Barremian ammonoids from Serre de Bleyton
(Drôme, SE France)

By Alexander LUKENEDER

(With 4 figures)

Abstract

Barremian ammonoids were collected at the Serre de Bleyton locality in the Department Drôme, SE France. The cephalopod fauna from the “coulées boueuses”, correlated with other macrofossil groups (belemnoids, brachiopods, crinoids, echinoids etc.) and microfossil data (foraminifera) from the turbiditic unit, indicates Barremian age. The deposition of the allodapic limestones and marls in this interval occurred during depositionally unstable conditions which led to the formation of turbiditic layers.

The ammonoid fauna comprises 8 different genera, each apparently represented by a single species. The assemblage at the Serre de Bleyton section is dominated by ammonoids of the Melchiorites-type. Ammonitina are the most frequent component (Melchiorites 52%; Holcodiscus 8%), followed by the Phylloceratina (Phyllopachyceras 3% and Hypophylloceras 2%), the Lytoceratina (Protetragonites 15%), and the Ancyloceratina (Anahamulina 10%, Karsteniceras 8% and Macroschapites 2%). The ammonoid fauna consists solely of Mediterranean elements.

Keywords: Cephalopoda, Ammonoidea, Barremian, Serre de Bleyton, SE France.

Zusammenfassung

1 Department of Geology & Palaeontology, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; e-mail: alexander.lukeneder@nhm-wien.ac.at
stellen das häufigste Faunenelement dar (Melchiorites 52%; Holcodiscus 8%), gefolgt von der Gruppe der Phylloceratina (Phyllopachyceras 3% and Hypophylloceras 2%), den Lytoceratina (Protetragonites 15%) und den Ancyloceratina (Anahamulina 10%, Karsteniceras 8% und Macrosaphites 2%). Die Ammoniten Fauna setzt sich ausschließlich aus mediterranen Elementen zusammen.

Schlüsselwörter: Cephalopoda, Ammonoidea, Barremium, Serre de Bleyton, Südost-Frankreich.

Introduction

Lower Cretaceous pelagic sediments are well known to form a major element of the tectonic units of Southern France (Cotillon et al. 1984; Pasquini et al. 2004; Arnaud 2005; Adatte et al. 2005). In the area around the Serre de Bleyton ridge the Barremian cephalopod-bearing deposits are recorded as siliciclastic and turbiditic beds, the “coulées boueuses”. These beds are channel like seafloor fans ending in the Vocontian Trough (Adatte et al. 2005; Arnaud 2005). The latter author described this turbiditic phenomenon from the east of the nearby Col de Perty.

Biostratigraphic data on the “coulées boueuses” in the pelagic Vocontian Trough (SE-France) are remarkably scarce. This reflects the rare occurrence of an identifiable ammonoid macrofossil fauna. The discussed lithological (turbiditic fan sediments) and biostratigraphic data (Barremian), however, are extraordinarily important for reconstructing Lower Cretaceous geodynamics of the Vocontian Trough (= Vocontian Basin). The turbiditic beds mark the siliciclastic input into the basin, reflecting the formation of an basinal seafloor fan. The newly discovered outcrop at Serre de Bleyton (Fig. 1) in the heart of SE-France comprises a new faunal assemblage of the Barremian in the well documented Vocontian Trough. That section revealed, for the first time, the critical interval in an environment comprising extraordinarily rich accumulations of ammonoids, belemnoids, brachiopods, crinoids, echinoids and foraminifera.

Geographical setting

The outcrop is situated in the Vocontian Basin which is part of the district Drôme. The Vocontian Basin extends on the Drôme and several other departments. The exact position is about 20 km north-east of Nyons and 2 km south-east of Arnayon (Fig. 1). The outcrops are located along a forest road. The surrounding area is called Serre de Bleyton and so is the locality itself Serre de Bleyton.

The light grey turbiditic succession, comprising the ammonoid-bearing beds, is located on the southern side of the Serre de Bleyton ridge (approx. 980 m asl.). The ammonoid-occurrence is exposed on the left side (northern) of the forest road. The locality is splitted into 3 distinguishable small outcrops (e.g. loc. 1, 2 and 3) which are located within ap-
Fig. 1. Locality map of France with the position of the Serre de Bleyton locality Department Drôme, SE-France (left). Detailed map of the roads around Serre de Bleyton with outcrop position of the Barremian ammonoid-bearing beds indicated by an asterisk (right).

Fig. 2. Exposure of the investigated section with the position of the outcrop at the Serre de Bleyton section (Drôme). Note the positions of loc. 1 and loc. 2 at the forest road south of the Serre de Bleyton locality.
prox. 200 m (Fig. 2). The exact position of the ammonoid-occurrences as determined by GPS (global positioning system): Locality 1 is N 44°28’55’’ and E 5°18’00’’ (Fig. 1), locality 2. N 44°28’54’’ and E 5°17’58’’ and locality 3 with N 44°28’58’’ and E 5°18’02’’.

Material, preservation and methods

During the course of this study, 60 ammonoid specimens (NHMW 2009z0108/0001 to 0036) were examined. Additionally, fossil groups as brachiopods, crinoids, echinoids, foraminifera, and rhyncholites were collected. Ammonoids are preserved as steinkerns, mostly pyritic, and are well preserved. No shell is present. In most specimens only the innermost, juvenile part (approx. 2-5 mm in diameter), is preserved. The latter fact is important to note due to the fact that many ammonoid groups develop their characteristic features after the juvenile growth stage during later ontogenetical phases (e.g. ribbing, constrictions etc.). The material was collected by G. MOOSLEITNER who took bulk samples. The samples were washed and treated with Rewoquat® for cleaning. The preservation influences the precise determination of most ammonoids herein. Therefore only genera could be determined precisely.

Lithology, fauna and biostratigraphy

Lithology. The Serre de Bleyton section apparently consists of turbiditic sediments (ARNAUD 2005), as herein called allodapic limestones. These are bioclastic grainstones with its incorporated ammonoid specimens. The components gravitationally derive from the outer platform to hemipelagic areas surrounding the Vocontian Trough. The beds comprise reworked and autochthonous components.

Depositional and tectonic setting. The studied section in SE-France from Serre de Bleyton includes a pelagic to hemipelagic succession of the Vocontian Trough, representing a well known part of the Vocontian Basin system, the Lower Cretaceous palaeogeographic position of which was shown by SCOTES (2001) and STAMPFLI & MOSAR (1999). The unique feature at the latter locality is pointed by the beds investigated are turbiditic deposits (fan systems; ADATTE et al. 2005; ARNAUD 2005), derived from different sedimentation areas, as the platform and the hemipelagic edge of the Vocontian Trough. The original depositional area of the sediments was located west of the Vocontian Trough. The Provence Platform was situated to the south of the Vocontian Basin. To the west of the basin was the carbonate platform covering the Central Massif (ARNAUD 2005). The Barremian ammonoid material described herein derives from turbiditic beds of the Serre de Bleyton (Commune d’Arnaon, Drôme).

Fauna. The invertebrate fauna consists of ammonoids and belemnoids (JANSSEN 2010), rhyncholites (RIEGRAF & MOOSLEITNER 2010), brachiopods, corals (LÖSER 2010), echi-
noids, and crinoids (Jäger 2010) that fits well into characteristic Mediterranean upper Lower Barremian to Upper Barremian faunas.

Biostratigraphy. According to ammonoids and the additional macrofossil faunas (see Janssen 2010, Rieggraf & Moosleitner 2010, Löser 2010, Jäger 2010), the association indicates that the cephalopod-bearing beds of the Serre de Blayton section belong into the timespan from the late Early Barremian up to the Late Barremian age (see Reboulet et al. 2009).

For the Barremian the biostratigraphically indicative ammonoids are: Protetragonites cf. crebrisculcatus (Uhlig), Melchiorites sp., Holcodiscus ex. gr. perezianus (d’Orbigny), Holcodiscus cf. caillaudianus (d’Orbigny), Karsteniceras sp., Anahamulina sp., and Macroscaphites sp.

Due to the turbiditic formation of the beds and the fact that zonal index ammonoids are missing, no more precise straigraphic estimations can be made by ammonoid data. The typical ammonoid association, in correlation with other macrofossil data, allows an evaluation only on substage level.

If the holcodiscids of Serre de Bleyton are compared to other Barremian occurrences (Company et al. 2008 for Morocco; Fözy & Janssen 2009 for Hungary). Holcodiscus perezianus occurs in the Lower Barremian Kotetishvilia compressissima Zone (Reboulet et al. 2009), at which holcodiscids show their main diversification. It was shown by Hoedemaeker & Leereveld (1995) from Caravaca in Spain (Rio Argos) that H. perezianus appears in the late Early Barremian, M. moutonianum Zone (upper part of the former H. caillaudianus Zone after Hoedemaeker & Leereveld 1995). The H. caillaudianus Zone has been replaced by the lower K. compressissima and upper M. moutonianum Zones (Reboulet et al. 2009; see also Company et al. 1995). After Company et al. (1995) H. perezianus appears in Caravaca already in the Kotetishvilia nicklesi and Nicklesia pulchella Zones. Company et al. (1995) reported the presence of Holcodiscus aff. perezianus (but not true H. perezianus) in the Nicklesi and Pulchella Zones. These forms were described later as Holcodiscus thomeli (Company, Fözy, Sandoval & Tavera, 2006). True H. perezianus are restricted to the Compressissima Zone, whereas H. caillaudianus occurs in the middle/upper part of this zone, as stated by Vermeulen (2002), Company et al. (2008) and Fözy & Janssen (2009).

Palaeontology

Conventions. The material examined is stored in the palaeontological collection of the Natural History Museum (NHMW), Vienna, Austria (Burgring 7, 1010, Vienna). All specimens illustrated in Fig. 3 and 4 were coated with ammonium chloride before photographing. Ammonoid systematics follow Wright et al. 1996 and Klein (2005, 2007, 2009). Karsteniceras was compared to specimens figured by Vasiček & Wiedmann (1994). Localities 1-3 are abbreviated loc. 1-3.
Ammonoids

Protetragonites cf. crebrisculcatus (UHLIG) (Figs 3I-L), Phyllopachyceras sp. (Figs 3A-B), Hypophyloceras sp. (Fig. 3C), Melchiorites sp. (Figs 4A-N), Holcodiscus ex. gr. perezianus (d’ORBIGNY) (Fig. 3F), Holcodiscus cf. caillaudianus (d’ORBIGNY) (Fig. 3H), Holcodiscus sp. (Figs 3D-E and G), Karsteniceras sp. (Figs 4O-R), Anahamulina sp. (Figs 4S-W), and Macroscaphites sp. (Fig. 4X).

The ammonite fauna (loc. 1, 2 and 3; n=60) comprises 8 different genera. The occurrence at the Serre de Bleyton section is dominated by ammonites of the puzosiid-type (Melchiorites). Ammonitina are the most frequent component (Melchiorites 52%; Holcodiscus 8%), followed by the Phylloceratina (Phyllopachyceras 3% and Hypophyloceras 2%), the Lytoceratina (Protetragonites 15%), and the Ancyloceratina (Anahamulina 10%, Karsteniceras 8% and Macroscaphites 2%). The ammonoid fauna consists solely of Mediterranean elements.

Melchiorites is the dominant element in all localities by 67% in locality 1 (followed by Anahamulina, Holcodiscus and Protetragonites, together 11%), in locality 2 with 49% (followed by Anahamulina and Protetragonites; both 17%) and in locality 3 with 70% (followed by Anahamulina and Phyllopachyceras; 11% and 7%).

Discussion

Interpretation of the section. The biostratigraphic analysis (macro and microfossils; see also KROH et al. 2010; RIEGRAF & MOOSLEITNER 2010; JANSEN 2010; all this volume) indicate that the turbiditic section, is of Barremian age.

The ammonoid assemblage from Serre de Bleyton shows a typical Barremian (Lower to Upper Barremian) composition. Additional investigations on the different fossil groups as belemnites (JANSEN 2010), rhyncholites (RIEGRAF & MOOSLEITNER 2010), corals (LÖSER 2010), bryozoans (TAYLOR 2010), asteroids (VILLIER 2010), and crinoids (JÄGER 2010) fit into the picture of an Barremian fauna. As stated above, the species of Holcodiscus (e.g. H. ex. gr. perezianus and H. cf. caillaudianus) rather point to an Early Barremian age. The Thethyan fauna from Serre de Bleyton is comparable to other Barremian sections from the Mediterranean as known from Austria (LUKENEDER 2003, 2004, 2005), France (ADATTE et al. 2005; COTILLON et al. 1984; 1992, 1994, 1997, 2003; DELANOY 1992; De-
LUKNEDER: Barremian invertebrates of Serre de Bleyton. 3. Ammonoids

The cephalopod data presented allow a more precise biostratigraphic reconstruction of the studied turbiditic beds. Accordingly, the described specimens were deposited in habitats of the platform edge to basin (Vocontian Trough) and probably mirror a mixed fauna, derived from different sedimentational areas.

Conclusions

The presented results are based on new ammonoid findings from the Department Drôme (SE-France) at Serre de Bleyton. The macrofauna, as already stated, is represented by ammonoids, belemnoids, brachiopods, corals, crinoids, echinoids and rhyncholites. The whole section, separatable into three localities (loc. 1-3), yielded 60 ammonoid individuals. The sparse and selective occurrence of the ammonoids within the section at Serre de Bleyton and the lithologic character (siliciclastic) of the sediments makes the sampling difficult. In most cases only the innermost whorls (up to 5 mm), or juvenile parts of the ammonoids are preserved which makes determination difficult.

The stratigraphic investigation of the ammonoid fauna revealed that the Serre de Bleyton section comprises Barremian sediments. A more precise age model is not possible with this ammonoid material. The ammonoid fauna contains solely representatives of the Mediterranean Province.

The new ammonoid assemblage from the Serre de Bleyton locality in SE-France shows once more the importance of correlating different macrofossil groups with the accompa-

Fig. 4. Ammonoids from Serre de Bleyton. A-M: Melchiorites sp. (A: loc. 2, x8, 2009z0108/0013; B: loc. 1, x5, 2009z0108/0014; C: loc. 2, x8, 2009z0108/0015; D: loc. 3, x8, 2009z0108/0016; E: loc. 3, x8, 2009z0108/0017; F: loc. 1, x5, 2009z0108/0018; G: loc. 3, x8, 2009z0108/0019; H: loc. 3, x8, 2009z0108/0020; I: loc. 3, x8, 2009z0108/0021; J: loc. 3, x8, 2009z0108/0022; K: loc. 3, x8, 2009z0108/0023; L: loc. 2, x8, 2009z0108/0024; M: loc. 3, x8, 2009z0108/0025; N-Q: Karsteniceras sp. (N: loc. 3, x8, 2009z0108/0026; O: loc. 3, x8, 2009z0108/0027; P: loc. 2, x8, 2009z0108/0028; Q: loc. 2, x8, 2009z0108/0029); R-W: Anahamulina sp. (R: loc. 2, x8, 2009z0108/0030; S: loc. 2, x8, 2009z0108/0031; T: loc. 2, x8, 2009z0108/0032; U: loc. 3, x8, 2009z0108/0033; V: loc. 2, x8, 2009z0108/0034; W: loc. 2, x8, 2009z0108/0035; X: Macroscaophites sp. (loc. 3, x1.5, 2009z0108/0036).
nying microfossil fauna. Restricting the stratigraphic evaluation of the Serre de Bleyton outcrop to the ammonoid assemblage would have indicated a time span and age of middle to late Early Barremian.

Sediment deposition at Serre de Bleyton took place during conditions of relatively stable water masses and during relatively high (turbiditic) sedimentation rates within a fan system but unstable sedimentological conditions (allodapic limestones and turbidites). An uncertain amount of the ammonoid specimens were apparently redeposited from shallower shelf regions into a deeper shelf environment.

Acknowledgements

Thanks are due to the Austrian Science Fund (FWF) for financial support (project P20018-N10). Thanks go to Gero Moosleitner (Salzburg) for collecting the ammonoid material. I am particularly grateful to Miguel Company (Granada) for important discussions on some of the ammonoid specimens. The authors is indebted to Miguel Company (Granada) and Ottilia Szives (Budapest) for the careful review of the paper. Photographs were taken by Alice Schumacher (Natural History Museum, Vienna).

References

LUKENEDER: Barremian invertebrates of Serre de Bleyton. 3. Ammonoids

