 10^{2} 10^{2}	30^{-1}	- 2.8
Tag		1-0.0.4.0	6. 9.9.9	11.12.13.15.	16.119.20	22.23.23	26. 28. 28. 28. 28.	umme Mittel

(207 ^{.5} m),	
Warte	
Hohe	
Wien,	
Geodynamik,	
pun	
Meteorologie	
für	
Zentralanstalt	
der	
an	
Seobachtungen	

		_	-																										
te.		2.0	13.2	13.1	12.8	12.7	14.0	12.5	12.1	12.0	11.8	11.7	11 6	11.5	11.3	2.11	11.1	11.0	10.9	10.7	10.6	10.5	10.3	10.2	10.0	8.6	9.6	9.2	11.2
-Brei	der ur/°C nm	1.0	5.9	6.3	6.1	2.0		5.5 5.5	5.2	5.2	5.1	4.6	4.9	4.8	4.6	4.5	4.5	4.5	4 6 4 9	5.2	2.2	5.7	0.9	0.9	0.9	8.5	5.6	5.2	5.3
Ż.	esmittel emperat Tiefe vo	0.5	3.6	3.3	3.1	2.0	1 1	5.0 2.0	2.5 2.5	2.3	2.3	2.1	2.0	2.0	6.1	6.1	2.0	2.3	3.7	4.1	4.5	4.8	+ 4 8 8	4.5	4.3	6.8	3.5	2.6	3.1
14.	Tag Bodent in der	0.1	9.0	0.4	0.3	0.5	7 0	£ 0	0.5	0.1	0.0	-0.1	10	1.0	0.2	5.0	1.0	1.8	3.7	4.4	4.7	4.6	+ + + 1	3.4	2.4	1.5	1.3	9.0	1.5
48		0.02	0.3	0.5	0.1	0.0	1 1	1.0	c.0	-0.1	-0.2	9.0-	7.0	0.1	0.3	2.0	1.3	2.5	5 9 4 1	4.8	5.1	5.2	4.1	2.2	2.2	1.3	1.1	9.0	1.5
	Verdun- stung,		0.1	0.5	0.5	2.0	7 0	4.0	0.2	9.0	0.4	0.3	2.0	0.0	2.0	9.0	9.0	2.0	0.5 0	0.3	0.4	1.2	0.5	9.0	9.0	0.4	0.5	0.1	13.9 Summe
	%	Mit.	77	71	82	86	5 [11	202	70	64	78	13	80	09	74	74	73	/4 67	84	91	58	C 06	06	81	83	82	c, 0	76
	tive keit 9	$21^{\rm h}$	77	F	83	98 7 80	C i	9/	47	64	73	17	4/	6/	74	75	72	52	70	84	91	53	95	85	76	89	82	82	76
	Rela	$14^{\rm h}$	63	22	21	6/		8 13	57	65	49	74	09	8/	53	63	60	76	6 55	78	89	53	86	88	79	78	75	46 88	69
	$F\epsilon$	Ţћ	90	83	66	25	ì	9/	62	80	71	83	4 0	28	5 40	85	91	06	78	89	92	68 76	68	96	87	83	88	80	82
		Mit.	3.3	3.8	4.2	4 7	+ -	4 ч С -	6.6	3.8	2.9	3.8	41	5.5	8.1	2.6	8.2	9.2	4 4 7:2	0.6	9.1	6.2	6.5	5.2	4.7	4.7	4.5	5.0	2.8
7	fdruck a	21 ^h	3.3	4.3	4.0	4.0		4 ц С -	3.7	3.7	2.9	4.5	4 i	9.9	6.6	8.4	9.1	8.3	6.2	9.3	6.3	5.1	6.5	4.5	4.4	4.4	4.5	5.2	5.7
198	Damp hp	$14^{\rm h}$	3.6	3.9	4.1	с 1.4		4 - 1 - 2	4.1	4.0	2.7	4.3	4 1	0.9	7.2	10.4	2.8	11.2	9 6 7.3	6.8	9.1	5.2	2.9	5.1	4.9	5.3	4.7	5.3	0.9
ber	I	7h	2.9	3.2	4.0	0.5		0.4	6.6	3.7	3.1	2.2	4 i 1 c	7.9	7.2	10.4	9.2	8.1	6.2	6.8	8.8	6.2	6.4	6.9	4.7	4.4	4.4 4 i	4.4 0.70	5.6
ezem	Aus- strah- ung °C ⁴	Ţћ	-12.1	-11.4	-10.6	-10 U		0.7	-9.2	-10.4	-8.5	-13.8	200	4 1	-2.6	3.2	-1.1	2.0	-1.3	4.5	1.4	0.2	-1.5	2.0-	-2.8	-6.2	-8.3	-7.5	4.6
	1	Ain. ³	8.2	9.9	5 C-	φ.«		0.Y	4.1	-5.6	-5.5	6.6-		7.7	2.1	6.9	3.6	5.2	4.0	6.5	5.2	5.4	1.6	6.1-	-2.3	-3.8	-3.6		8.0-
lona	5 m	ax. ³ A	- 8.0-	3.0	1.4	1.2.6			2.7	1.4	0	0.3		- 1.9	5.1	4.9	2.5	4.2	4 4 1.6	2.6	0.8	1.4	6.2	1.6	0.4	2.1	1.0	0.1	2.8
N N	in 1 [.] 8 en	fit. M	4.6	1.6	7.7	6.7	1 ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2	1.2	3.8	3.6	5.1	1 0.0	1.3	1.0 1	1 0.6	0.7 1	8.1 1	8.2	0.2	7.6 1	2.3	1.0	8.0	1.2	1.3	1.3	2.6
11	, °C n Bod	N V	- 9.†	+		1 0.0			1.0		2.2	- 2.(1	1.2	1.2	3.5 1	.(3.8	8.2	3.5	2.3	4 .	9.1	- 6.1	- 8.(6.7	- -	<u></u>	4.2
	eratur ber der	21	1	<u> </u>	1	i' T		T	, cq	Υ	"í'	Υ.	T		. =		1	====	<u> </u>	~				T	Y	7	Ţ,	ΤŢ	
	ufitemp ül	14h	-1.1	5.2		0.0		Ч с Г	10.0	0.5	-1.4	8.0	0 C	2.7	11.6	14.4	12.4	12.7	c 01 1111	0.6	7.2	4.7	3.5	8.0-	0.1	1.5	0.1	-0.2	4.4
	Ĺ	Ţh	-8.1	0.9	4	ч ч ч ч		9.0	-3.2	-3.6	4.4	-0.2	0.0	2.0	11.1	10.1	4.4	2.6	4.6	0.2	6.4	9.1	2.2	-0.2	-1.8	-2.1	-2.6	-2.6	6.0
	<u>_</u>	Δ^2	23.5	23.5	19.8	9.3		0.9 0	1.4	4.0	2.0	-3.2		-14.3 14.3	-18.8	-17.0	-18.7	-12.1	6.0-	-1.4	-11.0	0.7 7 0	6.4	5.4	1.3	1.6	5.3	5.4	-0.1
		it.	6.4	6.4	1.7	0 4 0	F - 0	<pre>> 0</pre>	4.6	9.2	8.5	0.1	0.0		. 4	6.3	4.8	4.	1.6	2.1	5.6	3.4	5.8	1.6	2.0	2.2	0.5	4.6	3.3
Ŀ.	k1	M_{i}	7 101	7 101	101			66 00	66	86	- 99	66	2 20	70	4 97	7 97	2 97	86 88	86	8	2 98	66 00	66	66	66 6	66	66 00	66	66
e v.	uftdruc hpa	21 ^h	1017	1015	1010 2	10001	. 7001		992.4	992.6	.166	.686	2 7 96	C/6	975.4	973	.826	3.226	. 166	3.166	.086	.866	3.866).666	. 466	5.966	1000.	0001	.£66
E-Lang	Ι	14 ^h	1016.3	1016.3	1012 8	1004 3	1 1001	2.100	9.866	986.3	2.666	5.686	0066	£.626	973.1	9.116	9.576	981.8	991.4	992.4	981.6	994.1	0.866	0.666	994.1	995.1	6.866	6.666	0.866
1 / 17		Дµ Д	015.1	017.2	014 6	9.000	1.000	1 200	6.266	2.886	1.866	8.166	/ 066	980'9	975.1	9.226	5.026	984.7	5.266 C	992.0	6.586	0.886	9.866	.666	1.966	994.5	2.866	2.666	2.866
16	Tag		1.1	<u>- 1</u>	<u>ی</u>	4 u	· ·	- 0.	; œ	.6,	10.	11.	17	13.	15.	16.	17.	18.	19. 20.	21.	22.	23.	25.	26.	27.	28.	29.	31. 1 31.	Mittel

2	5
à	~
2	2
	-
	1
5	ŝ
1	2
	2
	2
	ere a
i,	$\tilde{\sim}$

Bemerkungen zum Wetterverlauf	Intensität ° , 1, 2, = leicht, mäßig, stark		⁰⁻¹ n-ft, co ¹⁻² n-a-∞ ⁰⁻² p-np; 24 ⁶⁰⁻³⁵ , 9 ⁶⁵⁻¹⁰ , •Tr11 ⁵⁻²⁵ 1, 13 ^{280-1445; 12¹n-m. ∞⁰⁻²fr-a.L⁰⁺¹abd-np, ∞¹np; 1n-a, ×H ×⁰¹3³¹-mU-14⁴⁶×⁴⁰⁻¹⁻¹755;}	$\begin{array}{l} \square_{n^{-}} \Pi_{r, \infty}^{-} \Pi_{r, \infty}^{-} \Pi_{r-}^{-} \eta_{r-} \eta_{r-}^{-} \eta_{r-} \eta_{r-} \eta_{r-}^{-} \eta_$	●Tre ⁰ (1 ²¹⁻⁵² , 	■Tre ⁰ 0 ¹⁰⁸ _2 ¹¹ , a ⁻ Tma_fit, 8 ²²⁻⁴³ , 10 ⁵⁵ -11 ⁰² , Δ^{0-1} m-a, co ⁰⁻² m-a-co ¹⁻² P-np; = Tmai 1.2 ² , 14 ³ , 10 ⁵ , 10 ⁵ , 11 ⁸⁻²⁰ ; = Tre ⁰ nai 8 ³⁹ -9 ¹⁸ , e ⁰ 10 ²⁸⁻⁴⁰ , e ⁻ Tr-11 ² , e ⁻ Tre ⁰ p-abdi, npi; o ² ff-a-18 = ²⁰⁻² abd-np, sadd-npi;	<u></u> <u></u> <u></u> <u></u> <u></u> ² <u></u> <u></u> <u></u> <u></u> 2 <u></u> <u></u> <u></u> <u></u> <u></u> 2 <u></u> <u></u> <u></u> <u></u> 2 <u></u> <u></u> <u></u> <u></u>	Tage mit: $\bullet_{9} \star \triangleq \equiv^{0-2}$ If (R) EM we were 7 5 0 0 3 5 0	n Mittel. ³ Aus der Registrierung von 0-24 Uhr. ⁴ Temperatur- .Reif, VRauhreif, ~ Glatteis, R.Gewitter über Ort, (R) Gewitter r i mit Unterbrechungen, na frühmorgens, fr früh, a vormittags,
Schnee-	202		••••	1 DBR1 FL				1 1	ngjährige ∩ Tau, ∟ , mU ode
mm Form	Sum. ⁸		*5.0 0.0	. 0 8.0 0.9	3.5 0.0	0.0 0.0 0.0	∇ 0.0		hung vom la Vebelreißen, i e 8 und mehr
hlag in he und	$21^{\rm h}$.0.0	0.9	· 0.0 0.0	0.0	♥0.0 0.0	1.7	= Abweic lunst, ≡! N Vindstärk
Niedersc 7asserhö	14 ^h		¥0.0 0.0		0.0	0.0	♥0.0 : : 0.0	0.3 _	hpa. ${}^{2}\Delta$; 7^{h} in cm . = Nebeld mehr, $$
И	Дµ			8.0	0.0	0.0 0.0	0.0	4.3	Bc = 0.00 7^{h} . 9 Um \equiv Nebel, ke 6 und r
dgeschwin- eit, m/sek	Maximum ⁷	NNE 3'9 WNW 4'7 E 3'1 NE 5'3 W 6'4	W 11.4 W 18.6 WW 629 WW 1222	W 14'2 S 10'6 W 23'9 W 15'3	WNW 20'8 SSW 10'8 W 22'8 W 22'8	W 611 W 611 WNW 1671 WSW 1114 SE 477	SSE 10.6 SE 13.1 SSE 13.1 SSE 866 N 558 SE 775 SE 10.6	- 11.3	Gc = +0.25 hpa, ert. ⁸ Von 7 ^h bis och, \triangle Eisregen, cke, ω Windstärl ngene Nacht, we
Win digk	Mit.6	0.97 0.97 0.8 1.0 4.2	7.6 1.5 7.6 1.5 7.6	3.1 2.421.8 2.642.1	1.7 2.6 1.8 1.8	1.0.01	0.02110 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.0254 0.0254 0.02550 0.02550 0.02550 0.02550 0.02550 0.02550 0.02550000000000	- 2.7	rrektur. hblicksw A Grauj Schneede orangeg
l -stärke Grade)	21 ^h	NW 1 C 0 ENE 1 WNW 1 WNW 1	WNW 3 NNW 1 NNW 3 NNW 3 SE 2	WNE 2 SW 2 SSW 3 W 3	E 1 SSW 1 S 3 WE 4 NE 1	E 1 WNW 2 W 3 W 3 ESE 2	ESE 3 SE 3 NNE 1 NNE 1 ESE 2 SE 3 SE 3	_ 2.1	trumentenko littel. ⁷ Auge nee, ▲ Hagel, eeflocken, 函 sich auf die v
htung und Beaufort-	14h	NNE 2 NNE 2 ENE 1 SSW 1 NW 2	N%B%E	W ESE 2 ESE 2 SSW 2 NW 1	NE 2552 NE 2525 NE 2525	NE 1 SSE 1 W 4 ESE 2 3 ESE 2	ESE 4 ESE 4 ESE 4 ESE 2 ESE 3 SE 32 SE 32	2.4	und mit Ins tstündiges N seln, ¥ Schr n, ¥Fl Schn hts (bezieht:
Windric (0–12	Дh	SW 1 SSW 1 SW 1 SSW 1 SSW 1 W 3	WSW 5 WNW 1 WSW 2 WNW 3	C 0 SW 1 SW 1 WSW 3	WSW 1 WSW 1 W 2 SSE 2 W 1	WSW 1 SE 1 W 3 W 3 ENE 1	ESE 3 ESE 3 SSE 2 W 1 NNE 2 ESE 1	- 1.8	erekorrektur Stunden. ⁶ 2. Regen, 9 Nie Regentropfe Sends, n nac
Son- nen-	schein ⁵	6.9 6.3 0.1	7.00 7.00 7.00 7.00	3.50	0.6 0.5 0.5 0.6	$\begin{array}{c} 0.6 \\ 0.0 \\ 1.3 \\ 0.0 \end{array}$	0.0 5.5 0.0 0	86'9 2'8	fit Schwe Dauer in S Ingen: •] Inst, •Tr Inst spätal
)–10, rmin	Mit.	0.0 3.3 8.0 8.0	0.0 0.0 0.0	2.0 9.3 7.3 7.3	7.0 7.0 8.7 8.0 8.0	8.3 1000 7.7 7.3 1000	$ \begin{array}{c} 10.0 \\ 6.7 \\ 0.7 \\ 6.3 \\ 6.3 \\ 9.3 \\ 10.0 \\ 10.0 \\ \end{array} $	- 6.1	h): 3. ¹ N oden. ⁵ L Abkürzu m, ∞ Du abends,
(Menge (hte ^{0–2}) zum Tei	1 21 ^h	00%00	101 140 160	²⁰ 60 60 70 70 70 70 70 70	30^{0}	$\begin{array}{c} 7^{1}\\ 10^{1}\\ 6^{1}\\ 6^{1} \end{array}$	$\begin{array}{c} 10^{1}\\ 2^{1}\\ 0\\ 10^{0}\\ 10^{1}\end{array}$	- 2.8	-14 ^h +21 r dem B hen und erleuchte iags, abd
wölkung Dicl Vitterung	14 ^h	 0 % % % %	$\begin{array}{c}10^{1}\\7^{1}\\0\\0\\\end{array}$	10^{-10}	16°299	$\begin{smallmatrix}&&&&\\&&&&\\&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&$	$ = 10^{2} \\ 9^{1} \\ 10^{2} \\ 10^{2} \\ 10^{1} \\$	- 9	ttel (7 ^h + 6 <i>cm</i> übe lete Zeic i, 5 Wett nachmitt
g Be	4	10^{2}	0. 10 0. 10 0. 10 0. 10 0. 10	31° 3	6. 91 9. 11 0. 51 11 51 11	$\begin{array}{c} 10^{-1}\\ 5. \\ 10^{-1}\\ $	$\begin{array}{c c} 6. & 10^{1} \\ 8. & 1^{1} \\ 9. & 10^{0} \\ 0. & 8^{1} \\ 1. & 10^{1} \end{array}$	el 5.6	Tagesmi mum in Verwend ngebung ittags, p
Tag					00	00000	ดดดดดังดัง	Sumr Mitte	minir m U m

1989	I*) Beob- achtete Tem- peratur Garten- hütte	II*) 200jähr. Mittel (1776 bis 1975)	Abwci- chung I–II	1989	I*) Beob- achtete Tem- peratur Garten- hütte	II*) 200jähr. Mittel (1776 bis 1975)	Abwei- chung I–II
1.— 5. Jänner 6.—10. 11.—15. 16.—20. 21.—25. 26.—30.	-0°2 4°0 4°5 3°0 -0°2 -1°0	-1.6 -1.9 -2.0 -1.6 -1.5 -1.2	1 4 5 9 6 5 4 6 1 3 0 2	30.— 4. Juli 5.— 9. 10.—14. 15.—19. 20.—24. 25.—29.	21 ² 2 24 ⁸ 21 ⁷ 16 ⁷ 21 ³ 20 ⁴	19 ⁻ 3 19 ⁻ 7 19 ⁻ 9 20 ⁻ 2 20 ⁻ 3 20 ⁻ 2	1'9 5'1 1'8 -3'5 1'0 0'2
31.— 4. Februar 5.— 9. 10.—14. 15.—19. 20.—24.	2 [.] 2 4 [.] 2 3 [.] 9 5 [.] 8 8 [.] 0	-0°6 -0°2 -0°2 0°2 1°1	2 [.] 8 4 [.] 4 4 [.] 1 5 [.] 6 6 [.] 9	30.— 3. August 4.— 8. 9.—13. 14.—18. 19.—23. 24.—28.	16°0 20°3 20°7 24°3 21°6 18°7	20 ⁻ 3 20 ⁻ 1 19 ⁻ 7 19 ⁻ 5 18 ⁻ 9 18 ⁻ 4	-4 ^{·3} 0 ^{·2} 1 ^{·0} 4 ^{·8} 2 ^{·7} 0 ^{·3}
25.— 1. März 2.— 6. 7.—11. 12.—16. 17.—21. 22.—26. 27.—31.	7 ^{.7} 7 ^{.4} 7 ^{.3} 8 ^{.3} 8 ^{.5} 9 ^{.6} 13 ^{.7}	2 [.] 2 2 [.] 6 3 [.] 3 3 [.] 8 4 [.] 9 5 [.] 7 6 [.] 8	5 ^{.5} 4 ^{.8} 4 ^{.0} 4 ^{.5} 3 ^{.6} 3 ^{.9} 6 ^{.9}	29.— 2. September 3.— 7. 8.—12. 13.—17. 18.—22. 23.—27.	14 [.] 5 13 [.] 6 16 [.] 0 16 [.] 8 20 [.] 1 16 [.] 1	17 ^{.9} 17 ^{.1} 16 ^{.2} 15 ^{.2} 14 ^{.5} 13 ^{.7}	-3 [.] 4 -3 [.] 5 -0 [.] 2 1 [.] 6 5 [.] 6 2 [.] 4
1.— 5. April 6.—10. 11.—15. 16.—20. 21.—25. 26.—30.	9'1 12'9 14'5 11'2 11'6 8'9	7'9 8'7 9'5 10'3 11'2 11'9	1 ² 4 ² 5 ⁰ 0 ⁹ 0 ⁴ -3 ⁰	28.— 2. Oktober 3.— 7. 8.—12. 13.—17. 18.—22. 23.—27.	11 [.] 8 9 [.] 3 10 [.] 2 10 [.] 9 11 [.] 0 14 [.] 3	13 ⁻ 1 11 ⁻ 9 10 ⁻ 8 9 ⁻ 8 8 ⁻ 9 7 ⁻ 9	-1 ^{.3} -2 ^{.6} -0 ^{.6} 1 ^{.1} 2 ^{.1} 6 ^{.4}
1.— 5. Mai 6.—10. 11.—15. 16.—20. 21.—25. 26.—30.	12 [.] 9 12 [.] 4 15 [.] 0 16 [.] 9 16 [.] 8 18 [.] 6	12 ^{.9} 13 ^{.8} 14 ^{.6} 15 ^{.3} 15 ^{.8} 16 ^{.7}	0°0 -1°4 0°4 1°6 1°0 1°9	28.— 1. November 2.— 6. 7.—11. 12.—16. 17.—21. 22.—26.	13 ^{.9} 9 ^{.8} 5 ^{.8} 4 ^{.0} 0 ^{.6} 0 ^{.3}	6 ^{.9} 6 ^{.2} 5 ^{.2} 4 ^{.1} 3 ^{.3} 2 ^{.6}	7.0 3.6 0.6 -0.1 -2.7 -2.3
31.— 4. Juni 5.— 9. 10.—14. 15.—19. 20.—24. 25.—29.	15 [.] 0 15 [.] 2 18 [.] 1 14 [.] 9 17 [.] 5 20 [.] 2	17'3 17'9 18'0 18'0 18'5 18'9	-2°3 -2°7 0°1 -3°1 -1°0 1°3	27.— 1. Dezember 2.— 6. 7.—11. 12.—16. 17.—21. 22.—26. 27.—31.	-1 ^{.5} -1 ^{.3} -1 ^{.2} 7 ^{.1} 9 ^{.3} 4 ^{.4} -1 ^{.3}	2°1 1°5 0°9 0°3 0°4 0°8 1°0	-3.6 -2.8 -2.1 6.8 9.7 5.2 -0.3

*) Die an dieser Stelle bis 1987 angegebenen Werte der Hannhütte entfallen, weil die Hannhütte mit Ende 1987 eingestellt wurde! Bemerkungen zur Jahresübersicht: ¹ Mit Schwerekorrektur und Instrumentenkorrektur: Gre + 0'25, Bre + 0'01 (1989). ² (7^h + 14^h + 21^h):
3. ³(7^h + 14^h + 21^h + 21^h): 4. ⁴ Aus der Registrierung: ⁵ Millimeter. ⁶ Registriepreiode 1901–1950. ⁷ Maximum in einem Tag von 7^h bis 7^h.
⁸ Von 7^h bis 7^h. ⁹ Aus der Registrierung: Frosttage: Temperaturminimum < 0⁰, Eistage: Temperaturmaximum < 0⁰, warme Tage: Temperaturtagesmittel ≥ 20ⁿ. ¹⁰ Alle Tage, an denen Nebel (horizontale Sichtweite unter 1 km) beobachtet wurde. ¹¹ Sturmtage: Mittel der Windregistrierung mindestens 10 Minuten lang ≥ 39 km/h. ¹² Heitere Tage: Bewölkungsmittel < 2ⁿ. ¹³ Trübe Tage: Bewölkungsmittel > 8ⁿ.

989	sõinnel ² Sinnel2	u nəg	2.9	2.7	6.2	8.9	5.2	6.9	0.9	0.9	5.2	4.7	8.5	6.1	6.1
1	_s əunun -sðuntsun	10.7	21.0	33.7	44.4	51.4	41.7	56.1	43.4	29.6	26.3	18.4	13.9	9.06	
	vdy _T anin Annblar Annblar	9.9	9.9	7.5	8.8	11.2	13.1	15.7	16.4	13.9	10.0	6.2	2.8	10.1	
	ive ceit %	Min. ⁴	41	39	26	27	31	33	32	35	39	38	24	3	24
		Mit. ²	81	75	99	67	64	69	64	72	1	74	73	76	72
lgei	Relat	21 ^h	83	75	67	69	67	72	66	75	79	79	75	76	74
achtun	Feu	14h	74	67	55	55	52	60	53	59	65	58	65	69	61
		ЧĻ	86	82	76	78	73	75	73	8	87	85	80	82	80
Beob		Tag	4.	5.	7.	19.		15.	18.	30.	30.	υ.	30.	11.	11.12.
hen		absol. Min.*	-5.1	-1.6	1.1	0.2	4.6	8.7	10.1	10.4	8.1	2.1	9.2-	6.6-	6.6-
ogisc	den	Tag	.6	20.	31.	11.	5 8.	27.	œ	16.	19.	24.	~	14.	8.7.
ieteorolog	ufttemperatur °C in 1 [.] 85 m über dem Bo	absol. Max.*	10.9	16.1	25.5	24.5	25.6	27.5	32.0	31.6	26.8	22.8	18.8	16.1	32.0
		mittl. Min.*	l.1-	2.1	4.6	0.9	10.1	12.2	16.0	15.5	12.0	7.2	6.0	8.0 9	7.1
er n		mittl. Max.4	4.5	8.1	13.8	15.9	20.0	21.2	25.4	24.1	20.1	16.2	2.9	8.S	15.2
ssübersicht de		Mit. ⁴	1.5	5.1	9.1	11.1	15.0	16.5	20.5	19.4	15.8	11.4	3.8	2.3	11.0
		Mit. ³	1.1	5.3	9.1	11.3	15.2	16.6	20.6	19.5	15.8	11.4	3.6	2.2	1.11
		Mit. ²	1.8	5.3	9.1	11.4	15.5	16.9	20.9	19.7	16.0	11.6	3.8	2.6	11.2
Jahr	Г	21 ^h	1.4	5.2	6.8	10.9	14.4	15.7	19.8	18.8	15.2	10.8	3.1	2.4	10'6
		14h	5.6	7.3	12.6	14.9	18.9	19.5	24.2	23.0	19.3	15.5	6.9	4.4	14'1
ie Warte		ų,	9.0	3.4	8. <u>5</u>	8.4	13.1	15.3	18.7	17.3	13.5	8.4 7	2.4	6.0	0.6
	Luftdruck ¹ hpa	Min. ⁴	986.1	945.6	972.0	971.5	982.2	6.186	984.1	2.086	6.586	981.1	973.1	6.696	945.6
		Max. ⁴	1018.3	1016.8	1002.4	9.866	1003.9	998.3	1000.1	9.666	1003.6	1006.3	1012.9	1018'1	1018'3
		Mit. ²	1007.3	966.1	992.1	984.9	994.9	9.166	2.866	6.066	994.1	995.4	994.1	6.666	994.0
Wien, Hol	Monat		Jänner	Februar	März	April	Mai	luni	Juli	August	September .	Oktober	November .	Dezember .	Jahr .

Windverteilung	Kal.	1		3	0	0	0	0	1	4	3	0	2	19	
		МN	œ	4	10	9	18	18	13	10	15	11	16	œ	137
		¥	34	29	36	28	26	41	36	47	26	36	29	58	396
	;	SW	5	11	œ	ŝ	ŝ	4	Ś	7	0	10	ŝ	11	72
		s	3	9	e	9	9	0	0	ŝ	9	9	4	ŝ	54
		SE	16	16	12	23	ŝ	1	4	9	10	7	80	15	123
		E	14	12	10	15	15	6	12	7	11	80	12	13	138
		NE	9	1	2	0	7	9	9	e	ŝ	80	6	ŝ	60
		z	9	4	6	S	11	6	15	7	11	4	6	9	8
		Ir ¹³	12	17	10	11	œ	12	œ	œ	7	7	8	6	117
		412	0	0	4	2	œ	1	1	ŝ	7	7	œ	4	49
it		1111		-	2	0		0	0			0	4	S	53
m əč		ŝ	œ	ŝ	0	2	-		0		0	-	Ś	ŝ	29
Taj	,	ոհե	0	1	0	e	ŝ	6	6	ŝ	0	-	0	0	35
der		-		0	0	0	0	0	0	0	0	0	3	Э	~
Zahl		88 0		0	0	0	0	0	0	0	0	0	3	ĉ	7
		* <u></u> *	4	4	-		0	0	0	0	0	0	9	-	17
		*	-	0	0	0	0	0	0	0	0	0	З	-	ŝ
્ર ગ્રો	ч	эшиг М	0	0	0	0	0	4	19	18	0	0	0	0	43
	,	ognizia	S	0	0	0	0	0	0	0	0	0	0	ŝ	12
	ډ،	કેળાકન્યનુ	21	3	0	0	0	0	0	0	0	0	15	19	58
age hlag ^e		0.5	-		-	ĉ	9	7	С	7	3	e	-	0	36
der T: iedersel		1.0	4	11	œ	11	6	11	11	12	Ś	9	9	-	95
Zahl mit N	٨	1.0	8	13	12	14	14	16	16	15	80	9	œ	7	40
hlag		Max.7	9	6	S	35	24	17	13	60	23	8	13	4	601
Nieders		Sum.5	15	29	23	89	92	82	51	142	55	25	24	9	633
Sonnenschein- dauer in	% der	mitt- leren Dauer ⁶	146	75	108	81	101	74	79	1	82	151	172	208	96
		Stunden	81.5	60.3	145.3	140.4	240.7	182.1	209.8	187.0	151.8	179.0	2.66	6.98	1764.5
Monat		Jänner	Februar	März	April	Mai	Juni	Juli ilul	August	September .	Oktober .	November .	Dezember .	Jahr .	

D. Wahlen

Ergebnisse der Wahlsitzungen am Montag, dem 8. Mai, und Dienstag, dem 9. Mai 1989:

In die mathematisch-naturwissenschaftliche Klasse wurden folgende neue Mitglieder gewählt:

Zu wirklichen Mitgliedern: die bisherigen korrespondierenden Mitglieder Herbert Braunsteiner, o. Prof. für Innere Medizin an der Universität Innsbruck, Franz Kurt Weber, o. Prof. für Geophysik an der Montanuniversität Leoben, Josef Zötl, Sen.Dir. d. Instituts für Geothermie und Hydrogeologie d. Forschungsgesellschaft Joanneum.

Zu korrespondierenden Mitgliedern im Inland: Helmut Denk, o. Prof. für Pathologische Anatomie und Vorstand des Instituts für Pathologische Anatomie der Universität Graz, Franz Jeglitsch, o. Prof. für Metallkunde und Werkstoffprüfung und Rektor der Montanuniversität Leoben, Ludwig Reich, o. Prof. für Mathematik an der Universität Graz, Wilhelm Schneider, o. Prof. für Gasdynamik und Thermodynamik an der TU Wien.

Zu korrespondierenden Mitgliedern im Ausland: Max L. Biernstiel, Direktor des Instituts für molekulare Pathologie (IMP), Wien, Johannes Geiss, o. Prof. für Geophysik an der Univ. Bern, André J. Guinier, o. Prof. für Festkörperphysik an der Université Paris Sud, Mirko Malez, o. Prof. für Paläontologie an der Universität Zagreb, Piero Zuffardi, o. Prof. für Geologie an der Universität di Milano.

In die philosophisch-historische Klasse wurden folgende neue Mitglieder gewählt:

Zu wirklichen Mitgliedern: die bisherigen korrespondierenden Mitglieder Radoslav Katićić, o. Prof. der Slawischen Philologie an der Universität Wien, Walter Leitsch, o. Prof. der Osteuropäischen Geschichte an der Universität Wien.

Zu korrespondierenden Mitgliedern im Inland: Rudolf Flotzinger, o. Prof. für Musikwissenschaft an der Universität Graz, Johannes Koder, o. Prof. für Byzantinistik an der Universität Wien, Ernst Ch. Suttner, o. Prof. für Patrologie und Ostkirchenkunde an der Universität Wien.

Zu korrespondierenden Mitgliedern im Ausland: Bernard Andreae, o. Prof. für Archäologie und 1. Direktor d. Abtlg. Rom d. Dt. Arch. Instituts, Iván T. Berend, Prof. für Wirtschaftsgeschichte u. Präsident der Ungarischen Akademie der Wissenschaften, Peter Robert Franke, o. Prof. für Numismatik an der Universität Saarbrücken, Ivan Golub, Prof. für kroatische u. slavische Barockliteratur und -kultur an der Universität Zagreb, Johannes C. Heesterman, o. Prof. für Indologie u. indische Geschichte d. Mittelalters und der Neuzeit an der Universität Leiden, Werner Hofmann, Prof. für Kunstgeschichte an der Universität Hamburg, Karl Kroeschell, Prof. für Rechtsgeschichte und Agrarrecht an der Universität Freiburg/Br.

Zum Ehrenmitglied: Horst Fuhrmann, o. Prof. für Geschichte des Mittelalters an der Universität München u. Präsident d. Monumenta Germaniae Historica.

E. Preisverleihungen

I. Erwin Schrödinger-Preis

Der Erwin Schrödinger-Preis für das Jahr 1989 wurde an das wirkliche Mitglied o. Prof. Dipl.-Ing. Dr. Johannes Pötzl verliehen in Anerkennung seiner hervorragenden Leistungen auf dem Gebiet der Halbleiterphysik, insbesondere seiner Beiträge zur Kenntnis des Verhaltens heißer Elektronen und der Streuung in Halbleitern.

II. Wilhelm Hartel-Preis

Der Wilhelm Hartel-Preis für das Jahr 1989 wurde an das wirkliche Mitglied o. Prof. Dr. Richard Georg Plaschka verliehen in Anerkennung seines wissenschaftlichen Gesamtwerkes und seiner forschungspolitischen Verdienste bei der Zusammenarbeit mit den Schwesterakademien in den Nachbarstaaten Österreichs.

III. Jubiläumspreis des Böhlau-Verlages Wien

Der Jubiläumspreis des Böhlau-Verlages Wien für das Jahr 1989 wurde an Dr. Walter Pohl in Würdigung seines Werkes "Die Awaren, ein Steppenvolk in Mitteleuropa, 567–822 n. Chr." verliehen.

IV. Felix Kuschenitz-Preis

Der Felix Kuschenitz-Preis für das Jahr 1989 wurde verliehen an Prof. Dr. Fritz Paltauf in Anerkennung seiner grundlegenden Arbeiten auf dem Gebiet der Lecithine.

V. Erich von Tschermak-Seysenegg-Preis

Der Erich von Tschermak-Seysenegg-Preis für das Jahr 1989 wurde verliehen an das korrespondierende Mitglied o. Prof. Dr. Dr. h. c. Meinhard Moser in Anerkennung seiner Verdienste um die angewandte Mykologie, besonders im Zusammenhang mit der Mykorrhizaforschung bei der Hochlagenaufforstung und der damit verbundenen Wiederherstellung subalpiner Wälder in Österreich.

VI. Erich Schmid-Preis

Der Erich Schmid-Preis für das Jahr 1989 wurde verliehen an Dr. Helmuth Hüffel in Anerkennung seiner Beiträge zur Quantenfeldtheorie.

VII. Othenio Abel-Preis

Der Othenio Abel-Preis für das Jahr 1989 wurde verliehen an Dr. Peter Pervesler in Anerkennung seiner Arbeiten zum Vergleich fossiler Bauten mariner Crustaceen im Vergleich mit rezenten Crustaceenbauten.

1_

ISSN 0065-535 X