Beitrag zur Habitatbindung der aquatilen Coleopterenfauna

MARTIN BRINK, Emsbüren u. HEINER TERLUTTER, Münster

Inhaltsverzeichnis

Einleitung 5	0
	1
	1
	1
	1 2
Ergebnisse	3
	3
4.3 Auswertung der quantitativen Fänge	5
	7
5.2 Faunistische Bemerkungen	9
	9
Literaturverzeichnis	S

1. Einleitung

Unter Coleopterologen gibt es nur wenige, die sich der Arbeit an den in vielerlei Hinsicht unattraktiven Wasserkäfern (*Dytiscidae, Haliplidae, Gyrinidae, Hydraenidae, Hydrophilidae*) in besonderer Weise widmen. Die publizierten Informationen beschränken sich meist auf einzelne Aufsammlungen oder auf das Auffinden von als selten geltenden Arten. Untersuchungsergebnisse, die auf längerfristigen systematischen Untersuchungen basieren – z. B. Habitatbindungsarbeiten, wie sie für Carabiden häufig durchgeführt wurden –, liegen bis auf wenige Ausnahmen nicht vor (HOCH 1968, KOCH 1972, DETTNER 1976, MEYER u. DETTNER 1981).

Eine unfassende Untersuchung über "Die Habitatbindung der aquatilen Coleopteren des Gildehauser Venn", einem größeren Heidemoor- und Dünengebiet im Kreis Grafschaft Bentheim (Niedersachsen), wurde von BRINK (1981, 1983) durchge-führt. Untersucht wurden mehrere oligotrophe wie auch dystrophe und mesotrophe Moorund Heidegewässer. Es erscheint naheliegend, derartige Untersuchungen auf andere Gewässertypen der weiteren Umgebung auszudehnen.

Im Rahmen der vorliegenden Arbeit wurde der Versuch unternommen, die aquatile Coleopterenfauna eines heterogenen Untersuchungsgebietes im Kreis Grafschaft Bentheim (oligotrophe und eutrophe Stillgewässer sowie Fließgewässer) zu vergleichen. Ziel dieser Arbeiten ist es, durch Herausstellen habitatspezifischer Charakterarten die Grundlagen zur Bewertung von Gewässern und Gewässertypen für den Naturund Artenschutz zu liefern.

2. Material und Methode

2.1 Fangmethoden

Zum Fang der aquatilen Coleopteren wurde ein halbkreisförmiger Wasserkäscher mit einem Halbmesser von 25 cm verwendet. Im Untersuchungszeitraum von April bis Oktober 1981 erfolgte bis auf den Monat April, in dem im Abstand von zwei Wochen zweimal gekäschert wurde, eine monatliche Probenentnahme im Abstand von etwa vier Wochen. Insgesamt wurde auf jeder Untersuchungsfläche (2 m²) achtmal gekäschert. Das Aussammeln der Proben geschah auf einer weißen Kunststoffolie oder direkt auf dem Netz. Auf die Problematik dieser nur halbquantitativen Probenentnahmen wird bei Hoch (1968) und Seeger (1971) bereits hingewiesen.

Der Forderung Baloghs (1958) nach vollständiger Ermittlung des Arteninventars wurde insofern entsprochen, als in den größeren Gewässern (Fangstellen (4), (5) und (6) zusätzlich regelmäßig Käferreusen zum Fang von adephagen Coleopteren (Dytisciden) eingesetzt wurden. Dabei fand das von Brink (1981, 1983) entwickelte Reusensystem Verwendung. Der Vorteil dieses Reusensystems gegenüber herkömmlichen Käferreusen (z. B. Schieferdecker 1963) liegt insbesondere darin, daß vom Lockmittel sensibilisierte Tiere weitgehend richtungsunabhängige Einschwimmöglichkeiten haben und nicht im Diffusionsfeld umherirren (Brink 1981, 1983). Dadurch werden quantitativ wie qualitativ bessere Fangergebnisse erzielt. Die Käferreusen wurden monatlich einmal verwendet und nach 24 Stunden kontrolliert. Als Köder diente Schweineleber.

2.2 Wasseranalysen

Gleichzeitig wurden in monatlichen Abständen aus jedem Gewässer in etwa 5 cm Tiefe Wasserproben entnommen. Um die tagesperiodischen Schwankungen der gemessenen Parameter zu umgehen, wurden sämtliche Gewässer in jeweils derselben tageszeitlichen Reihenfolge untersucht. Im einzelnen wurde die Bestimmung der pH- und Leitfähigkeitswerte (µScm⁻¹) vorgenommen. Die Messungen erfolgten im Labor mittels pH- bzw. Leitfähigkeitselektrode.

3. Beschreibung des Untersuchungsgebietes

3.1 Ausweisung des Untersuchungsgebietes

Die untersuchten Gewässer (= Fangstellen) befinden sich in den Gemeinden Neuenhaus und Uelsen im Landkreis Grafschaft Bentheim nahe der holländischen Grenze (MTB 3507, Neuenhaus-Süd). Die genaue Lage der einzelnen Fangstellen ist in Rechts- und Hochwerten der topographischen Karte in Klammern angegeben. Untersucht wurden insgesamt fünf Gewässer unterschiedlichen Charakters (Fangstelle (3), (4), (5), (6) und (8)), deren pflanzensoziologische Charakterisierung sich weitgehend auf POTT (1980), RUNGE (1973) und WITTIG (1980) stützt.

Die Fangstellen (1), (2) und (7) wurden in die Ergebnisse der Untersuchung nicht mit einbezogen. Fangstelle (1) ist ein stark verlandeter Weiher in einer Weide, der aber kurz nach Untersuchungsbeginn bereits völlig ausgetrocknet war. Fangstellen (2) und (7) sind größere Fischteiche, in denen vermutlich wegen der extensiven Fischereinutzung nur sehr wenige Tiere gefangen werden konnten. Zur Ergänzung der Faunenliste des Untersuchungsgebietes werden hier die Arten ge-

nannt, die in diesem Gewässer gefunden wurden und nicht in Tab. 2 aufgeführt sind: Hydroporus piceus, Hydroporus angustatus, Coelostoma orbiculare, Cercyon marinus und C. tristis.

3.2 Charakterisierung der Gewässer

(3) Epilobio-Juncetum-Graben (61350/14600): Es handelt sich um einen etwa 150 m langen Graben, der innerhalb einer Bodensenke durch eine extensiv genutzte Weide verläuft.

Der Pflanzenbestand der Weiden als anthropogene Ersatzgesellschaften wird weitgehend durch die Intensität der Düngung und des Viehbesatzes bestimmt (ELLENBERG 1978). Die Bodensenke ist durch ein Lolio-Cynosuretum mit zahlreichen Feuchtigkeitszeigern (z. B. Cardamine pratensis, Cirsium palustre, Ranunculus flammula und Alopecurus geniculatus) charakterisiert. Der Graben selbst sowie auch tiefer gelegene, nassere Stellen der unmittelbaren Umgebung sind durch das Epilobio-Juncetum effusi gekennzeichnet (RUNGE 1973). Im Juni war der Graben ausgetrocknet (pH: 6,1; µS: 397).

- (4) Polygonum-Weiher (60880/16080): Es handelt sich um einen inmitten von Getreideanbauflächen innerhalb einer Senke gelegenen Weiher von etwa 20 m Durchmesser. Der im Laufe des Sommers trocken gefallene Ufersaum ist mit einjährigen Pioniergesellschaften der Bidentalia bedeckt. Die niedrigwüchsigen, aus Annuellen aufgebauten Gesellschaften kennzeichen meist nährstoffreiche Schlammböden an Tümpeln und Gräben. Dichte Bestände bilden die Charakterarten Polygonum hydropiper und Bidens tripartita, aber auch Mentha arvensis und Lysimachia vulgaris sind mit größerer Deckung vorhanden. Im Wasser selbst dominiert der Phosphattrophierungszeiger Polygonum amphibium. Solche Bestände gelten als Fazies des Myriophyllo-Nupharetums flacher Gewässer auf schlammigem Grund (POTT 1980). Im nordöstlichen Teil des Weihers ist ein dichtes, aber schlechtwüchsiges Phragmites-Röhricht ausgebildet. Am Ufer stehen vereinzelt Salix aurita, S. cinerea und Quercus robur (pH: 6,6; µS: 121).
- (5) Sphagnum-Weiher (59250/16880): Diese Fangstelle ist ein durch Sandabgrabungen inmitten eines Kiefernforstes entstandener Weiher mit einem Durchmesser von etwa 40 m. Durch die windgeschützte Lage und die Nährstoffarmut des Bodens konnten sich seltene Pflanzengesellschaften entwickeln. Der Weiher selbst ist durch die Sphagnum cuspidatum-Gesellschaft charakterisiert. Sphagnum cuspidatum und Juncus bulbosus bilden z. T. Rasen aus. Zum Ufer treten Eleocharis palustris und Eriophorum angustifolium hinzu. Einzelne Nymphaea alba wachsen im tieferen Wasser.

Am nordostexponierten Ufer hat sich ein dichter *Juncus effusus*-Bestand entwickelt (Detritusanspülung). Der oligotrophe Charakter des Gebietes wird unterstrichen durch eine *Ericetum tetralicis*-Kontaktgesellschaft mit zahlreichen *Molinia coerulea*-Bulten sowie durch ein *Rhynchosporetum* mit *Rhynchospora alba* und *Drosera intermedia*, das sich in alten Fahrspuren angesiedelt hat (pH: 4,5; µS: 87).

(6) Dinkel-Altgewässer (65880/17100): Unter dieser Fangstelle sind mehrere Altgewässer der Dinkel, die nur noch teilweise mit der Dinkel in Kontakt stehen, zusammengefaßt. An vielen Stellen reichen Viehweiden direkt an das Wasser heran. Innerhalb abgezäunter Bereiche finden sich Röhrichte des Scirpo-Phragmitetum mit Phragmites communis und Scirpus lacustris. Rumex hydrolapathum und Sparganium erectum erreichen ebenfalls hohe Deckungsgrade. An einigen Stellen bildet Glyceria maxima ausgedehnte Bestände. Die Gewässer sind stark verschlammt; nur vereinzelt wachsen Nymphaea alba, Hydrocharis morsus-ranae und verschiedene Potamogeton-Arten. Ein Altarm wird zu einem Drittel von einem Spirodeletum polyrhizae besiedelt (pH: 7,1; μS: 392).

(8) Holländischer Umleitungskanal (66050/15180): Die Fangstelle bezeichnet den sogenannten "Holländischen Umleitungsgraben", der südlich von Neuenhaus in die Dinkelumflut mündet und das einzige Fließgewässer der vorliegenden Untersuchung darstellt. Wegen der geringen Fließgeschwindigkeit kann sich im Wasser ein dichter Pflanzenwuchs entwickeln. Es handelt sich im wesentlichen um ein Sagittario-Sparganietum emersi mit Nuphar lutea-Beständen. Dazwischen wachsen dichte Bestände von Potamogeton perfoliatus und Potamogeton pectinatus. Die steil abfallenden Ufer sind von dichten Glyceria maxima-Beständen bewachsen (pH: 7.3; µS: 792).

4. Ergebnisse

4.1 Gewässeranalyse (Abb. 1 und 2)

Die pH-Werte der Gewässer (3), (4), (6) und (8) liegen im neutralen Bereich zwischen 5,9 und 7,4. Einen deutlich abweichenden pH-Wert zeigt das Gewässer (5), in dem Werte zwischen 4,3 und 4,7 gemessen wurden. Die jahreszeitlichen Schwankungen der Werte in den einzelnen Gewässern sind gering.

Die Leitfähigkeitsmessungen ergeben für die Gewässer (3), (6) und (8) mittlere Leitfähigkeitswerte. Die jahreszeitlichen Schwankungen der Werte sind zum Teil erheblich, was zumindest für Gewässer (3) mit der geringen Wassermenge und dem daher starken Einfluß von Niederschlag, Verdunstung und Verunreinigung durch Rinder erklärt werden kann.

Die Leitfähigkeitswerte der Gewässer (4) und (5) liegen um $100~\mu S$. Für Gewässer (4) ist diese geringe Leitfähigkeit bemerkenswert, da durch die Lage inmitten von Ackerflächen mit einer Einleitung von Mineralstoffen durch Oberflächenwasser gerechnet werden muß. Die Schwankungen der Werte sind bei den Gewässern (4) und (5) gering.

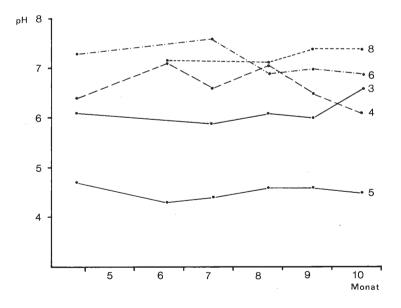


Abb. 1: Jahreszeitliche Schwankungen des pH.

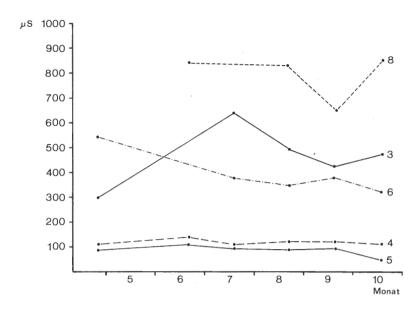


Abb. 2: Jahreszeitliche Schwankungen der Leitfähigkeit.

4.2 Arteninventar

Unter Berücksichtigung sämtlicher Ausbeuten (Käscher- und Reusenfänge) konnte ein Arteninventar von 76 Spezies im Untersuchungsgebiet nachgewiesen werden (Tab. 1 u. 2).

Tab. 1:	Anzahl der Arten pro Familie.	und der Individuen
Familie	Anzahl	Anzahl der

Familie	Anzahl der Arten	Anzahl der Individuen				
Dytiscidae	47	832				
Hydrophilidae	11	141				
Hydraenidae	9	179				
Haliplidae	6	81				
Gyrinidae	2	17				
Hygrobiidae	1	1				
Gesamt:	76	1251				

Die Anzahl der insgesamt gefangenen Imagines belief sich auf 1251 Individuen (Tab. 1), wovon 953 auf Käscherfänge und 298 (297 Dytisciden und 1 Hydrophilide) auf Reusenfänge zurückgehen (Tab. 3).

Aus folgenden Familien wurden Arten festgestellt: *Dytiscidae, Hydrophilidae, Hydrophilidae, Hydrophilidae, Hydrophilidae, Hydrophilidae, Gyrinidae* und *Hygrobiidae* (Tab. 1).

Die Familie der *Dytiscidae* ist in allen Gewässern artenmäßig am stärksten vertreten. 6 von insgesamt 47 nachgewiesenen Dytisciden wurden ausschließlich mit der Reusenmethode gefangen (Tab. 3). Dieser Anteil ist in einigen Gewässern sogar noch höher. Z. B. wurden in Gewässer (5) von insgesamt 31 Arten 9 ausschließlich durch Reusenfänge nachgewiesen (29 %). Dem Einsatz einer Reuse kommt im Hinblick auf die Erfassung des gesamten Artenbestandes eine große Bedeutung zu (BRINK 1981, 1983).

Tab. 2: Arteninventar der im Untersuchungsgebiet nachgewiesenen aquatilen Coleopteren. Nomenklatur nach FREUDE, HARDE, LOHSE (1971).

```
Hvarobiidae
                                                     T. subaeneus ER.
Hugrobia tarda HERBST
                                                     I. obscurus (MARSH.)
Haliplidae
                                                     I. aenescens THOMS.
Haliplus lineatocollis MARSHAM
                                                     Rhantus pulverosus (STEPH.)
H. ruficollis DEGEER
                                                     R. suturellus (HARR.)
H. heydeni WEHNKE
                                                     R. exsoletus (FORST.)
H. fluviatilis AUBE
                                                     Colymbetes fuscus (L.)
H. laminatus SCHALLER
                                                     Dytiscinae
H. flavicollis STURM
                                                     Hydaticus seminiger (DEG.)
Dytiscidae
                                                     Graphoderus zonatus (HOPPE)
Hydroporinae
                                                     G. cinereus (L.)
Hyphydrus ovatus (L.)
                                                    Acilius sulcatus (L.)
Guignotus pusillus (F.)
                                                     A. canaliculatus (NICOL.)
Coelambus impressopunctatus (SCHALL.)
                                                    Dutiscus dimidiatus BERGSTR.
C. confluens (F.)
                                                     D. marginalis L.
Hygrotus versicolor (SCHALL.)
                                                    D. circumcinctus AHR.
                                                     D. circumflexus F.
H. inaequalis (F.)
Hydroporus dorsalis (F.)
                                                     D. lapponicus GYLL.
H. angustatus STURM
                                                     Gyrinidae
H. umbrosus (GYLL.)
                                                     Gyrinus marinus GYLL.
H. tristis (PAYK.)
                                                     G. substriatus STEPH.
H. palustris (L.)
                                                     Hydraenidae
H. erythrocephalus (L.)
                                                     Ochthebius minimus (F.)
H. obscurus STURM
                                                    Helophorus grandis ILL.
H. planus (F.)
                                                     H. aquaticus (L.)
H. pubescens (GYLL.)
                                                    H. guttulus ssp. brevipalpis BEDEL
H. nigrita (F.)
                                                    H. laticollis THOMS.
Graptodytes pictus (F.)
                                                    H. flavipes (F.)
Stictotarsus duodecimpustulatus (F.)
                                                    H. granularis (L.)
Potamonectes canaliculatus (LAC.)
                                                    H. minutus (F.)
Noterinae
                                                    H. griseus HERBST
Noterus crassicornis (MÜLL.)
Laccophilinae
                                                     Hydrophilidae
                                                     Cercyon convexiusculus STEPH.
Laccophilus minutus (L.)
L. hyalinus (DEG.)
                                                     C. analis (PAYK.)
Colvmbetinae
                                                     Hydrobius fuscipes (L.)
Agabus chalconotus (PANZ.)
                                                     Anacaena limbata (F.)
A. bipustulatus (L.)
                                                     Laccobius alutaceus THOMS.
                                                    Helochares obscurus (MÜLL.)
A. sturmi (GYLL.)
A. paludosus (F.)
                                                     Enochrus affinis (THUNB.)
A. nebulosus (FORST.)
                                                     E. coarctatus (GREDL.)
Ilybius fenestratus (F.)
                                                    E. quadripunctatus (HERBST)
I. ater (DEG.)
                                                     Chaetarthria seminulum (HERBST)
I. fuliginosus (F.)
                                                     Hydrous piceus (L.)
```

4.3 Auswertung der quantitativen Fänge

Alle erbeuteten Coleopteren sind mit Angabe der absoluten Individuenzahlen in Tab. 3 zusammengestellt, wobei in der letzten Spalte die Reusenfänge zusätzlich herausgestellt sind. Dabei wurde die Tabelle so angelegt, daß die für die einzelnen Fangstellen charakteristischen Coleopterenbestände in möglichst geschlossenen Blöcken erscheinen. Dies setzt voraus, daß die einzelnen Arten in der linken Tabellenspalte entsprechend angeordnet erscheinen. Im unteren Teil der Tabelle erscheinen Arten, die infolge ihres mehrfachen oder selteneren Auftretens keine habitatspezifische Bindung erkennen lassen. Darunter sind Irrgäste und seltenere Arten, bei denen aufgrund der quantitativ geringeren Ausbeute keine Zuordnung möglich ist.

Tab. 3: Absolute Häufigkeiten der insgesamt erbeuteten aquatilen Coleopteren.

Gewässer-Nr.	III	IV	V	VI	VIII	Gesamt	davon Reusen- fänge
Artenzahl Individuenzahl	24 317	37 269	31 257	35 238	14 170	76 1251	25 298 ————
Anacaena limbata	68	1		1		70	
Hydrobius fuscipes	35		1			36	
Helophorus flavipes	15	2		2		19	
Helophorus minutus	20	16	5	1	1	43	
Hydroporus nigrita	11	1		•		12	
Hydroporus planus	10	3		3		16	
Helophorus granularis Laccobius alutaceus	11 6	2	•	1		14 6	
Dytiscus circumflexus		31	5	4		40	40
Laccophilus minutus		21	1	4	•	22	
Coelambus impressopunctatus		6	1	:		7	· 1
Agabus nebulosus		5		•	•	5	
Ilybius subaeneus		5	:			5	4
Helophorus griseus	1	7				8	
Hydroporus erythrocephalus	1	1	34	١.		36	
Noterus crassicornis	1	1	15	2		19	1
Helochares obscurus			15			15	
Dytiscus lapponicus			6			6	6
Hydroporus tristis			5			5	
Acilius canaliculatus			4			4	4
Guignotus pusillus			2			4	
Ilybius ater Helophorus guttulus ssp. brevipalpis	4 6	4	i	26 15		32 25	26
Hydroporus dorsalis	0	4	:	9		9	
Agabus sturmi	:		:	6	:	6	1
Dytiscus dimidiatus				6	:	6	5
Haliplus fluviatilis		2	. '		53	55	
Laccophilus hyalinus		1		1	39	41	
Hygrotus versicolor				1	26	27	
Gyrinus marinus					12	12	
Stictotarsus duodecimpustulatus					6	6	
Acilius sulcatus		78	25	8		111	107
Hydroporus palustris	42	5		57	1	105	2
Rhantus pulverosus	11 30	4 9	24 13	2	5	45 57	3
Helophorus aquaticus Colymbetes fuscus	•	2	21	27		50	38
Hygrotus inaequalis	•	14	23	8	2	47	
Agabus bipustulatus	23	3	13	5		44	8
Hyphydrus ovatus		13		6	14	33	3
Dytiscus marginalis		5	9	12		26	24
Haliplus ruficollis		8		13	1	22	
Graphoderus zonatus		7	7	1		15	12
Ilybius fuliginosus	2	2	3	2		9	3
Rhantus exsoletus	•	1	3	2	:	6	
Gyrinus substriatus Enochrus affinis	1	1	4	4	1	5	
Ilubius obscurus	3	1	4	1	•	6 4	•
Agabus chalconotus	3	•	•		•	3	•
Coelambus confluens		3	:			3	•
Graphoderus cinereus			3			3	3
Ilybius aenescens			3			3	1
Ilybius fenestratus			1	1	1	3	1
Ochthebius minimus	• .			3		3	
Rhantus suturellus	•		2	:		2	1
Cercyon convexiusculus	•	•	:	2		2	•
Hydaticus seminiger Hydroporus obscurus	•		1 2	1	•	2	2
Hydroporus pubescens	•	•	2	•		2 2	•-
Hydrous piceus		•	2	2	•	2	1
Agabus paludosus	1	:	Ċ			1	
Cercyon analis				1		1	
Dytiscus circumcinctus				1		1	1
Enochrus coarctatus	1					1	
Enochrus quadripunctatus		1				1	
Graptodytes pictus	•			•	1	1	

Gewässer-Nr. Artenzahl Individuenzahl	24 317	37 269	V 31 257	VI 35 238	VIII 14 170	Gesamt 76 1251	davon Reusen- fänge 25 298
Haliplus flavicollis		h			1	1	
Haliplus heydeni				•	1	1	
Haliplus laminatus				1		1	
Haliplus lineatocollis					1	1	
Helophorus grandis		1				1	
Helophorus laticollis	1					1	
Hydroporus angustatus		1				1	
Hydroporus umbrosus	1					1	
Hygrobia tarda		1				1	
Potamonectes canaliculatus		1				1	
Chaetarthria seminulum	1					1	

5. Diskussion

5.1 Habitatbindung

Die im Untersuchungsgebiet festgestellten Habitatbindungen verschiedener Coleopteren werden im folgenden für die charakteristischen Vertreter (Tab. 3) habitatspezifisch analysiert und mit bisherigen Literaturbefunden verglichen und diskutiert.

(3) Epilobio-Juncetum-Graben:

Fangstelle (3) weist neben zwei *Hydroporus*-Arten jeweils drei Vertreter aus der Familie der *Hydrophilidae* und *Hydraenidae* als Charakterarten auf.

Bei Anacaena limbata und Hydrobius fuscipes, die fast ausschließlich an Fangstelle (3) gefangen wurden, kann der von HORION und HOCH (1954) konstatierte eurytope Charakter nicht bestätigt werden. Die vorliegenden Untersuchungsergebnisse lassen eine deutliche Habitatbindung erkennen. Im Gegensatz zu MEYER u. DETTNER (1981) sowie KOCH (1972), die Anacaena limbata für kleine beschattete Gewässer bzw. beschattete Waldgewässer charakterisieren, handelt es sich bei Fangstelle (3) um einen stark sonnenexponierten, detritusreichen Biotop. In Übereinstimmung mit MEYER u. DETTNER (1981) spielt möglicherweise für das Auftreten dieser Art ein hoher Gehalt an organischen Komponenten eine Rolle.

HEBAUER (1980) betrachtet die Hydraeniden der Gattung Helophorus als charakteristische Detritusbewohner. Helophorus flavipes und H. granularis gelten als euryöke Arten, während H. minutus das Attribut acidophil erhält (HEBAUER 1980). Alle genannten Arten lassen ebenfalls eine deutliche Habitatbindung erkennen, sind für das Untersuchungsgebiet also nicht als euryök zu klassifizieren. In Anlehnung an BRINK (1981 u. 1983) gelten H. minutus und H. granularis als Bewohner sonnenexponierter Gewässer. Auch Hydroporus planus wird von Koch (1972) als Leitart kleiner sonnenexponierter Gewässer beschrieben, während H. nigrita als kaltstenotherme Art gilt. Möglicherweise stammen diese Tiere aus dem Quellbereich des Grabens oder aus einem benachbarten Quellgewässer.

(4) Polygonum-Weiher:

Bis auf *Helophorus griseus* handelt es sich bei den Charakterarten der Fangstelle (4) ausschließlich um Vertreter der *Dytiscidae*.

Dytiscus circumflexus zeigt mit 31 Individuen eine deutliche Habitatbindung an den nährstoffreichen Lehmweiher. Wenngleich HEBAUER (1976) ihn unter Hinweis auf Ho-RION als "ziemlich euryök" bezeichnet, so weist er dennoch auf das bevorzugte Auftreten in "frisch ausgehobenen Lehmteichen" hin. In seiner 1974 veröffentlichten Studie "Über die ökologische Nomenklatur wasserbewohnender Käferarten" bezeichnet HE-BAUER D. circumflexus neben Agabus nebulosus und Coelambus confluens aufgrund der Lebensweise in Kiesgruben und Lehmteichen als "silicophil". Obwohl D. circumflexus auch in Fischteichen und größeren Heide- und Moorgewässern in Anzahl gefunden wurde (BRINK 1981 u. 1983), ist eine Bevorzugung oben genannter Gewässer nicht von der Hand zu weisen. Ein gemeinsames Auftreten von D. circumflexus und D. lapponicus, wie es Alfes u. Bilke (1977) für Kiesgruben feststellten, kann nicht bestätigt werden. Während das Auftreten von D. circumflexus nicht mit den pH-Werten der Gewässer korreliert, ist bei D. lapponicus in bisher allen Untersuchungen eine deutliche pH-Präferenz im sauren Bereich erkennbar. Insoweit ist ein gemeinsames Vorkommen nicht auf ökölogische Gemeinsamkeiten zurückzuführen, sondern auf Überlappung der ökologischen Amplitude oder sogar nur zufällig und somit für die ökologische Charakterisierung wenig bedeutsam.

HEBAUER (1976) weist auf eine "Vergesellschaftung" von Dytiscus circumflexus mit Coelambus confluens und Ilybius subaeneus hin. Beide Arten konnten ausschließlich an Fangstelle (4) nachgewiesen werden. Während HEBAUER (1974) C. confluens als "silicophil" charakterisiert, bezeichnet er I. subaeneus und Laccophilus minutus als "iliophil" (Schlammbewohner). Da bis auf Gewässer (5) alle untersuchten Gewässer von mehr oder weniger schlammiger Beschaffenheit sind, ist die Habitatbindung dieser beiden Arten mit dem Terminus "iliophil" nicht hinreichend begründet.

(5) Sphagnum-Weiher:

Fangstelle (5) mit einem mittleren pH-Wert von 4,5 entspricht mit seinen Charakterarten Dytiscus lapponicus, Hydroporus tristis, H. erythrocephalus, Noterus crassicornis und Acilius canaliculatus einer acido-tyrphophilen Käferfauna. Hinzu kommen die inlediglich 2 Exemplaren gefangenen Arten Hydroporus obscurus und Rhantus suturellus, die von HEBAUER (1974) sogar als "tyrphobiont" bezeichnet werden, sowie Hydroporus pubescens, der ebenfalls als tyrphophil gilt. Auch Graphoderus cinereus und Ilybius aenescens sind typische Bewohner saurer Heide- und Moorgewässer.

Guignotus pusillus, den HEBAUER (1976) als konstantesten Kiesgrubenbewohner unter den Dytisciden beschreibt, hat seine pH-Präferenz ohne Zweifel im sauren Bereich. Koch (1972) bezeichnet ihn als Charakterart kleiner sonnenexponierter Gewässer. Auch nach MEYER u. DETTNER (1981) ist die Art thermophil und "bewohnt als typischen Lebensraum die ganz flachen, sich bei Sonneneinstrahlung sehr rasch erwärmenden Uferzonen". Fangstelle (5) erfüllt die Bedingungen der pH-Präferenz ebenso wie der exponierten Sonneneinstrahlung.

Das Auftreten von Helochares obscurus steht in Anlehnung an MEYER u. DETTNER (1981) möglicherweise mit dem hohen Gehalt an organischen Komponenten (Detritus) im ufernahen Bereich in Zusammenhang, was in ihren Untersuchungen der "Drover Heide" in der Korrelation zwischen Abundanz und hohem KMnO4-Verbrauch zum Ausdruck kommt. Eine signifikante Bindung an schattige Gewässer kann im Gegensatz zu MEYER u. DETTNER (1981) nicht festgestellt werden (BRINK 1981 u. 1983).

(6) Dinkel-Altgewässer:

Fangstelle (6) ist durch die schatten- und schlammliebenden Arten Ilybius ater und Hydroporus dorsalis charakterisiert. Für Agabus sturmi werden neben ubiquitärer Le-

bensweise (MEYER u. DETTNER 1981, SCHAEFLEIN schrft.) auch spezielle Habitatbindungen diskutiert. HEBAUER (schrft.) neigt dazu, die Art als tyrphophil zu bezeichnen. In Übereinstimmung mit Koch (1972) handelt es sich möglicherweise um eine schattenliebende Art, die Waldgewässer oder am Waldrand gelegene Gewässer bevorzugt.

Helophorus guttulus ssp. brevipalpis wird von HEBAUER (1980) als eurytherme und euryöke Art sowohl der Ebene als auch der Gebirge beschrieben. Wenngleich die Art an zwei weiteren Fangstellen mit je 3 Individuen gefangen werden konnte, wird eine Bevorzugung für Fangstelle (6) mit insgesamt 15 Individuen dennoch deutlich.

Dytiscus dimidiatus bevorzugt nach HEBAUER (1974) größere Teiche und Seen ("-limnophil"). Die Art konnte in einem größeren Altarm der Dinkel mittels Reuse gefangen werden.

(8) Holländischer Umleitungskanal:

Fangstelle (8) ist durch zwei für Fließgewässer charakteristische Arten gekennzeichnet: *Laccophilus hyalinus* und *Stictotarsus duodecimpustulatus*. Wenngleich beide Arten gelegentlich auch in stehenden Gewässern gefangen werden, zeigen sie doch eine deutliche Bevorzugung vegetationsreicher, langsam fließender Gräben und Bäche (KOCH 1972; ALFES u. BILKE 1977).

Hygrotus versicolor, der nach Koch (1972) größere sonnenexponierte Weiher bevorzugt und von Alfes u. Bilke (1977) unter Hinweis auf Hoch (1968) als eindeutiger Bewohner von Augewässern charakterisiert wird, zeigt im Untersuchungsgebiet ebenfalls eine deutliche Bevorzugung des vegetationsreichen Fließgewässers.

5.2 Faunistische Bemerkungen:

Die Dytisciden Ilybius subaeneus und Dytiscus circumcinctus werden in den Faunistiken von Koch (1968) und Alfes u. Bilke (1977) als sehr selten angegeben. Diese Angabe trifft im Untersuchungsgebiet für I. subaeneus wohl nicht zu. Die tatsächliche Häufigkeit dieser Art wie auch vieler anderer Arten der Colymbetinae und Dytiscinae wird erst die weitere Anwendung von Reusen zeigen.

Interessant sind die Funde von Helophorus laticollis und H. griseus (beide det. Hebauer). Nach Lohse (1971) soll H. laticollis nur im östlichen Mitteleuropa vorkommen. Das vorliegende Exemplar sowie Funde aus dem Rheinland (Koch 1978) und Westfalen (Brink 1981 u. 1983) weisen auf eine weitere Verbreitung hin. Ein umgekehrtes Bild ergibt sich für H. griseus. Während Horion (1949) und Lohse (1971) die Art als überall nicht selten angeben, liegt für das Rheinland erst ein sicherer Fund vor (Koch 1978). Hebauer (1981) kennt die Art trotz intensiver Suche nicht aus Ostbayern. Lohse (schrft.) gibt die Art für Norddeutschland als häufig an. Ein genaues Bild wird erst die Überprüfung der als H. griseus gemeldeten Tiere ergeben.

Bemerkenswert ist der Reusenfang des Brutfürsorge betreibenden Pflanzenfressers *Hydrous piceus*. Ein weiteres Exemplar wurde im Dinkel-Altgewässer gefunden (Todfund).

5.3 Indikatorwert von aquatilen Coleopteren

Um Veränderungen natürlicher oder naturnaher Biotope durch menschliche Einflüsse erkennen und beurteilen zu können, sind umfassende faunistische, floristische

und chemische Untersuchungen häufig nicht durchführbar. Es wird daher oft nur das Vorhandensein oder Fehlen weniger Tier- und Pflanzenarten festgestellt, die als Zeigerarten den ökologischen Zustand des Biotops kennzeichnen. Die Zeigerarten sollten durch eine geringe ökologische Plastizität charakterisiert sein. Am häufigsten werden Pflanzen, besonders Moose und Flechten, als Zeigerarten (Bioindikatoren) verwendet; es ist jedoch von Vorteil, Organismen verschiedener Lebensformtypen zu bjtuöqptjp Bei Insekten muß beachtet werden, daß der Fundort der Imagines, die in den meisten Fällen nur determiniert werden können, nicht der Ort sein muß, an dem die Entwicklung der Tiere stattgefunden hat. Es sollten daher nur Arten mit hoher Abundanz als charakteristisch für einen Biotop angesehen werden, Arten mit geringer Abundanz können auch Irrgäste sein. Ein Versuch, Käferarten als Bioindikatoren zu charakterisieren, wurde von Koch et al. (1977) für das Rheinland unternommen.

Die Ergebnisse der vorliegenden Arbeit und ein Vergleich mit den Arbeiten von Brink (1981 u. 1983), Alfes u. Bilke (1977) sowie weitere eigenen Aufsammlungen erlauben es, für das westfälische Tiefland und das westliche Niedersachsen einige aquatile Käferarten als Zeigerarten zu charakterisieren. Diese Charakterisierung beschränkt sich zunächst auf saure oligotrophe Gewässer und auf Fließgewässer. Für die Vielzahl

der zum eutrophen Gewässertyp zählenden Gewässer liegen erst wenige Untersuchungen der Käferfauna vor. Unter dem Begriff "oligotrophe Gewässer" sind sowohl saure, nährstoffarme Gewässer auf Sand als auch auf Torf (Moorgewässer) zusammengefaßt. Sie sind häufig durch dichte *Sphagnum*polster charakterisiert. Auf Begriffe wie "acidophil", "tyrphophil" und "sphagnophil" soll hier verzichtet werden, da über die tatsächlich wirksamen Faktoren, die das Vorkommen einer Art bestimmen, noch zu wenig bekannt ist.

Zu den Charakterarten der sauren oligotrophen Gewässer können Rhantus suturellus, Hydroporus obscurus, H. pubescens, H. tristis, H. erythrocephalus, Noterus crassicornis, Acilius canaliculatus, Graphoderus zonatus, Dytiscus lapponicus und Helochares obscurus gezählt werden.

Die charakteristischen Arten vorwiegend langsam fließender Gewässer mit starkem Pflanzenwuchs sind *Laccophilus hyalinus*, *Stictotarsus duodecimpustulatus* und *Haliplus fluviatilis*.

Wenn auch zu beiden Gruppen noch einige weitere Arten gezählt werden könnten, lassen sich durch die genannten Arten oligotrophe Gewässer und Fließgewässer eindeutig kennzeichnen.

6. Literatur

ALFES, C. & H. BILKE (1977): Coleoptera Westfalica: Familie Dytiscidae. - Abh. westf. Landesmus. Naturk. Münster 39 (3-4), 1-109.

BALOGH, J. (1958): Lebensgemeinschaften der Landtiere. – Akademie-Verlag Berlin. 560 S. Brink, M. (1980): Die Habitatbindung der aquatilen Koleopteren des Gildehauser Venns. – Staatsarbeit Nr. 309 des Zoologischen Instituts der Universität Münster.

-,- (1983): Beiträge zur Kenntnis der Fauna des Gildehauser Venns bei Bentheim. - II. Die Habibindung der aquatilen Coleopteren. - Abh. Westf. Mus. Naturk. 45 (2).

Dettner, K. (1978): Populationsdynamische Untersuchungen an Wasserkäfern zweier Hochmoore des Nordschwarzwaldes. – Arch. Hydrobiol. 77 (3), 375-402.

ELLENBERG, H. (1978): Vegetation Mitteleuropas mit den Alpen. – Ulmer, Stuttgart. 982 S. Freude, H. (1971): Hygrobiidae, Haliplidae. In: Freude H., Harde K.-W. u. Lohse G. A.: Die Käfer Mitteleuropas Bd. III, S. 7-15, – Goecke u. Evers, Krefeld.

HEBAUER, F. (1974); Über die ökologische Nomenklatur wasserbewohnender Käferarten. – Nachr, Bl. bayer. Entomol. 23 (5), 87-92.

-,- (1976): Subhalophile Dytisciden. - Entomol. Blätter 72 (2) 105-113. -,- (1980): Beitrag zur Faunistik und Ökologie der Elminthidae und Hydraenidae in Ostbayern (Coleoptera). - Mitt. Münch. Ent. Ges. 69, 29-80.

Hoch, K. (1968): Die aquatilen Coleopteren westdeutscher Augewässer insbesondere des Mündungsgebietes der Sieg. - Decheniana 120, 81-133.

HORION, A. (1949): Faunistik der mitteleuropäischen Käfer. Bd. II. - Verlag Vittorio Klostermann, Frankfurt am Main. 388 S.

HORION, A. & K. HOCH (1954): Beitrag zur Kenntnis der Koleopterenfauna der rheinischen Moorgebiete. - Decheniana 102 B, 3-39.

Koch, K. (1968): Käferfauna der Rheinprovinz. – Decheniana, Beiheft 13, 382 S. –, – (1974): Erster Nachtrag zur Käferfauna der Rheinprovinz. – Decheniana 126 (1/2), 191-265. - (1978): Zweiter Nachtrag zur Käferfauna der Rheinprovinz. - Decheniana 131, 228-261. Косн, K. (1972): Vergleichende Untersuchungen über die Bindung aquatiler Koleopteren an ihre

Lebesräume im Neußer Raum. – Decheniana 124 (2), 69-112. Koch, K., S. Cymorek, A. M.J. Evers, H. Gräf, W. Kolbe & S. Löser (1977): Rote Liste der im nördlichen Rheinland gefährdeten Käferarten (Coleoptera) mit einer Liste von Bioindikatoren. - Ent. Bl. 73, Sonderheft.

Lohse, G. A. (1971): Hydraenidae, Hydrophilidae. In: Freude H., Harde K.-W. u. Lohse G. A.: Die Käfer Mitteleuropas Bd. III, 95-125, 127-156. – Goecke u. Evers, Krefeld. MEYER, W. & K. DETTNER (1981): Untersuchungen zur Ökologie und Bionomie von Wasserkäfern

der Drover Heide bei Düren (Rheinland). - Decheniana 134, 274-291.

POTT, R. (1980): Die Wasser- und Sumpfvegetation eutropher Gewässer in der Westfälischen Bucht - Pflanzensoziologische und hydrochemische Untersuchungen. - Abh. westf. Landesmus. Naturk, Münster 42 (2), 1-156.

RUNGE, F. (1973): Die Pflanzengesellschaften Deutschlands. - Aschendorff Münster. 246 S. Schaeflein, H. (1971): Dytiscidae. In: Freude H., Harde K.-W. u. Lohse G. A.: Die Käfer Mitteleuropas Bd. III, 16-89. - Goecke u. Evers, Krefeld.

Schieferdecker, H. (1963): Über den Fang von Wasserinsekten mit Reusenfallen. - Ent. Nachr. 7 (5), 60-64.

SEEGER, W. (1971): Die Biotopwahl bei Halipliden, zugleich ein Beitrag zum Problem der syntopischen (sympatrischen s. str.) Arten (Haliplidae, Coleoptera). - Arch. Hydrobiol. 69, 155-199.

WITTIG, R. (1980): Die geschützten Moore und oligothrophen Gewässer der Westfälischen Bucht. Schriftenreihe der Landesanstalt für Ökologie, Landschaftsentwicklung und Forstplanung Nordrhein-Westfalens 5, 228 S.

Anschriften der Verfasser:

Martin Brink, Eichenstraße 6, D-4448 Emsbüren Heiner Terlutter, Elsässer Straße 22, D-4400 Münster

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Abhandlungen aus dem Westfälischen Provinzial-

Museum für Naturkunde

Jahr/Year: 1983

Band/Volume: <u>45_2_1983</u>

Autor(en)/Author(s): Brink Martin, Terlutter Heiner

Artikel/Article: Beitrag zur Habitatbindung der aquatilen Coleopterenfauna

<u>50-61</u>