Ueber

die Bildungsverhältnisse der norddeutschen Geschiebeformation.

Von

Heinr. Otto Lang.

Seit der Zeit, da ich in diesen Abhandlungen (VI. S. 291, im Schlussworte einer Arbeit über Erratische Gesteine*) meine Ansicht von der Bildung der norddeutschen Geschiebeformation (des "Diluviums"), wenn auch nur in kurzer Skizze, darlegte, hat die geologische Literatur eine verhältnissmässig grosse Anzahl von Abhandlungen gebracht, welche gerade der von mir a. a. O. bekämpften Bildungs-Theorie Geltung zu verschaffen suchen. Während ich an genanntem Orte im Wesentlichen die sogenannte "Drifttheorie" vertrat und die Unwahrscheinlichkeiten der "Glacialtheorie" nachzuweisen suchte, huldigen die Autoren dieser neueren Abhandlungen eben der Glacialtheorie und behaupten, dass die norddeutsche Geschiebeformation im Wesentlichen ein Product von Landeis, ein Gletscherproduct sei, gebildet in Folge nicht nur einmaliger, sondern wiederholter Vergletscherung der ganzen baltisch-germanischen Niederung. Nun halte ich zwar die Gründe, auf welchen die Drifttheorie beruht, durch den neuen Massenangriff in Wahrheit für nicht erschüttert, eine Abwehr des letzteren erfordert aber schon das Interesse sowohl am Material wie an der Theorie, und unternehme ich solche hier auch desshalb gerne, um zu zeigen, dass ich in der zuerst erwähnten Skizze weder leichtfertig und kritiklos zu Werke gegangen bin, noch einen veralteten und unhaltbaren Standpunkt eingenommen habe. Aus verschiedenen Rücksichten verzichte ich jedoch hier darauf, eine umfassende Rechtfertigung der Drifttheorie zu versuchen und auf jeden einzelnen für oder wider sprechenden Punkt einzugehen: ich möchte schon nicht, was in diesem Falle nöthig wäre, die in dem oben citirten Schlussworte für die Drifttheorie sprechenden und der Glacialtheorie entgegenstehenden Thatsachen hier nochmals erwähnen und darlegen, auf welchen Ort desshalb nur verwiesen sei, und beschränke mich viel-

^{*)} Separat erschienen bei Robert Peppmüller, Göttingen 1879. Februar 1880. VI. 33

mehr hier darauf, die wichtigsten der Vorwürfe, welche der Drifttheorie neuerdings gemacht worden sind, zurückzuweisen und dagegen einige der Fundamentalbehauptungen der Glacialtheorie näher zu beleuchten. Zuvor aber möchte ich das Interesse auf einen Fund hinlenken, der als ein unumstössliches Beweisstück für die Wahrheit der Glacialtheorie, d. h. der Behauptung, dass Norddeutschland einst vergletschert gewesen sei, hingestellt worden ist.

Zu Rüdersdorf bei Berlin sind nämlich Gebilde gefunden worden, welche Herr F. Nötling (in Zeitschr. D. geol. Ges., S. 339) beschrieben und als "Riesenkessel" gedeutet hat. Welchen Werth dieser Fund für die Glacialtheorie habe, um dies zu erkennen ist es nöthig, einen Blick auf die Verhältnisse solcher Gebilde zu

werfen.

"Riesenkessel" ("Riesen- oder Hexentöpfe", "Strudellöcher", marmites de géants, jettegryder) sind verticale oder annähernd verticale Kessel- bis Brunnenschacht-ähnliche Vertiefungen in Gesteinen, die ihre Bildung der mechanischen Gewalt des bewegten Wassers verdanken. Schon unter jeder Dachtraufe kann man sich von der Richtigkeit des alten Erfahrungssatzes: gutta cavat lapidem überzeugen; die ansehnlichen Austiefungen der Riesenkessel aber hat aller Wahrscheinlichkeit nach nicht das Wasser allein in ungeheuren Zeiträumen ausgehöhlt, sondern es bediente sich dazu als Werkzeug und Bohrer der Gesteinsstücke, die es entweder selbst hinzuführte oder die zufällig in die wachsenden Austiefungen hineinfielen. Nach den Modalitäten der Bildung kann man zweierlei Riesenkessel unterscheiden:

1. solche, bei denen fallendes Wasser die Kraft lieferte und die man desshalb als "Sturzlöcher" bezeichnen könnte. Wie das Wasser da an den Wänden der Vertiefung aufwirbelt, wie es die im Kessel liegenden Steine ("Reibsteine"), Kies und Sand an den Wänden in die Höhe wirft und feine Mineraltheilchen ("Schlamm") mit fortnimmt, das kann man sich leicht veranschaulichen, wenn man einen Wasserstrahl in einem Wasserglase auffängt, dessen Boden von etwas Kies bedeckt ist. Solche Sturzlöcher finden sich unterhalb von jetzigen und ehemaligen Wasserfällen, also in jetzigen

und ehemaligen Bach- und Flussbetten*);

2. unter der Einwirkung von wir belndem Wasser gebildete, d. h. wo die Richtung des bewegten Wassers mehr der horizontalen als der verticalen genähert ist; nach ihrer Abhängigkeit von Wasserwirbeln (Strudeln) könnte man sie "Wirbellöcher" nennen. Dergleichen Riesenkessel erlangen nie oder wenigstens sehr selten die Tiefe und gleichmässige Formausbildung der "Sturzlöcher"; sie finden sich

^{*)} Bezügliche Literatur findet man in H. Höfer's Studien aus Kärnten, Neues Jahrbuch für Mineralogie, 1878, S. 1 citirt; als weitere Quellen sind zu nennen: Hans H. Reusch: Träk af Havets Virkninger paa Norges Vestkyst, Nyt Magazin f. Naturvid. 22 Band; derselbe: Jagttagelser over isskuret Fjeld og forvitret Fjeld, Vid. Selsk. Forh. 1878; derselbe: Jettegryder, dannede af Elve, Nyt Magaz. 1879.

auch vorzugsweise in jetzigen und ehemaligen Bach- und Flussbetten, auch in denen von unter Gletschern fliessenden Bächen, ausserdem aber auch an Meeresufern (wo die Brandung die Wirbel bildet).

Nun findet man aber solche von mir als "Sturzlöcher" bezeichnete Gebilde auch an solchen Stellen, wo die jetzigen Relief-Verhältnisse einen "Wasserfall" nicht erlauben; zu ihrer Erklärung greift man da zu der Annahme, dass hier einst die Wände eines in der Wärme vergänglichen Gesteins, des Gletschereises, dem Wasser einen Sturz zu bilden erlaubt haben. Man beobachtete nämlich an Gletschern, dass sich Wasserläufe von der Oberfläche des Gletschers auf Gletscherspalten in die Tiefe stürzen (die wegen ihres Geräusches als "Gletschermühlen" bezeichneten Wasserstürze) und solchen Wasserfällen innerhalb des Gletschers schreibt man nun die Bildung der erwähnten Riesenkessel zu; doch ist von diesem Vorgange noch nicht ganz klar erwiesen, dass er vollkommene Sturzlöcher liefert; zieht man nämlich in Betracht, dass ebenso wie die Gletschermasse auch die Gletscherspalte eine Bowegung thalabwärts erleidet (und zwar besonders starke in der warmen Jahreszeit, während welcher die Gletschermühle thätig ist), so müssen alle die durch Gletschermühlen entstandenen Riesenkessel einen in der Richtung der Gletscherbewegung stark verzogenen Querschnitt haben, während letzterer in der That gewöhnlich kreisrund ist. Bedürfen also diese Bildungsverhältnisse eigentlich noch der Aufhellung und ist für solche Riesenkessel, welche desshalb auch als "Gletschertöpfe" bezeichnet werden, der Beweis ihrer Natur als indirecte Gletscherproducte noch gar nicht zweifellos geführt, so geht man doch schon so weit, ihre Bildungs-Theorie zu invertiren und die Existenz selcher Riesenkessel und eben auch derjenigen bei Berlin für einen Beweis einer ehemaligen Gletscherbedeckung der betreffenden Stelle auszugeben.

Alle die vorerwähnten Gebilde sind als mechanische anerkannt und auch in ihrem Vorkommen, ihrer Formausbildung und ihrem Ausfüllungsmaterial als solche characterisirt. Als Kennzeichen

ihrer Bildungsweise darf man betrachten:

1. ihr Vorkommen in Gesteinen, die sich sonst in betreffender Gegend wenig empfindlich gegen Verwitterungs-Agentien zeigen;

2. das Vorhandensein von "Reibungs- und Strudelspiralen" an den Wänden; solche Spiralen sind nicht immer ausgebildet oder unversehrt erhalten worden, zuweilen aber sehr schön conservirt*);

3. der Befund des benutzten und abgenutzten Werkzeugs, dessen sich das Wasser zum Aushöhlen bediente, am Boden des Kessels, nämlich der Fund von abgerundeten "Reibsteinen", von Kies und Sand. Sobald die bewegende Kraft des Wassers in ihrer Stärke nachliess oder aufhörte, musste das Reibmaterial zur Ruhe kommen und sich also zu Unterst im Kessel lagern.

^{*)} Z. B. an dem Fig. 9 in Reusch's Jagtt. ov. isskuret Fjeld etc. abgebildeten Riesenkessel.

Jedoch sind es nicht nur mechanische Vorgänge, welche kesselförmige Vertiefungen aushöhlen können, sondern ganz ähnliche Gebilde können auch von chemischen Processen geliefert werden; die von der einfachen wie von der complicirten Verwitterung gelieferten derartigen Gebilde, die wir zum Theil als "Karrenlöcher", zum Theil als "geologische Orgeln" bezeichnen. sind allerdings im Allgemeinen von viel mannichfaltigeren Formverhältnissen, viele unter ihnen aber ähneln den eigentlichen Riesenkesseln in solchem Grade, dass eine Unterscheidung nach der Gestalt an sich nicht möglich ist; die Trichter-, Kessel- und Brunnenschacht-Form ist nicht selten. Eine Unterscheidung nach dem Vorhandensein oder Fehlen einer Reibungs-Spirale ist einerseits desshalb nicht durchführbar, weil auch ächte Riesenkessel derselben entbehren können*), andrerseits aus dem Grunde, weil bei Schichtgesteinen, welche aus gegen die Verwitterungs-Reagentien ungleich empfindlichem Materiale aufgebaut sind, auch durch den chemischen Process ähnliche, wenn auch undeutliche, Formerscheinungen geliefert werden können. Es haben also von den oben angeführten Kennzeichen des Bildungs-Processes, wenn wir solchen für riesenkesselähnliche Vertiefungen ermitteln wollen, in den meisten Fällen nur noch die unter 1. und 3. erwähnten entscheidende Beweiskraft.

Wenden wir nun nach dieser allgemeinen Erörterung unser Interesse den von Herrn Nötling beschriebenen und als Riesenkessel gedeuteten Gebilden von Rüdersdorf zu, so ist mein Urtheil das, dass der Beweis ihrer Natur als wahre Riesenkessel, d. h. als mechanische Gebilde, nicht erbracht ist; im Gegentheil spricht die Wahrscheinlichkeit für ihre Entstehung durch chemische Processe, und zwar erstens in Anbetracht ihres Ausfüllungsmaterials und dann wegen der Natur des Gesteins (Kalksteins), in welchem sie stehen. Nötling trennt die etwa 80 Vertiefungen, welche sich dort auf einem Areal von nur 16000 Qu.-m. zusammen finden, in zwei Gruppen:

a. solche (nur zehn auf einem Punkte zusammenliegende), deren Ausfüllungsmaterial wesentlich aus Sand mit vielen Reib-

steinen, und

b. solche, deren Ausfüllungsmaterial nur aus braunem, zähem

Lehm mit wenig Reibsteinen besteht.

Nun hat schon**) Herr A. Penck, der die Rüdersdorfer Gebilde auch untersucht hat, auf die Wahrscheinlichkeit hingewiesen, dass die von Nötling als "Reibsteine" angesprochenen Felsblöcke einfache diluviale Gerölle sind, wie sich von solchen in unmittelbarer Nachbarschaft ein Lager finde. Desgleichen hat, was noch wichtiger ist, A. Penck betont, dass Lehm kein Ausfüllungsmaterial der unteren Räume von ächten Riesenkesseln ist; daselbst muss sich

^{*)} Eine Combination beider Bildungsweisen, der mechanischen und der chemischen, kann ja unter Umständen auch vorkommen oder beiderlei Processe können auf einander folgen.

**) Zeitschr. D. geol. Ges. 1879. S. 627.

vielmehr, der Art des Bildungsprocesses entsprechend, das Schleifmaterial abgelagert finden, während die leichten Schlammtheilchen durch den Wasserwirbel fortgeführt werden; in den Riesenkesseln bei Christiania wurde zu Unterst neben Reibsteinen nur kantiger und eckiger Kies und Sand gefunden, "etwas" Thon in grösserer Tiefe (aber immer noch 71/2 Fuss oberhalb des Kesselbodens*) nur "als Seltenheit." Nun zeigen aber von den Rüdersdorfer Gebilden auch diejenigen der Gruppe a, welche Penck als ächte Riesenkessel anzuerkennen geneigt ist, zu Unterst Lehm und erst auf diesem eine Schicht Sand. Diese Schichtenfolge von Lehm und Sand beschreibt Nötling als auch ausserhalb der sogen. Riesenkessel vorhanden und mögen eben die Kessel der Gruppe a schon vor der Ueberdeckung des Rüdersdorfer Kalksteins durch Lehm und Sand existirt haben. Die Kessel der grossen Gruppe b erkennt auch Penck nicht als ächte Riesenkessel an und habe ich nichts gegen seine Deutung derselben als "geologische Orgeln" einzuwenden (entstanden nach Bedeckung des Kalksteins durch die Lehmdecke in Folge chemischer Einwirkung von Sickerwassern). Penck sieht mit Recht einen Beweis für seine Deutung auch in dem "angefressnen Zustande" der Kesselwände, wo die Schichtenköpfe stets abgerundet sind; dieselbe Erscheinung findet sich aber nach den gegebenen Schilderungen und Abbildungen auch an den Kesseln der Gruppe a**); hier soll sie allerdings nach Penck erst der späteren Einwirkung von Wasser zuzuschreiben sein; aber wodurch ist dieses "später" erwiesen? Warum sollen die Kessel der Gruppe a nicht chemischen Processen derselben Art ihre Entstehung verdanken, wie jene erwähnte Erscheinung, und warum nicht ebenso entstanden sein wie die der Gruppe b? In der That finden wir ähnliche Gebilde***) vorzugsweise an Kalksteine und Mergel gebunden und zeigen an solchen Eintiefungen in Kalksteinen angestellte Beobachtungen, dass chemische Einflüsse die einzige Ursache ihrer Bildung sein können. Als Belege für diese Behauptung mache ich zunächst auf die von H. H. Reusch im Nyt Magazin for Naturvd. 1877, Bd. 22 beschriebenen und Fig. 33-35 daselbst abgebildeten kesselförmigen Eintiefungen im Marmor auf Voksö an Norwegens Westküste aufmerksam, die erwiesener Massen nur durch die chemische Einwirkung des Meerwassers (wohl in Verbindung mit Regenwasser) entstanden sind. Die Möglichkeit; dass auch mit Kohlensäure beladene Sickerwasser dergleichen Gebilde hervorrufen können, ist seit langer Zeit schon anerkannt, aber dass selbst süsses See-

^{*)} Zeitschr. D. geol. Ges. 26. Band. S. 798.

**) Deutliche Spiralstreifen behauptet Nötling an den Wänden nur einer von diesen Vertiefungen beobachtet zu haben, aber gerade an einer mit Lehm erfüllten der Gruppe b. — Die a. a. O. S. 345 beschriebene Erscheinung des Fundes von Granitgrus 20 cm oberhalb eines zugehörigen Granitblockes in einem solchen Loche erklärt sich wohl am Einfachsten durch ein nachträgliches Hinabsinken (Hinabsacken) des schwereren Granitblockes im plastischen Lehme (dass der "Sand" oberhalb dieses Blockes sehr reich an Thon gewesen sein muss, geht aus al. 16 S. 346 hervor).

***) Vergl. Zeitschr. D. geol. Ges 1879, S. 132.

wasser, wohl auch in Verbindung mit Regenwasser, ähnliche Kesselvertiefungen ausfrisst, wenn auch in, durch die localen Verhältnisse gebotenen, geringen Dimensionen, das kann man Westufer des Stensfjord (nordöstlichen Arms des Thyrifjord, Ringeriget) in Norwegen beobachten. Dieses Ufer wird von nackten, wenig mächtigen Kalksteinschichten der Pentamerus-Etage (Silur) gebildet, die flach, meist 15—20° nach 0, in den Fjord fallen, so dass bei bewegtem Wasser die Wellen an den Schichtflächen in die Höhe laufen. Wenn man da von Sten südwärts geht, so findet man in etwa einer Wegstunde Erstreckung, längs des ganzen Ufers unzählige Löcher der verschiedensten Form und Grösse. Die fast kreisrunden Trichter und kesselförmigen Vertiefungen walten an Menge vor, durch Verschmelzen mehrerer derselben entstehen aber sehr unregelmässige Gestalten, stellenweise sogar gewundene und ausgebauchte Furchen; die meisten dieser Vertiefungen sind leer, vereinzelte Steine in einigen von ihnen sind wohl nur zufällige Einlagen; sie gehen nie tiefer als bis zur Unterfläche der Kalksteinschicht, weil auf dieser geneigten und etwas klaffenden Schichtfuge das Wasser wieder abfliessen kann. Der geringen Tiefe entsprechend sind auch die Querdurchmesser der Kessel und Trichter nur gering (meist nur ¹/₂ Fuss) und erreichen am oberen Rande selten einen Fuss. Lägen diese Kalksteinschichten nicht geneigt, so würde sich dieses Zerfressen nicht auf die oberste Schicht beschränken können, dafür würden aber die einmal in Angriff genommenen Vertiefungen grössere und regelmässigere Formausbildung erhalten und den Rüdersdorfer sogenannten Riesenkesseln immer ähnlicher werden. In wieweit das atmosphärische Wasser (Regenwasser) und in wie weit das Seewasser an ihrer Bildung betheiligt ist, lasse ich dahingestellt; jedenfalls ist klar, dass hier nur chemische und nicht mechanische Prozesse gewirkt haben, und ferner: dass Kalkstein, in welchem die Rüdersdorfer Gebilde eingetieft sind, ein Material ist, in welchem chemische Prozesse gern zur Ausbildung Riesenkessel-ähnlicher Vertiefungen führen. — Diese Darlegung dürfte zur Motivirung meines vorangestellten Urtheils genügen.

Wende ich mich nun zur Rechtfertigung der Drifttheorie und zur Abwehr der ihr gemachten Vorwürfe, so darf ich wohl als den wichtigsten der letzteren die Behauptung bezeichnen: die Drifttheorie vermöge nicht das Zustandekommen des Geschiebelehms (Geschiebemergels, Blocklehms) zu erklären. In diesem Vorwurfe sind alle ihre Ankläger*) einig; um seine Grundlosigkeit nachzuweisen, ist es nöthig, einen Blick auf die Verhältnisse des Diluvialmeeres zu werfen.

^{*)} Die berücksichtigten Abhandlungen sind alle im 31. Band der Zeitschrift Deutsch. geolog. Gesellsch. 1879 enthalten und sind betitelt: "Gletschertheorie oder Drifttheorie in Norddeutschland?" von G. Berendt, S. 1; "Ueber die glacialen Bildungen der nordeuropäischen Ebene" von Amund Helland, S. 63; und "die Geschiebeformation Norddeutschlands" von Albrecht Penck, S. 117.

Wie ich schon a. a. O. erwähnt habe, wurden nach der Drifttheorie auf dem norddeutschen Diluvialmeere Eisberge, Eisfelder und Eisschollen durch Strömungen (Drift) südwärts oder wenigstens angenähert südwärts getrieben. Die ersteren, ehemals Theile von Gletschern, schleppten als Ballast mit sich z. Th. Material der Seitenmoränen (unter solchem auch eckige und wenig abgerundete Blöcke), wohl durchweg aber noch ihre Grundmoränen-Sohle oder wenigsten Stücke derselben, d. h. abgerundete Scheuersteine, sowie Grand und Sand der Grundmoräne. Die Eisfelder und Eisschollen, als Ufer- und als Grund-Eis entstanden, waren in ähnlicher Weise belastet mit Gesteinstücken, welche sie an ihrem Bildungsorte gepackt und gefasst hatten; solche Gesteinsstücke konnten ebensowohl den daselbst anstehenden Gesteinen entstammen. als wie sie auf secundärer Lagerstätte ruhende, durch früheren Eistransport dahin gelangte Fragmente, Gesteinsblöcke und Geschiebe*) sein konnten. Gegenüber dem Treiben der von Gletschern gelieferten Eisberge bezeichnet man die Drift der Eisfelder und Eisschollen, welche ihre Bildung eintretendem Froste und der kalten Jahreszeit verdanken, als "Winterdrift". Dass diese Winterdrift noch jetzt, bei unserem wieder wärmeren Klima und der so bedeutenden Einschränkung der Ost- und Nordsee, ein geologischer Factor von ungeahnter und wenig anerkannter Bedeutung ist und durch dieselbe verhältnissmässig bedeutende Gesteinsmassen umgelagert werden, das beweisen schon die Beobachtungen Bär's über die Wachsthumsverhältnisse der finnländischen Inseln**); auch eine von Sartorius von Waltershausen mitgetheilte und unten angeführte Notiz***) hebt ihre Bedeutung schön hervor. Wenn nun die Winterdrift unter jetzigen Verhältnissen schon ein so erheblicher geologischer Factor betreffs Hebung und Verfrachtung von Gesteinsblöcken ist, so ist ersichtlich, dass sie unter den ihr viel günstigeren Bedingungen der Diluvial-Zeit ganz Ungeheures geleistet haben muss.

Diese Eisberge und Eisschollen wurden also von den Strömungen südwärts getrieben; es ist an sich schon nicht wahrscheinlich und auch die der Beobachtung gebotenen Thatsachen sprechen nicht dafür, dass die ganze Diluvialzeit hindurch das Diluvialmeer in

^{*)} Schon in Anbetracht dieses Umstandes, dessen Vorgang noch in jedem Winter an den Küsten der Ostsee zu beobachten ist, erscheint der von A. Penck a. a O. S. 148 der Drifttheorie gemachte und unter allen andern vorangestellte Vorwurf ganz ungerechtfertigt: "der Geschiebetransport konnte nicht auf schwimmendem Eise erfolgen, da dieses wohl Gesteinstrümmer, aber nicht Geschiebe mit sich führt."

^{**)} Bull. de'l Acad. Imp. d. Sciences de St. Petersbourg t. VI. 1863. S. 195.

***) Klimate der Gegenwart und der Vorwelt, Haarlem 1865, S. 282. —
Im Jahre 1807 sei ein Englischer Kriegskutter auf der Rhede von Kopenhagen gesunken; im Jahre 1844 habe man Anstalten getroffen, ihn zu heben; der hinabgesandte Taucher habe gemeldet, dass das Hinterdeck unbeschädigt, jedoch mit Gesteins-Blöcken von 6—8 Cubikfuss überdeckt sei; "mehrere derselben waren übereinander gehäuft". Jedes dort gesunkene Schiff sei nach des Tauchers Versicherung "am Deck mehr oder weniger mit Blöcken überlagert gefunden." 37 Jahre genügten also, um jenen Kutter so zu überdecken, und doch war kein einziger der Gesteinsblöcke durch Gletscher-Eis transportirt worden.

seiner ganzen Erstreckung solchen Eisberg-beladenen Strömungen zugänglich gewesen sei; einzelne Meerestheile werden wahrscheinlich zeitweise, wenn auch nur vorübergehend, durch Untiefen oder Sandbarren dem eigentlichen Strömungsgebiete entzogen worden sein, so dass in ihnen neben untergeordneten und localen Strömungen nur die Grundeisbildung und die Winterdrift des betreffenden Gebietes Gesteins-umlagernd thätig war. Im Strömungsgebiete aber trieben die Eismassen wärmeren Regionen zu und liessen auf ihrem Wege, allmählig ab- und aufthauend, den Gesteinsballast fallen, oder sie liefen auf Untiefen, auf denen sie entweder völlig zerthauten und ihren gesammten Ballast zurückliessen oder von denen sie nur durch Entledigung von einem grösseren Theile des letzteren wieder flott wurden und dann ihren Weg fortsetzten. Das dem Meerwasser zugeführte Material von Gesteinsstücken, Geschieben, Sand und Schlamm fiel zum Theil sofort zu Boden, zum Theil wurde es, soweit es suspendirbar war, von den Meeresströmungen aufgenommen, welche dasselbe nach Form (Flächenentwicklung), Grösse und spez. Gewicht gesondert am Meeresboden abzulagern bestrebt waren. Erlitt letzterer Prozess keine Störung, so erhielten die entstehenden Gesteinsablagerungen Parallel-Structur (geschichtete oder geschieferte), wie wir sie an geschiebearmen Sanden und Lehmen beobachten. Solche Parallel-Structur können aber dergleichen Ablagerungen eben nur dann erhalten, wenn die überwiegende Menge der Gesteins-Constituenten einander in Form- und Grössenentwicklung entsprechen. In solchen Meeresstrichen nun, wo die an der Oberfläche treibenden Eismassen abthauend ihren schwereren und von der Strömung nicht suspendirbaren Ballast von Scheuersteinen der Gletscher oder von Rollsteinen der Meeres-Ufer und -Untiefen fallen liessen, wo also der vorwähnte Prozess dadurch gestört wurde, dass zu dem angeschlämmten Material stetig Gesteins-Constituenten von ungleicher und viel bedeutenderer Grössenentwicklung traten, konnten also keine mit Parallel-Structur ausgestattete Gesteinsablagerungen entstehen; das Product solcher combinirter Ablagerungs-Vorgänge war der "Geschiebelehm" (Blocklehm). Die massige Structur des Geschiebelehms erscheint mir daher durch die Mengenverhältnisse der Gesteinsconstituenten ungleicher Grösse und durch ihre gleichzeitige Ablagerung vollkommen genügend erklärt.*)

^{*)} Auch die polygenen Conglomerate, welche Schlämmprozessen ihre Entstehung verdanken, zeigen wie bekannt innerhalb ihrer Bänke oft stellenweise richtungslose (massige) Structur, wo nämlich die Mengen- und Grössenverhältnisse der Constituenten entsprechende sind wie beim Geschiebelehm (so z. B. das Conglomerat des Rothliegenden am Märzenberge bei Gera). Sollen nun solche Conglomerat-Partien auch ehemalige Grundmoränen sein? Und wo sich, abgesehen von der durch Schicht-Fugen ausgedrückten und intermittirender Bildung entsprechenden, Schichtung in solchen Conglomeraten nachweisen lässt, geschieht dies auf Grund der Anordnung gewisser Gerölllagen, Sandlinsen etc., welche ihre Anordnung ehen dem Schlämmprozesse (Sedimentirungsprozesse) verdanken. Dem Geschiebelehm aber sind seine grösseren Constituenten (Geschiebe) eben nicht durch Schlämmprozess zugeführt, wie oben ausgeführt ist, also kann er sie auch nicht geordnet enthalten.

Weiter behaupten die Glacialisten, dass alle die Schliffflächen, Frictions-Streifen und -Rillen, welche wir an anstehenden Felsen im Diluvialgebiete, z. B. zu Rüdersdorf bei Berlin und bei Leipzig finden und gemeinhin als "Gletscherschliffe" bezeichnen, eben nur durch Landeis, nur durch Gletscher, und nie von schwimmendem Eise geliefert würden und geliefert werden könnten. Dass Eisberge und Eisschollen auf Untiefen auflaufen, ist eine Thatsache, die sich nicht wegleugnen lässt und desshalb auch von den Glacialisten anerkannt wird; letztere behaupten aber, dass dem Eisberge und den Eisschollen der Druck der ganzen Gletschermasse abgehe und so die gehörige Kraft fehle, welche nöthig sei, um die Politur und die Parallel Streifung hervorzurufen; die Gewalt der Strömung, die den Eisberg auf die Untiefe wirft, genüge dazu nicht. Nun lehren schon die bereits angeführten Beobachtungen Bär's, dass selbst die von einfachen Eisschollen getragenen Blöcke der Winterdrift, wenn sie an das Ufer getrieben werden, die Steine, über welche sie geschoben werden, poliren, ritzen und furchen. Was wir nun in so kleinen Verhältnissen vor sich gehen sehen, warum soll das bei Eisbergen nicht möglich sein? Und es ist auch nicht bloss die Kraft der Strömung beim Auflaufen des Eisberges, welche solche Gebilde produciren kann, wir müssen gleichfalls hohem Seegange und der Brandung, welche letztere am Eisberge entstehen muss, auch wenn er seitlich von der Strömung und nicht mitten in ihrem Wege aufgefahren ist, die Fähigkeit zuschreiben, den auf der Untiefe reitenden Eisberg in eine wiegende Bewegung zu bringen; für das Gewicht der Eismasse tritt also da die Kraft des bewegten Wassers ein und die in die Sohle des Eisberges gefassten Gesteinsblöcke müssen wegen der lebhafteren Bewegung noch intensiver poliren und ritzen als beim Gletscher.*)

Die Erosionserscheinungen aber, welche wir im Gebiete des norddeutschen Diluviums an den älteren Ablagerungen und dem Untergrunde beobachten, das Auflockern des Untergrundes und das Hineinarbeiten seines Materials in die auflagernden Massen, die Verschleppung von Gesteinsbruchstücken aus demselben (die von einzelnen hervorragenden Punkten aus in der Weise vor sich ging, dass dieselben nach Süden zu einen sich allmählich auflockernden "Schatten", der von ihren Bruchstücken gebildet wird, zu werfen scheinen): für alle diese Erscheinungen darf man wohl das an Ufern und Untiefen sich bildende Grundeis als Factor ansprechen. Wenn wir nämlich sehen, was schon oben betont wurde, ein wie

^{*)} In einer mir während des Drucks zugegangenen Abhandlung (Skuringsfänomener i det nuvaerende strandbelte, Tromsö Museums Aarshefter, II. 65) beschreibt Herr Karl Pettersen den "Glacial-Schliffen und -Furchen" ganz ähnliche Erscheinungen als Littoral-Gebilde und als ganz ohne Mitwirkung von Eis entstanden! — Die "Frictionsphänomene" sind doch eben nur Beweisstücke stattgehabter Reibung, und wenn man als Factor solcher Reibung einzig und allein Gletscher gelten lassen will, so erinnert diese Anschauung an eine andere, numehr glücklich überwundene Lehrmeinung, nach der ein Mineral immer nur nach der einzigen Bildungsweise entstanden sein durfte, welche zufällig zuerst ermittelt worden war.

gewichtiger geologischer Factor die Grundeisbildung und mit ihr die Winterdrift noch zur Jetztzeit ist, so müssen wir ihr betreffs Auflockerung der Gesteine, sowie Transport und Ablagerung ihres Materials zur Diluvialzeit mindestens gleiche Bedeutung beimessen wie der Drift von Eisbergen. Viele Gesteinsschollen, die vom Grundeis erfasst waren, mögen wohl zu schwer gewesen sein, um vollständig gehoben und transportirt zu werden; es wurde dann etwa nur der Gesteinsverband gelockert und die Scholle aus ihrer Lage gerückt: unterUmständen gelang es dem Eise, solche schwere Gesteins-Schollen*) wenigstens auf die hohe Kante zu stellen. In die entstandenen Klüfte aber wurde in der warmen Jahreszeit diluviales Gesteinsmaterial hineingespült, es bildeten sich unter solchen Umständen (Descensions-) Gänge von Diluvialthon, Sand oder Geschiebelehm in dem Untergrunde. Als die Grundeis-Bildung wieder begann, konnten unter Umständen auch die Hebungs-Versuche an den erwähnten Schollen erneuert werden; in die so erweiterten Klüfte wurde später eventuell Diluvialmaterial von andrer Art als wie das vorige Mal eingespült und so konnte selbst in diesen eingespülten Diluvialablagerungen ein Schichtenwechsel entstehen

Auch bei der kritischen Beleuchtung der Fundamental-Behauptungen, auf welche die in den erwähnten Abhandlungen vorgetragenen glacialistischen Theorien beruhen, werde ich mich auf das Wichtigste beschränken und muss aus diesem Grunde verzichten, auf alle Consequenzen dieser Theorien hinzuweisen. In dieser Beziehung ist das aber gewiss schon ein schlimmes Zeichen für die Glacialtheorie, wenn einer ihrer Haupt-Vertreter, Herr A. Penck, dessen Abhandlung schon wegen der Masse des zusammengetragenen Beobachtungs-Materials die erste Stelle unter den erwähnten Arbeiten beanspruchen darf, selbst eingestehen muss, dass für gewisse Consequenzen Belege fehlen, indem er keine Auskunft über den Verbleib der von den diluvialen Riesengletschern nothwendig gelieferten ungeheuren Menge von Schmelzwassern geben kann. Als meine Aufgabe fasse ich vielmehr hier die auf,

^{*)} Eine Erscheinung ist allerdings schwierig durch die Drifttheorie zu erklären (noch schwieriger aber oder gar nicht zu erklären bei dem jetzigen Stande unserer Kenntnisse des Gletschermechanismus, auf dessen wichtigste Punkte ich weiter unten eingehen werde, durch die Gletschertheorie): das ist die Einlagerung ganz grosser Schollen älterer Gesteine im Diluvium. Schollen solcher Art stammen alle aus dem Norddeutschen Gebiete selbst; nach der Gletschertheorie konnten sie also nicht dem Gletscher oben aufgeladen, sondern nur in der Grundmoräne mitgeschleppt werden. Eine Erklärung ihrer jetzigen Lagerungsverhältnisse zu versuchen, muss ich schon desshalb ablehnen, weil mir letztere nicht von einer einzigen derselben durch eigene Beobachtung bekannt sind. Zu einer Erklärung werden wir wohl erst dann gelangen, wenn zweifellos ermittelt worden ist, ob die betreffenden Schollen wirklich einen weiteren Transport oder nur ungeheure Störungen ihrer ursprünglichen Lage erfahren haben. Nur möchte ich mir noch den Hinweis darauf erlauben, dass wir in Norddeutschland auch ausserhalb des Gebietes der Geschiebeformation Schollen von ganzen Schichtenverbänden (Tertiär, Jura) in völlig räthselhaften Lagerungsverhältnissen kennen.

nachzuweisen, dass die erwähnten Glacial-Theoretiker (die Herren Penck, Berendt und Helland) den Gletschern Thätigkeiten und Verhältnisse zuschreiben, welche dieselben nach unserer jetzigen Gletscherkenntniss nicht ausüben, deren Möglichkeit also erst empirisch und theoretisch zu erweisen wäre.

So behaupten die Herren Berendt*) und Helland, dass ein Gletscher schwimmen könne; Herr Helland beruft sich für diese Thatsache (S. 68) auf Beobachtungen in Grönland, giebt aber weder an, wie er sich von solch wunderbarer Thatsache überzeugt habe, noch liefert er theoretisch den Nachweis der Möglichkeit eines solchen Vorganges. Bekanntlich ist Eis und auch Gletschereis nicht plastisch, sondern starr, und dient dem Gletscher als Surrogat der Plasticität für sein Fliessen die "Regelation", die Wiederverkittung der Eisbruchstücke durch neugebildetes Eis. An sich ist also ein Gletscher so starr wie ein hölzerner Balken. Die erwähnte Wiederverkittung oder Regelation des Eises verlangt aber natürlich, dass die zu verkittenden Bruchstücke einander genähert bleiben, was durch die Ruhe auf gemeinsamer Unterlage ermöglicht Wenn nun ein Gletscher zum Meeresstrande hinabsteigt, wird sein Stirnende, sobald es den festen Grund verloren hat, als starrer Körper in derselben Richtung und Neigung vorgeschoben werden, welche derjenige Gletschertheil besitzt, der noch auf festem Grunde aufruht und ins Wasser hinabführt. Das Gletscher-Stirnende kann also auch ganz unter Wasser tauchen, aber es kann, da die noch aufruhende Gletscherpartie Neigung besitzt, nicht horizontal fortschreiten (wie beim Schwimmen) oder vom Wasser getragen nicht horizontal werden, eben so wenig wie das Ende eines vom Strande aus in das Wasser hinabreichenden Balkens vom Wasserspiegel an in die horizontale Linie umknickt und schwimmt. Dieses Stirnende muss aber, wegen der geringeren Dichte des Eises gegenüber dem Wasser die horizontale Auflagerung auf dem Wasser erstreben und dieses Streben bewirkt, abgesehen von anderen möglichen Einflüssen, eine Spannung im Eis und schliesslich das Abbrechen des Stirnendes, das "Kalben" des Gletschers. Das abgebrochene Stirnende kann aber nicht wieder anfrieren, weil es nicht mehr die Unterlage mit dem Gletscher theilt; das "Kalben" erfolgt ja auch nicht ruhig: der durch die Spannung, als deren Folge das Kalben eintritt, bewirkte Rückschlag des bisherigen Gletschern-Stirnendes und jetzigen Eisberges in die horizontale Lage ist ja nach H. Rink's Schilderung so bedeutend (Grönland, I. S. 17. Kjöbenhavn 1857), dass das Meer bis auf 4 Meilen Entfernung aufgeregt wird; der Eisberg schwimmt, der Gletscher kann es nicht.**)

^{*)} Herr Berendt meint, dass möglicher Weise der skandinavische Riesengletscher über die Ostsee geschwommen sein könnte und dann in Norddeutschland wieder festen Fuss gefasst habe.

^{**)} Man kann allerdings eine ungewöhnlich günstige Combination von Verhältnissen herausklügeln, welche ein Schwimmen eines Gletscher-Stirnendes

Den zweiten Nachweis der Möglichkeit, den die Vertreter der Glacialtheorie erst noch zu erbringen haben, betrifft das "Hineinpressen der Grundmoräne" in Fugen der Gesteine des Gletscherbettes (vergl. Helland, S. 71 u. a. m.). Für diese Behauptung dürften auch schwerlich Belege von Gletschern der Jetztzeit-beizubringen sein und theoretisch widerspricht ihr eben der Mangel der Plasticität des Gletschereises; wenn eine Masse eine Partie ihres eigenen Körpers (und die Grundmoräne mit ihrer Grundmasse von Gletschereis ist ja ein zugehöriger Theil des Gletschers) in Fugen, ohne den stetigen inneren Zusammenhang zu verlieren, "einpressen" soll, so muss sie nothwendig zäh und plastisch sein. Und warum, wenn der Gletscher seine Grundmoräne sogar in Fugen einpressen könnte, warum zeigen dann die Lee-Seiten*) von Riffen in Gletscherbetten keine Gletscherschliffe?**)

erlauben würde, aber eine so ungewöhnliche Combination, dass sie kaum in Frage kommt; wenn nämlich, wie in beistehender Skizze angedeutet, der Glet-

scher (a), bevor er den festen Grund (b) verliert und in das Meer (c) eintaucht, über eine genau horizontale Terrasse schreitet, welche genau ein solches Niveau hat, wie das Stirnende braucht. um beim Verlassen des festen Untergrundes vom Wasser getragen zu werden (nach Helland's Angabe muss dasselbe also um 6/7 der Gletscherhöhe unterhalb des Meeresspiegels liegen) Aber dieser ungewöhnlich günstige Fall würde ein Schwimmen des Gletscherendes auch nur ganz vorübergehend erlauben, denn

1) muss der Gletscher, dessen Erosionsthätigkeit ebenso wie seine Flussgeschwindigkeit (im Ganzen wie für seine einzelnen Theile) durch die Druckverhältnisse seiner Massen geregelt wird, und der durch Erosion, denn das ist ja das e kennbare Ziel derselben, seine Bahn möglichst zu ebenen sucht, die horizontale Unterbrechung (Störung) seiner geneigten Bahn baldigst beseitigen;

horizontale Unterbrechung (Störung) seiner geneigten Bahn baldigst beseitigen;

2) kann dieses Schwimmen, selbst so lange die Bahn noch horizontal ist, auch nicht alle nach einander an die betreffende Stelle rückenden Theile treffen, sondern nur einzelne wenige, weil die Höhe ein und desselben Gletschers sowie die Gesammt-Dichte (spez. Gewicht) der einzelnen Gletschertheile schwanken; erstere ist von atmosphärischen Einflüssen, letztere von der Menge des Ballastes abhängig. Das Schwimmen kann also nur diejenigen Gletscherpartien treffen, welche genau in ihrer Höhe (6/7 der Gletscherhöhe unter dem Wasserspiegel) und Gesammt-Dichte den angenommenen Niveauverhältnissen entsprechen; folgt auf eine solche Partie im continuirlichen Gletscher-Strome eine solche von bedeutenderer Höhe oder grösserem Stein-Ballaste, so muss beim Verlassen des festen Untergrundes ein Streben nach Unten, eine Spannung im Gletscher eintreten, die zum Bruche und zum Kalben führt, im gegentheiligen Falle resultirt ein Streben nach Oben, Spannung und Bruch wie beim gewöhnlichen Kalben.

Diese letztgenannten Verhältnisse erlauben also nicht einmal bei einer so günstigen Combination von Verhältnissen einem Gletschier im Allgemeinen das Schwimm-Vermögen zuzuschreiben; es können auch dann immer nur einzelne seiner Partien schwimmen.

*) Die der Fluss- und Stossrichtung des Gletschereises abgekehrten

(Hinter-)Seiten

**) Ebenso kann man den Beweis für eine schon ältere Behauptung von Seiten der Anhänger der Glacialtheorie noch fordern, nämlich "dass Gletscher

Aber der wichtigste Punkt, von dem uns die Glacial-Theoretiker durch unseren jetzigen Gletschern entnommene Belege sowohl, wie durch theoretische Deduction die Möglichkeit und darnach auch die Wahrscheinlichkeit des Vorgangs zu beweisen haben, ist das Verhalten der Grundmoräne. Mit grossem Nachdrucke leugnen die Glacialisten, dass sich die Bildung des sogenannten "Geschiebelehms" durch die Drifttheorie genügend erklären lasse; sie behaupten dagegen einstimmig, der Geschiebelehm sei "Grundmoräne". Dass der Geschiebelehm vorzugsweise aus Grundmoränen-Material bestehe, das gebe ich gern zu, aber jener Behauptung beizupflichten dürfte folgende Erwägung verbieten. Grundmoränen bestehen aus Scheuersteinen und Scheuersand, sowie aus als Kitt und Grundmasse dienendem Gletscher-Eise. Das Mengenverhältniss von Scheuermaterial und Eis wird ein schwankendes sein, doch muss naturgemäss immer so viel Eis an dem Gemenge theilnehmen, dass der feste Zusammenhalt ermöglicht ist. Die Bildung solcher Moräne beschränkt sich auf die Unterfläche des Gletschers, wo eben das Gletschereis Gesteins-Material aufnimmt und "fasst", die Mächtigkeit derselben im Allgemeinen auf die Dimension der constituirenden Scheuersteine. Dass von der Grundmoräne aus Scheuersteine in höhere Gletscher-Etagen gehoben werden*), kann local und vorübergehend eintreten, veranlasst durch Störungen des Gletscherlaufes (bei unebnem Gletscherbette z. B.), im Allgemeinen aber verbietet diesen Vorgang sowohl die grössere Dichte (spez. Gewicht) der Scheuersteine gegenüber dem Eise als auch wiederum der Mangel der Plasticität des Gletschereises (der sich auch darin offenbart, dass das Gletschereis, welches doch verhältnissmässig sehr lange Zeit "im Fluss" ist, derjenigen schönen Fluidalerscheinungen entbehrt, die wir bei Glasgesteinen kennen, wo sich Strang um Strang windet). Ist aber die Unterfläche des Gletschers mit Scheuersteinen "gesättigt", so können auch aus dem Untergrunde keine Steine mehr aufgenommen werden, weil es dann an Kitt mangelt. Die Grundmoräne ist dem zu Folge, und zwar ebensowohl bei einem kleinen, wie bei dem grössten Gletscher, im Wesentlichen nur eine "Flächenbildung", eine Schicht von

complicirte Windungen und Dislocationen in Schichtgesteinen hervorrufen können und hervorgerufen haben" (auf Möen und Rügen, vergl. Zeitschr. D. geol. Ges. 1874, S. 533). Sollte nämlich ein Gletscher das wirklich thun, so wäre es ganz wunderbar und unerklärlich, warum die "Hindernisse" und Riffe in zweifellos ehemaligen Gletscherbetten, z. B. Malmö bei Christiania, Langö im Langefundfjord u a. m., welche Inseln in ihrem Gesteinsmateriale nicht weniger günstig für Schichtenwindungen und Dislocationen disponirt waren als Möen und Rügen, eine verhältnissmässig so einfache Architektonik besitzen.

^{*)} Die von Oben auf den Gletscher gerathenen und durch denselben bis zur Grundmoräne hindurchgleitenden Steine kommen dabei nicht in Betracht; sie sind nämlich morphologisch nicht als Grundmoränen-Material charakterisirt, bevor sie nicht wirklich als Scheuersteine gedient haben, und dabei ist ihre Menge verhältnissmässig gering; da letztere nicht von der Gletscher-Masse, sondern von der Ufer-Entwicklung des Gletschers abhängig ist, so wird dieselbe bei kleineren Gletschern eine relativ viel grössere sein als bei grossen, breiten Gletschern.

unbedeutender Mächtigkeit. Nun sind aber die norddeutschen Geschiebelehme Ablagerungen von durchschnittlich 2 m, stellenweise sogar von 20 m Mächtigkeit (nach A. Penck, S. 163, am Frischen Haff), und doch sollen dieselben nur das Scheuer-Material einer Grundmoräne. ohne das verkittende Eis sein! Es müsste also die Grundmoräne selbst mit dem Eise eine durchschnittliche Mächtigkeit von mindestens 3 m auch da besessen haben, wo sie nur kleinere Scheuersteine führte! Ist je eine analoge Erscheinung an einem Gletscher beobachtet worden?!

Man könnte vielleicht geneigt sein, die Mächtigkeit des Geschiebelehms durch ein Summiren von Grundmoränen zu erklären, also anzunehmen, dass er die zurückgelassenen Grundmoränen aller derjenigen Gletscher-Partien repräsentire, welche im Laufe der Zeit diese Strecke passirt haben; aber auch dieser Ausweg ist verschlossen. Der Gletscher übt ja entschieden Erosions-Thätigkeit aus, wenn auch dieselbe, den meiner Meinung nach entscheidenden Beobachtungen zu Folge, gegenüber derjenigen anderer Factoren minimal erscheint. Solche Erosions-Thätigkeit sind die genannten Herren auch weit entfernt ihrem Diluvial-Gletscher abzusprechen, im Gegentheil vertritt Herr Helland die Annahme einer bedeutenden Erosion (nach Ramsay's Theorie). Das Werkzeug der Erosion ist dem Gletscher seine Grundmoräne; nun kann der Gletscher ersichtlich doch nicht zugleich da Material ablagern, wo er Material aufnimmt, wo er erodirt. Folgerichtig hinterlässt ein zurückweichender Gletscher immer nur eine Grundmoräne. Das Ablagerungsgebiet des Gletschers, wo der mitgeschleppte Ballast von Gesteins-Stücken aufgestapelt wird, ist die End- oder Stirnmoräne. Der Glacialtheorie mit ihrer Annahme einer mehrere Meter mächtigen Grundmoräne zu Folge müssten wir südlichen Rande des Gletschergebietes Züge von Endmoränen finden, deren Höhe doch sicherlich ebensoviele Hunderte von Metern betragen sollte, als die Grundmoräne an Metern mächtig war. Wo sind nun diese Moränen-Gebirge?? Sollten sie spurlos verschwunden sein, wenn sie überhaupt existirt haben??

Göttingen, December 1879.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Abhandlungen des Naturwissenschaftlichen</u> Vereins zu Bremen

Jahr/Year: 1878-1879

Band/Volume: 6

Autor(en)/Author(s): Lang Heinrich Otto

Artikel/Article: Ueber die Bildungsverhältnisse der norddeutschen

Geschiebeformation. 513-526