Abhandlungen

der Königlich Bayerischen Akademie der Wissenschaften Mathematisch-physikalische Klasse XXVII. Band, 5. Abhandlung

Aus den wissenschaftlichen Ergebnissen der Merzbacherschen Tian-Schan-Expeditionen

Die Gebirgsgruppe Bogdo-Ola

im östlichen Tian-Schan

von

Gottfried Merzbacher

unter Mitarbeit von

P. Groeber

und mit Beiträgen von:

G. Glungler, Fr. Lex, Jul. Schuster, Maurice Leriche, Otto M. Reis u. Boris Fedtschenko

Mit 3 Tafeln Karten, 24 Tafeln Lichtdrnck von Panoramen etc., sowie Profilen und einer Seite Diagrammen

Vorgelegt am 7. November 1914

München 1916

Verlag der Königlich Bayerischen Akademie der Wissenschaften in Kommission des G. Franz'schen Verlags (J. Roth) © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Inhaltsverzeichnis.

			Seite
	Einleitung		. 1
	Urumtschi: seine geographische Lage, Bedeutung und Bevölkerung		. 5
II.	Das Klima von Urumtschi und seine Beziehung zur Bogdo-Ola .	•	. 12
III.	Bedeutung der Bogdo-Ola als Landmarke der Provinz Hsin-kiang		. 17
IV.	Erforschungsgeschichte und Literatur		. 21
V.	Würdigung des bisherigen Kartenmaterials		. 26
VI.	Die wichtigsten orographischen und tektonischen Züge der Bogdo-Ola-	Grupj	pe 34
VII.	Vergleich zwischen dem Bau der Bogdo-Ola und dem des zentralen Tiar	-Scha	an 50
VIII.	Das Gesteinsmaterial der Bogdo-Ola und sein mutmaßliches Alter		. 59
IX.	Über das Alter der Gesteine der Angaraserie in den Vorketten der Bog	gdo-O	la 63
X.	Die tertiären Ablagerungen		. 75
XI.	Die heutige Vergletscherung der zentralen Bogdo-Ola-Gruppe .		. 80
XII.	Entwässerungssystem und Talbildung		. 94
XIII.	Die Vegetationsdecke		. 109
XIV.	Bevölkerung und Tierleben		. 130
XV.	Von Urumtschi zum Bogdo-Ola-See		. 134
XVI.	Vom See zum Nordfuße der zentralen, höchsten Bogdo-Ola-Gruppe		. 161
CVII.	Der Südabhang der Zentralgruppe		. 182
VIII.	Über einige Ergebnisse meiner Beobachtungen		. 212
XIX.	Bemerknngen zu den Karten		. 238
XX.	Geologischer Teil von P. Gröber		. 247
XXI.	Petrographischer Teil von Georg Glungler (mit 2 Tafeln Dünnschliffen	I u. I	I) 267
XII.	Meteorologisches aus der Bogdo-Ola von Fr. Lex		. 292
XIII.	Fossile Pflanzen aus dem Tian-Schan von J. Schuster (mit 2 Tafeln	Lich	t-
	drucken A u. B)		
XIV.	Über fossile Fische aus der Bogdo-Ola von Maurice Leriche und Otto M		
	(mit 1 Tafel Lichtdruck 19)		. 306
CXV.	Verzeichnis der Pflanzen vom Bogdo-Ola-Gebirge von Boris Fedtschen	k o	. 308
	Sachregister		. 313
	Drnckfehlerverzeichnis und andere Berichtigungen		. 328

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Verzeichnis der Tafeln und Karten.

Lichtdrucke nach Photographien des Verfassers:

- Taf. 1. Panorama der zentralen Bogdo-Ola-Gruppe von Norden, aufgenommen auf einem Gipfel (4045 m) in der Ostumwallung der obersten Talstufe.
 - , 2. Panorama des zentralen und westlichen Teiles der Bogdo-Ola-Gruppe von Norden,

 aufgenommen auf einem Gipfel (3925 m) in der Westumwallung der obersten Talstufe.
- " 3. Panorama der Bogdo-Ola-Gruppe von Süden, aufgenommen auf einem Gipfel (4530 m) in der Westumwallung des Chigo-Gletschers.
- ,, 4. Fig. 1. Panorama der zentralen Bogdo-Ola-Gruppe von Norden, aufgenommen auf Höhe 4045 m im Ostwall des obersten Da-tun-gu-Tales.
 - Fig. 2. Abfall des Bogdo-Ola-Westgipfels gegen Gurban-bogdo-Tal in Stufen, getrennt durch steilwandige Engschluchten.
 - Fig. 3. Lager auf Hochstufe am Nordfuß der Bogdo-Ola mit erstiegenem Gipfel des Westrandes, am Fuße drei Stufen alter Moränenzüge.
 - Fig. 4. Blick auf die Ketten der Angaragesteine, aufgenommen von Westen nach Osten, von einer Höhe zwischen den Tälern Dön-chon-dse und Sangun.
 - Fig. 5. Teleaufnahme der Bogdo-Ola (Distanz 60 km) von der Steppe zwischen Han-tsu-an und Foukan; veranschaulicht den Aufbau in drei Stufen.
- ,, 5. Fig. 1. Unteres Sangun-Tal; erste Mulde in den Angaragesteinen; Charakter der Wüstensteppen-Vegetation.
 - Fig. 2. Steilgestellte Tonschiefer, von alter Moräne überlagert in junger Schlucht des Datun-gu-Tales; darüber vom Fluß verlassener alter Talboden.
 - Fig. 3. Ostbucht des Bogdo-Ola-Sees mit Terrassen in alten Ufermoränen, auf welchen Klostertempel errichtet sind.
- ,, 6. Fig. 1. Bogdo-Ola-Seetal mit umrandenden zerschnittenen Hochflächen, mit oberster flächenhafter Gebirgsstufe und Hochgebirge dahinter.
 - Fig. 2. Teleaufnahme über den Nordabfall des alten Gebirges und über das Angara-Gebirge hinweg nach Norden.
- ,, 7. Fig. 1. Bogdo-Ola-Gruppe vom Weg zwischen zweiten und oberen Kloster mit Teil der Hochfläche; Charakter des Waldes und seine Exposition zeigend.
 - Fig. 2. Tal des Aufstiegs zum nördlichen Hochlager. Junge Erosion in alter Hochfläche.
 - Fig. 3. Gurban-bogdo-Paß mit Pik Schokalsky.
- " 8. Bogdo-Ola-See gegen Süden.
- " 9. Fig. 1. Zweites Kloster auf Moräne über Bogdo-Ola-See; dahinter bewaldete Moräne am Fuße eines Querzuges.
 - Fig. 2. Teil des Bogdo-Ola-Sees bis zum Nordende mit absperrender Moräne, Da-tun-gu-Tal und jung zerschnittener Hochfläche, weiterhin Angara-Gebirge.

- Fig. 3. Oberes Kloster auf Morane über Bogdo-Ola-See, links Hochfläche, dahinter Hochgebirge.
- Fig. 4. Jung zerschnittene Hochflächen zu beiden Seiten des Bogdo-Ola-Seetales. Aus jungen Engtälern aufstrebender Wald.
- Taf. 10. Fig. 1. Vom Eis verlassene Landschaft südlich unterhalb Gurban-bogdo-Paß mit Enden zurückgetretener Gletscher und aufgefülltem Seebecken.
 - Fig. 2. Mittlerer Moränensee im Oberlauf des Gurban-bogdo-Tales mit Rundhöckern u. Moränen.
 - Fig. 3. Rezenter Gletscherrückzug am Westrande des Gurban-bogdo-Tales.
 - Fig. 4. Teil der aufstauenden Moräne des Sees auf Taf. 14 Fig. 3 (Ergänzung).
 - Fig. 5. Absturz eines Hängegletschers des Pik-Schokalsky in Moränensee.
 - " 11. Oberes Gurban-bogdo-Tal. Glazial erodiertes, in Stufen abfallendes Toogtal, vom Eise geschliffene Talwände.
 - " 12. Fig. 1. Oberlauf des Chigo-Gletschers vom Sattel (4255 m) am Westrand. Mittelmoränen im Scheitel der hohen Eiswölbung, zwei Stufen Schliffkehlen im Talrand.
 - Fig. 2. Der "Südgletscher" von annähernd gleichem Standunkt gesehen. Eigenartige Gestalt des Einzugsgebietes und der stark abschmelzenden Zunge.
 - " 13. Östlicher Talrand des oberen Gurban-bogdo-Tales mit zerschnittener Moränenlandschaft im Tal und Moränensee.
 - " 14. Fig. 1. Blick aufwärts im untern Gurban-bogdo-Tal mit verlassener Kupferschmelze. Auflösung des Gebirges in Querschollen.
 - Fig. 2. Blick in südliches Nebental auf Lager 6 mit vier alten Ufermoränen, sowie aufwärts im Trog des oberen Gurban-bogdo-Tales.
 - Fig. 3. See im oberen Gurban-bogdo-Tal mit alter Ufermoräne und Abdämmungsmoräne;
 Blick nach Süden.
 - Fig. 4. Seitenschlucht im oberen Da-tun-gu-Tal. Junge Erosion in alter Hochfläche.
 - Fig. 5. Mündung eines östlichen Nebentales in das Gurban-bogdo-Tal. Drei Stufen alter Ufermoränen im Südrand.
 - " 15. Fig. 1. Die Stadt Urumtschi mit der Bogdo-Ola-Kette im Nordosten.
 - Fig. 2. Oasen-Gürtel im Westen und Südwesten von Urumtschi.
 - Fig. 3. Das die Stadt Urumtschi gegen die Wüste im Norden abschließende Angara-Gebirge mit Obelisk und Tempeln am Gipfel und Tempeln am Fuß.
 - Fig. 4. Dun-Schan-Gebirge mit Karawanserai Dschi-dschi-su.

Zinkographie:

- Taf. 16. Fig. 1. Hyprometrisches Längsprofil durch den östlichen Tian-Schan.
 - Fig. 2. Schematisches Querprofil durch die zentrale Bogdo-Ola-Gruppe.
 - Fig. 3. Skizze des Gletscherbeckens am Südabfall des zentralen Hauptkammes.

Farbenlithographien:

- " 16 A. Blick von "Signalberg" oberhalb des oberen Klosters am Bogdo-Olo-See nach NW, nach Zeichnung von P. Groeber.
- ,, 17. Geologisches Profil I Durch den Kissyl-Tau, westlich von Urumtschi 1:100,000.
 - Il Durch das Sangun- und Da-tun-gu-Tal 1:100,000.
 - . III Unteres Dön-chon-dse-Tal 1:100,000.
 - . IV Tal Ogun-schan-dse, oberes Da-tun-gu-Tal. Gurban-bogdo-Paß, Gurban-bogdo-Tal. Durch das ganze Gebiet 1:100,000; keine Überhöhung.
- ,, 18. , V Sangun-Tal 1:15,000.
 - , Va Blick in Mulde II vom rechten Ufer aus.
 - VI Des unteren Dön-chon-dse, rechte Talflanke 1:15,000.
 - . VIa Durch Mulde I in der linken Talflanke des Dön-chon-dse-Tales 1:15,000.
 - , WIb Ansicht vom vierten, nach NO vorstoßenden Grat der linken Talflanke des Dön-cbon-dse-Tales gesehen 1:15,000.
 - , VII Durch die Angara-Serie auf dem Wege von Se-dschön-ga nach Schichodse 1:200,000.

VII

Tai	f. I.	Fig.	1 - 6.	Dünnse	hliffe von	Gesteiner	n aus d	er Bo	gdo-Ola-Gruj	ppe.)	Lightdungle	
,,	II.	Fig.	7-12.	7	В	77	77	יד ה	ת ת	j	Lichtdrucke	•
,,	A.	Fig.	1-11.	Fossile	Pflanzen a	aus dem	Tian-Sc	han.	\ Lichtdrue	ke.		
22	B.	Fig.	1-15.	7	n	יו יו	77	7	∫ Erklärung	auf	S. 305.	
	19.	Fice	1-5	Fossile	Fischreste	aus der	Boodo-	Ola.	Lichtdruck.	Erk	lärnne auf S	. 307.

Karten:

Karte I. Übersichtskarte des Nordfußes des östlichen Tian-Schan und der Bogdo-Ola-Gruppe. Maßstab 1:1,000,000. " Ia. Tektonische Übersichtsskizze über Nordfuß des östlichen Tian-Schan und der Bogdo-Ola-Gruppe. Maßstab 1:1,000,000.	1 Tafel.
" II. Karte der zentralen Bogdo-Ola-Gruppe im östlichen Tian-Schan. Maßstab 1:200,000. III. Hauntgruppe Maßsstab 1:75,000	1 Tafel.
" III. Hauptgruppe. Maßsstab 1:75,000. " IIa. Übersicht auf den hauptsächlichen geologischen Bestand der zentralen Bogdo- Ola-Gruppe. Nordabhang. Maßstab 1:200,000. Skizze des Sees Sayopu und seiner Umrandung. Maßstab 1:200,000.	1 Tafel.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Einleitung.

Die Bogdo-Ola-Kette ist von den über die Schneegrenze aufragenden Ketten des Tian-Schan- oder Himmelsgebirges die östlichste; ihr zentraler und höchster Teil erhebt sich im Mittel unter 43° 45′ N. Br. und 88° 30′ Ö. L. bei einer durchschnittlichen Kammerhebung von ungefähr 5500 m und mit Gipfelhöhen von 6400 m bis über 6500 m. Es erscheint nötig besonders darauf hinzuweisen, daß die meisten der bekannten geographischen Karten für die gesamte Gebirgsmasse, die sich von Urumtschi im Westen hin nach Osten bis zum Meridian von Chami, also über 6 Längengrade erstreckt, den Namen "Bogdo-Ola" führen, welcher jedoch, wie später dargelegt werden soll, dem Sinne dieses Namens nach (heiliger Berg) nur dem höchsten, nahe von Urumtschi sich erhebenden Gebirgsteil zukommen kann. Im übertragenden Sinne könnte man dann das ganze Gebirge in der oben angeführten Begrenzung als Bogdo-Ola-Kette bezeichnen.¹) Ich verwende daher speziell für den Gebirgsteil, der in dieser Abhandlung zur Beschreibung gelangt, um jede irrige Auffassung zu vermeiden, ausschließlich die Bezeichnung "Bogdo-Ola-Gruppe" und nicht "Kette".

Die Erforschung dieser Gebirgsgruppe gehörte zu den wichtigsten Aufgaben meiner in den Jahren 1907 und 1908 ausgeführten zweiten großen Forschungsreise im Tian-Schan. Nachdem ich mich auf der in den Jahren 1902 und 1903 ausgeführten Expedition hauptsächlich dem Studium des zentralen Tian-Schan und speziell seiner höchsten und vergletscherten Teile gewidmet hatte, sowie die noch unbekannten Teile seines Südabhanges aufzuklären suchte,²) wandte ich mich im Jahre 1907 den geographisch bis dahin noch

¹⁾ Die Karte zu M. Friederichsen Morphologie des Tian-Schan, Berlin 1899 ist die einzige der Tian-Schan-Karten, welche diesen Unterschied deutlich zum Ausdruck bringt.

²⁾ G. Merzbacher, Vorläufiger Bericht über eine Forschungsreise in den zentralen Tian-Schan. Peterm. Mitteil., Ergänzungsheft 149.

Derselbe, The Central Tian Shan Montains. London 1905.

[,] Der Tian-Schan oder das Himmelsgebirge. Zeitschrift D.-Ö. Alpenverein 1906.

Forschungsreise im Tian-Schan. Sitz.-Ber. der math.-phys. Klasse der K. Bayer. Akad. der Wissensch., Bd. XXXIV, 1909, Heft III.

A. Albert, Die Erforschung der Hochregionen des Tian-Schan durch Dr. G. M. Deutsche Rundschau für Geographie und Statistik, Bd. XXVIII, 1906, S. 1f und Westerm. Monatshefte, Jahrg. 1906.

Aus den wissenschaftlichen Ergebnissen der Merzbacherschen Tian-Schan-Expedition:

Keidel und Richarz, Ein Profil durch den nördlichen zentralen Tian-Schan. Abhandlungen der K. Bayer. Akad. der Wissensch., II. Kl., Bd. XXXIII, 1906.

Kleinschmidt und Limbröck, Die Gesteine des Profils durch das südliche Musarttal. Ebenda 1906.

wenig, zum Teil sogar noch gar nicht erforschten Ketten zu, die vom Musartpasse sich weiter gegen O. hin erstrecken und deren Komplex unter der Bezeichnung Chalyk-tau zusammengefaßt werden kann.¹)

Der ca. 3500 m hohe Musartpaß mit den von ihm ausgehenden, nach N. wie nach S. tief in die hier nahezu am höchsten ansteigende Gebirgsmasse eingreifenden Tiefenlinien kann im orographischen Sinne als geeignetste östliche Grenze des zentralen Tian-Schan angenommen werden, wenn diese auch mit solchen wesentlichen tektonischen oder strukturellen Merkmalen nicht zusammenfällt, die eine wissenschaftlich vollkommen befriedigende Abgrenzung gestatten würden. Auf ausschließlich geologisch-tektonischer Grundlage würde sich aber eine scharfe Gliederung des über 2000 km langen Kettengebirges überhaupt nicht durchführen lassen wegen seiner auf ungeheure Erstreckung nahezu gleichartigen geologischen Zusammensetzung und bei dem Mangel an deutlich im Bau hervortretender Scheidung der Gesteinsgruppen in einzelne Zonen, endlich wegen der Gleichartigkeit der tektonischen Kräfte, die auf das Gesamtgebirge eingewirkt haben. Infolge der engen Geschlossenheit des Gebirges, die ein Ergebnis starken tangentialen Zusammenschubes ist, reichen sogar die oroplastischen Merkmale zu einer Abgrenzung nur an wenigen Stellen aus. Auch einzelne hervortretende orographische Richtungslinien, wie sie Friederichsen²) zu einer horizontalen Gliederung in kleinere Gruppen benützt hat, genügen doch nicht zur Zerlegung des langen Kettengebirges in orographisch und geologisch besonders charakterisierte, deutlich voneinander unterscheidbare große Teile.

Die Hauptarbeit galt im Jahre 1907 der Erforschung der Flußsysteme des Agias und des Kok-su, der größten Ströme, welche den N.-Abhang dieses Teiles des großen Kettengebirges entwässern, sowie dem Studium der Gletscher ihrer komplizierten Quellgebiete, endlich der Untersuchung des verwickelten Baus der großartig vereisten Ursprungsgebiete des großen Musartflusses.³)

- Paul Gröber, Karbon uud Karboufossilien aus dem nördlichen zentralen Tian-Schan. Ebenda Bd. XXIV, 1909.
- H. Keidel, Geologische Untersuchungen im südlichen Tian-Schan etc. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilage Bd. XXII. Stuttgart 1906.
- Paul Gröber, Über die Faunen des unterkarbon. Transgressionsmeeres des zentralen Tian-Schan. Ebenda Beilage Bd. XXVI, 1908.
- 1) Diesen Namen, der nun einmal nahezu allgemein in der geographischen Literatur und in den Karten Aufnahme gefunden hat, will auch ich beibehalten, wiewohl er einer mißverständlichen Auffassung russ. Topographenoffiziere seine Entstehung verdankt. Der richtige Name wäre Karlyk-tau Schneegebirge (türkisch), eine Bezeichnung, die wie fast alle türkischen geographischen und Ortsnamen eigentlich nur eine Unuschreibung ist und sich in den meisten zentralasiatischen Gebirgen wiederholt vorfindet, deren Fuß von türkisch sprechenden Volksstämmen bewohnt oder deren Inneres von ihnen durchwandert wird.
- 2) Morphologie des Tian-Schan. Berlin 1899, S. 23 f. Der Mangel an Gliederung kommt in der Seltenheit benützbarer, ja in dem Fehlen leichter, niedriger Übergänge über das Gebirge zum Ausdruck, so daß dieses als ein Völker scheidendes Bollwerk bezeichnet werden darf.
 - 3) Merzbacher, Petermanns Mitteilungen 1908, Heft IV; 1909, Heft II.
 - Journ. Royal Geogr. Soc., vol. 31 pp. 395 f.; vol. 33, pp. 278 f.
 - Zeitschr. Gesellsch. f. Erdkuude. Berlin 1910, S. 225 f. und 303 f.
 - Mitteil. Geograph. Gesellsch. München, Bd. V, 1910, S. 347 f.
 - Mitteil. Verein f. Erdkunde. Leipzig 1909, S. 51 f.
 - Iswestiya, Kais. Russ. Geograph. Gesellsch., Tom. XLV, 1909, S. 1 ff.
 - Aus den wissenschaftlichen Ergebnissen der Merzbacherschen Tian-Schan-Expedition:

3

Im Jahre 1908 wandte ich mich noch weiter nach O. zur Untersuchung der Umrandungen der großen, durch Längsbrüche entstandenen Täler Kunges, Kasch, Groß- und Klein-Yuldus, welche für Bau und Entwicklungsgeschichte des östlichen Tian-Schan die bestimmenden Leitlinien darbieten. Nach Querung der alle diese Paralleltäler umrandenden Ketten in beiläufiger Richtung vou N. nach S. gelangte meine Expedition an den S.-Rand und zwar zum großen Randsee Bagratsch-kul und folgte von dort dem Gebirgsrande nach O. hin bis zur Oase Kutscha.1) Von dort aus unternahm ich dann zur Gewinnung eines vollständigen Querprofils die schwierige S-N.Durchquerung der gesamten Ketten des östlichen Tiau-Schan beiläufig im Meridiane von Manas, durch die bisher unbekannten Quellgebiete des gleichnamigen Flusses. Diese Durchquerung fand also gerade an derjenigen Stelle statt, wo der östliche Tian-Schan seine größte Breitenausdehnung annimmt, bevor er schon wenig weiter im O., unter beiläufig 87° 10' Ö.L. eine merkwürdige Verzweigung in isolierte Ketten, gewissermaßen eine völlige Auflösung seines Komplexes in strahlenförmig auseinander tretende Züge erleidet. Es wird späterhin näher auf diese eigenartige, höchst auffällige Erscheinung eingegangen werden, die darin besteht, daß hier in der westlichen Umrandung des tiefen Einbruchbeckens von Turfan, der tiefsten Senke des zentralasiatischen Kontinents. (-169 m),2) die bisher beiläufig OW. streichenden und hoch über die Schneegrenze, stellenweise bis über 6000 m aufragenden Kettenzüge, im O. der Yuldustäler nicht nur plötzlich divergieren, sondern auch, sich auflösend, in ein tiefes Niveau absinken. (Paß Ta-dawan 2156 m, Djan-Jan-schi, tiefste Einsattlung des Dun-Schan-Gebirges 1370 m, See Sayopu 1148 m, Paß Dawan-tschin 1053 m), mittlere Kammhöhe des Dschargöß-T. 3000 m. des Tschol-T. 1500 m, des Kuruk-T. 1200 m.

Kurt Leuchs, Geolog. Untersuchungen im Chalyk-tau etc. Abhandl. K. Bayer. Akad. d. Wiss., II. Kl., Bd. XXV, 19'2.

Merzbacher, Die Physiographie des Tian-Schan. Hettners Geograph. Zeitschr., Jahrg. 19, Heft 1. Weitere Veröffentlichungen bevorstehend.

1) Pelliot (Annales de Géographie, T. XIX, 1910, S. 275) wendet sich gegen die Richtigkeit der bisher in den meisten, hesonders auch in den russ. Karten angewendeten Schreibweise Kutscha und will nur Kutschar als richtig gelten lassen. Dies widerspricht indessen der chines. Schreibweise Kiu-tschi, Kou-tse und Kou-tsche, welche schon der alte, chinesische Reisende Hiouen-Tsang in seinem bekannten Reisewerk für diese Stadt anwendet. (Französ. Ausgabe von Stanislaus Julien, Paris 1857, T. I, S. 265.) Ungeachtet der Kompetenz, welche dem verdienten Sinologen P. sonst unleugbar zukommt, bleibe ich in diesem Falle der alten Schreibweise getreu.

²) Hinsichtlich der durch Roborowsky's mehrjährige barometrische Beobachtungen (Ergebnisse der Expedition nach Zentralasien ausgeführt, 1893 – 95, Teil III, Wissenschaftl. Resultate, St. Petersburg 1899, russ.) festgestellten negativen Meereshöhe von Luktschun (— 169 m) ist hervorzuheben, daß diese Cote eben nur die heute noch feststellbare tiefste Stelle der Senke betrifftt. Unzweifelhaft ist aber die ehemalige Tiefe dieses Grabens eine sehr viel bedeutendere. Man muß den ungeheuren Betrag des Gebirgsschuttes in Betracht ziehen, welcher, den Gebirgsmassen der hohen Grabenränder entstammend, in die gewaltige Furche hinabgeführt wurde und sie aufgefüllt hat, ein Umstand, auf welchen schon Sueß (Antl. d. Erde III/I, S. 216) hingewiesen hat. Ferner ist das fast 70 km lange, durchschnittlich 30 km breite Becken des heute bis auf einen verhältnismäßig geringen Rest aufgefüllten und versumpften Bodschante-Sees zu berücksichtigen, der sich zwischen Toksun und Luktschun dehnt und zweifellos einst eine bedeutende Tiefe besessen hat. Diese Umstände berechtigen uns mit Sicherheit anzunehmen, daß die ursprüngliche Tiefe des Grabens nach seiner Entstehung um mindestens mehrere hundert Meter größer war als die heutige.

Ein großer Längsbruch, oder nach Bogdanowitsch eine Flexurdurchbiegung, 1) nach Obrutschew ein Staffelbruch,2) dem die Entstehung der großen Turfansenke zunächst zu verdanken ist, wird nach meiner Beurteilung der sich hier im Gebirgsbau äußernden Erscheinungen durch mehr oder weniger schief hiezu verlaufende Querbrüche geschnitten, an welchen das gesamte Gebirge abgesunken ist. Dies hat zur Folge, daß der Hochgebirgscharakter, den der Tian-Schan bisher fast in seinem ganzen Verlaufe von W. nach O. auf einer Länge von ca. 1500 km bewahrt, im Meridian von Urumtschi nahezu völlig verschwindet. Die gesamte dort an 200 km breite Gebirgsmasse wird, wie eben erwähnt, in radialförmig auseinander strebende Züge aufgelöst. Nur die äußersten Ränder im N. und im S. sind als schmale Ketten im Zusammenhang erhalten geblieben. Der Nordrand erfährt dort, wo er in seinem Laufe von NW. nach SO. plötzlich scharf nach NO. umbiegt (siehe Karte Ia), im Süden der Stadt Urumtschi, deren geschützte Lage dieser Knickung zu verdanken ist, seine tiefste Einsenkung in den niedern Zügen des Dun-Schan-Gebirges. Dieses (Taf. 15 d) stellt überhaupt die tiefste Lücke (mittlere Höhe ca. 1600 m) des in seinem bisherigen latitudinalen Verlaufe so sehr geschlossenen Tian-Schanischen Gebirgssystems dar. Gerade auf ihr beruht aber in diesem Teile Asiens die seltene Möglichkeit, den großen Austausch von Gütern und Menschen zwischen N. und S., zwischen dem Tarymbecken und Tibet im S. und der Dsungarei (Tarbagatai, Saissangebiet, Westmongolei) im N., also auch zwischen den hohen Gebirgsketten des Kuen-lün im S. und denen des Altai im N. in leichter und sicherer Weise zu vermitteln. Die Depression bei Urumtschi ist demnach ein Tor, das beiderseits den Zutritt zur großen Völker- und Handelsstraße eröffnet.3)

Erst östlich von dieser tiefen Lücke nimmt das vorher als breite Masse in hohen Parallelketten entwickelte Gebirgssystem des Tian-Schan — nunmehr in der Hauptwasserscheide auf eine einzige schmale Kette reduziert — in dieser allein wiederum Hochgebirgscharakter an und schwingt sich ganz plötzlich ein letztes Mal zu gewaltigen Gipfeln von über 6000 m an, wie wir sie sonst nur in den zentralen Teilen des Tian-Schanischen Systems antreffen. Diese Gipfel bilden die Bogdo-Ola-Gruppe.⁴) Da unsere Kenntnis von diesem Teile des Tian-Schan bisher eine sehr geringe war und weil er sich als eine so

¹) Bogdanowitsch in Bd. II von Pjewtzows Trudi Tibetzkoi Ekspedizij 1892. St. Petersburg 1892, russ., S. 38.

²) Nach W. A. Obrutschew in Hettners Geograph. Zeitschrift. Bd. I, 1885, S. 376 stellt das Südgehänge dieses Teiles des Tian-Schan-Gebirges "einen Staffelbruch oder Staffelflexur", die Einsenkung selbst "eine ebenso große Grabeusenkung" dar. Obrutschew möchte sie als "Grabensenkung des Tian-Schan" bezeichnen, was mir in Hinsicht auf die vielen Grabensenkungen im Tian-Schan nicht gerade zweckmäßig erscheint. Weit entsprechender würde ich die andere, ebenfalls von Obrutschew vorgeschlagene Bezeichnung "Zentralasiatische Grabensenkung" halten. Siehe hierüber auch die Ausführuugen des gleichen Autors in Iswestiya, Kais. Russ. Geograph. Gesellsch., Tom. XXXI, 1895, S. 289, russisch.

³⁾ Siehe hierüber auch Richthofeu, China I, S. 41 Anm. u. S. 217.

⁴⁾ Regel nimmt iu der Schilderung seiner Reise "Turfan" in Peterm. Mitteil., Bd. XXVI, 1880, S. 208 an, daß ganz allgemein die Darstellung der Karten, "als läge die Bogdo-Ola-Kette in der Hauptkette des Tian-Schan", falsch sei. Diese Annahme beruht insofern auf einem erklärlichen Irrtum, als er das Hochgebirge nur aus weiter Ferne uud von allzu tiefem Standpunkt, aus der Senke von Turfan beobachten konnte. Er sah damals die NO. streichende, niedrige und im Meridian von Gutschen sich der Hauptkette auschließende Dschargöß-Kette als die eigentliche Fortsetzung des Tian-Schan-Hauptkammes an, die von ihm Iran-Chabirga genaunt wird. Da er aber den Lauf des Flusses "Dabandschan",

ganz eigenartiges Glied im Bau dieses großen Gebirges darstellt, hielt ich es für geboten, seine Erforschung als eine wesentliche Aufgabe in das Programm meiner Reisen aufzunehmen. Die Ergebnisse meiner Bemühungen, bei denen ich in dankenswerter Weise von meinem Reisebegleiter, Herrn Dr. P. Gröber, unterstützt war, sowie von meinem bewährten Gehilfen, dem Tiroler Bergführer Franz Wenter aus Tiers, sind in den folgenden Kapiteln niedergelegt.

Nachdem die obenerwähnte (S. 3) mit großen Schwierigkeiten verbundene Durchquerung des Gebirgskomplexes von S. nach N. durchgeführt war, wurde der Nordrand des Gebirges in der Nähe der Stadt Manas erreicht. Diesem Rande nach O. hin folgend, gelangten wir zur großen Handelsstadt Urumtschi, welche der Sitz der zentralen Regierung der großen, westlichsten Provinz des Chinesischen Reiches, der Provinz Hsin-kiang ist und somit Hauptsitz der Administration jener weiten Gebiete, welche man unter der Bezeichnung Ost- oder Chinesisch-Turkestan zusammenfaßt.

Über diese wichtige Stadt, die bisher von noch nicht sehr vielen europäischen Reisenden besucht worden ist, findet sich in der westeuropäischen geographischen Literatur. besonders der deutschen, bis jetzt nur wenig und noch weniger Zutreffendes. Darum erscheint es gerechtfertigt, wenn ich das Wichtigste hierüber, da es auch von wesentlichem geographischen Interesse ist, hier mitteile.

I. Urumtschi: seine geographische Lage, Bedeutung und Bevölkerung.

Urumtschi liegt unter 43° 47′ 22″ N. Br. und 87° 35′ 3″ Ö. L. nach Pjewtzow,¹) nach Roborowsky²) unter 43° 47′ 22″ N. Br. und 87° 36′ 0″ Ö. L. Nach einer neuen Bestimmung von Cecil Clementi³) 43° 48′ 32″ N. Br. und 87° 46′ 7″ Ö. L. Letztere Werte sind etwas höher als die der beiden russischen Reisenden, was auch bei Clementis Bestimmung der Position anderer Örtlichkeiten der Fall ist, z. B. von Kurla und Karaschar, die sowohl von Pjewtzow als von Clementi bestimmt wurden.⁴) Da die Unterschiede aber nicht konstante Werte ergeben, so kann auch nicht auf eine regelmäßige Fehlerquelle geschlossen werden. Vielmehr scheint mir die Abweichung zwischen den Werten der drei Reisenden hauptsächlich auf der Verschiedenheit ihres Beobachtungsstandpunktes zu beruhen. Pjewtzow hat seine Standpunkte in seinen Listen mit mathematischer Genauigkeit festgelegt, mit etwas geringerer Genauigkeit Roborowsky. Clementis Standpunkte hingegen lassen einer Feststellung noch ziemlichen Spielraum zu, so z. B. bei Urumtschi: "just outside the south wall of the city".5)

recte Dawan-dschin in seiner Karte ganz richtig darstellt, "welcher von der im N. vereinzelt daliegenden Kette Bogdo-Ola herkommt", hätte er eigentlich über die Kette, welcher die Rolle der Hauptwasserscheide zukommt, nicht im Zweifel sein können. Siehe hierüber übrigens auch Peterm. Mitteil., Bd. 27, 1881, S. 393 und Friederichsen, Morphologie, l. c., S. 33.

¹) M. W. Pjewtzow, Ergebnisse der Tibetischen Expedition von 1889/90, Bd. l. St. Petersburg 1895, russisch, S. 398.

²) W. J. Roborowsky, Ergebnisse der Expedition nach Zentralasien, Bd. III, russisch, S. 40 und im gleichen Band S. 7 etc. sowie Bd. I, S. 585.

³) Positions determined by Mr. Cecil Clementi on his journey from Kashgar to Hongkong. Geograph. Journal, vol. XL, 1912, S. 624 f.

⁴⁾ Siehe ebendort. Ältere Bestimmungen in Ritters Erdkunde, Teil II, Buch II, Asien, Bd. I, S. 383.

⁵⁾ l. c., S. 626. Der Begleiter der Mission Pelliot (Nachweis in Note 1, S. 9), Dr. Vaillant, der die

In Petermanus Mitteilungen findet sich (Bd. XXVI, 1880, S. 467) das nicht uuinteressante Ergebnis der geographischen Ortsbestimmungen veröffentlicht, welche von den portugiesischen Jesuitenpatres d'Espinha und d'Acocha, speziell was Urumtschi betrifft, vou letzterem gemacht wurden. Diese, soweit bekannt, die ersten europäischen Reisenden, welche diese entlegenen Gegenden besucht hatten, waren im Jahre 1756 auf Befehl des Kaisers Khien-Long aus Peking gekommen mit einer chinesischen Militärabteilung, welche zum Iligebiet aufgebrochen war, um dort die aufständigen Oelöten niederzuwerfen und zu vernichten. Diese Positionsbestimmung für Urumtschi (von den Chiuesen damals nach mongolischen Quellen auch Ouloumotsi, auch Oromtschi genannt) ergibt 43° 27' N. Br. und 27° 57′ W. L. vou Peking (= 88° 31′ von Greenwich), wozu ich aber bemerken muß, daß die damalige Stadt Urumtschi beiläufig 21/4 km nordwestlich von der heutigen gelegen war, worüber Näheres später folgt. Berücksichtigt man dies, so ist diese Bestimmung für die Verhältnisse, uuter welchen sie gemacht wurde, in Anbetracht ihrer Ausführung durch beigegebene chinesische Astronomen und mit jedenfalls ziemlich unvollkommenen Instrumenten, eigentlich nicht schlecht und die Kritik in der erwähnten Mitteilung (l. c., S. 468), sie habe "keinen geographischen Wert", erachte ich in Anbetracht der erwähuten damaligen Verhältnisse für zu weit gehend.

Die Höhe von Urumtschi wurde von Pjewtzow barometrisch auf 948 m berechnet, 1) von Roborowsky2) auf 2789′ = 851 m, von Grum Grschimailo3) auf 3015′ = 937 m, von Clementi (l. c., S. 626) auf 2736,7′ = 834 m. In der russischen 40 W.-Karte4) ist sie mit 2850′ = 869 m angegeben. Die Quelle dieser Bestimmung vermochte ich nicht zu ermitteln. Der Durchschnittswert aus 12 von mir gemachten Aneroidbeobachtungen und 4 Hypsometerbestimmungen ergibt nach den Berechuungen des Herrn F. Lex (hievon später mehr) den Wert von 910 m.

Eine neue und sehr verlässige barometrische Berechnung liegt aber in einer mir vor kurzem zugegangenen kleinen Schrift von Strokowsky vor, auf welche ich später näher eingehen werde; ihr zufolge ist die Höhe 912 m. Dieser Wert, der also dem Mittelwert meiner auf die nächstliegenden ständigeu meteorologischen Stationeu reduzierten Ergebnisse sehr nahe kommt, dürfte somit eine große Annäherung an die Richtigkeit besitzen und wird meinerseits daher an Stelle des von mir ermittelten angenommeu.

geodätischen und topographischen Arbeiten auf dieser Reise ausgeführt hat, deren Ergebnisse er in: L'Année Cartographique, Supplement annuel à toutes les publications de Géographie et de Cartographie, redigé par F. Schrader, Vingtième Année, Paris, Hachette, 1910 Itinerarkarten veröffentlicht, über welche ich an anderer Stelle referieren werde. In dem begleitenden Text siud auch einige von Vaillants Ortsbestimmungen enthalten, darunter: Urumtschi 43° 46′ 9″ N. Br., 85° 14′ 25″ Ö. L. von Paris, also 87° 34′ 39″ von Green. Da auch die dort veröffentlichte Positionsbestimmung Vaillant's von Karaschar nicht unwesentlich von derjenigen Pjewtzows abweicht (die Breite um den wesentlichen Betrag von 20′), so teile ich obige Werte lediglich des Vergleiches wegen hier mit.

^{1) 1.} c., S. 404. 409.

²) 1. c. I, S. 585; III, S. 40.

³⁾ Grum Grschimailo, G. E. Beschreibung einer Reise nach dem westlichen China, Tom. III, 1907, russisch, S. 340.

⁴⁾ Karte der südlichen Grenzgebiete des asiatischen Rußlands. Blatt XXI (Chami) der vom Kais. Russ. Großen Generalstab herausgegebenen Aufnahmen des westlichen Teiles von China im Maßstab von 40 Werst: 1 Zoll — 1: 1680 000.

Die Stadt Urumtschi liegt, wie schon hervorgehoben (S. 4), da die Gebirgsachse hier nach S. eingeknickt ist, wohlgeschützt in einer tiefen, nur gegen N. offenen Einbuchtung und zwar am rechten Ufer des Archotu-Flusses (Langsan der Chinesen, auch Chubala und Ulan-be genannt). Dieser Strom entspringt etwa 80 km im SW. der Stadt am Nordabhang des Kara-Usen-Tagh, einem der S. 3 erwähnten radialen Gebirgsäste, mit welchen das Tian-Schan-Gebirge gegen die tiefe Senke des zentralasiatischen Graben abdacht. Zuerst in nordöstlicher Richtung dahinfließend, nimmt der Fluß dann N.-Richtung an und durchbricht einige km im N. der Stadt (siehe Karte Ia u. b) die niederen, aus Gesteinen der Juraformation bestehenden, latitudinalen äußeren Randketten. Der äußerste dieser kahlfelsigen, nach N. wie nach S. sehr steil geböschten, gipfellosen Hügelzüge, an dessen Nordfuß sich unmittelbar die weite schwachgewellte Lehm- und Kiessteppe — ihrem Charakter nach eine Halbwüste - anlehnt und weiterhin in die Wüste Saosti-Elisun ausläuft, schließt also die beckenförmige Ebene, in welcher die Stadt sich breitet, gegen N. nahezu ab. Nur in Form einer etwa 100 m breiten torförmigen Bresche ist der felsige Wall geöffnet, vom Archo-tu-Fluß durchbrochen. Rechts und links umranden den Durchbruch senkrechte Abstürze: kahle, klippenartig bis über 180 m sich erhebende Felsmauern, die aus dicken Bänken graugrüner Sandsteine, lichtgrauer Kalke und dunkelbrauner Konglomerate aufgebaut sind.1) Diese Gesteine, welche der Juraformation angehören, (siehe später mehr hierüber) bilden hier in gleichmäßiger Kammlinie abgetragene, durchschnittlich 250 m hohen, schroff abfallenden, kahlen Rücken eine Antiklinale mit annäherndem O.W. Streichen und einem Schichtfallen nach S. im < 40°. Auf dem Scheitel jedes dieser beiden Rücken erhebt sich ein schlanker, etwa 20 m hoher Obelisk. Beide Bauten von unbekanntem Alters bilden ein Wahrzeichen von Urumtschi; im Aberglauben der Chinesen kommt ihnen eine besondere mystische, schützende Bedeutung für das Wohl der Stadt zu. Darum sind auch auf dem Scheitel der östlichen Kuppe taoistische, verschiedenen göttlichen Personifikationen geweihte, umfangreiche Tempelanlagen errichtet, die mit solchen von noch bedeutenderer Ausdehnung am Fuße durch Terassen und einem dem Steilhang in Serpentinen abgewonnenen Weg in Verbindung stehen (Taf. 15c.)

Der Fluß selbst hat bei seinem Durchbruch eine normale Breite von etwa 40 m und ist außer der Zeit der Schneeschmelze nicht sehr wasserreich. Das Wasser ist klar, wohlschmeckend und, weil meist durch Gebirge und mit bedeutendem Gefälle dahinfließend, sogar zur heißesten Sommerszeit ziemlich kühl. Das Hochwasserbett des Flusses erreicht im S. des Durchbruchs die fünf- bis sechsfache Breite und ist von Massen groben Gerölles, vermichst mit enorm großen Blöcken, angefüllt, einem Zeichen der außerordentlichen Transportkraft des Flusses im Frühling, zur Zeit der Schneeschmelze im Gebirge. Eine für chinesische Verhältnisse überraschend solide, stattliche, zehnjochige Holzbrücke vermittelt den Verkehr über das Flußbett. Ein abzweigender Kanal bringt Trinkwasser zur Nähe der Stadt und einige andere Kanäle dienen der Bewässerung der Kulturen in der Umgebung und zahlreicher Gärten in der Stadt.

Kommt man von N., W. oder O. so kann man erst nach Passieren der beschriebenen torförmigen Öffnung in der steilfelsigen Randkette Ausblick auf die Stadt gewinnen; sie

¹⁾ Siehe hierüber W. A. Obrutschew, Zentralasien, Nördliches China und Nan-Schan. St. Petersburg 1901, russisch, Tom II, S. 650 f.

liegt in einem unregelmäßig geformten, flachen Becken, dessen Gruud eine nach allen Seiten sich weitende, gleichförmig sauft gegen das Gebirge im S. ansteigende Alluvialebene bildet aus meist vou Flußschottern bedecktem und mit solchen vermischtem hartem Lehmboden, der aus später zu erörternden Gründen nur zum geringen Teil für Feld uud Gartenbau benützt werden kann. Im nordwestlicheu Teil des Beckens dehueu sich, einen malerischen Aublick gewährend, die hohen mit Wallgängen, zierlichen Türmchen und schmucken Torpavillons versehenen. von tiefen, 6 m breiten Gräben umzogenen Lehmmauern der Chinesenstadt. Die Umwallung ist im Vauban'schen Style angelegt mit sechs Fronten und ebenso vielen Toren, mit Bastiouen und Reduits (Taf. 15). Da aber die Ebene, wie erwähnt, auf allen Seiten von mäßig überragenden Hügelketten umschlossen wird, ist diese Befestiguug von 4¹/₂ km Umfang, an welche sich im N.O. und N.W. noch quadratische Forts anlehneu, strategisch zwecklos. Dennoch legen ihr die Chinesen in ihren eigeutümlichen militärischen Begriffen auch heute uoch großen Wert bei und halten sie in sehr sorgfältigem und ungewöhnlich sauberem Zustande. Au diese Militärstadt, welche auch alle Regierungsbehörden beherbergt, schließt sich im N. die Zivilstadt an mit großen Basareu, Theatern, duuganischen Moscheen und chinesischen Tempeln. Die Bevölkerung dort besteht aus chinesischen, der Mehrzahl nach aber aus duugauischeu Kaufleuten, Gewerbetreibenden uud Arbeitern. Die Bauart der Häuser, Basare und ihrer Läden ist in der Zivilstadt stattlich, an einzelneu Stellen sogar nicht ohne Eleganz. Das Leben und Treiben in den Straßen ist überaus lebhaft, voll des bunten malerischen Reizes chinesischer Handelsstädte, der aber hier im W. durch den Einschlag von Tracht, Sitte uud Bauweise der muhamedanischen Bevölkerung noch bedeutend erhöht wird. Die Stadt, von den Chinesen Ti-chua-tschou genannt, (Urumtschi ist die mongolische Bezeichnung siehe S. 6) steht erst seit Niederwerfung des Dunganenaufstandes, also erst seit den siebziger Jahren des vorigen Jahrhunderts, an ihrer heutigeu Stelle. Vorher lag sie, wie S. 6 erwähnt, etwa 21/4 km entfernt hievon im N.W. am Fuße des sogenannten "Roten Berges" (Chuug-tschan-tsui), der von einem berühmten Tempel gekrönt war (Hung-miao-tse), nach welchem später auch die damalige Stadt selbst benanut war.1) Man hört letzteren Namen sogar von vielen Chinesen noch auf die heutige Stadt anwenden. Die alte Stadt war einstige Residenz der Uiguren-Khane, aber ihre alte Geschichte ist ziemlich wenig geklärt. Ob Bisch-balyk (Fünf-Städte in Osttürkisch) wirklich identisch mit dem alten Urumtschi ist, wie Manche annehmen, erscheiut noch immer ziemlich zweifelhaft.2) Erst seit der zweiten Hälfte des achtzehnten Jahrhunderts, seit der erneuten Invaison

¹) Regel befindet sich im Irrtum, wenn er (Peterm. Mitteil., Bd. 27, 1880, S. 393) bezweifelt, daß die Stadt früher eine andere Lage hatte.

²) Siehe E. Bretschneider, Mediaeval Researches from eastern Asiatic sources, II, S. 30, Anmerkuug 801. Geschichtliche Überlieferungen hierüber ebenda und bei Grum Grschimailo, l. c., I, S. 121 f., sowie 217 ff. und III, S. 274, 275. Siehe auch Galkin, Statistische Übersicht der Provinz Hsinkiaug (russisch, nicht im Buchhaudel) S. 66 f. und Pjewtzow, l. c., Bd. I, S. 359 f.; aber besonders wichtige Nachweise und Quellen älterer Literatur finden sich in Ritters Erdkunde, II. Teil, II. Buch, Asien, Bd. I, S. 380 f., wo namentlich hinsichtlich Bisch-balyk Geschichtliches und Anderes mitgeteilt wird. Auch im Bd. III, S. 273, findet sich manches Wissenswerte. Richthofen erwähnt (China I, S. 462) für U. den unter der Han-Dynastie gebräuchlichen Namen Wu-tu-ko, den er der Bearbeitung der Han-Annalen durch de Guignes entnimmt. Die Identität beider Namen bedarf jedoch noch weiterer Begründung. Siehe auch ibidem Anmerkung S. 41 und S. 202.

9

der Chinesen, die mit der Vernichtung und zum geringeren Teile auch mit der Vertreibung der in dieser Gegend auf eine Million geschätzten ehemaligen dschungarischen Bevölkerung (Oelöten) endete, sind uns die Nachrichten in ununterbrochener Folge erhalten. Land und Stadt wurden nach diesem großen Massacre mit eingewanderten Chinesen und wenigen Mandschus (Solonen) besiedelt, hauptsächlich aber mit aus dem Inneren Chinas gekommenen Dunganen. Es soll gleich hier hervorgehoben werden, daß dieser in der europäischen Literatur allgemein gebräuchliche Name nur eine europäische Bezeichnung für die muhamedanischen, aus Kan-su und Schen-si stammenden Chinesen ist. Von den Chinesen werden sie Huei-Huei genannt; sie bezeichnen sich selbst aber als Siao-kiao. Unter diesen, als treffliche Ackerbauer und Kaufleute hervorragenden, in religiöser Hinsicht ungemein fanatischen Ansiedlern gelangte Urumtschi rasch zu großer Blüte und Reichtum. In dem bekannten furchtbaren, aus religiösen Gründen gegen die chinesische Herrschaft ausgebrochenen Dunganenaufstand der siebziger Jahre des vorigen Jahrhunderts wurde nach anfänglichen Erfolgen diese Bevölkerung der Stadt und der Gegend in weitem Umkreis, auch weiterhin nach W. bis ins ferne Jligebiet nahezu gänzlich vernichtet.1) Die Stadt wurde dann an der heutigen Stelle neu aufgebaut;2) doch ist sie erst seit 1885 Residenz des Lu-tsin-tan, des höchsten Gouverneurs der großen Provinz Hsin-kiang und seines zahlreichen Beamtenstabes geworden. Außerdem beherbergt sie seitdem auch eine starke Garnison: a. 1908 beiläufig 2000 modern ausgebildete und 3000 Soldaten älterer Art von allen Waffengattungen. Auch eine Hochschule (Kao-teng-hiue-tang) und ein Kadettenkorps (Lu-kiun-hiue-tang) befinden sich dort. Da die ungeheuer ausgedehnte Provinz Hsin-kiang (fast 24000 geographische Quadr.-Kmeter) sich vom Fuße des Altai im N. bis zum Abfall des Kuen-lun im S., von Pamir und von der russischen Grenze am Jli im W. bis über die Barkul-Berge zum Pe-schan im O. hinaus dehnt, könnte die Lage der Stadt in ungefähr gleicher Entfernung von allen diesen Grenzen und wie schon S. 4 geschildert, an der niedersten und leichtest überschreitbaren Stelle des Tian-Schan-Gebirges gelegen, als Sitz der Provinzialregierung nicht besser gewählt sein. Da zudem der Handelsweg von Karaschar über Toksun nach Urumtschi die südliche Kaiserstraße (Tian-schan-Nan-lu) mit der nördlichen

¹⁾ Siehe Näheres hierüber aus chinesischen Quellen in: Description de la Chine occidentale par un voyageur. Traduit du Chinois par M. Guelmy, Missionaire, Extrait du Museon. Louvain 1887. Sodann besonders bei Grum Grschimailo, l. c., Bd. I, S. 131 f., 217 ff., wo auch Nachrichten über die frühere Stadt zu finden sind. W. S. Williams, The middle Kingdom. London 1883. Richthofen (China II, S. 676-681) gibt eine allgemeine Darstellung der muhamedanischen Bewegung im chinesischen Reiche. Auch in Futterer, Durch Asien, Bd. I, 1901 ist eine gute Schilderung des Dunganenaufstandes enthalten und in M. Hartmann, Chines. Turkestan "Angewandte Geographie", III. Reihe, Bd. 4, finden sich Angaben; auch in: La Mission Pelliot, Annales de la Soc. d. Géograph. commerciale (Section Indo-Chinoise). Hanoi 1909, Fasc. 4; besonders Wertvolles im trefflichen Buche: E. Schuyler, Turkistan II, S. 175-182.

²) Über das frühere Urumtschi findet man eine anschauliche Schilderung in: Ritters Erdkunde, Teil II, Buch II, Asien, Bd. I, S. 380 f. Statschkow erstattete über die heutige Stadt in einer Sitzung der Kais. Russ. Geograph. Gesellsch. vom 19. Oktober 1864 einen Bericht, welcher in Peterm. Mitteil. 1865, S. 34 wiedergegeben ist. Angeblich hatte U. damals 150000 Einwohner und sei das Hauptzentrum des innerasiatischen Handels, habe 140 Handelsagenturen, 65 chinesische Banken etc.; es sei dort beständige Messe usw. Diese Schilderung war jedoch stark übertrieben. In Iswestyia der Kais. Russ. Geograph. Gesellsch., Bd. VIII, 1872/73 ist ein verläßigerer, sehr interessanter Bericht über das alte U. aus den Memoiren eines exilierten chinesischen Beamten enthalten.

Kaiserstraße (Tian-schan-Peü-lu) verbindet, erscheint die Lage auch für militärische sowohl als administrative und für Handelszwecke gleich gut gewählt. 1)

Urumtschi wurde seit langen Zeiteu von der chinesischen Zentralregierung als Verbannungsort für hochgestellte Persönlichkeiten benützt, die sich politisch oder sonstwie kompromittiert hatten. Nicht wenige geistig hochstehende, um ihr Vaterland verdiente Männer haben hier ihr Leben in erzwungener Untätigkeit unrühmlich beschließen müssen. Zur Zeit lebt dort der in der chinesischen Armee ehemals eine bedeutende Stelle einnehmende Marschall Sou und der Bruder des Boxerpriuzen, der gleichfalls im Boxeraufstand beteiligt gewesene Herzog Lan.

Die heutige Gesamtbevölkerung von Urumtschi wird auf 30 bis 35000 Einwohner geschätzt, der Mehrzahl nach Chinesen (inklusive Garnison und Beamte), sodann hauptsächlich Dunganen (ca. 12000) und 2—3000 Tschantu. So wird die muhamedanischsartische Bevölkerung bezeichnet, die sich in Turfau, Toksun und überhaupt am Südabhang des östlichen Tian-Schan ansässig gemacht hat, und vor etwa 150 Jahren aus Kaschgar und Yarkend eingewandert ist. Die Zahl der Dunganen vermehrt sich fortgesetzt durch Zuzug aus dem Innern Chinas, aus den Provinzen Schen-si und Kan-su. Außerdem lebt in der Oase bei U. als Ackerbauer noch eine Bevölkerung von etwa 18000 Seeleu, bestehend aus 15000 Dunganen und 3000 Chinesen und Tschantu.

Der angebaute Boden in der Ebene von Urumtschi ist aber nicht sehr ausgedehnt (Taf. 15b), da, wie S. 7 erwähnt, der Archotu-Fluß im Sommer nur wenig Wasser zu liefern vermag und daher auch das meiste zum Ackerbau sonst geeignete Land nur in jährlichem Wechsel bestellt werden kann. Auch die Härten des hier zu voller Herrschaft gelangenden Kontinentalklimas - extreme Hitze und Trockenheit im Sommer und starke Kälte im Winter - gestatten nur in sehr geringem Maße den Anbau vieler Kulturpflanzen, verhindern aber besonders Gartenbau und Obstkultur. Für die starke Bevölkerung muß deshalb ein großer Teil der Lebensmittel, besonders Weizen, Mais, Gerste, Reis, Melonen etc. aus der durch Klima und reiche Bewässerung überaus gesegneten Oase Manas herbeigebracht werden, das Obst aber - Weintrauben (als Handelsartikel sehr viel Rosinen), Äpfel, Aprikosen, Pfirsiche, auch Melonen — wird hauptsächlich aus Turfan, Toksun und Fukan, in geringen Mengen auch aus Gutschen geliefert. Die Lebeusmittel sind daher in Urumtschi sehr hoch im Preise. Wo Wasser hingeleitet werden kann, ist Getreidebau überaus lohnend. Gerste bringt den zehnfachen, Weizen den fünfzehnfachen, Hirse den dreißigfachen Ertrag der Aussaat. Der Futterbau (Luzerne) lohnt gut; auch Weizen und Hülsenfrüchte werden in nicht unerheblichen Mengen produziert.

Der Handel ist bedeutend, was die Einfuhr aus China betrifft, die vorzugsweise aus Tee, Baumwollwaren, Seidenstoffen, Stickereien, Porzellan, Tabak, Kleinmetallwaren, Papier und Papierwaren etc. besteht. Aus Rußland kommen Moskauer Baumwoll- und Wollwaren, Stabeisen, Bandeisen und Kleineisenwaren, Geschirre, Leder und Lederwaren, Zucker, Kerzen, Petroleum und Zündhölzer. Nach Rußland werden ausgeführt getrocknete Weintrauben und Baumwolle, die beide hauptsächlich aus Turfan kommen, dann Ziegen-, Schaf- und Lammfelle, Wolle, Ziegen- und Kameelhaar, sowie Pelzfelle und Filzdecken.

¹⁾ Man beachte auch die Mitteilungen von S. Matussowsky in "Geographische Übersicht des Chinesischen Kaiserreichs". St. Petersburg 1898, S. 221 f., russisch.

11

Die russischen Händler wohnen in der Nähe des russischen Konsulates in einer eigenen, sehr sauberen Straße, die "Faktorei" genannt. Die Kaufleute (ca. 50 Firmen) sind aber keiue Nationalrussen, sondern Tataren aus Semipalatinsk, Sarten aus dem Andischaner Kreise und Tarantschi aus dem Jligebiet. Der russische Handel ist jedoch in Urumtschi bei weitem nicht von gleicher Bedeutung wie in Tschugutschak in Tarbagatai, weil der Warenaustausch von und nach der Mongolei hauptsächlich von dort aus, zum geringeren Teil auch über Gutschen betrieben wird. Die Industrie von Urumtschi ist gering, etwas Gerberei, Färberei und Töpferei, sowie Herstellung von Baumwollstoffen aus von Turfan eingeführter Baumwolle, Fertigung von Kleidern und Betrieb einiger primitiver Eisengießereien, die ihr Rohmaterial, ebenso wie Steinkohlen aus dem nahen Gebirge¹) beziehen, und endlich Schnapsbrennerei (chinesischer Reisschnaps). Von großer Bedeutung sind die im Frühling und Herbst stattfindenden kirgisischen Schafmärkte und auch der im Herbst abgehaltene Pferdemarkt, dessen vorzüglichste Produkte aus Karaschar kommen.²) Die große chinesische Telegraphenlinie, aus Kansu abzweigend, verbindet Urumtschi mit Tschugutschak in Turbagatai und Kobdo in der Mongolei, sowie mit den größeren Plätzen im Osten und im Kaschgarbecken und Iligebiet im W, wo Anschlüsse an die russischen Linien zwar ermöglicht wären, aus gegenseitigem Miätrauen der Regierungen jedoch bisher nicht ausgeführt wurden. Die Bodenschätze im W. der Stadt, welche die nahen Hügelketten der Juraformation enthalten, werden nur wenig ausgebeutet. Gute Steinkoble ist in bedeutender Mächtigkeit vorhanden uud wird an mehreren Stellen, zum Teil auch in Tagebau in sehr primitiver Weise gewonnen. (Siehe Fußnote 1.) Da es, wie ebenda hervorgehoben, auch an Eisenstein nicht mangelt, wäre es wohl möglich, den großen Bedarf an Eisen durch örtliche Fabrikation zu decken. Die primitiven chinesischen Arbeitsmethoden führen aber nur zur Herstellung von großen Kesseln, während aller sonstiger Eisenbedarf aus Rußland auf dem ungeheuer weiten Weg von Semipalatinsk durch Kameelkarawanen hiebergebracht wird. Ich begegnete einer solchen ausschließlich mit Stab- und Bandeisen beladenen Karawane von über tausend Kameelen. Petroleum wurde ebenfalls an einigen, wie es scheint sehr ergiebigen Fundstellen des Juragebirges festgestellt, bisher aber nicht verwertet. Kupfer wird an zwei Orten in denkbar ursprünglichster Art ergraben und geschmolzen und dann in der Stadt gleich zu den bekannten durchlöcherten chinesischen Scheidemünzen verarbeitet.

¹⁾ Im NW., wenige Kilometer von der Stadt entfernt, finden sich in den jurassischen Ablagerungen (Angaragesteine) ziemlich reiche Kohlenflöze, die zum Teil in Tagebau in primitiver Weise ausgebeutet werden. In den gleichen Schichten hat man etwas weiter entfernt Toneisensteine gefunden. In früher ausgebeuteten Kohlengruben wütet seit vieleu Jahrzehnten das Feuer; der zutage tretende Rauch gab manchen Reisenden Veranlassung, das Bestehen tätiger Vulkane anzunehmen (Humboldt). Richthofen erwähnt auf Grund ihm zugekommener chinesischer Berichte Solfataren in der Umgebung von U. als "Überreste vulkanischer Tätigkeit". China I, S. 220, 462, 560. Siehe hierüber auch Ritters Erdkunde a. a. O., S. 386 f.

²) Weitere Auskünfte über Urumtschi sind zu finden in Pjewtzow, l. c., Bd. I, S. 357 f., dann in Grum Grschimailo, l. c., Bd. l, S. 126 f. N. M. Galkin, l. c., S. 118 f., ferner in N. Krotkow: Der Konsulatsbezirk Urumtschi und der russische Handel im Jahre 1906. Ieswetiya, Kais. Russ. Geograph. Gesellsch., Bd. 44, 1908, S. 361 f. (russisch). M. S. Bell, The great Central Asian Trade Route from Peking to Kashgaria. Proceed. R. G. Soc., Bd. XII, 1890, S. 79, 81. La Mission Pelliot, Annales de la Soc. de Géographie Commerciale (Section Indo-Chinoise), Fasc. 4. Hanoi 1909, S. 13 ff. und in Revue française de l'étranger etc. Tom. XXXV Nr. 373.

II. Das Klima von Urumtschi und seine Beziehung zur Bogdo-Ola.

Was die klimatischen Verhältnisse der Bogdo-Ola und die von Urumtschi betrifft, so verweise ich auf die Ergebnisse einiger meiner Beobachtungen, wie sie in Anlage Kap. XXII durch Herrn F. Lex bearbeitet erscheinen. Inzwischen ist auch die S. 6 schon erwähnte Schrift von Strokowsky erschienen, i) die zum ersten Male über die interessanten meteorologisch-klimatischen Verhältnisse der Stadt Urumtschi auf Grund dreijähriger systematischer Beobachtungen Aufschluß gibt. Ich halte es daher für nützlich, aus dieser der europäischen Wissenschaft nicht allgemein zugänglichen Veröffentlichung einiges mitzuteilen, womit ich einzelnes aus meinen eigenen Beobachtungen gleich verflechte. Die kleine Abhandlung beruht auf wissenschaftlich genau geführten Listen, die St. als Arzt des russischen Konsulates auf der von ihm errichteten und geleiteten meteorologischen Station von Mitte April 1907 angefangen drei Jahre lang geführt hat.

Außer den spärlichen Angaben Grum Grschimailos²) und Roborowskys³) besitzen wir bisher keinerlei beglaubigte meteorologisch-klimatische Daten aus dieser Gegend, d. h. vom Nordabhange des Gebirges, weshalb dem Inhalte der Strokowskyschen Schrift ganz besondere Bedeutung zukommt. Die vom Südabhang bekannt gewordenen, durch General Tillo bearbeiteten, ziffermäßigen Ergebnisse der Expedition Roborowsky nach Zentralasien entstammen der von diesem verdienten Reisenden errichteten und nahezu 2 Jahre lang unterhaltenen meteorologischen Station von Luktschun, die 60 m unter Meeresniveau in der bekannten von hohen Gebirgen umrahmten Grabensenke lag (siehe S. 3) und gestatten deshalb keine recht zulässigen Vergleiche mit den Verhältnissen des 912 m hoch am Nordfuße des Gebirges frei gelegenen, also anderen klimatischen Einflüssen ausgesetzten Urumtschi.⁴)

Die weiteren von General Tillo veröffentlichten Daten und Erläuterungen über die Ergebnisse der von Roborowsky auf den Etappen seiner Reise gemachten meteorologischen Beobachtungen⁵) bieten aber, da der Reisende an den einzelnen Stationen nur wenige Tage verweilen konnte, ebenfalls kein ausreichendes Vergleichsmaterial. Wir wissen aber aus den Berichten von Regel,⁶) von Obrutschew,⁷) auch durch Wojekows Abhandlung über das Klima von Luktschun,⁸) ferner durch Elsworth Huntington,⁹) durch Futterer,¹⁰) endlich

¹⁾ W. A. Strokowsky, Abriß des Klimas von Urumtschi. Iswestiya der Kais. Akad. der Wissensch St. Petersburg 1902 (russisch). Der Verfasser war Arzt des Kais. Russ. Konsulates in Urumtschi und hat in dieser Funktion eine meteorologische Station unterhalten, wozu ihm die Instrumente vom Kais. Zentralobservatorium in St. Petersburg zur Verfügung gestellt wurden. Dorten hat er auch die nötigen Anleitungen erhalten und gab sich seinen Beobachtungen mit äußerster Sorgfalt und Gewissenhaftigkeit hin.

^{2) 1.} c. 1, S. 341 und Bd. III, S. 339.

³) l. c. l, S. 586 f. Den Angaben Pjewtzows, l. c. l, S. 360 über Veränderung der klimatischen Verhältnisse kann keine wissenschaftliche Bedeutung beigemessen werden.

⁴⁾ Siehe hierüber auch besonders Obrutsche w in Hettners Geograph. Zeitschrift I, 1895, S. 277f.

⁵) 1. c., Bd. III, S. 40 f.

⁶⁾ l. c., S. 205 f.

⁷⁾ A. a. O., S. 270 f. und besonders S. 277 f.

S) Meteorolog. Zeitschrift 1904 und in Hann's Handbuch der Klimatologie, 3. Aufl., Bd. III, S. 245 und 313 f.

⁹⁾ Geograph. Journal, vol. XXX, 1907, S. 256 f. und The Pulse of Asia, l. c., S. 299 f.

¹⁰⁾ l. c, Bd. III, Meteorologie, S. 33 f. und 80-84.

durch Grum Grschimailo¹) uud Pjewtzow,²) daß aus den schon erwähnten Gründen das Klima im Becken von Turfan überhaupt als ein gauz eigenartiges anzusehen ist und mit dem eines hart am Rande des Gebirges gelegenen Ortes nicht in Parallele gestellt werdeu kann. Nichtsdestoweuiger finden sich gerade bei Prüfung der Beobachtungen Roborowskys und bei ihrem Vergleich mit denen Strokowskys doch auch mancherlei Analogien, die, wenn auch nur höchst selten in den korrespondierenden absoluten Werten, so doch in deren Verhältnis zueinander zum Ausdruck gelangen. Am auffälligsten äußert sich die regelmäßige Analogie der Verhältuiswerte hiusichtlich des monatlichen Temperaturverlaufes in Roborowsky-Tillos Tabellen IV und VI (l. c., S. 16), und in Bezug auf die Luftdruckschwankungen in Tillo-Roborowskys Tabelle I (l. c., S. 13) bei ihrem Vergleich mit den bezüglichen Ergebnissen, welche Strokowsky für Urumtschi ermittelt hat.

Wir entnehmen der wertvollen Schrift Strokowskys, daß die durchschnittliche jährliche Sonnenscheindauer in Urumtschi in Prozenten der gesamten Tagesdauer ausgedrückt 65,2% beträgt; sie erreicht ihr Maximum im September (79%), ihr Minimum im Dezember (54%), dem sich der Juni mit 58% nähert, welchem überhaupt das Minimum von Tagen mit unbewölktem Himmel zukommt (9). Die durchschnittliche Jahreszahl vollkommen klarer Tage ist 146, die solcher mit bedecktem Himmel 40, die übrigen Tage sind schwach bewölkt. Die Richtung. aus welcher die Wolken heranzieheu, ist nahezu konstant von NW., nur im Sommer einige Male von W. und WSW. Niemals kommt Gewölk aus anderer Richtung. was eine sehr beachtenswerte Tatsache ist.

Der Wert der mittleren Jahrestemperatur in den Strokowskyschen drei Beobachtungsjahren ist um mehr als einen Grad schwankend, ein Verhältnis, das übrigens fast allenthalben in den Stationen Zentralasiens bisher beobachtet wurde. Der Mittelwert für Urumtschi
berechnet sich auf 5,1°C, während die theoretische mittlere Jahrestemperatur — in Abhängigkeit von geographischer Breite und Höhenlage nach der Spitalerschen Tabelle berechnet — 6,4° betragen würde. Die thermische Anomalie ist also — 1,3° und die auf
Meeresniveau bezogene faktische mittlere Jahrestemperatur — nach den Wildschen Normen
— 9,3°, welche Zahl demnach als wahre Isotherue von Urumtschi anzusehen ist. Die
höchste Temperatur wird im Juli erreicht (19. Juli 1909, 36,6°), die niederste im Januar
(Januar 1909 — 34,5°). Die normale Tagesamplitüde wurde auf 13,1° berechnet; sie ist
am kleinsten im Oktober und November (10,6° und 10,4°) und erreicht ihr Maximum
(14,7°) im Juli, August und Mai.³) Die Jahresamplitüde der Temperatur, also die Differenz
zwischen der höchsten Sommertemperatur und der niedersten Wintertemperatur schwankt
um 39°C. (In Luktschun nach Tillo-Roborowsky, l. c., S. 17 in den Jahren 1894/95 68,3°.)

¹⁾ l. e., Bd. I, S. 251 f., 299 f., 500 f. und 506 f.; Bd. III, S. 232 f., 292 f.

²⁾ l. c., Bd. I, S. 350 f. und 410 f.

³⁾ Wegen der großen Seltenheit von meteorologischem Material aus diesem Teile Asiens dürfte es von Interesse sein, vergleichsweise auf Beobachtungen in der Stadt Saissan hinzuweisen, die allerdings nm vier Breitengrade nördlicher als Urumtschi liegt. Dort wurden nach den Veröffentlichungen von A. N. Sedelnikow (Der Saissan-See, Sapiski der Westsibir. Abteil. der Kais. Russ. Geograph. Gesellsch., Bd. XXXV, Omsk 1910, russisch, S. 118) gerade im August und September die niedrigsten, im Oktober, November und Dezember die höchsten Temperatur-Amplitüden beobachtet. Die betreffenden Werte sind: 18,5%, 22,7%, 31,8%, 34,8%, 31,1%. Wir erfahren aus dieser Schrift ferner, daß dort die vorherrschenden Sommerwinde aus WSW. wehen, weniger aus SW. und NW. und daß erstere die regenbringenden sind.

Mau kann demuach das Klima von Urumtschi als extrem kontinental bezeichnen, wie dies bei seiner nahezu dem Zentrum Innerasiens entsprechenden Lage erklärlich ist.

Deunoch ist merkwürdigerweise eine Anomalie vorhanden, die sonst nur dem maritimen Klima zu eigen ist, nämlich das weitaus überwiegende Eintreten des Maximums der Tagestemperatur gegen Mittag und zwar gerade vorzugsweise an klaren, windstillen Tagen. Es hat dies jedoch eine lokale Ursache und hängt mehr mit dem Verhältnis der Lage des Ortes zum nahen Hochgebirge zusammen, welches überhaupt auch für manche andere hier herrschende klimatische Faktoren verantwortlich zu machen ist, besonders für regelmäßig auftretende lokale Winde. (Siehe hierüber die Angaben von F. Lex, Anhang Kap. XXII.) Es findet Wechselwirkung zwischen erhitzten Tiefen und erkalteten Höhen statt. Dementsprechend tritt das Minimum im Winter schon abends und nicht morgens ein, da im Winter und bei bedecktem Himmel die thermalen Gegensätze zwischen Höhen und Tiefen sich mildern.

Zur Charakterisierung des Winters ist anzuführen, daß im Januar nie Tauwetter eintritt, im Februar sehr selten, hingegen im Dezember bis zu 10 %, im November 35 %, im Oktober 46 %. Die Nachtfröste beginnen im Oktober und enden erst im April, kommen aber vereinzelt noch im Mai vor. Vergleichweise möchte ich auf die in Taschkent ermittelten Werte hinweisen und teile hievon mit, daß die Fröste dort von Ende Oktober bis Mitte März dauern. Der schneereichste Monat ist in Urumtschi bereits der Oktober (41,5 mm). Eine ständige zusammenhängende Schneedecke stellt sich in der zweiten Hälfte des Oktober ein und verschwindet erst in der zweiten Hälfte des März. In Taschkent ist die Dauer laut Gedeonow¹) von Mitte November bis Mitte Februar. Auch im Mai treten dort noch vereinzelte Schneefälle ein.

Die jährliche Niederschlagsmenge beträgt, ungeachtet der geringen Entfernung (ca. 50 km) der stark vergletscherten zentralen Bogdo-Ola-Gruppe und trotz des gebirgigen Charakters der Gegend durchschnittlich nur 241½ mm (in Taschkent 345 mm), worin die Einwirkung der ungeheuren Ausdehnung des im N. angrenzenden Dsungarischen Wüstenbeckens zur Geltung kommt. Das Maximum der Niederschläge innerhalb der drei Beobachtungsjahre trat im dritten Jahre ein und zwar am 22. Juni 1907 mit 42,2 mm. April, Juui und Oktober siud die niederschlagsreichsteu, Februar und März die niederschlagsärmsten Monate. Die mittlere wahrscheinliche Niederschlagsmenge, in Prozenten der Anzahl der Tage ausgedrückt, ist pro Jahr 19½ und zwar am größten im Dezember und Januar (28%), am geringsten im September (11%), was mit den beobachteten Verhältnissen der Bewölkung und der Sonnenscheinsdauer gut übereinstimmt. Nebel kommen nicht vor. Wohl aber ist nach heftigen Winden die Atmosphäre noch Tage lang durch Staub getrübt. Gewitter finden nie statt. Man sieht sie aber sich in der Ferne im Gebirge entladen.

Die Verteilung des Luftdrucks wird dadurch gekennzeichnet, daß er im November und Dezember am höchsten ist (im Dezember durchschnittlich 691,5 mm). Schon im Februar sinkt er um 10 mm, steigt im März wieder um 6 mm und fällt dann allmählich bis zum Juni-Minimum (679,7 mm), steigt dann wieder bis zum Winter-Maximum gleichmäßig an,²)

¹) D. D. Gedeonow, Einiges über die Klimatologie von Turkestan. Iswestiya der turkestanischen Abteilung der Kais. Russ. Geograph. Gesellsch., russisch, Bd. I, 1898, S. 70.

²) Siehe die annähernd ähnlichen Verhältnisse des Verlaufs für Luktschun in Tillo-Roborowkys Tabelle I, l. c., S. 13 und für Taschkent vergleiche Gedeonow, l. c., S. 64, 69, 70.

so daß die mittlere Jahresschwankung 11,8 mm beträgt. Der durchschnittliche jährliche Druck ist 686 mm. Der beständigste Monat ist Dezember (Schwankung in den einzelnen Jahren nur 0,2 mm), die unbeständigsten sind März und Mai (Schwankung bis zu 3,2 mm). Die normale tägliche Amplitüde des Luftdrucks stellt sich nur für die Monate August bis November als eine ziemlich konstante Größe dar, schwankt dagegen in den übrigen Monaten von ½ bis 1 mm. Im Laufe des Jahres ändert sich die Tagesamplitüde von 0,5 mm im November — was dem höchsten Barometerstand entspricht — bis zu 1,3 mm im Juni, was dagegen mit dem tiefsten Minimum nicht ganz zusammenfällt. Die Veränderlichkeit des Luftdrucks von Tag zu Tag beläuft sich im Jahresdurchschnitt auf 2,3 mm, schwankt aber in den verschiedenen Jahren bis zu 1,2 mm. Die größte Veränderlichkeit (3,0 mm) tritt gerade in den Monaten Oktober und Dezember ein, wo im allgemeinen der höchste Luftdruck herrscht, und die Tagesamplitüde verhältnismäßig gering ist. Die geringste Veränderlichkeit aber (1,5 mm) tritt im August auf, gerade bei niederem Barometerstand und relativ großen Tagesschwankungen.

Der Feuchtigkeitsgehalt der Luft ist im Jahresmittel 4,5 mm und dieses Verhältnis wird charakterisiert durch ein Wintermaximum (4 Monate) und ein ebenso langes Sommerminimum der relativen Feuchtigkeit. Der trockenste Monat ist Mai (44 %) relativ), der feuchteste Januar (83 %) relativ). Die absolute Feuchtigkeit steht hierzu im Gegensatz, denn sie ist am geringsten (1,3 mm) in den Monaten Januar und Februar, am größten im Juli (8,7 mm). Die durchschnittliche monatliche Amplitüde der täglichen Schwankungen der relativen Feuchtigkeit ändert sich in den Sommermonaten nur wenig, in den Wintermonaten stärker, während sich dies bei der absoluten Feuchtigkeit in der Form von sehr regelmäßigen Kurven ausdrückt mit Ausnahme des Monats Mai.

Eine auffällige Erscheinung ist, daß die Verteilung windstiller und windiger Tage im Jahresmittel sehr unregelmäßig ist und mit dem Gange des Luftdruckes keine Analogie zeigt. Die Zahl der windstillen Tage ist am größten im Juli und August, am kleinsten im kältesten Monat. Das Tagesverhältnis ist: Windstille in der Abendzeit, schwache Bewegung am Morgen und stärkste in der Mittagszeit. Die mittlere Beweglichkeit der Atmosphäre wird durch den Wert von 2 m pro Sekunde ausgedrückt. Die stärkste Bewegung der Atmosphäre findet im September und April statt, die schwächste im Juli und Dezember. Am häufigsten wehen NNW. (16,8 %) und NW. (11,7 %) Winde. Sodann kommen N.-Winde (7,5 %), SSO. (7,4 %), SO. (6,4 %) und SSW. (6,1 %), wobei zu beachten ist, daß alle aus O. wehenden Winde die größten Stärken besitzen; ihre mittlere Stärke beträgt 8,2-9,7 m, steigt aber in einzelnen Fällen bis 15 und 20 m, während die W.-Winde durchschnittlich nur 2,0-2,3 m Stärke erreichen, im Maximum 3-4 m. Hierzu möchte ich aber bemerken, daß hinsichtlich der Winde der Platz Urumtschi keineswegs als typisch für diesen Teil Ost-Turkestans angesehen werden kann, wo sonst die aus N. und NO. wehenden Winde in weit größerem Prozentsatze überwiegen; daß vielmehr die zu Beginn dieses klimatischen Abrisses und im vorigen Kapitel gekennzeichnete eigenartig geschützte Lage der Stadt hier wesentliche Abweichungen von den normalen ostturkestanischen Verhältnissen zur Folge hat. Ist die Stadt doch rings von mäßigen Höhen umgeben, im SO. aber von dem nahen Riesenwall der Bogdo-Ola überragt. Der Höhenkranz hält die Winde ab oder lenkt sie aus ihrer Richtung. Hingegen hat die Lage der Stadt in einer trichterförmigen Bucht (siehe Karte Ia), ebenso wie die im NW. der Stadt sich öffnende, erwähnte torförmige

Bresche (siehe S. 4 und 7) zur Folge, daß die aus dieser und verwandter Richtung zuströmenden Winde freien Zutritt haben und die vorbeistreichenden werden infolge der außerhalb herrschenden, hohen Temperatur z. T. in die Lücke hineingepreßt. Diese lokalen Abweichungen werden durch die vertikale Gliederung des umgebenden Bergkranzes noch weiter beeinflußt. Die ungeheure Höhe der im SSO. von Urumtschi aufragenden Bogdo-Ola-Gruppe, welche die Sohle des Beckens von Urumtschi um etwa 5600 m überragt, hat die Ausbildung besonderer lokaler Windströmungen zur Folge, worauf schon bei Erörterung der Temperaturverhältnisse hingewiesen wurde. Wir haben es hier wie in anderen Teilen der Erde, wo große Becken von hohen Gebirgen umschlossen sind, mit periodischen Berg- und Talwinden zu tun, die nach ganz bestimmten, der Tageszeit und der Jahreszeit folgenden Gesetzen ausgebildet werden und natürlich in der warmen Jahreszeit wegen der verschärften thermalen Gegensätze größere Bedeutung erlangen, als in der kalten. Außerdem kommen nicht selten Störungen thermischen Charakters vor, begünstigt durch die im Süden der Stadt gelegene tiefe Depression des Gebirges, dem Dun-Schan-Sattel, von dem schon S. 4 und 9 als Zugangsstelle für den Handelsverkehr, die Rede war.

Im S. dieser breiten, in Form einer Hochmulde gedehnten Lücke des Gebirges liegt die S. 3 besprochene, unter Meeresniveau abfallende Senke von Turfan, welche einer außerordentlicheu Insolation ausgesetzt ist. 1) Die dort aufgelockerten Luftschichten werden zeitweise in ihrem raschen Aufstieg zu den Höhen, wenn sie gerade in der Richtung nach NW., also zu der erwähnten Lücke hin wehen, gebläseartig und mit Staub, Sand und kleinen Kieseln beladen durch die Depression hindurch in den weiten Kessel von Urumtschi hineingetrieben,?) wo der Luftstrom divergierend sich verteilt und von den umwallenden Felswänden zurückgeworfen, Staubstürme erzeugt, die von sehr unregelmäßigen, manchmal arge Verwüstungen anrichtenden Erscheinungen begleitet sind.³) Sogar ein richtiger Föhn wird in Urumtschi des öfteren beobachtet, wenn nämlich den in der glühend heißen Turfansenke aufgelockerten Luftschichten im Norden des Gebirges entlang ziehende zyklonale Bildungen entsprechen und daher die Luft des Südens durch die Lücken des Gebirges, ja sogar über die höchsten Kämme der Bogdo-Ola hinweg zu den nördlichen Abhängen des Gebirges hinüber geleitet wird. Leider haben wir bis jetzt aus diesen weiten Gebieten Asiens außer den schon aufgeführten Quellen noch keinerlei meteorologisches Beobachtungsmaterial und sind daher hinsichtlich des Vorkommens zyklonaler und antizyklonaler Bildungen am Nord- und am Südfuße des östlichen Tian-Schan auf theoretische Erwägungen angewiesen. Indessen spricht schon Wojekow4) davon, daß im Kessel von Luktschun im Frühling Zykloue nicht selten sind. Strokowsky äußert sich dahin, .daß der starke und typisch ausgeprägte Föhn" in Urumtschi meist im Frühjahr auftritt, seltener im Herbst uud daß er über die Gebirgsdepression in das Becken von Urumtschi eindringe. Dagegen habe ich selbst ihn in meinem Hochlager am Fuße des höchsteu Teils der Bogdo-Ola-Gruppe und zwar im Hochsommer (4. bis

¹⁾ Siehe die tabellarischen meteorologischen Beobachtungen im Orte Luktschun bei Roborowsky, l. c., Bd. Ill, S. 1-19.

²⁾ Siehe hierüber auch Pjewtzow, l. c., Bd. I, S. 354.

³) Es ist in hohem Maße interessant, was in Ritters Erdkunde, Teil III, Buch II, Asien, Bd. II, S. 379 f., über die sommerlichen Stürme im Hochgebirge mitgeteilt wird und über die durch sie verursachten wichtigen geschichtlichen Ereignisse, welche sich in diesen Gegenden abgespielt haben.

⁴⁾ Das Klima von Luktschun, l. c., S. 125.

6. August 1908) in typischer Ausbildung beobachten können und weise auf die Bearbeitung meiner des Interesses nicht entbehrenden Beobachtungen durch Herrn F. Lex hin, die als Kap. XXII diesem Werke angefügt sind.

Diese zeitweise auftretenden Föhuwinde erreicheu nach Strokowsky in Urumtschi eine durchschnittliche Geschwindigkeit von 9,7 m mit Maxima bis über 20 m und wehen vorwiegend aus SO.: sie dauern zwei bis dreimal 24 Stundeu und sind von starker Steigerung der Temperatur begleitet, so daß ein solcher Föhn, wenn er im Winter eintritt, bei seiner großen Trockenheit eine übrigens rasch vorübergehende Schneeschmelze zur Folge hat. Der Himmel ist dabei wolkenlos und der Barometer zeigt fortgesetzt rasches Fallen, bis endlich bei dessen ebenso raschem Wiederansteigen eine etwas schwächere NNW.-, N.- oder NW.-Luftströmung einsetzt, die wesentlich kühler ist. Dann beginnt der Luftdruck rasch wieder anzusteigen, der Himmel bedeckt sich nach einiger Zeit und Regen setzt ein oder im Winter Schneefall. Dieses zweite Stadium der Entwicklung dauert mehrere Tage, worauf dann stets eine längere Periode klaren, ruhigen Wetters folgt. Diese Föhnwinde sind, wie schon hervorgehoben, von großer Trockenheit (bis zu einem Minimum der relativen Feuchtigkeit von 5 %, da sie allen Feuchtigkeitsgehalt an den vereisten Kämmen abgegeben haben. Dafür bringen sie schwebende Staubteilchen in großer Menge mit, die noch tagelang nach Aufhören des Föhns als Schleier die Luft verdichten. Erst nach einiger Dauer des kühlen feuchten Wetters verschwindet auch die Trübung. Es kommt vor, besonders in den Wintermouaten, daß dieser Zyklus der Erscheinung nur teilweise zur Durchführung gelangt. Es tritt auch der Fall ein, daß Föhnwinde, ohne den Boden des Beckens von Urumtschi zu berühren, über den abschließenden Wall im N. hinausstreichen. Man hört dann bei verhältnismäßig ruhigem Zustand der Atmosphäre tagelang das außerordentliche Geräusch des Sturmes, man sieht die als Sturmstreifen niedrig dahinziehenden Wolken, die dann auch manchmal in einem Teile des Beckens entweder rechts oder links des Flusses zur Tiefe gelangen, ohne die jenseitige Flusseite zu berühren.

Diese klimatischen Angaben, welche hier nur auszugsweise in Verbindung mit eigenen Beobachtungen wiedergegeben werden konnten, gewinuen ein ganz besonderes Interesse, wenn man sie mit den Daten über die klimatischen Verhältnisse im westlichen Turkestan vergleicht, wie sie in der schon zitierten bedeutsamen Zusammenstellung¹) Gedeonows über die Klimatologie von Turkestan niedergelegt sind und mit H. von Fickers wertvoller Abhandlung.²) Über das Verhältnis der klimatischen Bedingungen Urumtschis zu den im Hochgebirge von mir gewonnenen meteorologischen Daten folgen später noch einige Mitteilungen.

III. Bedeutung der Bogdo-Ola als Landmarke der Provinz Hsin-kiang.

In Urumtschi, dem Ausgangspunkte für die Erforschung der Bogdo-Ola wurde meine durch die bisherigen langen und beschwerlichen Gebirgsreisen (S. 3 und 5) ziemlich desorganisierte Expedition aufs neue ausgerüstet und zusammengestellt. Während dieser heißen, sonnigen Arbeitstage leuchteten die hohen Schneedome der zentralen Bogdo-Ola-Gruppe

¹⁾ Iswestiya der turkestanischen Abteilung der Kais. Russ. Geograph. Gesellsch., Tom. I, 1898.

²⁾ Zur Meteorologie von West-Turkestan von H. von Ficker. Denkschriften der K. K. Akad. d. Wiss., mathem. naturwiss. Kl., Bd. LXXXI, 1907.

durch alle gegen O. und NO. sich dehnenden Straßen auf das bewegte Leben der großen Handelsstadt herein (s. Taf. 15.) Diese Tatsache bildete für mich damals in gewisser Hinsicht eine Überraschung; denn nach den bisherigen kartographischen Darstellungen der Gruppe und ihrer Lage hätte es eigentlich unmöglich sein müssen, sie von der Stadt aus im N. zu erblicken. Eine solche Wahrnehmung konnte nur anregend auf mein Vorhaben wirken, die bisher mangelhafte Kenntnis von diesem prächtigen Gebirge zu erweitern, das schon hinsichtlich seiner außerordentlichen, den ganzen östlichen Tian-Schan so mächtig überragenden Höhe und seiner — ungeachtet der weit nach O. vorgeschobenen Lage, — starken Vereisung mancherlei Rätsel barg.

Zunächst fällt es auf, daß gerade dort, wo der östliche Tian-Schan, insoweit er Hochgebirgscharakter besitzt — im N. der tiefen Turfansenke und des östlich daran grenzenden Wüstenbeckens — zu seiner geringsten Breitenausdehnung zusammengeschnürt ist¹) und nachdem er überdies bei U. auch die tiefste Absenkung (1370 m) in seinem ganzen bisherigen Verlauf erfahren hat (S. 4), nun ganz plötzlich wieder ein Ansteigen zu Höhen zeigt, wie wir sie nur in den höchsten Teilen des zentralen Tian-Schan wieder finden. Diese auffällige horizontale und vertikale Veränderung im orographischen Bild des Gebirges ließ auf besondere, kaum bekannte tektonische Einwirkungen schließen, die aufzuklären ich mir zur Aufgabe gemacht hatte. Der außerordentliche Eindruck des relativen Höhenunterschieds zwischen der Bogdo-Ola-Gruppe und ihrer Umgebung tritt umso stärker hervor, als sie den wasserscheidenden Wall zwischen zwei tiefen Senken bildet: dem flachen Becken der Dsungarischen Wüste im N. — für deren südlichen, also dem Tian-Schan-Gebirge zunächst gelegenen Teil (Saosti-Elisun), berechnet sich die mittlere Erhebung auf 630 m — und der öfters erwähnten, bis unter Meeresniveau fallenden zentralasiatischen Grabensenkung²) im S.

Dies erklärt, daß die hochgetürmten, gletscherreichen Zinnen der zentralen Bogdo-Ola mit ihren nach N. wie nach S. jäh abfallenden eisblinkenden Steilflächen als eine Landmarke für diesen Teil Zentralasiens erscheinen. Von Alters her machte ein solch gewaltiges Naturmonument tiefen Eindruck auf alle die Gegend bewohnenden oder sie bereisenden Menschen, sowohl auf die der Karawanen, welche auf der nördlichen Kaiserstraße (S. 10) entlang zogen, als auf die aus der Tiefe von Turfan im S. über das Gebirge nach Urumtschi heraufwandernden und beschäftigte ihre Fantasie auf das lebhafteste. Die ungeheure, den Menschen unerreichbar scheinende Höhe jener Berggipfel, um welche sich häufig Wolkengebilde scharen, aus denen Segen oder Verheerung für die Tiefen an ihrem Fuße entsteht, mußte den Glauben an dort thronende göttliche oder dämonische Gewalten erwecken, je nachdem die vereisten Gipfel sich im Morgen- oder Abendsonnenglanz von magischen Lichtern umspielt zeigen oder zu anderen Zeiten durch düsteres, von Blitzen durchzucktes Gewölk eingehüllt werden. Hinzu kommt der außerordentliche, eigenartige Gegensatz, in welchem die in ewigen Schnee und Eis prangenden oder in tieferer Lage dicht bewaldeten Höhen zu den kahlen, sonnendurchglühten Wüstenlandschaften der Umrandung stehen. So hat denn schon seit den frühesten Zeiten diese Gebirgsgruppe in den Sagen der umwohnenden Völker eine besondere Rolle gespielt und wird auch in den Berichten aller

¹) Auf ca. 30 km gegenüber 200 km Breite in einer Entfernung von 100 km westlich von Urumtschi und 100 km Breite in abermaliger Entfernung von 100 km östlich hievon.

²) Der leichteren Verständlichkeit halber behalte ich in der Folge diese Bezeichnung bei. Siehe Anmerkung 2 S. 4.

europäischen Reisenden, welche diese Gegend besucht haben, als die auffälligste Erscheinung im Landschaftsbilde erwähnt.¹)

Die Fruchtbarkeit der Oasen am Fuße des Gebirges steht durchaus in Abhängigkeit von den Gewässern, welche von diesem abfließen. Diese Wasserläufe werden aber auch öfters zu furchtbaren Strömen, die große Zerstörungen anrichten. In den Vorstellungen der primitiven Völker mußten daher die auf den Bergen waltenden Naturkräfte, je nach ihren Wirkungen göttliche oder dämonische Verkörperung annehmen und so hat sich im Laufe der Zeiten ein reicher Sagenschatz an die Gipfel der Bogdo-Ola geknüpft, verschiedenartig ausgestaltet, entsprechend den besonderen religiösen Vorstellungen jener Volksstämme. Sowohl von der mongolischen als von der chinesischen Bevölkerung wurden die Bogdo-Ola-Gipfel als der Eispalast der Gottheit, als ein Schauplatz göttlicher Emanationen angesehen: sie gelten als heilig und hierauf deutet der mongolische Name Bogdo-Ola — Heiliger Berg,²) der jedoch, wie S. 1 betont wurde, nur allein den extremen Höhen der zentralen Gruppe zukommt und keineswegs für die weiter nach O. sich erstreckende Fortsetzung des Gebirges mit Berechtigung Anwendung finden kann, wie dies nach den irrig angebrachten Bezeichnungen in manchen Karten angenommen werden muß.

Es sei hier besonders hervorgehoben, daß der Name Bogdo-Ola, auch Bogdo-Ula und Bogdo-Baga etc. ein in Innerasien weit verbreiteter ist und gerade für solche Gebirge oder Berge Verwendung fand, an deren Fuße mongolische Stämme seßhaft sind oder waren.³) Diese Tatsache erklärt sich durch den Höhenkultus, dem bekanntlich in den religiösen Anschauungen und Gebräuchen der lamaistischen Mongolen eine große Bedeutung zukommt. Häufig werden von mongolischen Stämmen religiöse Festlichkeiten auf Höhen abgehalten, wo man der Gottheit näher zu sein glaubt. Auf hochgelegenen Punkten und Paßübergängen im Gebirge werden sogenannte Obo errichtet.⁴) Beim Überschreiten einer Gebirgskette auf dem Wege zum Ziele bringt man an diesen Stellen fromme Gaben dar, um eine glückliche Reise durch alle Fährlichkeiten des Hochgebirges zu erbitten; beim Rückwege geschieht das gleiche als Ausdruck des Dankes für den göttlichen Schutz. Überall in Zentral-

¹⁾ M. S. Bell, The great Central Asiatic Trade Route from Pecking to Kashgaria. Proceedings R. G. S. XII, 1890, S. 58 ff. und besonders S. 81.

Younghusband, A Journey across Central Asia etc. Proceed. R. G. S. 1888, S. 485-518 und The Heart of a Continent. London 1897.

Carey and Dalgleish, In Chinese Turkestan and Northern Tibet etc. Royal Geogr. Soc. Supplement Pap., vol. III, part I, 1890.

Dieselben, A Journey round Chinese Turkestan etc. Proceed. Roy. Geogr., vol. IX, No. 12, 1887.

D. Caruthers, Exploration in Northwest Mongolia and Dsungaria. The Geogr. Journal vol. 39, 1912 und

Derselbe, Unknown Mongolia. London 1914.

²⁾ Ritters Erdkunde, Teil II, Buch II, Asien, Bd. I, S. 337.

³) Pallas, Reisen durch verschiedene Provinzen des Russ. Reiches. Petersburg 1772/73, Bd. III S. 666 f., 677.

Stielers Hand-Atlas, Auflage IX, Bl. 49, 58, 62, 65.

⁴⁾ Steinhaufen mit darin befestigten Stangen, an welchen als Zeichen göttlicher Verehrung oder als Votivgaben Abschnitte von bunten Stoffen, Ziegenhaare, Yakschweife, aus Lhaasa stammende Druckblätter mit Gebeten, Bhudda-Statuetten, Pferdeabbildungen aus Ton etc. befestigt werden und an deren Fuße Tierschädel und Gehörne, sowie andere Gaben niedergelegt werden. Siehe auch Ritters Erdkunde, a. a. O., S. 337.

asien, wo man auf solchen Höhen diese Obo findet — und sie sind ungemein verbreitet — können sie als ein Kennzeichen dafür gelten, daß Mongolen dort häufig durchwandern oder in der Nähe seßhaft sind.

Die Chinesen bezeichnen die Bogdo-Ola mit einer synonymen Bezeichnung: Lin-schan —, die wundertätigen Berge — oder auch Fu-sheu-shan (Berge des Glücks) und wie wir später sehen werden, ist bei der chinesischen Bevölkerung dieser Gegend der Glaube an die Heiligkeit dieses Gebirges allgemein verbreitet, so daß sie dort in einem Hochtal am Nordfuß des Gebirges eine Anzahl Klöster und Tempel errichtet haben.¹)

Auch die muhamedanischen Turkstämme der Gegend leben in dem Glauben, daß auf diesen Bergen teils gute, teils schlimme Geister wohnen, deren Wirken den Menschen nützlich oder schädlich sein könne und deren Wohnsitz sich zu nähern man vermeiden soll. Auf gewissen Höhen am Abhange des Gebirges sollen ihrem Glauben nach zahlreiche heilige Männer gelebt haben²) und deshalb verwenden die türkisch sprechenden Stämme für die gesamte Berggruppe den Namen Topotar-Aulie, d. h. Berg der vielen Heiligen. Bei ihnen scheint aber mehr das Gefühl der Furcht vor den auf den höchsten Gipfeln hausenden schlimmen Geistern vorzuherrschen, so zwar, daß es mir sehr schwer wurde, die Abneigung der in meinem Dienst stehenden, muhamedanischen Pferdeführer zu überwinden, mich in die Bogdo-Ola-Gruppe zu begleiten. Als wir einmal in einem der Hochlager am Futie der höchsten Teile des Gebirges eine stürmische Nacht erlebten, in welcher zahlreiche Lawinen von den firnbedeckten Hängen herabdonnerten, wurden die Leute durch dieses nächtliche Getöse der "bösen Geister", denen sie diese Geräusche zuschrieben, so eingeschüchtert, daß ich sie kaum von Desertion zurückzuhalten vermochte; sie fürchteten samt ihren Pferden von den erzürnten Geistern, in deren Reich wir frevelhafterweise eingedrungen seien, vernichtet zu werden.

Die Bezeichnung Turpanat-tagh, welche meines Wissens Obrutschew zuerst eingeführt hat,3) und in seinem Reisewerke (l. c., Bd. II, S. 640 f.) sowohl, als im beigegebenen Marschroutenblatte Nr. 14 für die Hauptgruppe neben der Benennung Bogdo-Ola, auch für eine von ihm angenommene südliche Vorkette verwendet, mag vielleicht bei der türkischen Bevölkerung im Turfanbecken üblich sein. Ich selbst habe diesen Namen nirgendwo vernommen und auch von keinem der anderen russischen Forschungsreisenden wird er erwähnt. Die Bedeutung dieses Namens vermochte ich nicht festzustellen, ver-

¹⁾ In Ritters Erdkunde, Teil VII, Bd. III, Berlin 1837, S. 453 ist im Gegensatz zu den früher zitierten Mitteilungen auf Grund von Nachrichten indischer Mekkapilger von einem "Berg Pukhithapan" die Rede und weiter wird hierüber berichtet, er liege in Urumtschi, habe drei Gipfel, "steht isoliert und ist außerordentlich hoch; seiu Eis und Schnee haben Kristallglanz; er reicht in den Himmel. Sonne und Mond verdeckeud". Dieser Beschreibung nach kann zwar nur die Bogdo-Ola gemeint sein; dennoch glaubt Ritter in einem aus gleicher Quelle bekannt gewordenen "Berg Mulithu in Karaschar" das Bogdo-Ola-Gebirge zu erkennen.

Siehe auch Ritters Erdkunde, Teil II, Buch II, Asien, Bd. I, S. 357 und ebenda S. 390, wo Alexauder von Humboldt zitiert wird: "Vielleicht ist der dreigipfelige Koloß Bogdola ein Trachytberg wie der Chimborazo."

²) Ebenda S. 353 findet sich eine ähnliche Sage, aber auf eine andere Örtlichkeit dieser Gegend augewendet.

³⁾ Iswestiya, Kais. Russ. Geograph. Gesellsch. 1895, S. 289.

mute aber, daß Turpan nur eine harte Betonung von Turfau darstellt und der Name einfach "Gebirge von Turfan" bedeutet. Ich werde mit der Reisebeschreibung noch weitere auf Namen und Sagen bezügliche Mitteilungen verflechten.

IV. Erforschungsgeschichte und Literatur hierüber.

Für die geographische Wissenschaft blieb die Bogdo-Ola-Gruppe bis in die neueste Zeit hinein eine terra incoguita. Die Erforschung des Tian-Schan überhaupt wurde in überwiegender Weise durch die von der Kais. Russ. Geographischen Gesellschaft ausgeschickten oder von ihr unterstützten Expeditioneu gefördert, die im Jahre 1856 begannen und systematisch und stetig von W. nach O. vorschritten, so daß die Wege der Forschungsreisenden im Tian-Schan in einzelnen Teilen des Gebirges bereits ein ziemlich engmaschiges Netz bilden.1) Freilich die Hochgebirgsforschung im eigentlichen Sinne war bisher bei allen diesen Expeditionen nur verhältnismäßig selten Gegenstand des Unternehmens und namentlich die Bogdo-Ola-Gruppe blieb noch lauge Zeit ein unbetretenes Gebiet. In die Nähe der Gruppe gelangte 1879 auf seinem Wege nach Turfan zuerst der Arzt und Botaniker A. Regel. Das eigentliche Hochgebirge hat er allerdings nur an einzelnen Stellen berührt, denn seine Expeditionen hatten hauptsächlich allgemein geographische Erkundungen und botanische Untersuchungen zum Ziel. In erfolgreicher Weise querte Regel bis dahin von Europäern unbetretene Teile des östlichen Tian-Schan, so das Kasch-Tal. die Yuldus-Täler und Teile ihrer Umrandung, sowie die im O. hievon gelegenen Pässe und gelangte zur Stadt Turfan.2)

Zum Rückwege benützte der Reisende von Turfau aus die große Karawanenstraße, welche über die mehrfach erwähnte niedrige Depression im W. der Bogdo-Ola, über den Dun-Schan-Sattel nach Urumtschi führt. (Siehe vorher S. 4, 9.) Die auf diesen, in weitem Bogen z. T. um die Bogdo-Ola herumführenden Wegen gemachten Beobachtungen liegen den Mitteilungen des Reisenden über das Bogdo-Ola-Gebiet zu Grunde. Da er demnach dieses Gebirge selbst nur aus größerer Entfernung und von niedrigen Standpunkten aus beobachten konnte, so ist es begreiflich, daß seine Angaben über Lage, Höhe und Eisbedeckung der Genauigkeit entbehren. So z. B. wenn er berichtet: 3) "der Hauptgebirgszug ist die weiter im N. aufsteigende Bogdo-Kette, welche in ihrem Dreispitzknotenpunkte Bogdo-Ola eine Höhe von 12-1400 Fuß erreicht.4) Hinsichtlich der Kompaßpeilungen, die Regel von Turfan und von benachbarten Punkten aus zur Bestimmung der genauen Lage der Gruppe unternahm und über deren Ergebnisse er schreibt,5) sie bringen "diesen prächtigen Kegel südlicher und näher an Turfan, als bisher in allen Karten angegeben ist. ist zu bemerken, daß im Gegenteil die wirkliche Lage der Bogdo-Ola noch weiter gegen N. hinausgeschoben ist, als sie auf den meisten Karten angegeben erscheint. (Siehe S. 18.) Regels irrtümliche Wahrnehmung beruht darauf, daß von den erwähnten Punkten im Süden aus die

¹⁾ Siehe hierüber in Friederichsen, Morphologie des Tian-Schan, S. 11 f., sowie die Reisewege auf der beigegebenen Karte mit Tektur.

²) Petermanns Mitteilungen, Bd. XXVI, S. 70, 116, 205 f.; Bd. XXVII, S. 380 f. und Bull. de la Soc. des Nat. de Moscou, Jahrg. 1882. S. 140 f.; 1883, S. 227 f.; 1885, S. 194 f.

³⁾ Petermanns Mitteilungen XXVII, S. 390 f.

⁴⁾ Im gleichen Berichte S. 393 schätzt er übrigens die Höhe auf 14-16000 Fuß.

⁵) Ebenda S. 393.

zentralen und höchsten Teile der Bogdo-Ola-Gruppe, wie aus meinen sorgfältigen topographischen Aufnahmen hervorgeht, überhaupt nicht erblickt werden kann, sondern nur ihre nach O. und S. ziehenden Verzweigungen. Die Konturen des auf Regels Karte¹) aufgetragenen kleinen Profils "von Dabantschan aus" zeigen in unwiderleglicher Weise (vergleiche auch Panorama von der S.-Seite, Tafel 3), daß dort nur der gegen das Chigo-Tal abfallende Seitenast abgebildet ist. Hinsichtlich eines anderen wichtigen Irrtums in den Beobachtungen Regels habe ich schon in der Anmerkung auf S. 4 das Wesentliche mitgeteilt.

Die von M. W. Pjewtzow 1889 geleitete Tibet-Expedition, an welcher als Geologe K. J. Bogdanowitsch teilnahm, schlug auf ihrem Wege von Toksun nach Urumtschi am W.-Rande der Turfansenke eine Richtung ein, welche in ihrem südlichen Teile südwestlich von der großen Karawanenstraße verläuft und erst im N. des Sees Aidin-kul (Sayopu) die große, über die viel erwähnte Einsenkung des Dun-Schan führende Karawanenstraße wieder erreicht. Pjewtzow gibt in seinem Reisewerke²) wohl eine Beschreibung seines Weges, gedenkt jedoch darin mit keinem Worte der Bogdo-Ola.

Bogdanowitsch als geologischer Teilnehmer dieser Forschungsreise bringt in seinem Berichte³) zum ersten Male ein wichtiges geologisches Querprofil des von ihm überschrittenen Gebirgsteiles, macht jedoch in dem begleitenden Text ebenfalls keinerlei Erwähnung des Bogdo-Ola-Gebirges.

W. J. Roborowsky kam auf seiner großen zentralasiatischen Expedition 1893/94 wohl auch in diese Gegend (siehe S. 3 u. 5) und überschritt auf seinem Wege von Urumtschi nach Turfan das Gebirge ebenfalls über dem oft erwähnten niedrigen Sattel im SW. der Bogdo-Ola, ohne daß indes auch in seiner Reisebeschreibung von der Bogdo-Ola eingehend die Rede ist. Er erwähnt nur,4 daß er die Höhe der Bogdo-Ola von Luktschun aus durch Winkelbestimmungen ermittelte, welche später von General Bonsdorf berechnet wurden.5 Das Ergebnis dieser Beobachtungen ist eine Cote von 22692 Fuß = 6910 m, welche, wie ich später zeigen werde, um einige hundert Meter zu hoch gegriffen ist.6

Im Jahre 1895 kam W. A. Obrutschew auf seinem Rückwege aus dem Nan-Schau und Bei-Schan nach Hami und gelangte von dort, am S.-Abhang des Tian-Schan entlang reisend, nach Turfan, von wo er, ebenfalls mit Benützung der vielfach erwähnten Karawanenstraße. Urumtschi erreichte und von dort aus seinen Weg nach W. fortsetzte. Den Mitteilungen über die orographischen Züge der Bogdo-Ola, welcher dieser sorgfältige Beobachter in seinem Werke niedergelegt hat, kommt indes nicht ganz der gleiche Wert zu, wie seinen geologischen Beobachtungen, da es ihm nicht beschieden war, sich der Gruppe genügend zu nähern oder sich von hochgelegenen Standpunkten aus einen Überblick über sie zu beschaffen. Besonders die Vorstellung, die er sich von der Gliederung des Hoch-

¹⁾ Petermanns Mitteilungen XXVII, S. 393.

²⁾ l. c., Bd. I, S. 352 f.

³⁾ Trudi Tibetzkoi Ekspedizi, Bd. II, S. 38 f.

⁴⁾ l. c., Bd. I, S. 106.

⁵⁾ Trudi Tibetzkoi Ekspedizi, Bd. III, Abt. B, S. 9.

⁶⁾ Die Kote, welche Futterer in: Durch Asien I, S. 159 anführt, scheint dieser Bestimmung entnommen zu sein.

⁷⁾ Zentralasien etc., l. c., Bd. II, S. 601 f. und Croquis, Taf. XIV.

⁸⁾ l. c., Bd. II. S. 640, 643-645.

gebirges und dessen allerdings von tiefgelegenen Standorten aus nicht zu entschleiernden Zügen gebildet hat, entspricht der Wirklichkeit nicht, wenn seinem geschulten Auge auch nicht wie seinen Vorgängern entgangen ist, daß aus dem Hauptkamme noch eine um nur weniges niedrigere, südöstliche Abzweigung von etwas veränderter Streichrichtung heraustritt und schon im Laudschaftsbilde zum deutlichen Ausdruck gelangt. (Weiteres hierüber im folgenden Kapitel.) Auch die kurze Schilderung, die O. von der Bogdo-Ola-Gruppe in Hettners Zeitschrift entwirft, wird, wenn sie auch in manchen Punkten der Wirklichkeit sich nähert, doch den orographischen Zügen der Gruppe nicht gerecht.

Von anderen Reisen ist noch zu erwähnen die des Generalstabsoffiziers N. M. Galkin, der 1890 im Auftrag der Militärverwaltung eine ausschließlich nach militärischen Gesichtspunkten eingerichtete Erkundungsreise ausführte und hiebei auch Urumtschi berührte. (Siehe vorher Note S. S.) In seiuem im Verlage des militärgeographischen Bureaus im großen Generalstabe herausgegebenen, nicht allgemein zugänglichen Berichte und in einem etwas ausführlicheren Reisetagebuch²) sind Mitteilungen von geographischem Werte über die eingeschlagene Route und die durchreisten Gebiete niedergelegt, des Bogdo-Ola-Gebirges aber wird keine Erwähnung gemacht.

Der englische Reisende M. S. Bell gelangte (vgl. S. 11 u. 19) auf seiner Reise von Peking nach Kaschgar 1888 ebenfalls nach Urumtschi,³) machte aber gleichfalls in seinem Berichte vom Bogdo-Ola-Gebirge wenig mehr als eine flüchtige Erwähnung. Ebensowenig wird in der Beschreibung der von Carey und Dalgleisch 1885⁴) unternommenen offiziellen Erkundungsreise eine Mitteilung über das Bogdo-Ola-Gebirge vorgebracht.

Auch eine ausschließlich zum Zwecke der Jagd im Jahre 1898 unternommene Reise von P. W. Church, auf welcher Urumtschi berührt und von dort ein Jagdausflug in die Dschargöß-Kette unternommen wurde ("in das Ta-seng-kou-Valley"), worauf man über Toksun den Weg in westlicher Richtung nahm, hat keine irgendwie in geographischer Hinsicht bemerkenswerten Ergebnisse, besonders nicht über unser Gebiet gefördert.⁵) Die französische archäologische Mission unter P. Pelli ot und Dr. L. Vaillant wurde schon (S. 6, 9, 11) kurz erwähnt; sie hielt sich längere Zeit in Urumtschi und Turfan auf, querte auch die Hauptkette über den Julgun Terek-Paß (im O. von Urumtschi) von San-tai im N. nach Turfan; doch findet sich außer einer ganz kurzen Notiz über diesen Übergang ⁶) nirgendwo in den Veröffentlichungen der beiden Reisenden über die geographischen Ergebnisse eine Erwähnung der Bogdo-Ola.

Endlich wäre noch der in den Jahren 1903/04 von dem bekannten amerikanischen Geographen Elsworth Huntington unternommenen Forschungsreise zu gedenken, deren Schwerpunkt auf klimatologisch morphologischem Gebiete liegt. Huntington gelangte eben-

¹⁾ l. c., Bd. I, S. 274.

²⁾ Sammlung (Sbornik) der Materialien über Asien (russisch), Heft XXVIII.

³⁾ l. c., S. 79 und 81.

⁴⁾ Journey of Carey and Dalgleisch in Chinese Turkestan and Northern Tibet. Supplementary papers of Royal Geogr. Soc., vol. III, part I, 1890 and in Proceedings. R. G. S., vol. IX, 1887, S. 31 ff.

⁵⁾ P. W. Church, Chinese Turkestan with Caravan and Riffe. London 1901.

⁶⁾ L'Année Cartographique l. c. Siehe außer der bereits zitierten Literatur auch in Revue française de l'Étranger et des Colonies, Tom. XXXV, No. 373, Januar 1910 und Bulletins et Mém. Soc. d'Anthropologie. Paris 6, Série I, 1910.

falls in die zentralasiatische Grabensenkung und von Turfan aus auf seinem Rückwege auf der oft erwähnten Karawanenstraße nach Urumtschi. Das über diese Reise von ihm veröffentlichte Buch 1) enthält indes keinerlei nähere Angabe über die Bogdo-Ola-Gruppe. Ebensowenig findet man Nachrichten hierüber in den über seine Reise von Huntington veröffentlichten kleineren Schriften, deren Titel man im unten zitierten Buche (S. XII) vorgetragen findet. Hiermit ist erschöpft — mit Ausnahme einer und zwar der wichtigsten Reise, von der sogleich die Rede sein wird —, was uns bisher über die Bogdo-Ola-Gruppe durch Reisende übermittelt wurde, sowie alles das, was von geographischen Reisen bekannt wurde, die sich bis in jene entlegene Gegend ausdehnten.

Die wichtigste und bahnbrechende Forschungsreise in die eigentliche Bogdo-Ola-Gruppe war die von der Kais. Russ. Geograph. Gesellschaft organisierte und von Großfürst Nikolai Michailowitsch unterstützte der Brüder G. E. und M. E. Grum Grschimailo vom Jahre 1889; ihr verdanken wir unser erstes genaueres Wissen von diesem Gebirge,2) speziell von seinen orographischen Hauptlinien und von dem Aufbau des Nordabhanges, sowie wichtige Angaben über Pflanzen und Tierleben, endlich die ersten wohlgelungenen photographischen Abbildungen einiger seiner Teile. Die beiden Forschungsreisenden durchquerten auf ihrem Wege von Urumtschi nach O. die von der westlichen Fortsetzung des Bogdo-Ola-Hauptkammes nach N. vorspringenden Verzweigungen auf einer Strecke von ca. 140 km, erreichten den Nordfuß der zentralen Bogdo-Ola-Gruppe und suchten von dort aus die Höhe eines von ihr nach NW. vorspringenden Seitenastes zu erklimmen. In mühsamem Anstieg gelangten sie auf ein kleines Plateau, dessen Höhe durch Siedethermometerbeobachtung auf 12080' = 3683 m bestimmt wurde.3) Von diesem Punkte aus erschien ihnen die bisher so imponierend hoch sich präsentierende Gruppe "nur mehr verhältnismäßig unbedeutend". Es erklärt sich dies aus dem Umstand, daß sie dem Abfall der Steilwände schon zu nahe gerückt waren, ohne jedoch eine solche Höhe erreicht zu haben, die Überblick und eine richtige Schätzung der Höhenverhältnisse vermitteln konnte. Infolge ausbrechenden Unwetters waren die Reisenden gezwungen, schon bald den Rückweg anzutreten, und da die Anforderungen ihres überreichen Reiseprogramms ihnen keine weitere Zeit zu einem neuen Vorstoß mehr ließen, setzten sie ihre Reise nach O. fort. In der dem Band I der Grum Grschimailoschen Werkes angefügten Übersichtskarte des östlichen Tian-Schan (siehe im folg. Kap. S. 26), findet sich die eben erwähnte Cote 12080' nun in solcher Art eingetragen, daß man sie auf einen der Hauptgipfel der Gruppe selbst beziehen könnte, und dies wurde auch wirklich irrtümlicherweise von einigen Geographen so aufgefaßt. Für die höchsten Erhebungen der Gruppe findet sich indes auch in der dem später erschienenen Band III des Reisewerkes beigegebenen, in größerem Maßstabe gehaltenen und detaillierteren Karte (Bl. I) eine Cote nicht angegeben.

Außer den schon erwähnten Ergebnissen wird uns durch das Reisewerk Grum Grschimailos auch eine bildliche Darstellung und eine fesselnde Schilderung des wundervollen Gebirgssees übermittelt, der am Fuße der zentralen Bogdo-Ola, im Oberlaufe des Da-tun-gu-Tales sich dehnt und dessen zauberhafte Schönheit erst durch diese russische Expedition der Welt bekannt wurde. Um Verwirrung zu verhüten, sei bemerkt, daß Gr. Gr. für das

¹⁾ Elsworth Huntington. The Pulse of Asia. London 1907.

²⁾ Grum Grschimailo, l. c., Tom. I, 1896, S. 150-168 und Karte in T. III.

³⁾ l. c., Tom. I, S. 167.

erwähnte Tal in seiner Karte sowohl als im Reiseberichte den Namen Chaidadschan aufgenommen hat. Da mir bei den auf meiner Reise eingezogenen Erkundigungen jedoch von meinen Gewährsmännern die Richtigkeit dieses Namens nicht bestätigt werden konnte, zog ich vor. mich an den von mir ermittelten zu halten. (Mehr hierüber siehe im folgenden Kapitel.)

Grum Grschimailo erkannte zuerst, daß der erwähnte Alpensee seine Entstehung der Abdämmung durch eine alte Stirnmoräne verdankt. Über die sonstige große Verbreitung alter Glazialablagerungen in diesem Gebiete konnten die Reisenden schon wegen der Flüchtigkeit ihres Aufenthaltes eingehendere Beobachtungen nicht wohl anstellen, weshalb die in ihrem Reisewerke enthaltenen kurzen Mitteilungen über diesen Punkt sehr der Ergänzung bedürfen. Auch hinsichtlich Verteilung, Art und Ausdehnung der jetzigen Vergletscherung des Gebirges ist im Reiseberichte Grum Gschrimailos sonstiges Beobachtungsmaterial nicht enthalten. Ebensowenig wurde unser Wissen von der Tektonik und den Besonderheiten des geologischen Baus des Gebirges durch die Grum Grschimailo'sche Expedition wesentlich bereichert. Immerhin wird in dem Berichte von den Gesteinsarten, welche das Gebirge zusammensetzen, eine Anzahl aufgeführt und in zutreffender Weise besonders der große Anteil erwähnt, den metamorphe Schiefer und Kalksilikathornfelse an seinem Baue haben. Der Grum Grschimailo'schen Expedition waren überhaupt außer allgemein geographischen und speziell topographischen Arbeiten vorzugsweise zoologische und ethnologische Forschungen als Aufgaben zugewiesen worden; es ist daher begreiflich, daß sie nicht gleichzeitig auch geologische Ziele eingehender verfolgen konnte. Und gar für Forschungen im vereisten Hochgebirge war sie überhaupt weder bestimmt noch ausgerüstet. Es sei nochmals besonders betont, daß das der Expedition zugewiesene Forschungsgebiet in Zentralasien eine so ungeheure Ausdehnung hat, daß es ihr kaum möglich gewesen wäre, sich in einer einzelnen Gebirgsgruppe lange genug aufzuhalten, um sie in erfolgreicher Weise zum Gegenstand genauerer Untersuchungen zu machen. Mehr als allgemeine Aufklärungsarbeit zu leisten war ihr nicht möglich und diesen Zweck hat sie, wie aus dem Reiseberichte 1) hervorgeht, auch mit bestem Erfolge erfüllt. Es ist das große Verdienst der Grum Grschimailo'schen Expedition, daß wir durch sie wenigstens eine allgemeine Kenntnis von der Beschaffenheit des Gebirges und von den Zugängen zu ihm gewonnen haben.

Da aber unser Wissen von den genaueren oroplastischen und orographischen Zügen des Bogdo-Ola-Gebirges, von seinem geologischen Bau und seiner heutigen und ehemaligen Vereisung bisher noch immer ein mangelhaftes blieb, wurde es, wie bereits hervorgehoben, im Plane meiner letzten Forschungsreise aufgenommen, diese Lücke nach Möglichkeit auszufüllen. Freilich war es auch mir nicht beschieden, in dieser Hinsicht Erschöpfendes zu leisten. Dazu war auch mein Foschungsgebiet ein viel zu ausgedehntes. Ich hätte statt weniger Wochen den ganzen Sommer dieser Gebirgsgruppe widmen müssen, um Vollständiges hierüber übermitteln zu können. Möge deshalb die Unvollkommenheit des von mir gebotenen wissenschaftlichen Beobachtungsmaterials nachsichtig beurteilt werden.

¹⁾ l. c., Bd. I, S. 150-168.

V. Würdigung des bisherigen Kartenmaterials.

Zunächst scheint es mir geboten, einen Blick auf das Kartenmaterial zu werfen, auf das unsere bisherigen Vorstellungen von Lage, orographischer Anordnung und Gliederung des Gebirges gegründet sind. Die wichtigsten dieser Karten sind zweifellos die bereits erwähnten des Grum Grschimailo'schen Reisewerkes, da sie das Ergebnis des Vorstoßes jener Expedition in unsere Gebirgsgruppe zur Darstellung bringen. Dem Band I liegt (siehe S. 24) eine allgemeine Übersichtskarte über den östlichen Tian-Schan bei, die von Kuldscha im W. bis wenig über Hami im O. hinausreicht; ihr russischer Titel lautet in Übersetzung: Karte des östlichen Tian-Schan, auf Grund der neuesten Erkundungen, Routencroquis und astronomischen Bestimmungen, ausgeführt im Jahre 1889/90 von den Brüdern Grum Grschimailo. Der Maßstab ist 40 Werst: 1 Zoll = 1:1680000. Ohne mich auf eine Besprechung des Gesamtinhaltes der Karte einzulassen, deren Grundlage die vom russischen Generalstab herausgegebene 40 Werst-Karte bildet (wovon sogleich mehr), will ich nur dasjenige hervorheben, was speziell die Bogdo-Ola-Gruppe betrifft. Die Darstellung des Kammverlaufes schließt sich ziemlich enge an die der offiziellen 40 Werst-Karte an. Das hydrographische Netz ist sogar noch etwas weniger vollständig ausgeführt als dorten. Insbesondere ist es auffällig, daß keines der von Hauptkamm der Bogdo-Ola nach S. herabziehenden Täler, nicht einmal das große eingezeichnet ist, in dessen Ursprungsgebiet eine tiefe Kammdepression die Gruppe in eine östliche und eine westliche Hälfte zerteilt. Auch die nördlichen Täler finden nur insoweit eine richtige Darstellung, als sie, wie oben erwähnt wurde (S. 24), auf der Reise von Urumtschi dem Nordfuße des Gebirges entlang, von den Mitgliedern der Expedition gequert wurden. Hingegen erscheinen die östlich hievon nach N. hinausziehenden Täler, also diejenigen des Gebietes östlich von Foukon, in ihrem Verlaufe nicht ganz zutreffend wiedergegeben. Die Verteilung der Gletscher ist, wie überhaupt für alle in dieser Karte dargestellten Gebirge, so auch für unsere Gruppe, nur ganz allgemein und schematisch angedeutet. An Coten finden sich nur verschwindend wenige (siehe S. 24.) Eine zutreffende Darstellung der Geländeformen des Gebirges zu liefern, konnte überhaupt nicht angestrebt werden, da man, wie früher hervorgehoben, nicht genügend Einblick in das System der Verzweigung der Kämme zu gewinnen vermochte. Die Lage der zentralen Bogdo-Ola ist wie auf allen anderen Karten auch auf dieser nicht richtig dargestellt (siehe S. 18), indem sie nicht weit genug nach N. hinaufgerückt wurde. Es handelt sich demnach in dieser Karte mit Bezug auf die Bogdo-Ola-Gruppe hauptsächlich auch wieder um eine nur ganz beiläufige Darstellung.

In der gleichfalls schon flüchtig erwähnten (S. 24), dem Band III beigegebenen detaillierteren "Karte der Expedition der Brüder Grum Grschimailo nach dem westlichen China", Blatt I im Maßstab von 20 Werst: 1 Zoll = 1:840000 erscheinen die während der Reise aufgenommenen Routenblätter verwertet und die Darstellung geht mehr ins Detail; sie ist in Schummerung mit seitlicher Beleuchtung des Kammgerippes durchgeführt und enthält keine Gradeinteilung. Da ferner die Route der Reisenden im Gebirge nur in den Bereich des Nordabhangs der Bogdo-Ola führte und dann außerhalb desselben auf der großen Karawanenstraße nach Gutschen sich fortsetzte, so ist in der Karte auch nur die nördliche Abdachung des Gebirges bis zum wasserscheidenden Kamm zur Darstellung gelangt und das Kartenbild der Gruppe ist daher ein unvollkommenes. Zudem genügt auch diese

Darstellung nicht den Anforderungen an eine getreue Wiedergabe der Terrainformen und besonders das Wenige, was in ihr über die Vergletscherung des Gebirges zum Ausdruck gelangt, entspricht den tatsächlichen Verhältnissen in keiner Weise. Über die Eintragung der nach N. fließenden Wasserläufe ist dasselbe zu sagen, was bereits bei Besprechung der ersten Karte erwähnt wurde und ebenso verhält es sich hinsichtlich Lage der Hauptgruppe, die auch hier sich als zu weit nach S. gezogen erweist; überhaupt ist die Achse des Hauptkammes in Wirklichkeit anders gerichtet als in der Karte angegeben. Höhenzahlen sind darin nicht eingetragen. Hinsichtlich der Schreibweise der geographischen Namen fehlt in beiden Karten öfters die Übereinstimmung, so daß man im Zweifel darüber bleibt, an welche Benennung man sich halten soll. Auf einzelne andere Punkte des Karteninhaltes, die mit den auf meinem Reisewege gemachten Beobachtungen nicht übereinstimmen, werde ich bei Beschreibung meines Weges noch zurückkommen.

Von sonstigen wichtigen Karten kommt zunächst in Betracht: das 1899 erschienene Blatt XXI (Hami) der im Maßstabe von 40 Werst: 1 Zoll - 1:1680000 herausgegebenen russischen Generalstabskarte ("Karte der südlichen Grenzgebiete des asiatischen Rußlands'), die zum großen Teile nach den auf S. 8 und 23 erwähnten Erkundungsreisen Galkins und anderer Generalstabsoffiziere, sowie unter Benützung der Aufnahmen Pjewtzows und Roborowskys hergestellt wurde. In dieser Karte, wie in der Grum Grschimailo'schen, ist wohl der Verlauf der Gebirgsketten in ihren allgemeinen Zügen richtig zum Ausdruck gebracht, allein in der genaueren Darstellung der Richtung einzelner Kämme und besonders hinsichtlich der Bogdo-Ola-Gruppe ist auch in dieser Karte manches verfehlt, weil damals die politischen Verhältnisse den russischen Militärtopographen sorgfältig vorbereitete und auf das Einzelne abzielende, genau durchgeführte topographische Aufnahmsreisen nicht gestatteten. Bedenkt man aber, unter welch schwierigen Verhältnissen die russischen Offiziere ihre Arbeiten in diesem unwirtlichen Lande ausführen mußten, ferner daß sie den größten Teil des Gebirges überhaupt nicht begehen konnten, so darf man mit lobender Anerkennung ihrer Leistungen nicht zurückhalten. Es wird Aufgabe entweder entsprechend vorgebildeter chinesischer Topographen oder etwa unter günstigeren politischen Umständen zugelassener russischer sein, von dem verwickelten Bau dieser Gebirgsländer auf Grundlage der bisherigen russischen Karte eine in jeglicher Hinsicht zutreffende und mehr ins einzelne gehende Darstellung zu liefern. Die jetzige konnte unter den obwaltenden Verhältnissen kaum eine wesentlich bessere als die nunmehr vorliegende werden.

Was speziell die Darstellung unserer Gruppe in dieser Karte betrifft, so erscheint ihre Lage ebenfalls zu weit nach S. gerückt und die Hervorhebung der Gliederung im einzelnen ist so ausgefallen, wie man es eben erwarten kann, wenn der komplizierte Bau eines Hochgebirges nur von tief gelegenen Standpunkten und aus weiter Entfernung aufgenommen wird. Ein wesentlicher Mangel besteht auch hier darin, daß die nach S. hinabziehenden Flußtäler fehlen, so daß nicht einmal das größte Quertal (Gurban-bogdo) und die tiefe Depression, an welcher es entspringt, eingetragen ist, wie ich dies schon bei Besprechung der Grum Grschimailo'schen Karte (S. 26) erwähnte. Die Wiedergabe der Eisbedeckung des Gebirges besteht hauptsächlich in schematischer Eintragung von Firn auf dem Kamm der Hauptwasserscheide und einiger ihrer Verzweigungen; sie ist eben nur das Ergebnis desjenigen, was der Beobachter aus weiter Entfernung zu sehen glaubte. Immerhin ist es ein Vorzug dieser Karte, daß sie wenigstens die westlichen und östlichen Abzweigungen

der zentralen Bogdo-Ola als vergletscherte Gebirge wiedergibt, was in früheren Karten nicht zum Ausdruck gelangte.

Die erst vor kurzer Zeit erschienenen Karten zu dem bereits im Jahre 1900 veröffentlichten Bd. I von Roborowskys Reisewerk 1) Blatt I, II und IV, welche das Routennetz von Koslow und Rohorowsky enthalten, lehnen sich ziemlich genau an die Darstellung des Gebirges an, wie sie in der eben besprochenen 40 Werst-Generalstabskarte gegeben ist. Nur in der Schreibweise der Ortnamen findet manchmal eine wesentliche Abweichung statt. Solche toponomastische Unterschiede treten am zahlreichsten beim Vergleiche mit den Grum Grschimailo'schen Karten hervor, welche, wie ich schon hervorgehoben habe, in dieser Hinsicht unter sich ebenfalls keine Übereinstimmung zeigen. Bei Benützung des besprochenen Kartenmaterials bereitet dieser Umstand dem Reisenden mancherlei Schwierigkeiten. Ich möchte bei diesem Anlaß auch hervorheben, daß die östliche Fortsetzung der Bogdo-Ola-Gruppe in sämtlichen bis jetzt besprochenen Karten den Namen Dschuwan-terek-basch führt. Ich konnte jedoch ungeachtet der von mir eingezogenen Erkundigungen weder von der kirgisischen noch von der sartischen im Gebirge nomadisierenden Bevölkerung und ebensowenig von den Chinesen eine Bestätigung für diesen offenbar türkischen Namen erhalten. Nur ein Paß wird von den Bewohnern von Turfan und Toksun so genannt. (Hievon später mehr.) Das im Roborowsky'schen Werke Bd. III enthaltene kleine Detailkärtchen der zentralasiatischen Grabensenke von Luktschun (Karta Luktschunskoi Kotlowini) gibt zwar eine gut ausgeführte und sehr lehrreiche Darstellung der Terrainformen dieser merkwürdigen Hohlform; die Zeichnung ihrer Umrandung reicht aber im N. nicht bis zu unserer Gruppe hinauf.

In einer Anzahl anderer Karten, die späteren russischen Reisewerken beigegeben sind, zeigt sich eine wesentlich ungenauere Darstellung der Gehirge, als sie in den bisher besprochenen zum Ausdruck gelangte. Die Ursache ist darin zu suchen, daß als Grundlage für ihre Konstruktion die veraltete Generalstabskarte "100 Werst-Karte des asiatischen Rußlands und der angrenzenden Gebiete" vom Jahre 1883 benützt wurde, sowie die noch ältere und fehlerhaftere, ebenfalls im Maßstab von 40 Werst: 1 Zoll gehaltene "Karte des Turkestanischen Militärbezirks" vom Jahre 1877. Von einer Besprechung dieser beiden Karten glaube ich daher absehen zu dürfen.

Die Karte zum Bericht über die geologischen Beobachtungen des Teilnehmers der Pjewtzow'schen Tibet-Expedition K. J. Bogdanowitsch²) trägt den Charakter einer bloß allgemeinen Übersicht des durchreisten Gebietes (Maßstab von 100 Werst: 1 Zoll = 1:4200000) und enthält also keine detaillierte Darstellung der Gebirgszüge, insbesondere nicht unserer Gruppe. Doch ist es ein Vorzug dieser Karte, daß sie wenigstens das hydrographische Netz des Südabhanges der Bogdo-Ola, wenn auch nicht in völlig zutreffender Weise, andeutet. Auch ist hervorzuheben, daß für die östliche Fortsetzung der Bogdo-Ola-Gruppe sich in dieser Karte und in keiner von allen sonstigen, die mir vorlagen, der Name Edemek-daba eingetragen findet, über dessen Herkunft und Berechtigung ich mir keine

¹⁾ l. c., Titel der Karte: Obsornaja Karta Puteu, W. J. Roborowskawo und P. K. Koslowo, w. 1893/94/95 godach. (Übersichtskarte der Wege von W. J. Roborowsky und P. K. Koslow in den Jahren 1893/94/95.)

²) Ergebnisse der Tibet-Expedition 1889/90. Teil II. Geologische Untersuchungen im Östlichen Turkestan. St. Petersburg 1892, russisch.

Autklärung verschaffen konnte. Endlich finden sich in dieser Karte am Südabhang der Bogdo-Ola mehr Seen eingezeichnet, als tatsächlich vorhanden sind.

In der dem Band I des Reisewerkes von Pjewtzow¹) beigegebenen, von ihm selbst redigierten Karte (Karte des östlichen Turkestan uud der nördlichen Bezirke des Tibetischen Hochlandes) im Maßstabe von 60 Werst: 1 Zoll — 1:2520000 ist eigentlich nur dem allgemeinen Verlaufe der hauptsächlichsten Gebirgszüge und zwar in sehr schematischer Darstellung Rechnuug getrageu, wobei die zentrale Bogdo-Ola-Gruppe eigentümlicherweise iu eine südliche Knickung der Hauptwasserscheide verlegt wurde, statt in deren nördlichen Ausbiegung; auch fehlt es an allem Eingehen auf die Gliederung der Gruppe.

Das große Reisewerk von Obrutschew²) enthält keine besondere kartographische Darstellung unseres Gebietes; wohl aber wird unter den dem Bd. II beigelegten Marschroutenblättern auf Blatt XIV (Chami-Urumtschi) eine freilich nur beiläufige Skizze dieses östlichen Teiles des Tian-Schan geboten, in welcher auch der Versuch gemacht wird, die Gliederung der Bogdo-Ola-Gruppe zur Darstellung zu bringen. Das Gebirge findet sich dort in Form zweier latitudinalen, parallel verlaufenden Ketten eingetragen, welche durch ein Längstal getrennt werden, wie dies Obrutschew auch im Text seines Werkes (Bd. II, 1. c., S. 640, 644, 645) näher erläutert. Neben den drei Gipfeln der höchsten Gruppe erscheint in der nördlicheren dieser Ketten ein Konusgipfel (Pik Konus), ein Steilspitz (Pik Krutoi), an denen sich im S. ein Dreizackberg (Pik Tresubetz) und an diesen gegen O. eine Gruppe von Südgipfeln (Juschni Piki) angliedert. Zwischen diesen und dem "Pik Konus" ist dann gerade im zentralsten Teile noch ein Grat eingetragen und eigentümlicherweise als Westgipfel (Sapatni Piki) bezeichnet, wo es doch richtiger Zentralgipfel heißen müßte. Im NO. dieser Westgipfel sieht man dann noch einen Ostgrat (Wostotschni Piki) angefügt und über diesem im N. figuriert als hauptsächlichster Gipfel einer, der die Bezeichnung Bogdo-Ula trägt. Der gleiche Name wird in der fraglichen Darstellung über den ganzen nördlichen Gebirgsteil gezogen, über den südlichen aber die Bezeichnung Turpanat-tagh (siehe hierüber S. 20). Diese Darstellung erscheint demnach z. T. verfehlt; es geht zwar aus ihr hervor, daß dem geschulten Auge eines so scharfen Beobachters, wie Obrutschew es ist, die bedeutenderen Gipfel der Gruppe keineswegs entgangen sind, daß er jedoch über ihre Lage zueinander sich keine genauere Rechenschaft zu verschaffen vermochte, da auch er keinen Punkt erreichte, der ihm einen richtigen Überblick über das Hochgebirge ermöglichen konnte. Die von ihm durch umschreibende Benennungen gekennzeichneten Gipfel sind wohl alle vorhanden; jedoch ist ihre gegenseitige Stellung eine ganz andere, als sie in der fraglichen Skizze angegeben erscheint. Auch sah Obrutschew wohl, daß im Herzen der Gruppe eine Trennung durch ein großes Tal stattfindet, konnte aber dessen Verlauf nicht genauer verfolgen, so daß er irrtümlicherweise für ein von O. nach W. verlaufendes Längstal hielt, was tatsächlich das mit verschiedenen Knickungen, doch im allgemeinen in NS.-Richtung verlaufende Quertal Gurban-bogdo ist. Dieser Irrtum erklärt sich aus dem Umstand, daß O. bei der Überschreitung des Dun-Schan-Sattels südlich von Urumtschi (siehe a. a. O., Bd. II. S. 645) ein Längstal, das bei dem Karawanserail vom Dschi-dschi-su aus dem Gebirge gegen SW. herabzieht, in Zusammenhang mit dem Einschnitt des wirklichen Gurban-bogdo-Tales brachte und auf solche Weise durch Kombination zur Annahme

¹⁾ a. a. O. 2) a. a. O.

von zwei Parallelketten gelangte. Das dort erwähnte Längstal ist eiu unbedeutendes Trockental, das nur periodisch Wasser führt und mündet zudem keiueswegs, wie es auf der Obrutschew'schen Skizze dargestellt ist, in den Archo-tu. Auch die Gliederung der niederen westlichen Fortsetzung der zentralen Bogdo-Ola-Gruppe — des Dun-Schan-Gebirges - in drei Parallelketten, wie sie in Obrutschews Skizze erscheint, entspricht nicht den Tatsachen. Von diesen drei Höhenzügen nennt Obrutschew die nördlichste gegen Urumtschi abdachende "Gelbe Kette" (Scholtni-Grada), die südliche "Niedere Kette" (Niskia Gradi), während die dazwischen sich erstreckende mittlere Dun-Schan benannt wird. In der Grum Grschimailo'schen Karte wird dieser ganze Gebirgskomplex richtiger als nur schwach gegliedert dargestellt und das Ganze unter dem Namen Dun-Schan zusammengefaßt. Nach meinen eigenen Beobachtungen handelt es sich um zwei schon bald miteinander verschmelzende Höhenzüge (Taf. 15 Fig. 3.) Auf weiteren Inhalt von Obrutschews Routenblatt, so z. B. wegen Benennung der drei Seen im Süden der Bogdo-Ola werde ich im Verlaufe einer Reisebeschreibung noch zu sprechen kommen. Als ein besonderes Verdienst der Obrutschew'schen Kartenskizze muß es bezeichnet werden, daß hier zum ersten Male wieder seit der Regel'schen Darstellung (siehe Note S. 5) richtig eingetragen ist, wie die vom Südabhang der zentralen Bogdo-Ola-Gruppe abfließenden Gewässer sich konvergierend in einen einzigen Wasserlauf vereinigen, der dann quer die Längskette des Dschargöß-Tau durchbricht und gegen Toksun hinabsließt. Dieser wichtigen Tatsache ist in keiner der anderen von mir bereits besprochenen Karten Rechnung getragen worden.

Die große Karte des Chinesischen Reiches, welche dem schon S. 10 zitierten Matussowsky'schen China-Werke beiliegt: Karte des Chinesischen Kaiserreichs, entworfen nach gemeinschaftlichen Erkundungen von Matussowsky und Nikitin im Maßstabe von 125 Werst zu 1 Zoll — 1:5250000 zeigt infolge ihres kleinen Maßstabes hinsichtlich des Verlaufs der Gebirgskämme an und für sich schon wenig Genauigkeit und da das Terrain überdies auf Grundlage veralteten topographischen Materials dargestellt ist, so liegt der Wert der Karte hauptsächlich nur in der genauen administrativen Einteilung des Chinesischen Reiches und in der Eintragung aller wichtigen Plätze.

Die ebenfalls in sehr kleinem Maßstabe gehaltene, nach verschiedenen Quellen kompilierte Karte, welche der Reisebeschreibung von Bell beigegeben ist¹) (1 Zoll — 100 Meilen), kann auch keinen Anspruch auf geographische Bedeutung erheben. Immerhin ist dort zutreffend der wasserscheidende Kamm mit der Hauptgruppe der Bogdo-Ola mehr nach N. hinaufgezogen, als es sonst auf den früher besprochenen Karten der Fall ist. Auch die dem Bericht über die Reise von Carey und Dalgleish (siehe Note S. 23) angefügten Karten enthalten von unserem Gebiet kaum mehr als allgemeine Umrißlinien. Ebenso kömmt der Karte, welche dem Reisebericht von Younghusband über seine Querung Zentralasiens²) beigegeben ist (Maßstab 1 Zoll — 86 Meilen), aus ähnlichen Gründen für unser Gebiet kaum eine Bedeutung zu. Die Lage der Bogdo-Ola ist dort übrigens in gleicher Weise wie in der Bell'schen Karte eingetragen.

In der dem Werke von Sir T. D. Forsyth³) beigegebenen Karte⁴) im Maßstab von

¹⁾ l. c., S. 128.

²⁾ Proceed., l. c., S. 612 u. The Heart of a Continent, l. c., S. 168.

³⁾ Report of a Mission to Yarkund in 1873. Calcutta 1875.

⁴⁾ Premilinary Map of Eastern Turkestan.

1:2534400 ist eine rohe Darstellung der östlichen Züge des Tian-Schan genau der Karte von Ney Elias: Map of Western Mongolia,¹) 1:4320000 entnommen. In beiden Karten ist zwar die tiefe Bucht des Gebirges bei Urumtschi besser als in anderen Karten jener Zeit dargestellt, die Hinaufbiegung des Bogdo-Ola-Kammes nach N. aber übertrieben und Urumtschi ist in zu großer Entfernung vom Gebirge gelegt, übrigens um fast zwei Längengrade zu weit nach Osten und um ca. ¹/2 Breitengrad zu weit nördlich eingetragen.

Auch für die Karte zu Prschewalski's Reisen in Innerasien 1873—77,2) 1:7500000, scheint man, was die Darstellung des östlichen Tian-Schan betrifft, aus den gleichen Quellen geschöpft zu haben, denn die Fehler sind dort die gleichen, wie bei den beiden eben besprochenen Karten. Für die östliche Fortsetzung der Bogdo-Ola findet sich dort die sonst nirgendwo vorkommende Bezeichnung Kougor-adzingan-Oola.

Von der Karte zu Regels "Turfan", entworfen von Hassenstein3) (1:1500000), war schon vorher (S. 5 und 21) die Rede. Meine dortigen Ausführungen sind noch dahin zu ergänzen, daß die Bogdo-Ola-Gruppe nicht nur zu weit nach S. sondern auch zu weit nach O. gerückt erscheint, indem man zwischen Urumtschi und der zentralen Bogdo-Ola irrtümlicherweise noch eine 55 km lange "Bogdo-Kette" eingeschoben hat. Mit Recht ist hingegen in jener Karte die Hauptgruppe stark vergletschert dargestellt; doch steht dies in Widerspruch zu Regels außerordentlicher Unterschätzung ihrer Höhe (siehe vorher S. 21), welche kaum die untere Schneegrenze überragen würde. In zutreffender Weise wird die Lage der Gruppe in eine Aufbiegung des Hauptkammes - wenn auch nicht weit genug - nach N. gelegt. Allerdings ist dies aber schwer in Einklang zu bringen mit der Äußerung des Reisenden4) bei Erklärung seiner Karte, "der gewaltige, altberühmte Dreispitzberg der Bogdo-Ola hat als eine etwas abgesonderte, imposante Berggruppe, ca. 14000', seine natürlichere, um 1/4 Grad südlichere Lage in der Längsachse des Iran-Chabirga erhalten". Hingegen ist besonders anzuerkennen, daß Regel der erste Beobachter war. der in seiner Karte das die zentrale Bogdo-Ola teilende südliche Quertal Gurbanbogdo richtig gesehen und mit seinen Verzweigungen, wenigstens ungefähr zutreffend, eingetragen hat. Er nenut es aber irrtümlicherweise Dawan-Schan.5) Auch hinsichtlich der anderen von der Bogdo-Ola nach Süden abfließenden Gewässer entspricht die Darstellung in Regels Karte der Wirklichkeit mehr als jene in späteren Karten, ja sogar der in der schon besprochenen Generalstabskarte im Maßstabe von 40 Werst. Als irrtümlich zu erwähnen ist noch, daß die Regel'sche Karte an Stelle der drei tatsächlich vorhandenen Seen im Süden von Urumtschi deren fünf enthält. Sämtliche in Regels Karte eingetragenen Höhencoten beruhen lediglich auf Schätzung und können, wie schon erwähnt, nicht einmal einen Anspruch auf annähernde Richtigkeit erheben.

Eine Karte Zentralasiens, welche die Bogdo-Ola-Gruppe einschließt, findet sich auch in den Acti Horti Petropolitani, Bd. VII, 1880; sie ist nach den Reiserouten der russischen Reisenden Regel, Fedtschenko, Kaulbars, Kuropatkin, Osten-Sacken, Prschewalsky

¹⁾ Journal of the Roy. Geogr. Soc., vol. XLIII, 1873.

²⁾ Petermanns Mitteilungen, Ergänzungsheft Nr. 53, 1878.

³⁾ Petermanns Mitteilungen, Bd. XXVII, 1881.

⁴⁾ a. a. O., Bd. XXVII, S. 392.

⁵) a. a. O., S. 203. Möglicherweise entnahm Regel oder Hassenstein diese Darstellung überhaupt der Klapproth'schen Karte, wovon später mehr.

und Sewerzow im Maßstabe von 1:3000000 hergestellt. Zum Zwecke einer Übersicht der Florengebiete ist sie mit farbigen Höhenschichten in Abständen von 3000' versehen; als solche besitzt sie besonderen Wert für die Pflanzengeographie, bietet aber im übrigen für die Darstellung unserer Gruppe keinerlei geographisches Interesse. In Petermanns Mitteilungen, Bd. XXVII, 1881 ist eine Karte der "Nordwestlichen Mongolei" nach Aufnahmen von Potanin und Rafailow im Maßstabe von 1:3500000 enthalten, in welcher auch der Verlauf des Tian-Schan im O. von Urumtschi eingetragen ist. Der Hauptkamm beschreibt dort einen ungemein steilen Bogen nach N., wodurch die Bogdo-Ola irrtümlicherweise ebensoviel zu weit nach N. hinausgeschoben ist, wie auf den meisten übrigen Karten nach S. Diese Karte scheint übrigens nur ein wenig veränderter Nachdruck der dem Potanin'schen Reisewerke¹) beigegebenen zu sein. Es ist auffällig, daß auch in dieser ziemlich alten Karte die Gewässer des Südabhanges sich mit einer, wenn auch nur annähernden Richtigkeit eingetragen finden und sogar mit Bezeichnung von Namen versehen sind, ein Inhalt, der in keiner der später erschienenen Karten mehr verwertet wurde. Da Potanin die Bogdo-Ola-Gruppe nicht selbst bereist hat, so scheinen diese Angaben seiner Karte auf älteren chinesischen Quellen zu beruhen, die festzustellen mir nicht möglich war. Wahrscheinlich wurde die Klapproth'sche Karte benützt. (Hievon später.)

Dem vorher (S. 24) zitierten Werke von Elsworth Huntington liegt eine Karte an "Map of the Lop-basin and neighboring parts of Inner Asia" im Maßstab von 1:5643000; sie beruht auf gänzlich veralteten Quellen und es kommt ihr daher für unser Gebiet, wiewohl es darin enthalten ist, keine weitere Bedeutung zu.

Das Buch von Percy W. Church (vorher S. 23) enthält zwar ebenfalls eine Karte, die sich durch merkwürdige Ungenauigkeit auszeichnet, und namentlich hinsichtlich unserer Gruppe völlig irreführend ist. Der Verfasser nennt die von ihm auf seiner Reise mitgeführten Karten (a. a. O., S. 161) "a pitch of geographical Inacuracy". Da diese vermutlich als Quellen bei Herstellung der eigenen Karte gedient haben, wird ihre Mangelhaftigkeit erklärlich. Von den Karten, welche den verschiedenen Veröffentlichungen über die Mission Pelliot beigegeben sind (Literaturnachweis auf S. 6, 9, 23), erhebt sogar auch die im "Année Cartographique" enthaltene nicht irgendwelchen Anspruch auf genaue Gebirgszeichnung und ist für Darstellung unserer Gruppe von geringer Bedeutung. Nebenbei sei erwähnt, daß der Inhalt der Karten, welche den einzelnen Publikationen beigegeben sind. untereinander nicht übereinstimmt.

Von der Karte, welche der trefflichen Morphologie des Tian-Schan von M. Friederichsen anliegt (1:3000000), war schon S. 1 und 21 die Rede. Es soll hier noch hervorgehoben werden, daß sie als Übersichtskarte des gesamten Tian-Schan-Systems besonders wertvoll ist, und daß alles bis zur Zeit ihrer Herstellung (1899) verfügbare Forschungsmaterial darin verwendet wurde, natürlich mit seinen Unvollkommenheiten. Darum erscheint auch die Bogdo-Ola-Gruppe darin nur in ihren ganz allgemeinen Zügen richtig, sonst aber als schematische Darstellung.

Von älteren Karten wären noch zu erwähnen: Die der französischen Übersetzung der Berichte des Hiuen-tsang²) beigegebenen. Die in Teil I dieses Werkes hat den Titel:

¹⁾ G. N. Potanin, Übersicht der nordwestlichen Mongolei, Bd. I, 1881 (russisch).

²) Mémoires sur les Contrées occidentales par Hiouen Tsang traduit par N. Stanislas Julien. Paris 1857.

L'Asie centrale et l'Inde au septième siècle de notre ère par Vivien de St. Martin; sie enthält wohl in der Gebirgszeichnung in der bogenförmig nach N. gezogenen Hauptwasserscheide eine Andeutung der Bogdo-Ola, aber sonst keine Einzelheiten hierüber.¹) Die dem Band II anliegende aus japanischen Quellen stammende Karte enthält keine Gebirgszeichnung, sondern nur ein überdies recht ungenügendes Routen- und Flußnetz.

Ferner ist zu nennen: Die Karte des Schweden Joh. Gustav Renat, der von 1716 bis 1733 als Gefangener des Kalmückenkans Ingenieurdienste leistete und während dieser Zeit eine Karte von Zentralasien entwarf.²) Der schwedische Titel der Karte lautet: Songarjske Kalmukje hwarunder Kottonerne höra. Copiered af J. A. Benzelstjerna, 1738. Der Maßstab ist in schwedischen Meilen (5 Meilen: 1''). Die Gradeinteilung geht vom 98. Längengrad bis zum 107. im O. und von 39° 45' bis 45° 15' N. Br. Von welchem Meridian aus die Längengrade gerechnet sind, fand ich nicht heraus. Die aus der Karte erkennbaren geographischen Positionen erscheinen meistens um 1½° zu weit nach S. gerückt und im Sinne der geographischen Länge sind alle Positionen zu sehr aneinander geschoben. Die zentralasiatische Grabensenke erscheint als leerer Fleck, in welchem nur die drei Seen (Sayo-pu etc.) eingetragen sind. Die Stelle, wo Urumtschi hingehört, ist durch die Abbildung eines Zeltes bezeichnet. Der Gebirgskamm dort ist richtig als einfacher Wall dargestellt, jedoch die Bogdo-Ola nicht besonders hervorgehoben.

Eine besonders interessante Karte Zentralasiens ist die von M. J. Klaproth: Carte de l'Asie centrale, dressée d'après les Cartes, levées par ordre de l'Empereur Khian-Loung par Ies Missionnaires de Peking et d'après un grand nombre des notions extraites et traduites de livres chinois par M. J. Klaproth, Paris 1836. In diesem wundervoll ausgeführten Kartenwerk in vier Blättern ist in detaillierter Darstellung das ganze Wissen der damaligen Zeit über die Ländergebiete zwischen Samarkand und Peking, zwischen Kaschmir im S. und dem Baikal-See im N. zum Niederschlag gelangt. Die Bogdo-Ola-Gruppe ist in ziemlich genau richtiger Lage eingetragen unter der Bezeichnung M. Bokda und die ganze Darstellung zeigt, daß die Chinesen zu jener Zeit doch schon eine nicht zu unterschätzende Kenntnis jener Gebirgsgegend besaßen. Insbesondere ist die Hinaufbiegung der Hauptwasserscheide gegen N. zum Ausdruck gebracht und das Flußnetz des Südabhanges der Bogdo-Ola mit erstaunlicher annähernder Richtigkeit zur Darstellung gelangt, namentlich der Zusammenfluß jener Quellflüsse, die in einen einzigen Wasserlauf vereinigt die Dschargöß (Djerkhis)-Kette durchbrechen und nach Toksoun fließen. Sogar einzelne Flußnamen wie Naitak, Gourban, Narat sind zutreffend. Kurz, diese alte Karte ist in vielen Punkten besser, als die meisten später entstandenen, wiewohl von ihren Verfassern offenbar die Klaproth'sche zu Rate gegezogen und mehrfach auch verwertet wurde. (Siehe vorher S. 31 f.) Insbesondere ist dies der Fall bei der in Petermanns Mitteilungen, Band 18, 1872 veröffentlichten Karte

¹⁾ Band II des gleichen Wertes enthält ein Mémoire analytique dieser Karte aus der Feder Vivien de Saint-Martins, in welchem die Bogd-Ola aber nicht erwähnt wird.

²) Genaues über die merkwürdigen Schicksale dieses Mannes, der es zum Fürsten und Generalfeldmarschall der Kalmücken brachte, ist zu finden in einem Aufsatze von A. Makscheyew in Sapiski der K. R. G. G., Bd. II, 1888, S. 105—145 (russisch); ebenso wie eine genaue Beschreibung und Würdigung des Inhaltes der Karte. In lateinischer Sprache ist der Lebenslauf Renats in den Comment. Acad. Scientiam Imper. Petropolitanae, Tom. VI, S. 326 f. zu finden und in deutscher Sprache bei Lachsmann: Sibirische Briefe in G. F. Müller's Sammlung russischer Geschichte, Bd. IV.

der Westlichen Mongolei, in welcher auch der Kamm des östlichen Tian-Schan mit der Bogo-Ola noch Aufnahme fand, im wesentlichen nach der Darstellung Klaproths. Auch in ihren anderen Teilen zeigen Terraindarstellung und Flußnetz dieser Karte häufig enge Anlehnung an Klaproths Karte. Der von A. Petermann bearbeiteten Karte liegt auch eine in Iswestiya der Kais. Russ. Geograph. Gesellsch., T. VII, 1871 veröffentlichte Karte Wenjukow's zu Grunde, welche nur ein Routen- und ein noch dazu unvollständiges hydrographisches Netz enthält. Zur Vervollständigung und Darstellung der oroplastischen Züge wurde von Petermann außer der bekannten Karte Ostsibiriens von L. Schwarz (1864) hauptsächlich Klaproths schönes Werk benutzt.

Dann ist noch zu erwähnen die 1818 erschienene Arrowsmith'sche Karte von Asien: Map of Asia. To Colonel Alexander Allan M. P. etc. this map is inscribed by etc. A. Arrowsmith. Diese Karte, in welcher, allerdings in weit weniger zutreffender Weise, die Bogdo-Ola-Gruppe auch schon zur Darstellung gelangt ist, enthält auch sonst manche wichtige Angaben über die Handelswege und die Lage der Städte, in letzter Hinsicht jedoch auch manches Irrtümliche. So ist der Name "Bischbalik"1) auf Barkul angewendet. Hingegen ist Urumtschi als Olug Yelduz (Groß-Yuldus-Tal) or Oramchi aufgeführt. Die "Bogdo Mountains" beginnen nach dieser Karte schon unmittelbar westlich von Manas und werden auch weit über das richtige Maß nach Osten gezogen. Der Lauf mancher Flüsse wie Tekes, Kunges, Ili ist hingegen einigermaßen zutreffend eingezeichnet. Für ihre Zeit kann man diese Darstellung so entlegener und damals wenig erforschter Gebiete immerhin als eine wertvolle Leistung bezeichnen.

VI. Die wichtigsten orographischen und tektonischen Züge der Bogdo-Ola-Gruppe.

Bevor ich mich dem Gange der Forschungsreise und den hiebei gemachten Beobachtungen zuwende, erscheint es notwendig, einen Blick auf die allgemeinen orographischen Züge der Bogdo-Ola-Gruppe zu werfen, sowie auf die tektonischen Grundlinien, jedoch auf diese nur insoweit, als sie im oroplastischen Bilde zum Ausdruck gelangen, weil in der angefügten geologischen Beschreibung Gröbers (Kap. XX) dieses gemäß Vereinbarung ihm vorbehaltene Thema genauer behandelt wird. Wie schon aus den vorangegaugenen Ausführungen hervorgeht, stehen mir zu dieser orographischen Skizze weder aus den Berichten bisheriger Reisender noch aus dem Kartenmaterial genügend zuverlässige Angaben zur Verfügung. Aber auch mein eigenes Material, das ich im Laufe meiner Expedition sammeln konnte, ist noch dürftig genug, wie dies erklärlich ist, wenn man bedenkt, daß mir bei den umfassenden Aufgaben, die mir im Laufe eines kurzen Sommers oblagen, nur wenige Wochen Zeit blieben (siehe S. 25). um ein nahezu unbekanntes und nur unter den schwierigsten Verhältnissen zugängliches Gebirge von kompliziertem Bau zu bereisen. Es konnte mir und meinen Gefährten lediglich unter den größten Anstrengungen und Entbehrungen und mit Einsatz aller physischen und moralischen Kraft gelingen, die wesentlichen Kenntnisse von seinen hauptsächlichen Zügen, seinem Bau und seinen morphologischen Verhält-

¹⁾ Da Bisch-balyk soviel wie fünf Städte bedeutet und manche Autoren unter diesem sehr unsicheren und dehnbaren Begriff (siehe Ritters Erdkunde, Asien, Buch II, Bd. I, S. 382 f.), die heutigen Plätze Kutscha, Karaschar, Urumtschi, Hami und Barkul zusammenfassen wollen, mit welcher Berechtigung kann hier nicht erörtert werden, so ist die Benennung vielleicht hiemit zu erklären (siehe S. 8 Anm. 2).

nissen zu gewinnen. Ich bin mir daher wohl bewußt, wie lückenhaft das von mir als Ergebnis meiner Untersuchungen hier Gebotene ist und daß es bestenfalls als eine Skizze angesehen werden kaun, als eine erste Grundlage, die allenfallsigen Nachfolgern, welche Zeit, Mittel und Kräfte haben, sich einer solchen Spezialaufgabe zu widmen, es erleichtern kann, durch eingehendere Bereisung und gründlichere Studien in dieser entlegenen Gebirgsgruppe das hier Niedergelegte zu ergänzen.

Zum besseren Verständnis alles nun Folgenden will ich, den späteren orotektonischen Ausführungen vorausgreifend, schon hier wenigsteus in ganz allgemeinen Zügen hervorheben. daß der Hauptkamm des östlichen Tian-Schan im O. von Urumtschi, also das Bogdo-Ola-Gebirge, sich als ein Faltenbau darstellt, aus mehreren Mulden und Sätteln bestehend. Der zentralste und höchste Teil, die eigentliche Bogdo-Ola-Gruppe zeigt den Charakter einer steilschenkligen Antiklinale mit uach S. schwach überschobenem Sattel. (Siehe Profile Fig. II u. 1V auf Tafel 17.)

Über die geographische Lage der Gruppe wurde bereits (siehe vorher S. 1, 3, 5, 18) Allgemeines mitgeteilt. Eine ganz genaue orographische Abgrenzung der Bogdo-Ola-Gruppe zu geben, stößt auf einige Schwierigkeit, besonders was die östliche Grenze anbetrifft. Ich rekapituliere, daß als allgemeine Begrenzung im N. die Senke des südlichen Dsungarischen Beckens in seinem Verlaufe zwischen Urumtschi und Gutschen angenommen werden kann, deren Durchschnittsniveau nach dem bisher von dort stammenden dürftigen Cotenmaterial auf ca. 630 m zu veranschlagen ist (siehe S. 18.) Die allgemeine südliche Grenze ist durch die zentralasiatische Grabensenke als gegeben zu erachten, die wie schon erwähnt bis zu 169 m unter Meeresniveau hinabreicht. (Siehe hiezu Anmerkung 2 auf S. 3.) Nun wird aber der unmittelbare Nordrand dieser Senke von der Dschargöß-Kette gebildet, einer aus dem Westrande dieser Hohlform abzweigenden und in beiläufigem N-O. Verlauf sich etwa im Meridian von Turfan dem Tian-Schan-Hauptkamme angliederuden Nebenkette von steilfelsigem Bau, mit wenig gebrochener Kammlinie und einer durchschnittlichen Erhebung von 3500 m. Da der Zusammenhang zwischen der breiten, sich in Einzelzüge auflösenden Masse des Tian-Schan im W. von Urumtschi (siehe S. 3 u. 7) und seiner Fortsetzung im O. hievon, der Bogdo-Ola-Kette, durch die Depression bei Urumtschi (Dun-Schan-Sattel S. 4, 9. 18) nahezu aufgehoben ist, stellt die Dschargöß-Kette allein noch eine verbindende Brücke zwischen den beiden getrennten Teilen dar. Zwischen dieser demnach in der orographischen Gliederung eine wichtige Rolle spielenden Nebenkette und dem Hauptkamme der Bogdo-Ola ist aber ein anderes tiefes, langgezogenes, von Wüsten und Wüstensteppen eingenommenes wannenförmiges Senkungsbecken eingetieft von etwa 100 km Länge, durchschnittlich 20 km Breite und einer mittleren Tiefe von 12-1300 m, welches ich daher als Südgrenze der Gruppe im engeren Sinne annehmen werde. Als westliche Grenze kommt die vielerwähnte Depression des Dun-Schan-Sattels in Betracht, über welche die Karawanenstraße von Turfan im S., nach Urumtschi im N. führt, und welche den Hauptkamm in einer Höhe von durchschnittlich 1600 m (niederste Stelle 1370 m) überschreitet. Es erübrigt nun eine Grenze im O. zu ziehen. Da ich jedoch über den zentralen Teil der Gruppe hinaus nach O. uicht gekommen bin, so vermag ich die östliche Fortsetzung des Gebirges nur nach den Ausblicken, die ich von hochgelegenen Punkten aus gewonnen habe und nach den von dort gemachten photographischen Aufnahmen zu beurteilen. Nach diesen zu schließen, wechselt dort in jenem noch nicht von Forschungs-

reisenden betretenem Hochgebirge aus Ursachen, für deren Erklärung bis jetzt noch keine geologische Grundlage vorhanden ist, vermutlich aber entweder wegen anderer geologischer Zusammensetzung des Gebirges, oder infolge besonderer tektonischer Verhältnisse, oder endlich aus morphologischen Ursachen, der Charakter des Gebirges in einer auffälligen Weise. An Stelle des zu außerordentlicher Höhe ansteigenden schroffen und zerissenen Kammgerüstes der zentralen Bogdo-Ola treten als Fortsetzung des Kammes nach O. eine Reihe von breiten, stumpfen Gipfeln von dom- und zeltförmiger Gestalt (siehe Taf. 1 u. Fig. 1 auf Taf. 4), die sich zwar uoch wesentlich über die dort hochliegende Schneegreuze erheben und sogar auf ihren Südabhängen noch kleine Firnfelder trageu, aber immerhin um 800-1000 m unter die durchschnittliche Erhebung der zentralen Gipfelgruppe herabsinken. Auch findet dort plötzlich eine scharfe Biegung im Streichen des Hauptkammes statt, der aus der im zentralen Gebiet vorherrschenden ONO.-Richtung, gleich im O. der kulminierenden Gipfel zunächst in WO.- und danu in SO.-Richtung übergeht. Diese letztgenannte Äuderung findet gerade an jener Stelle statt, wo die Quellgebiete des nach N. fließenden Narat-Flusses und des nach S. fließenden Naitak-su in ihrer nach rückwärts einschneidenden Tätigkeit sich in der Hauptwasserscheide schon sehr nahe gekommen sind und an deren Abtragung kräftig arbeiten. Mangels geeigneter Merkmale könnte man die durch diese Talfurchen bezeichuete Tiefenlinie als Ostgrenze der Bogdo-Ola im engeren Sinne annehmen, wiewohl die Depression im Hauptkamme dort nach genauer Schätzung kaum unter 4000 m herabgehen dürfte. Die Bogdo-Ola-Gruppe würde demnach, wenn wir dem Verlauf des Hauptkammes folgen, eine Ausdehnung von W. nach O. von 80 km haben. Die Breitenausdehnung von N. nach S. beträgt anuähernd 50 km, wenn man vom Beginne der ersten Höhenzüge 10 km im S. von Foukan am Nordabhang bis zum Fuße der letzteu südlichen Vorketten uuterhalb der Kupferschmelze im Gurban-Bogdo-Tale rechnet (siehe Karte II.)

Wollte man indes den Hauptkamm, soweit er noch ausgeprägt Hochgebirgscharakter trägt, weiter im O. mit zur Gruppe hinzurechnen, so würde sich als Ostgrenze eine Tiefenlinie ergeben, welche deu Furchen des nach Norden abfließenden Dschimisar-Flusses und des seinen Lauf nach Süden gegen Turfan nehmenden Yar-Flußes folgt, da im Zusammentreffen der Quellgebiete beider Wasserläufe iu der Kammwasserscheide sich überhaupt die tiefste Depression dieses Gebirgsabschnittes findet. Es ist dies ein Paß, der, wenn er auch nur bis zu ca. 3800 m absinkt, doch im Sommer häufig von Kirgisen aus dem Norden mit ihren Herden überschritten wird, um die Weideplätze des Gebirges im S. aufzusuchen. Dieser Paß wird Yulgun-terek, auch Dschuwan-terek (s. S. 28) benannt.¹) Die Länge der ganzen Gruppe würde sich in diesem Falle auf annähernd 120 km berechneu.

Ein Blick auf das Nordpanorama (Taf. 2) scheint zu zeigen, daß der zentrale Teil der Bogdo-Ola-Gruppe von seiner überragenden Höhe sowohl gegen O. als gegen W. hin in außerordentlichem Maße absinkt, was jedoch nur für den westlichen Teil zutrifft, für den östlichen Abfall aber auf täuschenden Verhältnissen beruht, von deneu sogleich mehr die Rede

¹⁾ Dieser Übergang, sowohl Weg als Paßeinschnitt, ist weder in der russ. 40 Werst-Karte (Blatt Hami siehe S. 27) noch in den beiden besprochenen Karten Grum Grschimailos, noch in den Roborowsky'schen Karten eingetragen, wohl aber findet sich in allen Karten dort der Name "Berg Dschuwan-terek-basch" verzeichnet. In der Vaillant'schen Karte in: L'Année Cartographique l. c. findet er sich, da er von der Pelliot'schen Expedition überschritten wurde (siehe S. 23), ferner von der Grünwedel'schen archäologischen Expedition 1906, und endlich von Baron Mannerheim, 1907.

sein wird. Der in drei scharf charakterisierten, prächtigen Gipfelerhebungen kulminierende zentralste Teil hat eine mittlere Kammhöhe von 6000 m, über welche die drei Hauptgipfel nicht mehr gerade bedeutend emporragen, und zwar erreicht der W.-Gipfel eine Höhe von 6397 m. der Mittelgipfel eine solche von 6501 m, der O.-Gipfel 6512 m.¹) Der W.-Gipfel sinkt gegen W. hin in ungeheuren Steilwänden nahezu 3000 m tief zu einer breiten Kammdepression ab. welche die zentrale Hauptgruppe von der wesentlich niedrigeren westlichen Fortsetzung der Kette abtrennt (siehe Panor. Taf. 2 u. 4 Fig. 1 und hypsometrisches Längsprofil Taf. 16 Fig. 1.) Es ist dies der Gurban-bogdo-Paß mit einer Höhe von 3645 m. Eine ähnliche tiefe Schartung ist in den Hochgebirgen der Erde eine seltene Erscheinung. Ich werde auf diesen wichtigen, eigenartigen Zug im Gebirgsbau später noch eingehend zurückkommen.

Jenseits dieser tiefen Kammdepression schwingt die Kette im W. sich nochmals zu bedeutender Höhe auf und kulminiert dort in einem breitmassigen, allseits reich vergletscherten, prächtigen Berge von beiläufig 5600 m, den ich zu Ehren meines geschätzten Freundes, Generals J. M. Schokalsky, des ersten Vizepräsidenten der Kais, Russ, Geograph. Gesellschaft "Pik Schokalsky" benenne. Wenn man in der Steppe entlang dem Nordfuße der Kette von Urumtschi nach O. wandert, fällt längere Zeit vom Hochgebirge fast nur dieser Gipfel ins Gesichtsfeld und beherrscht es, wobei man tiefen Einblick in die ihn umrandenden, vergletscherten Talschlüsse gewinnt. Es ist dies die erste der Überraschungen, welche ich bei meiner Annäherung von N. zur Bogdo-Ola erlebte, da ich mir mangels jeglicher Nachrichten hierüber dort noch keine stark vereisten Gebirgsteile erwartete. Sogar weiter nach W. hin sinkt der Hauptkamm in seinem dort scharf südwestlichen Streichen auf mehr als 12 km seines Verlaufes im Mittel noch nicht unter 4500 m durchschnittlicher Höhe ab und kulminiert in einer Reihe von fünf mit reichem Firn- und Eismantel bedeckten beiläufig 4800 m hohen Gipfeln. (Siehe Panorama Taf. 2.) Der Kamm senkt sich dann, weiterhin die gleiche Streichrichtung beibehaltend, ganz allmählich, zunächst noch auf eine Länge von weiteren 10 km. eine mittlere Kammerhebung von 3800-4000 m bewahrend, mit Gipfelerhebungen bis ca. 4200 m, die dennoch den Schmuck kleiner Firnfelder nicht entbehren. Dann erst nimmt die Höhe stärker ab, die Hauptwasserscheide erscheint nun als fast gipfelloser Wall, der bis zum Quellgebiet des Lou-sa-gu immerhin noch eine mittlere Kammhöhe von 3400 m zeigt. Die weitere Abdachung des Gebirges von da an bis zur tiefen Senke des Dun-Schan-Sattels südlich von Urumtschi (ca. 1600 m, tiefste Stelle 1370 m) ist eine rapide. (Siehe das hypsometrische Längsprofil Taf. 16 Fig. 1.) Es findet also ein konsequentes Absinken der ganzen Gebirgsmasse gegen W. hin statt gegen den großen Querbruch des Dun-Schan-Sattels hin.

Naht man sich der Bogdo-Ola von N. her, z. B. von Foukan aus, so fällt stets nur die zentrale dreigegipfelte Riesenwand ins Gesichtsfeld und man gewinnt, wie erwähnt, den Eindruck, als falle sie gegen O. wie gegen W. hin gleich tief und jäh ab. (Siehe Taf. 4 Fig. 5.) Selbst die Darstellung auf den Panoramen des Norbadanges (Taf. 2 u. 4 Fig. 1) läßt kaum eine andere Beurteilung zu. Und doch ist dies eine Täuschung, welche ihren Grund in der bereits S. 4 u. 7 erwähnten Knickung der Hauptkammachse hat. Während nämlich die Achsenrichtung der zentralen Hauptgruppe nach NO. geht, zeigt ihre östliche

¹⁾ Über die Ermittlung dieser Werte siehe Näheres in Kapitel XXIX.

Fortsetzung eine solche von W. nach O. Dies hat zur Folge, daß bei Betrachtung des Gebirges von irgendwelchem Standpunkt im N. für das Auge die unmittelbare, noch immer sehr hohe Fortsetzung des Hauptkammes durch die kolossalen Steilwände der zentralen Gruppe verdeckt wird, so daß im Vordergrund nur die sich von ihr abspaltenden, niedrigeren Züge ins Gesichtsfeld treten. Auf solche Weise wird die Täuschung einer Kammdepression im O. hervorgerufen, welche der wirklichen im W. kaum nachzustehen scheint. Ganz anders ist der Eindruck, wenn man das Hochgebirge von einem hohen Standpunkt am S.-Abhange betrachtet. (Siehe Südpanorama Taf. 3.) Es war für mich eine nicht minder große Überraschung, als ich mich dort von der Unrichtigkeit meiner ersten Auffassung überzeugen mußte. Die zentrale Hauptgruppe erscheint von S. gesehen infolge der hohen, pylonenförmig aus ihr herausstrebenden Verzweigungen teilweise verdeckt und infolge ihrer NO.-Achsenrichtung zusammengeschoben, während ihre latitudinale Fortsetzung sich dem Blick als ein gewaltiger kühn geformter Steilwall frei entfaltet, dessen mittlere Kammerhebung auf beiläufig 5 km Länge nicht unter 6000 m herabsinkt und ebenfalls in drei kuppenförmigen Erhebungen kulminiert, welche die durchschnittliche Kammhöhe um mindestens 300 m überragen und das oberste Einzugsgebiet des größten Gletschers der ganzen Gruppe, des Chigo-Gletschers, umstehen.

Die Fortsetzung des Hauptkammes wird erst weiterhin nach O. durch eine Reihe von stumpf pyramidalen oder zeltförmigen Gipfeln gebildet (S. 36); soweit ich Überblick gewinnen konnte, scheinen sie mir nicht wesentlich in ihrer Höhe von einander abzuweichen, welche etwa 5500 m nach meiner Schätzung betragen dürfte. Vom weiteren Verlauf des Hauptkammes gegen O. wird späterhin noch die Rede sein. In ähnlicher Weise also, wie dem Blick von N. aus hauptsächlich nur das Gerüste des zentralsten Teils entschleiert wird, welches die hohe, östliche Fortsetzung des Hauptkammes verdeckt, so hat die eigenartige Achsenknickung, verbunden mit der Massigkeit der aus dem zentralen Teile gegen S. vorspriugenden Felspfeiler zur Folge, daß man im S. schon nach kurzer Entfernung von der Hauptwasserscheide die zentralste und höchste Gruppe nicht mehr gewahren kann. Diejenigen vereisten Hochgipfel, welche dort noch ins Gesichtsfeld fallen, gehören vielmehr schon ihrer östlichen Verlängerung an, was ein Vergleich des von Norden aufgenommenen Panoramas mit dem Südpanorama überzeugend dartut, und überdies durch Peilungen in unanfechtbarer Art festgestellt wurde. Auf den Irrtum Regels, der bei Turfan im Aufblick gegen N. und am Paß Dawantschin die zentrale Bogdo-Ola-Gruppe zu sehen glaubte, habe ich schon S. 21 hingewiesen. Aus der gleichen Fehlerquelle entspringt die irreführende Darstellung, welche Obrutschew¹) von der "Ansicht der Bogdo-Ola" aus Süden gibt. (Siehe S. 29.) Nur von hohen Standorten aus ist es also möglich, den Kammverlauf richtig zu beurteilen und hiemit erklären sich die unrichtigen Darstellungen in allen bisherigen Karten (siehe Kap. VI.)

Wie aus den panoramatischen Ansichten und aus den geologischen Profilen auf Taf. 17 ersichtlich wird, ist es ein besonders scharf hervortretendes Merkmal in den orographischen Zügen der Bogdo-Ola, daß bei ihrem Charakter als Faltengerüste (siehe S. 35) ein Ansteigen des Gebirges von N. nach S. bis zur höchsten Erhebung in drei deutlich unterscheidbaren Stufen stattfindet, welche der geologischen Zusammensetzung und tektonischen Gliederung

^{1) 1.} c., Bd. II, S. 640.

entsprechen. Nach S. hingegen findet ein schroffer Abfall und eine Auflösung des Baues in Einzelzüge statt.

Die erste und niedrigste Stufe im N. besteht aus leicht verwitternden, weichen, jurassischen Bildungen, Sandsteinen, Konglomeraten, Schiefern, Mergeln und Tonen mit den sie durchbrechenden jungen Laven. Diese wegen ihrer Verwandtschaft mit ähnlichen Bildungen Innerasiens als "Angaraserie" zu bezeichnende Gesteinsfolge ist stark abgetragen und an einer Längsverwerfung teilweise abgesunken, welche sie von den älteren Gesteinen der zweiten Stufe trennt. Es ist dies eine Schichtenfolge mehr oder weniger stark umgewandelter Tonschiefer, quarzitischer Sandsteine, Grauwacken, Breccien, Kalksilikathornfelse und umgewandelter Eruptivgesteine etc., ein Gesteinsmaterial, das der Verwitterung und Abtragung weit größeren Widerstand entgegensetzen konnte. Infolge Mangels an organischen Einschlüssen kann das Alter dieses Schichtenkomplexes nicht mit Sicherheit bestimmt werden: doch sprechen verschiedene Gründe für Zugehörigkeit zum Paläozoikum. (Näheres hierüber in Kap. IX). Wie aus obiger Aufzählung der Schichtenglieder ersichtlich ist. fehlt hier im Bau der Bogdo-Ola der Granit, dem sonst im ganzen Tian-Schan von seinem westlichen Beginne an bis weit nach Osten in Zusammensetzung und Tektonik des Gebirges eine so wichtige Rolle zukommt. Es kann aber, wie in einem folgenden Kapitel nachgewiesen wird, mit Sicherheit auf sein Vorhandensein in geringer Tiefe geschlossen werden; er ist also hier nicht gehoben.

Der Nordschenkel der großen Sattelfalte, als welche — ungeachtet mancherlei Knickungen und Unregelmäßigkeiten — der Gebirgsbau der zentralen Bogdo-Ola sich charakterisiert, erhebt sich schon mit Beginn der härteren, alten Gesteinsserien allmählich zu beträchtlicheren Höhen. Dort aber, wo diese Gesteine am intensivsten und mannigfaltigsten, sei es durch verborgene Tiefengesteine, sei es durch die das Massiv durchschwärmenden Effusivgesteine, beeinflußt sind, steigt die Sattelfalte in steilem Winkel zur höchsten Stufe des Gebirges an, und bildet die kulminierende zentrale Gipfelgruppe.

Die erste Stufe (a) hat (siehe das schematische Querprofil Taf. 16 Fig. 2) eine wechselnde Breite von 15—17 km und eine durchschnittliche Erhebung von 800—1200 in; die zweite Stufe (b) zeigt eine Breitenausdehnung von 15—17 km bei einer Erhebung von 1200 m bis zum Maximum von 2900 m; die dritte und höchste Stufe (c) endlich hat nur eine Breitenausdehnung von 9—11 km und schwillt von ca. 3200 m bis zur ungeheuren Maximalerhebung (d) von über 6500 m an.

Jede Stufe zeigt im großen ganzen eine trotz vielfacher Zerschneidung auffällige, gleichmäßig schwach geneigte Oberfläche (siehe Taf. 6 Fig. 1 u. 2, Taf. 7 Fig. 1 u. Taf. 9 Fig. 4), die gegen die nächste Stufe in kurzem Steilfall abbricht. Das mittlere Oberflächenniveau der untersten Stufe (a) ist 1000 m, das der zweiten Stufe (b) 2500 m; bei der dritten Stufe (c) ist zu berücksichtigen, daß sie aus zwei Gliedern besteht: dem schwach geneigten Plateau mit einer mittleren Erhebung von 3200 m, anschwellend bis zu einem Maximum von 3600 m, auf welches die fast 3000 m hohe Riesenwand der zentralen Gipfelgruppe jäh abstürzt. Man erkennt aber die auffälligen, in Stufen übereinanderliegenden Hochflächen mit der sie krönenden, wie aufgesetzt erscheinenden, obersten Steilwand in ausgezeichneter Weise aus einer von der Steppe im N. aus aufgenommenen Telephotographie des Gebirges (Abbildung 5 auf Taf. 4).

Läßt sich dieser Stufenbau des Gebirges teils durch die Beschaffenheit der einzelnen Gesteinszonen und teils durch endogene Wirkungen erklären, so drängt die gleichmäßig flächenhafte obere Begrenzung jeder einzelnen Stufe zur Aufwerfung der Frage, ob nicht außerdem exogene Einflüsse, wenn solche vielleicht auch in enger Abhängigkeit von den geologischen Faktoren stehen, daran Anteil haben? Der Gedanke an jugendliche Krustenbewegungen liegt nahe und die Vorstellung von spät gehobenen Verebnungsflächen gewinnt an Wahrscheinlichkeit. In der Tat liefert nicht nur die ganze Gestalt des Gebirgsreliefs (siehe die oben erwähnten Abbildungen, sowie Taf. 6 Fig. 1 u. Taf. 7 Fig. 2) Anhaltspunkte hiefür, sondern auch eine Reihe von Beobachtungen, die auf dem Reisewege gemacht wurden. Ich begnüge mich aber für jetzt mit diesem vorläufigen Hinweis, da es zweckmäßig erscheint, erst bei Beschreibung des Reiseweges die einzelnen Erscheinungen näher zu erörtern, wonach ihre Zusammenfassung die schon im allgemeinen Bild deutlich zutage tretenden Wirkungen orodynamischer und morphologischer Art bestätigen wird.

Die auffallend geringe Breite der obersten Stufe und das rasche Absinken ihres höchsten Randes nach S. beruht auf tiefgreifende Längsbruchwirkungen an der südlichen Basis des Gebirges, d. h. sie hängt mit dem Entstehen der öfters erwähnten tiefen zentralasiatischen Grabensenke (siehe besonders S. 3, 12 etc.) auf das engste zusammen. Man kann den Bau des S.-Abhanges als eine Auflösung des Gebirges in Längsschollen bezeichnen, von welchen bei Beschreibung des von der Expedition eingeschlagenen Weges ausführlicher die Rede sein wird. Wie die Schichtenfolge der Gesteine des Südschenkels der zentralen Falte, was aus der petrographischen Beschreibung im Kap. XXI ersichtlich ist — in Übereinstimmung mit dem inneren Bau des Gebirges -- der des N.-Abhanges entspricht, so sind auch die Gesteine selbst annähernd gleichen Charakters und unterscheiden sich von ihnen nur durch einen stärkeren Grad von Umwandlung, wobei sich aber die einzelnen Elemente im S. in einem weit tieferen Niveau finden. Der Unterschied beträgt gegenüber dem entsprechenden Niveau im N. ca. 800-1000 m; hiefür gibt es keine andere Erklärung, als eben das allgemeine Absinken des Faltenbaus um diesen Betrag in der Richtung nach jener tiefen Grabensenke hin. Wenn hiebei auch zu beachten ist und schon durch den äußeren Befund der Gesteine des S.-Abhanges erwiesen wird, daß die Gesteinszerstörung unter den von stärkeren thermalen Gegensätzen beherrschten klimatischen Verhältnissen des S.-Abhanges eine viel tiefgreifendere ist, als im N. und daher auch die Abtragung am Südschenkel des Faltenbaus ein bedeutenderes Ausmaß erreichen mußte als am nördlichen, so könnten solche Einwirkungen allein doch den starken Unterschied zwischen den beiderseitigen Böschungswinkeln (siehe Profil IV auf Taf. 17 und schemat. Querprofil Fig. 2 auf Taf. 16) nicht zur Genüge erklären. Man könnte ja auch an ungleiche Hebung denken; allein alle anderen Erscheinungen, von denen später die Rede sein wird, sprechen zu deutlich für Bruchbewegungen.

Die ungeheure Höhe der obersten Kammregion (d) sinkt rasch bis zu 4400 m mittlerer Höhe ab, welche aber auch nur auf eine schmale Zone (e) (etwa 8 km) des Gebirgsabfalles beschränkt bleibt. Nach weiteren 7 km seiner Breitenerstreckung (f) ist die Höhe schon auf 3900 m, nach weiteren 7 km (g) auf 2400 m, nach abermaligen 8 km (h) auf 1500 km abgesunken und dann verschwindet das alte Gebirge mehr und mehr unter den jungen Ablagerungen der spättertiären Gobisedimente, der noch jüngeren Flußablagerungen und Wüstenbildungen, welche insgesamt ein Relief von geringer, durchschnittlich nur wenige

41

hundert Meter betragenden Höhe bilden. Der breite Gürtel der Bildungen der Angaraserie des Nordens fehlt also am Südfuße mit Ausnahme einzelner, kleiner, verstreuter Schollen, die bei Bildung der großen Grabensenke von Luktschun, in verschiedene Niveaus gehoben oder gesunken. erhalten geblieben sind. Im östlichen Teil dieser Senke, aber viel weiter im S.. scheinen sie noch vorzukommen. Wenigstens deuten hierauf die Angaben Futterers in der geologischen Karte III von "Durch Asien" (Band II/I), wo mesozoische Gesteine eingetragen sind, die in den niederen Hügelketten des Tuyuk-tagh im S. und O. von Turfan zwischen Astüna und Pitchan am Rande der Wüste zutage treten.¹) Jedenfalls aber ist die Hauptmasse der Angara-Ablagerungen in dem großen südlichen Längsbruch verschwunden.

Den tiefgreifenden Einfluß, den dieser Grabeneinbruch auf den gesamten Gebirgsbau des östlichen Turkestan ausübte, konnte Obrutschew²) bis nach Chami im O. hin verfolgen. Ich habe schon früher (S. 4) darauf hingewiesen, daß auch die im O. von Urumtschi stattfiudende Reduzierung des Tian-Schan auf eine einzige Kette von Hochgebirgscharakter im wesentlichen diesem Einfluß zuzuschreiben ist. Jenseits (südlich) der großen Grabensenke, in welcher die große Masse des Gebirges verschwunden ist, sehen wir von ihm nur mehr zwei nach SO. ausstrahlende Randketten, den Tschol-Tagh und Kuruk-Tagh, welche aber beide nur mehr geringe, mittlere Kammhöhen, ersterer von 1500, letzterer von 1200 m erreichen und mit ihren östlichen Enden sich mit den Zügeu des Beu-Schan verknüpfen. Genauere Untersuchung ihrer geologischen Zusammensetzung und Tektonik, eine dankbare Aufgabe für künftige Forschungsreisende, würde wichtige Schlüsse auf die verschwundenen Gebirgsteile zulassen, denn zweifellos sind diese Ketten als erhalten gebliebene Schollen (Horste) der niedergegangenen Gebirgsmasse anzusehen.³)

Dafür, daß der ganze Südrand des Tian-Schan von Längsbrüchen begrenzt wird, fehlt es auch sonst nicht an Beweisen. Futterer erwähnt bei Beschreibung seines Weges durch die weiter im W. gelegenen südlichen Vorketten⁴) des Tian-Schan (Strecke Kara-Yulgun bis Bai) als Charakteristikum des Baus ein Absinken in Staffelbrüchen von bedeutendem Ausmaße. Auch auf dem Weiterwege nach O. bis Kurla stellt er die am Gebirgsrande entlang laufender Brüche fest. Meine eigenen auf dem gleichen Wege gewonnenen Beobachtungen decken sich mit denen Futterers, wogegen seine nur auf Analogieschluß beruhenden

¹) In der Beschreibung des Weges findet sich allerdings weder in diesem Band noch in Bd. I eine Angabe zum Belege dieses Juravorkommens. Möglicherweise hat der Bearbeiter des II. Bandes Dr. F. Nötling die Eintragung in jene Karte auf Grund von Angabeu Obrutsche ws vorgenommen(?), der (l. c., Bd. II, S. 614) an einer Stelle der genannten Kette in steinkohleführenden Schichten eine gut charakterisierte, jurassische Flora auffand und auch an anderen Stellen seines Weges durch diese Gegend (a. a. O., S. 609 f., 615, 619, 625) des Vorkommens von Juragesteinen Erwähnung macht, wenn sie auch der Beschreibung nach, mit Ausnahme des Vorkommens von Phoenicopsis, keine Ähnlichkeit mit den jurassischen Bildungen des Nordens zu zeigen scheinen.

²⁾ Hettners Zeitschrift I, S. 275 f. Süß, Antlitz der Erde III, S. 213 f.

³⁾ Siehe Futterer in Verh. VII. Intern. Geogr. Kongreß, Bd. II, S. 788, 789 und besonders in Bd I. Die sieh an Futterers Vortrag knüpfende Diskusion, in welcher Obrutschew bemerkte, "daß die Tertiärschichten am Südfuße des östlichen Tian-Schan nicht nur gefaltet, sondern auch gebrochen sind. Wenn stellenweise auch Faltungen vorkommen, so seien dies sekundäre Erscheinungen: Bruch und Absenkung sind die leitenden Momente der Tektonik dieses Landes".

Siehe ferner: Durch Asien, l. c., II/I, S. 114 u. 210.

⁴⁾ Ebenda S. 114 f.

Angaben in Bezug auf die nächsten, weiter im N. dieses Weges aufragenden Ketten, weil sie von ihm nicht selbst untersucht wurden, in mancher Hinsicht der Richtigstellung bedürfeu.1) Das langgestreckte weite Becken von Karaschar, das einst ganz vou einem See ausgefüllt war, dessen, ungeachtet seiner noch immer bedeutenden Ausdehnung, gering zu nennender Rest der große See Bagratsch-kul ist, stellt sich als Einbruchsbecken dar, iu welches der Längsbruch des großen Yuldus-Tales ausläuft. (Siehe Anmerkung 1, S. 57.) Im Norden und Osten von Bai wurden die Staffelbrüche von Keidel und mir ebenfalls festgestellt.2) In dieser Arbeit erwähnt Keidel auch den Abfall des Gebirges in Staffelbrüchen3) am Rande des Terek-Tales. Auch die Schilderung der Verhältnisse am Südrande beim Kumaryk, wie sie Keidel entwirft,4) läßt deutlich ein Absinken des Gebirges an einem Längsbruch erkeuuen. Wenn die Staffeln dieses Bruches dort nicht deutlich hervortreten, so liegt dies nur an der außerordentlichen Zerstörung der hier das Gebirge zusammensetzenden weichen Tonschiefer und Phyllite und der infolge hievou eingetretenen außerordentlich starken Verhüllung durch Schutt, die an manchen Orten nahe bis zu 2000 m ansteigt. Auch bei Utsch-Turfan wird von Keidel das Vorhandensein von Brüchen erwähnt⁵) und die großen Staffelbrüche, welche das geologische und Landschaftsbild im Kok-schal-Tale beherrschen, werden in der gleichen Arbeit ausführlich geschildert.⁶) Der Richtung dieser Brüche folgt das Kok-schal-Tal entlang dem Südrande. Wenn im W. von der Öffnung des südlichen Musarttales, wo sie noch vorhanden sind, am Südrand die mesozoischen Angarabildungen, die im O. von diesem Tale so ungeheuere Mächtigkeit aufweisen, fehlen, so läät sich dies damit erklären, daß sie in dem ein sehr bedeutendes Ausmaß erreichenden Grabenbruch versunken siud. Südlich der Furche des Kok-schal-Tales setzen sich die Staffelbrüche weiter fort, wie wir durch die Gröber'schen Untersuchungen wissen,7) der diese Brüche nach SW. bis nach Kaschgar und nach O. bis in die Gegend von Kutscha verfolgte. Wir wissen aber auch aus den anläßlich des großen Erdbebens von Andischan durch die von den russischen Geologen Tschernischew, Bronnikow, Weber und Faas angestellten Untersuchungen am Nordrand des Kaschgarbeckens,8) daß diese seismischen Bewegungen späte Fortwirkungen jener alteu Dislokationen sind, welche in Form von großen Randbrüchen dem Südrand des Tian-Schan entlang laufen. Das staffelförmige Absinken des südlichen Tian-Schan an Längsbrüchen kaun nahezu überall am Rande festgestellt werdeu und widerspricht der früher weit verbreiteten, irrtümlichen Ansicht vom mauergleichen Abbruch des südlichen Tian-Schan gegen das Tarymbecken, worauf ich schon früher hingewiesen habe.9)

¹⁾ Näheres hierüber in einer vorbereiteten Arheit über meine Querung des östlichen Tian-Schan.

²) Geologische Untersuchungen im südlichen Tian-Schan etc., l. c., S. 353.

³⁾ Ebenda S. 350 und Profil S. 349.

⁴⁾ Ebenda S. 341 f.

⁵⁾ Ebenda S. 302 und Profil Fig. 11.

⁶⁾ Ebenda S. 284, 289 f., 291, 293, 294 f., 297 f., 298, 341 f., 357.

⁷⁾ Vorläufiger Bericht über tektonische Ergebnisse einer Forschungsreise im südlichen Tian-Schan. Zentralblatt für Mineralogie, Geologie und Paläontologie, Nr. 10 u. 11, 1910. Separatabdruck, S. 14 f. und Kärtchen.

s) Mémoires du Comité Géologique, nouv. Série No. 54 (russisch), referiert von mir in Mitteil. der Geograph. Gesellsch. München, Bd. VI, 1911, S. 433 f.

⁹⁾ Petermanns Mitteiluugen, Ergänzungsheft 149, S. 50, siehe auch Keidel, a. a. O., S. 304.

43

Weniger bekannt ist, daß auch der Nordrand durchweg an Brüchen abgesunken ist. Es wurde bereits flüchtig erwähnt (S 39), daß im N. der Bogdo-Ola eine Verwerfung in beiläufig paralleler Richtung mit der Achse der Hauptwasserscheide streicht und den Komplex der alten Gesteine von den Ablagerungen der zum Jura* zu stellenden Serie der Angaraschichten trennt. Diese Verwerfung dürfte sich zweifellos am Nordfuße des Gebirges entlang überall nachweisen lassen. Da jedoch bisher der Nordrand des östlichen Tian-Schan nur an wenigen Stellen von Geologen untersucht worden ist, so liegen noch keine genügend beglaubigten Angaben hiefür bis jetzt vor. Auf meiner letzten Forschungsreise konnte der Verlauf dieser Verwerfungen außer am Nordrand der eigentlichen Bogdo-Ola-Gruppe an mehreren anderen Punkten weiter im W. festgestellt werden: und zwar zuerst, nachdem wir das alte Gebirge von S. her gequert hatten (s. S. 3), bei unserem Austritt nach N. im SW. von Manaß und später wieder im S. von Sügoschur am Ausgang des großen Quertales Dschirgaltö, wo Dr. Gröber die Verwerfung zwischen den alten Gesteinen und der Angaraserie genauer untersucht hat. Diese große Verwerfung verläuft den Biegungen der Hauptwasserscheide lange Zeit parallel (siehe Karte I), wie denn auch die Hauptstreichrichtung der Gesteine der Angaraserie im großen Ganzen im Einklang mit der jeweiligen Richtung der Verwerfung steht.

Diese mesozoischen Bildungen fallen nach N. stetig ab und verschwinden allmählig in der langgestreckten Depression des Dsungarischen Beckens, welches die Ketten des Tian-Schan von denen des Dsungarischen Ala-Tau (zunächst Maili-Dschair-Urkaschar-Ketten) trennt.¹)

¹⁾ Das Dsungarische Becken kann deshalb als natürliche Grenze zwischen Tian-Schan und den Ketten des Dsungarischen Ala-Tau angesehen werden. Von dieser langgestreckten Senke hebt schon A. Wojekow hervor (Klima von Luktschun, Meteorol. Zeitschr., Mai 1900, S. 203), daß das Gebiet zwischen Tian-Schan im S. und Altai und Sayan im N., wie es den Einfall der Nomaden aus Zentralasien begünstigte, auch ebenso leicht den Abfluß der Luft aus der winterlichen Antizyklone Zentralasiens förderte. (Siehe auch ebenda S. 204 f.) Der Komplex der die Grenze bildenden Senken ist nur an einer Stelle, im NO. von Kuldscha durch eine schmale, niedere Landschwelle von 1500 m mittlerer Höhe (Paß Zitertö 1472 m) unterbrochen. Es drängt sich somit die Frage auf, ob eine solche markante, bedeutungsvolle oroplastische Erscheinung wie diese nicht auch die selbstverständliche Grenze zwischen den großen zentralasiatischen Gebirgssystemen des Tian-Schan und des Altai zu gelten hat? Mit der Frage einer solchen Abgrenzung hat sich K. Leuchs im Aprilheft 1914 von Petermanns Mitteilungen (S. 209) beschäftigt und spricht sich, was den westlichen Altai betrifft, für eine, wie mir scheint, geographisch-morphologisch keineswegs mit genügender Klarheit im Bodenrelief wie im Kartenbild in die Erscheinung tretende Abgrenzung aus. Dies aber muß meines Erachtens vom Standpunkt der physikalischen Geographie aus verlangt werden, wobei systematisch-theoretische Erwägungen über Gebirgsbildung, wie Leuchs sie auf Grund der Anschauungen von E. Suess vertritt, nicht als entscheidendes Moment herangezogen werden dürfen, wenn solche nicht auch im Relief des Landes deutlich zum Ausdruck gelangen und dies ist hier nicht der Fall. Nach meiner Auffassung würde man allen Schwierigkeiten aus dem Wege gehen, wenn man den Komplex der Ketten des Dsungarischen Ala-Tau im orographischen Sinn vom Tian-Schan abtrennen, diesen wieder vom Tarbagatai scheiden und letzteren vom Gebirgssystem des Altai, wobei man in Bezug auf deutliche orographische Grenzen nicht in Verlegenheit käme. Eine ganz brauchbare Begrenzung annähernd in meinem Sinn findet man bei Sakrschewsky: Kurzer Abrif des N.-Abhanges des Dsungarischen Ala-Tau. Sapiski der Westsibirischen Abteilung der Kais. Russ. Geograph. Gesellsch., Bd. XV, Heft I. 1893, russisch, S. 2 f. Solche Trennung, die auch durch klimatische, faunistische und botanische Verhältnisse gerechtfertigt wäre, verhindert keineswegs die systematischen, geologisch-tektonischen Beziehungen und Zusammenhänge der einzelnen Gebirgskomplexe zueinander in das richtige Licht zu stellen. Es kann im Rahmen dieser Abhandlung natürlich auf die Frage nicht näher eingegangen werden. (Siehe folgende Seite und Anmerkung S. 98.) Bezüglich der Grenze im O. siehe Anmerkung auf S. 46 f.

In gleicher Weise senken sich dort die Ketten der südlichen Dsungarei nach S. ab, wie der Erforscher jener Gebiete, W. A. Obrutschew besonders hervorhebt: 1) "Im tektonischen Bau dieses Gebietes spielen Staffelbrüche die ausschlaggebende Rolle." Es geht auch aus den Darlegungen von O. hervor, daß das große Becken des Ebi-nor in ähnlicher Weise als ein früher völlig mit Wasser angefülltes Senkungsbecken anzusehen ist, wie ich dies bereits vom Becken des Bagratsch-kul (S. 42) im S. hervorgehoben habe. Der heutige See Ebi-nor ist nur ein geringer Rest einer riesigen früheren Wasseransammlung. In einem ausführlichen Werke über diese Reise hat Obrutschew eingehenden Bericht über seine Untersuchung der mesozoischen Ablagerungen am Nordrand des großen Beckens im Unterlauf des Manas-Flusses gegeben,2) aus denen deutlich zu erkennen ist, wie auch von N. her diese Gesteine nach Süden mehr und mehr an Mächtigkeit abnehmen und allmählich in der Senke des Dsungarischen Beckens verschwinden. Das größte Ausmaß erreicht diese Senke in einer tiefen, sich eng an den Sockel des Tian-Schan anschmiegenden Rinne, die jetzt zum großen Teil von ausgedehnten Sümpfen3) erfüllt wird, in welchen von Gutschen im O. bis nach Schicho im W. die meisten der vom Nordfuß des Tian-Schan abfließenden Gewässer verschwinden. Die Unzugänglichkeit der von ungeheuren Schilfbeständen eingenommenen Sumpfstrecken gestattet nicht ein Niveau des allertiefsten Teiles der Senke zu geben. Nur zwei Coten aus dem Sumpfgürtel sind bekannt geworden durch Roborowsky,4) der ihn im N. von Manas gequert hat, nämlich die Örtlichkeiten Jan-sun-fu 343 m und Dun-dun-sa 345 m. Doch zieht die "nördliche Kaiserstraße" (siehe S. 9 und Anmerkung auf S. 98) hart am Rande der Sümpfe in ganz geringer Erhebung über ihn entlang; aus den aus verschiedenen Quellen⁵) stammenden und z. T. aus meinen eigenen barometrischen Höhenbestimmungen entnommenen Werten ergibt sich eine durchschnittlich zwischen 400 und 600 m schwankende Tiefe dieser Rinne. Von W. nach O. gehend finden wir Dschincho 385 m, Kui-lutun 399 m, Kur-tu 466 m, Sügoschar 610 m, Schicho 414 m, Kuilun 398 m., Sando-cho 405 m., Manas 481 m., Tuchu-lu 559 m., Chutubeu 512 m. Foukan 560 m.6) Am Ebi-nor und seiner Umrandung sinkt die Tiefe des Beckens noch wesentlich ab, wie wir aus der dem letztangeführten Obrutschew'schen Werke beigegebenen Karte entnehmen können, nämlich für den Seespiegel 243 m, für Höhen nahe seinem Ostrande 274 m und 310 m, am Nordrande 326 m und steigt dann nach N. zu rasch wieder an.

Weiter im W. begrenzt das große Einbruchsbecken des Jli den Nordfuß des Tian-Schan, dessen nördlichste Kette, der Temurlyk-Tau nach Prinz⁷) ein Horst ist, der in

¹⁾ W. A. Obrutschew, Expedition nach Barlyk und Tarbagatai im Jahre 1905. Vorläufiger Bericht. Tomsk 1907 (russisch).

²) W. A. Obrutschew, Das Grenzgebiet der Dsungarei. T. I, Abteil. I: Reisebeobachtungen. Tomsk 1912, S. 401 f. (russisch).

³) Auch von einigen kleinen Seen (Telli-nor 290 m), Airan-nor und etlichen Salzseen (Dabasun-nor etc. ca. 300 m).

⁴⁾ Kärtchen der Umgebung von Mauas in: Ergebnisse der Reise nach Zentralasien, l. c., Bd. I, S. 596.

⁵⁾ Katalog der Höhen des asiatischen Russlands etc. von Hikisch. Sapiski, Kais. Russ. Geograph. Gesellsch., Bd. 31 (1901), russ.

⁶⁾ Die Coten von Schicho, Urumtschi, Ebi-nor und eiuige andere in Stielers Handatlas Bl. 62 differieren wesentlich mit den meinigen. Welches die Quellen für die Coten in jenem Kartenwerk sind, ist mir nicht bekannt; jedenfalls entsprechen sie nicht den neueren Ermittlungen.

⁷⁾ C. Prinz, Beiträge zur Morphologie des Kuldschaer Nan-Schan. Mitteil. K. K. Geograph. Gesellsch. Wien, Bd. 53, 1910, S. 184 f.

Staffelbrüchen zum Jli-Becken abfällt. Noch weiter westlich erhebt sich als Nordrand des Gebirges die Kette des Transilenischen Ala-Tau, von der wir schon durch die Beobachtungen J. W. Muschketows1) wissen, daß ihrem ganzen Nordrande entlang Verwerfungen laufen, welche später nach dem letzten großen Erdbeben von Wiernoe (1911) von der zur Untersuchung berufenen Kommission unter Leitung von K. Bogdanowitsch, von ihm, D. J. Muschketow und S. Kark noch eingehender studiert wurden.²) Die ausgedehnteste der Nordketten des westlichen Tian-Schan, die Alexander-Kette, fällt, wie wir auf Grund der Beobachtungen von J. W. Muschketow (a. a. O.) und Romanowsky3) sagen können, in Randbrüchen gegen die weiten Steppengebiete vou Semiretschensk ab.4) Endlich haben wir in neuester Zeit durch Machatschek⁵) auch aus den westlichsten Teilen des Tian-Schan Kenntnis davon erhalten, daß auch dieser Teil des großen Kettengebirges im N. durch einen Längsbruch begrenzt wird. Mithin erscheint es hinlänglich begründet, zu sagen, daß das ganze Tian-Schan-Gebirge an seinem N.- wie seinem S.-Rande von tiefgreifenden Verwerfungen begrenzt wird. Daß auch die innere Struktur des großen Kettengebirges vielfach durch Längsbrüche beherrscht wird, ist hauptsächlich durch Keidels, Friedrichsens und meine eigenen Veröffentlichungen zur Genüge bekannt geworden.

Ohne den ins Einzelne gehenden tektonischen Ausführungen meines Reisegefährten Dr. Gröber vorgreifen zu wollen, wie sie im Kap. XX dieser Abhandlung niedergelegt sind, und welche er allein zu vertreten hat, erscheint es mir doch zum Verständnis aller meiner folgenden Ausführungen unerläßlich, wenigstens gewisse tektonische Vorgänge, die mit den auffälligsten oroplastischen Zügen des Gebirges auf das innigste verknüpft sind, hier zu erörtern. Im großen Ganzen stellt sich, entsprechend meinen vorausgegangenen Darlegungen (siehe besonders S. 35 und 38 f, sowie Gröbers Profile II und IV auf Taf. 17). der Bau der Bogdo-Ola, insoweit er aus den Serien der alten paläozoischen Gesteine besteht, also insoweit er Hochgebirgscharakter trägt, als ein Faltenbau dar, der in den ersten Sattel- und Muldenbiegungen nur eine mäßige Höhe erreicht (siehe Profil IV auf Taf. 17 und schematisches Querprofil Taf. 16) und dann ganz plötzlich zu einer schmalen, ungemein steilen Sattelfalte von ungeheurer Höhe emporgehoben ist, die nach S. leicht überkippt erscheint. Der S.-Schenkel zeigt in seinen höchsten Teilen den gleich steilen Bau und geht, nachdem er komplizierte Störungen erfahren hat (S. 40), in etwas flachere Muldenform über. In Form einiger weiterer Falten fällt das Gebirge nach S. rasch ab. Innerhalb dieses großen Faltenbaus liegen eine größere Anzahl sekundärer Falten und Knicke, welche

¹⁾ Turkestan I, auch Sapiski, Kais. Russ. Geograph. Gesellsch 1879, und besonders Sapiski, Kais. Russ. Mineral. Gesellsch., Bd. XII, 1877, S. 186—188. Turkestan II, Kap. II, III u. IV.

Derselbe, Das Erdbeben von Wjernoe am 28. Mai 1887. Mémoires du Comité Géologique, vol. X, No. 1, 1890.

²) Bulletins du Comité Géologique, Tom. XXX, No. 189, 1911, eingehend referiert von mir in Mitteil. Geograph. Gesellsch. München, l. c., S. 437 f.

³⁾ G. D. Romanowsky, Iswestiya, K. R. G. G. 1879 und besonders Geolog. Abrifa des Alexander-Gebirges in Sapiski der Kais. Russ. Mineral. Gesellsch. Serie II, Bd. 24 (russisch), 1888, S. 234 – 240.

Derselbe, Materialien zur Geologie Turkestans, Bd. I.

⁴⁾ Siehe hiezu P. J. Preobraschenski, Die Gesteine des Kandyk-Tas. Bulletins du Comité Géologique, Tom. XXIX, No. 172, S. 163 f., wo das Absinken in Staffelbrüchen zur Tschu-Ebene auch hinsichtlich des Gebirges nördlich der Alexander-Kette geschildert wird.

⁵⁾ Petermanns Mitteil., Ergzh. Nr. 176, F. Machatschek, Der westliche Tian-Schan, S. 13 u. 14.

im Gurban-bogdo-Tal durch Brüche und Verwerfungen von geringerem Ausmaß, die dem durchschnittlichen, allgemeinen Streichen der Gesteine (W.-O. 20 N.) mehr oder weniger eutgegengesetzt siud, sehr komplizierte Formen angenommen haben. Auf dieses bemerkenswerte Faktum werde ich später zurückkommen. Betrachten wir nun im Anschluß an meine schon früher (S. 37) über die Höhenverhältnisse des Hauptkammes gebotene kurze Übersicht den Verlauf des die Hauptwasserscheide bildenden zentralen Kammes genauer (siehe das hypsometrische Längsprofil Taf. 16), ausgehend vom Dun-Schan-Sattel im S. von Urumtschi, wo er eine durchschnittliche Erhebung von 1600 m (tiefste Einsattlung 1370 m) aufweist, so zeigt sich, daß er dann allmählich bis zu 2000 m anschwillt, weiter rasch bis zu 5500 m und nach abermaligem Einsinken bis 3645 m etwa 60 km im O. von Urumtschi sich nahezu plötzlich zu der ungeheuren Höhe von über 6500 m aufschwingt, ein Hochgebirge bildend von so eindrucksvollen, gewaltigen Formen, wie sie nur im zentralen Teil des Tian-Schan ihresgleichen fiuden. Eine so bedeutend überragende Höhe behält dieser Teil des Tian-Schan-Hauptkammes jedoch nur auf der kurzen Strecke von 8-10 km bei und sinkt dann in seinem Laufe nach O. wieder rasch (siehe S. 36) um 800 bis 1000 m ab. Den Charakter eines wenn auch nicht mehr erheblich, so doch noch an vielen Stellen vereisten Hochgebirges trägt er noch weiterhin auf einer Strecke von annähernd 50 km zur Schau mit einer durchschnittlichen Kammerhebung, die beiläufig 4000 m erreicht und mit Gipfeln, die bis zu 4800 m und darüber ansteigen. Bei dem schon erwähnten Passe Yulgun-terek (siehe S. 36) sinkt das zentrale Kammgerüste zu 3500 m ab, erhebt sich aber bald wieder zu einer durchschnittlichen Kammhöhe von 4300 m mit einzelnen Gipfelhöhen, welche sogar bis über 5500 m erreichen. Erst 94 km im O. des Yulgun-terek-Paßes, beim Buüluk-Paß sinkt der Hauptkamm wesentlich ab bis zu 3165 m uud von dort an nimmt die Erniedrigung noch bedeutend zu. Von 3500 m erniedrigt sich die Kammlinie zu 3000 und 2500 m; 66 km im O. des Buüluk-Passes, beim Passe Ulan-su, auch Gotschan-Paß genannt, erreicht sie als Hauptwasserscheide nur mehr eine Höhe von 2213 m.¹) Nach weiteren 40 km endlich gelangt sie in ihr niedrigstes Niveau und verliert fast den Charakter eiues Gebirges in der weitgedehnten, flachen Senke von Otun-kosa mit eiuem durchschnittlichen Niveau von ca. 720 m.2)

Für das mehrfach hervorgehobene, besouders auffällige Verhältnis der plötzlich zu überragender Höhe emporgetürmten Gebirgsmasse der Bogdo-Ola und der weiten Hinausbiegung des Kammgerüstes nach N. bietet dessen Verlauf von W. nach O. einigen Aufschluß. Wir sehen (siehe Karte I), wie das Gebirge, von Manas im W. augefangen, mehr

¹) Die hier angegebenen Längen der einzelnen Abteilungen des Hauptkammes entsprechen jenen in der 40 W.-Karte (l. c.) und siud auch in Übereinstimmung mit denen von Roborowskys Karte, Bl. IV. Anders sind sie in den beiden Karten Grum Grschimailos eingetragen, welche in dieser Hinsicht aber untereinander große Unterschiede aufweisen. Beispielsweise beträgt die Entfernung von der zentralen B.-O.-Erhebung bis zum Buüluk-Paß nach der 40 W.-Karte 136 Werst, nach der Detailkarte Grum Grschimailos 122 Werst und nach dessen Übersichtskarte 174 Werst. Die Entfernung vom Paß Buüluk zum Paß Ulan-su (Gotschan) beträgt in der 40 Werst-Karte 62 Werst, in Detailkarte Gr. Gr. 35 Werst und in dessen Übersichtskarte 40 Werst. Da ich diesen Gebirgsteil nicht selbst bereist habe, vermag ich nicht zu entscheiden, welcher Karte die größere Genauigkeit beizumessen ist.

²) Nach Caruthers' Karte in Geograph. Journal, vol. XLI, 1913, Nr. 4 3000' = 915 m, nach Grum Grschimailo aber 723 m. Wegen der tiefen Absenkung des Gebirges in Form breiter, abgeflachter Rücken und wegen seiner hier mit Salzsümpfen erfüllten Umrandung, sowie wegen des dort beobachteten plötz-

und mehr eine vorherrschende Streichrichtung nach SO. annimmt, dann vor Urumtschi in die W-O.-Richtung übergeht bis hin zu seiner tiefsten Einsenkung, dem Dun-Schan-Sattel, der in der Fortsetzung der Achse einer schief zur Richtung des Hauptkammes verlaufenden. großen Querverwerfung liegt, an welcher der Komplex der Ketten des östlichen Tian-Schan völlig abgesunken und strahlenförmig aufgelöst erscheint, wie dies auf S. 3, 7 und 35 schon hervorgehoben wurde.

Im O. von Urumtschi nimmt der Hauptkamm schon ein entschiedenes ONO. Streichen an. verbunden mit raschem Ansteigen der Gebirgsmasse, die aber dann im höchsten Teile wieder in eine W-O.-Richtung übergeht, worauf dann weiter im O., am erwähnten Narat-Naitak-Sattel (S. 36), die SO.-Richtung vorherrschend wird mit gleichzeitigem allmählichen Absinken des Kammgerüstes. Weiter gegen O. hin wiederholt sich in beiläufig ähnlichen Entfernungen fortgesetzt dieser Wechsel im Streichen der Hauptwasserscheide, verbunden mit entsprechender Änderung im Streichen der Gesteine, wie dies für die östlichen Teile durch Obrutschews (a. a. O., Bd. II, S. 291, 576) und Futterers Beobachtungen (a. a. O., Bd. II, S. 243 f.) ermittelt wurde, bis endlich in der Senke von Otun-kosa, Leinem Gebiete der größten Störungen und Unregelmäßigkeiten" (nach Obrutschew) infolge sich schneidender Längs- und Querbrüche ein noch tieferes Absinken des Gebirges stattfindet. als das am Dun-Schan-Sattel festgestellte. Es scheint also aus allen diesen Beobachtungen, sowie auch auf Grund der von mir in den höheren Teilen des Gebirges gemachten Wahrnehmungeu hervorzugehen, daß im allgemeinen gute Übereinstimmung zwischen tektonischem und orographischem Streichen in der ganzen Kette besteht mit Ausnahme einiger Abweichungen in der höchsten zentralen Kammregion, die wohl auf sehr späte tektonische Vorgänge zurückzuführen sein dürften. Hier weicht auch die nördliche Randverwerfung, welche sonst der Richtung des Hauptkammes folgt (S. 43), von dieser Richtung ab.

Gröber erklärt den auffällig geknickten Verlauf der Hauptkammrichtung und die Herausbildung des ungeheuren Kammgerüstes der Bogdo-Ola im tektonischen Teil dieser Arbeit (Kap. XX) mit Interferenz zweier sich kreuzender Faltungsachsen und diese Hypothese hätte außer anderen Gründen schon dann eine gewisse Berechtigung, wenn das Analogon im südwestlichen Tian-Schan zutrifft, wo nach der bisherigen, neuerdings aber angezweifelten Annahme zwei sich schneidende Faltungsrichtungen, die sogenannte Alaiund die Ferghana-Richtung, bestimmend für den Bau des Gebirges geworden sind.¹) Auch

lichen Wechsels in Vegetation und Tierlehen, in welchen schon die Altaiischen Formen vorherrschen, will Grum Grschimailo hier die Grenze zwischen Tian-Schan und Altai System ziehen (l. c., Bd. I, S. 491 f.), eine Annahme, der Ohrutschew von geologischen Gesichtspunkten ausgehend, wie mir scheint mit Berechtigung, entgegentritt. (Jswestiya, Kais. Russ. Geograph. Gesellsch., Bd. XXI, 1895, S. 290 f. und Hettners Zeitschrift, Bd. I, S. 274 f.) Hingegen pflichtet Caruthers, a. a. O., S. 348 f. der Ansicht Grum Gschrimailos insoferne bei, als er, wenn er auch im orographischen Sinne keine Trennungsmerkmale findet, so doch insoferne, als er diese Senke als "definite dividing line between two faunistic and floristic regions, namely the Tian-Shan and the Altai" anerkennt. Siehe ührigens hierüber auch Richthofens Ansicht in China I, S. 221/222 und Friedrichsen, Morphologie, S. 29, 31 und besonders S. 32 f., sowie Futterer in: Verhandlungen VII. Internationaler Geographen-Kongreß, S. 792. Suess, l. c. I, S. 598.

¹) D. J. Muschketow, Der geologische Bau des östlichen Ferghana in Trudi der St. Petersburger Gesellschaft der Naturforscher, Bd. 43, Heft I, 1912, S. 198 f.

Derselbe, Vorläufiger Bericht über tektonische Ergehnisse der letzten Forschungen in Ost-

Bogdanowitsch (a. a. O., S. 70) spricht von ähnlichen Wahrnehmungen am Südabhang der Dschargöß-Kette, also im Süden der Bogdo-Ola. In der gleichen Gegend, nur noch südlicher im Tschol-Tagh (S. 41), hat Futterer verschiedene sich einander schneidende Streich- und Klüftungsrichtungen festgestellt.¹) Gröber hat seine Anschauungen über diese Interferenz, welche er als bestimmenden Zug in der Tektonik des Tian-Schan auffaßt, auch in der S. 42, Anm. 7 zitierten Schrift niedergelegt, welche indes nur ein Vorläufer einer größeren Arbeit über die Ergebnisse seiner Forschungsreise vom Jahre 1909 ist.

Ich enthalte mich, zu den Gröber'schen Beobachtungsergebnissen Stellung zu nehmen und möchte nur die Auffassung zur Geltung bringen, daß vielleicht auch schon die allgemeinen und am häufigsteu bei Gebirgsbildung in Betracht kommeuden Kräfte, nämlich taugentialer Zusammenschub und radiale Kontraktion, zur Erklärung der eigenartigen Ausbildung dieses Teiles des Tian-Schan genügen würden. Wir sehen solche Wirkungen auch im Tian-Schan mancherorten zutage treten, worauf ich hier leider nicht näher eingehen kann. Man könnte sich ganz gut vorstellen, daß schon die tiefgreifenden Bodenbewegungen. die zu verschiedenen geologischen Zeiten den ganzen Tian-Schan ergriffen hatten, sich hier im B.-O.-Gebiet jedoch noch schärfer iu dem ungemein bedeutenden Ausmaß von Längsbrüchen im N., besonders aber im S. des Gebirges äußern und hier geschnitten wurden von derart gewaltigen Querbrüchen, daß unmittelbar im S. von Urumtschi, wie weiterhin in der Senke von Otun-kosa die Absenkung der Gebirgsmasse so außerordentliche Beträge erreichen konnte, auch horizontale Verschiebungen, Schrägstellungen einzelner Blöcke und also Knickungen der Hauptachse stattfanden².) Wir können wohl annehmen, und wie in späteren Kapiteln dargelegt wird, scheiut die Annahme nicht unberechtigt, daß nach der postjurassischeu Gebirgsbewegung, welche die jungen und alten Gesteine betraf, noch lange keine Zeit der Ruhe für diesen Gebirgsteil eintrat. Es können möglicherweise schon gleichzeitig mit der großen von N. nach S. gerichteten Faltungsbewegung, wahrscheinlich aber erst nachher, in entgegengesetzter Richtung tätige Kräfte zusammenschiebend auf die Achsenrichtung der Gebirgsmasse eingewirkt haben. Zumal in Verbindung mit den großen tertiären Längsbruchbewegungen mag hier auch eine Erueuerung der großen, jedenfalls älteren Trausversalbrüche eingesetzt haben und infolge hievon ein Zusammenpressen und Herausheben der zwischen den bedeutendsten dieser Bruchzonen, den beiden tiefen Senkungen im O. und W. gelegenen Gebirgsmasse. Es scheint, daß infolge des Einsinkens des ungeheueren Gebirgskomplexes nach Westen (S. 4) eine stärkere Druckbewegung durch Rückstauung von dieser Seite her gewirkt hat als von O. Das Einsinken an den beiden Flanken mag das Emporpressen und starkes Aufbiegen der Gebirgsmasse im Zentrum der zusammengeschobenen Zone, also im Meridian der Bogdo-Ola, verursacht haben, was die Knickungen der Achse uud das bogenförmige Hinausdrücken der Gebirgsmasse nach N. woh erklärlich machen könnte. Zu diesen zweifellos sehr jungen Krustenbewegungen mag wohl auch ein schwaches Heben des verborgenen granitischen Kerns (S. 39) mit beigetragen haben.

Ferghana. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Jahrg. 1914, Bd. I, S. 25-42.

Machatschek, l. c., S. 46, 47, 48, 49a, 50, 51, 52.

¹⁾ l. c. II/I, S. 208, 211.

²⁾ Über die außerordentlichen Störungen im Schichtenbau der Bruchzonen, in der Dun-Schan-Ein-

Es ist natürlich nach einer so flüchtigen Reise, welche Spezialuntersuchungen nicht gestattete, schwer zu sagen, in welcher Zeit diese jungen Bewegungen erfolgten; doch weisen einige Anzeichen darauf hin, daß sie vielleicht analog den großen Hebungsbewegungen im Himalaya, von denen uns die indischen Geologen übereinstimmend berichten,¹) ins späte und ausgehende Tertiär, ja vielleicht noch in das beginnende Quartär fallen. Bekanntlich setzt Bailey Willis²) das letzte Emporwachsen der Gebirge in China in die Fönho-Epoche, welcher er ein quartäres Alter beimißt. Dieser Forscher hält auch die hauptsächlichen vertikalen Bewegungen in Zentralasien für quartären Alters und stimmt hierin mit Pumpelly³) überein.

Wenn sonst, wie ich kurz vorher bemerkt habe (siehe auch Karte I), die nördliche Randverwerfung dem Laufe der Hauptsache folgt, so zeigt die geologische Tektur zu Karte II, daß gerade im Norden des zentralen und höchsten Teiles der Gruppe die Richtung der Verwerfung am Nordrand nicht die bedeutenden Knickungen und Schwankungen des Verlaufes der zentralen Achse mitmacht.

Die Gesteine der mesozoischen Bildungen und die Gesteinsfolgen der alten Serie zeigen Konkordanz der Faltung, wie bereits hervorgehoben wurde, wiewohl sie durch eine Verwerfung voneinander getrennt sind. Die Verwerfung muß also jünger sein als die Faltung. Da sie aber von den Knickungen der Hauptachse nicht beeinflußt wird, müssen die Bewegungen, welche die Deformation der Hauptachse verursachten, noch jünger sein. Das von fast allen neueren Forscheru, die sich mit der Untersuchung des Tian-Schan befaßt haben, die letzte große Gebirgsbewegung in diesem Kettengebirge ins mittlere Tertiär verlegt wird oder in eine noch spätere Zeit, so kann wohl auch die Krustenbewegung, welcher die Auffaltung der mesozoischen und älteren Gesteine der Bogdo-Ola zu danken ist, dieser Zeit zugeschrieben werden. Aus allen geologischen Schilderungen des Tian-Schan, sowie anderer Teile Innerasiens ist ferner bekannt geworden, daß auch die tertiären Ablagerungen an vielen Orten von späten Bewegungen in nicht unbedeutendem Ausmaße ergriffen wurden, welche zum Teil in eine posttertiäre Zeit fallen und in manchen Teilen des Tian-Schan und anderer innerasiatischer Gebirge heute noch fortdauern. In eine sehr junge Zeit fallen jedenfalls die Bewegungen, welche die Verwerfungen

sattlung siehe Ohrutschew II, S. 645-648 uud üher die Störungen und Unregelmäßigkeiten in der tieferen östlichen Senke, ibidem, S. 575 f.

¹⁾ C. S. Middlemiss, Mémoirs of the Geology of India, vol. XXIV, part 2, 1890.

Derselbe, Ibidem, vol. XXVI, 1896. Geology of Hazara and Black Mountains, p. 285.

Medlicott and Blanford, A Manual of the Geology of India, 2. Edition, p. 479, 486.

R. D. Oldham, Records Geolog. Survey of India, vol. XXI, 1888, p. 157.

Burrard and Hayden, Geography and Geology of Himalaya Mountains. Calcutta 1907/08, p. 192, 204 f., 258, 260-262.

Geograph. Journal, vol. XXIII, 1904, S. 722 ff. Vortrag Krapotkins (Dissication of Asia),
Diskussion hierüber von Holdich, Conway und ganz besonders Evans und Seeley.

K. Oestreich, Die Täler des nordwestlichen Himalaya. Petermanns Mitteilungen, Ergänzungsheft Nr. 155, 1906, Einleitung S. 2 und 3.

²⁾ Bailey Willis, Research in China. Washington 1907-13, Bd. I, S. 256, 261; Bd. II, S. 96 f., 99 f.

³⁾ R. Pumpelly, Explorations in Turkestan. Washington 1908, Bd. II, S. 287 f.

⁴) Obrutschew nimmt an, daß die große Flexur- und Bruchbewegung sich "nach Ablagerung der Hanhaischichten vollzogen hat, also keiner entfernten Zeit angehört". Hettners Geograph. Zeitschr. I, S. 276.

⁵⁾ Siehe auch die S. 42 u. 45 aufgeführte Literatur und Anmerkung 1 auf folgender Seite.

zwischen den mesozoischen und älteren Bildungen hervorgerufen haben und also in eine noch jüngere Zeit jene, welche den großen zentralasiatischen Grabenbruch verursacht hat, als deren Folge ich die Verbiegung und Heraushebung der höchsten Bogdo-Ola-Achse anzusehen geneigt bin, sowie die Vertiefung und weitere Ausbildung der Brüche an ihrem Fuße. (Siehe S. 41 f.)

Da im Bau der Sattelfalte der alten Gesteine der zentralen Bogdo-Ola, wie mehrfach erwähnt (S. 39 u. 45), kleinere sekundäre Falten, starke Knicke und Brüche auftreten und zwar gerade dort, am N.-Abhang, wo die Stufenbildung so auffällig in Erscheinung tritt (S. 38 f, 40) — sie müssen also wohl als in ursächlichem Zusammenhang mit der Bildung der Stufen stehend angesehen werden —, wird man auch diesen Störungen das gleiche jugendliche Alter, wie der Deformation der Hauptachse beizumessen haben. Selbständige kleinere Verwerfungen treten auch innerhalb des Baues der mesozoischen Bildungen auf; für ihre Entstehung dürfte wohl ebenfalls daher jene Serie, sehr später Krustenbewegungen verantwortlich zu machen sein, welchen überhaupt für die Ausgestaltung dieses Teiles des Tian-Schan eine so wichtige Rolle zukommt. Um schlüssige Beweise für das genaue Alter aller dieser Bewegungsvorgänge zu geben, reicht wohl die heutige Kenntnis von der Tektonik Zentralasiens noch nicht aus. Allein mehr und mehr neigen neuere Forscher zur Ansicht von posttertiären Vorgängen.¹)

Die hier gegebene Schilderung des Baus zeigt, wie außerordentlich sich das Bild dieses östlichsten Teiles des großen Kettengebirges von dem der Ketten unterscheidet, welche den zentralen Tian-Schan bilden und auch gegenüber denen, die sich östlich hievon bis zum Meridian von Urumtschi hin erstrecken. Die wesentlichen Unterschiede will ich in allgemeinen Zügen in folgendem Kapitel hervorheben.

VII. Vergleich zwischen dem Bau der Bogdo-Ola und dem des zentralen Tian-Schan.

Durch die bereits angeführten tektonisch-geologischen Schriften bekannterer russischer Geologen, dann besonders derjenigen meiner beiden Mitarbeiter Keidel und Leuchs (a. a. O.) ist uns ein zutreffendes Bild vom Bau und geologischen Bestand des zentralsten und östlichen zentralen Tian-Schan übermittelt worden. Über den Bau des eigentlichen

¹⁾ Auch W. Weber, Geologische Untersuchungen in Ferghana in den Jahren 1909—1910. Bull. Comité Géologique XXIX, Nr. 170, 1910, russisch mit franz. Resumé, S. 691 nimmt für die Tektonik der Kreidebildungen ein wahrscheinlich posttertiäres Alter an.

E. Suess schreibt in "Antlitz der Erde", Bd. I, S. 602: Was nun das Alter des Tian-Schan-Gebirges anbelangt, so sind die massiven NO.-Züge älter als die übrigen, doch reicht ihre Bildungszeit wohl kaum weiter zurück als bis zum Trias; die jüngsten NW.-Züge sind wahrscheinlich erst nach Ablauf der Tertiärperiode entstanden, gleichzeitig mit einem bedeutenden Wachstum der schon vorhandenen Erhebungen, da, wie oben bereits erwähnt, tertiäre Ablagerungen auf sehr bedeutenden Höhen vorkommen. Seine endgültige Gestaltung hat also der Tian-Schan erst nach dem Tertiär erhalten und es gibt einige Anzeichen dafür, daß eine Erhebung noch gegenwärtig stattfindet; diese Anzeichen sind jedoch nur indirekte und nicht über allen Zweifel erhaben.

Machatschek, l. c., S. 132—134 und S. 141 ist geneigt, zur Erklärung des Wechsels in den Erosionsperioden der Flüsse des westlichen Tian-Schan quartäre Niveauveränderungen verantwortlich zu machen, "epirogenetische Bewegungen", läßt es jedoch unentschieden, ob es sich "um Senkuug des Vorlandes oder fortwährende Hebung des Gebirges" handelt.

51

östlichen Tian-Schan habe ich bis jetzt nur kurze summarische Mitteilungen veröffentlicht,¹) welchen nach Fertigstellung der Karten dieser Gebiete ausführlichere folgen werden. Es kann nach allen diesen Veröffentlichungen kaum einem Zweifel unterliegen, daß, wie sehr auch der Bau des ganzen Tian-Schan-Gebirges. so wie er uns heute mit dem charakteristischen, beherrschenden Zug seiner großen Längstäler vor Augen tritt, hauptsächlich durch Brüche beeinflußt wurde und wenn schon besonders der östliche Tian-Schan (Kasch,²) Kunges, Yuldus-Gebiet) seine eigenartige Gestalt hauptsächlich großen Brüchen und Absenkungen verdankt, vermöge deren wir ihn im eigentlichen Sinne als ein Bruchschollengebirge bezeichnen können, daß dennoch diese außerordentliche Einwirkung von Brüchen in keinem Teile des

Siehe auch Fritz Frech: Geologische Entwicklung Chinas in Mitteilungen des F. von Richthofen-Tages 1911, S. 50, 52, 53, 54.

Griesbach: Field Notes from Afghanistan. Records Geolog. Survey of India XIX 1886.

¹⁾ Petermanns Mitteilungen 1909, S. 34 f., Verhandlungen des 18. Deutschen Geographentages, S. 36 f.; Physiographie des Tian-Schan, Hettners Geographische Zeitschrift, Bd. l, S. 1 f. und Zeitschrift der Gesellschaft für Erdkunde, Berlin 1911, S. 225 f.

²⁾ Nach Abschluß dieser Abhandlung erst erschien die S. 48 als bevorstehend erwähnte neue Arheit Dr. Gröbers (Der südliche Tian-Schan, Pencks Geogr. Ahhandlung, Bd. X, Heft 1) - zu spät, als daß ich sie noch hätte herücksichtigen können. Nur auf einen Punkt in Gröbers neuen Ausführungen möchte ich hier eingehen. Es kann dies leider nur flüchtig geschehen, weil umfangreiche Einschaltungen während der Korrektur nicht statthaft sind. Gröber vertritt (S. 62 u. 67 seiner Ahhandlung) eine Auffassung von der Tektouik des Kasch-Tals (als frühere Peneplain), die mit der meinigen nicht in Übereinstimmung steht, der zufolge auch das Kasch-Tal zu den großen Tian-Schanischen Längstälern zählt, die annähernd O.-W. verlaufenden Brüchen ihre heutige Gestalt verdanken. Allerdings liegen im Kasch-Tal die Verhältnisse weit weniger einfach, als in den nach S. hin folgenden Paralleltälern Kunges, Tekes, Zanma, Yuldus, wo die Entstehung oder doch wesentliche Ausgestaltung durch Grabenhruch leicht festzustellen war. Die tektonischen Verhältnisse im Kasch-Tal sind sehr kompliziert; die dort gemachten geologischen Beobachtungen lassen verschiedene Deutungen zu, wie Gröher selbst bei mündlichen Erörterungen während der Reise gerne zugab. Meines Erachtens kann man zu einer richtigen Beurteilung der verwickelten Tektonik des Kasch-Tals nur kommen, wenn man auch die höchst eigenartigen morphologischen Verhältnisse berücksichtigt, die sich besonders in mehrfacher Ablenkung des heutigen Flußlaufes aus seiner früheren Bahn kundgeben. Das Kasch-Tal zerfällt in morphologischer Hinsicht in vier Abteilungen, deren jede einzelne sich von der anderen sehr auffällig unterscheidet. Die Grenzen dieser einzelnen Teile fallen nahezu zusammen mit den Linien alter Querhrüche Ztsch. Ges. f. Erd. l. c. S. 321) von annäherndem N.-S.-Verlauf - eine solche Störung verläuft auch bei der Mündung des von Gröber erwähnten Nebentals Mungatü -, deren Entstehung, nach verschiedenen Anhaltspunkten zu schließen, älter ist als die tertiären Gebirgsbewegungen. Diese Querbrüche hatten im Kasch-Tal Blockverschiebungen und Schrägstellung zur Folge, welche sich komplizierten als während der tertiären Gebirgsbewegung die vorherrschend in Richtung O.-W. wirkenden Längsbrüche die älteren Querbrüche schnitten. Ungleiche Senkungen und Hebungen waren die Folge, die in Zusammenhang mit noch später einwirkenden, wenn auch weniger intensiven jüngeren Bewegungen (ahgesunkene Schollen wurden nochmals zerschnitten und auch sehr junge Ablagerungen noch von der Zerschneidung betroffen) eine merkwürdige Verschiedenheit in den morphologischen Zügen der einzelnen Teile des Kasch-Tals veranlaßten, von denen ich eine Serie sehr lehrreicher photographischer Aufnahmen gemacht habe. Ich möchte auch auf die Grenze zwischen Kalk und Granit im Laufe des Kasch-Flusses kein so großes Gewicht legen, wie mein Reisegefährte, weil das Verhältnis des Granites zum Kalk in verschiedenen Teilen des Tals wechselt; seine intrusive Natur ist aber außer allem Zweifel, da in Granit Kalkschollen stecken und da der Granit wie z. B. bei der Mündung des Borgora-Tals, das Haupttal übersetzt, also vom Fluß durchbrochen wird. Ich bedauere lebhaft, daß ich auf die interessanten Verhältnisse im Kasch-Tale hier nicht näher eingehen kann. Ich habe gerade dort, angeregt durch die höchst auffälligen morphologischen Verhältnisse, mich bemüht, ihren Zusammenhang mit den tektonischen zu ergründen und werde hierüber, unterstützt durch ein reiches photographisches Material, an anderer Stelle berichten.

Gebirges so stark, wenn auch in ganz anderer Weise, hervortritt, als im Bau des östlichsten Tian-Schan, im Bogdo-Ola-Gebiet. Somit bildet dieses schon in Anbetracht solcher Umstände und mit Bezug auf die im vorigen Kapitel dargelegte, ebenfalls Brüchen zu verdankende, gute orographische, in keinem anderen Teile des riesig ausgedehnten Gebirges so stark hervortretende scharfe Begrenzung durch tiefe Senken ein ganz besonderes, genan charakterisiertes und unterscheidbares Glied des ungeheuren Kettengebirges. Aber auch in seinem geologischen Bestande treten große Unterschiede gegenüber anderen Teilen des Tian-Schan klar zutage.

Werfen wir, nm dies zu zeigen, einen ganz kurzen rekapitulierenden Rückblick auf die in den Veröffentlichungen über die wissenschaftlichen Ergebnisse meiner Expeditionen 1) enthaltenen Darlegungen, soweit sie den Bau der weiter im W. gelegenen Teile des Tian-Schan, speziell des zentralen betreffen und denjenigen Teil des östlichen, der bis zum Meridian von Urumtschi sich dehnt, so finden wir auf einer Erstreckung von wenigsteus 800 km kaum wesentlich nnterbrochen als am höchsten ragende und innerste Zone des Gebirges die nnterkarbonischen Kalke, die häufig zu Marmor umgewandelt sind. Diesen Kalken sind Massen von Quarzporphyren und verwandten Effusivgesteinen eingeschaltet, durch deren Durchbruch sie in ihrem weitaus überwiegendem Bestande starke Umwandlung erfahren haben. Hieraus erklärt sich, dats es im Laufe meiner weit ausgedehnten Reisen von W. nach O. durch das Gebirge nur an verhältnismäßig wenigen Stellen gelang und zwar nur dort, wo die Effusivgesteine fehlen oder doch nur in schwacher Entwicklung auftreten, eine Ausbeute von Organismenresten einzusammeln, die gestatteten, diesen Kalken mit Sicherheit ein unterkarbonisches Alter anzuweisen. Die Quarzporphyre nnd andere porphyrische Gesteine finden sich nicht allein in vereinzelten größeren und kleineren Durchbrüchen innerhalb der Kalkzone, sondern sie treten auch auf großen Strecken und in mannigfaltiger petrographischer Entwicklung sowohl entlang der Kalke als weiter außen, innerhalb der alten Schiefer, welche das folgende geologische Glied im Gebirgsban bilden, als Zonen von wechselnder, aber meistens bedeutender Breite anf.

Die ältesten Gesteine, welche den Tian-Schan aufbauen, sind aber Phyllite und verwandte tonige Schiefer, sowie quarzitische Gesteine, zu denen der Kalk sich in transgredierender Lagerung verhält. Diese Schieferzone, über deren Alter wir infolge Fehlens bestimmbarer Organismenreste bis jetzt nichts Sicheres sagen können, haben aber jedenfalls ein sehr hohes, vermutlich früh-paläozoisches Alter, da sie im Norden wie im Süden der zentralen Kalkzone, doch in weitaus größerem Maße im Norden von Granitmassen durchbrochen werden, für deren einen Teil ein präkarbonisches Alter angenommen werden kann, weil er von unterkarbonischen Kalken transgredierend überlagert wird. Es ist dies der sogenannte "äußere Granit" Keidels, während der "innere Granit" auch die unterkarbonischen Kalke an vielen Stellen durchbricht und deshalb jünger sein muß als diese. Beide Granitmassen treten sowohl als getrennte größere oder kleinere Massive als auch in langgestreckten Zonen auf, manchmal selbständige Ketten bildend, oft den allgemeinen Lanf der Ketten begleitend.

Die Granitintrusionen haben eine stark metamorphosierende Wirkung sowohl auf die Schiefer als auf die Kalke ausgeübt, ein Umstand, dem die Mannigfaltigkeit der Kon-

¹⁾ Siehe die Titel auf S. 1 f.

taktgesteine im Tian-Schan zu verdanken ist. Daß sowohl die Intrusion der Granite als der Austritt der Effusivgesteine stets mit gebirgsbildenden Bewegungen, hauptsächlich mit Faltung verknüpft war, unterliegt für mich keinem Zweifel. Wie sehr diese älteren gebirgsbildenden Prozesse unter starker Zusammenpressung, also unter sehr großem tangentialem Druck stattgefunden haben, sehen wir sowohl an der nahezu im ganzen Verlaufe des Gebirges zu beobachtenden steilen Aufrichtung der Gesteine als auch an dem meistenteils geschlossenen, gedrängten Bau des ganzen Gebirges (siehe S. 2). Hiezu bemerke ich, daß die steile Aufrichtung der Schichten jedoch uicht gerade als ein mit dem Austritt der Quarzporphyre gleichzeitiger Vorgang aufgefaßt zu werden braucht, weil sie sich auch in einzelnen Teilen des Gebirges zeigt, wo Effusivgesteine in nennenswerter Meuge nicht auftreten. Immerhin wird das Auftreten der Effusivgesteine aber als eine Folge dieser Bewegungen oder als mit ihnen verknüpft anzuseheu seiu. (Siehe später S. 58.)

1ch habe vorher betont, daß im zentralsten Tian-Schan in seiner ganzen Erstreckung der umgewandelte unterkarbonische Kalk die höchst erhobenen Teile, den Kern der Gebirgsmasse bildet. In diesem Verhältnis tritt wenig östlich vom Musart-Paß (S. 2) eine Veränderuug insoferne ein, als nun die höchsten Erhebungen nicht mehr im Innern, im Kern der Gebirgsmasse liegen, soudern gegen N.- und S.-Rand vorgeschoben sind, wiewohl sie auch hier aus unterkarbouischem Kalk bestehen. Im Süden erscheinen Chalyk-Tau und Kok-tepe-Kette als Träger der höchsten Erhebungen und darum auch der bedeutendsten Vereisung, im Nordeu zeigen das gleiche Verhältnis jene mächtigen Ketten, die man bisher unter der Bezeichnung Iren-Chabirgan (richtiger Iran-Charbut) zusammengefaßt hat,1) die sich vom 83. bis fast zum 87. Längengrad erstrecken. Von den zahlreichen Ketten, welche sich innerhalb dieser hohen N.- und S.-Ränder annähernd parallel mit ihnen erstrecken, kann keine in vertikaler Entwicklung auch nur beiläufig hiemit rivalisieren, so daß wir im östlichen Tian-Schan im oroplastischen Sinne ein im Innern eingesunkenes, gegen Osten sich auflösendes Gebirgsland sehen.2) Die in den vorhergehenden Kapiteln vielfach erwähnten longitudinalen und transversalen Bruchbewegungen, welche die Gebirgsmasse betroffen haben, machen diese physiographische Erscheinung erklärlich.

Ich möchte bei dieser Gelegenheit hervorheben, wenn ich auch hiemit in einen gewissen Gegensatz zu manch auderer Auffassung trete, daß meiner Ansicht nach —, wenn auch nur in geringem Maße — mit den neueren (tertiären) gebirgsbildenden Vorgängen, denen der Tian-Schan hauptsächlich seine heutige Gestalt verdankt, die sich überwiegend ein vrtikalen Verschiebungen, Brüchen, Hebungen und Senkungen äußerten, so doch bei den vorangegangenen Prozessen der Gebirgsbildung, Faltungsbewegungen eine nicht unwichtige Rolle spielten. Zu dieser Annahme werde ich gedrängt, nicht nur durch vielfach gemachte Wahrnehmungen von Faltungserscheinungen in den Serien der älteren

¹⁾ Ich spreche von Ketten, weil auch diese Randketten im N. und S. keine im orographischen Sinne einheitlichen Gebilde, sondern gespalten sind und jenen Parallelismus zeigen, auf den ich häufig in meinen Veröffentlichungen hinsichtlich der Hauptwasserscheiden im Tian-Schan hingewiesen habe. Bald ist es eine Aneinanderreihung von Höhen im Innern, welche die Wasserscheide bildet und streckenweise wieder die äußerste Randanschwellung. Die Wasserscheide greift also bald auf die eine bald auf die andere Seite über.

²) Siehe auch meine Bemerkungen hinsichtlich der Wasserscheide zwischen Kasch und Kunges in Zeitschrift Berliner Gesellschaft für Erdkunde, l. c., S. 233.

Gesteine des zentralsten Gebietes und ebenso von deutlich bemerkbarer Querfaltung, Deformierung und Zerknitterung älterer Faltenbildungen in diesen Formationen, sondern auch durch die sowohl von mir als auch von meinen Reisegefährten beobachtete und in ihren Schriften des öfteren bestätigte Tatsache¹) eines vorherrschenden Nordfallens der Schichten am N.-Abhang und des Südfallens am S.-Abhang, sowie im Zusammenhange hiemit eines im allgemeinen flachen Lagerns der Schichten in den äußeren Gebirgsteilen und einer steilen Stellung in den inneren.²) Und die Bogdo-Ola selbst stellt sich uns ja als alter Faltenbau dar; dieser ist uns als Riesendokument älterer Faltungsprozesse erhalten geblieben. Können wir annehmen, daß solcher Faltungsvorgang gerade nur auf diesen speziellen Gebirgsteil des Tian-Schan beschränkt blieb? Müssen wir nicht vielmehr zur Annahme gelangen, daß spätere Bewegungen in anderen Teilen des Tian-Schan dort die Spuren der alten Faltung mehr oder weniger verwischt haben, so daß sie nur schwer mehr erkannt werden können, daß sie aber im Bogdo-Ola-Gebiet infolge besonderer, noch zu erörternder Umstände ausnahmsweise erhalten geblieben sind?

Außer den erwähuteu Serien altpaläozoischer Gesteine treten im westlichen und im zentralen Tian-Schan und zwar nur auf der Südseite auch marine Sedimente einer jüngeren geologischen Periode auf: Oberkarbou. Auf beiden Abhängen aber finden sich auch nicht marine mesozoische Bildungen, die Gesteine der sogenannten Angaraserie, die, wie sich aus den späteren Ausführungen ergeben wird, zum Jura zu stellen sind. Diesen folgt nach außen die breite Zone spättertiärer Bildungen, die sogenannten Hanhai- und noch jüugeren Gobi-Sedimente. In den sehr verschiedenartigen Bestand der ersteren hat man allerdings öfters auch solche Bildungen mit einbezogen — und zwar an vielerlei Örtlichkeiten vorkommende deren Absatz in geschlossenen Becken im Innern des Gebirges, sowie iu großen Flußtälern und vor deren Mündungen stattgefunden hat und die zufolge ihrer besonderen Art und Zusammensetzung, nach meinen vielfachen Beobachtungen, deutlich als Flußablagerungen einer weit feuchtigkeitsreicheren, also noch nicht sehr weit zurückliegenden Epoche der geologischen Geschichte Innerasiens erkennbar sind, so daß diese jedenfalls nicht als "Hanhai-Ablagerungen" bezeichnet werden sollten. Im Sinne Richthofens, des Ersten, der diese Bezeichuung eingeführt hat, ist hiemit doch etwas ganz auderes gemeiut. Von deu neueren Erforschern des Tian-Schan wurden öfters Hanhai- und Gobi-Sedimente als gemeinsame Gebilde zusammengefaßt. Die gemeiusame Verwendung dieser Ausdrücke kann aber zu Erweckung irrtümlicher Vorstellungeu Anlaß geben. Ich habe dies schon früher (Zeitschrift Gesellschaft für Erdkunde. Berlin 1910. S. 233) betont und werde im Laufe dieser Abhandlung noch weiter darauf zurückkommen.

Wegen der unbedeutenden Rolle, welche Bildungen der Kreideformation im Bau des Tian-Schan spielen, könuen diese bei einer solchen summarischen Übersicht ganz außer Betracht bleiben.

¹⁾ Siehe z. B. Leuchs, Geologische Untersuchungen etc., S. 60, 86, 88.

²⁾ Ich verweise bei dieser Gelegenheit auch auf meine schon vor langer Zeit geäußerte Ansicht zur Erklärung der isolierten, die ganze Umgebung überragenden Stellung des Khan Tengri, den ich als den erhalten gebliebenen Rest des Kernes einer durch Längsbrüche zerstörten Antiklinale ansehe. Petermanns Mitteilungen, Ergänzungsheft Nr. 149, S. 75. Dorten S. 81 habe ich auch auf Reste eines Faltenbaus in den ältesten Sedimenten des Koi-kaf-Tales hiugewiesen, der diskordant von gefalteten unterkarbonischen Kalken überlagert wird (Überschiebung).

An den N.-Abhängen der erwähnten Gebirgsabschnitte fehlt zwar, wie hervorgehoben, das Oberkarbon, aber an vielen Stellen finden sich die "Angarabildungen" und besonders das Tertiär ist fast überall mit Ablagerungen von bedeutender Mächtigkeit vertreten, hauptsächlich grobklastischen Bildungen, die sowohl am äußeren Rande des Gebirges, als in mehreren seiner inneren Becken auftreten und nach Entstehung und Zusammensetzung analog denen mancher Ablagerungen des S.-Randes erscheinen.

Weiter möchte ich hier nicht auf geologischen Bestand und tektonische Geschichte des zentralen und östlichen Tian-Schan eingehen, weil dies nicht den Gegenstand dieser Abhandlung bilden soll. Die elementaren, wichtigsten Züge, wie ich sie hier in Zusammenfassung dem Leser vorgeführt habe, sind ausreichend für meinen Zweck. den Unterschied zwischen dem Bau der Bogdo-Ola und dem der westlicheren Teile des Tian-Schan klar zu machen.

Wenn diese westlichen Abschnitte des Tian-Schan uns in der geschilderten Weise vor Augen treten, so stellt sich das Bogdo-Ola-Gebiet in jeder Beziehung als in scharfem Gegensatz hiezu stehend dar. Schon in seiner oroplastischen Erscheinung, wie ich sie in Kap. VI geschildert habe, erscheint es uns, als markanter Ausdruck seines inneren Baus, sehr verschieden von den benachbarten Gebirgsteilen. Das hier gut charakterisierte Faltengerüste besteht aus ungemein stark umgewandelten alten Gesteinen, Sand- und Tongesteinen, Grauwacken. Quarziten etc. (Näheres im folgenden Kapitel), ohne daß hier irgendwo Tiefengesteine zutage treten, wie Granite, welche sonst im Bau des übrigen Tian-Schan eine so bedeutende Rolle spielen (siehe S. 39, 52) oder auch größere Mengen von Effusivgesteinen, insoferne sie als besondere, zusammenhängende Zonen auftreten. Dennoch haben alle Sedimente des Bogdo-Ola-Gebietes eine viel stärkere und namentlich gleichmäßiger verbreitete, tiefer eingreifende Veränderung erfahren, als die mit Tiefen- und Effusivgesteinen in so nahe Berührung getretenen Sedimente der westlicheren Teile des Tian-Schan.

Wie auch aus der petrographischen Bearbeitung Dr. Glunglers hervorgeht (Kap. XXI), ist als Ursache dieser starken Umwandlung der mächtigen Schichtenfolgen des Bogdo-Ola-Faltenbaus ihre Beeinflussung durch nicht gehobene Tiefengesteine, vermutlich Granit, zu suchen, dessen Vorhandensein in nicht großer Tiefe angenommen werden darf. Hiefür spricht sowohl die besondere Art der Umwandlung aller Gesteinsserien als der hohe Grad ihrer Veränderung. Wir haben uns demnach in der Bogdo-Ola in gewissem Sinne ein Gebilde von der Art eines ungeheuren Lakkolithen vorzustellen. Denn die Tiefengesteine, wie Granit, treten im W. erst in mehreren 100 km Entfernung wieder auf, im O. erst nach etwa 300 km. In den Barkul-Bergen, im Tschoglu-tschai-Gebirge und noch weiter östlich im Karlyk-tagh gelangt der granitische Kern wieder zur Oberfläche, wie wir aus den Berichten von Obrutschew, 1) Grum Grschimailo, 2) Futterer, 3) Caruthers 4) wissen. Allerdings ist die Möglichkeit seines Vorkommens auch an einzelnen Stellen der dazwischen liegenden Gebirgsstrecke nicht völlig ausgeschlossen, da diese, wie schon früher (S. 36) erwähnt, zu den unbekanntesten Teilen des gesamten Tian-Schan gehört.

¹⁾ l. c. II, S. 539 f. 2) a. a. O. I, S. 431.

³) a. a. O. II/I, S. 243, 253, 268 f. und Verhandlungen des Internationalen Geographenkongresses Berlin S. 792. Futterer beobachtete übrigens auch im Tschol-tagh (S. 41), einer niederen südlichen Randkette etwa 150 km im S. der Bogdo-Ola, Granitvorkommen.

⁴⁾ Geogr. Journ. Bd. 39, S. 543.

Modifiziert wird das Faltengerüste durch die in seinem Nordschenkel liegenden großen Stufen, von denen bereits (S. 39 f.) die Rede war. Ich habe in dieser Hinsicht als auffällige Erscheinung schon hervorgehoben (S. 49 f.), daß gerade an der Basis jeder Stufe sich im Faltengerüste ganz auffällig geknickte kleinere Falten und andere Unregelmäßigkeiten in der großen Antiklinale des zentralsten Gebietes zeigen. Da die geologische Zusammensetzung des Baues, die Homogenität des Gesteinsmaterials, wie im folgenden Kapitel gezeigt wird, eine sehr gleichartige ist und da zu genauerer Untersuchung dieser Verhältnisse die notwendige Zeit nicht gegeben war, da mir überdies erst beim Fortschreiten der Reise verwandte Erscheinungen vor Augen traten, die meine Aufmerksamkeit mehr auf diese eigenartigen Vezhältnisse hinlenkten, und da endlich bei späterem Überdenken des niedergeschriebenen Beobachtungsmaterials erst mir ihre ganze Bedeutung zum Bewußtsein kam, so wurden leider nicht sofort der Wichtigkeit des Vorkommens entsprechende, eingehendere Untersuchungen hierüber angestellt. Es ist aber immerhin fraglich, ob sie zu ganz sicheren Schlüssen geführt hätten, da es sich hier weniger um Brüche als um Verbiegungen handelt. Ich habe bereits angedeutet (S. 40), daß auf den einzelnen Stufen die Reste hochgelegener alter Verebnungsflächen erhalten sind, überlebende Reste einer alten Gebirgsentwicklung. Im beschreibenden Teil dieser Abhandlung werde ich die beobachteten Tatsachen im Einzelnen mitteilen. Jedenfalls handelt es sich bei diesen Stufen um eine Gegeneinanderbewegung benachbarter Massen; aber es ist schwer zu entscheiden, ob ein Emporheben gegen die zentrale Partie stattgefunden hat, woran der verborgene Granitkern denken ließe oder ein stufenförmiges Absinken von ihr. Wahrscheinlich ist, daß mit der im vorigen Kapitel erörterten jungen Heraushebung der zentralen Bogdo-Ola zu ihrer überragenden Höhe jene eigenartigen Knickungen und Verbiegungen verbunden waren, daß aber die Gebirgsmasse schon vorher stark abgetragen und durch Erosion zerschnitten war, deren Linien auch die spätere Entwässerung im großen Ganzen gefolgt ist, wie im Kapitel XII dargelegt werden soll. Die späteren Wirkungen auf die Stufenflächen, Überschüttung der unteren Stufen mit dem von den darüber gelegenen Gebirgsteilen gelieferten Destruktionsmaterial und mit Glazialschutt, hat ihre Ausbildung vollendet.

Am Südabhang tritt wegen der dort, wie geschildert, für den Gebirgsbau vorherrschenden Bruchbewegung eine Stufung, wenigstens bis zu einem gewissen Grade, nur im obersten Teil unter dem höchsten Kamm in die Erscheinung. (Siehe S. 40 und Profil IV, Taf. 18.) Einem so scharfen Beobachter, wie Obrutschew, der die Bogo-Ola aus großer Entfernung von einem mäßig hochgelegenen Punkte im S. erblickte, konnte dies nicht entgehen; er schreibt¹) "von der Riesengruppe des Bogdo-Ola, einer steilen, zackigen, etwas abgestumpften Pyramide, welche auf einem ziemlich ebenen Kamm aufgesetzt ist".

So ergibt sich denn aus der Tektonik zusammen mit den Einwirkungen exogener Kräfte, die schon infolge besonderer klimatischer Zustände sehr ausgiebig sein mußten, ein physiographisches Bild der Bogdo-Ola, das von jedem anderer Teile des Tian-Schan sich sehr wesentlich unterscheidet. Verschärft wird dieser Unterschied durch das Entwässerungssystem: die Erosion kommt in der Bogdo-Ola, entsprechend dem geschlossenen

¹⁾ Hettners Zeitschrift I, l. c., S. 274. Siehe auch in: Zentralasien etc. l. c. II, S. 651, wo er bei Beschreibung des Anblicks der Bogdo-Ola aus der Steppe von N. aus, ebenfalls von einer auf einen langen flachgezackten Kamm aufgesetzten Gipfelgruppe spricht.

einfachen Faltenbau, nur in Form von Quertalbildungen zum Ansdruck, entgegengesetzt zu fast allen anderen Teilen des Tian-Schan, die von dem auffälligen Zug der Längstalbildung beherrscht werden.

Wenn man nach Ursachen sucht, welche das alte Faltengerüste der Bogdo-Ola vor ähnlichen umformenden tektonischen Bewegungen bewahrt haben, wie sie für die heutige Gestalt der weiter im W. gelegenen Teile des Tian-Schan bestimmend geworden sind, so dürfte hiefür in erster Linie der große, viel erwähnte Transversalbruch im Meridian von Urnmtschi in Betracht kommen, da dieser Komplex von Brüchen die Bogdo-Ola-Kette und ihre Fortsetzung nach O. von den westlicheren Gebirgsteilen abgetrennt und nahezu isoliert hat. Nach der Tatsache zu schließen (siehe S. 49), daß die mesozoischen Bildungen der Angaraserie östlich und westlich von diesem großen Bruch identische Faltungsrichtungen zeigen, wie dies aus Gröbers Beobachtungen (siehe Kap. XX) hervorgeht, darf man annehmen, daß dieser Querbruch gleichwie andere transversale Brüche¹) des östlichen Tian-Schan älter ist (S. 48), als die Anffaltung der mesozoischen Schichten, die erste Anlage hiezu vielleicht sogar älter als deren Entstehung. Hierauf deuten die Verhältnisse im Knnges-Tal und mit besonderer Deutlichkeit die im Kasch-Tal hin, wo der Verlauf von Störungen in den älteren Gesteinen, verglichen mit denen in der Angaraserie, erweist, daß dort die Zerlegung der Gebirgsmasse durch N.-S.-Brüche²) in einzelne Blöcke, welche dann unregelmäßig verschoben wurden, also die Bruchbewegung in Richtung N.-S. älter sein muß, als jene Bewegnngen in Richtung O.-W., denen die heutige Gestalt der genannten Täler, sowie der Yuldus-Täler etc. hanptsächlich zu verdanken ist. Es sind auch genügend Anzeichen dafür vorhanden, daß reihenweise angeordnete, weite Senken dort, vermutlich in Form von Einbruchskesseln — entstanden unter gleichzeitiger Eruption porphyritischer und melaphyrischer Gesteine³) — schon in oder vor der Jurazeit vorhanden gewesen sein dürften (was ich ebenda S. 235 schon angedeutet habe), in denen die Süßwasser der Agarazeit ihre Absätze zurückgelassen haben. Die tertiären und späteren Bewegungen haben dann die auf solche Weise schon vorgezeichneten O.-W.-Brüche in besonders ergiebiger Weise weiter ausgebildet. Alle neueren und neuesten Krustenbewegungen, denen die vielfach wiederholten Erdbeben in Zentralasien zu danken sind, haben, wie durch die reiche russische

¹⁾ Ich verweise hier als Analogon zu den Transversalbrüchen im S. von Urumtschi auf die Verhältnisse im großen Kotyl-Tal im N. von Karaschar, wo wir bei unserer Durchwanderung außerordentliche, nur durch Brüche zu erklärende Störungen der Lagerungsverhältnisse vorfanden. (Auch diese Verhältnisse werden in der vorbereiteten Arbeit über den östlichen Tian-Schan näher dargestellt werden.) Zweifellos ist hier am S.-Rande des Gebirges der große Längsgraben, durch welchen die Hanptmasse des Gebirges von der niedrigen Randkette des Kuruk-Tagh getrennt wurde, die den S.-Rand des großen Längsbruches bildet, durch einen Transversalbruch geschnitten, dessen Achse im Kotyl-Tale verläuft. Infolge dieses Verhältnisses trat hier das Gebirge weit auseinander und gab Anlaß zur Entstehung des weiten tiefen Beckens von Karaschar (siehe S. 42.) Durch diesen Einbruch wurde das große Yuldus-Tal geöffnet und der Abfluß seiner Gewässer, des Chaidik-gol, zum Becken des Bagrasch-kul ermöglicht. Die Verhältnisse im Tale des Abflusses des Sees, im Kontsche-daria-Tal, wie wir sie durch Futterers Schilderung kennen (Il/l. S. 163 ff. und Profil III, Taf. I und durch Bogdanowitsch (a. a. O., S. 99 f.) lassen darauf schließen, daß dort die südliche Fortsetzung des Kotyl-Querbruches zu sehen ist.

²⁾ Siehe Anmerkung 1 auf S. 51 und meine Ausführungen in der Zeitschrift Gesellschaft für Erdkunde, Berlin 1910, S. 233/34 f.

³) Im unteren und mittleren Kungestal treten regelmäßig an der Basis der die Talränder bildenden quarzitischen Gesteine melaphyre und porphyrartige Gesteine in Gängen auf.

Literatur hierüber nachgewiesen ist, stets wieder die Richtung der alten Störungslinien eingehalten. (S. 42, 49.) Es fällt nicht in den Rahmen dieser Abhandlung, hierauf weiter einzugehen, weil diese Verhältnisse in einer späteren Arbeit über den östlichen Tian-Schan genauer erläntert werden sollen. Ich hebe nur die Tatsachen hervor, daß in tieferen Lagen des Tekes-Beckens porphyritische Ergüsse stattgefunden haben und daß im Kasch- nnd Kiukönik-Tale Angaraablagerungen diskordant auf Quarzporphyren liegen, daß dort wie im Kunges-Tal (siehe vorige Seite), im Turfan-Becken¹) und an anderen Orten porphyritische, melaphyre und andere Effusivgesteine gerade hauptsächlich an solchen Orten in größeren Mengen auftreten, wo die transversalen und longitudinalen Verwerfungen sich schneiden, daß in einer durch sich schneidende Brüche gebildeten kesselförmigen Senke des Kiukönik-Tales (im N. von Kutscha) gefaltete Angaraschichteu diskordant zn den umgebenden paläozoischen Kalken liegen. Auf alle diese Verhältnisse werde ich aber erst in meiner dieser folgenden Arbeit nber den östlichen Tian-Schan näher eingehen.

Der Austritt dazitischer Laven innerhalb des Faltenbaus der mesozoischen Serie, wie ihn Gröber für die jungen Bogdo-Ola-Gesteine in Kap. XX nachweist und wie er sich auch besonders entwickelt in den Angaraschichten des Kasch-Tales und seiner Nebentäler zeigt, weist aber auf einen frühen Beginu der Anffaltung dieser Schichten hin, wenn nicht anf einen ins Vortertiär, so doch mindestens in ein ziemlich frühes Tertiär fallenden Beginn jeuer Faltungsbewegungen.

Da die dem Oberkarbou angehörigen Pflanzenreste Obrutschews²) aus dem Dun-Schan-Sattel in einer Zone stärkster Störungen, im Transversalbruchgebiet im S. von Urnmtschi, gefunden wurden, kann diese Querverwerfung nicht später als in der Zeit zwischen Oberkarbon und Jura entstanden sein und dies bekräftigt mich in der Anschauung, daß die den Dun-Schan-Sattel schneidende tiefgreifende transversale Bruchspalte es verhindert hat, daß ein Teil der späteren Krustenbewegungen, so besonders die großen, während der mittleren und späteren Tertiärzeit den ganzen Tian-Schan nmformenden longitudinalen und vertikaleu Verschiebungen, in gleicher Weise auch auf den nördlichen Teil des Gebirges im O. der Bruchzone übergreifen konnten. Die Bewegung der Längsverwerfungen wurde zum Teil abgelenkt, was schon durch den radialen Verlauf der einzelneu Höhenzüge im Kartenbild3) sehr deutlich in die Erscheinung tritt. Die Bodenbewegungen jener Zeit mußten sich also im Gebiete der Bogdo-Ola in anderer Weise äußern, wobei ich auf Grund der heutigeu Gestalt dieses Gebirgsteiles hauptsächlich an eine starke Heraushebung der zentralen Masse des vermutlich schon vorher in langsamer Hebung befindlichen Baues infolge tiefen Einsinkens der beiden Flügel (siehe auch S. 48) und an besonders tiefgehende Längsbrüche an seinen Randzonen denke.

¹⁾ Zentralasien etc., l. c. II, S. 622, 636, 638, 639.

²⁾ Zentralasien etc., l. c. II, S. 646.

³) Siehe Blatt Hami der 40 W.-K. und besonders Grum Grschimailos, sehr klare Übersichtskarte des östlichen Tian-Schan, l. c. (siehe S. 26).

Es ist nicht meine Absicht, in diesem Kapitel den gründlichen petrographischen Untersuchungen. die Dr. Glungler in Kap. XXI niedergelegt hat, vorzugreifen und von den Ergebnissen seines wertvollen Beitrages zu dieser Abhandlung etwas vorweg zu nehmen. Nur insoweit als das petrographische Material der Bogdo-Ola in enger Beziehung zu den bereits erörterten geologisch-tektonischen Verhältnissen steht und zu deren Ergänzung für die Orientierung des Lesers über den Gebirgsbau zu dienen hat, werde ich das Nötigste über den Bestand an Gesteinen hier mitteilen.

Im geologischen Bestande der Bogdo-Ola fehlen, wie aus deu vorhergehenden Ausführungen sich ergibt, sowohl die in normalen Zustand erhaltenen, als die zu Marmor umgewandelten paläozoischen Kalke, die sonst überall im Tian-Schan die höchsten Teile des Gebirges bilden (S 52). Die Kalke sind vielmehr hauptsächlich zu Kalksilikathornfelsen und verwandten Gesteinen umgewandelt, treten aber bezeichnenderweise auch hier gerade in den höchsten und zentralsten Teilen des Faltenbaus auf, allerdings neben stark umgewandelten Effusivmassen.

Neben ihnen herrschen mächtige Serien von Sandsteinen und Tongesteinen vor, welche in den alten Serien anderer Teile des Tian-Schan nur eine verhältnismäßig untergeordnete Rolle spielen. Zu diesen Sandsteinen, welche häufig den Typus der Arkose tragen, gesellen sich noch die ihnen verwandten Grauwacken in mächtigen Serien, eine bemerkenswerte Tatsache, wenn wir bedenken, das solche Gesteine gewöhnlich dem Unterkarbon sehr nahestehen und daß dieses in den westlicheren Teilen des Tian-Schan transgredierend auf älteren Formationen liegt. Die genannten Gesteinsserien werden durchbrochen von Erguß- und Ganggesteinen und zwar von solchen teils überwiegend basischer, teils saurer Art. Die älteren hievon haben allgemein die Faltung mitgemacht, da sie mit den Sedimenten wechsellagern und bilden nun einen integrierenden Teil der Schichten des Faltenbaus; sie stehen mit den Sedimenten in so engem Zusammenhang, daß sie mit ihnen die stärksten Merkmale gemeinsamer Umwandlung teilen. Man kann die Auffassung nicht von der Hand weisen, daß der Austritt eines großen Teiles dieser Effusivgesteine innerhalb der Periode der mit Faltung verbundenen gebirgsbildenden Bewegungen stattgefunden hat (siehe S. 53), wenn nicht ein Teil von ihnen sogar schon zu einer Zeit ausgetreten ist, als die Sedimentation noch nicht beendet war. Besonders der Umstand, daß den Effusivgesteinen verschiedenerlei Alter zukommt und daß sie mit Sedimenten wechsellagern, läßt an untermeerische Ergüsse denken und an fortdauernden Wechsel von faltender Gebirgsbildung mit Austritt von Effusivmassen.

Wir haben es also im Bau der Bogdo-Ola mit einer ungemein mächtigen konkordanten Schichtenfolge von ausnahmslos so stark umgewandelten Gesteinen zu tun, daß eine Gliederung in einzelne Horizonte (s. S. 55) nicht mehr möglich ist. Im Bestande dieser Schichten treten Gesteine auf, die zum Teil große Verwandtschaft mit denen der westlichen Teile des Tian-Schan aufweisen, aber auch wesentliche Merkmale besitzen, die sie von ihnen deutlich unterscheidbar machen, jedenfalls infolge stärkerer und mehrmals wiederholter Umwandlung. Wie Dr. Glungler in seiner Bearbeitung des petrographischen Materials (Kap. XXI) nachweist, ist hier nicht allein Kontakt — sondern auch Dynamometamorphose im Spiele gewesen. Auf welche Schwierigkeiten aber der Versuch einer Trennung in einzelne Horizonte stößt. geht schon daraus hervor, daß auch die Gesteine des Südschenkels des Faltenbaus

59

der Bogdo-Ola einer Parallelisierung mit denen des Nordschenkels infolge ihrer stärkeren Umwandlung Hindernisse entgegenstellen. (Siehe S. 40 u. 55.)

In den nördlichen Teilen des Faltenbaus nahe der großen Längsverwerfung zeigen die Gesteine, besonders die Tongesteine, den verhältnismäßig geringsten Grad der Umwandlung, wiewohl auch dorten schon die Merkmale sowohl effusiver als gebirgsbildender Einwirkungen sich im Auftreten fein- und grobklastischer Gesteinselemente von eigenartiger Zusammensetzung bemerkbar machen. Mit dem Fortschreiten nach Süden nimmt der Grad der Umwandlung zu. Im zentralen und höchsten Teile des Faltenbaus aber treten die Kennzeichen der Umwandlung aller Gesteinsserien am meisten zutage, und gerade die höchsten Gipfel sind aus stark umgewandelten, der Diabasreihe angehörigen Effusivgesteinen gebildet. Der Südschenkel des Faltenbaus ist gekennzeichnet durch ein noch weit mannigfaltigeres Durchdringen mit jüngeren Erguß- und Ganggesteinen (Diabasporphyre), welche sich sowohl in Deckeuform als in Gängen zwischen den älteren Serien finden. Die infolge Bildung der tiefen Grabensenke von Turfan hervorgerufene stärkere Zerrüttung des Faltenbaus macht (siehe besonders S. 4 und 41.) den vermehrten Austritt magmatischen Materials erklärlich. Diese jüngeren Effusivmassen haben die alten bereits umgewandelten Sedimente und Eruptivgesteine neuerdings so stark veräudert, daß sie nur mit Schwierigkeit als Äquivalente der Gesteinsserie des N.-Schenkels zu erkennen sind. (Siehe vorige Seite.)

Daß bei einer solchen Vergangenheit in den alten Sedimenten keine Organismenreste erhalten geblieben sein können, welche ihre Altersbestimmung ermöglichen könnten, ist ohne weiteres klar. Ich kann aber nach allem, was ich von den orographischen, tektonischen und geologischen Verhältnissen des ganzen Tian-Schan-Gebirges kennen gelernt habe, keinen Grund finden, den kalkigen Sedimenten dieses Faltenbaus ein anderes Alter zuzuweisen, als jenen der westlicheren Teile des Tian-Schan, die zum überwiegendeu Teile, soweit sie uns bekannt geworden sind, zum Unterkarbon zu stellen sind und dieser Grund ist um so stichhaltiger, als durch Untersuchungen russischer Geologen (Obrutschew, Bogdanowitsch, siehe die zitierte Literatur), sowie Futterers Beobachtungen auch in den weiter östlich gelegenen Gebirgsteilen, soweit diese überhaupt schon bereist wurden, für die dort vorkommenden Kalke ebenfalls das unterkarbonische Alter festgestellt werden konnte. Auch das Auftreten von Grauwackengesteinen im Bau der Bogdo-Ola deutet, wie ich bereits S. 59 hervorgehoben habe, mit einiger Wahrscheinlichkeit auf unterkarbonisches Alter, wenigstens eines Teiles dieser Sedimente hin. Nach der ganzen Lage der Verhältnisse ist also auch für die stärker als im zentralen Tian-Schau umgewandelten, alten, kalkigen, Sedimente der Bogdo-Ola mit einer an Wahrscheinlichkeit grenzenden Vermutung das gleiche Alter anzunehmen.

Der Umstand, daß die Achse des höchsten Sattels der Bogdo-Ola-Erhebung im Streichen (W. 20 S.) auf den niedrigen Gebirgsrücken (Dun-Schan) im S. und O. von Urumtschi trifft, den ich mehrfach als die tiefste Einsattlung des gesamten Tian-Schan in seinem bisherigen Verlauf nach O. bezeichnet habe, gibt Dr. Gröber Veranlassung zur Annahme eines vermutlich oberkarbonischen Alters (siehe Kap. XX.) für die alten Sedimente der Bogdo-Ola, weil Obrutschew¹) dorten beim Karawanserail von Dschi-dschi-su (Taf. 15 Fig. 4) in grüulichbraunen, ziemlich groben, kalkig tonigen Sandsteinen, die zwischen

¹⁾ a. a. O., S. 645.

Schichten von grauem, an der Oberfläche graugrünem, härterem Sandstein lagern, Pflanzenabdrücke gefunden hat (s. S. 58), die von F. Krasser als Lepidodendron conf. Heidingeri Ettingsh. und Cordaides conf. principalis (Germ.) Geinitz bestimmt wurden.¹)

Wie sehr ich auch sonst die Berechtigung der Schlüsse meines scharf beobachtenden Reisegefährten würdige, so vermag ich mich doch in diesem Punkte seiner Ansicht nicht anzuschließen und zwar außer den schon obenerwähnten, auch aus folgenden Gründen: Der niedrige Zug des Dun-Schan-Gebirges (mittlere Höhe 1600 m) liegt zwar in der Fortsetzung der Achse des westlichen Flügels der Bogdo-Ola-Gruppe, allein er fällt durchaus in die Zone der tiefgreifendsten Krustenbewegungen, von welchen hier schon mehrfach eingehend die Rede gewesen ist. nämlich Schneiden von Querverwerfungen mit Längsverwerfungen, welche hier das außerordentlich tiefe Absinken der ganzen Gebirgsmasse des Tian-Schan und seine Auflösung in radiale Einzelzüge zur Folge hatten. (Siehe S. 4. 35, 47, 48.) Der Dun-Schan-Gebirgszug bildet somit nur eine schmale niedere Landbrücke zwischen der Bogdo-Ola-Gruppe und der breiten, mächtig entfalteten Masse des Tian-Scan-Systems im W. von ihr. Der Höhenunterschied zwischen Dun-Schan-Sattel und der zentralen Bogo-Ola-Gruppe beträgt nicht weniger als ca. 5000 m. (Siehe S. 37 und hypsometr. Längsprofil, Taf. 16.) Wie stark sich in dieser Niederung die Beeinflussung durch die erwähnten außerordentlichen Störungen zeigt, geht besonders aus den mehrfach zitierten Beobachtungen Obrutschews hervor, wo von unausgesetztem, plötzlichem starken Wechsel sowohl im Streichen und Fallen, als in der Richtung der Klüftung der Gesteine die Rede ist, eines Umstandes, den ich durch Augenschein bestätigt fand, obwohl meine Beobachtungen, da wir jenen Gebirgssattel zum großen Teil in der Nacht übergueren mußten, nicht so eingehend sind, als jene Obrutschews.2) Ich konnte aber doch bei den dort sich bietenden ausgezeichneten Aufschlüssen oft auf alle 5-10 Schritte Entfernung auffälligen Wechsel des Streichens und Fallens feststellen.

Aus den Mitteilungen Obrutschews geht aber auch sehr deutlich hervor, daß der ganze Gesteinsbestand dieser Landbrücke keinerlei wesentliche Ähnlichkeit mit dem des Faltenbaus der zentralen Bogdo-Ola, wie er hier beschrieben wurde (siehe auch Kap. XX), aufweist und wie er aller Wahrscheinlichkeit nach auch den Bau des Hochgebirges zwischen Gurban-bogdo-Paß und jener niederen Landbrücke zu bilden scheint, wenigstens soweit ich dies verfolgen konnte. Allerdings liegen für jenen Teil, der näher an den Dun-Schan-Sattel herantritt, noch keine geologischen Untersuchungen vor, so daß die östliche Grenze der Dun-Schan-Gesteine und die westliche der Bogdo-Ola-Gesteine noch nicht festgestellt ist. Eine solche Untersuchung könnte vielleicht noch zu bemerkenswerten Ergebnissen führen. Die Gesteinsfolge, wie Obrutschew sie anführt: "harte Sandsteine und Mergel,

¹⁾ Bei der etwas südlich hievon gelegenen Station Jen-tsche dun fand Obrutschew "zwischen Bänken von harten, feinkörnigen Sandsteinen, die stark kalkreich sind und sich dem Mergel nähern, sowie granen, graubrannen und grünlichgrauen tuffähnlichen Gesteinen mit Schichten von grauen und dankelgrünen harten Tonen, Korallenkalksteine", ohne jedoch nähere Angaben über diesen Fund und eine Natur zu machen.

²⁾ Wie stark zerrüttet dieses ganze von Verwerfungen durchzogene Gebiet auch noch weiter nach S. hin ist, zeigt das Profil durch den Tschol-tagh (S. 41, 48, 54) in Futterer II/I, S. 208. Aus den daran geknüpften Erörterungen S. 209 f. ist ersichtlich, daß diesen Verwerfungen zum Teil ein hohes Alter zukommt.

kalkreiche Sandsteine und Mergel, tuffähnliche Gesteine mit Zwischenschichten von hartem Ton, sandhaltige Mergel mit undeutlichen Pflanzenresten, kalk- und sandhaltige Tone wechsellagernd mit braunen Mergeln und endlich felsitporphyrisches Konglomerat" können doch wohl kaum als Äquivalente der Gesteine des alten Gebirges der Bogdo-Ola angesehen werden, wie sie im petrographischen Teil (Kap. XXI) beschrieben sind und berechtigen also meines Erachtens nicht, sie mit Gröber als "völlig mit den Gesteinen des alten Gebirges der Bogdo-Ola übereinstimmend" zu bezeichnen, wobei ich allerdings besonders erwähnen muß, daß Gröber ausdrücklich hervorhebt, sie seien nicht umgewandelt weil die Eruptivgesteine fehlen.

Auch die schematische Gesteinstabelle, welche Bogdanowitsch zum Profil von Toksun nach Urumtschi gibt,¹) steht mit dem Befund von Obrutschew in guter Übereinstimmung, wenn auch der mehr schematisiert dargestellte Faltenbau des Profils die vorwaltenden komplizierten Verhältnisse nicht genau erkennen läßt. Gröber gibt jedoch auch die Möglichkeit zu, daß die Dun-Schan-Schichten einen etwas höhereu Horizont der Serien darstellen, die in der Bogdo-Ola entwickelt sind. In diesem Falle müßten wir also an eine tief abgesunkene und darum hier erhaltene jüngere Bedeckung des Gebirges denken, die iu der gehobenen Hauptgruppe läugst entfernt ist.

Es ist aber auch von besonderem Interesse und von großer Bedeutung, daß hier das Oberkarbon, von dem wir wissen, daß es am N.-Abhang des zentralen und östlichen Tian-Schan bisher nicht nachgewiesen ist. sondern nur am S.-Abhang,²) wo es übrigens nicht sehr weit in die Gebirgsmasse hineingreift, an dieser Stelle auf dem Scheitel des Gebirges, auf der Hauptwasserscheide augetroffen wird. Allerdings fludet es sich auf einem tief abgesunkenen Gebirgsteil, reicht aber doch so weit nach N. hinauf, wie bisher an keiner anderen Stelle des Tian-Schan-Gebirges nachgewiesen werden konnte.

Ich erinnere hier daran, daß wir auf dem Wege von Karaschar nach Bai am S.-Rande das Fehlen des Oberkarbons feststellen konnten, wo es vermutlich infolge Absinkens auf einer Querverwerfung verschwunden ist,³) während es sonst auf der Strecke von Kaschgar bis Bai in weiter Verbreitung angetroffen wird. Es scheint aber, daß dieser geologischen Periode angehörige Gesteine weiter gegen Osten hin wieder auftreten, worauf besonders die von Futterer im Tschukur-Gebirge beobachteten Crinoiden-Kalke hinweiseu.⁴) Andererseits aber erwähnen weder Obrutschew noch Bogdanowitsch des Vorkommens oberkarbonischer Kalke aus den von ihnen bereisten östlichen Teilen des Tian-Schan.

Das Hauptgewicht bei diesem wichtigen paläontologischen Funde am Dun-Schan-Sattel ist aber meiues Erachtens darauf zu legen, daß es sich hier um Pflanzenreste handelt, also nicht um mariues Oberkarbon, während, soviel wir bisher wissen, die karbonischen Gesteine jedes Alters im ganzen Verlauf des Tian-Schan nur durch marine Bilduugen vertreten sind. Man darf daher von den hauptsächlich in Kalksilikathornfels⁵) umgewandelten kalkigen

¹⁾ a. a. O., Taf. V, Profil 9 und "Vergleichende Tabelle des geologischen Bestandes von Kum-lun und Tian-Schan".

²) K. Leuchs, Zusammenfassung der "Ergebnisse neuer geologischer Forschung im Tian-Schan". Geologische Rundschau. Bd. IV, 1913, Heft l, S. 40.

³⁾ Zeitschrift Gesellschaft für Erdkunde, Berlin 1910, S. 244 und Petermanns Mitteilungen 1909.

⁴⁾ a. a. O. II/I, S. 176, 197, 209, sowie Profil 4 auf Taf. I und geologische Karte Nr. III.

⁵⁾ Es scheint mir nicht belanglos darau fhinzuweisen, daß Futterer schon von weiter im W. bei

Gesteinen des Faltenbaus der Bogdo-Ola wohl ebenfalls eine marine Entstehung annehmen und es bedürfte wohl noch anderer Beweise, um sie zu den Funden am Dun-Schan-Rücken in Beziehung zu bringen. Der Fund Obrutschews kommt nach meiner Ansicht für die Altersbestimmung der Sedimente der zentralen Bogdo-Ola aus allen angeführten Gründen nicht in Betracht, und bis nicht überzeugendere neue Tatsachen zu unserer Kenntnis gelangen. halte ich es für richtig, auch von den umgewandelten kalkigen Sedimenten der Bogdo-Ola das gleiche unterkarbonische Alter anzunehmen, das ihnen in den anderen Teilen des Tian-Schan auf Grund von paläontologischen und stratigraphischen Tatsachen zugewiesen wird.

IX. Über das Alter der Gesteine der Angaraserie in den Vorketten der Bogdo-O!a.1)

Unter den Verhältnissen, die zu einem so großen Unterschiede in den oroplastischen Zügen des Baues der Bogdo-Ola im Vergleich zu dem der westlicher gelegenen Teile des Tian-Schan beigetragen haben, muß ganz besonders hervorgehoben werden, daß im westlichen und zentralen Tian-Schan wenigstens im überwiegenden Teile seiner Ausdehnung nach den paläozoischen Sedimenten bis in das Tertiär hinein nur an wenigen Stellen jüngere Geteine zur Ablagerung kamen oder doch bis heute erhalten geblieben sind, während gerade am N.-Abhang der Bogdo-Ola solche in so bedeutender Mächtigkeit auftreten, daß sie dort, wie früher erwähnt (S. 39), in einer Zone von über 15 km das Vorland des Gebirges und die erste und unterste Stufe seines Treppenbaus bilden. Wir sehen diese Ablagerung bei der Querung des Gebirges von N. nach S. in einer Reihe von Ketten auf treten, die eine mittlere Höhe von 1400 zu 1600 m erreichen und welche schon infolge ihrer komplizierten tektonischen Geschichte, die Dr. Gröber in einem eigenen Kapitel geschildert wird (siehe Kap. XX), sich in ganz besonderer Weise von den übrigen Teilen des Gebirges unterscheiden. Aber auch infolge der Einwirkungen der in einer vergangenen, weit feuchtigkeitsreicheren Epoche der klimatischen Geschichte Zentralasiens viel kräftiger als heute gewesenen Erosion des fließenden Wassers, mußten diese wenig widerstandsfähigen Mergel, Tongesteine, Sandsteine und Konglomerate weit mannigfaltigere Formen annehmen als der aus harten Eruptivgesteinen und umgewandelten Sedimenten zusammengesetzte geschlossene Bau des alten Gebirges. (S. 39, 54.) Wie sehr auch die exogenen Kräfte des in der letzten Epoche der geologischen Geschichte dieses Teiles von Asien zur unumschränkten Herrschaft gelangten Kontinentalklimas: Vernichtung der Pflanzendecke, außerordentliche Gesteinszerstörung infolge überaus starker thermaler Gegensätze und abtragende Wirkung des Windes, auf das Relief dieser weichen Gesteine eingewirkt haben, ist aus dem hier abgebildeten Panorama ersichtlich. (Taf. 4, Fig. 4.)

Ihrem landschaftlichen Charakter nach steht diese Zone demnach sowohl infolge des großen Höhenunterschiedes zwischen ihr und der in der Richtung nach S. zu nächstfolgenden Gebirgsstufe, als durch auffällige Armut an Vegetation und endlich durch die grellbunte

Kutscha am S.-Rand im Kok-tepe-Gebirge, das ein wesentliches Glied des Gebirgskomplexes bildet, Kalksilikathornfelse anführt. (a. a. O. II/I, S. 165.)

¹⁾ Dieses Kapitel habe ich schon in der zur Feier des siebenzigsten Geburtstages von Professor D. Anntschin in Moskau herausgegebenen Festschrift veröffentlicht; doch hat es nun in einzelnen Stellen eine Umgestaltung und überdies einige wichtige Zusätze erfahren.

Färbung der Gesteine in einem starken Gegensatz zur zweiten Stufe, welche in ziemlich gleichmäßig hintereinander ansteigenden Ketten harter, quarzitischer und anderer älterer Gesteine gegliedert und infolge ihres Aufragens in feuchtigkeitsreiche Luftschichten mit Alpenwiesen und Koniferenwäldern reich bekleidet ist.

In solcher Weise bilden die Ketten dieser jüngeren, dem Mesozoikum angehörigen Ablagerungen 'mit scharfer Begrenzung gegen das alte paläozoische Gebirge und diesem entlang laufend, ihrem ganzen Charakter nach ein scharf von ihm getrenntes Glied. Trotzdem stehen beide hinsichtlich der Lagerung in einem Konkordanzverhältnis, d. h. insoferne in tektonischer Konkordanz (S. 43, 47 u. 49), als altes Gebirge und junges bei den für den Tian-Schan wichtigen postjurassischen großen Gebirgsbewegungen von in gleicher Richtung wirkenden, umformenden Kräften getroffen und erst durch die letzten, im späten Mitteltertiär neu belebten tektonischen Kräfte infolge von Verwerfungen voneinander getrennt wurden. (S. 39, 43, 49.)

Die Gesteine dieses jüugeren Gebirges gehören einer petrographischen Gruppe an, welche, wenigstens uuter dem besonderen Namen "Angaraserie", meines Wissens zuerst vou Suess¹) in die Literatur eingeführt wurde und bald am N.- bald am S.-Rande des östlichen Tian-Schan auf weitgedehnten Strecken das alte Gebirge begleitet, sich aber auch in einzelnen Becken und Längstälern (Kiukönik-Tal, Kasch-Gebiet, Kotyl-Tal, im Westen Ferghana etc., S. 56) im Innern des Gebirges findet. Es sind Schichtenfolgen (S. 38) von dunklen, braunen oder schwarzblauen, harten oder weichen Tonschiefern, schieferigen Tonen, kalkigem Sandstein, und ziegelrot, weinrot, lichtgrün, ockergelb, schwefelgelb und orangegelb gefärbten Mergeln, Mergelschiefern, roten, grauen, gelben und weißen Sandsteinen und Konglomeraten, die von jüngeren Ergußgesteinen durchbrochen uud von ihnen und den sie begleitenden Tuffen auch zum Teil überdeckt wurden. Mannigfache Umwandlungen hat diese Gesteinsserie gerade durch diese jungen Effusivgesteine erfahren. Die Schichten enthalten häufig Gips, namentlich aber schließen sie auf weiter Ausdehnung mächtige Kohlenflöze ein, teils Braunkohle teils hochwertige Kohle von anthrazitähnlichem Charakter; auch Naphtalager und Kupfererze enthalten sie. (S. 11.)

Man kenut die Pflanzenreste und Kohle führenden, außerordentlich verbreiteten Bildungen der Angaraserie des nördlichen und nordöstlichen Asien, aus der Mongolei und Mandschurei, aus Transbaikalien, Persien, Afghanistan, Szetschuan, Yünan etc., ja bis weit im O. nach Tonking, teils aus der russischen Literatur, welche in zusammenfassenden Darstellungeu in Band III von Suess', Antlitz der Erde" (S. 26, 27, 29, 31, 34, 158 f., 258, 346, 372, 392 etc.) verwertet wurde, teils aus Richthofens "China" und von Loczys Veröffentlichungen der "Ergebnisse der Szöchöny-Expedition", insbesondere aus den Veröffentlichungen der Untersuchungen von Muschketow, Bogdanowitsch, Obrutschew, Jatschewsky, Romanowsky, Bailey Willis, Zeiller, Krasser, Seward und Anderen, auf welche ich noch zurückgreife. Es sei aber gleich im vorhinein bemerkt, daß bei weitem nicht alle diese kontinentalen Ablagerungen — ganz abgesehen von denen des indischen Gondwanalandes, welches schou infolge der ehemaligen Trennung dieses Gebietes vom zentralasiatischen Festland durch einen Meeresarm²) — in völlige Parallele mit den

^{1) &}quot;Antlitz der Erde" III/I, S. 26.

²) Eine Verwandtschaft beider Florengebiete wird neuerdings durch M. D. Zalessky (Sur le Cordaites aequalis Göppert sp. de Sibérie et sur son identité avec la Noeggerathiopsis Hislopi Bunbury sp. de

zentral- und nordasiatischen Angaraschichten zu bringen sind und also nicht durchaus als analoge Bildungen angesehen werden dürfen.

In den verschiedenen Gebieten ihres Vorkommens stimmen sie nicht ganz hinsichtlich ihrer Zusammensetzung überein und unterscheiden sich ebenso in Bezug auf ihre organischen Einschlüsse und endlich auch anscheinend ihrem Alter nach. Insbesoudere aber zeigt sich ein wesentlicher Unterschied zwischen der Entwicklung der meisten anderen asiatischen. als Angaraschichten bekanuten Ablagerungen und deuen des Tian-Schan, wenn gleich sie alle auf gleiche Weise gebildet wurden und in der Gliederung, dem Gesteinscharakter und auch dem Alter nach offenbar, wenigstens bis zu einem gewissen Grade miteinander verwandt sind. Während auf Grund von Pflanzenfunden den verschiedenen Vorkommnissen in anderen Gegenden Asiens ein geologisches Alter zugebilligt wird, das teilweise bis hinab ins Perm und wieder hinauf bis in die mittlere Kreidezeit zu reichen scheint, kann für die betreffenden Gesteine aus dem Tian-Schan, soweit nach den bisherigen Funden von Organismenresten ein Urteil schon möglich ist, nur ein Schwauken des Alters vom Rhät bis hinauf zum Dogger in Frage kommeu. Aber auch hierüber besteht bis jetzt noch keine absolute Sicherheit. Aus dem Tian-Schan siud diese Gesteine zuerst durch Muschketow1) und Romanowsky2) bekannt geworden. In deu schiefrigen, tonigen und sandigen Schichten dieser Serie am N.-Abhaug, im Becken von Kuldscha, aber auch noch weiter im W., so in Ferghana und anderen Teilen des westlichen Tian-Schan, auch im Kara-tau und im Svr-daria-Gebiet wurden von ihnen, dann auch durch Mischenkow im Serafschan-Gebiet3) Pflanzenabdrücke und Versteinerungen gefunden, die nach Romanowsky verschiedenen Alters sind und vou ihm zum größten Teil dem Lias und Rhät, allerdings zum Teil auch dem Keuper zugestellt wurden, während Muschketow4) sie auf Grund der "schönen Kollektion von Pflanzenabdrücken" nach den Bestimmungen von Miloschewitsch 5) dem unteren Jura zuzählt. Muschketow spricht sich in der zuletzt zitierten Schrift dahin aus, daß Trias nur in der Nähe von Kuldscha und südlich von Chodschent in Ferghana in Frage komme, daß aber die pflanzenführenden Schichten des Kuldschaer Beckens dem unteren Jura angehören, während er ihnen später⁶) kein bestimmtes Alter mehr zuweist, wohl aber hervorhebt, daß es sich um zwei verschiedenalterige Gesteinssuiten handelt.

Jedenfalls schließen diese Altersbestimmungen, wenn man den neueren phytopalä-

la flore du Gondwana. Mem. Comité Géolog., Nouv. sér., Livr. 86, Petersburg 1912) nachgewiesen. Es wird angenommen, daß ein Zusammenhang durch Landzungen oder Inseln zwischen dem indischen Gondwanaland und Sibirien bis zum Beginne der mesozoischen Epoche bestanden hat und daß dann erst die vollständige Trennung durch einen Meeresarm der Tethys eintrat. Die Annahme scheint eine Stütze zu finden durch die in der später (S. 67) zitierten Schrift Krassers (S. 602) enthaltenen Beschreibung eines Fundes, den L. v. Loczy am Südabhang der mongolischen Steppen machte, und durch Krasser als Schizoneura gondwanensis bestimmt wurde.

¹⁾ Sapiski, Kais. Russ. Mineral. Gesellsch. 1877, S. 164 f., 178 f. und Turkestan I.

²⁾ Materialien zur Geologie von Turkestan, Bd. I, S. 40 ff.

³⁾ Sapiski, Kais. Russ. Geol. Gesellsch., Bd. 1871, S. 281 f.

⁴⁾ Sapiski der Kais. Russ. Mineral. Gesellsch. 1877, Bd. XIII, S. 164.

⁵⁾ Iswestyia, Obschtschestwa Ljubit. Estestwosn. Antrop. i Etnogr., T. III.

⁶) Turkestan, Bd. II, S. 11 f.

ontologischen Arbeiten Beachtung schenkt,¹) nicht aus, daß auch jene Funde Muschketows aus dem westlichen Tian-Schan in eine jüngere Epoche zu verweisen sind, als er seinerzeit annahm. Seward hebt in der letztangeführten Abhandlung besonders hervor: "Die merkwürdige Ähnlichkeit zwischen der rhätischen und jurassischen Flora in Bezug auf die allgemeine Fazies macht es ungemein schwierig, nach nur kleinen Kollektionen diesen ein bestimmtes Alter zuzuweisen. Es scheint sicher, daß gewisse Typen, im Rhät beginnend, sogar eher bis zum Ober- als bis zum mittlereu Jura durchhalten."

Keidel, dem allerdings keine paläontologischen Funde aus diesen Schichten vorlagen, nimmt für die mächtigen Ablagerungen am S.-Rand zwischen Musarttal und Bai ganz allgemein für die unteren Lagen ein "wahrscheinlich" paläozoisches Alter an, für die oberen Horizonte ein mesozoisches.2) Nach Richthofen3) hängen die Steinkohle führenden Schichten des südwestlichen China sowohl mit der indischen Gondwanastufe als mit äbnlichen Ablagerungen des nordöstlichen Asien zusammen und ihr Alter reicht von der oberen Trias bis zum mittleren Jura. Die verwandten Schichten der Tatsau-Gruppe zählt er⁴) dem Rhät zu, die von Ta-tung-fu⁵) und von Tumulu⁶) dem unteren Jura. In der Übersichtstabelle der Sedimentgesteine der Provinz Szötschuan⁷) aber läßt Richthofen die Frage des Alters ziemlich unentschieden und zieht ebenso wie an anderer Stelle⁸) die Grenzen vom Lias bis zum Dogger. Doch sind von ihm wenigstens die pflanzenführenden Glieder dieser Gesteine (Beckenschichten) früher schon⁹) als "wahrscheinlich dem unteren Jura" zugehörig aufgeführt worden. Auch den verwandten Schichten von Schan-si und von Tschili billigt Richthofen 10) das Alter von Lias oder unterem Jura zu, während die höchsten Niveaus der pflanzenführenden Ablagerungen von Schan-si und Tschili von ihm zum oberen Jura gestellt werden. 11) Jedenfalls aber hebt Richthofen die große Unsicherheit besonders hervor, 12) welche infolge der bis jetzt noch völlig unzureichenden Funde von Organismenresten - trotz deren an vielen Fundstätten erwiesenen Reichhaltigkeit wurde bisher noch nicht genügend und besonders noch nicht systematisch gesammelt - über das Alter dieser Schichten noch immer besteht.

Ähnlich weiten Spielraum vom Rhät bis zur Kreide lassen auch die Funde Futterers ¹³) zu, welche von Potonié beschrieben wurden. ¹⁴) Auf andere Funde Futterers, die von Noetling für jurassisch gehalten werden, habe ich bereits (S. 40 Anm. 1 hingewiesen.

Die Forschungsergebnisse der Reise des Grafen Szöchöny, die von L. von Loczy veröffentlicht wurden, enthalten vieles über die Angaraablagerungen und die darin gemachten Funde, besonders in Bd. I, S. 439 f., 676, 679, 685 f., 736 bis 739, 799; II, S. 415;

¹) A. C. Seward, Jurassic Plants from Caucasus and Turkestan, 1907. Mém. Com. Geol. Neue Serie, Nr. 38.

Derselbe, Jurassic Plants from the Balagansk District, 1911, ibidem Nr. 73. Derselbe, Jurassic Plants from Chinese Dzungaria, 1911, ibidem Nr. 75.

²⁾ Neues Jahrbuch f. Mineral., Geolog., Paläontol., Beilage Bd. XXII, S. 352, 356.

³⁾ China III, S. 156. 4) China II, S. 303, 320. 5) China II, S. 357, 381.

⁶⁾ China II, S. 352, 381. 7) China III, S. 162. 8) China III, S. 184.

⁹⁾ China II, S. 603, 729. 10) China II, S. 646. 11) China II. S. 729.

¹²⁾ China III, S. 124 f., 142 f., 154 f., 184.

¹³⁾ Durch Asien II/I. S. 170 und Profil, S. 256.

¹⁴⁾ Ibidem III, S. 115, 124.

S. 310 bis 318, 324. Allein auch nach seinen Angaben bleibt ihr Alter zwischen Perm und oberem Jura schwankend.

Was die Ergebnisse der Funde auf deu Reisen von Th. Lorenz¹) betrifft, die in diesen Schichten gesammelt wurden, so deuten sie — aber ebenfalls unsicher — auf unteren Jura hin.

Auch in den Berichten von Dr. K. Vogelsang²) über seine Reise im uördlichen und mittleren China ist verschiedentlich vou Ablagerungen mit Kohlenflözen die Rede, deren Beschreibung mir allerdings einige Ähnlichkeit zu zeigen scheint mit den chinesischen Angaravorkommnissen, wie sie von Richthofen geschildert werden. Doch macht dieser Reisende im erstangeführten der beiden Berichte des Vorkommens von Mesozoikum überhaupt keine Erwähnung, da nach seinen Angaben zu schließen die von ihm untersuchten kohlenführenden Schichten dem Karbon anzugehören scheinen; auch in der beigegebenen Karte findet sich daher Mesozoikum nicht verzeichnet. Im zweitgenannten Berichte aber sind die kohlenführenden Ablagerungen zwar gleichfalls zum Karbon gestellt; doch werden gewisse rote Sandsteine und Konglomerate als "gleich denjenigen des Roten Beckens von Szötschuan als Mesozoikum" bezeichnet und auch in der dem Berichte beiliegenden Karte als "vermutlich mesozoisch" aufgeführt.

Obrutschew berichtet in seinem Werke³) häufig über Ablagerungen dieser Art, wiewohl er sie niemals unter der Bezeichuung "Angara" aufführt. So vergleicht er seine eigenen Funde und Beobachtungen4) mit denen von Richthofen und von Loczy und kommt hinsichtlich der Altersbestimmung zum Ergebnis, daß obere Trias bis Mittel- und Oberjura in Frage komme. Die Sandsteine von Neü-schuü-tsian hält er - jedoch nur auf Grund von Lagerungsverhältnissen⁵) — für permotriassisch und eine Anzahl fossiler Pflanzen, die er in kohlenführenden Schichten am Fuße des Sürküp-tagh 6) und in der Gegend von Tasch-Kösö⁷) sammelte, werden auf Grund der Bestimmungen F. Krassers⁸) zum braunen Jura gestellt. Auf andere Funde Obrutschews, welche von ihm ganz allgemein als zum Jura gehörig erwähnt werden, habe ich bereits (Anmerkung 1 S. 40) aufmerksam gemacht.9) Rote und grüne Sandsteine und Konglomerate, die am äußersten Nordrand des östlichen Tian-Schan, welcher das Dsungarische Becken im S. begrenzt, sehr weit verbreitet sind, werden von diesem Forscher - jedoch ohne paläontologische Unterlage - als jurassisch ganz allgemein bezeichnet. In seinem neuen Reisewerke 10) beschreibt Obrutschew aus mehreren Teilen des südl. dsungarischen Ala-Tau Bildungen, die ihrer Zusammensetzung und ihrem Charakter nach mit den Angarabildungen große Ähnlichkeit aufweisen, besonders (siehe S. 44) jene aus dem Unterlauf des Manas-Tales, 11) die wenigstens teilweise sehr große Ähnlichkeit mit jenen auf meiner Reise im gleichen Gebiete, aber weiter im Süden,

¹⁾ Beiträge zur Geologie und Paläontologie von Ostasien, 1905, T. I.

²⁾ Petermanns Mitteilungen 1911, S. 241 f., 278 f., sowie 1904, S. 11 f.

³⁾ Zentralasien, Nordchina und Nan-Schan. 4) Ibidem II, S. 301.

⁵) Ibidem II, S. 303. ⁶) Ibidem II, S. 614. ⁷) Ibidem II, S. 555.

⁸⁾ Denkschriften mathemat. naturwissenschaftl. Klasse d. K. K. Akadem. d. Wissensch., Bd. LXX, Wien 1900. III, S. 126 f.

⁹⁾ Zentralasien, l. c. II, S. 650, 651, 655, 664, 666.

¹⁰⁾ Das daungarische Grenzgebiet, l. c.

¹¹⁾ Ibidem Kap. XX, S. 401-425.

am Rande des alten Gebirges in mächtigen Serien aufgefundenen, zweifellos jurassischen Bildungen haben (S. 43) und von Gröber in Kap. XX beschrieben werden. Obrutschew führt für den ganzen Komplex dieser Ablagerungen kein bestimmtes Alter an und die geologische Karte des bereisten Gebietes wird wohl erst dem demnächst erscheinenden zweiten Bande seines Werkes angefügt werden; er faßt sie nur als mesozoisch zusammen. Die gefundenen Pflanzenreste 1) sind von Seward als Podozamites lanceolatus bestimmt worden, 2) was keine engere Begrenzung als allgemein jurassisch zuläßt.

Ferner hat Obrutschew in der Kette des Tuyuk-dagh im Südosten von Turfan in Steinkohlenbildungen eine gut charakterisierte jurassische Flora gefunden und Juragesteine von weiteren Punkten dieser Kette erwähnt.³) Den Beschreibungen nach scheinen diese jurassischen Bildungen jedoch mit Ausnahme des Vorkommens von Phoenicopsis keine Ähnlichkeit mit den Jurabildungen des Nordens zu haben.

Auch R. Pumpelly erwähnt die pflanzenführenden Ablagerungen in seinem Berichte,⁴) ohne ihnen ein bestimmtes Alter zuzuweisen: doch wurden die von ihm heimgebrachten Pflanzenfunde aus dem Kui-tschou-Horizont von Dr. Newberry als nahestehend gewissen obertriassischen Schichten von Virginia und Nord-Karolina und ebenso als verwandt mit gewissen europäischen Liasformen erklärt.

Elsworth Huntington faßt in "Exploration in Turkestan" 5) die mesozoischen Ablagerungen mit einem Teil des Tertiärs als "Mesozoic-Tertiary Series" zusammen und hebt hievon gewisse Horizonte heraus, von denen er sagt, sie lägen diskordant auf dem Paläozoikum und gingen konkordant in eine Serie fossilienführender Kalke und Mergel über, welchen er ein kretazisches oder frühtertiäres Alter beimißt. Es werden jedoch in diesem Bericht keinerlei Fossilienfunde erwähnt, auf Grund deren die Einreihung in das Mesozoikum, der Kreide usw. geschieht, weshalb auch diese Mitteilungen Anhaltspunkte zu genauer Altersbestimmung der Angaraserie nicht bieten.

Durch die Bestimmung von Zeiller⁶) von pflanzenführenden Schichten aus dem Altai, deren Altersbestimmung längere Zeit strittig war,⁷) scheint mit ziemlicher Wahrscheinlichkeit festgestellt, daß sie dem Perman gehören, wiewohl auch Zeiller ausdrücklich diese Entscheidung keineswegs als definitiv ausgeben will.

In Bailey Willis Reisewerk⁸) unterzieht David White die bisherigen kontradiktorischen Bestimmungen von pflanzenführenden Schichten des Kui-tschou-Beckens (siehe oben) einer vergleichenden, kritischen Untersuchung und kommt zum Ergebnis, sie hätten ein mesozoisches Alter. "wahrscheinlich nicht älter als Rhät und nicht jünger als Oolith". Im gleichen Werke (S. 317) erklärt E. Blackwelder die Serie der Schi-tsüan-Sandsteine — jedoch lediglich auf Befund der Lagerungsverhältnisse — als mesozoisch und zwar für älter als "Unterer Jura oder als die von Richthofen zum Trias gestellten Sandsteine".

¹⁾ lbidem l. c., S. 408, 410.

²⁾ Jurassic Plants from Chinese Dsungaria. l. c., S. 52.

³⁾ Zentralasien, l. c. II. S. 614, 615, 619, 625.

⁴⁾ Geological Researches in China etc. Bd. l, Washington 1907. S. 119 f., 278.

⁵⁾ Part 1 A: Geologic and Physiographic Reconnaissance in Central Turkestan, S. 163.

⁶⁾ Bull. Soc. Geol. France, vol. XXIV, p. 466-487.

⁷⁾ Siehe Romanowsky l. c., I., S. 136 f.

⁸⁾ Research in China l. c., l, S. 280-283.

In Band II des gleichen Werkes (S. 80 bis 83 ff.) bietet Bailey Willis lediglich eine Zusammenfassung der Beobachtungen von Richthofen und Loczy über die Stratigraphie der Angaraschichten in China, da ihm selbst, wie er mitteilt, Gelegenheit zu eigenen Beobachtungen nur wenig geboten war. Wir können also auch aus diesen Ausführungen nichts Entscheidendes für das Alter der Angaragesteine entnehmen. Hingegen hebt auch Bailey Willis, wie dies E. Huntington für ähnliche Bildungen aus Turkestan tat (siehe oben), von den Kuen-Yuan-hien-Konglomeraten und -Sandsteinen, die auf pflanzenführenden Horizonten liegen, besonders hervor, sie seien jünger als diese und stellt sie, und zwar aus petrographischen Gründen, zum Mittel- oder Oberjura.

Von F. Krasser liegt¹) auch eine Bearbeitung der Pflanzen vor, welche durch verschiedene Forscher (Obrutschew, Bronnikow, Potanin etc.) in Transbaikalien, in der Mongolei und Mandschurei gesammelt wurden. In der Übersicht über die Ergebnisse der Untersuchung heißt es (S. 633): "alle Arten deuten auf die Juraperiode". Eine besondere Stufe wird nur bei der "Lokalflora" angegeben, von der gesagt wird (S. 630), daß sie "wohl dem braunen Jura angehöre".

So ist denn aus allen diesen Berichten der namhaftesten Chinaforscher für eine genaue Altersbestimmung der Angaraserie und mithin für die Zeit des Beginnes einer Festlandsperiode sowohl im eigentlichen China, als für die westlich hievon gelegenen Gebiete, also auch für den Tian-Schan, bisher kein verlässiger Anhalt zu gewinnen. F. Frech setzte auf Grund einer Zusammenfassung der in Band III von Richthofens China-Werk enthaltenen Angaben den Beginn der bis zum heutigen Tage andauernden Festlandsperiode in die Zeit des Rhät oder in den Anfang der Juraperiode,²) und mehr läßt sich allerdings auf Grund des bis jetzt vorliegenden Fossilienmaterials nicht sagen, wenn auch gewisse Horizonte im eigentlichen China schon mit ziemlicher Sicherheit als triassisch bezeichnet zu werden verdienen.

Daß die Zeit, während der die Angaraablagerungen zustande kamen, eine solche völliger Ruhe war, wird fast allgemein angenommen; allerdings legen auch einzelne Geologen gerade in den Beginn der mesozoischen Epoche eine große Faltungsbewegung, welche Tian-Schan, Kuen-lun und Tsin-ling-Schan aufgerichtet habe.³)

Nach meiner eigenen Auffassung von der Tektonik des Tian-Schan dürfte diese alte gebirgsbildende Bewegung jedoch nicht später als ins späte Paläozoikum gesetzt werden, denn die Angarabildungen finden sich vielfach zwischen paläozoischen Gebirgsketten in beckenartigen Senken abgelagert (siehe oben) und bedecken dort öfters die bei vorhergegangenen Bewegungen ausgetretenen mächtigen Massen von Quarzporphyren, wofür ich an anderer Stelle Beobachtungen anführte. (S. 57, 58, 59.) Auch hat Keidel⁴) nachgewiesen, daß vor Beginn der Ablagerung von Angaraschichten das Gebirge bereits aufgerichtet war und das Meer sich zurückgezogen hatte. Ferner ist als feststehend anzunehmen, daß in allen diesen Bildungen, mag man sie nun zum Trias oder zum Jura

¹⁾ Denkschrift der mathemat. naturwissenschaftl. Klasse d. K. K. Akadem. d. Wissensch., Bd. LXXV, 1905, S. 5°9 ff.

²⁾ Mitteilungen des Ferd. von Richthofentages 1911, S. 39 und 45.

³⁾ Bailey Willis, l. c., Bd. II, S. 89.

⁴) Geolog. Untersuchungen im südl. Tian-Schan. N. Jahrbuch f. Mineral., Geolog. etc., Beilage Bd. XXII, S. 357.

zählen, Organismenreste mariner Entstehung bisher nicht gefunden wurden. Richthofen der sich hierin¹) auf eine als unsicher zu bezeichnende Angabe Stolizkas stützt, ist geneigt, eine Meeresbedeckung der Trias im Tian-Schan anzunehmen. Diese Annahme hat aber von keinem der späteren Tian-Schan-Forscher Bestätigung erfahren. Nur Bogdanowitsch nimmt für gewisse mesozoische Ablagerungen im Kuen-lun (Kuserab) und Tian-Schan (Dschargöß-Kette, dann solche bei Kurla und bei Su-baschi) marine Entstehung an und hält ihre Lagerung für ingressiv. Nähere Angaben hierüber sind in seinem Berichte nicht enthalten.²)

Anders scheint dies für weiter nordöstlich gelegene Teile Chinas der Fall zu sein, wo nach E. Blackwelder³) in der Wu-Schan-Formation Fossilien gefunden wurden, die seiner Ansicht nach auf marine Trias schließen lassen. Aber diese Funde sind, wie Blackwelder selbst hervorhebt, in sehr schlechtem Erhaltungszustand, so daß die Spezies, von denen er eine Liste anführt, nicht mit Sicherheit bestimmt werden konnten. Marine triassische Ablagerungen sind somit auch für China bisher nicht in völlig einwandfreier Weise nachgewiesen worden. Es ist aber zu berücksichtigen, daß dort noch weite Gebiete der genauen geologischen Untersuchung harren und noch mehr ist dies hinsichtlich eines großen Teils von Tibet der Fall. Die Möglichkeit, in jenen Teilen des asiatischen Kontinents noch marine triassische Ablagerungen festzustelleu, darf daher durchaus nicht als ausgeschlossen erachtet werden.

Jedenfalls aber sind in den zur Angaraformation zu zählenden Bildungen des Tian-Schan, die von Chami im Osten bis nach Ferghana im Westen in vielen Teilen des Gebirges über den älteren Formationen liegen, aber nirgendwo eine ähnlich ausgedehnte Entwicklung zeigen. als gerade im Norden des alten Gebirges der Bogdo-Ola, weder Organismenreste mariner Entstehung gefunden worden, noch bisher solche kontinentaler Entstehung, die eine ganz sichere Altersbestimmung für diese Bildungen ermöglichen.

Von den Aufsammlungen Regels an Pflanzenversteinerungen scheint leider nichts erhalten geblieben zu sein? Regel erwähnt,⁴) er habe auf der Reise nach Turfan von seinem Wege aus "eine Sammlung von Pflauzenversteinerungen, darunter Farrenabdrückenach Kuldscha zurückgeschickt. Eine Beschreibung dieser und anderer paläontologischer Funde Regels, von denen in seinen Schriften mehrfach die Rede ist, konnte ich nirgendwo entdecken. Ebenda erwähnt Regel auch das Vorkommen ganzer Baumstämme in hartem Sandstein. Schon früher⁵), von einer vorherigen Reise in das Kasch-Tal, erwähnt er solche fossile Hölzer und bei Turfan hat er, seiner Reiseschilderung⁶) nach, Schiefer mit Pflanzenabdrücken gesammelt, endlich auch in der Nähe des Ebi-nor⁷) bei einem kleinen, von den Torgouten für heilig verehrten See Kuku-nor fand er schwarze Kohlenschiefer mit Pflanzenabdrücken. Es ist schade, daß wir keinerlei weitere Kenntnis von diesen wichtigen Funden besitzen.

¹⁾ China II, S. 743.

²⁾ Trudi Tibetzkoi Expeditzii l. c. II, S. 64 f. und Profil, Taf. V.

³⁾ Research in China. l. c. I, S. 276.

⁴⁾ Petermanns Mitteilungen, Bd. 27, 1881, l. c., S. 386.

⁵⁾ Petermanns Mitteilungen, Bd. 25, 1879, l. c., S. 412.

⁶⁾ Petermanns Mitteilungen, Bd. 25, 1880, l. c., S. 206.

⁷⁾ Petermanns Mitteilungen, Bd. 27, 1881, l. c., S. 384.

In den Angaraschichten sind nun schon auf meiner Expediton im Jahre 1902/03 fossile Pflanzen gefunden worden.1) Erst auf meiner letzten Reise aber im Jahre 1907/08 wurden im östlichen Tian-Schan, besonders am Nordabhang der Bogdo-Ola, durch Dr. Gröber eine Anzahl gut erhaltener Fossilien gesammelt. Diese neue Sammlung wurde durch Dr. J. Schuster untersucht und ist im Kap. XXIII dieser Monographie beschrieben. Dieser Bestimmung zufolge müssen die pflanzenführenden Schichten zum Dogger gestellt werden. Es gelang aber Dr. Gröber, in den gleichen Horizonten auch Fischreste zu sammeln, Funde, die deshalb von hoher Wichtigkeit sind, weil bisher derartige Organismenreste in dieser Formation noch nicht gefunden wurden. Die gesammelten Bruchstücke wurden teils von Professor Le Riche in Brüssel teils von Dr. M. Reiss in München bestimmt. (Siehe Kap. XXIII.) Da diese beiden Paläontologen aber auch nicht zu völlig übereinstimmenden Ergebnissen gelangten, habe ich Beiden Gelegenheit zur Äußerung ihrer Anschauungen gegeben. Wenn die Urteile beider Autoritäten sich auch nicht gänzlich decken, so ergibt sich doch aus ihren nicht weit auseinandergehenden Ansichten im Zusammenhang mit dem Ergebnis der Pflanzenbestimmung, daß die Schichten des Angaragebirges der Bogdo-Ola mit hoher Wahrscheinlichkeit dem unteren Jura zuzurechnen sind, daß sie als Süßwasserbildungen, und zwar als limnische oder als Sumpfbildungen angesehen werden müssen. Auch Seward2) spricht sich dahin aus, daß die Ablagerungen auf dem Boden großer Täler stattfanden und nur dort heute in größeren Höhen angetroffen werden, wo sie durch spätere Faltung hingebracht wurden. Wo sie sonst im Gebirge getroffen werden, ist es nur am Rande und an Stellen, welche wahrscheinlich die Lage von Buchten oder Rändern eines mesozoischen See's anzeigen. Auch Richthofen3) hält die Jurabildungen für Süßwassersedimente.

Es wurden wegen meiner Expedition häufig, besonders im Kasch-Gebiet und im Süden von Dschincho und Sügoschur (S. 43) in Sandsteinen zahlreiche Baumstämme gesehen, deren Durchmesser von 15 bis über 50 cm wechselt: sie sind so fest eingebettet, daß sie sich nicht aus ihrem Verband entfernen ließen. Was an Fragmenten solcher fossilen Hölzer eingesammelt werden konnte, ist eben wegen seiner Umwandlung zu Sandstein leider unbestimmbar gewesen. Es muß aber als besonders charakteristisch hervorgehoben werden, daß gerade in den Sandsteinbänken eine weit größere Menge von Pflanzenresten und besonders Bäumen eingebettet ist, als in den Tonen und Mergeln. Dies deutet auf eine rasch zunehmende Verlandung hin. auf ein Vordringen des Wüstensandes in die versumpften Ränder der Süßwasserbecken, mithin auf eine einschneidende Klimaveränderung. Hierauf deuten auch die Mitteilungen Richthofens 1 hin, der diese Pflanzenablagerungen im Süden des Tsing-ling-Gebirges im Unterschied zu den nördlich hievon gelegenen Fundstellen in sandigen Schichten, in roten Sandsteinen fand, welche tiefe Becken zwischen Gebirgen von anderer Zusammensetzung erfüllen. Überhaupt nimmt Richthofen für diese Zeit 1 mehrfachen Wechsel von trocknem Steppenklima und feuchtem "peripherischen Erosionsklima" an.

Auch aus den Beobachtungen anderer Forschungsreisender ließen sich noch ähnliche Beispiele anführen; doch würde ihre Mitteilung den Umfang dieses Kapitels allzu sehr

¹⁾ Merzbacher, Vorläufiger Bericht S. 46/47. Keidel, Südl. Tian-Schan, S. 347 f.

²⁾ Jurassic Plants from Chinese Dsungaria, l. c., S. 31.

³⁾ China. Bd. II, S. 743. 4) China III, S. 180.

⁵) Ibidem II, S. 744/45, 755/56.

vergrößern. Die weite Verbreitung solcher Verhältnisse gestattet aber meines Erachtens auch nicht die Einbettung der Baumflora in Sand am Rande der Becken etwa ganz allgemein als Erscheiuung iu Flußdeltas aufzufassen, zumal ich nur an wenigen Stellen Kreuzschichtung oder andere für Deltabildung sprechende Erscheinungen in den Sandsteinen wahrnehmen konute.

Ich fühle mich indes verpflichtet, die Auffassung meines Reisegefährten Dr. Gröber über die Ablagerung der Gesteine der Angaraserie hier mitzuteilen, weil ihr eine gewisse Berechtigung nicht abzusprechen ist und weil gerade er sich besonders eingehend mit der Untersuchung dieser Ablagerungen beschäftigt hat.

Gröber nimmt an, daß diese Gesteine einstens den ganzen, vorher stark abgetragenen und erst später zu seiner jetzigen Höhe gehobenen Tian-Schan als zusammenhängende Decke eingehüllt haben und entweder abgetragen oder, durch die tertiären Gebirgsbewegungen zerstückelt, teils am Nordrand teils am Südrand abgeschoben wurden, teils auch bei der Hebung zwischen Schollen des alten Gebirges eingeklemmt wurden, wie dies durch unsere Funde im Dunde-kelde-Tale erwiesen scheint.¹) Da aber der paläontologische Befund für Kontinentalbildungen und insbesondere hinsichtlich der meisten Pflanzenarten für an Rändern von Süßwasserbecken vorkommende Landflora spricht und da überdies aus der Art des Vorkommens hervorgeht, daß die Ablagerung in tiefen Niveaus vor sich giug und weil feruer die Mächtigkeit dieser Schichten an manchen Stellen eine ganz außerordentliche ist, so z. B. zwischen der Mündung des südlichen Musarttales und Bai (S. 42), nach Keidel²) etwa 1500 bis 2000 m, im nördlichen Bogdo-Ola-Gebiet nicht weniger, so müßte dieser Anuahme zufolge einst eine Vegetationsdecke von ungeheurer Ausdehnung und Mächtigkeit mit kleineren und größeren Seen die damals noch nicht sehr gehobene oder auch bis zur unteren Deuudationsgrenze eingeebnete alte Gebirgsmasse des Tian-Schan bedeckt haben. Die Möglichkeit einer solchen Tatsache wird von mir durchaus nicht in Abrede gestellt, wie sie auch von Bogdanowitsch geteilt zu werden scheint, der3) von einem einstigen Zusammenhang aller Kohle führenden jurassischen Ablagerungen spricht. Ähnlich drückt sich auch Romanowsky 4) hinsichtlich der Flöze des Syr-daria-Gebietes aus. Auch Richthofen, wiewohl er wiederholt der Ansicht Ausdruck gibt, daß diese Bildungen oft weite Becken erfüllen, betrachtet sie doch auch für manche Gebiete 5) als Reste von Decken, die auf höheren Teilen des Grundbaus liegen.

Man kann auch die Ansicht von Bailey Willis⁶) im Gröber'schen Sinne deuten, daß nämlich diese Bildungen ihre jetzige tiefe Lage und Erhaltung einer Verwerfung verdanken. durch welche diese weichen jungen Schichten in eine gegen die metamorphosierten paläozoischen verhältnismäßig tiefe Lage gerieten. Es müßte in diesem Falle allerdings an eine bei der großen mitteltertiären Gebirgserhebung entstandene größere Anzahl von Verwerfungen gedacht werden.

Persönlich neige ich jedoch der Annahme zu, daß schon damals gerade an den Gebirgsrändern, wie auch in einzelnen inneren Hohlformen des Gebirges sehr ausgedehnte und auch kleinere Süßwasserbecken bestanden haben. Hiezu veranlaßt mich vor allem die

¹⁾ Siehe Zeitschrift für Erdkunde 1910, S. 308, 315 und Petermanns Mitteilungen 1909, Heft I, S. 37.

²) a. a. O., S. 347. ³) a. a. O., S. 64 f.

⁴⁾ a. a. O., l, S. 41. 5) China III, S. 180.

⁶⁾ I. c. I, S. 316 und II. S. SS.

Tatsache, daß die Gesteine der Angaraserie oder Reste hievon sich in den innersten uud höchsten Teilen, in den weiten Becken und Läugstälern, der Hauptmasse des westlichen und zentralen Tian-Schan überhaupt nicht finden, sondern nur in vereinzelten raudlichen Becken. (S. 57, 58, 68.) Man sollte aber denken, sie müßten sich bei Annahme einer allgemeinen Decke im Innern des Gebirges als häufig auftretendes Glied des Faltenbaus finden. während ich sie auf zahlreichen Kreuz- und Querwanderungen innerhalb des Bestandes der alten Gesteine nur an einer Stelle, wie schon erwähut im Dunde-kelde-Tale mitgefaltet angetroffen habe. Zur Stütze der Hypothese von einer allgemeinen Bedeckung wäre es wohl unerläßlich, daß man bei so vielfachen Wanderungen hie und da auf Reste, auf lappenförmige Stücke der alten Decke u. dgl. stoßen müßte, welche die isolierten einzelnen Ablagerungen an den Rändern quer über das Gebirge wenn auch nicht verbinden, so doch die Rekonstruktion einer Verbindung gestatten würden. Auch das häufige Auftreten fossiler Baumbestände an verschiedenen weit voneinauder eutfernten Örtlichkeiten deutet weit eher auf eine litorale Waldflora, die sich an einzelnen flachen Wasserbassins angesiedelt hatte und später, bei eingetretener Klimaveränderung, wie schon oben erwähnt, in Sand begraben wurde.

Jedenfalls geht aus alledem hervor, daß, wenu auch die Angarabildungeu im hohen Norden des asiatischen Erdteils, dann in Afghanistan oder Persien nach den spärlichen Nachrichten, die wir bisher von letzteren besitzen,¹) auf Transgression eines flachen Meeres zurückzuführen sein mögen, sich doch andererseits in den für den Tian-Schan in Betracht kommenden und als "Angaraserie" gewöhnlich bezeichneten Ablagerungen keinerlei Reste mariner Entstehung nachweisen lassen. Da aber selbst brakische Bildungen innerhalb des Schichtenkomplexes gänzlich fehlen, kann auch nicht einmal an einstigen Zusammenhang der Angaragewässer mit dem ehemaligen Aralo-Kaspischen Meere gedacht werden.

Man könnte nun die ganze Schichtenfolge auch als Bildung wechselreicher fluviatiler Anschwemmungsprozesse ansehen, welche in Überschwemmungsgebieten großer Flüsse zustande kamen und solche Flüsse haben wohl ehemals den stark abgetragenen Rumpf des Tian-Schan in einer langen Kontinentalperiode entwässert. Die Angaraflora wäre in diesem Falle an den Ufern großer Flüsse und auf Flußauen angesiedelt gewesen, ähnlich wie dies Blanford und Medlicott für die Gondwanaflora annehmen.2) Es geht aber schon aus der Schichtenfolge, wie sie Grüber (Kap. XX) aufführt, hervor, daß keineswegs mächtige Konglomerate, wie in diesem Falle zu erwarten wäre, die Kohlenflöze regelmäßig überdecken. Man müßte aber annehmen, daß die in den Flußebenen entstandene Vegetation bei erneuter starker fluviatiler Akkumulation von mächtigen Geröllmassen überdeckt worden wären. Gröber führt jedoch als "Grenzschichten" hauptsächlich feinkörnige Bilduugen an. Zudem müßte sich große Differenzierung in der Korngröße der klastischen Gebilde auf weiten Gebieten bemerkbar machen, weil die alten Flüsse, je weiter ihr Lauf sich erstreckte, immer mehr von den gröberen Elementen zurückgelassen haben müßten, während sie die feineren weiter transportierten. Solche Verhältnisse machen sich wenig oder nicht bemerkbar. Auch tritt hier die rote Färbung, welche sonst subaerischen Gebilden meist eigen ist,

¹⁾ Burrard and Hayden, Geography and Geology of Himalaya etc., S. 248, 254. Griesbach, Records Geolog. Surv. of India, Tom. XX. S. 97 f.

²) A Manual of the Geology of India, l. c. I, S. 98 und E. W. Voldenburg, A Summary of the Geology of India, 1910, S. 50 ff.

durchaus gegenüber anderen Färbungen der Gesteine zurück. Hauptsächlich aber deutet das überwiegende Vorkommen in Becken am Gebirgsrande, wie geschildert, und der ganze Charakter der Ablagerungen eher auf lakustre Entstehung, die allerdings nicht ohne Mitwirkung von Flüssen zu denken ist.

Meiner Auffassung nach handelt es sich um große und kleinere Landseen, welche in Verbindung mit Flüssen in bedeutender Zahl über den ganzen, damals stark abgetragenen Tian-Schan verbreitet waren. Diese Seen lagen in Senken, welche teils als Reste eines alten Reliefs noch bestanden haben mögen, teils mit dem allmählichen Beginn neuer Gebirgsbewegung sich erst gebildet haben, einer Bewegung, die mit Austritt von porphyritischen Gesteinen erbunden war. (S. 57, 58, 68.) Hiefür spricht, wie schon früher hervorgehoben wurde, der Umstand, daß nach den vielfachen Berichten der Asienforscher, die alle hier aufzuführen nicht angeht, die Angaraschichten sowohl häufig in diskordanter, als in konkordanter Lage auf den paläozoischen Gesteinen gefunden werden, nicht selten auch in diskordanter Lage auf Quarzporphyren, die den örtlichen Verhältnissen nach jünger als alle paläozoischen Ablagerungen sein müssen.1) Hiefür spricht auch der Umstand, daß das Liegende der Angaraschichten, wie aus den Berichten der meisten Asienforscher hervorgeht, häufig Konglomerate sind, deren Material aus Gesteinen der näheren Umgebung der Becken stammt. Wenn sich ferner die Angaraablagerungen in vielen heutigen Becken des zentralen Tian-Schan nicht finden, so beweist dies nur, daß zur Zeit, als jene Bildungen entstunden, dort eben noch keine Becken vorhanden waren oder daß, wenn solche vielleicht in einzelnen eng begrenzten Senken bestanden haben mögen, die allenfalls dort abgelagerten Angarabildungen zur Zeit der Ausbildung der großen, für die heutige Gestalt des Tian-Schan entscheidenden Längsbrüche, also im Mitteltertiär und später, abgesunken sind (S. 42). So ist es beispielsweise bezeichnend, daß sie in der großen Senke des Tekes-Beckens im zentralen Tian-Schan fehlen; nur wenig im N. hievon jedoch, in der Randkette des Temurlyk-Tau vorhanden sind; sie fehlen in den zentral gelegenen weiten Becken des Yuldus und Kunges, finden sich aber, wie früher mehrfach erwähnt, in dem nördlichen Randbecken des Kasch und in dem südlichen des Kiu-könik.

Ich fasse meine Ansicht dahin zusammen, daß die Ablagerungen der Angaraserie zu einer Zeit entstunden, als nach Ablauf der paläozoischen Epoche und der folgenden Zeiträume in einer langen Kontinental- und Trockenperiode der ganze Tian-Schan stark abgetragen war — ob bis zum untersten Denudationsniveau, wie Manche anzunehmen bereit sind, wage ich wegen Mangel an Anhaltspunkten hiefür nicht zu entscheiden. Nach Ablauf dieser Periode großer Trockenheit, sei es in der späten Trias oder in der frühen Juraperiode, muß für jene Gegenden infolge von Niveauschwankungen, welche im Zusammenhang mit damals stattfindenden Veränderungen in Verteilung von Meer und Festland stehen, über die wir aber nur mangelhaft unterrichtet sind, vielleicht auch infolge von physikalischen Verhältnissen, über welche wir noch weniger wissen, für Zentralasien eine Zeit großer Feuchtigkeit hereingebrochen sein. Damals bestunden teils an den Rändern teils inmitten der großen Tian-Schanischen Denudationsebene oder auch Peneplain — wenn

¹⁾ Über diese wichtigen Verhältnisse, wie sie mir besonders im Kasch- und Kunges-Tal vor Augen traten, werde ich mich in einer später erscheinenden, z. T. schon vorbereiteten Arbeit über die Ergebnisse meiner Forschungen im östlichen Tian-Schan eingehender äußern.

75

diese Bezeichnung Manchen eutsprechender erscheinen sollte - noch Seuken von größerer oder sehr großer Ausdehnung und von verschiedener Tiefe (S. 57); andere begannen sich auszubilden mit dem allmählichen Erwacheu neuer gebirgsbildender Tätigkeit. In diese Senken hat die stark erodierende Wirkung damals sehr wasserreicher Flüsse zuerst Gerölle hineingetrageu und dann abwechselnd tonige, sandige Schichten abgesetzt und wieder Gerölle hineiugetragen, wie dies eben den Zeiten größeren oder geringereu Wasserreichtums entsprach. Eine dichte Vegetation mag damals Teile des Landes bedeckt haben, war aber hauptsächlich an den Ränderu der Seebecken angesiedelt. Mit Ablauf der feuchten Periode und mit Eintritt einer starken Klimaverschlechterung verlandeten die Seen allmählich; zunächst bildeten sich Sümpfe, in denen eine besondere Flora gedieh. Nach längeren Zeiten aber, als das Klima immer trockuer wurde und das Land im Begriffe war, zur Wüste zu werden, rückte der Sand immer mehr gegen die Becken vor, begrub auch die höhere Vegetation und füllte allmählich die alten Becken ein. Mit dem Eintritt der großen Gebirgsbewegungen im Tertiär, mit der Bildung oder Vertiefung der großeu Längsbrüche und der sie schneidenden Transversalbrüche verbanden sich beträchtliche und ungleichartige Hebungen des Landes. Es wurden einzelne Schollen der alten Landmasse, die mit Ablagerungen jener Kontinentalperiode bedeckt waren, in verschiedene Höhen gebracht, wo wir sie heute finden: andere sind in tiefere Niveaus abgesunken oder ganz verschwunden. Mit diesen Bewegungen waren aber auch Faltungsbewegungen verbunden, für welche die jungen weichen Kontinentalbildungen weit empfindlicher gewesen sein mögen, als die starre Masse der alten Gesteine, von welchen sie später durch Längsbrüche abgetreunt wurden. Dieses weitere Schicksal der Angaraschichten aber zu beschreiben, speziell was diese Ablagerungen in der Bogdo-Ola betrifft, ist verabredungsgemäß Sache meines Reisegefährten Dr. Gröber, dem ich hiefür Raum in dieser Arbeit zur Verfügung gestellt habe (Kap. XX).

X. Die tertiären Ablagerungen.

Die tertiären Ablagerungen haben am inneren Bau der Bogdo-Ola nur einen geringen Anteil, weil, wie aus dem Inhalt der vorhergehenden Kapitel zu entnehmen ist, die großen durch Grabenbrüche entstandenen Längstäler der westlicheren Teile des Tian-Schan mit ihren tektonischen beckenförmigen Weitungen von bedeutendem Ausmaße hier fehlen, während in den in der Bogdo-Ola vorherrschenden, hauptsächlich durch Erosion geschaffenen Quertälern (S. 56 f) von geringer Breite zwar ebenfalls einige beckenförmige Erweiterungen vorkommen, jedoch nur solche von nicht annähernd so bedeutenden Dimensionen. Auch in diesen Becken finden sich hauptsächlich in Form von Konglomeraten und Sandsteinen junge Ablagerungen, die durch Flüsse hiueingetragen wurden, in manchen auch tonige Seeabsätze. Der weitaus größte Teil dieser nicht sehr mächtigen Niederschläge wurde jedoch durch spätere Erosion wieder entfernt. Ich halte es für zweckmäßig, auf diese besonderen Verhältnisse erst bei Beschreibung des Reiseweges näher einzugehen.

In zusammenhängenden Beständen begeguet man jungen zur Gobi-Serie gehörigen Ablagerungen, also solchen aus dem ausgehenden Tertiär und noch späterer Zeit nur am N.- und S.-Rande der Gebirgsgruppe. Am N.-Rande erscheinen sie nur als eine schmale Zone unbedeutender Hügel, die da und dort aus der lehmig-kiesigen Decke des Aufschüttungsbodens der Steppe herausragen. Wo sie dort dem Rande des Angaragebirges sich anschließen,

scheinen sie überall konkordant ihm angelagert zu sein; doch ist genauere Untersuchung wegen der starken Lößbedeckung und bei der Flüchtigkeit der Reise nicht möglich gewesen. Erwähnt muß hiezu jedoch werden, daß beim Eintritt in das Gebirge, in den zunächst am Rand noch niederen, die Quertäler begrenzenden Ketten bemerkbar wird, daß die Schichten der mesozoischen Bildungen, soweit sie nicht von Schutt und Löß bedeckt sind, also dort, wo die Aufschlüsse deutlicher werden, Südfallen zu zeigen scheinen, was auf Diskordanz gegen die jüngeren Bildungen der Steppe schließen ließe. Diese ist jedoch nur scheinbar und erklärt sich daraus, daß der Nordflügel des ersten Sattels der Angaragesteine teils im Schutt begraben liegt, teils durch starke Lößbedeckung schwer erkennbar gemacht wird.

Was in den tertiären Hügelbildungen gesehen werden konnte, war eine Schichtenfolge von bald ziegelroten bald dunkelroteu grobkörnigen Konglomeraten, ziemlich dickbankig mit dünnen Zwischenlagen etwas feinkörnigerer Konglomerate von hellerer, ins Grau gehender Farbe wechselnd. Bemerkenswert schien mir das im Verhältnis zur Menge der Gesteinsfragmente geringe Quantum des Bindemittels in diesen Konglomeraten und ihr nicht sehr festes Gefüge, ebeuso das konstante Einfallen gegen N. in Winkeln von beiläufig 20 Grad, das sich überall in den nach N. hin zusehends niedriger werdenden Erhebuugen und Resten von solchen beobachten läßt. Öfters zeigten sich diese Bildungen diskordant überlagert von einer wenig mächtigen Decke eines meist sehr grobkörnigen, doch auch mit feineren Elementen gemischten, sehr festen, viel lehmiges und sandiges Bindemittel enthaltendem Konglomerates, ähnlich dem, das ich früher auf solchen Tertiärbildungen weiter im W. beobachtet hatte. An einzelneu Orten war diese Decke abgewittert und Schollen hievon lagen in der Steppe zerstreut.

Wenn ich zu diesen dürftigeu Beobachtungen noch hiuzufüge, daß die Gesteinselemente der liegenden roten Konglomerate ausschließlich den mesozoischen Bildungen entstammen und verhältuismäßig nur wenig gerolltes Material enthalten, während die diskordant darüber liegende Decke auch stark abgerolltes Material aus dem alten Gebirge enthält, so scheinen sie zu folgenden Schlüssen zu berechtigen: Eigentliche Hanhai-Ablagerungen fehlen am Nordrand des Gebirges, sei es, daß sie nie vorhanden waren, oder daß sie bei den großen späteren Bodenbewegungen, d. h. bei dem Absinkeu des Gebirgsrandes in Staffelbrüchen (S. 43 f.) verschwunden sind, oder endlich, daß sie unter den mächtigen Aufschüttungsmassen der Steppe begraben liegen. Den beschriebenen roten, grobklastischen Bildungen kann höchstens pleistozänes Alter zukommen; sie sind durch Schuttmassen entstanden, welche dem mesozoischen Gebirge entstammen und in einer der letzten oder vielleicht der letzten größeren Trockenperiode dieses Gebietes aus den Quertälern heraus und von den Abhängen des Gebirges herabgekommen sind, wo sie sich am Rande zu einem Gürtel zusammengeschlossen haben. Ob ihr Gefällsverhältnis das ursprüngliche ist, oder durch sehr junge Bewegungen vielleicht noch verschärft wurde, ist schwer zu sagen. Die diskordant darüber liegende schwache Decke mehr gefestigten Materials dürfte als eine junge fluviatile Aufschüttung der späten Diluvialzeit anzusehen sein.

Am Südrande der Bogdo-Ola begegnete ich spättertiären und quartären Bilduugen an der Ausmündung des großen Quertales Gurban-bogdo in die weite wannenförmige Senke, welche zwischen dem Abfall der Bogdo-Ola im engeren Sinne und der Dschargöß-Kette eingetieft ist. (Siehe Kap. VI, S. 35.) Auch diese Ablageruugen werde ich später im Verlaufe der eigentlichen Reisebeschreibung schildern, weil ihre besondere Art nur im

Zusammenhang mit den geologischen und morphologischen Verhältnissen ihrer Umgebung verständlich gemacht werden kann. Soviel sei indes im vorhinein gesagt, daß es sich auch hei diesen Bildungen um fluviatile und ähnliche Ahsätze handelt, also nicht um solche pliozäne oder noch jüngere Gebilde, welche man im Richthofen'schen Sinne als "Hanhai-Schichten" zu bezeichnen berechtigt ist. Hierüber möchte ich nun zur Begründung meiner früher (S. 54) nur flüchtig kundgegebenen prinzipiellen Anschauung über die grobklastischen jungen Ablagerungen in Tian-Schan folgendes hervorheben:

Gleichviel, ob man unter der längs dem S.-Rande des Tian-Schan und weiter im O. einst vorhanden gewesenen großen Wasseransammlung, die jene Räume einnahm, wo sich heute die als "Gobi" bezeichneten Wüstenstrecken dehnen, mit Richthofen ein seichtes, allmählich austrocknendes Meer versteht, oder eine Anzahl größerer abflußloser, verdunstender Süßwasserseen, wie meines Erachtens mit mehr Recht, jetzt die meisten Forscher annehmen, stets kann man logischerweise unter "Hanhai-Sedimente" nur solche Absätze verstehen, welche in jenen als "Hanhai" bezeichneten Wasserbecken niedergeschlagen wurden oder an ihren Rändern entstunden, allenfalls auch solche, welche zu gleicher Zeit in Becken abgesetzt wurden, die sich damals auch im Innern des Gebirges befunden haben mögen. Keidel setzt für das Alter der Hanhai-Schichten daher mit Recht eine Grenze vom ohersten Mesozoikum, was vielleicht etwas weit zurückgegriffen ist, bis ins Pliozän. Nach dem Verschwinden dieses Meeres oder dieser Süßwasseransammlungen entstund an ihrer Stelle die große "Wüste Gobi". Das Wort Gobi bedeutet im Mongolischen Wüste; der geographische Name ist also nur eine Umschreibung. Folgerichtig kann man demnach als "Gobi-Bildungen" nur die in jenen Räumen, welche heute von der Gobi eingenommen werden oder benachbart von ihr liegen, nach Ablauf der Hanhai-Periode entstandenen Gebilde verstehen, und zwar diejenigen, welche als Wüstenbildungen ohne weiters erkennbar sind sowohl, als jene Sedimente, welche von fließenden Gewässern am Rande der Wüste abgesetzt oder in einzelne in den Wüstenstrecken erhalten gebliebene, von Wassern erfüllte Senken geschafft wurden. Im übertragenen Sinne läßt sich der Ausdruck "Gobi-Sedimente" allenfalls auf gleichalterige grobklastische Bildungen, die in den der Wüste nahen Gebirgsteilen zur Ablagerung gekommen sind, anwenden, "Gobi-Sedimente" sind aber unter allen Umständen jüngere Bildungen als "Hanhai-Schichten". Dies muß festgehalten werden.

Sind wir auch heute noch nicht so weit, beide Schichtenkomplexe nach Alter und Beschaffenheit überall genau voneinander zu trennen, so sollte man dies meines Erachtens, wo es möglich ist, wenigstens versuchen. Es läßt sich auch nicht in Abrede stellen, daß, wenn in diesen Bildungen einstens, noch mehr als bisher, Organismenreste gefunden werden — woran nicht zu zweifeln ist —, und wenn auf Grund eingehenderer Studien der einzelnen Schichtenglieder gewisse durchgehende Übereinstimmungen und Unterschiede darin festgelegt werden können, sowie endlich, wenn die Art und der Grad ihrer Dislokation berücksichtigt wird, es eines Tages wohl gelingen kann, eine stratigraphische Gliederung in alle die tertiären und posttertiären grohklastischen Bildungen zu bringen. Zweifellos ist dies eine schwierige Aufgabe, schon deshalb, weil scharf hervortretende Grenzen zwischen den einzelnen Horizonten nach der Natur dieser Ablagerungen und wegen der während der Zeit ihrer Entstehung ununterbrochen, fortdauernden Kontinentalität nur unter ausnahmsweisen Verhältnissen erwartet werden können. Es findet vielmehr allgemein ein allmählicher Übergang von den älteren zu den jüngeren Serien statt. Immerhin ist die

Zeile 18 von oben ist nach den Worten: "bis ins Pliozän" einzuschalten:

Auch Schlosser kommt bezüglich der auf meiner Tian-Schan-Reise im Jahre 1903 von H. Keidel im Tertiär von Karkara aufgefundenen Planorbis und Limnaeus Fauna zum Ergebnis, daß ihr mit hoher Wahrscheinlichkeit mittel- oder oberpliocänes Alter zukomme (Max Schlosser: Über fossile Land- und Süßwassergastropoden aus Zentralasien und China, Annales Musei Nationalis Hungarici IV 1906).

Aufgabe auf Grund weit genauerer Untersuchungen, als sie bisher stattgefunden habeu, eine Gliederung durchzuführen, eine für künftige Tian-Schan-Forscher sehr dankbare. Das starke Vorwalten von mergeligen, tonigen und kalkigen Schichtgliedern, das Auftreten von Gips und Salzeinschaltungen in der Gesteinszone dürfte solche wohl als ältere unterscheidbar machen. Besonders auf Art und Grad der Dislokationen möchte ich aber hiebei besonderes Gewicht legen, sowie auf die Niveaus, in welchen diese Gesteinsserien heute gefunden werden. Bei der lang anhaltenden Dauer und dem nicht unbedeutenden Betrage der spättertiären und noch späteren Krustenbewegungen müssen die Hanhai-Schichten wohl ausnahmslos stärker betroffen worden sein, als die jüngeren Gobi-Sedimente.

In diesen, soweit ich sie als jüngere Ablageruugen zu erkennen vermochte, traf ich in manchen Teilen des Gebirges sogar auf wenig oder gar nicht gestörte Partien. In einzelnen Fälleu traten mir Erscheinungen vor Augen, welche nur beim ersten Anblick die Vorstellung von einer Dislokation erweckten, was sich aber bei uäherer Untersuchung als irrig erwies. Ich möchte in dieser Hinsicht als bemerkenswert erwähnen, daß im mittleren Kaündü-Tal in einem Komplex von Konglomeraten und Sandsteiuen die Schichten im Winkel von etwa 20 Grad gegen die Talsohle einfallen. Es zeigte sich aber, daß dies nicht auf Dislokation beruht, indem die Schichtenneigung in Wirklichkeit nur der früheren ursprünglichen Neigung des Talbodens gleichsinnig ist. Das Gefälle des Tales hat sich verändert durch allmähliches Hereinwachsen der jungen Flußschotter von der Mündung in das Innere infolge des Überwiegens der Akkumulation über die abnehmende Erosionskraft des Flusses.¹)

Störungen sind dennoch auch in juugen und jüngsten, sogar in Alluvialablagerungen am S.-Rande des Tian-Schan schon festgestellt worden. Über diese Verhältnisse werde ich noch an anderer Stelle Gelegenheit haben mich zu äußern. Vorläufig wende ich mich nur gegen die von Manchen in das Schrifttum über Zentralasien eingeführte Zusammenfassung von Hanhai-Schichten mit dem Komplexe der Gobi-Sedimente.

Als zu letzteren gehörig, als postpleistozän oder noch jünger wird meines Erachtens der größte Teil der in den geschlossenen Beckeu und in den Flußtälern des Gebirges zur Ablagerung gelaugteu grobklastischen und Saudsteinserien anzusehen sein. Nur in einer sehr feuchtigkeitsreichen Periode der jungen geologischen Geschichte Zentralasiens haben die Flüsse so außerordentliche Wassermassen geführt, daß die Ablagerung von ungeheuren Mengen solcher Bildungen im Inneru des Gebirges²) oder an den Ausmündungen der großen Flußtäler, besonders am S.-Abhang erklärlich wird, wo die einzelnen Schuttfächer sich zu Gürteln von außerordentlicher Mächtigkeit zusammengeschlossen haben. Diese feuchtigkeitsreiche Epoche muß der Zeit der diluvialen Vereisung des Gebirges kurz vorhergegangen sein, wie aus der Lagerung der alten Moränen allenthalben erkennbar ist. Von den meisten

¹⁾ Siehe meine Abhandlung über die Physiographie des Tiau-Schan etc., l. c., S. 14 und bei Burrard und Hayden, l. c., S. 261.

²⁾ Leuchs schätzt die Mächtigkeit dieser Beckenabsätze — von ihm in dem oben von mir begründetem Sinne nicht zutreffend als Hanhai-Schichten bezeichnet — im oberen Kok-su-Gebiet auf 4 bis 500 m, eine bei weitem zu niedrige Schätzung. (Geolog. Untersuchungen etc., l. c., S. 31.) Zur Zeit, als Leuchs diese Arbeit abschloß, stund ihm das Ergebnis meiner Beobachtungen aus dem Kok-su-Quellgebiet noch nicht zu Gebote, auf Grund welcher die Mächtigkeit dieser Ablagerungen von Trümmergesteinen auf über 1200 m angenommen werden muß.

Tian-Schan-Forschern wurden diese Gebilde als fluviatile erkannt. Schon Muschketow, nach ihm Kraßnow, Ignatiew und viele andere betonen dies. Muschketow legt besonderes Gewicht auf den Umstand, daß in Ferghana die Konglomerate mit der Entfernung vom Gebirgsrande immer feinkörniger werden. Ich habe das gleiche Verhältnis am S.-Rande vielerorten feststellen können und auch in Gebirgstälern, wo meistens die Korngröße talauswärts wesentlich abnimmt. Überdies zeigt der Bestand des Gesteinsmaterials der Konglomerate am S.-Rand allenthalben auf Herkunft aus den nahe dahinter liegenden Gebirgsteilen.

Die Ablagerung in Becken ist aus allen Teilen des Tian-Schan bekannt geworden 1) und auch aus anderen asiatischen Gebirgen, wie wir dies aus dem westlichen China durch Bailey Willis,2) aus dem Himalaya durch Burrard und Hayden3) wissen und aus vielen Teilen Chinas durch zahlreiche Mitteilungen in Richthofens China-Werk. Es ist aber eine wenig bekannte Tatsache — wenigstens ist sie meines Wissens in den Berichten bisheriger Tian-Schan-Reisender nicht genügend betont worden —, daß überhaupt diese jungen klastischen Gesteinsserien am S.-Raude des Tian-Schan, besonders im Kaschgar-Becken und von Aksu beginnend bis weit nach O., eine viel bedeutendere Entwicklung nehmen als am N.-Abhang. Im Zusammenhange mit der weiteren Tatsache, daß die südlichen Quertäler im allgemeinen tiefer eingeschnitten sind als die nördlichen, daß überhaupt, wie schon ein Blick auf die Karten lehrt, die Durchtalung des heute so trocknen, südlichen Abhanges fast reichlicher ist als die des noch gegenwärtig ziemlich feuchten N.-Abhanges, so daß wir im S. tiefe und typisch ausgebildete, durch Erosion entstandene Quertäler finden,4) in denen heute nur mehr wenige Wochen im Jahre ein schwaches Bächlein fließt, so führt uns dies zu besonderen Schlüssen: Alles weist mit eindringlicher Deutlichkeit darauf hin. daß dem S.-Abhang in einer nicht weit zurückliegenden Epoche ein ebenso feuchtes, wenn nicht feuchteres Klima zu eigen war, als dem N.-Abhang und daß daher die Klimaveränderung von feucht zu trocken im S. von weit bedeutenderem Ausmaß gewesen ist als im N. Ich habe hierauf mehrfach in meinen Reiseberichten etc. hingewiesen und werde auf diese Verhältnisse auch im Laufe dieser Abhandlung noch wiederholt zurückkommen müssen.5) Im S. der Bogdo-Ola sind solche Bildungen, welche nach ihrer Zusammensetzung und nach dem Grad ihrer Dislozierung als ältere Hanhai-Ablagerungen angesehen werden können,

¹⁾ Aus den westlichsten Teilen des Tian-Schan erwähnt sie auch Machatschek, l. c., S. 46.

²) 1. c. 11, S. 97. ³) 1. c., S. 260 f.

⁴) Siehe in "Vorläufiger Bericht" Petermanns Mitteilungen, l. c., S. 41, meine Mitteilungen über das Apatalkan-Tal.

⁵⁾ Von ganz besonderem Interesse ist es für mich gewesen zu erfahren, daß in den südamerikanischen Kordilleren ganz ähnliche Verhältnisse bestehen, wie ich den wertvollen Ausführungen Keidels entnehmen konnte. (H. Keidel, Über den Bau der Argentinischen Anden. Sitzungsberichte K. K. Akad. d. Wissensch. Wien, mathem.-naturwissenschaftl. Klasse, Bd. CXVI, 1907). Keidel, der gemeinsam mit mir das Tertiär im Tian-Schan kennen gelernt hat, hebt hervor, daß auch in der Argentinischen Kordillere die Ablagerung solcher grobklastischen Bildungen "in zeitweilig geschlossenen Becken der großen Längstäler" stattfand und weist auf die überraschende Übereinstimmung mit zentralasiatischen Verhältnissen hin. Anf Grund von Keidels Schilderung halte ich sie für identisch mit "Gobischichten". Auch in der Kordillere sind diese jungen Ablagerungen nach Keidels Bericht ganz wie im Tian-Schan durch sehr jnnge Bewegungen stark gestört worden oder mit Keidels Worten zu sprechen: "es läßt darauf schließen, daß hier sehr späte Bewegungen der Masse des Gebirges in vertikaler Richtung vorgegangen sind". Auch Keidel stellt sich diese Bewegungen als allmähliche Hebung der Gebirgsmasse und Senknng am Rand vor. Keidel hält diese jungen Bildungen in der Kordillere für fluviatile, die nur

von Obrntschew beschrieben worden.¹) Es sind braungelbe, lockere, nnregelmäßig geschichtete Sandsteine mit anskeilenden, kohleführenden Partien und ebensolchen konglomeratischen Zwischenlagen mit hartem, kalkig tonigem Zement und mit dicken, kalkig tonigen Bänken. Ich selbst habe in der Umgebung des Sees Aidin-kul (Sayo-pu) ebenfalls ältere Bildungen getroffen, welche teils als Seeabsätze dentlich erkennbar waren, zum Teil ihrer Beschaffenheit nach andenten, daß sie als Trockenschutt an den gebirgigen Rändern des Sees abgelagert und erst später durch einbrechende Gewässer verfestigt wurden. (Siehe Spezialkärtchen.) Über alle diese Ablagerungen werde ich in der Beschreibung dieses Beckens in Kap. XVII Näheres berichten.

XI. Die heutige Vergletscherung der zentralen Bogdo-Ola-Gruppe.

Nimmt man für die zentralste Bogdo-Ola-Grnppe als Westgrenze eine der tiefen Furche des Tales Da-tnn-gn (Sangnn) folgende Linie für den N.-Abhang an und für den S.-Abhang eine solche Tiefenlinie, die dem nnbenannten Quertal entspricht, das wenig westlich vom Gurban-bogdo-Tal diesem parallel verläuft, nimmt man als O.-Grenze dann im Norden den Narat (Jnn-tschan-toŭ)-Graben an und im Süden das gletschererfüllte Chigo-Tal (siehe Karte I), so ergibt sich als Grundfläche der gesamten zentralen Gebirgsgruppe eine Gesamtfläche von 1207,80 qkm, von welcher nur etwa 70,72 qkm, also etwa über 1/4 des vergletscherten Gebietes der Montblanc-Gruppe, hente noch mit Firn und Gletscher bedeckt sind. Entsprechend den klimatischen Einflüssen, wie sie früher (in Kap. II) geschildert wurden, hat der N.-Abhang der Gruppe hieran einen größeren Anteil, nämlich 38,80 qkm, der S.-Abhang aber nur 31,92 qkm. Nichtsdestoweniger trägt der Südabhang längere Gletscher als der Nordabhang. Dies ist aber nur in den

durch periodische Ströme von ganz kurzem Lauf abgelagert wurden und nimmt an, daß die gleichen Vorgäuge heute noch andauern. Im Gegensatz hiezu geht aus der Zusammensetzung solcher Bildungen im Tian-Schan, aus ihren Lagerungsverhältnissen und den heutigen klimatischen Bedingungen hervor, daß sie nur vou großeu Flüssen einer frühereu feuchtigkeitsreicheren Zeit verfrachtet wurdeu.

Auch Hauthal (Rudolf Hauthal, Reisen in Bolivien und Peru, Leipzig 1911, S. 8f.) ist solchen jungen grobklastischen Bildungen in den großen Flußbecken begegnet, hält sie aber im Widerspruch zu Keidels Ansicht für fluvioglazialer Entstehung und sieht die starke Entwicklung "dieser gleichartigen Ablagerungen als ein Anzeichen dafür an, daß die riesigen Eismassen der ersten Vergletscherung plötzlich zum Schmelzen gebracht wurden, so daß gewaltige Wassermengen zu Tale stürzten, die imstande waren. auch die größeren Blöcke aus den Moränen mit sich fortzureißen". Diese Annahme einer ziemlich raschen Klimaäuderung nähert sich so ziemlich derjenigen, welche ich für den Südabhang des Tian-Schan angenommen und mehrfach zum Ausdruck gebracht habe. Hauthal hebt auch weiterhin hervor, wie sehr sich die klimatischen Verhältnisse in der Kordillere geändert haben, in ziemlich analoger Weise, wie dies meiner Ansicht nach im südlichen Tian-Schau der Fall war; er meint (S. 11), "daß größere Wassermassen iu den jetzt so trockenen Tälern des Hochplateaus und auch auf ihm früher wirksam waren, dafür finden sich noch mehr Beweise". Sogar die Überlagerung dieser grobklastischen Ablagerungen mit einer dünnen jüngeren Decke von feinkörniger Zusammensetzung, wie sie Hauthal schildert, ist in Übereinstimmung mit den Verhältnissen, die ich aus dem Tian-Schan kennen lernte. Kurz der Übereiustimmungen sind es überraschend viele. Übrigens gibt Keidel selbst zu, daß es außer den von ihm für fluviatil angesprochenen Sedimenten in der Kordillere wohl auch solche geben könne, die glazialen und fluvioglazialen Ursprungs seien, wie dies außer von Hauthal schon früher durch Bodenbender und Steinmann angenommen wurde.

¹⁾ l. c. II, S. 640-643.

orographischen Verhältnissen, von denen später mehr die Rede sein wird, begründet und beweist wieder einmal, wie sehr deren Beschaffenheit ungeachtet wesentlicher, der Vereisung ungünstiger klimatischer Einflüsse bestimmend auf die Entwicklung von Gletschern einwirkt.

Der ungeheure Wandabsturz von zirka 3000 m Höhe, mit dem die N.-Seite der zentralsten Gruppe gegen eine im Mittel etwa 3300 m hohe, weit gedehnte, schwach geneigte Stufe (siehe S. 39, 50, 56) als Rückwand eines großen Zirkustales jäh absinkt, ist in ein dichtes Firnkleid gehüllt. das lediglich an den steilsten und zerrissensten Felsrippen der Riesenwand nicht zu haften vermag. Die in den hochmuldenförmig ausgebildeten, zwischen den drei Hauptgipfelerhebungen und zu seiten von ihnen eingetieften weiten Wandnischen (siehe Taf. 1 u. 2) angesammelten großen Firnmengen fließen zwischen schroffen Felsgraten herab und bilden Hängegletscher von selten wahrzunehmender Pracht, welche wegen ihrer außerordentlichen Steilheit beständig von Lawinen bestrichen werden. Die aus diesen schroff geböschten Nischen des Wandabsturzes vorbrechenden Eismassen vereinigen sich in prächtigem Schwunge konzentrisch am Fuße der Wand und breiten sich dort über die unregelmäßige Oberfläche des Plateaus nach allen Richtungen aus in Form eines großen kuchenförmigen Eisfeldes (siehe Taf. 4 Panorama 1), das seinen Abfluß in einige in die Hochfläche einschneidende Talfurchen findet. Der Gegensatz zwischen den wundervoll zerklüfteten Formen des beiläufig 3000 m hohen hängenden Firns, wie ich ihn von gleicher Schönheit und Mannigfaltigkeit der Gestaltung kaum großartiger in irgend einem andern Gebirge begegnet bin und der ruhigen und geschlossenen Form der an seiner Basis sich ausbreitenden Eismassen könnte nicht wirkungsvoller gedacht werden. Ich benenne diesen schönen Gletscher mit dem Namen des verdieuten ersten Erforschers der Bogdo-Ola-Gruppe als "Grum-Grschimailo-Gletscher".

Eine dieses große Gletscherfeld teilende Mittelmoräne verdankt ihre Entstehung zweierlei besonderen Ursachen, zunächst der Umfließung eines vorspringenden Felsastes durch den in der östlichsten Wandnische entspringenden und nach W. fließenden Eisstrom, der den von dort stammenden Gehängeschutt mitführt; außerdem und hauptsächlich aber dem besonderen Umstand, daß die Strömungsrichtung des Firneises, welches aus der anderen, von den absinkenden Felsgraten des West- und Mittelgipfels begrenzten Nische hervorbricht, mit der Richtung der aus der Bucht zwischen Mittel- und Ostgipfel abfließenden Eismassen einen Winkel von beiläufig 40° bildet. Hiedurch wird der vom westlichen Eisstrom transportierte und emporgeschobene Grundmoränenschutt am Rande des östlichen Eisstromes aufgestaut und von diesem weitergeschleppt. (Am Panorama Taf. 2 sind diese Verhältnisse gut erkennbar). Diese Mittelmoräne teilt das breite Eisfeld in zwei nahezu gleich große Eisfelder, welche sich erst nahe am Westende des Gletschers wieder zu einem einheitlichen Eiskörper vereinen. Es handelt sich hier also um eine ganz besondere Art der Bildung von Mittelmoränen, die sonst aus den Seitenmoränen zweier zusammenfließender Gletscher zu entstehen pflegen.

Die Hauptmasse des Gletschereises umfließt den Fuß der gewaltigen Wand in Bogenlauf, wendet sich der tief eingeschnittenen Lücke des Gurban-bogdo-Passes zu (siehe früher S. 37) und nimmt seitwärts von diesem ihren Lauf nach S., da einer weiteren Ausbreitung nach NW. hin sich ein wesentliches Hindernis entgegenstellt. Es ist dies ein etwas nördlich von der zentralen Hauptgruppe aus der östlichen Umwallung des großen

Gletscherzirkus sich abspaltender, annähernd in der Streichrichtung des Hauptkammes verlaufender, ihm vorgelagerter, mehrere Kilometer langer und in seiner Kammlinie abgeflachter Felsriegel, der den Zirkusboden durchschnittlich um 300-400 m überragt, aber doch gegen W. allmählich abdacht und erst wenig westlich des Gurban-bogdo-Paßeinschnittes, sich immer mehr erniedrigend, allmählich in die Hochfläche ausläuft. (Siehe Panorama Taf. 1.) Von diesem eigenartigen Glied des Reliefs der Bogdo-Ola wird später eingehender die Rede sein. Mit der zunehmenden Absenkung des großen Eisfeldes gegen die Furche des vom Passe nach S. ziehenden Hochtales verengt sich die weite kuchenförmige Eismasse niehr und mehr und bildet endlich eine fast 3/4 km breite hochaufgewölbte Zunge aus, deren Westseite mit einem walzenförmig konvexen Steilabbruch von durchschnittlich 45 m Höhe auf dunklen Grundmoränenschutt absetzt. Soweit dieser Eiskörper als Zunge bezeichnet werden kann, nimmt er einen 2-3 km langen Verlauf und zeigt in seiner ziemlich schuttfreien Beschaffenheit regelmäßige Blätterstruktur; mit sogenannter "Löwentatzenform" sinkt er auf ein breites Feld dunklen Grundmoränenschuttes jäh ab in einer Höhe von 3533 m (Hypsometer). Unter dem Grundmoränenschutt am Zungeuende bemerkte ich an mehreren Stellen totes Eis; wie weit es hinabreicht, vermochte ich nicht festzustellen. Diese Erscheinung toten Eises findet man häufig im östlichen Tian-Schan an stark der Sonnenbestrahlung ausgesetzten Gletscherenden.1) Die Eishöhe am Zungenabbruch beträgt zirka 30 m, mithin kann die durchschnittliche Eismächtigkeit der Endzunge auf mindestens 40-50 m angenommen werden. Das Gesamtareal des Grum-Grschrimailo-Gletschers bedeckt 16 qkm. Berücksichtigt man den Bogenlauf des Gletschers (siehe Karte III), so erhält man eine mittlere Länge von 6 km bei einer mittleren Breite von 11/2 km, wobei die in die nord-östlichen Seitentäler hiuabreichenden Eislappeu nicht mit einbezogen sind. In den oberen Teilen des Eisfeldes sind infolge uugleichartigen Druckes der einzelnen Komponenten aufeinander Spalten zahlreich und von komplizierter Anordnung. Der auf mehr gleichmäßig ebener Unterlage dahinfließende untere Teil dagegen zeigt eine fast geschlossene Decke. Die Schmelzwasser entströmen nicht dem Zungenende, sondern etwas oberhalb in mehreren Armen dem gegen W. gerichteteu, also vermöge seiner Exposition der Abschmelzung am meisten ausgesetzten Steilabfall der Zunge und vereinigen sich später in einer Senke des weiten Grundmoränenschuttfeldes zu einem starken nach S. strömenden Bach.

Auf solche Weise werden die Schmelzwasser eines großen Teiles der festen Niederschläge des Nordens, ähnlich wie in manchen anderen Teilen des Tian-Schan, heute hauptsächlich dem Südabhang des Gebirges zugeführt. Dieses Verhältnis ist jedoch offenbar erst entstanden, als für die Bogdo-Ola-Gruppe bereits das Ende ihrer eiszeitlichen Klimaperiode gekommen war. Früher, als die Eismassen dort noch so bedeutende Mächtigkeit batten, daß sie den obenerwähnten, jetzt den Grum-Grschimailo-Gletscher gegen N. begrenzendeu Felsriegel überfluteten — wovon seine Form deutliches Zeugnis abgibt — (siehe Panorama Taf. 1) haben sie vereiuigt mit dem vou den westlichen Gipfeln des Hauptkammes abfließenden Firneis ihren Lauf zum überwiegenden Teil nach N. genommen, wofür die eine so große Mächtigkeit aufweisenden alten Glazialablagerungen am N.-Abhange auf das deutlichste sprechen. Ich verweise in dieser Hinsicht jetzt nur flüchtig auf die ungeheure

¹⁾ Besonders umfangreich ausgebildet fand ich die Erscheinung in den Tälern Khaptn-su (Kok-su-Gebiet) und Chustai (Manas-Gebiet), auch an einem der Gletscher des Aigas-Gebietes.

Stirnmoräne, die in zirka 2000 m Meereshöhe den prächtigen Bogdo-Ola-See aufgestaut hat. Von diesen älteren Glazialablagerungen wird im Zusammenhang mit der Beschreibung des Sees in einem späteren Kapitel eingehender berichtet werden. Auch auf die charakteristischen Züge, welche die Glazialzeit der heutigen Gestalt des nach N. ziehenden Da-tun-gu-Tales aufgeprägt hat, sei einstweilen hingewiesen sowie auf die ausgedehnten Ablagerungen der Eiszeit, welche in tiefen Niveaus dieses und der benachbarten Paralleltäler eine in solcher geographischer Lage unerwartete Erscheinung für den Beobachter bilden. Diese Verhältnisse werden ebenfalls in einem der folgenden Kapitel eingehender dargelegt werden. Vorausgreifend bemerke ich nur, daß erhalten gebliebene alte Seebecken am N.-Rande (siehe Karte II) erweisen, daß am Ende des Diluviums auch sogar Randseen dorten nicht fehlten.

In seinem östlichen Teile spaltet sich das breite Eisfeld des Grum-Grschimailo-Gletschers, wie aus Pan. 1 auf Taf. 4 und aus Karte II ersichtlich wird, in drei Arme, die den von N. in die Hochstufe einschneidenden Quertälern Dön-chon-dse und zwei Quelltälern des Du-dun-dse zufließen, aber im Vergleiche zur westlichen Hauptzunge nur Zungen von geringem Ausmaße entwickeln, die schon nach kurzem Laufe abbrechen. Die Höhe dieser Zungenenden habe ich nur schätzen können. Immerhin dürfte, da meine Schätzung durch Visierung von hochgelegenen Standpunkten aus unterstützt wurde, diesen Werten ein ziemlicher Grad von Genauigkeit beizumessen sein, die in der Reihenfolge von O. nach W. hier aufgeführt werden: 3250 m, 3300 m, 3200 m.

Aus dem vorstehenden ergibt sich die bemerkenswerte Tatsache, daß der Grum-Grschimailo-Gletscher seine Wasser z. T. nach Süden, dem abflußlosem Tarimbecken, zum anderen Teil dem gleichfalls abflußlosen Dsungarischen Becken im Norden abliefert.

Aus dem reichen Firnmantel, der den jenseits der Lücke des Gurban-bogdo-Passes sich zunächst erhebenden mächtigen Doppelgipfel Pik-Schokalsky (siehe S. 37) einhüllt, ziehen infolge der mannigfachen Gliederung der Abhänge dieses gewaltigen Berges (siehe Taf. 1 und 2) nach allen Seiten hin schöne Gletscher herab, von denen ebenfalls nur die kleineren nach N. drainieren, der größte jedoch seinen Abfluß gleichfalls nach S. in das Gurban-bogdo-Tal nimmt. Ein weites fast zusammenhängendes Firnkleid deckt die breiten N.-, NW.- und NO.-Flanken des Berges und bildet in seiner Vielförmigkeit und vollkommen schuttfreien blendenden Reinheit eine besonders prächtige Erscheinung. Aus seiner Hauptmasse entwickelt sich ähnlich wie aus dem Eisfeld der zentralen Hauptgruppe eine lappenförmige, etwa 1/2 km breite hochaufgewölbte Eiszunge, die aber schon bald ohne Ausbildung eines Talgletschers bei ca. 3530 m Höhe (Hypsometer) als gänzlich schuttfreier und nur wenig zerklüfteter Eiskörper in ihrer ganzen Breitenausdehnung wie abgeschnitten ohne Endmoräne neuer Entstehung (hievon später mehr) auf einem mit dunklem Grundmoränenschutt bedeckten Hange absetzt. Die schon etwas oberhalb des Abbruches, dessen Eismächtigkeit ca. 25 m beträgt, zu beiden Seiten der Gletscherzunge entspringenden zwei wasserreichen Bäche fließen dem aus dem Grum-Grschimailo-Gletscher entströmenden Bache zu. Dieser hiedurch sehr bedeutend gewordene Wasserlauf verzweigt sich bald in wüsten Trümmerfeldern der flachen Stufen, die den Südlauf des sich nur allmählich verengenden Paßtales unterbrechen. Es sind Massen großer Blöcke der alten Grundmoräne. welche dort zurückblieben, während die kleineren Bestandteile von den Wassern zur Tiefe geschafft werden konnten. Am Abbruch der unteren dieser Stufen sammeln sich die Wasser zu einem etwa 270 m unter der Paßhöhe liegenden See. eingeschloßen zwischen schroffen, vom Eise in schönen Rundhöckerformen abgeschliffenen Felsmauern des sich nun stark verengenden Tales. (Siehe Taf. 10, Fig. 4, Taf. 14, Fig. 3.) Die Wassermenge in diesem Felsbecken ist zwar, wie die ca. 50 m über dem heutigen Seespiegel erhaltenen alten Wasserstandslinien anzeigen, schon erheblich geschwunden und das Becken ist besonders am N.-Rande bereits stark mit Detritus aufgefüllt, doch zeigt die Wasserfläche noch immer eine Länge von ca. 800 m bei einer Durchschnittsbreite von 300 m. Dieses Felsbecken ist zweifellos, schon nach seiner bedeutenden Tiefe und nach den Steilufern des W.- und O.-Randes zu schließen, durch die erodierende Tätigkeit konzentrisch einmündender Gletscher nicht unwesentlich vertieft worden; seine Abdämmung gegen S. aber, am Rande einer folgenden Steilstufe, ist einem beim Rückzuge des Hauptgletschers dort zurückgelassenen Endmoräneuwall zu danken, dessen Masse aber, entsprechend dem früher mindestens um 50 m höheren Wasserstand gleichfalls (siehe oben), bedeuteud höher als heute gewesen sein muß. Von den alten Ufermoränen sind Reste erhalten (Taf. 14 Fig. 3), welche heute noch eiue Höhe von mehr als 50 m erreichen. Die starke Zufuhr feinster ausgespülter Bestandteile aus den höher oben liegenden Mengen von Grundmoränenschutt hat eine braungelbe Färbung des Seewassers zur Folge. Der für glazial ausgestaltete Täler charakteristische Stufenbau setzt sich auch weiter nach S. fort, was in folgendem Kapitel eingehender geschildert wird.

Von den gegen O. und SO. gerichteten Teilen des Firnmantels des Pik-Schokalsky sinkt ein ungemein steiler und wilder Häugegletscher herab, genährt von Firnmaterial seines höher oben sich breitendeu Einzugsgebietes, aus welchem ihm solches reichlich durch mehrere Couloire zufließt. (Siehe auf Taf. 10 Fig. 5.) Diese von Firnschnee gänzlich entblößte Eiswand stürzt unmittelbar in die Gewässer des beschriebenen Sees ab. Die Eismassen bröckeln infolge des bei der großen Steilheit sich geltend machenden außerordentlichen Druckes der oberen Teile und infolge der eigenen Schwerkraft, sowie durch die abradierende Eiuwirkung des Wassers beständig ab und schwimmen als zahlreiche kleine Eisberge im See umher. Der Seespiegel liegt in beiläufigem Niveau von 3370 m; somit erreicht das Ende dieses Hängegletschers eine wesentlich bedeutendere Tiefe als das des Hauptgletschers. Auch der Firnmantel dieses Berges entwässert also teils nach S., teils nach Norden.

Auf den Pik-Schokalsky folgeu im Verlaufe des Hauptkammes gegeu WSW., wie aus Panorama Taf. 2 entnommen werden kann, noch mindestens fünf Gipfel, die ungeachtet ihrer im Verhältnis zur Hauptgruppe nicht mehr sehr bedeutenden Höhe — sie erreichen meiner Schätzung nach zwischen 4600 und 4800 m — eine für diese geographische Breite überraschend reiche Vergletscherung aufweisen. (Siehe S. 37.) Auch die aus diesem Teile des Hauptkammes nach NXW. vortretenden Seitenäste tragen in ihren Wurzelgebieteu noch eine Anzahl kleiner Kargletscher. Wie tief diese Vergletscherung der Kammregion des Westzweiges der Bogdo-Ola iu die betreffenden Taleinschnitte hinabreicht, vermochte ich nicht genauer festzustellen, da ich in diese Täler nicht eingedrungen biu. Man darf aber bei der verhältnismäßig nicht bedeutenden vertikalen Entwicklung des Einzugsgebietes und bei den hohen Sommertemperaturen der Täler jeuer Gegend annehmen, daß aus den Firnfeldern sich kaum andere als kurze Hängegletscher entwickeln. (Siehe weiterhin.) Immerhin ist auch die Ausdehnung der Firndecke dieses Gebirgsteiles in

Anbetracht dieser und anderer einwirkender klimatischer Faktoren noch überraschend groß, besonders wenn mau hiemit die geringe Vereisung des Westendes des Tian-Schan vergleicht, 1) der doch immerhin unter klimatischen Einflüssen steht, welche eine Firnbildung mehr begünstigen könnteu. Ich glaube nicht fehl zu gehen in der Annahme, daß solche Entwicklung hier im O. weniger auf Rechnung starker Winterschneefälle zu setzen ist, als auf die Häufigkeit der sommerlicheu Niederschläge, die als Folge bereits erwähnter und später noch weiter zu schildernder Gegensätze anzusehen sind. Zwischen den überhitzten Tiefen zu Füßen beider Abhänge und den stark erkälteten, gewaltigen Höhen des Gebirges finden die Temperaturverhältnisse ihren Ausgleich stets in heftigen Stürmen, welche gerade in den Sommermonaten eintreten und starke Niederschläge in den Hochregionen zur Folge haben.

Diese fallen nach meiuer Erfahrung schon in Höhen von über 3800 m stets in fester Form. Anch die enge Geschlossenheit des Gebirges mag einen gewissen Einfluß auf die Bildung von Firndecken ausüben.

Von der Fortsetzung der zeutralen Gruppe gegen O. wurde bereits S. 36 hervorgehoben, daß sie aus Gipfeln von konusförmiger Gestalt besteht (siehe Panoramen Taf. 1 und 4, Fig. 1), welche, trotzdem sie um 800 bis 1000 m unter der Höhe der zentralen Gruppe kulminieren, doch noch in ihren höheren Teilen überraschend geschlossen befirnt sind, und sogar noch auf ihren Südgehängen als Reste einer ehemaligen totalen Vereisung sehr ansehnliche Firnfelder tragen. Genaue Feststellungen, wie weit die heutige Vergletscherung in die nördlichen Täler der östlicheu Fortsetzung der zentralen Gruppe herabreicht, kann ich nicht geben, da ich diese Täler, ebensowenig wie die westlichen, selbst begehen konnte. Eine annähernde Schätzung dieser Werte hingegen, sowohl für die östlichen als die westlichen Täler, erlauben die folgenden Verhältnisse:

Mein Hauptlager am N.-Abhang (Taf. 4 Fig. 3) befand sich in einer Seehöhe von 3435 m auf einem weiten, rings vom Eisgebirge umschlossenen, nur nach NNW, geöffneten Talboden (hierüber Näheres in Kap. XVI) von durchschnittlich 21/2 km Breite, der vom Fuße des Steilabsturzes der zentralen Gruppe an in geringer Neigung gegen NW. zur tiefen Längstalfurche des obersten Da-tun-gu-Tales hin abdacht. (Siehe Karte II.) Zu beiden Seiten ist dieses in unregelmäßiger Weise durch Glazialablagerungen aufgefüllte Plateau von Gebirgskämmen umrandet, die aus der zentralen Gruppe in Richtung NW. abzweigen, wie dies in Panorama 1 auf Taf. 4 anschaulich gemacht ist. Gemäß der allgemeinen Abdachung des Gebirges nach dieser Richtung sinken diese Seitenkämme von über 4000 m in ihrem Wurzelgebiet rasch bis zu 3000 m und darunter ab. Die aus der flächenhaften Scheitelregion dieser hohen Ränder aufragenden Gipfel zeigen mehr oder weniger regelmäßige, flach pyramidale Gestalt und tragen dichte, in den obersten Teilen fast lückenlose Firnhanben, von denen breite Eislappen an den gegen das Hochplateau abfallenden, wenig steilen Bergflanken herabhängen. (Siehe auch Fig. 3, Taf. 4.) Der nahezu horizontale Verlauf, welchen eine die Enden aller dieser Gletscher verbindende Liuie beschreibt, ruft den Eindruck hervor, als hätte man die Eiszungen in gleicher Höhe abgeschnitten. Überall kann ihr früheres, weit bedeutenderes Hinabreichen an der Form des dunklen Gesteinsschuttes ihrer vom Eise noch nicht lange verlassenen Grundmoränen deutlich erkannt

¹⁾ Siehe F. Machatschek, l. c., S. 80 ff.

werden. Es scheint, als wenn das Firneis, sobald es in ein Tiefenniveau gelangt, wo die mittlere Sommertemperatur eine gewisse Höhe erreicht, dem Abschmelzen nicht entgehen kann, falls die Eiszungen nicht durch besondere orographische Verhältnisse geschützt werden, was eben an den Seitenrändern dieses weiten Zirkus nirgends der Fall ist. Auf solche Weise mußten die Eiszungen hier an der gleichen Grenze enden. Natürlich ist aber diese untere Grenze an den beiden gegeneinander gerichteten Abhängen der Seitenketten nicht die gleiche wegen ihrer Exposition gegen die Sonne. Die gegen O. gebreiteten Eislappen des westlichen Bergzuges reichen wesentlich weiter herab als die dem Boden des großen Zirkus zugewendeten des östlichen Zuges, dessen Flanken gegen W. gerichtet sind. Durch Peilungen wurden die Eisenden des westlichen Bergzuges auf durchschnittlich 3450 m festgestellt, die des östlichen aber auf 3600 m. Es besteht nun kein Grund anzunehmen, daß in den anderen Hochtälern, die noch dazu in ihren Quellgebieten, soweit ich von hochgelegenen Punkten aus Einblick darin gewinnen konnte, sehr beträchtlich weniger ausgeweitet und offen sind als die uns als Lagerplatz dienende Talstufe über dem Da-tun-gu-Tal, hievon stark abweichende Verhältnisse vorherrschen sollten. Eher dürfte man bei der allgemeinen Verengung der Talschlüsse die eben angeführten Zahlen um etwa 100 m erniedrigen. Auch der Böschungswinkel des Gehänges scheint überall annähernd der gleiche zu sein. Man wird demnach für das untere Ende aller dieser Eiszungen im Mittel einen Wert von 3500 m annehmen dürfen. Zur Erklärung der für die Zungenenden im Osten unseres Nordlagers (S. 83) angeführten weit niedrigeren Werte ist darauf hinzuweisen, daß diese in engen Talschlüssen gegen NO. gerichtet sind, während die anderen NW.-Exposition haben und daß dort die Firngebiete höher liegen und darum ausgedehnter sind. Wir werden uns dieser Zahlen bei den späteren Erörterungen über das Verhältnis der heutigen Schneegrenze zur diluvialen zu erinnern haben. Alle diese Gletscher tragen wie die schon beschriebenen die unverkennbaren Zeichen starken und andauernden Schwindens an sich. In ihrer heutigen Ausdehnung erscheinen sie nur als ärmliche Reste, wenn man beachtet, daß, gleichviel wohin im Gebirge der Blick sich wendet, allenthalben dem Gelände der Charakter eines ehemals total vereisten Gebietes aufgeprägt ist. Die der jetzigen Vergletscherungsperiode des Gebirges angehörigen kleinen Endmoränen mancher Seitengletscher, durch welche deren von längeren Pausen unterbrochener Rückzug ersichtlich wird, sind zum Teil noch wohl erhalten und liegen auf älterem Grundmoränenboden, wovon später mehr die Rede sein wird. Jedenfalls ging der allerletzte Rückzug so rapid vor sich, daß neue Endmoränen sich nicht bilden konnten.

Betrachten wir nun den Südabhang des Hauptkammes, wie er sich in Panorama Taf. 3 darstellt, das auf einer Höhe von 4530 m aufgenommen wurde, so finden wir bestätigt, was schon früher hervorgehoben wurde, daß im Süden die gesamte von Firn und Eis bedeckte Fläche geringer ist als im Norden. Wir sehen entsprechend der beiläufigen Exposition gegen Süden eine weit geringere Vergletscherung der Bergflanken als im Norden, aber im Gegensatz hiezu doch eine bedeutendere Ausbildung einzelner Talgletscher, was nur auf begünstigende orographische Bedingungen zurückgeführt werden kann. (Siehe vorher S. 80 f.) Infolge der tieferen Lage der Erosionsbasis im S., die sich aus den in Kap. VI geschilderten tektonischen Verhältnissen ergibt, und da allen Anzeichen nach Senkungsbewegungen an der Basis des Gebirges und Hebungsprozesse in der zentralen Kammregion noch bis in unsere Zeit hinein nicht abgeschlossen sind (siehe S. 49 f.), konnten

die Flüsse des Südabhanges ihren Lauf noch weniger ausgleichen als jene des Nordens; sie haben aber zu einer Zeit, als auch der S. noch unter der Herrschaft einer weit feuchteren Klimaperiode stand, bedeutendere und tiefere Talfurchen geschaffen als die nördlichen. Bei den kräftigeren thermalen Gegensätzen des Südens wurde auch eine viel stärkere Gesteinszerstörung hervorgerufen (siehe S. 40) und es konnte sich daher im Gebirgsgerüste des Südabhanges ein manuigfacherer und reicherer Formenschatz ausbilden als im Norden. Eine größere Anzahl von weit zurückgreifenden Karnischen oder verwandter Bildungen und eine mannigfaltigere Verzweigung der Talwurzeln fällt schon beim Vergleiche des Panoramas vom S.-Abhang mit einem der den N.-Abhang darstellenden sofort auf. In diesen Wandvertiefungen vermochten sich große Mengen Firns dauernd anzusammeln, aus deren Zusammenfluß dann überraschend lange Gletscherzungen, wie die des Chigo-Gletschers und die weniger bedeutende des "Südgletschers" sich entwickeln konnten (Taf. 12, Fig. 1 und 2.) Die Gletscherzunge des Chigo-Gletschers liegt zudem in einem tektonisch veranlagten, zweifellos schon durch präglaziale Erosion ausgestalteten, grabenartigen Engtale, dessen ungeheuer hohe und steile Talränder sich gegenseitig beschatten und dadurch der Ausbildung und Erhaltung von Gletschereis günstige Bedingungen schaffen. Der Chigo-Gletscher zeigt bei einer durchschnittlichen Breite von 1 km eine größte Länge von seinem Ursprung bis zum Ende von mehr als 12 km, also etwa entsprechend der Länge des Hochjochferners; der Südgletscher von seinen äußersten Wurzeln bis zum Zungenende eine solche von fast 5 km. Der Gesamtflächengehalt des Chigo-Gletschers beträgt 128000 qm, also etwa ähnlich dem des Mandron-Ferners. Dieses sind Verhältnisse, welche an und für sich nicht gerade recht bedeutend zu nennen sind, aber im Hinblick auf einen schmalen und mitten aus dem aridesten Klima aufsteigenden Gebirgszug, der so weit nach O. vorgeschoben ist, dennoch beachtenswerte Größen darstellen.

Auch der Chigo-Gletscher dankt einer Konvergenz der Strömungsrichtungen des Firneises im Einzugsgebiet und dem Umstande, daß dieses einen mächtigen Felsast umfließt, eine der ganzen Länge der Zunge¹) folgende Mittelmoräne. (Siehe Taf. 3 und 12.) Es sind deren ursprünglich zwei in geringen Zwischenräumen voneinander entstehende, die einige Kilometer nebeneinander herlaufen und dann sich vereinen.

Die Eisdecke der Gletscherzunge ist stark gewölbt, hat im unteren Teile nur geringe Neigung — was auf ihren verhältnismäßig stabilen Zustand zweifellos von Einfluß ist — und erweist sich wie alle Gletscher dieses Gebirges nahezu schuttfrei. Drei Stufen von Ufermoränenwällen begleiten den Lauf der Eiszunge. Die zwei unteren sind verhältnismäßig jung, denn sie sind unbewachsen und deuten also die jüngsten, vielleicht doch nicht rezenten Rückzugsstadien des Gletschers an. Soviel ich von meinem hohen Standpunkt

¹⁾ Ich möchte hinsichtlich der Bildung von Mittelmoränen bei dieser Gelegenheit besonders betonen, daß solche ihre Entstehung sehr verschiedenerlei Ursachen verdanken können. Ist es auch zweifellos. daß sie häufig dem Aufquellen von Grundmoränenschutt und dem Zusammenfließen der Seitenmoränen zweier sich vereinender Gletscher ihr Dasein verdanken, so habe ich doch S. 81 bereits andere Entstehungsursachen erwähnt. Die Entstehung infolge des Umfließens eines vorspringenden Felsastes durch einen Gletscher, der ihm beständig Gesteinsmaterial entführt, konnte ich an mehreren andern Gletschern des Tian-Schan feststellen und habe hierauf schon früher hinsichtlich der Mittelmoränen des Inyltschek-Gletschers hingewiesen (Petermanns Mitteilungen, Ergänzungsheft 149, S. 72), wo die strenge Sonderung der Gesteine, welche die einzelnen Mittelmoränen führen, keinen Zweifel über deren Ursprung zuläßt.

(zirka 1000 un über dem mittleren Eisniveau der Zunge auf einer Höhe des westlichen Talrandes) aus mit einiger Wahrscheinlichkeit zu schätzen vermochte, dürfte die unterste und niederste Moränenstufe etwa 5-6 m Höhe haben, die darüber und dahinter liegeude etwa 10 m mehr. Über diesen beideu und dahiuter begleitet den Lauf der Uferwände streckenweise ein viel höherer, dicht mit Vegetation bedeckter, also älterer Ufermoränenwall; seine Höhe ist von so hohem Standpunkt aus schwer genau zu schätzen gewesen, dürfte jedoch nach meiner Anuahme ca. 20-30 m über der zunächst darunter gelegenen jüngeren Moräne sich erheben. Auch die breite, flache Bekrönung dieses grünen Walles spricht für sein hohes Alter.

Eine Anzahl noch heute nicht unbedeutender Eiszungen ziehen besonders von der östlichen Umwallung des Gletschertales herab — diese ist durchschnittlich um 800 m höher, als die westliche und daher reicher überfirnt — und mündeten ehemals in den Hauptgletscher eiu, erreichen aber sein heutiges Niveau nicht mehr, während dies offenbar in einem verhältnismäßig nicht sehr weit zurückliegenden Stadium der Vereisung des Gebirges noch der Fall gewesen sein muß, wie man aus der Beschaffenheit der auch im Panorama Taf. 3 erkennbaren, vom Eise verlassenen Hochtälern zu schließen vermag. Das zwischen den Zuugenenden der Nebengletscher und der ältesten Ufermoräne befindliche Gehänge ist ebenso wie diese an vielen Stellen mit gleichartigem Pflanzenwuchs bedeckt, woraus entnommen werden kann, daß das vorletzte Stadium einer bedeutenden Vereisung dieses Gebirges in die Zeit der Entstehung jenes Moränenwalles fällt.

Von meinem sehr hohen Standpunkt (siehe vorher) am gegenüberliegenden Ufer beobachtete ich an der östlichen Talwand über den geschilderten Ufermoränen zwei übereinander liegenden Linien von Schliffkehlen, die sich streckenweise deutlich verfolgen lassen (Taf. 12, Fig. 1). Die untere hievon ist am besten erhalten; ihr Niveau mag nach roher Schätzung etwa 70-80 m über dem erwähnten höchsten Moränenwall liegen; die etwas weniger gut erhaltene obere ebensoviel oder etwas mehr über der unteren. Es ist schade, daß mir nicht Gelegenheit gegeben war, den Chigo-Gletscher talauswärts zu begehen, um nach Resten von alten Endmoränen zu forschen, welche einem durch diese Schliffkehleu angedeuteten Vereisungsstadium entsprechen. Es würden, wenn spätere Beobachtungen meine bisherigen ergänzen, diese Schliffkehlen einen früheren Hochstand diluvialer Vereisung anzeigen, der in mehreren Stadien sich zurückzog, wenn man nicht so weit gehen will, sie als Zeugen einer ülteren Eiszeit anzusehen. In diesem Falle würden die beschriebenen drei Ufermoränenwälle als zusammengehörig drei Phasen des Rückganges einer späteren, der jetzigen vorangegangenen Gebirgsvereisung andeuten. Man könnte auch für die höchste Moräne wegen ihrer so wesentlich die beiden unteren überragenden Höhe uud wegen des durch die Vegetationsdecke erwiesenen höheren Alters ein besonderes Stadium anuehmen.

Schon der Umstaud, daß im Chigo-Tal alle die wohlausgebildeten Seitentäler, durch welche die Nebengletscher herabflossen, hängend geworden sind (siehe Taf. 3), deutet auf einen früheren sehr hoheu Stand des Gletschereises in diesem Tale, da an eine bedeutende spätglaziale Übertiefung des Haupttales in diesem Falle doch wohl kaum gedacht werden kann. Von diesen Seitengletschern erreichen eiuige (siehe Karte uud Pan. 3) noch immer ansehnliche Läugeu; an den Enden von einigen von ihnen sind hinter alten Stirnmoräuen kleine Seen abgedämmt. Der Chigo-Gletscher zeigt übrigens, was schon aus den oben

augeführten Grüuden verständlich wird, aber auch aus der großen Länge und verhältnismäßig geringen Neigung seines Tallaufes sich erklärt, weit weniger starke Anzeichen des Rückzuges oder der Abschmelzung als ein anderer bedeutender Gletscher des Südabhanges, den ich mangels eines mir bekannt gewordenen oder passend scheinenden Namens kurz mit "Südgletscher" bezeichne.

Dieser "Südgletscher" hat wie der Chigo-Gletscher ein vielfach verzweigtes, mit tiefen Nischen oder Quelltrichtern in die höchsten Teile der Kammregion eingreifendes Einzugsgebiet, das ihm reichliche Firnzufuhr briugt. Aber nur einer seiner größeren Wurzeläste, die man (siehe Taf. 3 u. 12) ebensowenig wie die höchsteu Quellgebiete des Chigo-Gletschers als eigentliche Kare bezeichnen kann (hierüber im beschreibenden Teile Eingehenderes), greift in den Hauptkamm ein. Vou deu anderen beiden reicht einer in die Wände des aus dem Hauptkamm pylonenförmig uach S. heraustretenden gewaltigen Vorberges hinauf und der andere wurzelt in einem gleichfalls vom Hauptkamm vorspringenden südlichen Querzug. Der Firn der Quellarme strömt in einer sehr eigenartigen kesselförmigen Senke zusammen, aus welcher eine heute uoch über 2 km lange Eiszunge abfließt. Dadurch, daß sie in einem flachen nach S. und W. sich breit öffnenden Tale liegt, ist sie der Abschmelzung besonders stark ausgesetzt, so daß dieser Gletscher wohl in einer nicht fernen Zeit seine jetzt noch bedeutende, aber die Zeichen der Schwindsucht in hohem Grade zur Schau tragende Zunge ebeuso verlieren wird, wie die meisten anderen Gletscher dieses Gebirges (S. 83 f.). Im Jahre 1908 bestimmte ich sein Ende durch Siedethermometer-Beobachtung auf 3620 m. Infolge der steilen Böschung der Zuflüsse, wegen der vielfachen Verästelung des Einzugsgebietes und entsprechend dem konzentrischen Zusammenfließens der Firnarme, verbunden mit starkem Druck der oberen Firnlager auf die unten angesammelte Masse und jedenfalls auch wegen Unregelmäßigkeit des unterliegenden Felsbodens, zeigt dieser Eiskörper außerordentliche Zerknitterung, Verwerfung und Zerreißung des geschichteten Eises. (Mehr hierüber in Kap. XVII.) Die Endzunge des Chigo-Gletschers habe ich, wie erwähnt, nicht betreten. Ich kann ihre Höhe nur auf Grund der Höhenverhältnisse des parallelen Gurban-bogdo-Tales schätzen und komme auf einen Wert von wenig über oder unter 3000 m.

Um den auffälligen Unterschied in der heutigen Gletscherführung zwischen diesen beiden parallelen Haupttälern zu erklären, ist auf folgende Umstände hinzuweisen: Während das Gurban-bogdo-Tal an einer tiefen Depression (3645 m) des wasserscheidenden Kammes schon nahe der heutigen unteren Schneegrenze entspringt und daher von dem im Norden abgelagerten Firneis wohl die Schmelzwasser, aber nur mehr wenig von dem festen Material der Vergletscherung empfängt, nimmt das Chigo-Tal seinen Ursprung gerade in der höchstragenden und daher am stärksten überfirnten Kammregion, aus welcher seine weit ausgreifenden Quelläste ihm ständig bedeutende Zufuhr an Firn und Eis sichern. Zudem begünstigen die ungemein hohen und steilen Ränder des nicht sehr geweiteten Tales durch gegenseitige Beschattung (siehe S. 87), die Erhaltung der Gletscherzunge.

Was die aus der zentralen Gebirgsgruppe nach Süden abzweigenden beiden Hauptäste betrifft, welche die Ränder des Gurban-bogdo-Tales bilden, so tragen ihre Abhänge hinsichtlich ihrer heutigen Vereisung noch mehr als die bisher geschilderten Gebirgsteile den Charakter eines erst vor kurzer Zeit vom Eise verlassenen Reliefs, auf dem nur noch zerstreute kleine Reste der ehemals unverhältnismäßig bedeutenderen Eisdecke erhalten

geblieben sind. Das linke Ende des S.-Panoramas (Taf. 3) veranschaulicht die westliche Talumwallung und Abbildung Taf. 13 die östliche, und da zeigt sich die anffällige Erscheinung, daß trotzdem die W.-Kette mit einer durchschnittlichen Kammerhebung von 4500 m die östliche um etwa 150 m an Höhe überragt, und obwohl ihre Exposition eine östliche ist, ihre Eisbedeckung dennoch stärkeren Rückgang zeigt, als diejenige des nach W. gerichteten Abhanges der O.-Kette. Der Grund hiefür liegt auch hier wieder in den orographischen Bedingungen (S. 80 f, 86) und zwar in der weit tiefer eingreifenden Zertalung der O.-Kette. Breite, in ihrer Achse etwas nach N. abweichende Taleinschnitte sind darin tief eingesenkt und nehmen ihre Entstehung in weit ansgeformten karähnlichen Nischen oder in Quelltrichtern, den Einzngsgebieten nicht unbedeutender Firnmengen, aus denen einige ziemlich ansehnliche Zungen gegen das Gurban-bogdo-Tal herabziehen, die jetzt aber schon in weniger als halber Höhe der Talwände enden. Das Zungenende des längsten hievon bestimmte ich durch Peilung auf ca. 3500 m. Ein weiterer Grund für die wesentlich bedeutendere Überfirnung der O.-Umwallung ist darin zu sehen, daß ihr nach W. gerichtetes Gehänge dem Anpralle der Regen spendenden Sturmwinde ausgesetzt ist, welche aus NW. über den dort stark abdachenden Hauptkamm heranzuwehen vermögen, während die regenärmeren N.-Winde von dem enorm hohen Wall der zentralen Hauptgruppe abgefangen werden. (Siehe S. 15 f.)

Die meisten Eiszungen des O.-Walles enden meiner Schätzung nach schon in einer Höhe von 3700 m mit der Maßgabe, daß den im nördlichen Teil entspringenden eine etwas geringere Höhe zukommt. den südlichen eine etwas größere, so daß entsprechend den orographischen und klimatischen Verhältnissen mit dem Laufe des Gurban-bogdo-Tales gegen S. die untere Gletschergrenze ansteigt. Auf dem westlichen Talwalle hingegen enden meiner Schätzung nach die lappenförmig herabhängenden Eiskörper durchschnittlich schon bei 3800 m Höhe.

Nur in einem der tief eingeschnittenen, sehr geschützten Seitentäler dieser Kette fand ich (siehe Route auf Karte II) eine etwas tiefer, bis zu etwa 3500 m herabreichende Eisznnge. Dieses damals betretene Nebental gabelt schon in einer Entfernung von wenigen Kilometern von seiner Mündung in drei Äste, in deren jedem ein stark im Rückzng befindlicher Gletscher liegt, von denen aber nur der im mittleren Tale lagernde jetzt noch eine kurze Zunge entwickelt. Nach dem Moränenbefunde ist der Rückzug dieser drei Gletscher verhältnismäßig jungen Datums und noch immer im Weiterschreiten begriffen. Zur Eiszeit hatten sich die drei Arme zu einem bedeutenden Gletscher vereinigt, wie man aus der Umgestaltung der Umrandung des Tales und nach der Beschaffenheit des Talbodens im Unterlaufe zu erkennen vermag. Reste einiger hintereinander liegender, nicht sehr alter Endmoränen, die Rückzngsphasen des einstigen Nebengletschers bezeichnend, finden sich auf seinem Talboden (siehe später) und bei der Mündung dieses Tales in das Haupttal stößt eine sehr mächtige, alte diluviale Endmoräne des Nebengletschers an eine wohl gleichalterige hohe Stirnmoräne ans einer der letzten Stillstandsperioden in der Rückzugsgeschichte des Hauptgletschers (siehe Karte II), in welche sich der Fluß eine junge Schlucht eingeschnitten hat. An diese beiden, temporäre Hochstände der Vereisung anzeigende, demnach gleichalterige Anhäufungen werden wir uns später zu erinnern haben.

Das Gnrban-bogdo-Tal, das. wie früher mehrfach hervorgehoben wurde, entsprechend dem ganzen Gebirgsbau schroff nach S. absinkt (S. 40, 56), z. B. von Lager 6 zu

Lager 7 auf einer Strecke von 11½ km um 1230 m, also pro Kilometer beiläufig um 107 m, und gegen die überhitzte Tiefe am Fnße des Gebirges weit geöffnet ist, verliert daher schon bald in klimatischer Hinsicht seinen alpinen Charakter, was sich sowohl in der rasch ansteigenden Temperatur, wie in dem Eindringen der Trockensteppenvegetation (hievon mehr in Kap. XIII) und in der intensiven Gesteinszerstörung (S. 40, 55, 87) der Umwallung kundgibt. Nur einige der höchsten Berge dort zeigen in ihren obersten Teilen typisch ansgebildete Kare — eine überhaupt verhältnismäßig seltene Erscheinung in diesem Gebirge —. in denen Firnfelder und kleine Gletscher eingebettet sind. (Siehe Taf. 3 und 13.) Immerhin schmückt sogar einen der am weitesten nach S. vorgeschobenen Hochgipfel des Gurban-bogdo-Tales der ca. 10 km im Süden vom Lager 6 (siehe Karte II) aufragt, noch eine ansehnliche Firndecke, weil gerade dort nochmals eine erhebliche Anschwellung des westlichen Talwalles stattfindet. Noch lange bildete beim Abstieg dieser prächtige Felsgipfel mit seinem blinkenden Firnfeld, wenn man aus der ariden Landschaft zum Gebirge znrückblickte. eine Zierde der Gegend und bringt einen eigenartigen Zug des Gegensatzes in das Landschaftsbild.

Ungeachtet der mehrfach hervorgehobenen starken Gesteinszerstörung sind jedoch auch in diesem südlichen Tale die Spuren der mächtigen ehemaligen Vereisung an vielen Stellen in Form von schön ausgebildeten Rundhöckern an den Talwänden erhalten geblieben. Geradezu erstaunlich ist auch die Mächtigkeit der in der Talsohle selbst aufgehäuften Moränenablagerungen, welche Zengnis ablegen für den einstigen außerordentlich hohen Eisstand und für die ungemein großen Mengen von Firneis, welche der diluviale Grum-Grschimailo-Gletscher, wiewohl er (siehe S. S1 f.), damals noch seinen Hanptabfluß nach N. hatte, auch durch das südliche Tal hinabschickte. Schon nach dem hohen Hinaufreichen der Rundhöcker an den Felswänden im Quellgebiet des Tales (siehe Taf. 11) schätze ich die diluviale Eismächtigkeit auf wesentlich mehr als 400 m. Alte Grundmoräne füllt den Talboden mächtig auf und ist überlagert von den Resten dreier breit ausgedehnter, jetzt mehr oder weniger stark deformierter Endmoränenwälle, die der Hauptgletscher, sei es bei seinem letzten ruckweisen Rückzug oder bei stadialen Vorstößen in verschiedenen Niveaus des Tales aufgeschüttet hat und an welche auch. wie bereits erwähnt, gleichaltrige Endmoränen einzelner Nebengletscher sich anschlossen. Auf solche Weise entstand im Talboden ein wahres Moränengebirge, welches meiner Karawane beim Marsche talauswärts mancherlei Schwierigkeiten bereitete. An einzelnen Stellen war es möglich, die Mächtigkeit der alten Moränenablagerungen, in welche der Fluß stets tief, öfters in Form einer Schlucht jugendlicher Entstehung, eingeschnitten ist, etwa auf 150 m zu bestimmen. Stellenweise hat der Fluß dort in den Moränenablagerungen zwei übereinanderliegende Längsterrassen (Talstufen) zurückgelassen. die, auch weiterhin talabwärts auf großen Strecken gut erhalten, verfolgt werden konnten und Kunde von Stillstandsperioden in der postglazialen Erosionserneuerung des fließenden Wassers, also von Erosionsperioden, geben, wenn man nicht so weit gehen will, Zyklen anzunehmen. Bis in das Niveau von ca. 2000 m hinab sind alte Moränenablagerungen vorzüglich erhalten. Von da ab konnte ich sie auf meinem Wege in dem sich bedentend erweiternden Tale nicht immer verfolgen, da sie dort oft an die mehr und mehr auseinandertretenden Talränder gebunden sind. Hingegen ist die weite Talbucht dort von außerordentlich mächtigen Schottermassen zweifellos fluvioglazialer Entstehung angefüllt, in welche sich der Fluß bis zu 100 m tief eingeschnitten hat, ohne den Felsgrund zu erreichen, weshalb ihre ganze Mächtigkeit nicht bestimmt werden konnte. Zwischen diesen Schotteranhäufungen, die eine stark wechselnde Zusammensetzung und eigenartige Lagerungsverhältnisse zeigen, und den alten Moränen bestehen zweifellos gewisse Beziehungen, auf welche ich indes erst bei Beschreibung des Reiseweges zurückkommen werde. Die in den jüngeren Moränen höher oben im Tale liegenden Terrassenstufen setzen sich auch in den Schottern fort, was als ein weiterer Beweis des jugendlichen Alters dieser Erosion angesehen werden muß. Wie aber aus der bedeutenden Anlage der Gurban-bogdo-Talrinne schon im Oberlaufe zu entnehmen ist (siehe Taf. 11), kann diese nur auf alte Entstehung zurückzuführen sein; ich nehme gleichwie für das Chigo-Tal (S. 87) auch für das Gurban-bogdo-Tal präglazialen Ursprung an. Es besteht ferner, meiner Ansicht nach, viel Wahrscheinlichkeit dafür, daß unter den fluvioglazialen Schottern alte Grundmoräne zu finden sein dürfte, die in einem früheren Stadium der Vereisung des Gebirges abgelagert wurde.

Flache, in den Moräneu wie in diesen Schottern gelegene wannenartige Auskolkungen begleiten den Flußlauf streckenweise. Auch an den auf meinem Wege gelegenen Mündungen der meisteu Quertäler zeigten sich Glazialablagerungen (Grund- und Endmoränen) von Seitengletschern, die zum Teil noch in später Zeit vorgestoßen waren, wie man an Aufstauungen gegen Moränen des Haupttales an mehreren Nebentalmüudungen zu erkennen vermochte. So trägt auch dieses südliche Tal - übrigens das einzige mir bekannte in der Bogdo-Ola-Gruppe, welches eine wohlausgebildete Trogform (Taf. 11, Taf. 14, Fig. 2 u. 3) zur Schau trägt — fast an jeder Stelle seines Laufes die typischen Kennzeichen des außerordentlichen Ausmaßes der ehemaligen Vereisung des Bogdo-Ola-Gebirges und gibt Kunde von den einst durch diese Rinneu bis in sehr bedeutende Tiefe abgeflossenen diluvialen Gletschern, welche bis nahe zur Zone - oder vielleicht noch in diese hinein - reichten, die heute unter der Herrschaft strengeu Wüstenklimas steht. Auch Randseen sind hier, ebenso wie in anderen stark vergletscherten Gebirgen, am Ende der Diluvialzeit am Südrande wie am Nordrande (siehe S. 83) vorhanden gewesen, was auch die dort verbreiteten Seeablagerungen (siehe S. 80, 83 und Karte I und II) erweisen. Hievon später mehr.

Hingegeu konnte ich auf dem Wege südlich von einer verlassenen chinesischen Kupferschmelze (siehe Karte I uud II), an der dort in felsigen Steilwänden mit ziemlich ebenmäßigen Kammlinien in das Gesichtsfeld tretenden Kette des Dschargöß-Tau, ungeachtet ihrer durchschnittlichen Kammhöhe von 3000 m, sogar auf ihrem Nordabfall nur mehr ganz vereinzelte Schneefelder, aber keine Gletscher beobachten. Bei dem Umstand, daß dieses Gebirge von wisseuschaftlichen Reisenden — abgesehen von der Querung des Dawantschin-Passes an seinem Ostende (S. 4, 22) — noch nie bereist wurde, überhaupt bisher in seinem Innern von Europäern meines Wissens nur eineu eiuzigeu Besuch erhielt,¹) ist es nicht bekannt geworden, ob nicht Spuren ehemaliger Vereisung in seinen inneren Tälern dennoch vorhanden sind, wofür Anzeichen sprecheu. Jedenfalls wäre es nach allen geschilderten Verhältnissen bei längerem Aufenthalt und eingehender Untersuchung möglich, im Gurbau-bogdo-Tal ein Profil durch die glazialen Ablagerungen zu gewinnen, das typisch für den ganzeu Südabhang des Bogdo-Ola-Gebietes und benachbarter Gebirgsstrecken sein könnte. Mir fehlte leider die Zeit hiezu.

¹⁾ P. W. Church, l. c., S. 162-165.

Von der Bogdo-Ola-Gruppe aber läßt sich schon auf Grund der auf dieser Reise von mir gemachten Beobachtungen sagen, daß das ganze Gebirge einstens uud zwar lange Zeiträume hindurch in eine geschlossene Eisdecke gehüllt war. Schon ein Blick auf die in den Panoramen dargestellten Kämme mit ihren reihenweisen karähnlichen Nischen lehrt dies in überzeugender Weise. Die Endzungen haben, nach den bis heute erhaltenen Moränenablagerungen zu schließen, in ein überraschend tiefes Niveau hinabgereicht, so daß die Höhenunterschiede zwischen der heutigen und der diluvialen Vereisung sehr bedeutende Werte ergeben. Hiebei darf außerdem ein Umstand nicht unbeachtet bleiben, auf den ich schon früher hingewiesen habe, 1) daß in den heute einem ariden Klima ausgesetzten äußeren Ketten und Ebenen am S.-Fuße des Tian-Schan, wie übrigens auch im östlichen Tian-Schan am N.-Fuße, infolge der außerordentlichen Einwirkung zerstörender, abräumender und einebnender Kräfte die Zeugen diluvialer Vereisung nicht erhalten bleiben konnten. Die außerordentliche Wirkung der Strahlung auf das nackte Gebirgsgehänge mußte die Spuren der einstigen Vereisung zum größten Teil vernichten. Zudem liegt zweifellos Vieles von den alten Glazialablagerungen heute unter den eine große Mächtigkeit erreichenden jugendlichen Aufschüttungen begraben. Von diesen Verhältnissen wird in der Folge noch mehr die Rede sein.

Von dem Charakter der heutigen Gletscher des Gebietes möchte ich am Schlusse dieses Kapitels noch einen Zug hervorheben. Sowohl am N.- als am S.-Abhang ist es eine überraschende Erscheinung, daß die Firn- und Eisdecken eine blendende Reinheit zeigen, was beiläufig schon (S. S3, S7) erwähnt wurde. Die Oberflächen weisen nahezu schuttfreien Zustand auf. Dies steht in merkwürdigem Gegensatz zur Beschaffenheit der Gletscher im zentralen Tian-Schan, auf deren außerordentlich mächtige und weit verbreitete Schuttbedeckung ich in meinen Reiseberichten häufig hingewiesen habe. Die bei den klimatischen Verhältnissen im weiteren Osten zu erwartende, noch intensivere Gesteinszerstörung ließ nun auf mindestens ähnliche Verhältnisse schließen. Die Erklärung der gegenteiligen Tatsache ist meines Erachtens darin zu suchen, daß die Zusammeusetzung des Gebirgsgerüstes hauptsächlich aus stark umgewandelten Eruptivgesteinen von großer Härte und die Eigenart ihrer Klüftung, in den höheren Lagen des Gebirges vorzugsweise Blockverwitterung mit geringer Schuttführung, außerdem auch subglaziale Absonderung begünstigen. Rezente Blockmoränen, fast frei von feinerem Material, begleiten öfters den Lauf der Gletscher. Alle feinen Bestandteile wurden durch subglaziale Wasserläufe aus der Grundmoräne ausgespült und seitlich von den schroffen Wänden der Eiszungen zwischen diesen und den Blockwällen der Ufermoränen gesondert abgelagert, wofür ich späterhin Beispiele anführen werde. Auch wird auf den Oberflächen der Eiskörper durch die in den hohen Tagesstunden ungemein heftige Bestrahlung, eine außerordentlich starke Abspülung begünstigt, welche alles feine Material mitnimmt und über die steilen seitlichen Abhänge der Eiszungen hinabführt. Wesentlicher Einfluß muß auch dem Umtand beigemessen werden, daß die frühsommerliche Abschmelzperiode in diesen Gegenden sich auf einen sehr kurzen Zeitraum beschränkt, innerhalb welchem sie sich mit außerordentlicher Energie vollzieht. Der ganze Schmelzprozeß, der in Gebirgsländern mit gemäßigtem, maritimem Klima sich auf Monate verteilt, findet hier innerhalb weniger Wochen statt, wobei ungeheure Mengen von Schmelzwasser in katastrophaler Weise die

¹⁾ Petermanns Mitteilungen, Ergänzungsheft 149, S. 35.

Moränenablagerungen durchspülen und fast alles feinere Material, ja auch gröberes, iu die Tiefe führen, nur die größten Blöcke zurücklassend (S. 83). Insoferne als Vergletscherung des Gebirges mit der Gestalt und Ausbildung der heutigen Täler in engem kausalen Zusammenhang steht, wird im folgenden Kapitel noch mancherlei Ergänzendes zu den hier mitgeteilten allgemeinen Zügen vorgebracht werden. Mehr ins einzelne gehende Angaben sind der Beschreibung des Reiseweges in Kap. XVI und XVII zu entnehmen.

XII. Entwässerungssystem und Talbildung.

Dem einfachen stufenförmigen Aufbau und der verhältnismäßig geringen Gliederung der Bogdo-Ola-Gruppe ist auch ihr Entwässeruugssystem und ihre Durchtalung eng angepaßt, steht aber auch, wie nicht anders zu erwarten, in enger Abhängigkeit von der einstigen feuchteren klimatischen Vergangenheit dieser Gegend und trägt dabei deutlich die Zeichen der veränderten klimatischen Einflüsse, von denen das Gebirge heute beherrscht wird, zur Schau. Der herrschende Zug der Talbildung ist die Ausschließlichkeit der Quertäler (S. 57).

Am Nordabhang sehen wir, wie ein Blick auf Karte II lehrt, daß in unmittelbarem Anschluß an die total vergletscherte Front des zentralen Hauptkammes eine größere Anzahl Wasserläufe entsteht, welche die oberste plateauartige Stufe, am Fuße der vereisten, von der kulminierenden Kammhöhe sich absenkenden Wände, unregelmäßig durchfurcht und in verschiedenen Winkeln zum Verlaufe der Hauptwasserscheide nach NW. strömt. Am Rande des Steilabsturzes dieser im beiläufigen Niveau von 3000 m abbrechenden Stufe sammeln sich alle diese Wasseradern in vier größeren Kanälen, welche in ebenso vielen Quertalfurchen zunächst die harten Gesteine des alten Gebirges und dann die jüngeren der weichen Angarabildungen durchbrechen und dem Rande des Dsungarischen Beckens zuströmen. In dieser zum N.-Rand des Gebirges parallel verlaufenden rinnenartigen Senke (siehe S. 43 und 44 f) verlieren sie sich ähnlich wie die Flüsse weiter im W.1) in Sümpfen, soweit ihre Gewässer nicht schon vorher von den am Fuße des Gebirges in den inmitten von Trockensteppe und Wüste zerstreuten Oasen lebenden dunganischen und chinesischen Ackerbauern für ihre Kulturen aufgebraucht werden. Nur an solchen Stellen der ausgedürsteten Lehmsteppe am Gebirgsrande, wo Wasser hingelangen kann, ist Ansiedlung und Anbau möglich.

Diese vier wasserführenden bedeutenden Quertäler sind in der Reihenfolge von W. nach O. die Täler: Schimo-gu, Sangun, welches im Mittel- und Oberlaufe Da-tun-gu genannt wird, Dön-chon-dse, auch Chan-go-dse genannt, und Du-dun-dse. Zwischen den

¹⁾ In diesen Schilfsümpfen, die den N.-Rand des Gebirges auf Hunderte von Kilometern begleiten, infolge des Trockenklimas aber niemals in Moore, sondern an manchen Stellen zu typischen Salzsümpfen (Dabas-san-uor, Chak, Umu-chak usw.), in anderen ihrer Teile sogar schon zu Salzpfannen umgewandelt erscheinen, haben wir die Reste ehemaliger Landseen von ungeheurer Ausdehnung zu sehen, welche die große Seuke zwischen dem S.-Rande des Altai im N. und dem N.-Rande des Tian-Schan im S. einstens ausgefüllt haben. Nach der Darstellung der 40 Werst-Karte erscheint es, als ob diese streckenweise mehr als Schilfseen, denn als Sümpfe anzusehenden Gebilde sich nur im N. der "großen Kaiserstraße" zwischen An-dzchi-chai und Manas und darüber hinaus fänden, während sie sich in Wirklichkeit oft auch im S. hievon ausdehnen. Die Straße führt daun mitten durch dieses unsichere Gelände auf Prügelstegen hindurch. In der Grum Grschimailo'schen 40 Werst-Karte ist die Erstreckung der Schilfsümpfe richtiger dargestellt. (Siehe S. 44.)

beiden letztgenannten liegt die breite Furche eines Trockentales, Ogun-dschan-dse, welches nur zur Frühjahrsschneeschmelze Wasser führt, weil es seinen Ursprung nicht wie die anderen Täler im niederschlagsreichen zentralen Gebiet, soudern auf der zweiten Stufe nimmt.

Die hier angeführten und die anderen in meinen Karten aufgenommenen Flußnamen entsprechen nur zum geringsten Teile denjenigen der beiden Karten von Grum Grschimailo und jenen, welche man in der russischen 40 Werst-Karte findet. Ich kann aber versichern, daß sie das Ergebnis vielfacher und sehr sorgfältiger Erkundigungen sind. Auf die großen Schwierigkeiten, welche sich in diesem Teile der Welt der Feststellung der geographischen Ortsnamen entgegensetzen, habe ich in meinen Schriften stets hingewiesen. Solche Schwierigkeiten sind nicht zu unterschätzen in Gebirgsgebieten wie dieses, welche nicht ständig bewohnt, sondern zumeist nur von Nomaden und noch dazu von solchen verschiedener Stämme und mit verschiedenerlei Sprachen besucht werden und wo auch die wenig zahlreiche, am Gebirgsfuße seßhafte Bevölkerung mehreren Völkerschaften angehört, und sich deshalb auch verschiedenerlei Sprachen bedient. Es liegt mir daher durchaus fern, die Namen der erwähnten Karten als falsch zu bezeichnen. Da ich aber ihre Quellen nicht kenne und auch nicht weiß, mit welchem Grade kritischer Vorsicht diese benutzt wurden, da ich selbst aber bei der Erkundung und Aufnahme von Namen die größte Sorgfalt walten ließ, so halte ich mich für berechtigt, für meine Namen Geltung zu beanspruchen. Man wird leicht an ihnen erkennen, daß sie verschiedenen Sprachen angehören, der chinesischen, mongolischen und türkischen - entsprechend den Gewährsmännern, denen ich sie verdanke. Jede Karte dieser Gegend, gleichviel welcher Entstehung sie sein mag, trägt diese toponomastische Mehrsprachigkeit zur Schau.

Ich muß besonders hervorheben, daß nur drei dieser nördlichen Quertäler von meiner Expedition durchwandert wurden, wobei ihr Lauf durch Croquierung festgelegt wurde. Der Lauf des Schimo-gu konnte indessen zum größten Teile durch Peilungen von hochgelegenen Punkten aus festgestellt werden. Als Ergebnis dieser Arbeiten zeigen sich nun wesentliche Abweichungen von dem hydrographischen Netz und dem Talverlauf der vorher erwähnten Karten, denen wohl weniger detaillierte Aufnahmen zu Grunde liegen mögen, als die meinigen, für die ich einstehen kann, insoweit sie auf Karte II mit durchgezogenen Linien eingetragen sind. Alles, was nicht mit voller Sicherheit festgelegt werden konnte, sondern nur auf Kombinierung eingesehener einzelner Strecken von Flußverläufen beruht, ist in die Karte nur mit gestrichelten Linien eingetragen. Der Verlauf solcher Täler bedarf daher noch der Ergänzung. Auch ist es nicht ausgeschlossen, daß wenigstens kleinere Wasserläufe, welche in meinen Karten überhaupt nicht aufgenommen werden konnten, vorhanden sein mögen, sicherlich aber auch nicht wenige alte Trockenbetten, deren Verlauf deshalb nicht festzustellen war, weil an ihren Ufern jetzt keine Vegetation mehr angesiedelt ist. Gerade diese an die Flußläufe gebundenen Vegetationsgürtel aber geben überall, von hohen Punkten aus gesehen. mit ihrem dunklen Grün das Mittel an die Hand, Existenz und Verlauf der Wasseradern inmitten der sonst braungrauen, kahlen Landschaft mit Sicherheit festzustellen und zu verfolgen.

Im beschreibenden Teil dieser Abhandlung muß naturgemäß viel von den besonderen Eigentümlichkeiten der Täler, durch welche die Reise führte, die Rede sein. In diesem Kapitel sollen daher nur die allgemeinen, dem ganzen Gebirge gemeinsamen Grundlagen im Entwicklungszustande der Erosion hervorgehoben werden.

Die Art der Talbildung des N.-Abhanges ist, wie gesagt wesentlich beeinflußt durch dessen stufenförmigen Autbau (S. 38 f und 56 f). Da die Entstehung der Stufen, wie überhaupt die Heraushebung der Hauptachse der Bogdo-Ola zu ihrer überragenden Höhe meines Erachtens sehr jungen und ungleichen Krustenbewegungen zu danken sein dürfte, wie ich mehrfach betont habe (ebenda und S. 49 f u. 86), und da wohl dieser Zyklus laugsamer Hebungsprozesse, ähnlich wie dies sowohl vom Himalaya angenommen wird 1) als auch für andere Teile Zentralasiens, bis in die Gegenwart hinein noch nicht abgeschlossen scheint, andererseits aber das Gebirge vor seinem Aufsteigen bis zum heutigen Relief schon zertalt war und da die heutige Entwässerung im großen gauzen den alten Erosionslinien folgt (S. 56), also epigenetische Talbildung vorhanden ist, so erklärt sich der auffällig unausgeglichene Charakter des Laufs dieser Flüsse. Es wechseln Strecken, welche die Zeichen der Reife zur Schau tragen, mit solchen, welche das Bild eines jugendlichen Stadiums zeigen. Im Verlaufe der aufeiuanderfolgenden Erosiouszykleu konnte sich uoch kein Gleichgewichtszustand herausbildeu und dies um so weniger, als die erosive Kraft der Gewässer infolge Trocknerwerden des Klimas abgenommen hat.

Betrachten wir zunächst weiter die Verhältnisse des Nordabhangs: Auf der obersten Stufe des Gebirges, die, wie bereits besprochen (S. 56 f), und wie noch näher erörtert wird, als alte, spät gehobene Verebnungsfläche aufzufassen ist, zeigen die Wasserläufe einen nur sehr schwach erodierenden Charakter; sie verzweigen sich in den sehr mächtigen, dort abgelagerten und aufgebreiteten, ungeheuren Meugen junger Destruktions- uud Glazialschuttmassen, mäandern weithin uud durchtränken diese lockeren Bildungen, indem sie große Strecken bis zur Unwegsamkeit versumpfen. Dieser Teil des Flußgebietes ruft somit den Eindruck des Alters hervor; da das vielverzweigte Wasseruetz aber am Rande der Stufe in Gestalt nur einzelner starker Bäche heraustritt, so darf angenommen werden, daß die in der Aufschüttungsmasse versickernden Wasser sich unter ihr schließlich in präexistenten Rinnen wieder sammeln. Es folgt nun der erste Gefällsbruch und wir sehen dort, wie auf steilem Gehänge (siehe Taf. 7 Fig. 2) die Wasseradern zu den gleichfalls eingeebneten Teilen der zweiten Stufe hinabstürzen. Dort strömen sie in felsigen Betten dahin, die von Mengen groben Blockmaterials stark aufgefüllt und zum Teil gesperrt sind (Taf. 14 Fig. 4). Hiebei muß ich auf einen besonderen Charakterzug iu dem von der Expedition zum Aufstieg benützten Quellarm des Da-tun-gu-Tales hinweisen (siehe Karte II), welcher den anderen Tälern nicht zu eigen ist. Dieser Talast zieht ausnahmsweise, vermutlich aus tektonischen Gründen, auf mehr als die Hälfte seines Laufes in Längstalrichtung uud da zeigt es sich, daß sobald der Fluß aus der Quertalrichtung des Quellgebietes, wo sein Lauf, wie erwähnt. den Typus des Reifestadiums trägt, in die Richtung des Streichens der Gesteine umbiegt, also in die Längstalrichtung, alle Anzeichen der Jugendlichkeit ihm und seinem Bette aufgeprägt sind. (Näheres in Kap. XV.) Dieses, das bedeutendste Quelltal des Da-tun-gu-Tales. mündet dann rechtwinklig in das Haupttal ein, welches wieder deutlich die Merkmale einer reifen, antezedenten Talfurche aufweist. Solche Verhältnisse können nur durch lokale junge Krustenbewegungen erklärlich werden.

¹⁾ Siehe Literaturliste in Anmerkung S. 49 f und Middlemis, Hazara and Black Mountains. Mem. Geol. Surv. of India, vol. XXIV, 1890, S. 273, 285.

R. D. Oldham, Journ. Manchest. Geogr. Soc., vol. IX, 1893, S. 112. Burrard and Hayden, Geology of the Himalayas, l. c., S. 258 ff.

Bei Verfolgung des weiteren Nordlaufes der Quertalflüsse bemerkt man, daß auch am Abfall von der zweiten zur dritten Flachstufe das Gefälle der Bäche fast ebenso bedeutend wie beim ersten Gefällsbruch ist, und sogar auf dem Boden der zweiten Gebirgsstufe selbst, bleibt infolge von jugendlichen Niveauveränderungen an ihrem Rande, der Lauf ein unausgeglichener. Talstrecken der Akkumulation wechseln also mit solchen der Erosion. In diesem ungleichartigen Lauf ist das durchschnittliche Gefälle jedoch ziemlich bedeutend. Im Sangun-Tale (Unterlauf) bis hinaus nach Fukan beträgt es z. B. 23 m pro Kilometer und zieht man in Betracht, daß außen in der Steppe das Gefälle ein außerordentlich geringes ist, so ergibt sich für die Talsohle innerhalb des Gebirges sogar ein Wert von 26 m pro Kilometer. Im Mittellaufe fließen die Gewässer manchmal in ziemlich weiten Becken, die durch enge Schluchten verbunden sind, jugendlichen Erosionsrinnen, über deren Steilufern hoch oben die Schluchtränder weit auseinander treten, so daß Reste eines älteren Talbodens mit terrassierten Stufen sichtbar werden. (Da-tun-gu, Schimo-gu.)

Auch im Unterlaufe sehen wir die Flüsse in Tälern, die mehrfachen Wechsel schluchtartiger Verengung und beckenförmiger Weitung (S. 75) zeigen, wohin die höher oben
wirksamen denudierenden und transportierenden Kräfte, insbesoudere im Diluvium, Massen
jugendlicher Sedimente gebracht haben, in welchen die heutigen Bäche sich einschnitten,
wonach sie aber auch den größten Teil der jungen Ablagerungen wieder ausräumten.
Von diesen heute zu Konglomeraten und Sandstein verfestigten Bildungen wird späterhin
noch die Rede sein.

Solche Beschaffenheit dieser Quertäler deutet also auf mehrere Stadien der Talvertiefung, auf eine wechselvolle Geschichte antezedenter Flüsse, deren ehemals reife Täler infolge von jungen Gebirgsbewegungen und dadurch hervorgerufener Erneuerung oder Wiederbelebung der Erosion ihre heutige mannigfaltige Gliederung angenommen haben, wo die der Reife sich einigermaßen nähernden Strecken, die zum überwiegenden Teil in den weichen Gesteinen des Unterlaufs liegen, sich an solche des Oberlaufs anschließen, die bei ihrer Erosion in hartem Gestein sich zum Teil fast noch das Ansehen eines Jugendstadiums bewahrt haben, wobei aber für das (siehe oben) als reif bezeichnete Gebiet des Quelllaufes eine Ausnahme zu machen ist.

Daß den heutigen Tälern höchstens ein jungtertiäres Alter zukommt, geht daraus hervor, daß sie in den Angaragesteinen eingetieft sind, welche, wie ich S. 74 f darlegte, erst im Mitteltertiär in ihre heutige Lage geraten sind. Jedenfalls aber stellen sich die Talfurchen, soweit sie in den weichen Angaraschichten liegen, als konsequente Fortsetzung der in den älteren, härteren Gesteinen eingetieften Rinnen dar. Ob aber alle diese als Neubildungen anzusehen sind, die erst nach der großen tertiären Gebirgserhebung entstunden, oder sich — was wahrscheinlicher ist (siehe vorige Seite) — an ein präexistentes älteres Talnetz mehr oder weniger eng anschließen, dies mit unzweifelhafter Sicherheit zu beweisen, reichen meine Beobachtungen allerdings nicht völlig hin. Ich glaube aber aus allen bisher dargelegten Verhältnissen über die Eigenart der Talfurchen und ihren Zusammenhang mit jungen Krustenbewegungen, die Ansicht vertreten zu können, daß die alten Erosionsfurchen bei Veränderung des Reliefs zum großen Teil wieder aufgesucht wurden und daß die Erosion mit der allmählichen Hebung des Reliefs (S. 57) gleichen Schritt hielt d. h. ich halte die heutige Erosion für glazial und postglazial, die Täler selbst aber für präglazial angelegt (S. 87 u. 92). Um diese Fragen einer vollkommeneren Lösung

zuzuführen, hätte mein Aufenthalt im Gebirge ein vielfach längerer sein müssen, als er es war; auch hätten sich meine Untersuchungen auf weitere Teile des Gebirges ausdehnen müssen.

Genauere Beobachtungen konnte ich hauptsächlich im Sangun-(Da-tun-gu-)Tal machen. Im Gebiete dieses Flußlaufes und seiner Nebenflüsse vermochte ich festzustellen, daß sowohl im alten Gebirge wie im jungen infolge der mehr erwähnten, bis in jugendliche Zeit fortdauernden Gebirgsbewegungen und endlich durch die Ablagerungen der großen Vereisung auch späte Veränderungen des Laufes der Gewässer stellenweise eingetreten sind, worauf ich bei Beschreibung des Verlaufes der Reise näher eingehen werde.

Als wichtigste und auffälligste Tatsache im Entwässerungssystem der Gruppe ist hervorzuheben, daß die vereinigten Quellflüsse des Da-tun-gu im Mittellauf des Tales durch späte Moränenbildung aufgestaut wurden. Eine außerordentlich mächtige Endmoräne hat in beiläufig 2000 m Meereshöhe das Tal in seiner ganzen Breite abgesperrt und so Veranlassuug zur Entstehung des herrlichen Bogdo-Ola-Sees gegeben (siehe S. 83), dessen erste Bereisung und Beschreibung ein Verdienst der Expedition der Brüder Grum Grschimailo ist. 1) Ich kann diesen verdieustvollen Reisenden nur beipflichten, wenn sie zum Preise dieses prächtigen Gebirgssees betonen, "daß es wohl in ganz Zentralasien keine geheimnisvollere, malerischere und majestätischere Örtlichkeit gibt als diese". Die Entstehung des Sees befindet sich im engsteu Zusammenhang mit der Geschichte der letzten Vereisung des Tian-Schan, und da sie als ein sinnfälliger, wichtiger und kaum widerleglicher Beweis für das bedeutende Ausmaß dieser klimatischen Phase in der Geschichte des Tian-Schan-Gebirges und Zentralasiens gelten kann, werde ich bei Schilderung der Reise auf diese Erscheinung besonders genau eingehen.

Eine bedeutende Schwankung in der jüngeren klimatischen Geschichte des Gebirges wird auch durch den Umstand erwiesen. daß im Mittel- und Unterlaufe des Da-tun-gu-Tales, sowie in denen der anderen Quertäler die Betten der meisten Nebenflüsse heute teils gänzlich teils nahezu wasserlos geworden sind, während sie nach ihrer Gestalt als reine Erosionsrinnen erscheinen (siehe Taf. 8) und dem tiefen Niveau ihrer Mündungen nach, in noch nicht sehr weit zurückliegender Zeit ansehnliche Wassermengen den heutigen Haupttälern zugeführt haben müssen. Es ergiebt sich hieraus, daß ihr damaliger Zustaud zwar einem früheren, aber immerhin ziemlich jungen Erosionszyklus angehört, der, wie ich später nachweisen werde, mit dem vorletzten Stadium in der Vereisung des Gebirges zusammenhängt.

Im Gegensatz zum Zustand der meisten Nebenflüsse ist jedoch die Wassermenge der Hauptbäche noch immer sehr ansehulich. Noch zu Anfang August, also in der heißesten Jahreszeit, als ich das Gebirge bereiste, war dies der Fall. Es macht sich hiebei eine Erscheinung geltend, auf die ich schon öfters als auf eine Eigenart gewisser Tian-Schan-Täler hingewiesen habe, ²) daß nämlich die Wassermenge in den Flüssen zunimmt, je mehr man sich vom Gebirgsrand talaufwärts begibt. Da ich die Ursachen dieses eigenartigen Verhältnisses dort eingehender zu erklären versucht habe (siehe auch S. 78), so beschränke ich mich auf deu Hinweis, daß bei den nördlichen Bogdo-Ola-Tälern als verschärfende

¹⁾ I. c. I, S. 160 f.

²⁾ Siehe u. a. Hettners Geographische Zeitschrift, Bd. XXI, S. 14 f.

Umstände noch hinzutreten: neben sehr starker Verdunstung, die eine Folge des im Unterlaufe ziemlich ungemildert herrschenden ariden Klimas ist, hauptsächlich aber auch Versickerung in den dort ungemein mächtigen, lockeren Aufschüttungsmassen. Mit dem allmählichen Anstieg zu dem in den harten Gesteinen des alten Gebirges eingeschnittenen Mittel- und Oberlauf der Flüsse werden aber diese beiden Faktoren mehr und mehr ausgeschaltet, während anderseits die seitlichen Zuflüsse, soweit sie unmittelbar in perennierenden Schneefeldern und kleinen Gletschern ihren Ursprung nehmen, die in reihenweise angeordneten karähnlichen Nischen und ähnlichen Hohlformen liegen (siehe Karte II), dem Hauptlaufe noch immer nicht unbeträchtliche Wassermengen abliefern.

Wie ansehnlich aber auch noch immer, wenigstens am N.-Abhang, die ständige Wasserführung der Flüsse ist und wenn wir auch keineswegs außer Acht lassen dürfen, daß zur Zeit der alljährigen Frühjahrsschneeschmelze in den Quellgebieten während mehrerer Wochen hindurch diese Mengen verdreifacht und vervierfacht werden, so kann die Ausbildung so bedeutender Erosionstäler mit Wänden, die Hunderte von Metern an Höhe erreichen, wie sie uns hier vor Augen treten (Taf. 11, 13, 14), doch nicht mit der heutigen Erosionsfähigkeit der Flüsse befriedigend erklärt werden. Wir müssen vielmehr zur Erklärung solcher Verhältnisse eine die heutige vielfach übertreffende Wasserführung annehmen, die zum Teil schon in präglazialer Zeit mächtig an der Ausgestaltung der Täler arbeitete (S. 87, 92, 96), anderseits aber auch mit der im vorigen Kapitel in ihren allgemeinen Zügen besprochenen diluvialen Eisbedeckung des Gebirges zusammenhängt, welche die jetzige Vergletscherung um das Vielfache übertroffen hat. Zwischen der Wasserführung der Flüsse und dem Ausmaße der Vereisung des Gebirges, d. h. dem periodischen Sinken oder Ansteigen der Schneegrenze hat natürlicherweise stets ein enger Zusammenhang bestanden und dies ist in der ausgesprochen ariden Klimaperiode, unter deren Einfluß das Gebirge jetzt steht, noch mehr als früher der Fall. Es entsprechen beispielsweise die obenerwähnten, noch nicht lange ausgetrockneten Betten einmündender Nebentäler zweifellos dem völligen Schwinden der Firneislager iu ihren Quellgebieten und die verminderte Wasserführung anderer, dem starken jetzigen Rückzug von Nebengletschern, von denen (siehe S. 88f.) schon erwähnt wurde, daß sie das Niveau der Haupttäler jetzt nicht mehr erreichen, deren ältere Grund- und Endmoränen aber andeuten, daß dies vor nicht sehr langer Zeit noch der Fall war, während das Fehlen von Stirnmoränen an den meisten heutigen Gletscherenden den jetzigen rapiden Eisrückzug bekundet (S. 83, 86). Solche Erscheinungen bezeichnen daher ein der allerjüngsten Vergangenheit angehöriges Stadium der Erosionsgeschichte der Bogdo-Ola und sind beweiskräftig für eine noch bis in die neue Zeit hinein anhaltende Verschlechterung der klimatischen Bedingungen. Die rasche Zunahme dieser Verschlechterung hat den Flüssen nicht mehr Zeit zu erheblicher Arbeit gelassen, wie aus dem geringen Ausmaße rezenter Erosion hervorgeht, welche ich in verschiedenen Tälern beobachten konnte. Beispiele hiefür werde ich später anführen. Bei der außerordentlichen Schwankung in der Wasserführung aller Bogdo-Ola-Flüsse, die, wie hervorgehoben (S. 93 f.), zu Zeiten von nicht genau bestimmbarer Durchschnittsdauer ungeheure Wassermengen der Hochgebirgsschneedecke zu Tal führen, zu anderen Zeiten aber (wenigstens einige von ihnen) nahezu austrocknen, ist es natürlich ganz unmöglich, auch nur annähernde Durchschnittswerte für mittlere monatliche oder tägliche Wasserführung zu berechnen. Die Periodizität der Wasserführung ist ja überhaupt ein Merkmal

arider Gebiete. Diese hier geschilderten Verhältnisse sind natürlich in den dem Da-tun-gu-Tal parallel verlaufenden Nachbartälern aunähernd dieselben, wie ich auch aus dem mir von Dr. Gröber erstatteten Berichte über die Täler Dön-chon-dse und Du-dun-dse, die er allein durchwanderte, entnehmen konnte. Auf den Lauf des Schimo-gu, dessen Tal ich nicht bereiste, vermochte ich aber Einblicke von beherrschendem Standpunkt zu gewinnen. In allen diesen Tälern werden Erosionsperioden oder Zyklen durch Terrassen bezeichnet, welche Kunde mehrfachen Wechsels von Seiten- und Tiefenerosion erbrinen, deren Ende der heutige Miuimalstand der Wasserführung ist. Verschlechterung des Klimas, dadurch herbeigeführter Rückzug des Eises im Gebirge, d. h. Ansteigen der Schneegrenze und Abnahme der Wasserzufuhr in die Flüsse sind die bezeichnenden Merkmale. Andererseits beweist die jetzige Unausgeglichenheit der Talfurchen, wie mehrfach betont wurde, eine späte Erneueruug der Erosion. Die Ursache ist in andauernder Senkung des Gebirgsrandes im N. zu suchen oder auch in fortdauernder Hebung des Gebirges, worauf in dem vorhergehenden Kapitel und in diesem wiederholt hingewiesen wurde. Ein Anzeichen für junge Senkung des Vorlandes konnte ich besonders bei unserer Einbruchsstation ins Gebirge, bei dem Städtchen Foukan, beobachten, wovon im Kapitel XV die Rede sein wird. Auffällige Gegensätze treten in der Ausgestaltung von einzelnen Teilen der Talfurchen hervor: Während in den äußereu Teilen der nördlichen Täler, wo die Einwirkung des ariden Klimas noch wenig gemildert ist (S. 97), hauptsächlich dieser Umstand im Charakter und Ausformung der Talränder zum Ausdruck gelangt, wirkte auf die Form der inneren und höchsten Teile die frühere und jetzige Vergletscherung mächtig ein. Eiswirkung und Wüstenbildung sind also iu diesen nördlichen Tälern die ausgestaltendeu Agentien.

Betrachten wir nun die Eutwässerung des Südabhanges der zentralen Gruppe, so finden wir dort eine noch größere Einfachheit der Verhältnisse, welche auf den weit gleichmäßigeren und schroffereu Abfall des Baus (S. 40, 89) gegen die tiefe Längsfurche des großen zentralasiatischen Grabenbruches zurückzuführen ist (siehe S. 3, 12, 40 f.). Von der auch auf ihrer S.-Seite stark vereisten Hauptwasserscheide ziehen eine Anzahl Quertäler herab, die rasch zu bedeutender Tiefe absinken (S. 90). Von ihnen habe ich nur zwei kennen gelernt und zwar das Tal Gurban-bogdo und das Chigo-Tal, was immerhin schon einen Fortschritt bedeutet gegeuüber unseren bisherigen rein negativen Kenntnissen von diesen Verhältnissen in der zentralen Bogdo-Ola. Ich habe in Kap. VI hervorgehoben, daß gerade auch in den wichtigsten neueren Karten russischer Herkunft für den S.-Abhang der Wasserscheide überhaupt keine Flußtäler eingetragen sind. Wir finden zwar weiter im S. für die Gegend um Turfan, Kendyk, Tok-sun etc. in der 40 Werst-Karte und den auf ihr beruhenden Routenkarten Roborowskys (siehe S. 28) Wasserläufe eingezeichnet; es ist aber nicht ersichtlich gemacht, wo sie im Gebirge ihren Urspruug nehmen. Die auf den Flauken des Hochgebirges liegenden Quellgebiete jener Flüsse konnten von den rekoguoszierenden russischen Topographen nicht eingesehen werden, weshalb sie es unterließen, in die 40 Werst-Karte auch nur eine Audeutung von der Entwässerung des S.-Abhanges zu geben, während wir sie schon in der alten Klaproth'schen Karte (siehe S. 33) nach alten chinesischen Quellen, wenigstens mit annähernder Richtigkeit, wie ich mich überzeugen konnte, dargestellt finden.

Am meisten Detail in dieser Hinsicht findet sich noch in der ebenfalls schon erwähnten (S. 28) und übrigens auch sonst verlässigen Kartenskizze, welche Roborowsky von der

Luktschun-Senke entworfen hat.¹) Die Zuflüsse werden dort als in einer Vorkette, Karlyktagh, entspringend oder sie durchbrechend dargestellt. Dieser Karlyk-tagh findet sich aber in keiner anderen Karte und dürfte wohl mit der Kette des Dschargöß-Tau identisch sein. Jedenfalls blieb es erst meiner Expedition vorbehalten, die hauptsächlichsten Entwässerungsadern des S.-Abhanges festzulegen und nachzuweisen, daß von der wichtigsten Depression im Hauptkamme (siehe S. 37 uud 81 f.) dem Gurban-bogdo-Paß (3645 m) ein tief eingeschnittenes Tal nach S. zieht, auf welches ich daher in Ermanglung einer andern Bezeichnung den Namen des Passes übertrug. Nur dieses Tal vermittelt -- wenigstens in der kurzen Sommerszeit - einen Übergang über das zentrale Gebirge, der, wenn er auch mit nicht unerheblichen Schwierigkeiteu verbunden ist, doch öfters von Lasttieren und Herden begangen wird. Kirgisen des Sayan-Gebietes (siehe später), die mit ihren Herden. allerdings nur für 4-6 Wochen im Jahre, die entlegeneren Täler des Gebirges aufsuchen, pflegen öfters diesen Übergang zu benützen. Da überdies die Chinesen au einer Stelle im Mittellauf des Tales seit langer Zeit Kupfer abbauen und verschmelzen (siehe S. 92), wo sie früher Hunderte von Arbeitern beschäftigt haben, mag es rätselhaft erscheinen, daß auch nirgendwo in der Literatur von diesem Tale oder diesem Passe etwas zu finden ist. Wiewohl ich die wesentlichen orographischen Züge des obersten Laufes des Paßtales bereits im vorigen Kapitel im Zusammenhang mit der Eisbedeckung geschildert habe, empfiehlt es sich, sie kurz rekapitulierend vom Gesichtspunkte der Erosionsgeschichte nochmals zu betrachten.

Der höchste Teil, das Ursprungsgebiet des Gurban-bogdo-Tales, liegt noch in der Gletscherregion. Unmittelbar unter dem Passe mündet die an Mächtigkeit nur mehr ein Minimum ihres einstigen Bestandes darstellende Endzunge des großen N.-Gletschers, des Grum-Grschimailo-Gletschers in ein Trogtal ein, welches von ihr früher bis nahe zu seinem Unterlaufe ausgefüllt war. Jetzt reicht sie nur mehr weuige Kilometer hinab und bedeckt die in diesem Teile schwach geböschte und uur einige hundert Meter breite Talmulde nahezu, welche überdies ganz wesentlich durch hohe Moränenwälle eingeengt und weiterhin von den Abwassern dieses Gletschers, vereint mit denen der Gletscher des im W. des Passes ragenden Pik Schokalsky durchflossen wird. Die so beschaffene Rinne mündet aber schon nach etwa 50-60 m steilen Laufes auf eine Stufe aus, ein großes, von felsigen Uferwänden und davor gelagerten Moränenanhäufungen eingeschlossenes flaches Becken, das ehemals von einem See eingenommen wurde (Taf. 10, Fig. 1), dessen Boden nun zum größten Teil trocken, von Blöcken und Trümmern aufgefüllt ist (S. 83). In diesem Trümmermeer verteilen sich die herabstürzenden Gewässer zu vielen flachen Tümpeln, sammeln sich aber am südlichen Ende dieser Talstufe in einer Rinne und stürzen nun in kurzen Stufen bis zu etwa 270 m unter der Paßhöhe ab, wo das Gefälle durch eine mehr als 1 km lange, nahezu ebenso breite, nur unbedeutend nach S. geneigte Talstufe von beckenförmiger Gestalt gebrochen wird. Diese Hohlform wird größtenteils (S. 84) von einem durch Moränen abgedämmten See eingenommen. (Taf. 10, Fig. 4 und Taf. 14, Fig. 3). Das Tal wird hier bald durch schroffe Felsmauern eingeschnürt, die in ihrer ganzen, mehrere hundert Meter betragenden Höhe bis zum First von Gletschereis in typischer Rundhöckerform geschliffen

¹⁾ Zwischen ihr und der Darstellung dieses Gebietes in der 40 Werst-Karte zeigen sich wesentliche Unterschiede sowohl in der Darstellung des Terrains als im Laufe der Flüsse und ganz besonders auch in der Namengebung.

sind. (S. 84, 91.) Nur so weit wurde der Stufenbau im vorigen Kapitel schon erörtert; es setzt sich auch weiterhin fort: Der Abfluß des Sees stürzt über 4—5 kleinere Steilabsätze (siehe Taf. 11) von insgesamt 30 m Höhe zu einer dritten ähnlichen, etwas kleineren Terrassenstufe ab, in welcher sich als Reste eines ehemaligen, auch durch eine Stirnmoräne abgedämmt gewesenen Sees nur mehr kleine, rasch der Auffüllung eutgegengehende Wasserpfützen befinden.

Nach weiteren 25 m Steilabsturz folgt abermals Gefällsbruch, den der mit feinerem Material aufgefüllte flache Bodeu eines ausgeflosseneu Moränensees einnimmt und nun stürzt der Gletscherbach nochmals über vom Eis verlassenen, typisch erhaltenen Rundhöckern ab (siehe Taf. 10, Fig. 3) und erreicht eine über 1½ km in Länge bei mehr als ¹/₂ km Breite messende, nach S. ziemlich geneigte Talstufe, die ehemals von einem durch eine Stirnmoräne des Rückzugsstadiums abgedämmten großen See eingenommen war. Als ansehnlicher Rest hievon hat sich in eiuem Felsbecken bis heute ein etwa 1/2 km langer und 400 m breiter flacher See erhalten (Taf. 10, Fig. 2). dessen Ausfluß einen weiter talwärts liegenden, um über die Hälfte kleinereu speist. Dieser in etwa 3000 m Höhe liegenden Wasserfläche erst entströmt der Gurban-bogdo-Fluß und fließt nun durch ein etwa 1/2 km breites Tal in steilem Gefälle weiter nach S. Das Talgefälle wird dann nach etwa 100 m noch einmal durch eine kleinere Stufe gebrochen und sinkt erst weiterhin gleichsinnig in einem etwa 12 km langen, ziemlich ausgeglichenen Laufe gegen S. ab mit einer Neigung von ungefähr 90 m pro Kilometer. (Siehe auch S. 56, 91.) Ein solch vielfacher Stufenbau des Oberlaufes, auf den ich später noch näher eingehen werde, sowie die typische Trogform, wie sie aus den Abbildungen Taf. 14, Fig. 2 und 3 ersichtlich ist. sprechen allerdings auf das deutlichste für die glaziale Vergangenheit dieses Tales, lassen sich aber meines Erachtens durch sie allein doch nicht befriedigend erklären. 1) Die präglaziale erste Anlage dürfte wohl zweifellos sein (Taf. 3 und 13); doch nur junge Hebung des zentralen Kammes, verbunden mit Absinken des Gebirgsfußes, mögen dieses vielgebrochene Talprofil geschaffen haben ehe die glaziale Tätigkeit eingriff, welche sodann mit der des fließenden Wassers mehrfach gewechselt hat. Die zahlreichen, noch immer erhaltenen Felsstufen beweisen aber jedenfalls, daß die Menge des heute darüber hinfließenden Wassers nicht mehr imstande ist, eine regelmäßige Gefällskurve herzustellen und sind daher ein Denkmal der Klimaverschlechterung.

Die Umwallung des Gurban-bogdo-Tales ist ungemein steil; vollständig kahle Felswände mit einer durchschnittlichen Erhebung von 900—1000 m über der Sohle und mit nur wenig zurücktretenden oberen Rändern begleiten den annähernd nach S. gerichteten Lauf. Die Breite des Tales ist wechselnd von 1/2 bis zu 1 km und übersteigt in seinem langen Laufe den Betrag von 1 km nur in zwei verhältnismäßig geringfügigen Weitungen von beckenförmiger Gestalt. Seinem allgemeinen Charakter nach ist das Tal daher eher als Schlucht zu bezeichnen, die, wie erwähnt, namentlich in ihrem Oberlaufe die typische glaziale Trogform zeigt.

Der wasserreiche Fluß ist in der überwiegenden Strecke seines Laufes in Moränenschutt eingeschnitten von solcher Mächtigkeit, daß er. soweit meine Beobachtungen

¹⁾ Es bieten sich eben keine Anzeichen, welche auf Konfluenzstufenbildung hinweisen oder andere, die sonst bei alpinen Stufentälern festgestellt wurden. Vielleicht kommen Unterschiede in der Härte des Gesteins in Frage? Erwiesen konnten auch diese nicht werden.

reichen, nur an zwei Stellen (S. 91 f.) den anstehenden Fels berührt. Zwei Stufen von Terrassen übereinander liegen in diesem Glazialschutt, tiefer talwärts aber schon zum Teil in fluvioglazialem Schotter, und begleiten, zum Teil am rechten, zum Teil am linken Ufer gut erhalten, den Lauf des Flusses. Die Terrassenflächen sind zum Teil gut erhalten, auf langen Strecken in entsprechend gleichen Niveaus zu verfolgen.

Nach etwa 14 km seines Laufes durchbricht der Fluß eine besonders mächtige Anhäufung von Moränenmaterial, wodurch sein Lauf scharf nach SO. abgelenkt wird, so daß er steilgestellte alte Tonschiefer in einer engen, sehr jungen Schlucht durchbrochen hat. Diese auch tektonisch interessante Stelle wird in Kapitel XVII näher beschrieben. Nachdem der Fluß diese mehrere Kilometer lange Einschnürung verlassen hat, verlieren die Talränder ihren bisherigen, ziemlich ausgeglichenen Charakter und nehmen sehr unregelmäßige Form an, hervorgerufen durch Auftreten lokalbegrenzter Störungen im Gebirgsbau, die mit der Entstehung der öfter erwähnten zentralasiatischen Grabensenke zusammenhängen. Der bisher geschlossene Faltenbau des Gebirges ist hier durch kleinere Längsbrüche in einzelne Schollen zerlegt, die zum Teil überkippt oder verbogen und seitlich verschoben sind. Einzelne von ihnen sind zwar aus ihrem Zusammenhang gelöst. aber nur wenig aus ihrer ursprünglichen Lage gebracht. Diese unregelmäßige Anordnung des Ufergebirges verleiht auch der Talgestalt rasch wechselnde Formen. Die einmündenden Quertäler auf der linken Uferseite, folgen den Längsbrüchen, welche jedoch gegen das rechte Ufer des Haupttales abstoßen. Es zeigen sich zwischen den östlichen und westlichen Uferwänden wesentliche Anomalien im Streichen der Schichten. Diese Erscheinungen können als sicherer Beweis dafür angesehen werden, daß das Haupttal zum mindesten auf dieser Strecke - und nach anderen Anzeichen zu schließen, auch schon höher oben - einem Querbruche folgt (hievon später mehr). Erst in einem tieferen Niveau sieht man die Verwerfung auch auf das rechte Ufer übergreifen.

Die Richtung des Flußlaufes wird innerhalb der Störungszone mehrfach abgelenkt, geht jedoch außerhalb dieses Bereichs weiter im S. im beiläufigen Niveau von 2300 m. wo das Tal sich zu einem über 1½ km breiten Becken erweitert, allmählich wieder in die beiläufige meridionale Richtung über. Hier nehmen nun die bisher sehr steilen und kaum unter 800 m absinkenden Talränder rasch an Höhe ab und erheben sich bald nur mehr wenig über 400 m über das Niveau der Talsohle, da der ganze Komplex des Gebirges jetzt energischer gegen die Tiefe des großen Bruches im S. absinkt. Das Gefälle der Talsohle aber beträgt im Gegensatz hiezu hier nur mehr 45 m pro Kilometer, weil die Tiefenerosion des Flusses infolge der außerordentlichen Akkumulation von Schuttmaterial in der Talweitung nicht mehr mit der gleichen Energie nach der Tiefe arbeitete, sondern mehr in Schwingungen nach den Seiten. Das Tal ist dort mit Schottern fluvioglazialer Entstehun gaufgefüllt, die eine Mächtigkeit von wohl 150 m haben (S. 91 f), worin der Fluß sich durchschnittlich nur bis zu einer Tiefe von 80—100 m eingeschnitten hat bei einer Wasserbreite von beiläufig 25 m und bei Ausbildung eines Bettes von 150 bis 200 m Breite.

Die allmählich niedriger werdenden Ufergebirge sind in Längsbruchschollen von NO.- bis SW.-Verlauf aufgelöst, wodurch jetzt dem Fluß und seinem Tal eine südwestliche Richtung aufgedrängt wird. Bald nach einer verlassenen chinesischen Kupferschmelze (S. 92, 100 und Taf. 14, Fig. 1) sind vom alten Gebirge nur mehr niedrige Ketten zu

sehen; es ist nahezu versunken oder in auseinandertretende kurze Züge von WSW.- und OSO.-Richtung aufgelöst, während der Talboden von einer weiten Ebene (beiläufiges Niveau beim Austritt aus dem Gebirge 1350 m) von Wüstensteppencharakter gebildet wird. Mit einem durchschnittlichen Gefälle von etwa 30 m pro Kilometer dacht diese Ebene gegen S. ab, wo sie ebenso wie die Gebirgsränder mehr und mehr zum Schauplatz kaum mehr gemäßigter Einwirkung der atmosphärischen Kräfte des Trockeuklimas wird. Das lockere Aufschüttungsmaterial, Sand und Staub, sind dort iu steter Bewegung und verschütten mehr und mehr die kahlen, abgetragenen, gleichmäßig auslaufenden Ketten. Man sieht, wie Ablagerung von Löß auf den weit zurückliegenden Talrändern bei jeder heftigeu Bewegung des Luftmeeres stattfindet, was übrigens auch am N.-Raud der Fall ist (S. 76). Was von der Tätigkeit der eiszeitlichen Vergletscherung in diesen tiefen Teilen des Tales einstens vorhanden gewesen sein mag, ist natürlich längst der Zerstörung anheimgefallen (S. 93).

Als uumittelbare Umraudung des breiten Flußbettes erscheinen jetzt fast söhlig gelagerte, junge Bildungen, Sandsteine und feinkörnige, stark tonige Konglomerate (S. 76 f., 80), die mit 15—20 m hohen Steilwändeu zum Flußbett abfalleu; ihr Hangendes ist eine nach allen Richtungen gleichmäßig sich erstreckende Tondecke von etwa 1 m Mächtigkeit und wechselnd feinsandiger oder nur toniger Beschaffenheit, die aber in unregelmäßiger Weise von gröberem und feinerem, überwiegend kantigem, weniger mit abgerolltem Gebirgsschutt überdeckt ist.

Zwei hintereinauder ansteigende Terrassenstufen (s. vor. S.) machen sich auch in diesen Ablagerungen bemerkbar, wovon im Kapitel XVII mehr berichtet wird. In größerer Entfernung vom Fluß zeigen sich im SO. flache Bänke schlamuigen, lehmigen Materials, vermischt mit meist feinkörnigen Gesteinsfragmenten; die Beschaffenheit dieser Ablagerungeu läßt sie unzweifelhaft als Seeablagerungen erkennen. Der Flußlauf nimmt hier sehr unregelmäßige Formen an; in den großen Mengen lockeren Aufbreitungsmaterials versickern seine Wasser mehr und mehr, wäbrend sie au anderen Stellen wieder zutage treten und aufgestaut erscheinen. Dies mag eine Folge von Auskolkuugen sein, die bei Hochwasser entstehen. Bei dem hohen Betrag der Verdunstung in dieser überhitzten Tiefe nimmt die Wasserunge aber schon sehr bedeuteud ab, uud bald entschwand der Fluß im S. meinem Blick, da mein Weg (siehe Karte I) mich nunmehr gegen SW. von ihm hinwegführte. Aus eingezogenen Erkundigungen, die aus verschiedeuen Quellen stammen, aber übereiustimmend lauten, und die mit den Angaben. die - auf verschiedeuen, namentlich ältereu Karten zerstreut - von mir gesammelt wurden, im Eiuklang sind, scheint es aber festzustehen, daß der Gurban-bogdo-Fluß in einem beiläufig nach S. gerichteten Lauf sich am N.-Fuße des Dschargöß-Gebirges (siehe S. 30 und 33) mit den zwei anderen, den S.-Abhang der zentralen Bogdo-Ola entwässernden größeren Wasserläufen, dem Chigo und dem Naitak-su vereint. Die Gewässer der durch ihre Vereinigung an Erosionskraft verstärkten Flüsse durchbrechen die felsige Dschargöß-Kette nahe der Stelle ihrer niedrigsten Einsattlung, dem Dawan-tschin-Paß (1063 m), in einer tief eingesägten Engschlucht und fließeu der tiefen Seuke des zentralasiatischeu Grabens zu. 1) In der Nähe der Stadt

¹⁾ Obrutschew, Zentralasien, l. c. II, S. 640, 641. Dieser Durchbruch gehört übrigens einem früheren Erosionszyklus an. Der heutige Fluß hätte ihn nicht zustande gebracht; die Entstehung der Bresche fällt noch in die feuchtigkeitsreichere Vergangenheit Zentralasiens.

Toksun verzweigt sich aber dieser Wasserlauf wieder in mehrere Arme, die in dem großen Sumpfsee Bodschante-kul (siehe Anmerkung S. 3) verschwinden. Schon vor dem Durchbruch aber tritt zur Zeit des Hochwasserstandes der vereinigten Flüsse, — wie stets bei Flüssen, die auf reich vergletscherten Hochgebirgen entspringen und mit starkem Gefälle unmittelbar in überhitzte, von aridem Klima beherrschte Ebenen ausmünden, nimmt auch die Wasserführung dieses Flusses leicht einen katastrophalen Charakter an, (S. 93f.) — das Überwasser aus, versumpft das umgebende Niederland und hinterläßt in ihm periodische Wasserläufe. Ein solcher fließt von der Durchbruchsstelle nach NW. und speist dort Sumpfseen, von denen in Kap. XVII Näheres berichtet wird.

Auf Grund dieser Beobachtungen wurde der Verlauf des Flusses in den Karten dargestellt. Wie schon aus dem Kartenbild zu entnehmen ist, hat hier am Gebirgsrande in einer durch Einbruch entstandenen Hohlform von 12-1300 m mittlerem Niveau des Bodens, von etwa 100 km Länge und durchschnittlich 20 km Breite, welche die typischen Züge einer Wanne des Trockengebietes zeigt, ein See gestanden, von dessen Ablagerungen schon mehrfach berichtet wurde (S. 80, 92). Die Räuder dieser Hohlform werden gebildet von Steilmauern der Dschargöß-Kette im S. und O., vom Südabfall des Bogdo-Ola-Gebirges im N. und von den ausstrahlenden Zügen des östlicheu Tian-Schan im W. und schloßen ein flaches Wasserbecken ein, wie sie während der sogenannten Hanhai-Periode (siehe Kap. X),¹) am Südfuße des Tiau-Schan entlang zahlreich vorhanden gewesen sind. Nach dem Befund der Ablagerungen zu schließen, scheint aber dieser See auch noch bis in die Diluvialzeit hinein und darüber hinaus bestanden zu haben; zu jeuer Zeit war ja der ganze heute so trockene Südabhang des Tian-Schan noch von einem wesentlich feuchteren Klima begünstigt (S. 78, 90 f.).

Damals haben sich aus den umrandenden Gebirgen zahlreiche Wasserläufe in dieses Becken ergossen, wie die tiefen, jetzt trockene Schluchten in den Felsrändern erweisen, während der Abfluß durch die erwähnte tiefe Lücke im südlichen Beckenrand, dem Dawantschin-Paß (siehe vorige Seite) nach dem weit tiefer gelegenen und ausgedehnteren alten Seebecken von Turfan stattfand. Von allen graphischen Darstellungen der zentralasiatischen Grabensenke finde ich nur in dem schon rühmend erwähnten Kärtchen Roborowskys (S. 100 f.) die Richtung dieses alten Wasserlaufes, wenn auch nur skizzenhaft, eingetragen.

Nur verhältnismäßig wenige Zuflüsse erhält das Gurban-bogdo-Tal auf seinem langen Laufe. Von denen des Oberlaufes wurde schon früher das Wichtigste mitgeteilt; sie führen, weil sie aus den Gletschern ihres Quellgebietes noch immer ziemlich kräftige Ernährung erfahren, ihre Gewässer in gleichsohligen Mündungen dem Hauptflusse zu. Hingegen sind die meisten kleineren Seitentäler des Mittellaufes, sogar auch die, in deren Hintergrund noch immerhin nicht unansehnliche Nebengletscher herabziehen (siehe S. 88, 90), wie ein Blick auf die Abbildungen Taf. 3 und 13 zeigt, hängend geworden und eine Anzahl anderer Rinnen, welche die Talwände zerteilen, sind nun ebenso, wie ich dies von den Seitentälern des Da-tun-gu-Tales im Norden hervorgehoben habe (S. 98), heute wasserlos. Aus dem Umstande, daß durch das Haupttal von den großen, wenn auch schon ungemein stark geschwundenen Gletschern seines Ursprungs noch immer ziemlich ansehnliche Wassermengen herabgeliefert werden, welche noch einigermaßen einschneiden, während

¹⁾ Siehe meine Darlegungen in Hettners Geographischer Zeitschrift, l. c., S. 17. Abh. d. math.-phys. Kl XXVII, 5. Abh.

die den Nebengletschern eutströmenden kleineren Bäche kaum noch eine in Betracht kommeude erodierende Kraft entwickeln, wäre die fortschreitende Übertiefung des Haupttales allein schon zu erklären. Auf die Frage aber, ob an dem sichtbar bedeutenden Betrag der Übertiefung des Haupttales mehr die glaziale oder die postglaziale Arbeit Anteil hat, will ich in diesem Fall nicht weiter eingehen. Ich müßte die viel umstrittene Frage der Übertiefung der Alpentäler berühren, halte es aber für richtiger, einen Bericht über Beobachtungen auf einer Forschungsreise, soweit als es vermieden werden kann, nicht mit allgemein theoretischen Auseinandersetzuugen über diese und verwandte Fragen zu beschweren. Speziell im Falle des Gurban-bogdo-Tales mag als ein die Übertiefung fördernder Umstand andauerndes langsames Sinken der Erosionsbasis am Rande oder fortschreitende Hebung im Zentralgebiet mit Anteil haben, was in Übereinstimmung stehen würde mit der von mir als wahrscheinlich angenommenen Fortdauer vou Krustenbewegungen bis in unsere Zeit hinein.

Zur Zeit des Endes der letzten Hauptvereisung des Gebirges mündeten die Nebentäler des Gurban-bogdo-Tales noch gleichsohlig zum Haupttale ein, da die aus jener Zeit stammenden Endmoränen einiger Nebentäler sich an entsprechende Stirnmoränen der Rückzugsperioden des Hauptgletschers aufgestaut haben. Ich habe eine hierauf bezügliche Beobachtung bereits mitgeteilt (S. 90) und werde von einer weiteren ähnlichen im Kap. XVII berichten. Auch im Gurban-bogdo-Tal war daher, ganz ähnlich wie ich es für deu Nordabhaug vom Da-tun-gu-Tale (S. 98) angenommen habe, mit dem Ende der letzten Vereisung die Erosion in den Nebentälern nahezu zum Stillstand gelangt. Die Klimaveränderung trat rasch ein und war endgiltig. Die Betten der Nebentäler haben aber jedenfalls schon zu jener Zeit geriugere Tiefe besessen wie das des Haupttales, da der Hauptgletscher mit seiner enormen Eismasse viel kräftiger auf seinen Untergrund eingewirkt hat, als die Nebengletscher auf ihre Unterlage. Ein Teil der heutigen Höhenunterschiede zwischen den Böden von Haupttal und Nebentälern darf also wohl auf Rechnung dieses Umstandes gesetzt, ein anderer Teil aber auch der postglazialen Übertiefung durch fließendes Wasser zugeschrieben werden. Nach den Terrassen in den Glazialablagerungen des Haupttales zu schließen (S. 92, 103), darf für die Wasserführung des Flusses nach dem Ende der letzten Hauptvereisung noch eine starke Erosiouskraft angenommen werden. Aber die Verschlechterung des Klimas, der Rückzug des Eises sogar in den höheren Lagen des Gebirges muß sich doch, wie ich aus der ausgezeichneten Erhaltung der Rundhöcker auf der Talsohle des Oberlaufes glaube schließen zu dürfen, verhältnismäßig rasch vollzogen haben (S. 99 u. Taf. 10 Fig. 2 u. 3). Iu der hierauf folgenden Klimaperiode war die erosive Leistung des Wassers nur mehr gering; das vom heutigen Fluß in die vom Eise geschliffenen Felsen des Talgrundes eingetiefte Bett ist unbedeutend (S. 102), eine schwache Rinne in einem breiten Tal (siehe Taf. 11).

Daß in anderen Teilen des Tian-Schan auch bedeutende, durch Wassererosion hervorgerufene postglaziale Übertiefung manches Haupttales zustande kam, darauf habe ich, soweit das Bayumkol-Tal in Betracht kommt, früher schon hingewiesen¹) und vermöchte noch eine Auzahl weiterer Beispiele hiefür anzuführen.

Im S. des Lagers g der Karte II, wo der Fluß laut vorhergegangeuer Schilderung mehr nach der Breite als in die Tiefe erodiert, zeigen sich im rechten Talrande einige

¹⁾ Vorläufiger Bericht in Petermanns Mitteilungen, Ergänzungsheft 149, l. c., S. 12f.

107

Trockenbetten von bedeutendem Ausmaße, die nur mehr periodisch, dann aber noch immer bedeutende Wassermengen führen dürften, da sie sich auch jetzt dem Haupttale in Flachmündungen vereinen.

Von den anderen Quertälern des S.-Randes habe ich nur das Chigo-Tal genauer kennen gelernt. Ich schilderte bereits auf S. 87, daß sein Oberlauf, ein grabenartiges Engtal, von dem längsten der Bogdo-Ola-Gletscher ausgefüllt wird, sowie dessen nähere Verhältnisse. Soweit ich das Tal von einem dreimal erstiegenen, vergletscherten Gipfel (4530 m) an seinem W.-Rande und von anderen Punkten im gleichen Kamme aus überblicken konnte, entspricht, abgesehen von den Verzweigungen seines höchsten Ursprungsgebietes (siehe Panorama Taf. 3), die Gestalt des Oberlaufes beiläufig jener des Gurban-bogdo-Tales, d. h. es zeigt wie dieses in seinem Ursprungsgebiet und obersten Lauf jähen, doch gestuften Abfall der Sohle, wonach zunächst noch ziemlich steiler, aber fast ausgeglichener Lauf anhebt, während im Unterlauf die Neigung nur mehr gemäßigt ist. Natürlich kann die Stufengliederung, weil sie noch unter einer mächtigen Eisdecke begraben liegt, nicht in gleicher Weise hervortreten und überhaupt kann das Relief daher nicht so vielgestaltig und scharf herausgearbeitet erscheinen, wie in der schon lange vom Eise verlassenen und der Einwirkung der Atmosphärilien und des Wassers ausgesetzten Sohle des Gurban-bogdo-Tales, ist aber immerhin selbst in der Gletscherdecke erkennbar (Taf. 12 Fig. 1.) Das Stufenrelief der Sohle im Oberlauf beider Täler könnte einem Wechsel von normaler mit glazialer Erosion zuzuschreiben sein, der schon stattfand bevor letzte Verhüllung durch die diluviale Vereisung eintrat (S. 102).

Der westliche Talrand des Chigo-Tales sinkt von ca. 6000 m in seinem Ursprungsgebiet mehrfach tief geschartet, aber im ganzen mit ziemlich gleichmäßiger Kammlinie bis zu dem von mir erstiegenen Gipfel (4530 m), von dort an aber auf eine Länge von 8 km, soweit ich ihn überblicken konnte, mit bedeutenden Anschwellungen, unterbrochen von Depressionen. noch bis zu ca. 3800 m ab. Der östliche Talrand dagegen (siehe Panorama Taf. 3) ist durchschnittlich um 800 m höher (S. 88). Für den gegenüber meinem hohen Standpunkt (siehe Karte III) ragenden höchsten Teil des formenreichen Kammes konnte ich eine Höhe. die 6000 m noch übersteigt, durch Peilung feststellen. Es findet dann zunächst ein jähes Absinken bis 5000 m statt, weiterhin aber erniedrigt sich dieser Rand bis über das Gletscherende hinaus kaum mehr bis unter 4000 m. Schon im Oberlauf (S. 90) und besonders im Unterlauf (S. 103) wesentlich niedriger sind ja die beiden Randketten des Gurban-bogdo-Tales; dies hängt mit dem mehrfach erörterten, allmählichen Einsinken der ganzen Gebirgsmasse gegen W. hin zusammen. (Siehe Kap. VII.) Die mittlere Höhe der Talsohle, soweit sie von Gletschereis bedeckt ist, vermochte ich nur von einem 4255 m hohen Sattel (siehe Karte III) im Westwall aus zu schätzen. Ich nehme hiefür einen Wert von ca. 3300 m an, während die mittleren Werte für die Kammhöhe an der Westseite auf 4000 m, für den Ostrand auf 4800 m zu veranschlagen sind. Demnach hat das obere Chigo-Tal die Form einer ca. 1200 m tief eingeschnittenen Schlucht. Der sehr hohe und überdies nur verhältnismäßig wenig Gliederung zeigende Abfall der Talränder und das nicht beträchtliche Zurücktreten ihrer obersten Teile spricht neben den schon erörterten anderen Merkmalen für eine tektonische Anlage dieser Talfurche, vermutlich durch Bruch, und läßt sie daher als eine Bildung älterer Entstehung erscheinen (S. 87, 92). Den Unterlauf des Tales sowie die Ebene an seinem Ausgange habe ich nicht betreten (S. 88); doch kann ihre

durchschuittliche Höhe kaum wesentlich von der am Ausgang (S. 104) des parallelen Gurbanbogdo-Tales differieren, also etwa 1400 m betragen. Dies ergibt einen mittleren Wert des Gefälles für den Mittel- uud Unterlauf von etwa 85 m pro Kilometer, was sich den früher (S. 90 f., 102, 103, 104) für das Gurban-bogdo-Tal mitgeteilten Werten nähert. Daß auch im Chigo-Tal fast analog mit den für das parallele Gurban-bogdo-Tal eben geschilderten Verhältnissen die glazialen Seitentäler hängend geworden sind, darüber habe ich (S. 88, 90, 106) bereits das Wichtigste mitgeteilt.

Außerhalb seines Gletscherlaufes konnte ich, wie erwähnt, das Tal uicht mehr verfolgen. Die Richtung des Unterlaufes des Chigo-Flusses, wie sie in den Karten sich eingezeichnet findet, ist (siehe S. 105) das Ergebnis von Peilungen und sorgfältigen Erkundigungen. Auch hinsichtlich der Darstellung der anderen Talfurchen des Südabhanges in den beiden Karten muß betont werden, daß sie Ergebnisse des Überblicks und der Peilung von hochgelegenen Punkten aus sind, zum Teil aber auch auf Erkundigung beruhen. Als bemerkenswert führe ich noch an, daß ich auf meinem Wege von der mehrerwähnten Kupferschmelze im Gurban-bogdo-Tale bis zum See Sayopu (siehe Spezialkärtchen) außer dem einen in der Karte eingetragenen keine weiteren Wasserläufe oder Trockenbetten von solchen gequert habe. Man kann aber an den Furchen im Abfall des Gebirgsrandes erkennen, daß solche vorhanden waren (S. 105), die einstens in den jetzt ausgetrockueten See mündeten; ihre Rinnen, soweit sie in der Ebene lageu, sind aber unter der einen ungeheuren Betrag erreichenden Aufschüttung verborgen.

Werfen wir nun einen vergleichenden Rückblick auf die Entwässerung der beiden Abhänge der Bogdo-Ola-Gruppe, soweit ich sie kennen gelernt und hier geschildert habe, so kann man die besondere Form der nördlichen Täler auf alte Anlage in einer stark abgetragenen und erst mäßig gehobenen Gebirgsmasse zurückführeu, welche nachher späte und unleichmäßige Hebung und bedeutende Aufbiegung der zentralen Teile erfuhr, verbunden mit gleichzeitigen oder späteren Spezialbewegungen, welchen die Stufen zu verdanken sind (S. 38 f., 40 f., 49 f. 56) und mit nur geringer Absenkuug am Gebirgsrande. Die Bildung der südlichen Täler hingegen beruht zwar ebenfalls auf alter Talbildung, welche aber z. T. Bruchlinien folgt und ist hauptsächlich durch tiefes Absinken des äußersten Gebirgsrandes verursacht, womit langsame und andauernde Hebung (S. 40, 49, 56) der inneren Teile verknüpft war. Im ersten Falle haben wir unausgeglichene Täler, wo Strecken reifer und jugendlicher Erosion mehrfach miteinander wechseln. Im letzteren Falle sehen wir eine uur im Oberlauf unreife, im übrigen in ihrem Gefälle schon nahezu ausgeglichene Talbildung, welche dennoch steilsohlig ist und zum großen Teil schluchtartigen Charakter trägt. Im Nordeu ist einerseits der Wechsel von harten und weichen Gesteinen, andererseits die glaziale Aufschüttung oben und die fluviatile Akkumulation unten von Einfluß auf die heutige Talgestalt gewesen neben Verminderung der Wasserführung der Flüsse durch allmähliche Klimaverschlechterung. Im Süden hat das Einbrechen des Tiau-Schan-Grabens zwar die Erosionsbasis erniedrigt und hiedurch die Erosion ueu belebt, welche damals, nach der reichen Durchtalung des Südabhanges und dem tieferen Einschneiden der südlichen Flüsse zu schließen, sehr wirksam gewesen sein muß. Bevor aber ein Zustand der Reife sich ausbilden konnte, trat eine Verschlechterung des Klimas ein und der dadurch hervorgerufene Rückgang der allgemeinen Vereisung hatte bald eine wesentliche Abnahme der Wasserführung zur Folge. Die Raschheit der eingetretenen klimatischen Änderung hat den Neben-

flüssen nicht mehr Zeit gelassen, an der Böschungsverminderung der Talränder und an deren Abtragung energischer zu arbeiten, während das langsame Ansteigen des zentralsten Kernes und dessen hiedurch noch immer gesicherte Vereisung dem Hauptstrom auch weiterhin genügend Wasser für eine fortschreitende, allerdings nicht mehr sehr kräftige Tiefenerosion lieferte, aber doch nicht genügend zur Seitenerosion. Die heutigen nördlichen Täler sind wenigstens in einzelnen ihrer Teile, die südlichen aber durchans von präglazialer Entstehung, aber beide in ganz hervorragendem Maße glazial ausgestaltet und in der Art ihrer jetzigen unausgeglichenen Gefällsverhältnisse gibt sich unzweifelhaft die eigenartige Wirkung einer nur schwachen postglazialen Erosiou kund. Glaziale Ablagerungen sind auf beiden Seiten sehr bedeutend und wurden durch späte Flußtätigkeit stark beeinflußt. Die Oberlaufstrecken tragen auf beiden Abhängen hochalpinen Charakter; in den Unterläufen aber kommt der austrocknende Hauch der Wüsteu der Randgebiete zur Geltung in außerordentlicher Gesteinszerstörung und Verschüttung mit Sand und Löß. Eine Trümmerzone, welche als ein Charakteristikum des Mittellaufes in den Tälern des zentralen Tian-Schan bekannt ist, fehlt hier, wahrscheinlich wegen der geringen Transportkraft der heutigen Flüsse. Die nördlichen ebenso wie die südlichen Täler weisen also im Charakter ihrer verschiedenen Teile auf tektonische Anlage, auf Eistätigkeit und schließlich auf Einwirkung eines zunehmend arider werdenden Klimas als bestimmende Agentien hin. Der Vegetationscharakter an beiden Abhäugen ist aber sehr verschieden. Hierüber soll das Wesentliche im folgenden Kapitel mitgeteilt werden.

XIII. Die Vegetationsdecke.

Die große botanische Sammlung, die ich im Laufe meiner Tian-Schan-Reisen angelegt habe, einschließlich der in der Bogdo-Ola gemachten Aufsammlung, wurde von mir dem Kais. Russ. Botan. Garten Peters des Großen in St. Petersburg überlassen, wo sich der um die Erforschung der Pflanzenwelt Zentralasiens hochverdiente erste Botaniker dieses Instituts, Herr B. A. Fedtschenko, der Mühe ihrer systematischen Bearbeitung unterzieht. Da diese umfangreiche Arbeit noch nicht abgeschlossen ist und somit auch für die Bogdo-Ola noch kein eingehender Bericht vorliegt, so muß ich mich hier auf allgemeine Hinweise beschränken. Diesen liegen allerdings vorläufige Bestimmungen einer Anzahl der in der Bogdo-Ola gesammelten Pflanzentypen zu Grunde, welche Herr Fedtschenko in dankenswerter Weise mir einstweilen zur Verfügung gestellt hat.

Danach zu schließen scheint die Flora des Bogdo-Ola-Gebietes etwas mehr Verwandtschaft mit derjenigen der Dsungarischen Gebirge (Tarbagatai und Dsungarischer Alatau) zu zeigen als die des zentralen Tian-Schan; sie weist auch im Verhältnis zu dieser letzteren mehr Altaische Formen auf, dafür aber weniger Himalayensische. An Arten ist sie nicht gerade reich. Die Produktion von Individuen dagegen, besonders in der Hochgebirgszone, ist auffallend groß für diese geographische Lage.

Entsprechend dem außerordentlich ariden Klima, das schon am N.-Rande des Gebirges zur Herrschaft gelangt, in noch schärferem Grade aber am Südrande, macht sich eine Erscheinung geltend, die man schon im zentralen Tian-Schan — dort besonders in den sehr breiten Längstälern, wie Tekes, Sary-dschaß, Inyltschek, Kaündü etc. — beobachten kann, worauf ich schon früher hinwies, 1) nämlich das Eindringen von Steppen-

¹⁾ Hettners Geographische Zeitschrift XIX, S. 20.

formen in das Gebirge und zwar an solchen Stellen, die einer besonders heftigen und lang andauernden täglichen Insolation ausgesetzt sind und überdies eine nur geringe Bewässerung des Untergrundes erfahren. Es sind dies also alle beiläufig nach S. und SW. gerichteten Gehänge der Ränder breiter Täler im allgemeinen, und namentlich dann, wenn sie nicht durch hochliegende Schneefelder auch im Sommer in ihrem Untergrunde beständige Zufuhr von Feuchtigkeit erfahren. Der gleiche Fall tritt ein, wenn aus den hochgelegenen Feuchtigkeitsquellen der Abfluß in tief eingerissenen felsigen Rinnsalen stattfindet und daher ohne Nutzen für die Umrandung sich vollzieht. Man kann dann die auffällige Beobachtung machen, wie auf einer Seite des Talgehänges eine schüttere, lückenhafte, hochwüchsige Pflanzendecke sich ansiedelte, hauptsächlich aus den charakteristischen Pfriemgräsern und verwandten Arten bestehend, in deren Schutz eine richtige Hochsteppenflora ihre Existenz findet. Dieser sind zwar auch alpine Formen beigemischt, jedoch nur solche, welche mit geringer Feuchtigkeit auszukommen vermögen und besonders ausdauernd uud widerstandsfähig gegen die ungemein großen täglichen Schwankungen der Bodentemperatur sind. Solche Gehänge, sowie die Decken der Terrassen in den Talrändern zeigen dann die graugrünen und graubläulichen, matten Farbentöne, wenn auch in etwas gemildertem Grade, welche der tiefer gelegenen Steppe im allgemeinen zu eigen sind.

In auffälligstem Gegensatz hiezu prangen die gegenüberliegenden, klimatisch begünstigteren Gehänge im sattesten, saftigsten Grün eines dicht geschlossenen alpinen Grasbodens, auf dem eine wundervolle Alpenflora in leuchtenden Farben unter der Gunst zentralasiatischer Sonne üppig emporsprießt, herrlicher sogar als man sie in unseren europäischen Alpen sehen kann. Hier ist es die größere Durchlässigkeit der weit feuchtigkeitsärmeren Luft für die Lichtstrahlen, welche diese besondere Kraft der Blütenfärbung begünstigt, während der aus den ausgedehnten Schnee- und Firnlagern der Hochregion stets befeuchtete Untergrund des lockeren, stark zersetzten, akkumulativen Bodens ausgezeichnete Standorte für die meisten Arten der eigentlichen Hochalpenflora bietet. Nirgendwo, auch in den floristisch berühmtesten Gegenden unserer europäischen Alpen, sind mir auf meinen ausgedehnten Wanderungen floristische Bilder entgegengetreten, die sich in Bezug auf Eigenart ihrer Farbenpracht und in der üppigen Entwicklung der Individuen mit solchen Verhältnissen in der Bogdo-Ola-Gruppe messen können.

Die Täler der Bogdo-Ola sind zwar bei weitem nicht so breit als die eben erwähnten Längstäler des zentralen Tian-Schan, weshalb die geschilderten, starken Gegensätze zwischen besonnten und beschatteten Gebirgsgehängen uns hier nicht in gleich scharfer Ausbildung wie dort vor Augen treten. Die extremen Einwirkungen werden eben auch bei ungünstig exponierten Talflanken überall dort gemäßigt oder nahezu aufgehoben, wo die geringe Breite des Tales gestattet, daß wenigstens für längere Zeit im Tage gegenseitige Beschattung durch ausspriugende Kulissen der gegeuüberliegenden Talseite eintritt. Außerdem ist die Durchtalung der Bogdo-Ola (siehe S. 57, 94) annähernd meridional orientiert und die Talgehänge entbehren schon aus diesem Grunde der scharfen klimatischen Gegensätze, welche diejenigen der O.-W. gesichteten großen Längstäler des zentralen Tian-Schan mit nach N. oder S. expouierten Hängen auszeichuen. Hingegen macht sich als ungünstiger Faktor geltend, daß der Tiau-Schan, je weiter seine Ketten nach O. hin sich ausdehnen, immer mehr unter verschärfte klimatische Einwirkungen des Kontinentalklimas gerät: größere Trockenheit und Durchlässigkeit der Luft, längere Dauer und größere Stärke

der Bestrahlung. Hiezu gesellen sich noch jahreszeitlich weniger ausgedehnte Niederschlagsperioden, also im allgemeinen geringere und obendrein ungleich verteilte Feuchtigkeitszufuhr bei ungemein starker Verdunstung und extremen täglichen und jahreszeitlichen thermalen Schwankungen. Aus solchen Einwirkungen ergeben sich denn oft, auf engem Raume zusammengedrängt, außerordentlich verschiedenartige Bedingungen für die Entwicklung des Pflanzenlebens, d. h. die auffälligsten floristischen und phänologischen Unterschiede in unmittelbarer Nebeneinanderstellung.

In den eigentlichen alpinen Lagen des Gebirges, also für den Bogdo-Ola-Nordabhang von etwa 2200 m aufwärts, erfährt der Boden, der infolge starker akkumulativer Gesteinszerstörung und ungemein mächtiger Glazialablagerung ein lockerer Aufschüttungsboden von besonderer Tiefe ist, bei dem beträchtlichen Hineinragen der höchsten Kämme in die Schneeregion andauernd eine sehr reiche Bewässerung, welche eine zusammenhängende Vegetationsdecke und namentlich dichte Rasenbildung begünstigt. Diese bedeutende Mächtigkeit eines lockeren Aufschüttungsbodens auf den Gehängen hat aber auch zur Folge, daß die von den Gebirgskämmen abfließenden Gewässer häufig schon hoch oben einsickern und, unterirdisch hinabfließend, die begraste Bodendecke wie einen Schwamm durchtränken. Überall, wo die Oberfläche gleichmäßige Böschung, d. h. kein sonderlich ausgeprägtes Relief zeigt, ist in der oberen Schichte die Durchtränkung nur verhältnismäßig gering und gleichmäßig verteilt. Dorten entfaltet sich die für das Gebiet normale Alpenflora in der geschilderten, prächtig bunten Erscheinung und in gleichartiger Mischung der Arten. Die überaus kräftige Insolation und die heftigen Winde haben aber zur Folge, daß an anderen Stellen und zwar dort, wo das Bodenrelief auch nur mäßig anschwillt, schon eine sehr starke Austrocknung stattfindet, so daß die günstigen Bedingungen für die Ausbildung alpiner (polarer) Pflanzenformen nicht mehr gegeben sind. An solchen Plätzen entwickeln sich gewisse Steppenformen, die aus tiefen Niveaus emporgewandert sind: sie zeigen aber nicht mehr den gleichen Habitus wie unten, wo alle Lebenselemente für sie in günstigster Art vorhanden sind. Hier oben, wo Nachtfröste und sogar im Sommer plötzlich hereinbrechende Schneestürme nichts Seltenes sind, werden sie in ihrem Wachstum gehemmt; sie müssen sich zum Teil veränderten klimatischen Verhältnissen anpassen. Demgemäß entstehen Zwergformen, am Boden hinkriechende, auch stark behaarte Varietäten der Steppenflora. Manche Formen, die unten einjährig sind, werden hier oben zweijährig, da ihre Entwicklung häufig Unterbrechung erleidet. Auf diese Weise werden mitten aus dem Meere der alpinen Pflanzendecke sich heraushebende Inseln einer Steppenflora geschaffen, wo bestimmte Compositen, wie Artemisienarten, Leontopodium, Echinops, Saussuraea, Carduus, Senecio, dann Cruciferen, wie Chorispora, Parrya, Malcolmia, Lepidium, sowie einige Liliaceaen, und die besonderen Gramineaen der Steppe: Stipa, Triticum, Poa, Bromus, Festuca, Elymus vorherrschen. In dem smaragdenen Grün und der leuchtenden Farbenpracht der Alpenwiesen fallen diese zerstreuten, graugrünen, mattfarbigen Inseln dem Blick des Reisenden als besondere Erscheinung schon von weitem auf. Steppenformen bleiben aber nicht gerade auf die Region der Alpenwiesen beschränkt; sie steigen auch höher hinauf, bevölkern die trockenen Hänge alter Moränenwälle bis an den Rand des Gletschereises und erreichen sogar öfter die Bergkämme, wo sie sich, wenn sonst die ihnen günstigen Bedingungen des Bodens, der Trockenheit und Besonnung vorhanden sind, zu einer eigenartigen Gratflora ausbilden. Es sind hier zu erwähnen: Oxytropis humifusa,

Dragocephalum. Chorispora exscapa, Cerastium lithospermifolium, einige Pedicularisarten, Euphorbien, Mulgedium, Acanthalimon etc. In der alpinen Zone aber erscheineu neben diesen Steppeninseln noch solche anderer Art: Ebenso wie die Anschwellungen des Bodens aus verschiedenen Gründen seine Austrocknung zur Folge haben, so ergibt sich bei der sehr starken unterirdischen Wasserzirkulation überall dort, wo Hohlformen im Aufschüttungsboden entstanden sind, sofort eine übermäßige Zufuhr von Feuchtigkeit, die zur Sumpfbildung führt, oder zur Entstehung von stagnierenden Wasserflächen und Tümpeln. Ohnedem begünstigt schon die reiche Bedeckung der Alpenböden und Terrassen mit alter Grundmoräne die Entstehung von Wanneu uud Sümpfen. Überall an jenen zahlreichen Stelleu aber, wo der Alpenboden versumpft ist, fehlen ebenfalls die natürlichen Bedingungen zur Entfaltung der normalen alpinen Pflanzenformen und eine eigenartige Sumpfflora entsteht, deren Typeu ebenfalls größteuteils aus tieferen Regionen des Gebirges stammen und sich hier, wo sie förderliche Lebensbedingungen finden, angesiedelt haben. Auch sie zeigen aber, ebenso wie die Arten der eben geschilderten Steppeninseln, Veränderungen in ihrer Entwicklung als Aupassung an die besonderen klimatischen Verhältnisse der Hochregion. Wir finden hier in dichteu Beständen Riedgräser, wie Juncus, Carex, Scirpus und andere Cyperaceaen, dann Phragmites, gewisse Arten von Typha, Alisme, Calystegia, Alliumarten, Pedicularis uliginosa, und P. rhinantoides, Parnassia palustris, Gentiana algida, Ranunculus sulphureus Alb. Rgl., R. gelidas, R. amoenus etc. Die Florenzone der Alpenwiesen und Matten erscheint im Bogdo-Ola-Gebiet demnach sowohl von zahlreichen floristischen Sumpf- als Steppeninseln durchsetzt, die in so auffälliger Weise hervortreten, daß mau zu sagen berechtigt ist, es bestebe hier eine Kombination von Sumpf-, Steppenund alpiner Flora in enger Abhängigkeit von dem Betrage unterirdischer Feuchtigkeit, die bestimmten Stellen zugeführt wird.

Hiemit ist jedoch die Eigenart der floristischen Entfaltung in der Alpenzone der Bogdo-Ola noch nicht erschöpft. Es kommt hinzu, daß bei der außerordentlichen Schärfe der klimatischen Beeinflussung auch kleiuere Schwankungen der Exposition und dadurch hervorgerufene Variationen in der einwirkenden Bestrahlungsenergie, sowie die Stellung gegen die vorherrschenden Winde, dann kleine Modifikationen im Böschungswinkel des Bodens und Unterschiede in seiner chemischen Zusammensetzung schon genügen, um an gewissen Stellen die ausschließliche Entwicklung bestimmter Alpenpflanzen zu begünstigen und diejenige auderer hintanzuhalten. Also je uach Dauer von Beschattung oder Besonuung, je nach dem Grad der Befeuchtung und der Neigung des Gehänges, je nach Stärke der Insolation und nach Tiefe und Zusammensetzung des Bodens findet Anhäufung ganz bestimmter Pflanzenformen an einer Stelle statt. Es gesellen sich einzelne Arten der Tian-Schanischen Alpenflora zu zerstreuten inselförmigen Ansiedlungen, die man öfters nur an solch bestimmten Standorten uud dann oft auf Kilometer weit nicht mehr antrifft. Dieses selektive gesellige Zusammenleben mehrerer Formen unter Ausschluß von andereu ist ein besonderer Charakterzug in der Vegetationsdecke vieler Teile des Tian-Schan. Namentlich im Tekes-Tal und seinen Nebentälern, besonders im Agiastal, dann auch im Kaündütal u. a. fand ich diese Erscheiuung sehr ausgebildet, jedoch nirgendwo im gleichen Maße, wie in der Bogdo-Ola.

Obgleich, wie schon zu Beginn dieses Kapitels hervorgehoben wurde, die botanische Bearbeitung meiner Ausbeute noch nicht abgeschlossen ist, will ich doch die die Alpen-

zone der Bogdo-Ola am meisten bevölkernden Pflanzenfamilien hier anführen: Campanulaceaen, Umbelliferen, Alsinen, Cruciferen, Compositeaen, Boragineaen, Labiateaen, Liliaceaen, Scrophularien, Polygonaceaen, Dipsaceaen, Saxifragen, Sileneaen, Primulaceaen, Gentianeaen, Cyperaceaen und Gramineaen. Von den für die Alpenzone charakteristischen seien nur folgende Arten hervorgehoben: Campanula glomerata L., Anemone narcissiflora, Aquilegia glandulosa, Pedicularis cheilanthifolia Schr., Delphinium dasyanthemum Kar. et Kir., Parnassia ovata Ldb. und hievon eine weit lebhafter gelbe sehr hochstenglige Art, dann Geranium collinum glandulosum Ldb., Myosotis sylvatica Hoffun., eine besonders üppige Arnebia, Dianthus superbus, ein dunkel orange blühendes Doronicum (D. tnrkestanicum?), Sedum Ewersii Ld. und S. aizoon L., Erigeron pulchellus, Dragocephalum imberbe Bg. and D. nutans L., Mulgedium azurenm D. C., eine sehr hochstenglige Fritillaria und teils blan, teils violett blühende Alliumarten. An Gentianen herrscht ein großer Reichtum sowohl an Arten, wie an Exemplaren. Wir finden G. prostrata Hänke, G. barbata Froel., G. aurea L., G. nmbellata M. B., G. Walujewii Rgl. et Schm. Mehrere Senecio Arten: S. tianschanicus und Senecio nemorensis, gesellen sich häufig zu Gnaphalium Leontopodium und Galium verum, sowie in höheren Lagen G. boreale. Ein intensiv orangefarbiger Trollius (wohl T. altaicus?) ist sehr verbreitet, ebenso Sanssurea amara D. C. und in der Nähe der Gletscher die fantastische Saussurea (Aplotaxis) involncrata Kar. et Kir., sowie einige andere Vertreter dieser eigenartig schönen Composite. Achillea millefolium L. und Aconitum Napellus, sowie ein anderes Aconitum (wohl Altaicum?) treten zahlreich in Kolonien auf. Von blühenden Gräsern erwähne ich nur einige hohe Festucaarten. Häufig ist Cadonopsis ovata Benth, und an allen Trockenstellen sehr verbreitet in Höhen und Tiefen ein bisher nicht bekanntes wunderschönes Chrysanthemum (Chr. Merzbacheri B. A. Fedtschenko). In den höchsten Kammregionen sind besonders gern angesiedelt: Gentiana sibirica und anrea, sowie G. straminaea und die zierliche G. humilis, Sedum Ewersii Ld. und S. aizoon, anch S. Kirilowii Rgl., Galium boreale, ein Chrysoplenium, mehrere Drabaarten, zwerghafte Formen von Oxytropis in verschiedenfarbiger Blüte, verkümmerte Ranunculusarten, deren Blütenköpfe kaum dem Boden entragen. Oft begegnet man auf den Kammhöhen flach am Boden ansgebreiteten Vertretern von Parrya, einer rosa und einer violett blühenden Form. Auch mehrere verschiedene Arten von Cerastium finden sich dort, darunter C. trigynum Pall. und ein Taphrospermum (vielleicht T. altaicum?). Ferner sind häufig verschiedene Saxifragen und eine winzige Beketowia, Chorispora und ein Sisymbrinm in Zwergform. Endlich vervollständigt das Bild die seltsame, krautkopfförmige Saussnrea involucrata Kar. et Kir., die eigentümlicher Weise nur im Bogdo-Ola-Gebiet so sehr verbreitet ist, daß man ihr in der Hochregion überall unter gut beschatteten Felsen begegnet, wo sie in trockenem Schutt ihre ungemein verzweigten Saugwurzeln eintieft.

Auf der Südseite des Hauptkammes ist das floristische Bild der alpinen Zone, wenn auch nicht schon in unmittelbarster Nähe der Kammregion, so doch bald stark verändert, da der austrocknende Odem der Turfan-Senke auch bis zu den höheren Lagen empordringt und weil am Südgehänge die Insolation kräftiger einwirkt, als anf der Nordseite. Wir begegnen daher mehreren der oben angeführten Arten im S. nicht mehr, während dort andere mehr an Trockenheit gewohnte Formen noch günstige Lebensbedingungen finden. Es sind dies: Saxifraga hirculus, eine verkrüppelte Oxytropis (O. lapponica?), polsterförmige Alsinen, anch A. verna Wahlbg.. in winziger Form Saussnrea pygmaea D. C., Gentiana algida Pal.

und G. sibirica, Thalyctrum, Sedum aizoon, Cancrinia, Pedicularis cheilanthifolia Schr., Potentilla nivaea, ein zierlicher Astragalus (nov. sp.), eine seltsame Zizyphora u. a. m. Eine auffallende Erscheinung ist, daß Pflanzen, die, wo immer ich sie am N.-Abhang sammelte, keineu oder nur sehr schwachen Geruch hatten, hier am S.-Hang kräftiges Aroma exhalierten z. B. Gentiana algida und Myosotis. Es ist dies wohl der kräftigen Anregung der Besounung auf die Gefäße zuzuschreiben. Tiefer, schon an der unteren Grenze der Alpenzone stellen sich häufig ein: Cirsium (C. elodes M. B.?), Inula (Schmalhauseni?), Iris Güldenstedtiana, Zygophyllum macropterum, Suaeda physophora, Zizyphora canescens, Galium, Thalyctrum isopyroides. Stellaria sp. (?). Centaurea (ruthenica?), Dianthus sp. (gelb blühend), Astragalus, Tanacetum tenuifolium Jaquem., Lepidium latifolium, Diptichocarpus strictus und verschiedene Artemisien, Pfriemgräser etc.

Ferner ist zu bemerken, daß, während am N.-Abhang der in Kap. VI geschilderte Stufenbau des Gebirges mit seinen, wenn auch vielfach zerschnittenen Hochflächen (Taf. 9 Fig. 2 u. 4) die Bildung ausgedehnter Alpenwiesen begünstigt, am S.-Abhang der mehrfach erörterte Steilabfall eher die Ausbildung weite Räume einnehmender Schuttströme zur Folge hat. Auch die im S. intensivere Gesteinszerstörung unußte die andauernde Überschüttung der Gebirgshänge mit dem vom Felsenbau der Kämme herabgelieferten Schutt besonders fördern. Aus solchen Gründen konnte sich am S.-Abhang eine umfangreiche, zusammenhängende Decke von Alpenmatten nicht ausbilden. Wir finden solche, jedoch von geringer Ausdehnung, nur an besonders begünstigten Hängen. Erst unterhalb der eigentlichen Zone alpiner Wiesen in beiläufiger Höhe von 2200 m, wo die Abdachung saufter wird (siehe S. 40, 102, 103), sehen wir eine geschlossene Pflanzendecke von größerem Umfang sich breiten, welche jedoch infolge der im Süden schärferen klimatischen Einwirkungen schon weniger den Charakter von Alpenwiese, als vielmehr den der alpinen Hochsteppe trägt.

Hinsichtlich der Florenlisten habe ich zu bemerken, daß die oben angeführten Formen fast alle in Blüte gesammelt wurden und daß die Sammelperiode in die Zeit vom Juli bis August fällt. Da ich in diesem Kapitel der Spezialarbeit Fedtschenkos nichts im voraus nehmen will und da meine Mitteilungen nur den Zweck haben, allgemeine Orientierung über den Charakter der Vegetation des Gebietes zu bieten, so muß ich hierau interessierte Fachmänner ersuchen, auf das Erscheinen der Arbeit Fedtschenkos vertrösten.

Im großen ganzen müssen, was die eigenartige Ausbildung des floristischen Bildes betrifft, nicht nur die klimatischen Zustände, sondern auch die geschilderten geologischen und orographischen Verhältnisse berücksichtigt werden. Angepaßt an die große Einfachheit und Gleichförmigkeit dieser Verhältnisse, sowie entsprechend der in langen Zeiträumen nicht mehr wesentlich veränderten geologischen Entwicklung entfaltete sich das organische Leben dieser Gegend nach ganz bestimmter Richtung und wurde zuletzt ausschließlich beeinflußt von deu großen, späten klimatischen Umwälzungen, auf welche ich zu wiederholten Malen hingewiesen habe.

Im Laufe der Zeiten ist sicherlich eine Verarmung an Arten in der alpinen Zone im ganzen Tian-Schau eingetreten; im westlichen und zentralen Tian-Schan ist die alpine Flora jedoch noch immer ziemlich reich. Je weiter aber die Ketten nach O. hin sich in das Herz des Kontiuentes hineindehnen, wo das Kontinentalklima zu immer mehr sich verschärfender Herrschaft gelangt (siehe S. 110), desto mehr mußten aus den eigentlich

115

hochalpinen Regionen, wo das Klima dem polaren einigermassen ähnlich ist, solche Pflanzen verschwinden, welche ihre Knospen nur langsam füllen. Hingegen wurden Arten, welche gegen hohe Wärmegrade bei Tag uud gegen bedeutende Abkühlung in der Nacht gleich wenig empfindlich sind, immer mehr vorherrschend. Aus diesen Gründen mußte gegen O. hin eine Verarmung des floristischen Bestandes eintreten.

Ein zusammenfassendes Werk über die Pflanzenverbreitung in Zentralasien nach geographischen und klimatischen Gesichtspunkten ist ja bis jetzt nicht geschrieben worden; daran dürfte wohl überhaupt nicht gedacht werden, bevor das verdienstvolle Bemühen von O. A. und B. A. Fedtschenko, alle in Zentralasien auftretenden Pflanzenformen systematisch zu registrieren, völlig durchgeführt sein wird. Bisher sind als Frucht dieser Arbeiten vier Teile des Conspectus florae Turkestanicae (Petersburg und Jurijew 1906-1911) erschienen. Ein wertvoller Beitrag zu einer übersichtlichen Geschichte der Entwicklung des Pflanzenlebens in den zentralasiatischen Gebirgen liegt in der Abhandlung A. N. Krassnows vor: "Versuch zu einer Geschichte der Entwicklung der Flora der südlichen Teile des östlichen Tian-Schan",1) wobei ich bemerken muß, daß die Worte des Titels "südliche Teile des östlichen Tian-Schan" einigermaßen irreführend sind. In Wirklichkeit erstreckt sich das Gebiet der botanischen Forschungen Krassnows, wie schon aus der dem Werke beigegebenen Karte zu ersehen ist, nach O. nur bis zum Meridian des Issykul-Sees. Es müßte also richtiger zentraler statt östlicher Tian-Schan heißen. Dem Erscheinen dieses Werkes ging aus der Feder des gleichen Autors eine kürzere Abhandlung voraus: "Vorläufiger Bericht über geobotanische Untersuchungen im östlichen Tian-Schan und seinen Vorketten", unternommen im Sommer 1886 von A. N. Krassnow.²) Auch hier hätte statt östlicher Tian-Schan zentraler gesetzt werden sollen.

Schon vor Krassnow hat der vielgewanderte Botaniker A. Regel den Versuch einer Zusammenstellung der Verbreitung der Pflanzenarten in Ost-Turkestan gemacht und eine tabellarische Zusammenstellung hierüber geliefert. 3) Dort wurde auch die systematische Bearbeitung eines Teiles der umfangreichen Regel'schen Sammlungen veröffentlicht: Descriptiones Plantarum novarum et minus cognitarum, fasciculus VIII. Listen anderer Teile dieser Sammlungen sind zerstreut in früheren Bänden (I—IX) der gleichen Fachschrift veröffentlicht.

Eine geobotanische, von klimatischen und geographischen Gesichtspunkten ausgehende Entwicklungsgeschichte der zentralasiatischen Florengebiete könnte merkwürdige Aufschlüsse fördern über das Verhältnis des Pflanzenlebens zu den klimatischen Extremen, wie ich sie im Vorhergehenden nur flüchtig zu skizzieren vermochte. Schon mit dem Ansteigen zu den Höhen macht sich eine Verarmung an Arten geltend, und trotzdem besondere Formen der Steppe, wie geschildert, unter bestimmten Bedingungen sogar bis in die hochalpine Zone vordringen und dort heimisch werden, so darf doch aus der schönen Entwicklung der eigentlich alpinen (polaren) Flora gschlossen werden, daß die weniger widerstandsfähigen Formen aus den Hochregionen bereits verschwunden sind. Was

¹⁾ Sapiski der Kais. Russ. Geol. Gesellsch., Tom. XIX, 1888, russisch.

²⁾ Iswestiya. Kais. Russ. Geograph. Gesellsch., Tom. XXIII, russisch.

³⁾ Acta Horti Petropolitani, Tom. VII, 1880, S. 684 f.

wir also heute dort noch finden, ist als der feste, sich gegenwärtig nur wenig mehr verändernde Bestand anzusehen. Wir müssen aus solchen Verhältnissen schließen, daß der eigenartigste Charakter der heutigen Tian-Schan-Flora am reinsten und unverfälschtesten einerseits in der hohen Alpenwiesenzone und in den dem ewigen Schnee naheliegenden Felsengebieten zutage tritt, sowie anderseits im Unterlauf der Täler uud in den am Fuße des Gebirges sich breitenden Steppen und Wüstensteppen, wo ebenfalls extreme Härte des Klimas Pflanzen der gemäßigten Zone ausschließt, und jene des ariden Klimas in großer Mannigfaltigkeit und Eigenart zur Ausbildung bringt. In den höchsten Regionen also, wie in den tiefsten sind die originellsten Pflanzenformen anzutreffen und darunter sehr viele endemische. Was zwischen diesen beiden Pflanzengürteln liegt, ist mehr oder weniger als Übergangsgebiet anzusehen, in welchem je nach den besonderen Boden-, Bewässerungsund Bestrahlungsverhältnissen ein Hinauf- oder Hiuabwandern der Arten erfolgt.

Bevor ich einen beiläufigen Überblick über die Verhältnisse werfe, wie sie mir am Fuße der beiden Abhänge der Bogdo-Ola vor Augen traten, möchte ich als Ergänzung des Vegetationsbildes der alpinen Zone noch hervorheben, daß am N.-Abhang die untere Grenze der geschlossenen Zone der Alpenwiesen mit alpiner Flora auf etwa 2100 m anzusetzen ist. Gegenüber den gleichen Verhältnissen wie ich sie am N.-Abhang des zentralen Tian-Schan beobachten konnte, bedeutet dies ein Hinaufrücken um höchstens Dem ist aber anzufügen, daß genaue ziffermäßige Ergebnisse systematischer Beobachtungen in dieser Hinsicht für den zentralen Tian-Schan meines Wissens bisher überhaupt noch nicht vorliegen, sogar von den speziell zu botanischen Forschungen dort umhergereisten Gelehrten nicht geliefert wurden. Ich selbst habe bei der Fülle anderer Aufgaben auf meinen weitgedehnten Wanderungen systematische Aufzeichnungen nach dieser Richtung nicht machen können, wohl aber vielfache Einzelbeobachtungen, die in enger Verbindung mit anderen wissenschaftlichen, wichtigen Verhältnissen gemacht werden, so daß aus ihrer Zusammeufassung sich immerhin ein der Wahrheit sehr annähernder Schätzungswert ergebeu dürfte. Für die Zone vom 78. bis 83.º Ö. L. ist als Ergebnis für den N.-Abhang des zentralen Tian-Schan ein Mittelwert von 1850 m als untere Grenze der Alpenwiesen anzunehmen. Für den S.-Abhang stellt sich ein Mittelwert von 2250 m heraus, wobei besonders darauf hingewiesen sei, daß es mit großen Schwierigkeiten verbunden ist, für den S.-Abhang einen richtigen Durchschnittswert zu ermitteln, weil dort die Bewässerungsverhältnisse in den einzelnen Gebieten eine ganz außerordentliche Verschiedenartigkeit aufweisen. Für den S.-Abhang der Bogdo-Ola kann ich, soweit meine Beobachtungen reichen, als untere Grenze für geschlossenen Wiesenboden von echt alpinem Charakter — insoferne solcher in nennenswertem Umfang überhaupt vorhanden ist (S. 114) - die Höhe von 2500 m annehmen.

Die obere Grenze der alpinen Wiesenzone am N.-Abhang der Bogdo-Ola, die dort vielfach die Waldbestände, wovon gleich mehr die Rede sein wird, durchbricht und noch um 250 bis 300 m über deren obere Durchschnittsgrenze hinaufreicht, ist auf 3100 bis 3200 m anzunehmen. Für den S.-Abhang ergab sich mir als Schätzungswert auf meinen Wanderungen zur Schneeregion, allerdings in einem eng begrenzten Gebiete, der Betrag von 3350 m als obere Alpenwiesengrenze. Ob diesem Werte durchschnittliche Geltung zukommt, vermag ich nicht zu sagen; es ist aber wahrscheinlich. Es ergibt sich auf Grund dieser Zahlen, daß die Breite der alpinen Wiesenzone am N.-Abhang etwa 1000 m, am S.-Abhang

nur 800 m beträgt, wobei ich jedoch für diesen nochmals auf meine Bemerkung in Betreff seines weniger geschlossenen Bestandes hinweise.

Der ganze Charakter der alpinen Zoue des N.-Abhanges bietet dem Reisenden, der aus dem ausgedürsteten, unter der drückenden Glut der östlichen Soune liegenden Randgebiete kommend, zum Gebirge einporwandert, mehr als einen unerwarteten Anblick - eine wunderbare Überraschung. In der geschlossenen Dichte, sowie in dem wundervoll leuchtenden Grün des alpinen Grasbodens und in der Farbenpracht der Flora steht sie auch den bevorzugtesten Hochtälern des zentralen Tian-Schan nicht nach 1) und wetteifert an Schönheit sogar mit manchen berühmten europäischen Alpengebieten. (S. 110.) Zur Vervollständigung des Charakterbildes der Alpenzone der Bogdo-Ola ist noch anzufügen, daß auch hier das Krummholz nahezu gänzlich fehlt. Nur an ganz vereinzelten Stellen finden sich die für den Tian-Schan typischen kreisrunden, scharf umgrenzten Kolonien von knorrigem, verkrüppeltem, am Boden hinkriechendem Juniperus Sabina. Auch das gänzliche Fehlen von Vaccinium, Rhododendron, Azaleen, Rubus und Empetrum, von Farnen und Flechten im Gebiete der Bogdo-Ola ist eine auffällige Erscheinung. Mehr jedoch als alles dies überraschte mich das schwer erklärbare Fehlen der Caragana, die sonst in den verschiedenen Arten ihrer Ausbildung in allen Teilen und Höhen des Tian-Schan von W. nach O., am N.- und S.-Abhang so verbreitet ist, daß man sie als die eigentliche Charakterpflanze des Tian-Schan bezeichnen kann. Noch in geringer Entfernung im W., in den Quelltälern des Manasflusses fand ich sie in mehreren Arten sehr verbreitet. Welches mögen die Ursachen sein, die sie aus dem Gebiete der Bogdo-Ola, sowohl aus dem hohen als aus dem niederen Vegetationsgürtel ausschließen? Mit der Lösung dieses Rätsels würde sich vielleicht auch der Schlüssel zu manch anderer ökologischer oder pflanzengeographischer Frage ergeben.

Gehen wir von der Vegetationsdecke der Höhen zu jener der Tiefen über, so möchte ich gleich im Vorhinein bemerken, daß ich es nicht als meine Aufgabe ansehe, eine systematische Schilderung der in den Trockeusteppen am Fuße des Tian-Schan auftretenden Vegetation zu geben. Gerade hierüber besteht eine reiche Literatur, aus welcher ich auf die schon zitierten Werke Krassnows, Regels und Fedtschenkos hinweise, außerdem auf das bekannte Werk: Sertum Tianschanicum von Baron Osten-Sacken und Rupprecht, 2) auf Sewerzows Erforschung des Tian-Schan, 3) P. P. Semenows Reise von der Festung Wjernoe über den Paß Suyok-tepe etc. 4) Die genauesten Hinweise auf die die zentralasiatische Steppenflora betreffende, sehr reiche Literatur sind am besten dem schon gerühmten Conspectus Fedtschenko's, wie einem anderen Werke des gleichen Verfassers "Flora des westlichen Tian-Schan" (I/II russ.) 2) zu entnehmen, wo bei jeder aufgeführten Pflanzenform auch die auf sie treffenden Literaturnachweise zu finden sind.

Für mich handelt es sich hier nur darum, das in den vorigen Kapiteln gezeichnete geographische Charakterbild auch durch besonders ins Auge fallende, eigenartige Züge des Pflanzenkleides zu vervollständigen.

Als Ergebnis der von mir am N.-Abhang des östlichen Tian-Schan und insbesondere

¹⁾ Siehe auch Grum Grschimailo, l. c. Bd. I, S. 155 f., 159.

²⁾ Mem. Akad. Imp. des Sciences de St. Petersburg. VII. Ser., Tom. XIV, 1870.

³⁾ Petermanns Mitteilungen, Ergänzungsheft 142 und 143.

⁴⁾ Sapiski, Kais. Russ. Geol. Gesellsch. Tom. I, 1867.

⁵) St. Petersburg 1904/05.

in der Zone der Halbwüste oder Wüstensteppe zwischen Urumtschi und Foŭkan gemachten Beobachtungen sei das Vorherrschen folgender typischen Pflanzenformen erwähnt: Zunächst fällt das Vorkommen des Saxauls (Haloxylon ammodendron) auf, der zwar charakteristisch für solche Trockengebiete ist, aber durchaus nicht überall am N.-Fuße des Tian-Schan auftritt. In der Dsungarei verbreitet er sich strichweise nach N. bis zum Nordufer des Saissan-Sees. Weitere besondere Charakterpflanzen des Gebietes sind: Atraphaxis frutescens C. Koch = A. lanceolata, uud besonders die in dieser Gegend massenhaft verbreitete Eurotia ceratoides, die mit ihren feinen rosafarbigen Blüten eine Zierde der grauen mattfarbigen Landschaft bildet. Dem sonst tot erscheinenden, höchst lückenhaften Vegetationskleid verleihen einiges Leben auch die iuselartig zerstreuten Gruppen des, in der grellen Sonne und vom Winde bewegt, metallisch glänzenden Bandgrases Lasiogrostis splendens, das oft eine Höhe von mehr als 3 m erreicht. Dazwischen erscheinen fleckenweise verteilt hauptsächlich Peganum harmala, Zygophyllum macropterum und xanthoxylon, Calligonum murex und stachlige Kugeln vou Xanthium spinosum, Alhagi camelorum, verschiedenen Astragalusformen, sowie Büsche von Glycyrhizaarten, sowie endlich Ceratocarpus araenarius. Dort. wo an tieferen Stellen, besonders auf dem schattenreichen Grunde von 5-8 m tief eingerissenen Trockeubetten mit steilen Rändern sich ein wenig Feuchtigkeit erhalten kann, erscheinen dem Auge oft ganz uuerwartet als grüne Oasen in kleinen Gruppen die hohen rosablühenden Stengel von Tamarix, dann Neogaya mucronata Schrenk, sowie Lepidium latifolium, Medicago falcata, (var. desertorum?) auch Stellaria sp. (?) und einige andere Arteu. Die oberen Ränder solcher Gräben und tiefen grünen Mulden, die dem schonungslosen Anprall der Sonnenstrahlen ausgesetzt sind, sehen gefleckt aus von den am Boden klebenden, verdorrten, buntfarbigen Blattrosetten von Scorodosma und Rheum.

Der Boden der Trockensteppe ist, soweit ich den N.-Rand kennen gelernt habe, in überwiegendem Maße mehr lehmig als sandig und auf weiten Strecken mit kleinem Gerölle und Kies bedeckt. Dazwischen finden sich tischebene Flächen von hartem Tonboden (Takyr) mit tief eingerissenen Trockenbetten. Alles dies gibt Kunde von ausgedehnter Überflutung und kurze Zeit stehendem, seichtem Wasser zur Zeit der Frühjahrsschneeschmelze im Gebirge. Streckeu mit Salzausblühungen nehmen im Verhältnis nur geringen Raum ein. An solchen, nicht sehr häufigen Orten finden wir augesiedelt: Suaeda physophora, Mulgedium tartaricum, Lepidium obtusum, Cerastium vulgatum und verschiedene Salsolaarten, die im schwachen Schatten verkrüppelter Saxaulbäume mit Vorliebe wachsen, deren zum Teil über den Boden wirr sich breitendes Wurzelwerk einen fantastischen Anblick gewährt. Auf den festesten Bodenstellen sieht man hauptsächlich hohe Doldengewächse, Ferulaarten (F. canescens Rgl.?) und Scorodosma: dazwischen zerstreut dichte Kugeln von Astragalus. Auch Lyciumbüsche (L. ruthenicum Murr.) sind häufig und besonders verschiedene Arteu von Artemisien (A. songharica, fragrans und maritima). Dazwischen winden sich am Boden hin meterlange Stengel von Convolvula lineata mit außerordentlich zahlreichen zart rosafarbigen Glockenblumen und verstreut treten auf Ceratocarpus und Kochia prostrata in Kolonien, sowie Salsolaceaen.

Mit der Annäherung zum Gebirge nimmt zwar der lehmige Gehalt des Bodens zu, ist aber von völlig humusfreier Beschaffenheit. Der ihm bisher in beträchtlicher Menge beigemischte Sand nimmt jedoch zusehends ab und der sanft austeigende, nur mit feinem Geröll bedeckte Lehmboden begüustigt mehr und mehr die Entwicklung einer Wermutsteppe von schütterer Beschaffenheit. Papilionaceaen, Compositeaen, Chenopodiaceaen werden

zerstreut häufiger angetroffen; besonders fallen auf Diptichocarpus strictus Trautv. und ein wunderschönes Chrysanthenum (Chr. Merzbacheri B. Fedtschenko nov. sp.), das überall die trockenen Stellen auch weit taleinwärts, bis hinauf zu 2000 m in großen Mengen schmückt. Der Saxaul dringt nicht mit in das Gebirge ein.

Das Vorwalten gewisser Gramineaen, wie Festuca ovina, Triticum, Elymus, Poa, Stipa Lessingiaua, Bromus, Aleuropus und anderer Gräser täuscht, aus gewisser Entfernung gesehen, eine fast geschlossene Vegetationsdecke vor, die in Wirklichkeit jedoch nur ein großmaschiges Gitter ist. Die Frühjahrsblüter, wie Liliaceaen, Iris u. a. waren mit Ausnahme von Iris halophyla Pall. zur Zeit meiner Bereisung der Gegend längst verblüht. Hingegen sah man noch eiuige hübsch blühende Astragaleaen (A. altaicus?), dann Alyssum und Echinospermum (patulus?). Den erfreulichsten Anblick bietet auch hier stets der wirre, fast weiße Zweigaufbau der Eurotia ceratoides im überreicheu Schmuck der feinen rosa Blüten und bleibt uns bis zum Eingang in die aus dem Gebirge herabziehenden Quertäler getreu. Diese Büsche, ebenso wie eine Malcolmia drängen sich auch in die geschlossenen Dickichte der Salsola-Arten hinein. Überhaupt erweist sich diese Vegetationszone sehr reich an Arten aus der Familie der Papilionaceaen, Compositeaen, Gramineaen, Cruciferen, Boragineaen und Salsolaceaen etc. In dieser flüchtigen Skizze vermag ich jedoch nicht näher auf diese Verhältnisse einzugehen und hebe nur hervor, dats gerade diese Zone den größten Reichtum an endemischen, dem Tian-Schan eigenen Formen zeigt, welche solchen der Dsungarei und des Altai nahe stehen oder mit ihnen identisch sind, während himalavensische Formen, soweit mir bekannt, nur wenig hervortreten.

Werfen wir nun beim Eintritt in eines der Quertäler einen Blick zurück auf die abdachende, sonnendurchglühte Ebene, so fallen uns in der weiten, im Ganzen hellbraungrau erscheinenden Fläche einzelne dunkle Streifen auf, welche sie teils in gewundenen, teils in schnurgeraden Linien durchziehen. Es sind dies bald breitere, bald schmälere Gürtel von Bäumen und Kulturen, welche den Lauf der dem Gebirge entströmenden, wasserreichen, kleinen Flüsse und der aus ihnen abgeleiteten Kanäle begleiten (S. 95). Die hauptsächlichsten Kulturgewächse sind Gerste, Weizen, Mais und Hirse (Panicum italicum erythrospermum), Melonen und Gemüsearten, dann die wichtige Futterpflanze Medicago sativa var. Turkestanica, der sogenannte Klewer der Russen.

Mit dem Eintritt in das Gebirge gelangen wir in das Gebiet der Gesteine der Angaraserie, deren niedere Ketten, wie in Kap. XI geschildert, keinerlei Vegetationsdecke tragen. Kahle, ruinenhaft verwitterte, bunt gefärbte Mauern umgeben uns; sie sind nahezu wasserlos; doch zeigen sich rechts und links Trockenbetten, die im Frühjahr kurze Zeit Wasser führen. Die stark abgetragenen Kämme dieser weichen Gesteine reichen, da sie nur bis zu 1200 m ansteigen (S. 39), nicht mehr in die Schneeregion hinein, und stehen daher noch unter der vollen Herrschaft des ariden Klimas der Steppe. Nur auf den Sohlen der Haupttäler, die von dem auf den Eishöhen des Hochgebirges gebornen Wasserreichtum durchströmt werden, entwickelt sich Vegetation. In den geweiteten Talstrecken, nahe den Mündungen zur Steppe, ist der Boden noch immer tonig, hart und mit Kies überschüttet; er trägt keine Humusschichte und bietet daher, abgesehen von etwas mehr Beschattung durch die Bergwände, für Vegetation noch immer fast die gleichen ungünstigen Bedingungen wie die Steppe am Rand des Gebirges. Die Pflanzenformen der Wermutsteppe herrschen hier vor und Pfriemgräser, sowie andere steife Gräser durchsetzen die Artemisienbestände;

selbst Lasiogrostis splendens dringt noch weit ins Tal hinein. Zu den schon früher angeführten Gramineaen tritt hier noch hinzu Koeleria cristata, sowie neue, abweichende Formen von Triticum, Elymus, Festuca. Niedrig wachsende Kolonien von Statice speciosa, Chorispora (sibirica?), Sisymbrium, Trigonella, Euclidium und andere ergänzen den Bestand dieser Trockenvegetation. Auch Salsolabüsche treten noch häufig auf. Die niedere Vegetation war zur Zeit meiner Reise infolge der starken Erhitzung des Bodens schon vielfach verdorrt und vertrocknet, gelbgrau und braun. Doch besonders Medicago falcata zeigte noch die gelben Blütenbehänge und Thalyctrum isopyroides sowie Suaeda physophora Pall. belebten mit ihren feinen Farben die sonstige Einförmigkeit des Pflanzenbildes.

Erst mit dem Anstiege zu größerer Höhe beginnt sich im Schatten der Bergwände auf den Schuttkegeln und unmittelbar an ihrem Fuße eine mäßig hohe Strauchvegetation zu verbreiten, hauptsächlich aus den eigenartigen Atraphaxisarten (A. pungens und A. lanceolata), dann aus Büschen von Berberis, Cotoneaster, etwas Pappeln (Populus hybrida M. B.?), aus Weidenarten und besonders sehr vielen Wildrosen zusammengesetzt. Die Büsche sind vielfach von den Schlingnetzen der Atragene sibirica überzogen, von deren Gewirr weißer Blütenglöckchen sie wie mit Schleiern überdeckt erscheinen. Auch Ulmen treten vereinzelt als Büsche, bald aber auch in Baumform auf.

Wo zunächst weiter einwärts der feste Boden beginnt humöse Verwitterung zu zeigen, finden sich Spuren ehemaliger Kulturen insoferne, als verwildertes Getreide (Gerste und Hirse) sich in ziemlicher Menge dem Gramineaenbestande der Steppe beimischt und Kolonien hochwachsender Nesseln undurchdringliche Dickichte bilden. Auch zerstreute Mauerreste deuten darauf hin, daß hier ehemalige Ansiedlungen gestanden haben müssen, die vermutlich wegen der zur Zeit der Frühjahrsschneeschmelze verheerend auftretenden Überschwemmungen verlassen wurden, oder auch infolge feindlicher Überfälle zur Zeit des Dunganenkrieges untergingen. Auch das Auftreten von Rumex und Thlapsi arvensae, sowie von Polygonum und Avena, die offenbar von Menschen in dieses Tal gebracht wurden, deutet auf frühere Besiedlung hin. Eine bis zur Höhe von mehr als 2½ m wachsende Distelart (Echinops sphaerocephalus?) bildet wahre Wälder. Steht es nun im Zusammenhang mit dieser ehemaligen Besiedlung, daß taleinwärts Baumbestände von Ulmen bei prächtiger Entwicklung der einzelnen Individuen sich immer mehr und besonders in den beckenartigen Weitungen des Sangun-Tales an beiden Flußufern zu wundervollen Auenwäldern ausbreiten?

Schon in der Wüstensteppe hier und weiter im Westen war es mir aufgefallen, daß öfters Kolonien dieses Baumes vorkommen und zwar meistens an Orten, wo ich auch Anzeichen ehemaliger Besiedlung in Form von Mauerresten bemerken konnte. Bei den durch Jahrhunderte andauernden schweren Kämpfen der Chinesen mit den Uiguren und bei den unmenschlichen Vernichtungskämpfen, welche Chinesen und Dunganen vor (siehe S. 8 f.) erst etwas über 40 Jahren gegen einander führten, wobei weite Strecken blühenden Kulturlandes zur Wüste verwandelt wurden, ist es sehr erklärlich, daß man in gewissen Teilen Zentralasiens, besonders am N.-Fuße des Tian-Schan, keine Meile zurücklegen kann, ohne auf mehr oder weniger gut erhaltene Reste früherer menschlicher Niederlassungen, auf Ruinen, Begräbnisplätze, alte Kanäle u. dgl. zu stoßen.

Ich habe nun häufig beim unerwarteten Anblick mitten im ariden Gebiet sich erhebender herrlicher Ulmenbestände die Frage erwogen, ob sie nicht als verknüpft mit verlassener Besiedlung anzusehen sind, oder ob nicht etwa stark verminderte der Wasserzufuhr aus dem Gebirge und die hiedurch geschwundene Möglichkeit der Irrigation gewisser Gebiete, also eine Klimaverschlechterung, die Ursache solcher Erscheinungen sei? Indessen konnte ich verlässige Aufschlüsse über derartige Naturveränderungen nirgendwo erlangen. Auf ein besonderes Vorkommnis, wo eine ehemals unter Kultur liegende Bodenstrecke infolge tieferen Einschneidens des Flusses zur Wüste wurde, habe ich a. a. O. hingewiesen. 1) Dorten traf ich aber keine Bäume. Möglicherweise war manchmal veränderte Richtung der Flüsse oder ihres Gefälles Ursache für die Umwandlung von Kulturgebieten in Wüste. Ich vermag mir auf alle Fälle nicht vorzustellen, daß die so vielfach auftretenden, zerstreuten Kolonien herrlich entwickelter Ulmenbestände, die sich manchmal sogar zu weit ausgedehnten, schütteren Wäldern verdichten, mitten in der völlig trockenen und sonst baumleeren, stellenweise sogar schwach salzigen Kiessteppe durch Samenverwehung oder ähnliche natürliche Ursachen entstanden wären, also sich selbst weiter verbreitet haben könnten. Derselben Ansicht neigt auch Grum Grschimailo zu.2) Ich möchte die Frage dem Studium der Botaniker, Pflanzengeographen und Agronomen ganz besonders empfehlen: Ist es möglich, daß mitten in der lehmreichen, zum Teil sandigen, kiesbedeckten, von keinerlei sichtbaren Wasserläufen befeuchteten Trockensteppe, die ganz und gar den größten Härten des Kontinentalklimas ausgesetzt ist und sogar manchmal auf etwas salzhaltigem Boden die Ulme, und zwar nur dieser Baum, sogar mit Ausschluß von Busch und Strauch, von selbst, d. h. infolge äolischer Samenübertragung, sich seßhaft machen konnte? Berücksichtigt man die prächtige Entwicklung dieses Baumes in der Trockensteppe, so möchte man allerdings geneigt sein anzunehmen, daß Bodenverhältnisse und klimatische Bedingungen dieser Gegend auch seiner Niederlassung nicht ungünstig sein können.

Im Gebirge bildet die Ulme, wenn auch sehr selten, doch wenigstens in vereinzelten Tälern des Tian-Schan richtige Wälder. Sicherlich ist sie an solchen Orten endemisch und wurde von dort ausgehend zum vielverbreiteten und mannigfaltig entwickelten Kulturbaum Turkestans. Nirgendwo sah ich jedoch diesen Baum in so großen, zusammenhängenden Beständen, als in den nördlichen Tälern der Bogdo-Ola, wo der Ulmenwald bis 1600 m ansteigt. Es ist hier immer die gleiche kleinblättrige Art, während die im Flachlande weit verbreiteten Kulturbäume sehr verschiedenartige Blattform zeigen und unterschiedlichen Wuchs. Jedenfalls ist in ganz Russisch Turkestan, in Ferghana³) und Chinesisch Turkestan die Schwarzulme, der Karagatsch der türkisch sprechenden Bevölkerung (Kara = schwarz, Agatsch = Holz, Baum) der beliebteste Kulturbaum; in den erstgenannten beiden Gebieten neben Pappeln und Weiden. In Chinesisch Turkestan und zwar am Nord- wie am Südfuße des Tian-Schan ist der Karagatsch überall wild und zwar auch in der Trockensteppe ungemein verbreitet, sowohl in Baum- als in Strauchform, so daß man ihn als den

¹⁾ Petermanns Mitteilungen, Ergänzungsheft 149, l. c., S. 52.

²) l. c. I, S. 53 und 172 f. Auch Regel, Turfan, l. c., S. 209 macht Angaben über schöne Ulmenbestände bei den Ruinen der uralten Stadt Sandschi. Im Borochodsur-Tal fand er ebenfalls sehr alte Ulmenwaldungen. (Reisen im Jahre 1876—79, l. c., S. 416.)

³) In der Stadt Taschkent und in einigen anderen russisch-turkestanischen Städten wird der Karagatsch in der besonderen kugelförmigen Ausbildung seiner Laubkronen, die für das Licht nahezu undurchdringlich sind, vorzugsweise als Alleebaum verwendet und bildet eine wahre Zierde und einen wohltätigen Schattenspender jener Städte. Es ist dort Ulmus campestre var. umbraculifera Trautv.

Abh. d. math.-phys. Kl. XXVII, 5. Abh.

eigentlichen Charakterbaum und zugleich als Zierde der Landschaft dieser Ländergebiete bezeichnen kann. Wachstum und Formenentwicklung dieses Baumes ist aber allenthalben ungemein mannigfaltig. Bald sieht man ihn in der erwähuten regelmäßigen Kugelform seiner tief dunklen und erstaunlich umfangreichen Blattkrone, bald wieder ist die Krone ebenfalls in äußerst gleichmäßigem Wachstum zu einem weit ausladenden, hochgewölbten dichten Dache gespannt; an anderen Plätzen hingegen erscheint die Baumkrone pinienartig zu einem flachen dünneu Schirm entwickelt. Wieder an anderen Orten zeigt der Baum sehr unregelmäßiges Wachstum und sendet nur einzelne mißgestaltete, blätterarme Äste bis zu riesiger Höhe in die Lüfte, wahrhaft fantastische Silhouetten in den weiten, klaren Horizont der Steppe zeichnend. In anderen Gegenden trifft man die Ulmen häufig von so kuorrigem, viel verästeltem. Wachstum, daß man auf den ersteu Blick glaubt, alte Eichbäume vor sich zu haben. Bald gesellen sich die Bäume nur zu vereinzelten kleinen Gruppen, bald zu größeren Kolonien, oder gar zu weit gedehnten Wäldern. An anderen Orten wieder begegnet man dem Karagatsch als Buschwald, als welcher er sich häufig zu undurchdriuglichen, niederen Dickichten zusammenschließt. Stellung der Äste und ihres Gezweiges, Form und Größe der Blätter der Ulmen sind so verschiedeuartig, daß ich mir nicht denken kann, dies alles sei nur eine Folge besonderer Beschaffenheit des Bodens oder Ergebnis der Besonnung, der Windwirkung und anderer klimatischer Faktoren. Es dürfte sich meines Erachtens um botanisch verschiedene Spezies dieses Baumes handeln.¹) Ich bin indessen nirgends in der botanischen Literatur auf eine genaue Klassifikation und Beschreibung der turkestanischen Ulme gestoßen. (Siehe weiterhin.)

Wiewohl schon 4—5 km taleinwärts im Saugun-Tal der Fluß an Wasserreichtum zunimmt, da dort keiue Kanäle mehr abzweigen, trägt doch der Boden noch immer einen fast takyrähnlichen Charakter, nur daß die Gerölldecke allmählich dichter wird und auch größere Blöcke von Konglomeraten und Saudsteinen sich darin einstellen. Der Pflanzenbestand ist daher noch immer derjenige der Trockensteppe mit den bekannten Pfriemgräsern und anderen Formen des ariden Klimas. Nur unter dem Schutze der Baumkronen entwickeln sich an den Flußufern schmale Streifeu richtigen Rasenbestandes (Taf. 5 Fig. 1).

Erst im Niveau von über 800 m ändert sich die Beschaffenheit des Bodens: eine zuerst nur dünne, mit dem Ansteigen der Talsohle aber immer mächtiger werdende Humusschichte kommt dort allmählich zur Ausbildung und erreicht in einem Niveau von etwa 1400 m eine Mächtigkeit von 2 m. Diese stark tonige Schichte ist mit Geröllen vermischt, die zum größten Teile aus den alten Gesteinen der höheren Gebirgslagen stammen. Zum überwiegenden Teile ist das Material jedenfalls aus den Verwitterungsprodukten der höher oben auf weiten Räumen verbreiteten, alten Grundmoräne herabgeführt und nur zum geringen Teile verdankt es sein Dasein der humösen Verwitterung im Walde selbst. In einer vom Trockenklima beherrschten Gegend wie diese wird humöse Art von Verwitterung immerhin durch die Dichte des Waldes erklärlich, der hier noch dazu in Form dichter Laubdächer sich wölbt, welche den Luftzutritt nahezu abschließen. Wir sehen im Sangun-Tal und den ihm parallelen Tälern daher im Niveau von über 800 m schon überall einen ziemlich

¹) Schon Middendorf (Einblicke in das Ferghana-Tal, Petersburg 1881) drückt S. 303 Zweifel über die systematische Stellung des Karagatsch aus, wiewohl er zwei Typen anerkennt, die seiner Ansicht nach durch viele Übergänge miteinander verbunden sind.

guten Grasboden, der allerdings ziemlich locker gefügt ist uud infolge seiner Durchsetzung mit hochwüchsigen Steppengräsern sich wesentlich von der geschlossenen alpinen Grasnarbe unterscheidet, die erst bei 1800 m beginut, sich aber erst bei 2100 m (siehe S. 116) zum richtigen Alpenwiesengürtel zusammenschließt.

Der Ulmenwald nimut schon im mittleren Teile des Tales eine wundervolle Entwicklung an und bedeckt die ganze Sohlenbreite. Infolge des dem Baume eigenartigen Wachstums: starke säulenartige Stämme, weit ausladeude ebenmäßige Verzweigung, bilaterale Einteilung der Äste, die vom Stamme weg steil hoch aufstreben uud sich dann im Bogen herabneigen, sowie infolge der dichten und sehr dunklen Belaubung erscheint dieser Teil des Tales wie durch majestätische, düstere, lebende Halleuwölbuugen nach oben abgeschlossen, durch welche selbst die Gewalt der zentralasiatischen Sonne keinen Zutritt zum Boden findet. Diese dunkle Pracht steht in einem sonderbaren Gegensatz zu den als Talränder aufragenden, kahlen, in bunten Farben leuchtenden, zerrissenen Mauern der stark verwitterten Angaragesteine (S. 119). Im lockeren Humusboden aber entwickelt sich dort, vom Waldesschatten begüustigt, ein reiches Pflanzenlebeu von merkwürdiger Mischung. Nicht nur. daß die Steppe noch einige Arten bis hier herauf sendet, kommen auch von der subalpinen Zone einzelne Formen herab. Neben zarteu Gewächsen wie Moeringhia umbrosa, Carex. Phlomis, Asperula humifusa, Stellaria gramiuaea, Orobus erheben sich hohe Dolden und Schirme von Ferula. Tanacetum und Galium, Aegopodium alpestre Led., sowie Thalvctrum isopiroides. Eremurus robustus erreicht mit seinen gelben Kolben besondere Höhe, auch Solidago und Epilobium zeigen sehr hohes Wachstum. Juncus und Statice bilden Bestände, in welche sich mehrere sonst nur in der alpiuen Zone vorkommende Arten von Gerauium, Erigeron und Ranunculus mischen. Polygonum viviparum, Mulgedium, Myosotis, Zizyphora, Sedum und eine weiß blühende Libanotis (Chorispora Bungeana) sind die vorwiegenden Formen. In den am Fuße der Talwände wachsenden Gebüschen nimmt der Steppenstrauch Atraphaxis neben der Wildrose noch immer den größten Raum ein; es ist eine sehr kleinblättrige, zierliche, rosa blühende Art (A. Muschketowii). Hinzugetreten sind noch Populus, Lonicera, Nitraria Schoberi und Ribesstauden (R. heterotrichum)? Unmittelbar am Fluß finden sich Kolouien von Weidensträuchern und Hippophaen angesiedelt.

Im Niveau von 1100 m nimmt die Weide als hochstämmiger Baum, (S. retusa?) Anteil am Bestand des Waldes und noch etwas höher gesellen sich hiezu noch zwei andere Baumarten, Sorbus aucuparia var. tianschanica Ruppr. und Pappeln, von ungemein knorriger Entwicklung (P. hybrida?). Diese Veränderung tritt gerade dort ein, wo die Gesteine der Angaraserie verlassen werden und das Tal durch die harten Tonschiefer und quarzitischen Gesteine des alten Gebirges bricht; die Verwitterungsprodukte dieser Felsen bilden offenbar einen reicheren Pflanzenboden.

Der Wald nimmt dort sehr dichte Beschaffenheit an, wobei jedoch die Ulme mehr und mehr auf Kosten der beiden anderen Arten verdrängt wird, während auf den nahen scharfen Felskämmen bereits die ersten Fichten (Picea Schrenkeana) als neues Charakterzeichen in. das Gesichtsfeld ragen. Schwerlich kann sich Jemand vorstellen, wie auf den Tian-Schan-Forscher, der nach langen Wanderungen in der vernichtenden sommerlichen Glut der Steppe ins Gebirge eindringt, dieser lang entbehrte Anblick wirkt. In mir erweckte er urplötzlich köstliche Erinnerungen an den Aufenthalt inmitten der Pracht Tian-Schanischer

Waldtäler und war zugleich von verheißeuder Bedeutung für die Erneuerung solches Glückes. Verleiht doch die Tian-Schan-Fichte, eine der schönsten Koniferen der Erde, den Tälern, in denen sie auftritt, einen unbeschreiblichen Zauber, der wohl in der Eriunerung keines Reisenden jemals verblassen kann.

Im Niveau von 1500 m wird der Charakter des Laubwaldes im Da-tun-gu-Tal ein fast urwaldlicher in der mannigfachen Mischung und Dichte der Bestände. Die Ulme ist nun bis auf einzelne Exemplare ganz verschwunden. Ob dies mit dem Gesteinswechsel, oder mit dem Einflusse des Höheuklimas, oder mit der besseren Eignung beider für andere Baumarten zusammenhängt, welche die von der Tiefe gekommenen Arten verdrängen, ist schwer zu sagen. Als einzeln stehender Baum tritt die Ulme sogar weit höher oben noch auf. Bei 2000 m sogar begegnete ich ihr auf der alten Moräne am Ufer des herrlicheu Bogdo-Ola-Sees, wo sie in besonders mächtiger und schöner Entwicklung erscheint. Jedenfalls aber muß es mit der Veränderung der das Gebirge aufbauenden Gesteine zusammenhängen, vielleicht mit dem Vorwalten von Eruptivgesteinen, daß die das Tal begrenzenden Felswände, welche, solange der Fluß die Angaragesteine durchbricht, fast uackt und kahl sind, nunmehr im alten Gebirge von den Schutthalden am Fuße bis zu bedeutender Höhe hinauf mit einem undurchdringlichen Mantel von Strauchwerk verhüllt werden. Darin bilden Rosen noch immer den Hauptbestand; Cotoneaster, Berberis und Lonicera sind eingesprengt und eine Prunus-Art tritt hinzu (P. padus?).

Diese Unfruchtbarkeit der Angaragesteine ist eine besonders auffällige Erscheinung, die mir überall auf meinen Wanderungen im Tian-Schan gleichermaßen vor Augen trat, also nicht etwa mit deu in der Bogdo-Ola-Kette herrschenden, besondereu klimatischen Bedinguugeu zusammenhängen kann. Sowohl im S. von Manas, als südlich von Dschincho, im Kasch-Tal oder am S.-Rand, im N. von Kutscha, kurz überall, wo diese Gesteine verbreitet sind und geschlossene Gebirgszüge bilden, zeigen sie sich in der leuchtenden Pracht ihrer vielfarbigen Gesteinsschichten stets stark verwittert, aber dennoch nahezu vegetationslos.

Als neue Erscheinung im Waldbild tritt bei ungefähr 1700 m die Espe hinzu (Populus tremula). Da dieser Baum sonst iu Zentralasien sehr wenig verbreitet ist — im Tarbagatai und im Dsuugarischen Alatau kommt er in vereinzelten Beständen vor - und ich ihn bisher in den Tälern des Tian-Schan auf alleu meinen Kreuz- und Querzügen nirgendwo begegnet hatte, so bildete dies für mich eine Überraschung. Mit seinem Auftreten verschwindet die andere Pappelart und bald auch die Weide aus dem Bestand der Laubbäume, der sich nunmehr nur aus Ebereschen und Espeu zusammensetzt. Schon bei etwa 1500 m kann die unterste Greuze des Vorkommens der Fichten wahrgenommen werden; sie nehmen mit steigender Höhe auch schon im Tale an Zahl bedeutend zu, wenn sie auch noch immer nur als Einsprengliuge im Walde erscheineu. Erst bei 1750 m wird der Wald stärker mit Koniferen durchsetzt; wenig höher aber schou bilden sie den Hauptbestand und dulden nur mehr die Espe unter sich. Diese steigt zwar noch bis 1950 m im Fichtenwald empor, aber die Grenze für den geschlosseuen Laubwald am N.-Abhang der Bogdo-Ola darf nach meinen Beobachtungen nicht höher als auf 1800 m angenommen werden. Daß dieser Wert ein zutreffender ist, läßt sich auch deutlich aus Grum Grschimailos Mitteilungen 1) — wenn diese auch nicht von ihm in Ziffern ausgedrückt wurden — entnehmen, welche er betreffs

¹⁾ l. c. I, S. 156-161 u. 172.

seines Weges quer über die Täler Schi-mo-gu, Schou-gu und Sacho-gu veröffentlichte. Aus alledem geht hervor, daß die Ulme als Waldbestand von 900—1500 m, die Weide von 1050—1750 m, die Pappel von 1100—1700 m, die Espe aber nur von 1700—1950 m verbreitet ist.

Daß die unterste Grenze des Auftretens von Picea Schrenkeana fast schon etwas unter 1500 m liegt, für geschlosseue Bestände dieser Konifere aber selbst so weit im O. bei 1750 m. 1) war für mich um so mehr eine weitere überraschende Feststellung im Vegetationsbilde der Bogdo-Ola, als auch in vielen Teilen des zentralen Tian-Schan diese untere Grenze nicht tiefer liegt. In den zum Tekes-Tal einmündeuden Quertälern z. B., dann im Terskei-Alatau (Nordabhang), liegt sie sogar um 200 m höher. In den westlichen Ketten des zentralen Tian-Tchan (Nordabhang der Alexander-Kette, Kungeu-Alatau) liegt sie allerdings um 400 m niedriger. Dorten sind aber ganz andere klimatische Verhältnisse vorherrschend. Man kann sagen, daß durchschnittlich vom Issyk-kul gegen O. hin nur an sehr vereinzelten Stellen des N.-Abhangs, wo ganz besonders günstige Bedingungen vorwalten, die untere Nadelholzgrenze unter 1800 m hoch liegt.²)

Auch Gestalt und Höhe der Picea Schrenkeana stehen in ihrer Entfaltung den betreffenden Verhältnissen in den zentralen Gebieten nicht nach. Als obere Grenze für das Auftreten der Fichte am N.-Abhang der Bogdo-Ola fand ich eine Höhe von 3000 m - nur stellenweise geht sie darüber hinaus -, was ungefähr dem Niveau gleichkommt, wie ich es in den Tälern der östlichen Teile des zentralen Tian-Schan festszutellen vermochte. Der geschlossene Bestand des Fichtenwaldes aber geht an günstig exponierteu Berglehnen im Bogdo-Ola-Gebiet bis zu 2600 m hinauf, also wesentlich hinaus über die Werte, welche von Semenow für den Saileuischen Alatau (2300 m) und von Krafinow für den Kungeu-Alatau (2450 m) festgestellt wurden, und bleibt nur wenig hinter dem von Sewerzow für den Terskeu-Alatau (2750 m) angenommenen Wert zurück. Was nun die Breite des Koniferenwaldgürtels betrifft, so bewegt sich der von mir für die Bogdo-Ola ermittelte Wert von 850 m innerhalb der Grenzen, die ich für die Quertäler der N.-Seite des östlichen zentralen Tian-Schan herausgefunden habe. Hieraus ergibt sich, daß ungeachtet des weiten Hineinragens des Bogdo-Ola-Gebirges ins Herz des asiatischen Kontinentes, die Wirkungen des Kontinentalklimas das Wachstum der Konifere weniger beeinträchtigen, als das mancher anderer Pflanzenarten.3) Die ungemein bedeutende Höhe der zentralen

¹⁾ Grum Grschimailo I, l. c., S. 44 gibt für das Tal Chaidatschan (identisch mit dem Sangun-Datungu meiner Karte) eine untere Grenze von 6300' = 1921 m an, was gegenüber meiner Feststellung erheblich zu hoch ist.

²) Semenow nimmt für den Dsungarischen Alatau als untere Nadelwaldgrenze 1300 m, als ohere 2470 m an. (Petermanns Mitteilungen, l. c., S. 353.) Friedrichsen (Forschungsreise in d. zentr. Tian-Schan, Hamhnrg 1904) veröffentlichte (S. 307) für das gleiche Gebirge zwei Beohachtungen, deren Mittelwert für obere Grenze hei Ostexposition 2566 m heträgt; für untere Grenze fehlt Angahe. Ehenda (S. 301) sind einige Werte der oberen Grenze für den Terskei-Alatau N.-Ahhang angegehen: Dschity-ogus-Tal 3056 m, Barskoun-Tal (nach Pjewtzow) 3023 m und untere Grenze (nach Pjewtzow) im gleichen Tale 1981 m. Für den zentralen Tian-Schan finden sich in gleicher Liste (S. 303) als ohere Grenze zwei Werte: Kapkak-Tal 3245 m und Bayum-kol-Tal 2860 m. Letztere Ziffer muß ich auf Grund eigener Beobachtungen um etwa 200 m zu niedrig ansehen.

³) Regel schätzte in "Reisen im Jahre 1876-79", l. c., S. 416 die Tannengrenze (richtiger Fichten) im oberen Kasch-Tal auf 3048 m (10000′) und ebenso hoch im oberen Kunges-Tal. (Reisen nach Turfan, l. c.,

Kammregion mit ihrer starken Vereisung und daraus hervorgehender steten Befeuchtung der tiefer liegenden Regionen, sowie die Orientierung der Täler gegen N. mögen die Hauptursache dieser auffälligen Erscheinung sein. Bei der hier wirkenden außerordentlichen Strahlungsenergie ist jedoch fast noch mehr als in den westlicher gelegenen Ketten des Tian-Schan die Entwicklung des Waldes von der Stellung des Gehänges gegen die Sonne abhängig. Aus Abbildung Taf. 7 und Taf. 9, Fig. 2 u. 4 läßt sich dies sehr deutlich entnehmen. Nur die im Halbkreis von Norden bis Westen gerichteten Gehänge tragen Wald; es sei denn, daß es sich, worauf ich bereits früher hingewiesen habe, um enge Täler handelt. wo gegenseitige Beschattung der Talränder sich geltend macht. Während an den Talwänden und auf den Kämmen die Fichte allein herrscht, wird sie im Talgrunde, wie schon erwähnt, an den Flußufern vielfach von der Pappel (P. hybrida? und P. diversifolia) verdrängt. An beschatteten Gehängen kann die reiche Bewässerung des Untergrundes. welche den hochgelegenen Schneefeldern zu danken und eine Grundbedingung der Walderhaltung ist, der Gewalt der Sonue nicht zum Opfer fallen und in den engen Tälern vermag auch die austrocknende Tätigkeit des Windes nicht zur Geltung zu kommen. Deunoch zeigt es sich, daß auch iu dieser Gegend, wie in vielen andern Teilen des Tian-Schan, der Wald seine Existenz nur mit Mühe behauptet. Wo die Bedingungen hiefür nur im geringsten gestört werden, geht er zu Grunde. Darum sind überall im Tian-Schan sowohl das Abholzen größerer Bestände, als der Brand überaus gefährlich. Namentlich das Feuer ist in diesen unbewohnten Gegendeu der größte Feind. Zudem hat die außerordentliche Heftigkeit temporärer Regengüsse und die große Energie der Gewässer zur Zeit der Frühjahrsschneeschmelze, die sich in weuigen Wochen abspielt (S. 93 f., 99). an zerstörten Stellen die Abschwemmung des Waldgrundes zur Folge, sowie die Unmöglichkeit natürlicher Neubesiedelung, - von künstlicher, an die in diesen Wildnissen niemand denkt, ganz zu schweigen. Daß auch andere mir rätselhaft gebliebene Feinde des Fichtenwaldes noch vorhanden sind, entnehme ich gewissen befremdenden Vorkommnissen: In sehr entlegenen, schwer zugänglichen Tälern des östlichen zentralen Tian-Schan traf ich inmitten des geschlossenen Waldbestandes Stellen, wo die abgestorbenen Bäume, in sich zusammengestürzt, zu Hunderten hoch gehäuft übereinander lagen, ohne daß hier nach allen gegebenen Verhältnisseu Menschenhand, Feuer, Schneelawinen oder Felsstürze als Ursache in Betracht kommen könnten.

In der Umgebung des Bogdo-Ola-Sees sind alle Täler und ihre Nebentäler von

S. 389.) Es handelt sich hier um Örtlichkeiten, die man schon zum östlichen Tian-Schan zählen kann. Die Zahlenwerte übersteigeu den für Bogdo-Ola-Nordabhang ermittelten Wert nur um ca. 50 m. Pjewtzow hat (ich kann mir nicht vorstellen, auf welche Weise, da er das Bogdo-Ola-Gebiet nicht bereiste) für die obere Grenze des Nadelholzes am Nordabhang der Bogdo-Ola einen Wert von 2890 m ermittelt. (Siehe Friederichsen, Morphologie, l. c., S. 69.) In Prschewalsky, "Reisen in Tibet", (übersetzt von Stein-Nordheim, Jeua 1884, S. 39) ist ebenfalls auf Grund von Pjewtzows angeblichen Beobachtungen 2830 m als obere, 1650 m als untere Nadelholzgrenze für den Bogdo-Ola-Nordabhang angeführt. Für die Gegend weiter im SO. hat Prschewalsky (ebenda) am Zaidam-See als obere Grenze 2400 m, als untere 1800 m ermittelt. Prschewalsky gibt für östliche Gebirge folgende Werte als untere Nadelholzgrenze an: Bayan-chu 1829 m und ebensoviel für die Berge bei Chami, als durchschnittliche obere Grenze 2744 m. Grum Grschimailo veröffentlichte (l. c. I., S. 44) 6 Werte für die obere Grenze im Nan-Schan; der Durchschnitt ergibt 2835 m. Dort handelt es sich jedoch um Picea obovata. Untere Grenzen gibt er nicht an.

herrlichem Fichtenwald erfüllt. Vieles hievon wurde indessen schon durch Feuer zerstört und daß dieses furchtbare Wüten noch immer große Bestände vernichtet, davon werde ich später ein merkwürdiges Beispiel erzählen. Mit dem Schmuck des wundervollen Fichtenwaldes entschwindet dann auch, was ihn so ungemein anziehend macht. sein in weit reicherer Ausbildung als im europäischen alpinen Bergwald vorhandener Bestand an prächtigen Sträuchern, Büschen, Gräsern und Blumen. Die Sträucherflora in den Nadelwäldern der Bogdo-Ola ist jedoch nicht so reich wie weiter im W.; sie setzt sich hauptsächlich aus verschiedenen Arten von Wildrosen, Berberis, Lonicera, Ribes. Spireaen, Sorbus, Cornus und Xylosteum zusammen. Um so reicher ist aber der Bestand an Kräutern, Blumen und Gräsern, wovon ich nur ganz beiläufig folgende Arten erwähne: Ligularia. Thymus. Ferula, Veratrum. Linum. Aegopodium, Bupleurum, Scandix, Aquilegia. Allium, Barbaraea, Ranunculus, Myosotis, Cerastium, Aconitum, Plantago, Erigeron, Solidago, Geranium, Potentilla, Zyziphora, Anemoue, Pedicularis, Parnassia und von Disteln besonders Alfredia und Carduus: die Höhe und Schönheit der Gräser aber ist das Besondere im Fichtenwald und in den von ihm umschlossenen Wiesenstellen. Auch in dieser Flora macht sich hauptsächlich nahe Verwandtschaft mit den Dsungarischen und Altaischen Formen bemerkbar.

Die am höchsten hinaufreicheuden Fichten traf ich noch in mächtigen, doch schon sehr alten und ersichtlich absterbenden Exemplaren im Niveau von über 3000 m auf Hochflächen. Die obere Grenze des Nadelholzes scheint also, ähnlich wie wir dies in unseren heimischen Alpen beobachten können, auch hier zurückzuschreiten. Dorten, und nur an solchen Stellen, findet sich auch Krummholz und zwar (siehe S. 117) Juniperus sabina in zerstreuten, regelmäßigen, kreisrunden Kolonien von knorriger, am Boden hinkriechender Beschaffenheit.

Auf den Südabhang steigt die Fichte nicht hinab; sogar in den Höhenlagen von 2000 bis 3000 m, wo sich ihr stellenweise noch günstige Lebensbedingungen böten, fehlt sie. Es ist dies um so auffälliger, als sie in anderen Quertälern der S.-Seite des Tian-Schan, so in den südlichen Tälern des Chalyk-tau und der Kok-tepe-Kette, im südlichen Musartgebiet, am Südabhang des Terskei-Alatau, im Sabawtschö-Gebiet von mir angetroffen wurde und in den besonders geschützten Lagen dort sogar schöne Waldbestände bildet. Auch andere Bäume fehlen der alpinen Zone des Südabhangs der Bogdo-Ola, soweit ich ihn kennen gelernt habe, gänzlich und ebenso Busch- und Strauchwerk. Dieses beginnt erst wieder im beiläufigen Niveau von 2500 m und abwärts, wo es in schattigen Seitenschluchten an den Bachufern Bestände bildet, hauptsächlich aus Weiden und Pappeln zusammengesetzt. Im annähernden Niveau von 2300 m an abwärts im Gurban-bogdo-Tal, wo die Talverbreiterung, verbunden mit schwächer werdendem Gefälle der Sohle (siehe S. 91, 103), die Ablagerung feinen Materials und daher die Bildung eines Pflanzenbodens begünstigt, stellt sich auch Baumwuchs ein. In dieser etwa 3-4 km des Tallaufes einnehmenden Zone haben auf ziemlich ebenem Wiesenboden sehr hoch entwickelte Espen- und Weidenbäume geeigneten Standort gefunden, ohne sich jedoch zu Wald zu verdichten.

Bald unter 1900 m wird die ganze Breite des Gurban-bogdo-Tales von Geröllmassen (fluvioglaziale Schottern S. 91, 103 f.) eingenommen, so daß nur unmittelbar an den Ufern des tief in sie eingerissenen Stroms ein schmaler Vegetationsgürtel vorhanden ist. Bei etwa 1600 m beginnend, hat sich in dem hier bedeutend weiter werdenden Tal an beiden

Ufern des nun in mehrere flache Arme verzweigten, sehr wasserreichen Flusses auf dem aus stark versumpftem Wiesenland bestehenden Inundationsgebiet ein Auenwald von ansehnlicher Breite angesiedelt. Er besteht aus ziemlich dichten Beständen von Weiden (S. tenujulus? und purpurea), Pappeln mit schmalen, lanzettförmigen Blättern und besonders zu stattlicher Baumform eutwickeltem Eleagnus. Die Weidenkronen sind häufig netzartig von einer Clematis (Atragene sibirica) umsponnen, deren massenhafte federige Fruchtbällchen sich wie zu riesigen, flaumigen Perücken über den Wipfeln zusammenschließen. Das Strauchwerk, in welchem Lonicera (L. Alberti Rgl.?), sowie Berberis und Wildrosen als Hauptelemente auftreten, bildet wahre Dickichte. Streckeuweise ist der Graswuchs dort sehr reich und zeigt eine Flora, deren hauptsächliche Vertreter ich bereits auf S. 113 f. genannt habe.

Im weiteren Verlaufe nach S. schneidet sich der Fluß wieder tiefer in Schottermassen ein, so tief, daß der hier zu einer geräumigen Ebene sich weitende Talboden keine ständige Befeuchtung mehr erfährt und den Charakter der Wüstensteppe annimmt. (Siehe S. 91 f., 104.) In uoch etwas tieferem Niveau wird diese häufig von Strecken Takyrbodens unterbrochen und zwar dort, wo zur Zeit der Frühjahrsschneeschmelze und auch bei Gelegenheit plötzlich hereinbrechender, somwerlicher Hochwasser, wofür ich später ein Beispiel anführen werde, die mächtig überflutenden Gewässer eine Zeitlang stagnieren und ihren starken Gehalt an schwebenden Tonteilchen absetzen. Wir befinden uns nun außerhalb der Talmündung in der weiten, wannenförmigen, flachen Seuke, die sich dem Südfuß des Gebirges entlang bis zum weitgestreckten gleichförmigen Wall des Dschargöß-Tau im S. hinzieht. (Siehe S. 35, 76, 92, 105.) Dieses Gebiet (genauere Beschreibung in einem der folgenden Kapitel) fast wüstenhaften, bald kiesigen, bald sandigen, bald von gröberen Geröll bedeckten, ebenen Tonbodens, der streckenweise zum richtigen Takyrboden wird. steht völlig unter der Einwirkung des Trockenklimas. Je nachdem der Untergrund imstande ist, etwas Feuchtigkeit zurückzuhalten oder nicht, treten die charakteristischen Vegetationsformen der Trockensteppe oder Halbwüste auf: Stipa capillata, Lasiogrostis splendens, Koeleria cristata, Bromus und andere Steppengräser, dann Salsola, Dodortia orientalis, Suaeda physophora, Lepidium obtusum, Zygophyllum Rosowii, Mulgedium tartaricum, Capparis, Atraphaxis lanceolata, Kochia prostrata, Peganum harmala, Glycyrhiza sp.?. Echinops sphaerocephalus, Inula, Lycium, Dracocephalum, große Mengen verschiedener Artemisien und Astragaleaen-Arten. Das Pflanzenleben entwickelt sich hier in Form zerstreuter kleiner Gruppen, schwächer auf dem kiesigen Lehmboden als auf den Flächeu reinen Takyrbodens. Diese hellgraugelben, tischebenen Flächen, von tiefen und breiten Trockenrissen netzartig durchzogen, dehnen sich in weite Ferne schutzlos unter den unbarmherzigen Strahlen der südlichen Sonue und die Pflanzen nehmen daher einen knäulartigen, fast kugelförmigen Wuchs an, oft von sehr bedeutendem Umfang. Dort, wo sich die einzelnen Knäuel mehr aneinander drängen, täuscht eine solche Anhäufung von weitem gesehen, die graugrüneu Wogen eines großen Sees vor. Nur dort wo die Wasser der sommerlichen Hochgewitter des Gebirges tiefe grabenartige Einbrüche in diese Tonfläche gerissen haben und daher die Feuchtigkeit durch Beschattung zurückgehalten wird, siedelt sich auch etwas reichere Vegetatiou an. (Myricaria alopecurooides Schrenk., Capparis, Populus, Calligonum, Zygophyllum.) Aber als Gesamteiudruck dieser sich am Südrand des Gebirges dehneuden Landschaft bleibt dennoch der einer trostlosen Öde und Verlassenheit.

Das mittlere Niveau des nach S. abdachenden Bodens ist 1200—1300 m. (Siehe Spezial-kärtchen.) Erst wenn wir uns dem Südrande der Senke nähern, oder, wie dies auf meiner Reise der Fall war, dem SW.-Rande, wo aus der spärlichen Aufspeicherung der schroff abfallenden Felswände des Dschargöß-Tau dem Boden des Beckens, allerdings nur unterirdisch. dauernd etwas Feuchtigkeit zugeführt wird, dann noch mehr an den Ufern des Sees Sayo-pu (1140 m) bessern sich die Bedingungen für das Pflanzenkleid und auch menschliche Besiedelung wird wieder möglich. Der uns zugekehrte zerklüftete Nordabsturz der Dschargöß-Kette, der beim ersten Anblick völlig kahle, wüstenhafte Denudationsverhältnisse zeigt, überrascht bei näherer Betrachtung nicht wenig dadurch, daß in den eingerissenen Engschluchten des hellen Gemäuers dunkle Fichten sichtbar werden, die dort an den begrenzenden Steilmauern bis zur Höhe der Kämme emporstreben. Danach zu schließen, dürfte dieses zwischen zwei Wüstenbecken aufragende Gebirge nicht ganz so wasserarm sein, als es beim ersten Anblick erscheint.

In der Tat scheint der Sayo-pu-See unterirdischen Zufluß aus der Dschargöß-Kette zu erhalten und auch dem Untergrund seines Uferlandes dürfte reichlich solcher zukommen, was aus folgendem hervorgeht: Der den See umgebende Gürtel nutzbarer Vegetation erstreckt sich nur an dessen O.- und N.-Ufer und hat auch dort keine sehr bedeutende Ausdehnung, so daß nur einer kleinen Anzahl, in einer von Lehmmauern umgebenen Festung lebender chinesischer Militärkolonisten und sartischer, sowie einiger dunganischer Ackerbauer Gelegenheit zur Bodenkultur gegeben ist. Mit ihren Familien können es etwa 150 Seelen sein, die ich dort mit Ackerbau und Viehzucht beschäftigt fand. Es muß aber betont werden, daß bei künstlicher Bewässerung, die sehr wohl möglich ist, weit größere Strecken Landes unter Kultur genommen werden könnten.

Die zusammenhängende dichte Rasendecke in der Umgebung des Sees wird durch aus dem Boden hervortretende starke Quellen sehr reinen Wassers begünstigt, sogar stellenweise versumpft und bietet ungeachtet der starken Insolation noch einigen subalpinen Pflanzenformen geeigneten Standort: Thalictrum isopyroides, Saussureae amara D. C., Sedum Ewersi, Carduus scirame, Gentiana barbata, Ziziphora canescens, Mulgedium tartaricum, Oxytropis lapponica, Thymus, Pedicularis etc. Von Sträuchern finden sich dort: Lycium ruthenicum, Berberis integerrima. Lonicera Alberti Rgl., Atraphaxis lanceolata, Eleagnus, Salix, Nitraria Schoberi und Karagatschgebüsche, welche, über der grünen Ebene verteilt, hochwachsende Gruppen bilden. Auch einzelne Karagatschbäume, sehr hochragend, aber mit spärlich entwickeltem, unregelmäßigem, phantastisch abstehendem Geäste sieht man in der Oase zerstreut (s. S. 122).

Schon wenige Kilometer im NW. des Sees geht der Grasboden allmählich in eine Artemisiensteppe über, die sich auf hartem, kiesbedeckten Tonboden entwickelt und eine bald in niederen kugeligen oder höheren knäuelförmigen Formen, bald als sehr hochwachsende Sträucher auftretende xerophyte Flora von seltener Üppigkeit und Schönheit hervorbringt. Obwohl die einzelnen Individuen durch fast meterweite und noch größere Zwischenräume voneinander getrennt sind, wird beim Überblick auf die sanft ansteigende Ebene der Eindruck einer geschlossenen Vegetationsdecke vorgetäuscht. Von den hauptsächlichsten Formen führe ich an: Peganum harmala, Oxytropis coerulea, Zygophyllum macropterum. Xanthium spinosum, Haplophyllum latifolium, Calligonum, Salsola arbuscula, Suaeda physophora Bg., Dodortia orientalis, Astragalus (cf. Palassii, A. hypogaeus?), Cerato-

carpus arenarius, Alhagi camelorum, Atraphaxis spinosa und lanceolata, Capparis, Sophora alopecuroides, Kochia prostrata, Nitraria Schoberi, Artemisia maritima, A. Siewersiana und A. scoparia W. und K., sowie Diptichocarpus strictus. Die üppige Entwicklung dieser Pflanzenformen war geradezu überraschend. Ich habe die Trockensteppenflora selten in solch schöner Entfaltung gesehen wie hier. Am meisten fielen riesige dunkelgrüne Kugeln von Anabasis und Büsche von Ephedra monosperma auf. die bis zu 3½ m Höhe und 6 m Umfang erreichen. Die Zweige dieser Pflanze waren ungemein saftreich und entwickelten ein starkes, angenehmes Aroma.

Dieser Charakter der Pflanzendecke setzt sich wohl noch ca. 25 km gegen N. und SW. auf der weiten sanft ansteigenden Ebene fort, ohne daß irgendwo Wasserläufe sichtbar werden, denen man die Entstehung dieses Wachstums zuschreiben könnte. Nirgendwo konnte ich offen fließeudes Wasser bemerken; auch nicht als wir uns schon dem Fuße des alten Gebirges der Bogdo-Ola, den niederen Zügen des Dun-Schan-Gebirges genähert hatten, dort wo es am tiefsten eingesunken ist (siehe S. 30, 46, 57 f., 60), und wo seine niedrigste Einsattlung durch die große Karawanenstraße von Turfan nach Urumtschi gequert wird (Taf. 15 Fig. 4). Dennoch kann eine so reiche Entfaltung selbst von xerophyter Flora, wie sie mir ähnlich in unbewässertem Steppengebiet weder am Nord- noch am Südfuß in anderen Teilen des Tian-Schan irgendwo vor Augen getreten ist, nur durch eine in geringer Tiefe befindliche unterirdische Wasserzirkulation erklärt werden. In der Tat wurde ich auf dem Wege durch dieses soust wasserlose Gebiet einige Male dadurch überrascht, daß sich an nur wenig eingesunkenen Stellen des Bodens plötzlich ausgedehnte flache Wasserpfützen verbreiteten, also Druckwasser. Offenbar entstammt diese Feuchtigkeit, in ähnlicher Weise wie die erwähnten Quellen am Sayo-pu-See vom hohen Südrande des Beckens, dem Dschargöti-tau, unterirdisch gespeist werden, dem nördlichen Gebirgsrande, dem Dun-Schan-Gebirge. Die dort niedergeschlagene Feuchtigkeit zirkuliert jedenfalls auf einer in geringer Tiefe liegenden Tontafel unter der Kiesdecke, auf einem undurchlässigen Tonboden, der als Niederschlag eines früher dieses ganze zwischen den mehrgenannten Ketten eingetiefte Becken ausfüllenden flachen Sees anzusehen ist, worauf ich bereits in Kap. XI und XII S. 80. 92, 105 hingewiesen habe und worüber ich in Kap. XVII noch Näheres mitteilen werde.

XIV. Bevölkerung und Tierleben.

Nur ganz allgemeine Mitteilungen vermag ich über diese Materien zu machen. Aus dem Inhalt des vorigen Kapitels ist erkennbar, daß die Täler der Bogdo-Ola durchaus nicht der Bediugungen entbehreu, welche wenigstens einer mäßigen Anzahl von Viehzüchtern und Ackerbauern Existenz sichern würden. Dennoch ist das Gebirge gänzlich unbewohnt, mit Ausnahme einiger klösterlicher Siedelungen, welche sich auf hohen Uferterrassen des öfters genannten prächtigen Bergsees befinden. Hier stehen teils am W.- teils am O.-Ufer des Sees acht größere und einige kleinere laoistische und buddhistische Tempel und die dazu gehörigen Höfe und Wohngebäude, in welcheu 14—15 chinesische Mönche und ihre Diener ein beschauliches Dasein bei geringer Arbeit führen. (Hievon später mehr.) Nur etwas Gemüse und ein wenig Getreide (Gerste) werden vou ihnen angebaut; außerdem halten sie auf den reichen, die Tempel umgebenden Alpenwiesen eine kleine Anzahl von Rindern, Schafen und Pferden. Sonstige ständige Niederlassungen gibt es nirgendwo im Gebirge. Der reiche Graswuchs der Alpenzone wird nicht ausgenützt; es wird kein Heu

gemacht. In den Sommermouaten, etwa Mitte Juli, kommen russische Kirgisen aus dem fernen Saivangebiet, um mit ihren großen Herden von Schafen und Pferden, sowie wenigen Rindern die Alpenzone der Bogdo-Ola aufzusuchen (S. 37, 81, bes. 101). Diese Nomaden haben einen Weg von mehr als 700 km zurückzulegen, müssen die hohen Ketten des Tarbagatai und des Dschair-Gebirges, sowie die dazwischen und im S. hievon sich dehnenden Steppen queren, um die allerdings sehr guten Weideplätze zu erreichen. Schon um Mitte August kehren sie den gleichen langen und mühevollen Weg wieder zurück. Ob und welche Vorteile indes eine so lange Wanderung ihnen gewähren kann, ist mir zweifelhaft geblieben. Vielleicht ist hier alte Stammestradition, an welchen die Nomadenvölker allenthalben in Zentralasien zähe festhalten, mächtiger als ein berechnendes Handeln. Auch konnte ich nicht ermitteln, warum die chinesische Regierung gerade diesen weit entfernt wohnenden und obendrein nicht dem chinesischen Staatsverbaud angehörigen Nomaden das Recht der Benützung des Bogdo-Ola-Gebietes eingeräumt hat, während dieses den weit näher wohnenden chinesischen Mongolen (Torgouten) des Karaschar- und Yuldusgebietes, den Mongolen des Sairam-nor-Gebietes (Tschacharen), ebenso wie den benachbarten Kirgisen des Kunges-Tales verschlossen ist?

Den sartischen Ackerbauern am N.-Fuße scheint gleichfalls ein Recht zuzustehen, im Sommer Schafherden auf bestimmte Weideplätze des Bogdo-Ola-Gebirges zu senden. Wenigstens stieß ich auf meiner Wanderung auf sartische Hirten, deren ihnen anvertraute Schafherden, wie sie sagten, Eigentum von Landwirten in Foukan sind. Die Chinesen der Provinz Hsin-kiang bekunden allgemein große Abneigung gegen das Gebirge und siedeln sich nirgends dauernd in seinen innern Tälern an. Auch die sartischen Ackerbauern (Tarantschi) bevorzugen die Ebene und sind nur äußerst selten im Gebirge zu treffen. Kirgisen aber sind Nomaden und suchen hochgelegene Weidegründe nur für kurze Zeit alljährlich auf, ohne ständige Niederlassungen dort zu gründen.

Daß übrigens früher im Unterlaufe der nördlichen Quertäler einige feste, nun längst verlassene Ansiedelungen bestanden haben, erwähnte ich schon im vorigen Kapitel (S. 121 f.). Am S.-Abhang stieß ich im Gurban-bogdo-Tale wohl auf vereinzelte eingezäunte Überwinterungsplätze; ob sie aber von mongolischen oder von kirgisischen Nomaden aufgesucht werden, vermochte ich nicht zu ermitteln. Feste Ansiedelungen im S. finden sich erst wieder am See Sayo-pu (S. 129), da die mehrfach erwähnte Kupferschmelze im Gurban-bogdo-Tale jetzt zerstört und verlassen ist. Das Bogdo-Ola-Gebirge kann somit als fast unbewohnt bezeichnet werden und die in seinen Alpenwiesen und Wäldern, sowie in dem kulturfähigen Boden der Täler liegenden wirtschaftlichen Werte werden so gut wie gar nicht ausgenützt. Kann die geringe Wegsamkeit des Gebirges, der Mangel an leicht überschreitbaren Pässen auch als Grund hiefür angesehen werden, so vermag er doch eine solche auffällige Erscheinung nicht völlig zu erklären, in einem Lande, wo die Existenzbedingungen für die Bevölkerung der Randgebiete des Gebirges infolge Wassermangels so schwierige sind, daß man meinen sollte. sie müßten sich die Erträgnisse, wenigstens der leichter erreichbaren Gebirgsteile zunutze machen.

Was das Tierleben der Bogdo-Ola anbelangt, so ist sein Charakter der gleiche paläoarktische, der die Fauna der anderen Teile des Tian-Schan, sowie auch das übrige organische Leben dort kennzeichnet. Ich hatte im Bogdo-Ola-Gebirge weit weniger Gelegenheit große Säugetiere zu sehen, als in den vorher von mir bereisten westlich hievon sich dehnenden

Ketten, trotzdem ich mich auch in der Bogdo-Ola längere Zeit in den einsamen Hochregionen aufhielt. Der Reichtum an solchen Tieren scheint somit ein weit geringerer zu sein, als im zentralen und westlichen Tian-Schan, was ich schon aus dem Umstand schließen darf, daß man Jägern hier sehr selten begegnet. Von größeren Säugetieren traten mir auch hier hauptsächlich Steinböcke und Wildschafe entgegen und zwar sowohl am N.-Abhang als am südlichen; das Wildschaf sogar zahlreicher am südlichen, weil es die trockenen Höhen bevorzugt. Beide Tierarten scheiuen aber von etwas anderer Entwicklung, als die in den weiter im W. gelegenen Ketten lebenden. Die Steinböcke sind kleiner und ihr Gehörne ist schwächer, das Haarkleid heller, was auch durch die Beobachtung meines Tiroler Begleiters Wenter bestätigt wird, der ein Rudel von 50 Steinböcken im mittleren Gurban-bogdo-Tale nahe am Fluß aus einer Entfernung von nur 80 Schritt lange beobachten konnte. Die Gehörne der Wildschafe sind kürzer und gedrungener, aber stärker an der Wurzel wie die der weiter im W. vorkommenden und zeigen, soweit mir solche als Findlige vor Augen kamen, nur eine Windung, nähern sich also weit mehr dem Typus von Ovis Karelini als dem von Ovis polii, die im zentralen Tian-Schan beide verbreitet sind.¹)

Die Verhältnisse während meiner Bereisung der Bogdo-Ola gestatteten mir leider nicht, meine große, aus den verschiedensten Teilen des Tiau-Schan heimgebrachte Sammlung von Wildschafgehörnen auch durch solche aus dem Bogdo-Ola-Gebiet zu vermehren, weshalb ich die Möglichkeit nicht hatte, deren Typus genauer feststellen zu lassen. Am Südabhang, im Mittellauf des Gurban-bogdo-Tales, wo ich sechs lebende Arkare (Wildschafe) in geringer Entfernung sah, fand ich auch einige Arkargeweihe, welche sich von denen des zentralen Tian-Schan durch eine kürzere und mehr gedrungene, mehr dem Ovis ammon ähnelnde Form unterscheiden. Besonders an der Basis sind sie sehr stark; eines hatte einen Basisumfang von 38 cm. Das Wildschaf des Altai spricht Prinz E. Demidow²) als genus Ovis ammon an. Sollte sich das Bogdo-Ola-Schaf gleichfalls als Ovis ammon erweisen, so wäre auch in einem Teil der Säugetierfauna eine nahe Verwandtschaft zu den Altaischen Formen festgestellt. Auch der Umstand, daß ich auf meinen Wanderungen in der Bogdo-Ola nur selten Abwurfgehörnen oder Schädeln verunglückter Tiere begegnete, welche im zentralen und östlichen Tian-Schan so häufig vorkommen, spricht dafür, daß der Wildreichtum des Gebirges lange nicht so groß sein kann, als weiter im Westen.

Ob der Maralhirsch (Cervus eustephanus Blanford), der noch im Quellgebiete des Manas-(Chustai-)Flusses, also uicht sehr weit entfernt im W. so ungemein zahlreich und prächtig entwickelt auftritt, fast noch zahlreicher als im zentralen Tian-Schan, auch im Bogdo-Ola-Gebiet anzutreffen ist, vermag ich nicht zu sagen. Ich bin wenigstens dorten nirgendwo auf seine Fährten gestoßen, noch begegnete ich mongolischen Jägern, welche um des von den Chinesen so sehr begehrten Geweihes halber diesem Tiere sonst allenthalben im Gebirge nachstellen, wo es heimisch ist. Im Basar von Urumtschi fand ich bei den Händlern viele prachtvolle Bastgeweihe des Maral; nach den mir gewordenen übereinstimmenden Auskünften kamen sie aber alle ausschließlich aus dem Manasgebiet. Ich zweifle daher, daß wenigstens größere Bestände dieses Tieres in der Bogdo-Ola zu finden sind. Grum Grschi-

¹⁾ Hierauf deuten auch die Angaben von P. W. Church, Across Turkestan with Camera and Rifle, 1. c., S. 160; nur meint Church, die Form gleiche dem von Ovis ammon.

²⁾ After wild sheep in te Altai and Mongolia. London 1900.

mailo allerdings erwähnt in seiner Reisebeschreibung, 1) daß er den Ruf des Marals vernommen habe. Auch vom Vorkommen des Rehes (Cervus capreolus pygargus Gray) schreibt dieser Reisende. Weder ich selbst noch die scharfäugigen Kirgisen und Kosaken meiner Begleitung haben es indes irgendwo wahrgenommen. Es dürfte also auf alle Fälle ziemlich selten sein, während mau es im zentralen und westlichen Tian-Schan so ungemein häufig trifft. Vom Nordrande des Gebirges erwähnt der gleiche Reisende, ebenso auch Church 2) des Vorkommens der Saiga-Antilope (Saiga tartarica L.) und Pjewtzow 3) hat sie auch am Südrande gesehen. Auch der Wildesel (Equs hemionus Pall.) wurde von Grum Grschimailo am Nordabhang gesehen. Ich selbst habe beide Tiere in den nördlichen Steppen ebenfalls wahrgenommen, aber viel weiter im W., in der Gegend von Manas und noch weiter westlich.

Vou Raubtieren begegnete ich am meisten in den Hochtälern und zwar sowohl am Nord- als am Südabhang bis zu Höhen von über 4000 m den Spuren des Bären, viel tiefer unten denen des Wolfes und Fuchses, sowie denen kleinerer Raubtiere (Marder und Wiesel). diesen aber bei weitem nicht so häufig, wie in den auderen von mir bereisten Teilen des Tian-Schan. Hingegen fand ich von dem dort so häufig auftretenden Schneeleopard (Felis nivalis) oder Irbis weder Fährten, noch konnte ich in Erfahrung bringen, ob er im Gebiete der Bogdo-Ola angetroffen wurde. Ebensowenig stieß ich auf Fährten des im übrigen Tian-Schan sonst weit verbreiteten Wildschweins. Nach Aussagen der Saissanischen Kirgisen sollen Wildkatzen und Luchse im Gebirge vorkommen; ich selbst habe aber keine Fährten dieser Tiere, noch Reste von gefallenen gesehen. Eine besonders auffällige Erfahrung war es aber für mich, daß ich dem allenthalben im ganzen Tiau-Schan in so ungemein großer Zahl vorkommendem Murmeltier nirgendwo im Bogdo-Ola-Gebiet begegnete. Noch in den Quellgebieten des Manasflusses und des Ulan-ussu tritt es so zahlreich auf, daß die mongolischen Maraljäger. mit denen ich dort zusammentraf, sich wochenlang ausschließlich von seinem Fleische ernährten und Hunderte von Fellen frisch erlegter Tiere an ihren Lagerplätzen verwahrt hatten. Da ich auch keine Baue von Murmeltieren antraf, so ist es in der Bogdo-Ola jedenfalls. wenn es nicht etwa ganz fehlen sollte, ein seltenes Tier. Welches die Gründe für diese Seltenheit sein mögen, wo doch die sonstigen Lebensbedingungen für das Tier die gleichen zu sein scheinen, wie im übrigen Teil des Tian-Schan, ist mir ein Rätsel.

In manchen Reiseberichten und anderen geographischen Werken über Zentralasien begegnet man öfters der Angabe, daß im Bogdo-Ola-Gebiet auch das Moschustier und das Wildpferd (Equs Prschewalskii) vorkommen. Diese Aunahme beruht auf Irrtum. Hinsichtlich sonstiger Arten des Tierreiches verweise ich auf die Mitteilungen Grum Grschimailos, der besonders in Band I seines Reisewerkes (S. 157 f.) über das Vogelleben wichtige Angaben macht und im Anhang des gleichen Bandes eine Liste der gesammelten Vögel und Schmetterlinge bringt. Ich selbst habe von Schmetterlingen im Bogdo-Ola-Gebiet weit weniger gesehen als in anderen Teilen des Tian-Schan, obwohl ich es zur Zeit der vollen Entwicklung der Alpenflora bereiste.

Wenn nun auch meine Beobachtungen über das Tierleben als sehr lückenhaft und ungenügend angesehen werden müssen, so geht aus ihnen wenigstens so viel mit Sicherheit hervor, daß es in der Bogdo-Ola ärmer ist, als in anderen Teilen des Tian-Schan. Welches die

¹) l. c. I, S. 163. ²) l. c., S. 161. ³) l. c., S. 356.

Ursachen dieser auffälligen Erscheinung sind, bleibt vorläufig eine offene Frage. Des Menschen Einwirkung auf die Tierwelt ist jedenfalls in diesem Gebirge noch weit weniger zu spüren. als in den meisten der von mir bereisten Teile des großen Kettengebirges, kann also nicht die Ursache sein. Ob klimatische Einflüsse hiefür maßgebend sein mögen, ist auch nicht so ohne weiteres anzunehmen, weil das Klima doch nicht so sehr verschieden von dem der benachbarten Teile des Gebirges ist. Ich möchte eher der Ansicht Raum geben, daß die geringe Breitenentwicklung des Gebirges, sein Ansteigen als isolierte Kette zwischen zwei tiefen Senken und besonders die scharfe Trennung von den Hochgebirgen im W. durch den oft erwähnten niederen verkehrsreichen Sattel von Urumtschi vielleicht der maßgebende Faktor sein könnte. Indessen muß ich es berufenen Zoologen überlassen, das entscheidende Wort in dieser Frage zu sprechen. Zum Schlusse möchte ich noch besouders darauf hinweisen, daß auch in diesem weit nach O. vorgeschobenen Teile des großen Gebirges keine Berührungspunkte mit der Himalayensischen Fauna wahrnehmbar sind, namentlich auch im oruithologischen Bestande nicht. So wie aus den im vorigen Kapitel geschilderten Verhältnissen des Pflanzenlebens hervorgeht, daß im Florenbestande des Bogdo-Ola nahe Verwandtschaft mit dem Dsungarischen und Altaischen Formenkreis besteht, so ist dies auch hinsichtlich der Fauna, soweit sie bis jetzt erforscht wurde, der Fall.

XV. Von Urumtschi zum Bogdo-Ola-See.

In diesem und iu den folgenden Kapiteln sollen nur die wichtigsten der auf der Reise beobachteten Erscheinungen besprochen werden, insoweit als sie zur Vervollständigung und näheren Erklärung des allgemeinen Bildes des Gebirgsabschnittes dienen könneu, welches ich hievon in den vorhergehenden Kapiteln entworfen habe.

Man kann wohl verschiedener Meinung darüber sein, ob es zweckmäßig und gerechtfertigt ist, so zu verfahren, wie ich es, entgegen dem hergebrachten Schema, in dieser Abhandlung wage: zunächst den Leser in zusammenfassenden Ausführungen mit allen wesentlichen Zügen der Natur dieser Gegeud bekannt zu machen und ihm Darlegungen zu bieten, aus denen implicite schon ein großer Teil der Reiseergebnisse spricht, ehe ich mit dem Reisebericht selbst hervortrete. Allein ich habe mich bäufig genug über die Zersplitterung und Weitschweifigkeit maucher Reiseberichte geärgert, durch welche das Aufnahmevermögen des Lesers angestrengt wird und deren Inhalt je uach dem wissenschaftlichen Spezialgebiet, welches der Leser pflegt, für ihn nicht von besonderer Bedeutung ist, ehe er endlich erfährt, was ihm hauptsächlich wissenswert ist, daß ich eiumal einen Versuch mit der umgekehrten Methode machen will. Ist der Leser durch den Inhalt der vorhergehenden Kapitel erst vertraut geworden mit der besonderen Wesensart dieses ihm bisher, ebenso wie dem größten Teil der Fachgenossen völlig unbekannt gebliebenen Gebirges und überblickt er die allgemeinen Verhältnisse sozusagen von vornherein vollständig, so vermag er, wie ich annehme, der Beschreibung des Weges, den ich durchmessen habe, mit besserem Verständnis zu folgen und wird mir vielleicht Dank wissen dafür, daß ich über den Verlauf der Forschungsreise und den dabei gemachten Wahrnehmungen in chrouologischer Folge berichte, ohne meine Darlegungen durch ausführliche Hinweise heterogener Art auf verschiedenerlei Naturverhältnisse, die ich nun als bekannt voraussetzen darf, häufig unterbrechen zu müssen.

Freilich setze ich mich dabei der Gefahr einer ungünstigen Beurteilung meiner Tätigkeit insoferne aus, als der Leser nun leicht herausfinden wird, an welchen Punkten meine Beobachtungen unzureichend waren. Ich gebe auch gerne zu, daß, wenn mir bei Antritt meines Weges alles das über mein Reisegebiet schon bekannt gewesen wäre, was ich in den vorhergehenden Kapiteln mitgeteilt habe, ich gewiß manches auf dem Wege anders und gründlicher gemacht haben würde, als es ohne vorherige Kenntnis der dargelegten Verhältnisse und der technischeu Schwierigkeiten, sowie des Zeitaufwandes der Reise geschehen mußte und leider geschehen ist. (Siehe S. 35 und 56).

Wenn ich nunmehr in den folgenden Kapiteln das meiste über die Natur meines Forschungsgebietes bereits Mitgeteilte nicht mehr berühre oder nur durch ganz kurzen Hinweis erledige, so läßt es sich wegen des logischen Zusammenhangs der Schilderung oder um einzelne Tatsacheu eingehender zu erklären dennoch nicht ganz vermeiden, hie und da auf einige besondere Verhältnisse nochmals zurückzugreifen.

Wir verließen am 31. Juli 1908 die Stadt Urumtschi in der Richtung nach N. Man tritt aus dem Nordtore der Stadt nach dieser Richtung unmittelbar in eine wüstenartige Lehmsteppe hinaus. Obwohl es, als wir abreisten, schon später Nachmittag geworden war, brütete noch eine dumpfe Hitze über der ungeheuren graubraunen Ebene. In dieser Jahreszeit ist es für Mensch und Tier unmöglich, während der Höhe des Tages eine derartige Gegend zu durchwandern. Ein Teil der Nacht muß hiefür verwendet werden, obgleich ihre Schatten den Reisenden mancherlei Beobachtungsmöglichkeiten berauben. Diesen Übelstand konnte ich aber um so leichter in den Kauf nehmen, als es sich für mich doch in erster Linie darum handelte, das nahe Hochgebirge zu durchforschen und die Expedition in möglichst guter Verfassung in ihr eigentliches Arbeitsgebiet zu bringen.

Schon in unmittelbarer Umgebung von Urumtschi fehlen in der Richtung nach N. und O. die Kulturen vollständig. Man sieht zwar, daß einzelne Strecken des lockeren, mit spärlichem. feinkörnigem Gerölle vermischten Lehm-Lößbodens zeitweise bebaut werden; allein zu jener Zeit lagen auch diese Strecken brach, da der hier vom Rande der Stadt auf Kilometer nach N. hin noch ziemlich ansteigende Boden vom Flusse aus nicht bewässert werden kann. Die Kultur hängt in diesem Teil der Ebene also ausschließlich vom Regenfall ab und im Jahre 1908 war seit Monat März dort kein Regen mehr gefallen im Gegensatz zu normalen Jahren, wo Sommerregen häufig sind (s. S. 8, 10 u. 14 f.). Wir kreuzten auf unserem Wege langgestreckte Züge niederer, kahler, stumpfer Rücken mit schwach gebrochenen Kammlinien. In Abständen von mehreren hundert Metern durchziehen sie als nördlichste Wellen des jungen Gebirges der Angaragesteine die Ebene in Richtung NO.—SW. Die Höhe dieser ausklingenden Anschwellungen des Jura-Gebirges wechselt von 20 zu 40 m; sie sind völlig mit Löß bedeckt, aus dem wechselnde Lagen von Konglomeraten und Sandsteinen von kaum gestörter Lagerung zutage treten (s. S. 7). Die gebotene Eile, da bei Tageslicht noch eine möglichst große Strecke des Weges durchmessen werden sollte, verhinderte nähere Untersuchung. Von Zeit zu Zeit wurde auf den abgeflachten gelbgrauen Kämmen ein alter, halb verfallener Wartturm aus Lehm sichtbar, der sich von seiner gleichfarbig toten Umgebung nur durch die gegen den Horizont scharf umrissene Silhouette abhob. In der Ferne, im Norden fand der Blick über die Ebene keine Grenzen in der schwach flimmernden, durch Rückstrahlung des Bodens aufgelockerten Luft.

Die Vegetation der von uns durchreisten Halbwüste habe ich in Kap. XIII charakterisiert und gehe daher nicht weiter darauf ein. Die Route, welche wir benützten, wird — allerdings euphemistisch — als "Nördliche Tian-Schanische Kaiserstraße" (Tian-Schan-Peu-lu) bezeichnet (S. 9 f., 44, 94); sie kann aber keinen Anspruch auf diesen irreführenden stolzen Namen erheben, überhaupt nicht auf die Bezeichnung Straße, da sie kaum mehr als ein durch die Spuren von Karawanen und Karren kenntlich gemachter breiter Streifen in der unabsehbar gedehnten, graugelben Fläche der Halbwüste ist. Nach etwa 7 km beginnt das Terrain auf unserem Wege nach N. in der Richtung gegen die Furche des Flusses Lou-sa-gu (siehe Karte I) allmählich abzusinken, welcher aus S., aus dem westlichen Zweige des Bogdo-Ola-Gebirges herabfließt und hier, in die Westrichtung übergehend, dem Nordlauf des Chorcho-tö zueilt. Mit der Annäherung zum Flusse stellt sich Baumwuchs (Karagatsch) ein und eine gut bebaute Gegend öffnet sich, von Kanälen bewässert, die aus dem genannten Flusse — natürlich schon weit höher oben von seinem Laufe — abgezweigt sind. Indessen drängen sich uoch immer Wüstenstrecken zwischen die Kulturen, weil das Wasser nicht ausreichend zu sein scheint. Sobald wir den Einschnitt des Flusses, der klares, salzfreies Wasser führt, gequert und am anderen Ufer wieder einige Höhe gewonnen haben, zeigte der Charakter der Gegend für die nächste etwa 15 km lange Strecke unseres Weges den gleichen Wechsel von Kultur, Wüste und abermals Kultur, wenn wir wiederum allmählich hinab zu einer zweiten Talsenke gelangen. Es ist die des noch tiefer in den Lehmlöß der Halbwüste eingeschnittenen Flusses Sa-cho-gu. Da dieser Fluß, von dessen Ursprung und Lauf das gleiche zu sagen ist wie von dem vorigen, jedoch die doppelte Wassermenge führt, so ist die seine beiden Ufer umsäumende Kulturzone entsprechend umfangreicher und der Baumwuchs an den von ihm abgezweigten Kanälen ein sehr reicher und dichter.

In später Nacht langten wir im ärmlichen Serail von Gumüdü an (630 m). Wir hatten somit auf unserem Wege von Urumtschi fast 300 m an Höhe verloren. Abgesehen von der Tiefe des Flußeinschnittes fällt also das ganze Terrain nach N. mehr und mehr gegen die erwähnte (S. 19, 43, 44, 94), dem Gebirgsfuße entlang laufende, grabenartige Längsfurche ab.

In der Senke von Gumüdü herrschte eine fast unerträgliche, beklemmende Schwüle. Diese und die Stechfliegen machten den Aufenthalt dort höchst unangenehm. Gegen Mitternacht erhob sich ein ungemein heftiger Staubsturm von NW., der den Hof des Serails mit einem Gemisch von Lößstaub und feinstem Sand überschüttete. Es war wieder einmal ein lebendiger Beweis — bedürfte es noch eines solchen — für heute noch andauernde Lößablagerung an den Gebirgsrändern Zentralasiens. Der Sturm dauerte fast bis Tagesanbruch; doch fiel kein Regen und der kommende Morgen (1. August) war drückend heiß bei einer von Staub stets getrübten Atmosphäre. (Lufttemperatur um 6 h tr. 21.8 ° f. 16,7 ° rel. Feuchtigkeit 58 °/0 absol. 11.2 °).

Von Gumüdü führt die "Kaiserstraße" weiter in N.-Richtung durch ein dem vorher geschilderten ähnliches Gelände. Mit der Annäherung zum Einschnitte des nächsten vom westlichen Bogdo-Ola-Gebirge herabströmenden Flusses, des Schoŭ-gu. wird die Öde der Halbwüste abermals durch Kulturstrecken unterbrochen: Große Flächen sind dort mit Mais bebaut. Gehöfte weit umher zerstreut uud zahlreiche Kanäle mit den an sie gebundenen dichten Gürteln von Bäumen durchziehen den gelbgrauen Lehmlößboden. Dieser Fluß ist noch wasserreicher als der Sa-cho-gu, da sein Ursprungsgebiet im Süden, in dem nach

Osten hin zu immer bedeutenderer Höhe ansteigenden und darum entsprechend reicher vergletscherten Hauptkamme liegt. Eine zusammenhängende Häusergruppe an seinem Ufer, unter Baumgruppeu fast versteckt, trägt deu Namen Che-goŭ-dschü, und ist auf den Karten nicht verzeichnet. Alle bisher passierten Niederlassungen werden fast ausschließlich von chinesischen Ackerbauern bewohnt.

Schon bald nach Verlassen der an die Uferzone des Schou-gu gebundenen Kulturzone biegt die Straße scharf nach ONO, um. Hier wurde uns zum ersten Male in dem von der sonnenbestrahlten Lehmsteppe aufsteigenden schleierartigen Dunste der volle, wenn auch in den Umrißlinien etwas verschwommene Anblick des vereisten Nordabsturzes der zeutralen Bogdo-Ola-Gruppe zuteil. Die Form dieser glänzenden Erscheinung bestätigte übrigens die schon von Urumtschi aus gemachte Wahrnehmung (siehe S. 18 und 37 f.), daß die Darstellung der Richtungsachse des Hauptkammes in den Karten nicht zutreffend eingetragen sei. Man konnte infolge des bei der weiten Entfernung unseres Standpunktes ungehinderten Überblicks hier deutlich wahrnehmen, daß die eigentliche höchste Kammerhebuug, östlich von der dreigipfligen Zentralgruppe sich nach O. und SO. fortsetzend, hinter der vorderen, nach N. vorgeschobenen Gipfelreihe, die offenbar irrtümlich stets als Hauptwasserscheide aufgefaßt wurde, noch wesentlich hinausragt. Auch die von der Zentralgruppe nach WSW. abzweigende Kette gab schon, von hier aus gesehen, hinsichtlich ihrer Höhe und des Betrages ihrer Vereisung ein ganz anderes Bild, als es sich nach den Karten erwarten ließ. Man gewann guten Einblick in einige der vereisten zirkusförmigen Talschlüsse der nördlichen Quertäler, und besonders der gewaltig überragende prächtige Pik Schokalsky (S. 37. 83 f., 101) nahm allmählich so bedeutende Formen an, daß ich fast geneigt war, ihn für einen ebenbürtigen Rivalen der Gipfel der zentralen Gruppe zu halten.

Meine Erwartung, wiederum längere Zeit über öden Wüstensteppenboden mit dürftiger Strauchvegetation wandern zu müssen, wurde bald angenehm enttäuscht durch das Auftreten ausgedehnter Bestände hoher Karagatschbäume von prächtiger Entwicklung, deren Laubdächer sich über dichtes Gestrüppe 11/2-2 m hoher Sträucher von Wildrosen, Weiden, Cotoneaster, Ephedra, Nesseln und Karagatsch wölbten. Ein weitmaschiges Netz vou Kanälen, schon fern im Osten bei der knieförmigen Umbiegung des Schoŭ-gu abgezweigt, durchfurcht hier die Ebene und die Kulturen sind daher weit verbreitet. Die Gerste war bereits abgemäht (2. August) und die Ernte wurde iu den von uns passierten zerstreuten Gehöften eben gedroschen. Man rollte zu diesem Zwecke lange achteckige Walzen aus sehr hartem, feinkörnigem, hellem Sandstein, die von daran gespannten Ochsen gezogen wurden, über das ausgebreitete Getreide hinweg. Es ließ sich auf dem Weiterweg ins Gebirge feststellen, daß dieser harte Sandstein aus dem ersten Schichtenkomplex des alten Gebirges stammt, wo die Sandsteine durch Kontakt mit dazitischen Ausbrüchen einen großen Härtegrad angenommen haben. Weitgedehnte Maiskulturen standen noch unreif auf dem Halme und bildeten große Flächen, die sich aus dem gelbgrauen Wüstensteppenboden mit ihrem tiefen dunklen Grün lebhaft heraushoben. Zahlreiche Ruinen von Gehöften sind über die Ebene zerstreut und geben Kunde von den schrecklichen Vernichtungskämpfen (siehe S. 9 f., 120), die sich infolge von Rassen- und Religionshaß auf diesem blutgetränkten Boden die Völker einander geliefert haben. Durch Lücken in der dichten Baumzone dunkler Karagatschbäume blinken im S., im Sonnenglanz aufleuchtend, schon die kahlen vielfarbigen Mauern der ersten Höhenzüge des Angaragebirges (Kap. IX) in die Landschaft herein. Im N. sah man in ziemlich bedeutender Entfernung einen anscheinend völlig ebenmäßigen, niederen Rücken sich in langem Lanfe von W. nach O. erstrecken, ohne daß das Auge die im Sonnendunst des Tages sich verlierenden Enden dieser Landschwelle zu erreichen vermochte. Dies war eine anffällige Erscheinung da die Karten bis anf mehr als 150 km nach N. hin keine Gebirgszüge anfweisen; man hätte sich hiedurch leicht täuschen lassen und einen Fehler in der Darstellung des Terrains vermuten können. Offenbar erblickte man aber nur den allmählichen Abfall der niedrigen untersten Bruchstufe des nördlichen, dem Gebirge entlang lanfenden Grabenbruches (siehe S. 43 f.), dessen höhere Stufe sich, als Wüstenebene Saosti-elussun (S. 7) nach N. ansteigend, zu den treppenförmig hintereinander aufragenden Dsungarischen Vorketten hin fortsetzt, welche höhere Glieder des nördlichen Randes des Grabenbruches darstellen.

Für die sich aufwölbenden Teile der von nns durchwanderten weiten Ebene reicht die Bewässerung nicht mehr hin. Wo dorten unser Weg zeitweise über ansgedürsteten, völlig harten Lehmboden mit verdörrten niedrigen Artemesienbeständen führte, mnßte er oft in weiten Kurven 6-10 m tief eingerissene, steilwandige Trockenbetten nmgehen, welche bekunden, daß zur Zeit der Frühjahrsschneeschmelze außerordentlich heftig strömende Wasser (S. 93 f., 99) für kurze Zeit auch hierher gelangen. Anf dem Grunde solcher Gräben entwickelt sich ein ziemlich reiches Pflanzenleben, wie es früher (S. 118) beschrieben wurde. Tamarix (Myricaria alopecuroides Schrenk?) bildete hier in der Tiefe den Hauptbestand in überans prächtiger Entwicklung der leuchtend rosafarbigen Blütenähren, während die sonnenbestrahlten Ränder durch die zahlreichen, flachen, rostbraunen, gelben oder orangefarbigen Scheiben ausgedörrter riesiger Blattrosetten von Rhenm und Scorodosma merkwürdig bunt erschienen. Sonst war auf der weiten Fläche, über welche uuerträglich heiße Luft stagnierte, keinerlei organisches Leben mehr sichtbar oder hörbar. Absolute Stille herrschte in dieser Hölle von Lößstaub und Sonnenglut. Und dennoch fehlte auch in solcher, ein Bild tranrigster, trostloser Öde zeigenden Gegend menschliche Niederlassung nicht gänzlich.

Wir passierten eine Kolonie armseliger, niederer Lehmhütten, die wegen ihrer, der des Bodens gleichen Färbung kaum zu bemerken waren. Es war das chinesische Dörfchen Ga-toŭ-fu, das in den Karten nicht verzeichnet ist. Bei Menschen, die in solcher Umgebung sich dauernd niederlassen, muß man das höchste Maß von Genügsamkeit oder einen völlig abgestumpften Sinn voraussetzen. Kulturland, das ihnen Unterhalt gewähren könnte, war von der Ebene aus nicht sichtbar; es scheint in einigen solcher tiefen Gräben oder Einrissen, wie sie eben erwähnt wurden, verborgen zn sein. Außer derartigen Hohlformen zeigten sich auch einige flachrandige, muldenförmige Vertiefungen von 50-100 m Breite nnd etwa 12-15 m Tiefe, die das nach N. abfallende Gelände durchfurchen. Solche Formen entstehen im Gegensatz zu den steilwandigen grabenartigen Einrissen durch Auskolkungstätigkeit breiter, mit ruhiger Gewalt wirkender, im Frühjahr dem Gebirge entströmender Schmelzwasserfluten. Darauf deutet schon das auf dem Boden solcher Wannen massenhaft zurückgebliebene, gerollte Schuttmaterial. Wo der gegen das Gebirge kräftiger ansteigeude Lehmlößboden in Einrissen der Untersuchung erschlossen war, zeigte er in körnigen Zwischenlagerungen ganz die Beschaffenheit einer im mehrfachen Wechsel teils auf subärische Weise teils durch Anschwemmung zustande gekommenen Ablagerung, die Obrutschew mit Proluvium bezeichnet. 1) Es finden sich in solchem

¹⁾ Siehe Merzbacher in Petermanns Mitteilungen 1913, S. 73.

schmitzenartig auslaufendem, meist grobkörnigem Material fast ebensoviel scharfkantige als abgerollte Fragmente und zwar entstammen erstere, wie erklärlich, ausschließlich den Gesteinen des unmittelbaren Gebirgsrandes.

Hieraus geht auch hervor, daß hier im Wüstensteppenvorland des Gebirges eine beständige Erhöhung des Bodens stattfindet; dies kann nicht anders sein, denn die Überflutungen wiederholen sich und auch der Transport des trockenen Schuttes aus dem Gebirge heraus setzt nie aus. Die äolische Abtragung hält hier solcher Aufschüttung nicht die Wage; im Gegenteil: es findet sogar wegen der vorherrschenden N.-W.-Lufströmung noch Anwehung statt. Da nun auch die aus dem Gebirge strömenden Flüsse besonders bei Hochwasser außerordentliche Meugen von Schutt heraus verfrachten und ihr Bett erhöhen, haben sie gerade genug Arbeit, wenn sie ihren Erosionsstand nur erhalten wollen, dies um so mehr, als ihnen, und zwar wohl schon seit unvordeuklichen Zeiten, stets Wasser zur Kulturarbeit abgeleitet wurde; denn die Besiedlung dieser Gegend ist sehr alt (Literatur in Anm. S. 8 und 9). Schätzt man aber die Erosionskraft der Flüsse zur Zeit der Schneeschmelze auch noch so hoch ein, so darf man anderseits doch nicht vergessen, daß sie gerade zu jener Zeit nicht selten ihre alten Betten verlassen, sich andere graben und sich in mehrere Arme verteilen, alte Riunen aufsuchend oder neue schaffend. Von einem zunehmenden Einschneiden dieser Flüsse ist also nichts zu bemerken, höchstens daß die Erosion mit dem Ansteigen des Bodens gleichen Schritt hält und auch dies wäre wohl nicht denkbar, wenn man nicht eine Fortdauer der genetischen Kräfte annimmt, welchen die Ausbildung des heutigen Gebirges zu danken ist: Ununterbrochene langsame Hebung der Gebirgsmasse oder zunehmende Vertiefung der an ihrem Rande entlang laufenden Grabeusenke (S. 43 f., 100). Aus alledem erklärt sich der Charakter dieser Steppenflüsse und ihrer Täler, welche sehr breite flache Furchen im Steppenboden bilden mit allmählich ansteigenden Rändern. Die schmale Rinne, welche der normale Flußlauf darin bewahrt, bietet kein Anzeichen einer fortschreitenden Tiefenerosion.

Salzausblühungen zeigen sich selten auf diesem Alluvialboden; dies verhindert sein Ansteigen gegen den Gebirgsrand, wodurch sowohl stetige unterirdische als zeitweise subärische Wasserzirkulation verursacht wird. Wo solche Bildungen vorkommen, sind sie niemals von bedeutender Ausdehnung und treten überdies nur in flachen Senken auf, wo temporäre stagnierende Wasseransammlungen den ohnedem nicht reichen Salzgehalt an die Oberfläche bringen können. Wir passierten einen kleinen chinesischen Wachtposten, dessen Bewohnern ein ca. 30 m tiefer Ziehbrunnen das Wasser liefert; es war frisch und klar und hatte nur ganz unbedeutenden Salzgeschmack. In der Nähe dieses aus Lehm erbauten Forts sah man sehr viele Ruinen und nahebei Begräbnisstätten der hingemordeten ehemaligen Bewohner der Gegend (siehe S. 9 f., 120). Jedes einzelne Grab war sorgfältig mit rohen Blöcken in Kopfgröße und darüber umrandet, viele hievon aus harten Tongesteinen bestehend, mit lebhaft gefärbten Vitriol-Effloreszenzen und Kupferlasur. Am Nordabhange vermochte ich diese Gesteine auf meinen Wegen nicht aufzufinden, während sie am Südabhang in der alten Formation (siehe Kap. XXI) eine große Verbreitung haben. Da ich aber kaum annehmen kann, daß man sie so weit transportiert und über das hohe Gebirge mit Aufwand außerordentlicher Mühe herübergeschafft habe, müssen sie doch auch irgendwo auf der Nordseite vorkommen.

Die in Kap. XIII geschilderte Strauchvegetation zeigte auf den höheren Anschwellungen des Bodens öfters große Mannigfaltigkeit der in ziemlichen Abständen von-

einander steheuden, aber sehr breit entfalteten Individuen. Man konnte daher manchmal aus einiger Entfernung beim Rückblick den täuschenden Eindruck gewinnen, es breite sich eine dichte, dunkelgrüne Decke über die sanft abdachende Ebene. In weiter Ferne schien sie als kobaltblaues Band mit scharfer Grenzlinie am blassen Blau des Firmamentes abzuschneiden. Im Süden entfaltete sich nun immer deutlicher und lehrreicher der herrliche Riesenbau der zentralen Bogdo-Ola und seine eisgepanzerten Abstürze leuchteten mit unbeschreiblichem Glanze in die unbegrenzte Horizontalität der Halbwüste verheißungsvoll für mich herein. Hier zum ersten Male trat mir seine Architektur als regelmäßiger Stufenbau (siehe S. 38f., 50, 56) mit großer Deutlichkeit vor Augen und schärfte von nun an meine Aufmerksamkeit, bei der weiteren Wanderung diesem interessanten Zuge nachzugehen. Von hier aus wurde auch die lehrreiche Telephotographie aufgenommeu, die in Taf. 4 Fig. 5 wiedergegeben ist.

Auf dem Weiterwege gegen O. sinkt der Boden allmählich wiederum ab zum breiten flachen Tale des Schimo-gu-Flusses. Da dessen Quellgebiet in den höchsten und am stärksten vergletscherten Regioneu der westlichen Abzweigung liegt (S. 84, 94), ist er sehr wasserreich. Das klare Wasser wird durch eine größere Anzahl von Kanälen in dem weiten Talboden verteilt und verleiht ihm große Fruchtbarkeit. Die Chinesen haben sich daher hier in der kleinen Stadt Fou-kan angesiedelt. Wir wanderten zwischen ausgedehnten Weizen-, Mais- und Hirsekulturen (letztere überwiegen), auch Melonenfeldern dahiu, welche häufig mit dichten Hecken von Wildrosen, Karagatsch oder Weidensträuchern umsäumt sind. Öfters geht der Weg auch durch Wiesenland und zieht sich endlich unter schattenreichen Alleen schöner Karagatschbäume gegen die malerischen, kreuelierten und mit Bastionen versehenen Ringmauern des Städtchens. Den kriegerischen Formen entspricht das Material (sonneugetrockneter Lehm), aus dem sie gebildet sind, nicht recht. Die in der bekannten landesüblich zierlichen Form über den Toren errichteten Holzpavillons bilden einen besonderen Schmuck der Umwallung. Wie alle chinesischen befestigten Städte der Proviuz Hsin-kiang besteht auch diese aus zwei Abteilungen, der eigentlichen Festung, in welcher nur Chinesen wohuen dürfen, uud der hieran anschließenden Basarstraße mit abzweigenden Quersträßchen, wo die muhamedanische (sartische und dunganische) Bevölkerung Gewerbe und Handel treibt. Der umwallte, für die Chinesen reservierte Raum trägt nur zur Hälfte Gebäude. Die andere Hälfte ist ein Schutt- uud Trümmerfeld, dicht von Unkraut überwuchert. Auch der überbaute Teil bietet keinen erfreulichen Anblick; er ist ärmlich und schmutzig und es wimmelt dort von ekelhaften, alle Wege versperrenden Hunden, ganz ähnlich wie früher in Konstantiuopel. Man hat die Wälle der Stadt weiter gezogen, als Bedarf für Niederlassung von Chinesen vorhanden war. Es wird eben in diesem Teile Chinas nicht selten so verfahren, daß zuerst die Umfassungsmauern einer neu zu gründenden Stadt fix und fertig gebaut werden, worauf man Zuzug aus dem Innern Chinas zur Besiedlung und Errichtung von Häusern veranlaßt. Bleibt dieser Zuzug aber aus irgendwelcheu Gründen aus, dann verfallen die Umwallungen der projektierten Stadt wieder und werden zu Schutthaufen.

Die Gesamtbevölkerung von Foŭ-kan schätze ich auf 4—5000. Ein militärischer Unterbefehlshaber (Yamun) hat hier seinen Sitz. Die Garnison bestand aus den bekannten, nichts weniger als kriegerisch anmutendeu chinesischen Soldaten älterer Ordnung. Gewerbetätigkeit scheint nicht sonderlich und nur für den lokalen Bedarf eutwickelt.

Der fruchtbare Boden der Umgebung weist die Bevölkerung hauptsächlich auf den landwirtschaftlichen Betrieb hin, dessen Produkte in Urumtschi einen guten Markt finden.

Unmittelbar im S. des Städtchens bemerkt man eine gegen das Gebirge hin sich dehnende wannenartige Senke, welche offenbar am Ende des Diluviums von einem Randsee (siehe S. 83. 92) ausgefüllt war und heute wasserlos ist. Es bietet sich infolge dieser Einsenkung vom erhöhten Nordrand der Stadt, der entlang der Basarstraße läuft, ein höchst eigenartiger Überblick über die gesamten Baulichkeiten der Stadt mit den sie umschließenden malerischen Ringmauern, hinter welchen die wunderlich erodierten Formen des ungemein buntfarbigen Angaragebirges unmittelbar anzusteigen scheinen. Den Abschluß des Bildes bilden die mächtig überragenden, gewaltigen, vergletscherten Wände der Bogdo-Ola-Kette.

Die Nähe des Gebirges machte sich hier stark fühlbar durch bedeutende nächtliche Erniedrigung der Temperatur (Minimum + 6,3°); doch schon am frühen Morgen des nächsten Tages war die Insolation bei wolkenlosem Himmel ungemein kräftig (Lufttemperatur + 23,6°). Die Sonne brannte niederdrückend, als wir uns von Foŭ-kan, zuerst in der Steppe nach O., dann nach SSO. wandten. Das Gelände steigt nicht allmählich, sondern in parallel aufeinanderfolgenden Schwellen zum Gebirge hin an, ein Kennzeichen der dem Gebirgsraud entlang laufenden Bruchzone, über deren Natur ich bereits mehrfach eingehende Mitteilungen gemacht habe. Dem im S. dem Gebirge entströmenden Sangun-Fluß sind eine Anzahl größerer und kleinerer Kanäle abgezweigt, deren kristallklares Wasser in starkem Gefälle nach verschiedenen Richtungen die Lehmsteppe durchströmt, so daß hier ziemlich ausgedehnte Kulturkomplexe im Schatten prächtiger Karagatschbestände - untermischt mit vielem Strauchwerk (Weiden, Karagatsch und Wildrosen) - über die Ebene bis an den Fuß des Gebirges hin verstreut sind. Auf den Fluß selbst trafen wir erst bei der unmittelbaren Annäherung au die Mündung des Sangun-Tales. Er flot damals in einem etwa 15 m breiten, ziemlich seichten Geröllbette mit viel geringerer Wassermenge dahin, als sie einzelne der vorher überschrittenen, von ihm abgezweigten Kanäle führen. Auch die flachen Talränder an beiden Ufern sind stark mit Geröll überschüttet, worunter viele große Blöcke vorkommen, was auf die bedeutende Transportkraft des Flusses in den alljährlichen Hochwasserstandsperioden hinweist. Unmittelbar bevor man zum Gebirgsrande gelangt, sieht man die in Kap. X beschriebenen Tertiärablagerungen, in unregelmäßigen Gruppen niederer Hügel aus dem Steppenboden aufragend. ein unbedeutendes Relief bilden (S. 75f.).

Bald nach dem Eintritte durch die weite Öffnung des Sangun-Tales, hinsichtlich dessen allgemeinem Charakter ich auf die Beschreibung in Kap. XII und XIII hinweise, schließen sich die aus WNW. und ONO. in vielfachen Biegungen als Umrandung der Ebene herantretenden Höhenzüge zu etwa 50—60 m hohen steilen Mauern zusammen und bilden die Umwallung eines nunmehr durchschnittlich 150 m breiten Tales. Als Gestein treten steilgestellte, graubraune und grünliche Mergelschiefer und dunkelbraune, Kohle führende Tonsandsteine auf. Der Komplex zeigt ONO.-Streichen und -Fallen nach SSO., wechselnd zwischen 30 und 60 Grad. Bis zu 100 m und darüber ansteigende höhere Züge werden dahinter sichtbar. Weiter taleinwärts nehmen die Sandsteine an Mächtigkeit sehr zu und wechsellagern mit dickeren Bänken hellgelbgrauer, weicher Tonschiefer und bunten Mergeln, in welchen Bänder kohliger Einlagerungen auftreten. Die Schichten legen sich

allmählich in eine flache Mulde um (siehe Taf. 5 Fig. 1), die weiterhiu wieder zu einem breiten Sattel sich umbiegt. In solcher Weise ist schwache Faltung das Charakteristikum des Komplexes, der von einer stark erodierten, durchschnittlich 5 m mächtigen Lößbank überlagert wird, deren Struktur auf Herbeischaffung des Materials durch vorherrschende NW.-Winde hinweist. Die Sandsteine werdeu taleinwärts grobkörniger, fast konglomeratisch.

Da die geologischen Beobachtungen indes von Dr. Gröber in Kap. XX geschildert und zusammengefaßt sind, kann ich mich in dieser Beschreibuug des Reiseweges begnügen, uur insoweit hierauf einzugehen, als sich dies für die Darlegung der von mir gemachten morphologischen Beobachtungen als nötig erweist. Zudem bietet Gröbers Profil V auf Tafel 18 alle nötigen Aufschlüsse über Gesteinsfolge und deren Lagerungsverhältnisse. Ich gebe somit in den folgenden Darlegungen nur die äußereu Merkmale dieser Gesteinszoueu wieder.

Der ganze Komplex dieser Ablagerungen bietet in seinen überaus mannigfach in den buntesten Farben aufeinanderfolgenden, meist dünnbankigen Schichten und in seinem infolge Einwirkung des Wüstenklimas vorgeschrittenen Zustand der Zerstörung höchst eigenartige Landschaftsbilder. Die Farben wechseln von dunkelbraun zu leuchtend hellgrün, schwefelgelb, orangefarbig, weinrot, violett, ziegelrot und fast schwarz. Es ist unmöglich, sich eine buntere Landschaft vorzustellen, deren Farbenpracht, da die Gesteine (siehe S. 119) jeder Pflanzendecke entbehren, in keiner Weise gemildert wird und daher in starkem Gegensatze zu der die Talsohle füllenden tiefdunklen Baumvegetation steht. Der Umstand, daß die in weite Mulden uud Sättel gelegten weicheu Gesteinsfolgen in außerordentlichem Maße abgetragen sind, hat zur Folge, daß sie sich, wie aus Profil V hervorgeht, in den niedern Talumwallungen meist in steilen Stellungen darbieten mit überaus unregelmäßigen, durch die Erosion häufig bizarr gezahnten Kammlinien. Die Lücken sieht man öfters mit Löß erfüllt. Was in der Ebene so überaus großartig in das Gesichtsfeld trat, die vergletscherten Riesenmauern der zentralen Bogdo-Ola, scheidet beim weiteren Eindriugen in das Sangun-Tal mehr uud mehr aus dem Bilde, da die Talachse des unteren und mittleren Tales bei ihrem nahezu südsüdwestlich gerichteten Verlaufe dem Blicke nur die westliche Gruppe erschließt und deren vergletscherte Talschlüsse, sowie den in seiuem breitmassigen, stark überfirnten Bau ungemein großartig erscheinenden Pik Schokalsky.

Schon nach etwa 2¹/₂ km tritt das bunte Talgemäuer auseinander und weitet sich zu einem kleiuen, fast kreisrunden Becken vou etwa 1¹/₂ km Durchmesser (Becken I), dessen völlig geebneter Boden von dem nunmehr durch keinerlei Abzapfungen mehr geschwächten, daher hier sehr wasserreichen Flusse in pendelndem Laufe durchflossen wird, während er sowohl höher oben als tiefer uuten eiu ziemlich starkes Gefälle (S. 97) aufweist. Die fast senkrechte unmittelbare Umwallung des flachbodigen abgeschlossenen Kessels, die hier schon etwa 120-150 m Höhe erreicht, verleiht in ihrer eben geschilderten, bunten Farbenpracht dieser Örtlichkeit den Charakter eines höchst eigenartigen, natürlichen Riesensaals. Die Gewässer waren im Diluvium oder wohl auch später noch hier zu einem kleinen See aufgestaut; doch haben sich infolge der leichten Zerstörbarkeit der umrandenden Gesteine nur mehr undeutliche Strandlinien des alten Wasserstandes darin erhalten, während solche, sowie Reste von zwei übereinanderliegenden Schotterterrassen in einem beuachbarteu, weit umfangreicheren, zwischen den Tälern Sangun und Dön-chon-dse eingetieften Beckeu (siehe Karte II) nach den Angaben Gröbers ziemlich gut erhalten sind.

Da ihn sein Weg hoch über den Südrand des Beckens führte, konnte er diese Verhältnisse gut überblicken. Diese jüngeren, am Fuße vou Steilwänden abgelagerten Bildungen, in welchen die Terrassen liegen, ist Gröber geneigt, für glazial oder fluvioglazial zu halten. Da er aber in das Becken nicht hinabstieg, vermochte er sich völlige Sicherheit hierüber nicht zu verschaffen; zudem sind die Ablagerungen stark mit Löß überschüttet. Ausgezeichnet konserviert sind solche Terrassen besonders in dem alten weiten Trockentale westlich vom Sangun-Tale, zwischen diesem und dem Tale des Schimo-gu (siehe Karte II). Von einer erstiegenen Höhe im W. des Bogdo-Ola-Sees aus konnten Gröber und ich deren in zwei Etagen übereinander verlaufenden Formen deutlich verfolgen.

Im Becken I zeigte sich als eine besonders auffällige Erscheinung und zwar an den Rändern des Beckens das Auftreten von unregelmäßigen Trümmern und Blöcken — zum Teil sehr großen Umfanges - eines Konglomerates, das nicht nur wesentlich verschieden von dem der unmittelbaren Umrandung ist, sondern auch nach Größe und Form dieser Riesenblöcke kaum vom Wasser oder wenigstens nur aus kurzer Entfernung hierher transportiert sein kann, sondern als Reste einer zerstörten Ablagerung anzusehen ist. Es sind darin allerdings meist Gesteinsfragmente aus dem petrographischen Bestand der Angaraserie enthalten, aber auch nicht weuige aus der kristallinen Schichtenfolge des alten Gebirges. Das Material ist teilweise mittelgroß, teilweise sehr groß und kaum etwas gerundet. Es ist verkittet durch einen grauen, nicht sehr festen tonigen Zement. Die ganze Art dieser Bildung deutet auf junge Entstehung hin. Wenn sie nicht als durch stagnierendes kalkhaltiges Wasser gefestigte Moräue anzusprechen ist, was nicht ungerechtfertigt sein dürfte, aber nur bei einer sorgfältigeren Uutersuchung entschieden werden könnte, als sie mir ermöglicht war, ist sie jedenfalls fluvioglazialer Entstehung und kann nur aus wenig entfernten Moränenablagerungen herstammen; schon ca. 6 km höher oben im Tale finden diese sich in solcher Menge, daß sie dort dem Flusse seinen Lauf verlegten und ihn - vermutlich am Ende des Diluviums - zwangen, sich neu einzuschneiden, worüber sogleich Näheres folgt.

Man verläßt das Becken I durch eine gewundene, spaltenartige Euge, die in härteren Gesteinsfolgen (Sandsteine und rote Mergel etc.) eingeschnitten ist und gelangt dann in ein anderes Becken (Becken II) von nur wenig kleinerem Umfange, doch ähnlicher Gestalt wie das erste. Auch dieses zweite liegt wieder in einer weicheren Gesteinsfolge: mürbe Sandsteine und blättrige Mergel. Die Umwallung ist daher noch stärker abgetragen und etwas niedriger als die des Beckens I. Die Kammlinien sind trotz der Steilstellung der Schichten weniger zackig. Der Ausgang talaufwärts führt wiederum durch härteres Gestein: harte Tonschiefer. Toneisensteine, grüne Sandsteine, in welchen das gewundene Tal mit durchschnittlich 60-70 m Breite eingeschnitten ist. Im Becken II, dessen Boden mit besonders prächtigem Ulmenbestand geziert ist (siehe S. 120), finden sich an mehreren Stellen des Talrandes, aber besonders gut erhalten bei der Mündung eines kleinen Trockentales, sowie am oberen Ausgang des Tales wiederum Reste eines ziemlich weichen Konglomerates, dessen teils kantiges teils gerundetes Material meist aus graugrünem Tonschiefer, quarzitischem Schiefer und etwas dunklem Eruptivgestein (hornfelsartiges Gestein, Keratophyr?), sowie wenig Sandstein besteht. Die Fragmente sind von sehr verschiedener Größe, von Erbsengröße bis zu Kopfgröße und darüber, alles ganz unregelmäßig gemischt und wenig kantengerundet. Auch ist es auffallend, daß in den tieferen Lagen grobes Material vorherrscht, in den höheren feineres. Ich hatte leider zu große Eile, um nach geschrammten

Fragmenten suchen zu können. Das Bindemittel überwiegt in diesem Konglomerat und ist von leuchtend gelber Farbe vorwiegend tonig, stellenweise auch tonig-sandig. Anzeichen vou Schichtung sind nur schwer zu erkennen; unregelmäßig verteilte, rötlich gefärbte, dünne, lettenartige Einlagerungeu fiuden sich darin. Die Beschaffenheit dieses Konglomerates, das sich auch noch in die Talverengung hinein fortsetzt, weist mit mehr Deutlichkeit auf glaziale Entstehung hin; es machte ganz den Eindruck von umgelagerter, verfestigter Moräne, worauf auch die losen, im Humus des Talbodens enthalteueu Gerölle schließen lassen (siehe S. 122). Es kann sich hier möglicherweise um Einspülung aus dem nahe talauf abgelagerten Moränenmaterial in das Becken handeln, wo es nur an geschützten Stellen der Ränder erhalten blieb. Der Zusammenhang dieser Ablagerung ist bei der weichen Beschaffenheit des Materials nahezu zerstört und der größte Teil von den diluvialen oder späteren Gewässern wieder ausgeräumt worden (S. 97), so daß aus den erhalten gebliebenen Resten ganz zuverlässige Rückschlüsse auf die ursprüngliche Bildung uicht gemacht werden können. Sind diese grobklastischen Bildungen fluvioglazialer Natur, so können sie, da sie, wie gleich gezeigt wird, auch unter jüngere Grundmoräne hinabtauchen, auch einer etwaigen Interstadialzeit angehören, jedenfalls einem Rückzugsstadium der Vereisung. Ob man bei den besonderen Verhältnissen in diesem Gebirge eine Interglazialzeit annehmen darf, scheint mir nicht ohne weiteres schlüssig. Hat hier doch niemals eine sehr ausgedehnte zusammenhäugende, weites Land einhüllende Eisdecke bestanden, sondern nur eine Vereisung von Hochketten, die noch dazu eine sehr geringe Breitenausdehnung besitzen.

Schon nach kurzem Laufe der Talverengung treten wir iu ein drittes Becken von ovaler Form und bedeutend größerem Umfang, wo der lockere, stark mit echt glazialem Geröll vermischte Lehmboden eine Humusschichte trägt, welche die Bilduug einer zusammenhängenden Grasdecke und einer überaus prächtigen Entwicklung des Baumbestandes begünstigt (S. 123). An den Talrändern steigt dieser ausgesprochen fett lehmige Boden etwas an und aus ihm aufragend erheben sich am Fuße von dunklen Wänden steilgestellter Touschieferbänke wieder junge Konglomerate von ähnlicher Beschaffenheit wie die vorhin geschilderten, nur etwas intensiver gelb und rot gefärbt, in denen kaum Anzeichen von Schichtung erkennbar ist und welche etwas mehr gerundete, aber in der Größe überaus verschiedene Fragmente enthalten. Einzelne Partien darin nähern sich einem stark tonigen Sandstein. Diese Konglomeratmassen sind stark abgetragen und zerstört, überdies reich mit Buschwerk bedeckt. Zwischen ihnen und dem lehmigen Untergrund treten mehrere starke Quellen kristallklareu Wassers zutage und strömen dem Hauptflusse zu, der fast 2 m in Lehm und Schotter eingeschnitten ist und sehr ansehnliche Mengen klaren Wassers zu Tale führt. Die Beschaffenheit des Talbodens läßt alle Merkmale des Geschiebelehms erkenneu und Streublöcke verschiedener Größe und aus verschiedenartigem Material des alten Gebirges bestehend, liegen auf ihm. Es kann kein Zweifel darüber aufkommen, daß wir es hier mit Grundmoräne zu tun haben; doch war bei der gebotenen Eile des Marsches, um noch rechtzeitig einen geeigneten Lagerplatz ausfindig zu machen, auch hier ganz genaue Untersuchung nicht möglich. Über das Verhältnis des Grundmoränenbodens zum Konglomerat läßt sich nur sagen, daß dieses vermutlich einem ältereu Stadium der Vereisung angehören dürfte als jener, gleichviel ob man es als fluvioglazial oder glazial ansehen will. Ich bin jedoch geneigt, es seiner ganzen Beschaffeuheit nach für eine glaziale Bildung zu halten. Das mittlere Niveau der Sohle dieses Beckens III beträgt ca. 940 m.

Wir durchschreiten nun, indem wir es verlassen, ein 150—180 m breites Tal, eingeschnitten zuerst in harte Tonschiefer und Sandsteine, das sich aber bald auf 75—90 m verengt. Schottermassen, die von unserem Wege auf der Talsohle aus gesehen Moränenschutt glichen, möglicherweise aber auch fluvioglazialer Entstehung sein können, bedecken in diesem Teile des Tallaufes die flächenhaft abgeschnittenen Schichtenköpfe der steilgestellten Gesteine der Talränder. Eine starke Lößdecke breitet sich darüber (siehe Taf. 18 Profil V). Zahlreiche große, aus dem alten Gebirge stammende Blöcke liegen auch hier am lettigen Talboden zerstreut, meistens aus Tonschiefer, quarzitischem Schiefer, Keratophyr und porphyrischen Konglomeraten bestehend.

Indem wir nun aus dem Schichtenkomplex der Angaragesteine iu denjenigen der härteren Gesteine des alten Gebirges eintreten: harte, dunkle Tonschiefer, quarzitische Schiefer und Sandsteine, Quarzkeratophyre und porphyrische Konglomerate, sowie harte, feinkörnige Sandsteine, alles sehr steil gestellt und schwach nach N. einfallend, erhebt sich die Talsohle rapid und das Tal verengt sich. Wir haben bereits die Verwerfung zwischen altem und jungem Gebirge überschritten, was sich nicht nur in der steileren Neigung des Talbodens sondern auch hauptsächlich durch eine verdreifachte Höhe seiner Ränder bemerkbar macht (Taf. 16 Fig. 2), sowie auch durch gleich näher zu schildernde besondere Verhältnisse.

Die Talverengung ist nur zum Teil eine Folge des nahen Zusammentretens der felsigen eigentlichen Ränder; zum anderen Teil wird sie dadurch hervorgerufen, daß an beiden Steilufern, mehr jedoch am orographisch rechten, sich große Massen von terrassiertem Moränenschutt mit sehr steiler Böschung hoch an die fast saiger gestellten Tonschieferbänke anlehnen. Der glaziale Schutt reicht aber nur so weit hinauf, als es die zunehmende Steilheit der Felswände erlaubt. Höher oben zeigt sich das abradierte Schichtengerüste von Moräne, die eine Mächtigkeit von etwa 25 m oder mehr erreicht, überlagert (siehe Taf. 5 Fig. 2). In der Talschlucht ist das überaus steil geböschte Gehänge des dort abgelagerten Moränenschuttes hoch hinan mit einem fast undurchdringlichen Dickicht von Cotoneaster, Berberis und Weiden, und hauptsächlich stachligem Wildrosenbestand (siehe S. 120) derart überwachsen, daß ich mich nur mit größter Anstrengung zu einer beherrschenden Höhe hindurcharbeiten konnte, um den Charakter dieser Ablagerung zu prüfen und wenigstens einigermaßen Einblick in die merkwürdigen Verhältnisse des schwer zu überblickenden Engtales zu gewinnen, sowie um einige photographische Aufnahmen von den interessanten Vorkommnissen zu machen. Da die Eigenart des Terrains einen vollkommenen Überblick hier nicht gestattete, konnten die Beobachtungen erst durch solche au höheren Stellen bei Fortsetzung des Weges gemachten ergänzt werden. Es ließ sich zunächst in den Glazialschuttgehängen an beiden Rändern der Talschlucht eine durchlaufende terrassenartige Längsstufe von geringer Breite 40 m über der Talsohle feststellen, welche offenbar eine längere Hochstandsphase des heutigen Flußlaufes bezeichnet. Eine zweite ähnliche Terrassenstufe, ca. 30 m höher oben, kanu auch noch ziemlich deutlich wahrgenommen und streckenweise bald am rechten, bald am linken Ufer verfolgt werden. Über den Schutthalden steigen, wie bereits gesagt, die fast senkrechten Tonschieferwände noch ca. 40 m an und auf deren flächenhaft abgeschnittenen Schichtenköpfen liegt dann die erwähnte Moränendecke, offenbar Grundmoränenschutt, welcher an den beiden Talrändern des von uns durchschrittenen Engtales, weil vegetationsfrei als solcher gut erkennbar ist (siehe die Abbildung). Diese überraschende Wahrnehmung führt zu dem Schluß, daß hier hoch über dem von uns durchschrittenen, offenbar jungen Tal ein älteres vom Flusse verlassenes liegt, dessen Boden mit mächtiger Grundmoräne aufgefüllt ist.

Die Breite dieses alten Tales wechselt von 3/4-11/4 km. Ich konnte seinen Lauf schon von einer Höhe unterhalb Lager 2 (siehe Karte II) einige Kilometer weit auf- und abwärts verfolgen, gewann aber erst im weiteren Verlauf des Marsches immer mehr Überblick und stellte fest, daß dieses alte, auf einer höheren Stufe des Gebirges laufende Tal das jüngere, tiefer gelegene in mehr oder weniger parallelem Laufe begleitet und in seinem untersten Teile von dessen Schlucht angeschnitten wurde. Tags darauf fand ich auch seinen Ursprung in einem von alten Moränenablagerungen erfüllten, karförmig geweiteten, sehr geräumigen Hochkessel, der im W. des Nordendes des Bogdo-Ola-Sees hoch über diesem gelegen ist. Wir durchschritten später diesen mit prächtigem Fichtenwald bestandenen, mit bemoosten erratischeu Riesenblöcken, alten, kleinen Seevertiefungen und durch reiche Flora geschmückten, drumlinähnlichen Schuttrücken, überhaupt mit allen Kennzeichen einer ehemals von Gletschereis erfüllten Hohlform ausgestatteten Zirkus, als wir vom See zum oberen Kloster emporstiegen (Näheres hierüber später). Ich konnte damals feststellen, daß in diesem Zirkus, abgesperrt durch einen seine ganze Breite nach N. hin querenden, alten Moränenwall, der jetzt reich mit altem Fichtenwald bewachsen ist, einstens auch ein nicht unbedeutender See eingeschlossen war. Die Entwässerung fand aber nicht nach N. hin statt, sondern durch den O.-Rand des Zirkus, durch den die Gewässer sich eine Bresche geschaffen und in das Tal des heutigen Bogdo-Ola-Sees hinab ergossen hatten, wie man am Trockenbette des alten Baches noch deutlich zu erkennen vermag.

In diesem Zirkus lag der Ursprung des alten Tales, welches somit bis zur Verwerfungsstufe zwischen altem und jungem Gebirge (siehe Karte II) eine Länge von ca. 12 km hat. Als seine Fortsetzung ist der etwa 18 km lange, beckenförmige alte Tal- und Seeboden anzusehen, wie er in der Karte dargestellt ist und besonders deutlich auf dem Bilde: "Blick vom Signalberg" (Taf. 16A) und aus (Fig. 4 Taf. 9) ersichtlich wird. Es ist namentlich beachtenswert, daß die Verwerfung zwischen altem und jungem Gebirge gerade mit der Grenze zwischen den Oberlauf des alten Tales und dem darunter liegenden großen Seebecken zusammenfällt. Ersterer gehört somit noch zur mittleren Stufe des Gebirgsbaus, letzteres zur unteren. Zwei wohlausgebildete Terrassenstufen liegen (siehe S. 143) in den Rändern dieses bis auf einige kleine Seen und schwache Bäche jetzt wasserlosen Beckens, wie Gröber und ich vom "Signalgipfel" aus deutlich unterscheiden konnteu; diese Terrasseu deuteu wohl, analog den gleichen Erscheinungen in fast allen nördlichen Quertälern, Stillstandsperioden in einem bestimmten Erosionszyklus an (S. 100). In dieses zur damaligen Zeit vermutlich noch in etwas höherem Niveau gelegene große Becken mündete der den alten Talboden durchströmende Fluß, bevor er, wie noch weiters dargelegt werden soll, seinen Lauf änderte, um der Rinne des heutigen Sangun-Unterlaufs zu folgen.

Der jetzt nahezu ausgetrocknete weite Tal- und Seeboden stand damals wohl noch im Zusammenhang mit der Senke im S. von Foŭkan, von der ich erwähnte (S. 141), daß sie am Ende des Diluviums einen See enthielt. Auch in den zurücktretenden, nach meiner Schätzung ca. 150 m hohen, wenig steilen, begrünten Ränderu des hochgelegenen alten Talbodens sieht man zwei deutlich ausgeprägte Terrassenstufen entlang laufen, besonders gut erhalten am W.-Rande. Da diese Terrassen aber, wenigstens soweit ich sie zu

147

überblicken vermochte, einen annähernd horizontalen Verlauf zeigen, 1) bin ich eher geneigt sie für Seeterrassen als für fluviatile zu halten. Trifft dies zu, so müßte auch in diesem alten Tale ein See aufgestaut gewesen sein, der sich in das erwähute untere Becken entleert hat. Dies könnte aber wohl nur vor einem letzten Eisvorstoß der Fall gewesen sein, denn der jetzige Talboden zeigt in auffälliger Weise glaziale Ausstattung durch typische Formen der Grundmoräneulandschaft, welche der Decke ein sehr unregelmäßiges Ansehen verleihen. War ehemals hier ein See vorhanden, so müßte er also dem Ende eines früheren Stadiums der Gebirgsvereisung angehört haben, der jetzige Grundmoränenboden aber einem späteren. Auf alle Fälle ist auch dieser Talboden älter als der um eine Stufe (ca. 140 m) tiefer gelegene jetzige Boden des schluchtförmigen Sangun-Tales, weil in dessen vorhin beschriebenen Moränenablagerungen sich der heutige Fluß eingeschnitten und zwei Terrassenstufen darin hinterlassen hat. Das von ihm geschaffene canonförmige Tal trägt alle Kennzeichen der Jugendlichkeit an sich, nicht minder wie seine Fortsetzung nach N., welche, wie beschrieben, gekennzeichnet ist durch wechselndes Gefälle und cañonförmige Einschnitte in harten Gesteinen, welche beckenförmige Weitungen verbinden, die vom Flusse in weicheren Gesteinsserien geschaffeu wurden (S. 75, 97). Anderseits trägt das darüber liegende alte Tal mit seinem breiten Boden von geringem, ausgeglichenem Gefälle und den flachen Räudern die Kennzeichen vorgeschrittener Reife an sich.

Wir haben also zweifellos im hochgelegenen Trockentale die alte Rinne des heute iu einem jüngeren Bette dahinfließenden Sangun zu sehen; der Fluß, welcher einstens das alte Tal durchströmte, floß von einem diluvialen Gletscher ab, dessen Ablagerungen auf einer Hochstufe des Gebirges westlich vom heutigen Bogdo-Ola-See wir im weiteren Verlaufe der Reise durchwanderten. (Hievon später mehr. Siehe auch Taf. 6 Fig. 1, Taf. 9 Fig. 2, 3, 4.) Dieser diluviale Gletscher, der, nach dem Grundmoräneuboden des alten Tallaufes zu schließen, über dieses hinaus wohl noch bis in das große äußere Becken hinabreichte, nahm seinen Ursprung in der der zentralen Gebirgsgruppe an Höhe um fast 2000 m uachstehenden westlichen Fortsetzung; er dürfte also schon lange geschwunden gewesen sein, als von den im hohen Zentralgebiet entspringenden Gletschern durch das Bogdo-Ola-Seetal noch immer gewaltige Eismassen nach N. hinausgeschoben wurden und somit durch einen späteren Zyklus oder ein späteres Stadium der Gebirgsvereisung hindurch vertiefend fortwirkten. Man ist also wohl berechtigt anzunehmen, daß dieser Gletscher sein ursprünglich im gleichen Niveau mit dem alten Tal gelegenes Bett schon selbst übertiefte, daß aber hauptsächlich postglazial durch die bei seinem Rückzug von ihm abfließenden bedeutenden Wassermassen eine starke Erosion stattfand. Durch die auf solche Weise zunehmende Tieferlegung des heutigen Sangun-Tales wurde das nur mehr von geringen Wassermengen alimentierte alte Paralleltal in seinem Unterlaufe angeschnitten und entleert (S. 100).2)

¹⁾ Auch Gröber, der gleich mir von einem hohen Punkt im W. des Bogdo-Ola-Sees den alten Boden überblickte, hatte den gleichen Eindruck.

²) Dem vorletzten Stadium der Vereisung wie das trocken gewordene Hochtal gehören meines Erachtens auch die Flüsse der heute trocken oder wasserarm gewordenen Nebentäler des Da-tun-gu-Tales an, von denen S. 98 f. die Rede war. Mit dem Verschwinden der Gletscherdecke, die auf der Hochstufe unter dem höchsten Kamme zu beiden Seiten des Bogdo-Ola-Sees gelegen war (siehe auch Taf. 7 Fig. 1) und die, wie oben betont, einer früheren Phase der eiszeitlichen Geschichte dieses Gebirges angehört, wurde diesen Nebentälern ihre Alimentierung entzogen.

Diese postglaziale fluviatile Übertiefung des Sangun-Tales wurde aber jedenfalls begünstigt durch die saigere Stellung der Schichten der Talränder, mehr aber noch durch allmähliches Absinken des Gebirgsrandes im N., also durch Tieferlegung der Erosionsbasis — worauf ich wiederholt hingewiesen habe —, sowie möglicherweise durch gleichzeitige andauernde, langsame Hebung der zentralen Gebirgsmasse. Auf solche Weise entstand endlich in der Furche eines früheren Tals, das einstens vermutlich die gleichen Zeichen der Reife an sich trug, wie das heutige alte Trockental, ein junges Tal — das heutige Sangun-Tal. Ein neuer und wohl letzter Eisvorstoß hat in dieses junge Tal die Moränenmassen gebracht, von welchen ich eine Schilderung entwarf. Diese hatten die junge Talschlucht nahezu verstopft, und erst nach dem endgültigen Rückzug des Eises schnitten sich dann die Gewässer, welche zum großen Teil der heutigen, am S.-Ende des Bogdo-Ola-Sees aufgestauten Stirnmoräne entströmten, in die jungen Glazialablagerungen des Sangun-Tales ein und bildeten als Zeugen periodisch wechselnder Erosionskraft oder erneuter Tieferlegung der Erosionsbasis darin die erwähnten zwei Terrassen aus.

Ein beiläufiges Bild von der bewegten glazialen Geschichte des Gebirges und der Erosionszyklen der Flüsse läßt sich aus dem Wechsel dieser Erscheinungen entwerfen. Zwei größere Phasen der Vereisung, wenn nicht drei, die durch Rückzugsperioden voneinander getrennt waren, sind hieraus nachweisbar und diese stehen auch in Übereinstimmung mit den Erscheinungen im Chigo- und im Gurban-bogdo-Tal am Südabhang, wie ich sie in Kap. XI und XII in großen Zügen dargelegt habe, sowie mit solchen Beobachtungen, die auf dem Weiterwege durch das Gebirge gemacht wurden. Die in den durchwanderten Becken des Unterlaufs vorgefundenen Reste von konglomeratisch verfestigten glazialen oder fluvioglazialen Ablagerungen (S. 143 f.) dürfen mit Wahrscheinlichkeit der vorletzten Vereisungsphase des Tales angehören. Die außerordentliche Gewalt der beim Rückzug des Eises diese schluchtartigen Engen durchsprudelnden Wassermassen erklärt wohl zur Genüge ihre Bildung und Ablagerung in den Becken, sowie ihre spätere Ausräumung und darum bin ich geneigt, auch die nach dem Verlassen des dritten Beckens im Sangun-Tal auf den Talrändern beobachteten glazialen oder fluvioglazialen Schuttablagerungen (S. 145 und Taf. 18 Profil V) zu diesem Stadium zu rechnen oder für gleichaltrig mit der Grundmoräne des alten Trockentales zu halten.

Volles Licht in alle diese verwickelten Verhältnisse zu bringen, war mir bei einer flüchtigen Durchwanderung, wie sie durch die schwierigen Umstände der Reise vorgeschrieben war, nicht möglich. Ich hätte mich zu diesem Zwecke dreimal so lang in diesem Teile des Gebirges aufhalten müssen, um nach den gleichen Gesichtspunkten hin mindestens drei oder vier der parallelen Quertäler des Sangun gründlich zu untersuchen.

Dr. Gröber, der einige dieser Täler durchwandert hat, mußte seine ganze Zeit und Aufmerksamkeit dem Studium der komplizierten Tektonik der Gesteine des Angaragebirges, der Herstellung von Profilen etc. zuwenden, so daß ihm für glazialgeologische Untersuchungen nicht genügende Zeit übrig blieb. Es ist für einen Reisenden, der ein noch gänzlich unerforschtes Hochgebirge, wo noch Alles zu tun ist, zum ersten Male besucht, wo die am Wege zu erwartenden Schwierigkeiten und Hindernisse unbekannte Größen darstellen und wo daher nicht ermessen werden kann, wieviel Zeit die schon unter allen Umständen durchzuführenden Erkundungen und Festlegungen der allgemeinen Züge des Gebietes kosten werden, um so weniger möglich, solche zeitraubende Untersuchungen

anzustellen, als der mitgeführte Proviant nur für eine im Voraus bestimmte Zeit ausreicht, welche demnach nicht überschritten werden darf. Hätte ich mir damals über die aus den hier mitgeteilten Beobachtungen abzuleitenden Ergebnisse schon volle Rechenschaft geben und auch die Art der Überwindung mancher technischer Schwierigkeiten beurteilen können, so hätte ich wohl auch, was ich schon früher mehrmals (S. 35, 56, 98, 135) betonen mußte, noch gar mancherlei für die Klärung dieser höchst interessanten, glazialgeschichtlichen Vorgänge wichtiges Material sammeln, vielleicht auch Entscheidendes zur Parallelisierung dieser Erscheinungen mit europäischen Verhältnissen beitragen können. Indes wird vielleicht ein Forscher, der späterhin meinen Spuren folgen sollte, durch die Anregung, die aus meinen Beobachtungen und den hieraus gezogenen Folgerungen sich ergibt. darauf hingewiesen werden, wo er mit seinen Untersuchungen einzusetzen hat. Ich kann hier weiters nur hervorheben, daß die in diesen Regionen vorgefundenen Verhältnisse auch in annähernder Übereinstimmung mit jenen im zentralen und östlichen Tian-Schan stehen, wo ich genügendes Beobachtungsmaterial sammeln konnte für zum mindesten zwei deutlich voneinander getrennte größere Eiszeitperioden oder Phasen. Für die Frage nach dem Betrage der diluvialen Vereisung in Zentralasien und ihres Verhältnisses zur heutigen ist es jedenfalls von gewisser Bedeutung festzustellen, bis zu welchem Niveau hinab sich in der Bogdo-Ola-Gruppe die Spuren ehemaliger Vereisung erhalten haben. Ich führe die auf das Sanguntal bezüglichen Zahlen hier an und werde dann bei der Zusammenfassung meiner Beobachtungen darauf zurückgreifen.

Im Becken I im Sangun-Tal und dem östlich benachbarten größeren Becken reichen fluvioglaziale oder glaziale Ablagerungen . . bis zu ca. 760 m. Im Becken II reichen fluvioglaziale oder glaziale Ablagerungen . . bis zu ca. 830 m. Im Becken III reichen sicher als glaziale anzusehende Ablagerungen . bis zu ca. 940 m.

Wir setzten von der interessanten Stelle ab unseren Weg talaufwärts fort, wo das Tal bald sich bei seinem Einschneiden in sehr harte quarzitische Sandsteine und dicke Tonschieferbänke, sowie Kalksilikathornfelse immer mehr verengt; es nimmt mit seinen zusammentretenden Steilwänden schließlich den Charakter einer wahren Schlucht an. Dabei wird die Sohle allmählich steiler und der Fluß windet sich wild dahinstürzend durch diese Enge. In dem Komplex der schwarzgrünen bis hellgrünen, sehr dichten und harten Tonschiefer und unter dem Hammer metallisch klingender, überaus harter, feinkörniger Sandsteine, in welchem sich noch immer der weit angelegte Faltenbau erkennen läßt, machen sich jedoch hier sehr auffällige Störungen bemerkbar: Das Streichen wechselt rasch von O. nach ONO. und sogar bis annähernd NO. In der Störungszone zieht eine ungeheure Schutthalde, das Tal völlig verengend, von den Steilwänden herab. Dies deutet auf sehr junge Eingriffe in das Faltengerüste. Bei der fast senkrechten Böschung der Talwände bei der Enge des Tales und der nun einen urwäldlichen Charakter annehmenden Vegetation des Talgrundes (siehe S. 123 f.), sowie infolge Verhinderung durch den ungemein reißenden Bergstrom konnte indes nur ein ungenügender Überblick auf diese Verhältnisse gewonnen werden. Es scheint sich aber wohl um lokale Schichtenverbiegungen zu handeln, die mit ungleichen jungen Hebungsvorgängen in Verbindung stehen, auf welche wiederholt hingewiesen wurde (S. 40, 45 f., 50, 56).

In einer Höhe von 1370 m, wo wir auf einer Uferterrasse an der Mündung eines orographisch linken Seitentales ein Lager hatten, war, soweit das Auge hinaufreichte, alles

Gehänge mit einem undurchdringlichen Dickicht von Wildrosen überzogen. Der Hauptfluß ist hier etwa 5 m tief in Grundmoränenablagerung eingeschnitten und die Ufer sind vollständig versumpft. Noch etwa 5 m höher liegt über einem Steilwändchen die Mündung eines Seitentales, welchem ein nur ganz schwacher Bach entströmt. Dieses Nebental ist also neuerdings gegen das sich rasch weiter vertiefende Haupttal hängend geworden, was auf auhaltende Neigung des Klimas zum Trocknerwerden hindeutet (siehe S. 98). Ähnliche Erscheinungen zeigen sich an einigen anderen auf unserem Wege talaufwärts passierten Nebentalmündungen. Einige von ihnen führteu überhaupt damals kein Wasser mehr.

Das Haupttal verengt sich weiter auf 8-10 m Breite und wird dort, wo aus einer einmündenden, von senkrechten Wänden umstandenen Schlucht ein starker Bach hervorstürzt, ganz ungangbar. Hier haben die Chinesen, um einen Zugang zu den hoch oben am See gelegenen Klöstern zu ermöglichen, mit großem Aufwand an Mühe und Geschick einen kunstvollen Steig in der orographisch rechten Schluchtwand angelegt, der 80 m über dem Flußbett entlang führt; sie haben hiezu einen auffälligen Knick in den Steilmauern benützt, der meines Erachtens mit einer Schliffgrenze des einstens hier eingepreßten Gletschereises zusammenfallen dürfte, da infolge Steilstellung der Schichten eine Gesteinsgrenze als Ursache ausgeschlossen ist. Dort, wo die Klamm sich wieder etwas erweitert und ihr Boden wieder gangbar wird, leitet dieser Weg allmählich zu ihm hinab. In einer weiteren Strecke der Verengung dieses jungen Tales zeigen die umschließenden Felswände auch ungemein großartige Ausspülungserscheinungen, die an denen berühmter Klammen unserer Alpen erinnern. Es sind hier Dokumente, von den mit ungeheurer Gewalt durchströmenden Wassermengen hinterlassen, die nach dem letzten Eisrückzug hier ihren Ausweg fanden (S. 148). Darum konnte jedenfalls, soweit die Wassererosion hinanreicht, von Glazialspuren nichts erhalten bleiben. Die Schlucht ist vielfach gewunden; mehrere enge Seitentälchen, die am orographisch rechten Ufer einmünden, zeigen ebenfalls schluchtartigen Charakter und geben hiedurch Kunde von einer in nicht weit zurückliegender Zeit dort noch wirksam gewesenen, kräftigen Erosionstätigkeit, während sie zur Zeit meiner Wanderung gänzlich wasserlos waren.

Bei einer Krümmung der Talachse, wo durch seitliche Ausspülung die Felswand des rechten Ufers auf einer Erstreckung von 60—70 m nischenförmig vertieft war, stieß ich auf eine außerordeutliche Auhäufung graugelben Lehms, der vom Flusse in 4—5 m hoher Steilwand angeschnitten war. Durch Wespen oder Wildbienen war sie siebartig durchlöchert. Zu meiner Überraschung traf ich dort auf eine höchst primitive Anlage von Ziegelfabrikation. Es stellte sich später heraus, daß die chinesischen Mönche der oben am See liegenden Bergklöster hier Ziegel bereiten und auf mühevollem Wege hinaufschaffen lassen, damit sie zur Wiederherstellung der ruinös gewordenen Klosterbauten verwendet werden können. Grum Grschimailo hatte an einer anderen Stelle in der Schlucht des Tales Han-gu, eines Nebentales des Schoŭ-gu, ähnliche Lehmablagerungen getroffen, wo ebenfalls Ziegel für die Bergklöster hergestellt wurden. 1) Es geht aus Grum Grschimailos Bericht, soweit er auf orographische Details überhaupt eingeht, hervor, daß die Oberläufe der Flüsse Loŭ-sa-gu, Sa-cho-gu und Schoŭ-gu, die er auf seiner Reise querte, in gleicher Weise wie der des Da-tun-gu als gewundene, schluchtartige Engen tief in steilgestellte

¹⁾ l. c. I, S. 158.

Schichtgesteine eingesägt sind. Der von mir untersuchte Lehm enthielt zwar zahlreiche, doch nur sehr kleine Geschiebefragmente; meistens war er gänzlich frei hievon und nur stellenweise mit Sand vermischt. Deshalb halte ich ihn auch nicht für Geschiebelehm der Grundmoräne, die am Talboden lag und etwa von der Ausräumung durch den Fluß an dieser geschützten Stelle verschont blieb. Es scheint mir hier vielmehr eine fluvioglaziale Bildung vorzuliegen und zwar ist seine Entstehung als Ausspülungsprodukt aus Moräne mit mehr Wahrscheinlichkeit anzunehmen, da die ungeheure Moränenmasse, welche den heutigen Bogdo-Ola-See absperrt, bis zur Talsohle herabreicht und schon in kurzer Entfernung talaufwärts von der Ablagerungsstelle des Lehms anhebt. Die Wasser des Sees, zwei unterirdisch durchhrechende Bäche, durchspülen sie, treten am Fuße der Moränenanhäufung zutage, und bilden, indem sie sich vereinigen, den heutigen Datun-gu-Fluß. Nach meiner Ansicht haben am Ende des Diluviums die damals mit ungeheurer Wasserfülle arbeitenden Bäche den größten Teil des feinen Materials der großen Morane auf solche Weise weggeführt und in den durch Strudelung entstandenen Talnischen, wo sie ruhige Tümpel bildeten, die feinsten ihrer schwebenden Bestandteile abgesetzt. Für solche Ausspülungsvorgänge zeugt schon der Umstand, daß der tiefere Teil der Moräne ein reiner Blockwall ist.

Wenig oberhalb dieser bemerkenswerten Stelle steigt das prachtvoll bewaldete (siehe S. 124 f.) Gehänge dieser riesigen Moräne bei 1760 m an und unser Weg führt nun steil in großen Windungen daran hinauf, bis wir auf ihrer Oberfläche stehen (Taf. 9 Fig. 2), einem halb kreisrunden. unregelmäßig gewellten, begrünten Plateau, auf dem viele große Glazialblöcke umherliegen, hauptsächlich aus Quarzporphyr, Keratophyr und Kalksilikathornfels bestehend. Die W.- und O.-Ränder dieser von unregelmäßigen Bodenwellen durchzogenen Schwelle werden von niederen, dicht bewaldeten Rücken, den Vorstufen der den See unmittelbar umrandenden Höhenzüge gebildet und ihr Südrand von einer weiteren, ebenfalls begrünten Moränenstufe von nicht bedeutender Höhe. Unmittelbar nach Überwindung des gegen das Da-tun-gu-Tal abfallenden hohen Steilhanges der alten Stirnmoräne betreten wir einen Boden, der alle Kennzeichen der Grundmoräne an sich trägt und sahen vor uns im S. in geringer Entfernung die nächst höhere Stufe des Stirnmoränenwalls ansteigen, welche sich bis zum Nordufer des Sees hin erstreckt, und das von diesem eingenommene Tal in seiner ganzen Breite absperrt. Offenbar wurde also bei einem erneuten Gletschervorstoß auf die ältere Endmoräne wiederum Grundmoräne abgelagert und erst beim endgültigen Rückzug des Gletschers hat er durch seine Stirnmoräne die Absperrung der heute im See angesammelten Gewässer vollendet. Die in der Richtung von N. nach S. nicht sehr bedeutende Ausdehnung (1/4 km) dieser höheren Moränenstufe und ihre nicht große Mächtigkeit führt jedoch zur Annahme, daß es sich in diesem Fall nur um eine kleine Phase in den Gletscherschwankungen der letzten Vereisung handeln kann.

Als wir diese vor uns liegende oberste Stufe betreten hatten, befanden wir uns auf dem weitgedehnten, höchst unregelmäßig gestalteten, mit dichter Vegetation bedeckten Scheitel der alten Stirnmoräne (siehe Taf. 8), wo sich der Blick über den lichtblauen kristallenen Spiegel eines der schönsten Alpenseen eröffnete, die ich kenne (S. 98). Prachtvolle, dunkle Wälder der Picea Schrenkeana und leuchtend grüne, mit prächtiger Flora geschmückte Alpenmatten umkleiden die formenreichen, parallelen, doch in ihren Kammlinien auffällig gleichmäßig abgeschnittenen Bergzüge der Umrandung, über welche als

höchste Stufe das großartige Eisgebirge der zentralen Bogdo-Ola-Gruppe, im Sonnenglanze in unbeschreiblicher Schönheit erstrahlend, noch gewaltig hinausragte (Taf. 6 und 7). Die außerordentliche Zerschluchtung des prächtigen Waldgebirges der tieferen Stufe in scharfgratige, schmale Ketten, welche durch unzugängliche Engtäler (Taf. 9 Fig. 2 und 4) voneinander getrennt werden, ist ein Werk des Wassers, von dem nur verhältnismäßig wenig sich bis heute erhalten hat. Auch in die die unmittelbare Umrandung des Seebeckens bildende Gebirgsstufe (siehe Taf. 8) wurde auf beiden Ufern durch Erosion eine Anzahl wohlausgebildeter, steilwandiger Engtäler eingeschnitten; sie führen aber heute kein Wasser mehr oder doch nur periodisch.

Ganz allgemein betrachtet stund ich also hier in einer Landschaft, geschmückt mit herrlichen Wäldern und einer prächtigen Alpenflora, vor einem wundervollen Bergsee, umgeben von allen den wechselreichen anmutigen Formen, welche der Moränenlandschaft zu eigen sind, kurz in einer reizvollen Gegend, die das Werk von Eis und Wasser ist, Agentien, deren heutige Kraft aber unfähig wäre, sie zu schaffen. Nur durch eine kurze Entfernung von kaum mehr als 30 km in Luftlinie wird dieses alpine Paradies von der ariden Ebene getrennt, deren heutiges Relief vou Sonne und Wind geschaffen wurde. Die merkwürdigen Gegensätze zwischen einer im Herzen Asiens geheimnisvoll verborgenen, mit allen Reizen der alpinen Region geschmückten Landschaft und der trostlosen Wüstensteppe an ihrem Rande üben, nicht zum wenigsten durch die rasche, unmittelbare Aufeinanderfolge, wie sie dem Wanderer vor Augen treten, einen unbeschreiblichen Zauber auf ihn aus.

Mir ließ schou der erste Anblick des prächtigen Sees keinen Zweifel an der Tatsache und den Morphologen wird in gleicher Weise ein Blick auf die angeführten Abbildungen davon überzeugen, daß die in die Umrandung eingeschnittenen Seitentäler, in welchen die Gewässer des Sees buchtartig eingreifen, darauf hinweisen, daß es sich hier um einen ertrunkenen Talabschnitt handelt. Die mächtigen Moränenablagerungen, die das zurückweichende Eis am Nordrand des Sees zurückgelassen hat, haben den Schmelzwassern der Gletscher am Ende des Diluviums keinen Ausweg mehr gelassen und haben sie gezwungen, diesen Teil des Da-tun-gu-Tales auszufüllen. Heute findet der Abfluß, wie bereits erwähnt, unterirdisch statt, indem sich zwei Bäche im Innern der kolossalen Moränenanhäufuug Durchlaß geschaffen haben.

Als ich den Zauber des ersten Eindruckes der großartigen Landschaft überwunden hatte und von einem etwas höher gelegenen Punkte Überblick auf sie zu gewinnen suchte, wurde meine Aufmerksamkeit zunächst durch einen bereits angedeuteten, eigenartig hervortretenden Zug in ihrem Bau gefesselt: Der wechselvolle Verlauf der höchsten, vereisten Region des Gebirges mit ihren vielgebrochenen, durch ungewöhnliche Höhenunterschiede charakterisierten Kammlinien steht in auffälligem Gegensatz zu den Ketten an ihrem Fuße, die bei aller Mannigfaltigkeit ihrer vielfachen erosiven Zerlegung doch mit ihren kulminierenden Firsten in einer auffälligen Ebene abschneiden. Diese Ebene stellt sich als obere Stufe des riesigen Treppeubaus dar, von dem ich mehrfach früher (S. 38 f., 50, 56, 140) ausführlich gesprochen habe (siehe Taf. 4 Fig. 5). Der erste Anblick schon schien für die Aunahme einer weit verbreiteten gehobenen Landfläche zu sprechen, für einen überlebenden Rest einer früheren Gebirgsentwicklung. Ein abgetragener und spät gehobener, dann abermals abgetragener durch junge Erosion zerschnittener Gebirgssockel lag vor mir (Taf. 17 Profil IV), eine Rumpfebene, oder wenn man diesem Terminus den Vorzug ein-

räumen will, eine Peneplaiu, jedenfalls eine zerstückelte Ebene, die über einen großen Teil des Faltenbaus dieses Gebirges gleichmäßig hinwegzieht. Alle späteren auf den von der Expedition eingeschlagenen Wegen gemachten Beobachtungen bestätigten diese Annahme. Das Vorkommen der mehrfach erwähnten auffälligen und zwar nur vereinzelt auftretenden starken Störuugen, sowie die in dem großen Faltenbau öfters erscheinenden kleinen Spezialfalten (S. 42, 44a, 141 etc.) bilden eine wichtige Stütze für die Vorstellung einer späten und ungleichmäßigen Hebung, verbunden mit stufenförmigen Aufbiegungen.

Da nun alle bisherigen Ergebnisse geologisch-tektonischer Forschung im Tian-Schan übereinstimmend zum Schlusse führeu, daß dort der Beginn der letzten großen Gebirgsbewegungen in das Mitteltertiär fällt, so muß auch, wenigstens der Anfang des großen Hebungsvorgangs im Gerüste des Bogdo-Ola-Gebirges in diese Zeit fallen und sich währeud der folgenden Perioden fortgesetzt haben. Während aber im zentralen Tian-Schan die Hebung zu Brüchen, zur Zerstückelung des Gebirges führte, äußerte sie sich im Gerüste der Bogdo-Ola nur in Hebungsvorgängen aus Gründen, die in Kap. VII näher dargelegt wurden. Jedenfalls hat sich diese Bewegung so laugsam und allmählich vollzogen, daß die wiederbelebte Erosion gleichen Schritt mit ihr hielt (S. 97). Das Bild des Gebirges, wie es uns vor Augen tritt, wie ich es wiederholt geschildert habe, und wie es sich in so charakteristischer Weise gerade in der Umgebung des Bogdo-Ola-Sees äußert, wäre sonst nicht denkbar. Eine solche Beschaffenheit des Reliefs ist auch geeignet meine öfters im Laufe dieser Abhandlung geäußerte Auschauung vou einer großen Klimaveränderung in dieser Gegend zu stützen: Wenn es auch in der Wasserführung der Flüsse, die so große Wirkungen hervorbrachten, zu periodischem Wechsel gekommen sein mag, die den Schwankungen der damaligen Klimaperioden entsprechen, so muß doch unter allen Umständen der Anblick eines so außerordentlich zerschluchteten Gebirgslandes - die durchschnittliche Tiefe der Talböden unter der mittleren Kammlinie im alten Gebirge, soweit es die Vorstufe des vereisten Hochgebirges bildet, läßt sich auf etwa 2700 m schätzen -die Vorstellung hervorrufen, daß durch längere Zeiträume ein bedeutend feuchteres Klima hier geherrscht hat als das heutige. Der heutigen Wasserführung der Flüsse wäre auch in langen geologischen Zeiträumen eine solche Leistung nicht möglich gewesen. Diese Vorstellung wird wesentlich bekräftigt durch den Umstand, daß die heute in das Talbecken des Bogdo-Ola-Sees unmittelbar einmündenden, wohl ausgebildeten, in die Umrandung eingeschnittenen Nebentäler ausnahmslos Trockentäler sind.

Auch hierin finde ich wieder eine Bestätigung für meine mehrfach geäußerte Überzeugung, daß die Zeit des ausgehenden Tertiärs und auch noch die darauffolgende Zeit im Tian-Schan eine Periode großer Feuchtigkeit gewesen sein muß, was ich besonders in Kap. X durch die Art und das Vorkommen der grobklastischen jungen Bildungen und die Besonderheit ihrer Verbreitung im Gebirge darzulegen versuchte. Welcher Anteil am Betrage der starkeu Erosion in diesem Gebirge der Zeit des Diluviums zukommt, kann nach dem jetzigen Stand unserer Kenntnis von den Glazialwirkungen im Tian-Schan noch nicht mit Sicherheit entschieden werden. Ein auffälliger Umstand ist aber auf alle Fälle, daß es in so vielen Teilen des riesig ausgedehnten Kettengebirges und zwar gerade iu jenen, welche heute unter der strengsten Herrschaft des ariden Klimas stehen — ein Verhältnis, auf den ich des öfteren in meinen Schriften hingewiesen habe —, zu keiner richtigen Ausbildung von bedeutenden Tälern mehr gekommen ist. Es hat dort hauptsächlich eine Zerschluchtung der Gebirgs-

masse stattgefunden, so mit wenigen Ausnahmen in fast allen von mir besuchten Tälern, die südlich von der großen Längstalfurche des Inyltschek liegen, sowie in den im Südabhang des Chalyk-tau eingetieften Quertälern und so auch hier im Bogdo-Ola-Gebiet. Bei der durch Beobachtungen in den meisten Gebirgsabschnitten gestützten Tatsache von der ehemals außerordentlich ausgedehnten und mächtigen Eisbedeckung des Gebirges wird mau notwendigerweise zu dem Schlusse geführt, daß schon bald nach Beendigung der Eiszeit eine schnell hereingebrochene Klimaveränderung in vielen Teilen des Gebirges den erosiven Faktoren die Mittel zu ergiebiger Talbildung entzogen hat, so daß es nur in den auch heute noch klimatisch begünstigten Teilen des Gebirgslandes zur Ausformung großer Flußtäler kam (Tekes, Ili, Sarydschaß etc.).

Wie sehr meine Annahme von der über alle Erwartung großen Bedeutung der diluvialen Vereisung des Tian-Schan berechtigt ist, zeigt uns die Tatsache, daß sogar in einer verhältnismäßig schmalen, fast isolierten Gebirgskette wie die Bogdo-Ola, die zwei heute zu den aridesten der Erde zählenden Landgebiete trennt, das Gletschereis so gewaltige Wirkungen hervorrufen konnte, wie sie aus der Geschichte des Bogdo-Ola-Sees zu uns sprechen.

Betrachten wir, um dies zu beleuchten, die schon früher (S. 83, 98, 151 f.) in Bezug auf einige Eigentümlichkeiten ihres Baus erwähnte große Moränenablagerung am N.-Rand des Sees (siehe Taf. 17 Prof. II u. IV und Taf. 8 u. 9 Fig. 2) näher, so finden wir, daß sie das alte Tal von O. nach W. in einer Breite von 2 km absperrt. Die Feststellung ihrer Mächtigkeit ermöglicht sich dadurch, daß die Stelle der Sohle des Da-tun-gu-Tales, wo die Moräne absetzt, im Niveau von 1760 m liegt, das mittlere Niveau der Moränendecke aber bei 2020 m. Somit besitzt die Moräne eine Mächtigkeit von etwa 260 m. Man wird zugeben müssen, daß diese Zahlen Verhältnissen entsprecheu, wie sie sonst nur bei diluvialen alpinen Gletschern von sehr bedeutender Länge sich zeigen, während der Lauf des ehemaligen Bogdo-Ola-Gletschers zur Zeit als er diese Moräne anhäufte, in Luftlinie nur eine Länge von etwa 25 km gehabt haben kann. Bei dieser Entfernung zwischen Moräuenende und wasserscheidendem Hauptkamm ergibt sich, wenn man für dessen höchsten Teil eine durchschnittliche Erhebung von 6400 m annimmt, eine Niveaudifferenz von 4400 m. Legt man aber den Ursprung des Gletschers auf den Kamm der westlichen Fortsetzung, also sogar um 1600 m tiefer, so bleibt, auf so kurze Entfernung verteilt, das mittlere Gefälle noch immer außerordentlich bedeutend. Als Voraussetzung zur Bildung derartig mächtiger Moränenmassen kann außer dem starken Gefälle auch noch der Umstand in Betracht gezogen werdeu, daß in das Da-tun-gu-Tal, weil der ganze Gebirgskomplex nach W. stark eingesunken ist (S. 4, 37, 46, 48), ein Zuströmen der Eismassen von der Ostseite des total vereisten Gebirges stattfand, welche auch große Schuttmassen mit hinabführten. Aber eine solche Mächtigkeit der Stirnmoräne deutet doch auch auf lange Zeit währenden stationären Eisstand.

Immerhin bliebe noch zu erwägen, ob man auch berechtigt ist, eine Mächtigkeit von 260 m für die Endmoräne anzunehmen. Es wäre nicht ausgeschlossen, daß unter den Moränenmassen ein Gefällsknick der Talsohle verborgen sein könnte, was bei der totalen Verhüllung des Terrains durch die Glazialablagerung und bei dem dichten Vegetationskleid, mit dem diese bedeckt ist (S. 124 f., 151), nicht mit völliger Sicherheit erkennbar ist und nur durch Bohrungen festgestellt werden könnte. Nach den Verhältnissen in den benachbarten Paralleltälern zu schließen, neige ich jedoch zur Anschauung, daß ein solcher Gefällsbruch

im Innern der Moräne nicht vorhanden ist. Außerdem bieten sich aber schon in der Nähe Anzeichen für einen außerordeutlich hohen Stand des diluvialen Gletschereises. Das Bild Taf, 5 Fig. 3 zeigt eine große tiefe Bucht am O.-Rande des Sees, zu welcher ich mich auf einem äußerst primitiven Floß durch die Mönche des oberen Klosters übersetzen ließ; am Fuße einer Steilwand, deren Beschaffenheit jeden Gedanken an Schuttkegelbildung ausschließt, lagern gewaltige Anhäufungen von Glazialschutt in zwei Terrassen. Die erste Terrasse liegt etwa 130-150 m über dem Seespiegel, die zweite 80-90 m über der ersten. Auf der unteren Terrasse stehen die Tempelbauten eines großen Klosters mit ausgedehnten Gerstenfeldern, den Wohngebäuden der Mönche, Vorratspeichern und kleineren Bauten, die den Arbeitern dienen. Diese Stufe hat eine mittlere Ausdehnung von 4-500 m und eine durchschnittliche Breite von 250 m. Auch auf der darüberliegenden Terrasse, deren Ausdehnung um etwa die Hälfte geringer ist, erheben sich, ziemlich voneinander entfernt, einige Tempelbauten. Diese Ablagerungen scheinen mir Reste einer alten Ufermoräne zu sein, welche dadurch, daß sie im Schutze einer tiefen Bucht liegen, der Zerstörung durch die Fluten entgingen. Es kann nun sein, daß diese Bildung eine einheitliche gewesen ist, welche nur durch zwei stationäre Perioden des Seewasserspiegels in zwei Stufen zerlegt wurde, daß es sich also um Reste einer Ufermoräne von gewaltigen Dimensionen handelt. Ebensogut ist es aber auch möglich, daß hier die Reste von zwei hinter- uud übereinanderliegenden Ufermoränenwällen erhalten geblieben sind. Wenn mir die Mittel, sowie Zeit und Gelegenheit zur Verfügung gestanden hätten, auch den Hintergrund der anderen Seebuchten zu untersuchen, hätten sich dort vielleicht Überbleibsel von ähnlichen Bildungen auffinden lassen, deren Beschaffenheit gestattet hätte, größere Klarheit über den Zusammenhang dieser wichtigen Verhältnisse zu gewinnen. Die eben beschriebene Erscheinung genügt indessen schon, um die Annahme eines hohen Eisstandes des durch das Seetal gezogenen diluvialen Gletschers zu rechtfertigen.

Eine gründliche Untersuchung des ertrunkenen Seetales, besonders eine Auslotung des Seegrundes, müßte zweifellos zu interessanten Ergebnissen führen. Nimmt man den vermuteten, vorher erwähnten Gefällsbruch unter der Endmoräne am N.-Rand als nicht vorhanden an, so müßte sich für den vom See eingenommenen Talboden folgendes Gefälle ergeben: Südende des Sees 1985 m, Nordfuß der absperrenden Moräne 1760 m, mithin ein Höhenunterschied von 225 m, verteilt auf eine Länge von 4 km, also ein Gefälle von ca. 55 m pro Kilometer für den alten Talboden, während das zunächst in O.-Richtung verlaufende, von uns zum Aufstieg benützte Quelltal vom Südende des Sees aufwärts nach meinen Ermittlungen im Laufe der ersten 5 km ein Gefälle von fast 60 m pro Kilometer aufweist, das in dem eine südöstliche Richtung annehmenden Oberlaufe sogar um kaum weniger als den nochmaligen Betrag steigt. Hieraus ergibt sich, daß die größte Tiefe des Sees an seinem Nordende sein müßte und dies scheint auch der Fall zu sein, denn die Moräne fällt dort mit großer Steilheit zum See ab. Die Festlegung des jetzigen Reliefs des Seebodens könnte nun zeigen, wie hier die Erosion des mächtigen diluvialen Gletschers auf den ertrunkenen Talboden eingewirkt hat.

Die Länge des Sees ist etwas mehr als 4 km, seine durchschnittliche Breite 1 km. Das Wasser ist von heller Azurfarbe, dabei außerordentlich klar und kalt. (Gemessene Temperaturen in einiger Entfernung vom Ufer + 11° und + 10° C.) Die starke Beschattung durch die kulissenartig gegeneinander vortretenden Bergwände läßt der Sonne nur wenig

Gelegenheit zur Einwirkung; den Zufluß aber bilden ausschließlich Gletscherwasser von verhältnismäßig kurzem Laufe. Auch glaube ich, daß der Umstand, daß die Achse des Sees süduördlich gerichtet ist, einen erkältenden Einfluß ausübt, wie dies auch schon von anderen, ihrer Lage nach ähnlich orientierteu Seen angenommen worden ist. Fische enthält der See nicht, was schon durch den unterirdischen Abfluß über hoher Stufe erklärlich wird. Von bedeutendem wissenschaftlichen Interesse müßte unter solchen Umständen jedenfalls eine Untersuchung der anderen Fauna des Sees und besonders seiner Mikrofauna sein. Die Eintiefung des Seespiegels zwischen den Randhöhen (Hochflächen) schätze ich im Mittel auf 700 m. Der Abfall des Ufergebirges gegen den See ist sehr steil, meiner Schätzung nach nicht unter 40 Grad.

Von den Klöstern will ich kurz nur das Nötigste erwähnen, da ich diese schon sehr umfangreichen morphologischen Darlegungen nicht auch noch mit ethnographischen Schilderungen belasten will, wie großes Interesse solche auch beanspruchen dürften. Beim Betreten des Scheitels der Moräne, die durch ein herrliches Vegetationskleid von Alpenmatten mit reizender Flora und reichen Buschbeständen, sowie prachtvollen Ulmen und Fichtengruppen geziert ist (S. 126 f.), erblicken wir zwei inmitten der Wiesen sich erhebende einfache Tempelbauten, von denen der kleinere, dem Konfuzius geweihte, wie alle diesem Moralphilosophen gewidmeten Verehrungsstätten, sehr einfach gehalten ist, hauptsächlich außer seinem aus Holz geschnitzten, bunt gezierten Standbild nur mit Inschriften (Sprüchen) geschmückt erscheint. Die Vorhalle trägt auf ihren Wänden künstlerische Sepia-Darstellungen von Baumgruppen.

Etwas abseits hievon erhebt sich ein etwas größeres Bauwerk inmitten eines von Maueru umschlossenen großen Hofes. Dieses ist ein laotistischer Tempel, dessen äußere Architektur einfach und ziemlich roh ist. Im Innern zeigen die in der Hauptnische befindliche, bunt bemalte, überlebensgroße Holzfigur des Lao-tze und die zu seinen Seiten stehenden symbolischen Figuren zwar von einer wirksamen, derben Realistik, aber doch einen ziemlich rohen Geschmack. Hingegen sind die durchbrochenen Holzschnitzereien, welche die Altarnische umrahmen, von vorzüglicher Ausführung. Das ganze Bauwerk ist wegen seiner gegen das Hochgebirgsklima wenig widerstandsfähigen Wände aus ungebrannten Lehmziegeln in einem Zustande des Verfalles.

Etwa 300 m im SW. von diesem Tempel und durch sanft ansteigendes alpines Wiesenland von ihm getrennt, sind auf der höchsten Anschwellung der Moränendecke und unmittelbar umschlossen von prachtvollen Waldbeständen der Picea Schrenkeana die Bauten des ersten, unteren, Klosters angelegt (siehe Taf. 9 Fig. 1). Durch ein monumentales Tor tritt man in einen länglichen Hofraum, der rings von niederen Baulichkeiten umschlossen wird; sie enthalten die Wohnräume der hier ansässigen 4 Mönche und ihrer Dienerschaft, auch reiuliche Empfaugs- und Gasträume, die mir in liebenswürdiger Bereitwilligkeit zum Aufenthalte angeboten wurden. Außerdem befinden sich innerhalb dieses Hofes noch zwei kleinere Tempel ohne besonderen Wert, einer hievon konfuzistisch, ein anderer buddhistisch. Im Hofraume selbst sind die in China allenthalben üblichen Attribute des Gottesdienstes, ein großer Gong, eine riesige Trommel, eine sehr große bronzene Glocke, eine große Gebetmühle und einige mit kleinen Nischen versehene oktogonale, schlanke Opferaltärchen aufgestellt. An diesen Baukomplex stoßen zwei schöne geräumige aber niedere Tempel an, vou denen einer, der Haupttempel, in

drei getrennten Nischen die bemalten und reich geschmückten, überlebensgroßen Statuen des Buddha, des Con-fu-tze und des Lao-tze enthält, die sich hinter mit hübschen Messinggefäßen gezierten Opfertischen erheben. Die Ausführung der aus Holz geschnitzten Statuen gibt Kunde von gutem künstlerischen Geschmack. Besonders aber der durchbrochene, holzgeschnittene Fries, welcher über den Altarnischen entlang läuft, zeigt zierliche Formen von vortrefflicher Arbeit. Der danebenliegende, etwas kleinere Tempel ist dem Lao-tze gewidmet und bietet nichts besonders Erwähnenswertes.

Auf einer höheren Etage des Ufergebirges, 425 m über dem unteren Kloster, erhebt sich auf alter Grundmoränendecke in einer den ganzen See und die umragenden Gebirge beherrschenden, prachtvollen Lage, ein von schönen Fichtengruppen umgebenes anderes Kloster, etwas weniger geräumig als das untere und weniger reich ausgestattet (Taf. 9 Fig. 3). Von seinen Tempeln ist der größte und schönste ebenfalls dem Lao-tze geweiht und enthält seine überlebensgroße, reich und bunt, aber nicht sehr künstlerisch geschmückte hölzerne Statue, umgeben von höchst drastisch wirkenden Figuren aus dem reichen symbolistischen Vorstellungskreis dieser Religion: Krieg, Frieden, Weisheit, Genius des Guten, des Bösen usw. Von besonderem künstlerischem Werte sind auch hier hauptsächlich nur die prachtvollen Holzschnitzereien, welche die Altarnischen umgeben. Ein zweiter Tempel ist Buddha geweiht. Es muß besonders hervorgehoben werden, daß Buddha in all den Bogdo-Ola-Klöstern in einer besonderen Inkarnation als Ta-mo-fu verehrt wird; er ist der eigentliche Genius loci dieses Gebirges.

Der Stil aller dieser Tempelbauten unterscheidet sich kaum wesentlich von demjenigen, den man allenthalben bei gewöhnlichen Tempeln in China begegnet. Die BogdoOla-Tempel sind aber nicht im entferntesten, weder in Bezug auf ihre Dimensionen noch
hinsichtlich der Pracht ihrer inneren Ausschmückung mit denjenigen der torgoütischen
Lamaklöster im zentralen und östlichen Tian-Schan zu vergleichen. Die gänzlich im
Banne der Lamas stehenden Torgoüten opfern willenlos alles für ihre Geistlichkeit und
ihre Kultusstätten, während der in religiösen Dingen fast indifferente Chinese in dieser
Hinsicht sehr zurückhaltend ist. Am wenigsten Kunstwert besitzen die zwei Tempelanlagen auf den Moränenhöhen am Ostufer des Sees, von denen schon früher die Rede
war; sie sind ausschließlich dem buddhistischen Kultus vorbehalten.

Bei der leichten, nachlässigen Bauweise, ohne genügende Fundamentierung, wie die Chinesen sie allenthalben in dieser Gegend üben, ist es erklärlich, daß alle die zahlreichen und umfangreichen Bauten dieser drei Klosteranlagen schon deshalb bald in einen Zustand starken Verfalles geraten mußten, weil solche Bauweise und das verwendete Material den besonderen Unbilden des Hochgebirgswinters nur geringen Widerstand entgegensetzen konnten. In arg heruntergekommenem Zustand befanden sie sich noch bis vor etwa 10 Jahren. Da erstand ihnen ein Retter und Helfer in der Person des nach Urumtschi verbannten kaiserlichen Prinzen Gan-jah, Herzogs von Lan, der nach Ablauf des Boxeraufstandes, obwohl weniger schuldig hieran, das Schicksal seines Bruders, des Hauptanstifters und Führers der Bewegung, des Boxerprinzen Tuan teilen mußte (S. 10). Dem Prinzen Gan-jah wurde Urumtschi zum Aufenthalte angewiesen; er lebt nun dort, seine Zeit hauptsächlich photographischen Arbeiten widmend, worin er Meister geworden ist; auch mit historischen Studien und mit Gartenkunst beschäftigt er sich. Dieser Fürst hörte von den Bergklöstern, die sich um den weltentlegenen, reizenden und geheimnisvollen Bergsee

gruppieren, welcher seit undenklichen Zeiten sowohl für Mongoleu als Chinesen auf Grund uralter Überlieferung mit dem Nimbus der Heiligkeit umwoben ist und als in engen Beziehungen zum Eispalast der Gottheit stehend gilt, den hohen mit Eis gepanzerten Zinnen der Bogdo-Ola (siehe S. 18f.). Nach dem Glauben der Chinesen liegen tausend Heilige in dem einsamen Gebirgssee begraben; er gilt als ein Lieblingsbesitz der Gottheit, ebenso auch seine ganze Umgebung und alle die geheimnisvolleu Waldtäler zwischen den ihn umrandenden Bergketten. Keinerlei Ausnützung der Alpenwiesen und prachtvolleu Wälder ist gestattet, als nur für den Dienst der Klöster selbst. Zweifellos handelt es sich hier um die traditionelle Pflege eines uralten Naturkultes, der mit den später aufgetretenen religiösen Vorstellungen und Systemen verknüpft wurde. Trotz des heiligen Rufes, dessen sich der See bei ihnen erfreut, wird er nur selten vou Chinesen aufgesucht, teils wegen einer gewissen heiligen Scheu, aber auch deshalb, weil die Mehrzahl der Chinesen, als Volk der großen Ebenen, dem Hochgebirge starke Abneigung entgegenbringt (S. 131). Der verbannte Prinz indessen besuchte die Örtlichkeit schon bald nach seiner Ankunft in Urumtschi und war von dem Zauber dieser Hochgebirgsidylle, welcher Sage und Religion noch eine besondere Verklärung verleihen, von ihrem weihevollen. stillen Frieden so entzückt, daß er nun öfter dahin pilgerte, für sich einige Gemächer im unteren Kloster herrichten ließ und die Mittel stiftete. um die zerfallenden Bauten nach und nach in neuem Glanze erstehen zu lassen. Hieran wird nun seit Jahren gearbeitet und hiezu werden die Ziegel verwendet, von deren Gewinnung ich früher Erwähnung gemacht habe (S. 150 f.).

14-15 Mönche sind mit ihren dazugehörigen Dienstleuten in deu drei Klöstern verteilt. Einige von ihnen haben sich mir als gastfreie, gefällige und recht verständige Leute erwieseu; sie waren reinlich - mehr als es sonst viele Chinesen sind - und ordnungsliebend und gabeu sich mit besonderer Vorliebe der Blumen- und Gemüsezucht hin. Andere hingegen waren gänzlich dem Opiumgenuß verfallen und daher sowohl au Körper als im Charakter sehr heruntergekommen; sie führten ein träges Leben und zeigten sich von fanatischem Aberglauben erfüllt. Der Verkehr mit ihnen war für mich nicht ohne eigenartige Schwierigkeiten: Mir war zur Fortsetzung meiner Forschungsreise iu das unbewohnte Hochgebirge die Versorgung mit Fleisch uneutbehrlich. Die höchten Behörden in Urumtschi hatten mir zugesichert, daß ich von den Mönchen alles Nötige geliefert bekommen würde. Diese weigerten sich jedoch, sogar gegeu gute Bezahlung, mir von den auf den Wiesen vor dem oberen Kloster weidenden Jungvieh auch nur ein Stück abzutreten unter dem Vorwand, daß die ganze Gegend mit allem, was darauf lebt, dem Gotte Ta-mo-fu gehöre uud geheiligt sei; sie hätten daher kein Recht irgend etwas hiervon abzutreten. Es gelang mir erst nach großen Schwierigkeiten und durch eigenartige diplomatische Künste das Gewünschte zu erhalten. Einer von ihnen, der als Einsiedler am Ostufer auf einer weit in den See vorspriugenden, sehr schmalen, mit dichtestem Wald bewachsenen Landzunge lebt, fischt sich für seinen Bedarf das Treibholz mühevoll aus dem See heraus, weil er meint, dies schicke ihm die Gottheit zu, während er kein Recht habe, sich an dem den Göttern geweihten Walde selbst zu vergreifen.

Für die Denkungsweise der Möuche ist folgender Zug besonders erwähnenswert: Schon als wir noch im Lager im unteren Da-tun-gu-Tale waren, machte sich gegen Abend eine eigeuartige Trübuug des Firmamentes bemerkbar sowie ein beklemmender Dunst und starker Rauchgeruch. Des Nachts war der Himmel im S. von glutrotem, bald schwächer bald stärker werdendem Scheiue erhellt, der an einen Waldbrand denken ließ. Als wir am folgenden Tage die Höhe der Moräue am See erreicht hatten, sah man aus mehreren der spaltenförmigen, in die Hochfläche eingeschnittenen, von Fichtenwald erfüllten Engtäler (S. 126, 152) dicke Rauchschwaden emporsteigen, die vom Wind über den See getrieben wurden, so daß kein Zweifel mehr an dem Wüten eines Braudes in diesen prachtvollen Wäldern bestehen konnte. Mehrere Täler waren hiervon bereits ergriffen. Von meinem den See und seine Umgebung beherrschenden Hochlager aus bot sich des Nachts stets ein schauerlich großartiger Anblick. Aus unehreren Taleinschnitten stieg die "wabernde Lohe" empor zu den Felskämmen, ergriff die sie krönenden Reihen herrlicher Fichten und, sie verzehrend, sprang sie auf die entgegeuliegenden Talseiten über. Die Hochstämme stürzten reihenweise ineinander unter Entwicklung von wirbelndem Funkensprühen und eines lodernden Flammenmeeres, das sich immer tiefer in die dicht bewaldeten Flanken der Bergwände einfraß. Mit unheimlicher Schnelligkeit, Kamm um Kamm übersteigend, Alles verzehrend, schien sich das lohende Ungeheuer dem heiligen See unaufhaltsam zu nähern. Das Firmament war in Glutschein getaucht, welcher auch die bleiche Herrlichkeit der in ziemlicher Entfernung hinter dem Schauplatz dieses Ereignisses aufragenden überfirnten Hochzinnen ergriff und mit prächtig rotem aber unheimlichem Schimmer umwob. Die beweglichen Fluten des Sees glichen flüssigem Gold. Es war ein Schauspiel, das zwar die Seele mit Bewunderung erfüllte, das man aber nur mit Schaudern verfolgen konnte. Stumm und apathisch sahen die Mönche der ungeheuren Verwüstung durch das entfesselte Element zu, dessen Schauplatz bald nur mehr durch zwei Paralleltäler vom Tale des Sees getrennt war. Griff es aut dieses über, so waren auch die Klöster auf das höchste gefährdet. Ich forderte die Mönche auf, Eilboten nach Urumtschi zu entsenden, um militärische Hilfe zu erbitten; sie lehnten dies rundweg ab und meinten, ein solches Ereignis liege im Willen des Gottes Ta-mo-fu; er werde selbst dem Elemente Einhalt gebieten, sobald er es für gut finde. Und so geschah auch wirklich! - Noch in der gleichen Nacht brach ein wolkenbruchartiger Regen aus, der unausgesetzt 50 Stunden dauerte und den Braud löschte. Als ich tags darauf bei aufklärendem Wetter die Mönche wiedersah. deuteten sie triumphierend bald auf die Stätten des erloschenen Brandes, bald zum Himmel empor. Die Gottheit habe geholfen und ihr Heiligtum vor Zerstörung bewahrt. Ta-mo-fu hat den Glauben seiner Anbeter nicht zu Schanden werden lassen. Warum aber ließ er den Brand überhaupt zu? -

Um vom unteren Kloster zum oberen zu gelangen, hat man eine Höhendifferenz von 425 m zu überwinden. Man übersteigt zunächst einen etwa 150 m hohen, mit dichtestem Fichtenwald bestandenen alten Stirnmoränenwall und gelangt auf dessen Rückseite hinab in einen weiten grünen Kessel, einem ehemals von einem See erfüllten karähnlichen Zirkus, von welchem bereits S. 146 die Rede war. Die gegen den See gerichtete Seitenwand des Kessels ist durchgebrochen und ein schluchtartiges Tälchen zieht hier steil zum großen See hinab, offenbar der Kanal, durch welchen einst ein hier eingeschlossen gewesener See sich entleert hatte. Bemooste Riesenblöcke liegen auf dem eine höchst unregelmäßige Oberfläche zeigenden, reich begrünten, alten Moränenboden. Eine Anzahl tiefer Tümpel sind über ihn zerstreut. Steil erhebt sich die mehr als 300 m hohe Rückwand, über welche durch wundervolle Bestände eines alten Fichtenwaldes der Weg in vielen Windungen emporführt zu einer Vorstufe der hochgelegenen Rumpffläche (Taf. 7 und 9), wo das obere Kloster sich erhebt. Weithin zeigt dort der dicht bewachsene, wellenförmige Boden

die Kennzeichen seiner einstigen Eisbedeckung: alle Formen sind weich und gerundet; Generationen von abgestorbenen Pflanzen bilden eine mächtige Polsterhülle über der alten Grundmoränendecke. Eine große Anzahl von Tümpeln mit braunem, doch sehr klarem und kaltem Wasser sind darin eingetieft, aber kein fließendes Wasser ist sichtbar, da es wohl von den hochgelegenen Rändern herabgelangt, aber bald in den kolossalen Aufbreitungsmassen versinkt und unterirdisch auf der Lehmschichte der Grundmoräne sich verzweigt.

Ich befand mich schließlich auf einer in Richtung SO.-NW. sanft abdachenden Rumpffläche, Teil der großen Hochfläche, von welcher S. 152 f. die Rede war. Ein großer Gletscher hat hier seine Ablagerungen hinterlassen. Gleichzeitig mit dem Eisstrom, der das damals wohl noch nicht bis zu seinem heutigen Niveau eingetiefte Seetal durchzog, flossen auf dieser heute durchschnittlich um etwa 650-700 m höheren Stufe große Eismassen dahin und erstreckten sich durch das schon beschriebene alte Tal (S. 146 f.) hinaus in das zwischen Sangun und Schimo-gu liegende große Becken (Zungenbecken), bis nach dem letzten Eisrückzuge der Unterlauf dieses alten Tales von dem jungen Lauf des Sangun wie geschildert angeschnitten und abgezapft wurde.

Die Hochfläche steigt vom Kloster, wo mein Lager stund (2505 m), bis zum Südende des Sees, also auf 4 km zu ca. 2680 m, mithin mit einer durchschnittlichen Böschung von 36 m pro Kilometer an, während ihr Abfall gegen den See, wie schon früher hervorgehoben wurde und wie aus den Bildern ersichtlich ist, schroff geböscht erscheint. Jugendliche Talrinnen durchfurchen die Hochfläche, was besonders lehrreich in den Bildern Taf. 9 Fig. 2 und 4 hervortritt. Die im Schutze des Talschattens angesiedelten dichten Wälder reichen meistens nur gerade bis zur Scheitelfläche hinauf, wo sie infolge einer starken und langen täglichen Insolation und weil dort auf der Höhe auch heftige Winde ihr Wachstum verhindern, sich nicht mehr weit verbreiten konnten. Nur im Schatten einzelner, die allgemeine Aufschüttungsdecke durchbrechender Felsgruppen, sowie in Mulden kommt geselliger Baumwuchs vor (siehe Kap. XIII S. 126 f.).

Diese engen Furchen wurden also nicht mehr zu richtigen Täleru ausgebildet. Im Gegensatze hiezu sind die am Rande der Hochfläche zum Seetal hinabziehenden Täler weit reifer ausgeformt, von ansehnlicher Breite, aber ihr Boden ist sehr steil geböscht, und, wie früher (S. 152) erwähnt wurde, jetzt wasserlos. Da diese Verhältnisse zu beiden Seiten des Sees, was schon durch die Abbildungen erwiesen wird, gleichartig sind, könnte mau wohl an eine Entstehung des Seetales durch tektonische Vorgänge, Einbruch oder dergleichen denken. Aber für eine solche Annahme liegen keinerlei Anzeichen oder gar Beweise vor, während die Züge des Erosionsbildes deutlich für andere Ursachen sprechen; sie berechtigen mit ziemlicher Sicherheit zur Annahme eines hohen Alters für das Seetal, für seine präglaziale Anlage, also als ein Produkt eines älteren Erosionszyklus. Die Kräfte der Vereisung haben es in gleicher Weise, wie die es umgebenden Gebirgsteile getroffen. aber aus den S. 147 erörterten Gründen länger auf dieses Tal eingewirkt. Die in den Hochflächen der Umrandung eingetieften Engtäler gehören hingegen einem jüngeren Erosionszyklus an, welcher mit dem allmählichen Schwinden der von den niedrigeren Teilen des großen Kammgerüstes abfließenden Eismassen seinen Abschluß fand. Zu diesen durch die orographischen Verhältuisse gegebenen Bedingungen gesellten sich die Wandlungen, in welchen sich der allgemeine Verlauf der diluvialen Eiszeit abspielte. Ich habe eine beiläufige Skizze der vermutlichen Vorgänge auf S. 148 gegeben. Genauer festzustellen, in welchem Verhältnis die Phasen der Erosion zu denen der Vergletscherung stehen, oder vielleicht besser, in welchem Abhängigkeitsverhältnis von ihr, vermag ich nach dem bisherigen Stand der Beobachtungen noch nicht, schon deshalb, weil Kräfte anderer Art wohl noch dazu beigetragen haben mögeu, um solche ungemein bedeutende Unterschiede in der Führung der Tallinien und in deren Umgestaltung hervorzubringen. Es scheint mir wahrscheinlich und mit den anderen geschilderten Verhältnissen gut übereinstimmend, daß Hebungsprozesse von Einfluß waren, mit denen die Erosion des Haupttales infolge andauernd reicher Wasserzufuhr durch die in den höchsten Regionen wurzeluden Gletscher gleichen Schritt halten konnte, während sie in den anderen weniger gehobenen Teilen wegen Schwindens ihrer Gletscher früher erlosch und erst bei fortgesetzter Hebung wieder einsetzte, zu spät, um noch große Wirkungen zu erzielen.

XVI. Vom See zum Nordfusse der zentralen, höchsten Bogdo-Ola-Gruppe.

Mein Weg zum Hochgebirge führte zunächst in südöstlicher Richtung über die eben beschriebene Hochfläche am westlichen Seerand hinweg; ihr Ansteigen gegen SO. ist wie hervorgehoben nicht beträchtlich, alle Formen sind weich und gerundet, da der Formenschatz der Grundmoräneulandschaft durch ein dichtes Pflanzenkleid verhüllt wird. Man überschreitet einen sehr weicheu, elastischeu, an vielen Stellen stark versumpften Boden mit abwechslungsreicher, sehr interessanter Vegetationsdecke, die den Höhen und Tiefen des Reliefs sich anpalit, wie dies in Kap. XIII S. 111 f. geschildert wurde. Keinerlei fließendes Wasser ist bemerkbar, aber sehr viele Tümpel mit klarem, doch meistens braungefärbtem Wasser. Durch die aus Generationen abgestorbener Gräser bestehende dicke, zum Teil schon in Torf verwandelte Hülle und die darunter liegende nuächtige Schichte von Auf breitungsmaterial versinkt alles Wasser bis zum Geschiebelehm der Grundmoräne hinab und nimmt dann seinen Verlauf unterirdisch. Bei der Wanderung über die Hochfläche gewinnt man freien Blick nach beiden Seiten; nach O. hinab in das Seetal, nach W. auf die tief eingeschnittene Furche des Tales Schimo-gu. Einzelne bizarr erodierte und zum Teil bewaldete Felsklippen von selten mehr als 100 bis 150 m Höhe durchbrechen die grünen Wellen der Hochfläche. Wie sich zeigte, sind es sehr harte Eruptivgesteine: Porphyre und Porphyrbreccien in Wechsellagerung mit Kalksilikathornfelsen. Das Streichen ist O. 35° bis 45° N. Diese Bildungen gehören zu einer flachen Mulde, in welcher auch das Seetal liegt (siehe Profil Taf. 17 Fig. II u. IV), und sind Härtlinge, welche der allgemeineu Abtragung entgingen, während der Bestand der dazwischen gelegenen weicheren Schichten entfernt wurde. Solche Felszüge treten zunächst nur vereinzelt, weit voneinander getrennt auf. Mit dem Fortschreiten unseres Weges gegen das S.-Ende des Sees aber erscheinen sie in Form zusammenhängender, schmaler Ketten, welche über die ganze Breite der Hochfläche streichen, so daß unser Weg über sie hinweg führen muß. Dies geschieht durch enge Scharten in den Kämmen des klippigen, mit knorrigem Thujagestrüpp bewachsenen Gesteins, was für die beladenen Tiere und besonders für das Gepäck öfters gefährlich wurde. Steil geht es an einer Seite des Wandgeschröfes empor und auf der anderen ebenso hinab in schmale grüne Mulden, welche demnach der Auswitterung und nicht der Erosion des Wassers ihr Dasein verdanken. In öfterer Wiederholung wird dieser nicht unbedenkliche Weg fortgesetzt, bis die Karawane endlich im SW. des Seeendes auf ein vorspringendes, grünes Alpenplateau hinaustrat (2795 m). Hier wurde der Blick frei gegen den nach SW. streichenden Zweig des vergletscherten Hochgebirges und über das vorgelagerte, nicht bis zur Schneegrenze ansteigende, begrünte Hochland sowie auf die aus ihm herabziehenden Quertäler, welche als breite, reife Rinnen eingetieft sind. Wie reich gegliedert und zerlegt durch die Erosion dieses Vorland auch erscheint, welches aus stark gestörten (siehe S. 96) Tonschiefern und Quarziten besteht, die sich hier zu einem flachen Sattel zu erheben beginnen, so ist der ehemalige Zusammenhang der den Faltenbau abschneidenden Hochfläche an dem vor dem Beschauer ausgebreiteten Relief doch erkennbar: Die breiten, reich mit Alpenmatten, zum Teil mit Wäldern bedeckten, stumpfen Kämme lassen sich unschwer zu einer Tafel verbinden, die sanft gegen den schroffen Abfall des Hochgebirges im S. hinanzieht, welches in einer gewaltigen Steilstufe überragt. Selbst dort, wo die stumpfen Kämme des zerlegten Vorlandes durch klippig aufragende Schichtenköpfe gebrochen sind, macht sich keine Neigung zu tieferer Schartung oder zur Gipfelbildung bemerkbar. Alle diese Erscheiuungen fügen sich vorzüglich in den Rahmen der bisherigen Beobachtungen und die daran geknüpften theoretischen Erwägungen über Entstehung des Stufenbaus des Gebirges durch reif zerschnittene, spät gehobene Rumpfflächen.

Die nach Norden und Osten gerichteten Gehänge des Gebirges und die tieferen Einbuchtungen der Talwände sind reich mit Fichtenwald bedeckt, von dem leider auch hier große Komplexe schon durch Feuer zerstört sind. Bei der Seltenheit von Gewittern in dieser Gegend muß man annehmen, daß es Leichtsiun von Hirten oder Jägern ist, welcher diese bedauerlichen und nie wieder ersetzbaren Verluste (S. 126) am schönsten Schmuck des Gebirges verursacht.

Auf dem mit reichen Alpenmatten bedeckten Plateau trafen wir sartische Hirten mit einer großen Schafherde. Die Tiere gehörten reichen Kaufleuteu in Foŭkan, die sie hier übersommern ließen bis zur kühlen Jahreszeit, wo die berühmten Schafmärkte in Urumtschi stattfinden. Da man mir versicherte, wir würden auf unserem Weiterweg noch Kirgisen antreffen, verzichtete ich darauf, mich schon hier für längere Zeit mit den unentbehrlichen Fleischtieren zu versorgeu.

Von diesem hochgelegenen Punkte aus gewann man auch einen überaus lehrreichen Überblick über den ganzen Bogdo-Ola-See und seine Umrandung (Taf. 9 Fig. 2 u. 4) mit dem Nordende und dem absperrenden Moräneuwall. Gegen O. gewendet blickte man in den tiefen, dunklen Spalt einer waldigen Schlucht, bis zu deren Grund das Auge nicht hinabzutauchen vermochte. Die Hirten sagten mir, durch diese Enge zwänge sich der Fluß, der den Bogdo-Ola-See speist. Man vermochte aber noch drei andere, bedeutend breitere Talfurchen zu unterscheiden, die, aus verschiedenen Richtungen herbeiziehend, in die Schlucht einzumünden schienen. Welches dieser Täler als das Haupttal des oberen Datun-gu anzusehen sei, ließ sich schwer sagen und auch die Hirten wußten keinen Bescheid hierüber zu geben. Leider vermochten sie mir auch keine Aufklärung darüber zu erteilen, durch welches der Täler man am besten zum Fuße des zentralen Teiles des Eisgebirges gelangen könne; hingegeu versicherten sie, daß die Sayanschen Kirgisen (siehe Kap. XIV S. 30 f.). auf welche ich in der Schlucht selbst oder nicht weit oberhalb von ihr treffen müsse, die Gegend gut kennen. In der Tat war mehrere Tage vorher ein Mollah dieser Kirgisen, welcher Stammesgenossen im Tale Schimo-gu aufgesucht hatte, bei mir im Hochlager am oberen Kloster gewesen und aus seinen Mitteilungen war zu

schließen, daß seine Herden sich noch für kurze Zeit auf Sommerweide am Fuße des Hochgebirges befinden müßten. Unter diesen Umständen blieb mir nichts anderes übrig, als von der ragenden Alpenhöhe wieder hinabzusteigen in die Tiefe zu unseren Füßen, in die gähnende Schlucht. Bei der ungemein steilen Böschung des Gehänges schien das Unternehmen für die Lasttiere nicht unbedenklich. Es zeigte sich aber, daß die Kirgisen, welche alljährlich im Hochsommer für 4—6 Wochen mit großen Herden von Pferden und Schafen und nur wenigem Hornvieh durch diese Hochtäler wandern, einen allerdings etwas primitiven Serpentinenweg angelegt hatten. Diesen benutzend, gelangte die schwer beladene Karawane fast stets durch dichten Fichtenwald, seltener über steilgeböschte Alpenmatten wandernd, ohne Unfall in die Tiefe. Der Grund dieser Schlucht, 60—70 m breit, war ganz und gar von dem Bette eines tosenden Baches eingenommen, mit milchig getrübtem Wasser. Ein Chaos von meist großen Felsblöcken und entwurzelten Baumstämmen, bedeckt mit Sand, Schlamm und Sträuchern gab Kunde von der Gewalt der von Gletschern genährten Fluten.

Wir befanden uns dort, wo der Bach erreicht wurde, in einer Seehöhe von 2210 m, hatten also in kurzer Wanderung von kaum viel mehr als einer Stunde 585 m an Höhe verloren. Überraschend war der Umstand, daß es beim Abstieg in die wasserdurchtoste Enge, zu der kein Sonnenstrahl dringt, statt kühler, wie man erwarten hätte sollen, sogar außer Verhältnis wärmer wurde. Die Lufttemperatur war auf der verlassenen Höhe 10,7° C, unten am Flusse 20,1°. Es war dort beklemmend schwül. Dies kam auch im Aussehen der Vegetationsdecke zur Geltung. Das Gras der Alpenwiesen verlor im Abstieg mehr und mehr an Frische und in den unteren Teilen des Gehänges hatte es bräunlichen, welken Anflug. Diese Verhältnisse erinnerten mich auffällig an die im Koi-kaf-Tal angetroffenen.¹) Gegen W., gegen den See hinaus, von dessen Südende man wenig mehr als 1 km entfernt war, verengt sich die Schlucht zusehends und schien bald zur ungangbaren Enge zu werden. Dies bestätigten auch die Kirgisen, auf die wir später trafen.

Unser Weg talaufwärts war ungemein beschwerlich; er führte bald durch das Blockgewirre des Flußbettes, die wilden Fluten querend, bald durch den begleitenden, sehr dichten Uferwald, in dessen herrlichen Fichtenbeständen sich auch zahlreiche Pappeln mischen. Das Gestrüppe des Unterholzes und der Hyppophäendickichte, umherliegende zahlreiche erratische Blöcke von großen Dimensionen, sowie versumpfte Stellen im Walde verwehrten der Karawane oft das Vordringen. Ein nicht hoher, schwellenartiger Knick des Gefälles, der quer über die nun wesentlich zunehmende Breite des Tales läuft, wurde erstiegen und auf eine daran anschließende, rechtsseitige, etwa 20 m über Flußniveau liegende Uferterrasse übergetreten. Das Tal zeigte durchaus den Charakter einer unreifen, jungen Erosionsfurche, deren stadiale Entwicklung durch zwei wohlausgebildete Terrassen charakterisiert ist, von denen die obere um mehr als das Doppelte höher über Flußniveau liegt, während sich in sehr beträchtlicher Höhe weiter im Hintergrund des Tales noch der Verlauf einer dem Beginne des Erosionsprozesses angehörigen, sehr alten Talstufe in ihren erhalten gebliebenen Fragmenten verfolgen läßt, gegen die der Oberlauf des Tales mit bedeutender Steilheit emporzieht. Der nach unten sich wesentlich verringernde Abstand zwischen den einzelnen Terrassenstufen deutet auf größere Fülle der Wasserführung und ihrer längeren Dauer in den älteren Stadien der Erosion, und auf zunehmende Ver-

¹⁾ Vorläufiger Bericht etc. l. c. S. 82.

minderung beider in deu jüngeren. Die drei Stadien, welchen diese drei Terrassen entsprechen, würden in die Vorstellung vom Verlaufe der Glazialgeschichte, wie ich sie (S. 148) skizzierte, gut hineinpassen.

Bei der Wanderung talaufwärts wurde schon bald nach Betreten der Schluchtsohle die Einmüudungsstelle eines sehr viel Wasser führenden Seitenbaches passiert. der, aus SO, kommend, in einem breiteren Tale dahinfloß, offenbar einer der großen Zuflüsse, deren Furchen ich von der Kuppe aus beobachtet hatte. Da sich später kein weiterer bedeutender Nebenfluß von dieser Seite mehr zugesellt, so war es nun klar, daß der andere von oben gesehene Wasserlauf sich mit diesem schon vor der Einmündung in den Hauptbach verbunden hatte, und durch diesen Umstand wurde ich darüber in meiner Unsicherheit einigermassen beruhigt, ob ich mich tatsächlich in demjenigen Tale, das von der zentralen Gletschergruppe herabführt, befände und somit auf dem richtigen Wege zu ihr. Eine vergleichsmäßige Feststellung der Wasserstandsverhältuisse in den anderen Quellflüssen des Da-tun-gu, die mir Gewißheit in dieser Frage hätte verschaffen können, war nicht möglich und die einzige Karte des Gebietes, die von Grum Grschimailo (S. 26 f.) gibt auch nicht eine anuähernde Vorstellung von deu obwaltendeu topographischen Verhältnissen. Der Überblick von der Alpenhöhe hatte mir aber gezeigt, daß die westlicheren Quelltäler den Charakter vorgeschrittener Reife an sich tragen, im Gegenhalt zur Jugendlichkeit der Erosionsrinne desjenigen, in welchem ich mich befand. Auf dieses Verhältnis habe ich schon (Kap. XII S. 96) kurz hiugewieseu und brachte es in Beziehung zu lokalen, jungen Hebungen uud zum Umstande, daß dieser Tallauf dem Streichen der Gesteine folgt, im Gegenhalt zu den audern Quelltäleru, welche quer hiezu laufen. (Hierüber gleich Näheres.) Es wurde mir aber auch klar, daß diese letzteren wohl nur auf dem niedrigeren und daher schwächer vereisten Westkamme ihren Ursprung haben könnten, da sich in ihnen keine sehr kräftige Erosion mehr wirksam zeigte, während das von uns betretene Tal mit seinem bedeuteud erodierendeu, starken Fluß nur in der höchsteu Kaummegion entspringen könne.

Der Fortschritt talaufwärts war bei der Unwegsamkeit des Terrains — die Terrassen sind oft tief zerschnitten — für meine Karawane so schwierig, daß es mir kaum begreiflich schien, wie die Kirgisen durch diese Wildnis ein Durchkommen mit ihreu Herden finden konnteu. Gerade als deshalb von neuem Zweifel in mir aufstiegen, ob ich mich im richtigen Tale befände, sah ich plötzlich, als ich aus der Wildnis des Flußbettes wieder hinauf auf die Terrassenstufe gelangt war, die Jurten der Kirgisen vor mir.

Hier in einer Höhe von 2210 m wurde ein Lager bezogen. Ich traf den Mollah an, der mich, wie erwähnt, schon einige Tage vorher in meinem Lager am Seekloster aufgesucht hatte; er bezeichnete sich als Sary-Mollah, ein Titel, der einen höheren geistlichen Rang bei diesen Kirgisen bedeutet. Solchem Range entsprechend war auch das in uuangenehmer Weise zur Schauge tragene Selbstbewußtsein dieses Mannes. Der Verkehr mit ihm, auf dessen Hilfe ich zur Erlangung von Auskunft über die Verhältnisse beim Weiterweg ins Hochgebirge rechnen mußte, sowie zur Bereitstellung eines wegkundigen Mannes, zur Lieferung von Schafen u. a. m., gestaltete sich daher zunächst recht schwierig. Es bedurfte abwechselnd des Schmeichelns seiner Eitelkeit, der Zusicherung hoher Bezahlung und anderer guter Mittel, schließlich aber auch für den Weigerungsfall der Drohungen mit den Behörden, bis ich endlich meinen Zweck erreichte und mir den ebenso überhebenden, wie habgierigen Mann gefügig machte. Da er bei Versagung seiner Hilfe doch eine schwere

Verantwortung auf sich zu laden fürchtete, willigte er ein, mich selbst bis zur obersten Stufe, zum Fuße des eigentlichen Hochgebirges zu geleiten. Solches Einlenken war für mich von besonderem Werte, da dieser Mann seit mehr als 40 Jahren die Hochtäler der Bogdo-Ola besucht, und daher die Ausnützung seiner Ortskenntnis und Erfahrung für den Erfolg meines Unternehmens entscheidend sein konnte; zumal bei der Schwierigkeit des weiters im Aufstiege zu überschreitenden Terrains, von dem schon die zurückgelegte kurze Strecke einen Vorgeschmack gegeben hatte.

Wo mein Lager hoch am Uferrande über dem tiefeingeschnittenen reißenden Strom stund, hat das Tal ein gutes Stück auf und ab eine wechselnde Breite von 150-180 m und da seine Achse hier annähernd von O. nach W. gerichtet ist, kommt die Kraft der Insolation am südlichen Gehänge zu voller Wirkung. Die Alpenwiesen erschienen dort gelb und ausgedörrt, die Sträucher und Büsche vertrocknet. Da auch der sonst schöne Fichtenwald des andern, nördlichen Talgehänges streckenweise durch Feuer zerstört war (siehe vorher), bot diese Landschaft keinen erfreulichen Anblick, besonders das Südgehänge. Der Unterschied beider Ufergehänge war auch morphologisch besonders auffällig. Der dem S. zugewendete Talwall mit seinem schwachen, lückenhaften Vegetationskleid zeigt in den felsigen Teilen außerordentliche Zerstörung und Anhäufung des Schuttes in situ. Die transportierenden Kräfte fehlen. Die stark abgetragene Kammregion hat stumpfe Formen angenommen. Die nach N. gerichteten Talwände hingegen, durch reichere Pflanzenhülle geschützt, waren von den abtragenden und einebnenden Faktoren weit weniger berührt und hatten scharfe Gratformen bewahrt. Solche Unterschiede kommen in den meisten Längstälern des Tian-Schan zu mehr oder weniger deutlichem Ausdruck, worauf ich des öfteren in meinen Schriften hingewiesen habe. Erfreulicher war der Blick gegen den schroff ansteigenden Talschluß, wo beide Gehänge wieder im Schmucke prächtiger Alpenmatten und reichen Hochwaldes prangten, eine echt alpine Landschaft, wie ich sie hier nicht mehr erwartet hatte.

Allenthalben ergab die Untersuchung des Talgrundes, wo er nicht durch die Tätigkeit des heutigen Flusses ausgeräumt oder mit Geröllen verschüttet war, einen Bestand aus Grundmoräne von sehr bedeutender Mächtigkeit. Auch die beiden unteren Terrassenstufen erwiesen sich als in Moränenablagerungen eingeschnitten; sie sind am linken Ufer bedeutend schmäler als am rechten wegen der Konvexität des linken Talrandes. Die Moränennatur der Terrassen erweist sich allerdings an den Rändern oft stark mit Flußgeröllen vermischt, während darüber stellenweise der Gehängeschutt so dicht gehäuft ist, daß erst beim Überblick von günstiger gelegenen höheren Punkten aus die Verfolgung des Zusammenhangs der Terrassen möglich wurde. Am orographisch rechten Ufer vermochte man sogar streckenweise die Überbleibsel einer hohen alten Ufermoräne deutlich zu erkennen.

Der weitere Weg von diesem Lager talauf gestaltete sich dadurch besonders schwierig, daß der Uferwald von undurchdringlichem Unterholz gesperrt wird, so daß man öfters über das Steilufer mit der Karawane in das Flußbett hinab mußte und sich zwischen einem Chaos von großen Blöcken, durch das die ungestümen Fluten des Bergstromes dahinstürzen, den Weiterweg zu bahnen hatte, wobei es für die beladenen Tiere zu gefährlichen Situationen kam. Bei der Untersuchung des Blockmaterials im Flußbette ließ sich bereits erkennen, daß man höher oben in Bezug auf die geologische Zusammensetzung des Gebirges keine großen Überraschungen zu erwarten hatte. Was man hier unten sah, waren durchweg die gleichen Gesteine, deren Serien wir bisher schon durch-

wandert hatten; nur daß mehr Eruptivgesteine verschiedenartiger Ausbildung (Porphyre, Keratophyre, Diabase etc.) sich zugesellt hatten.

Ich komme hier auf den Umstand zurück, daß dieses Tal ein Längstal ist; es folgt. wie schon vorher und weiterhin, solange es in W.-O.-Richtung verläuft, dem Streichen der Gesteine und zugleich der Achse einer flachen Mulde des großen Faltenbaus, welche gegen O. zu kräftig ansteigt, ein abermaliges Zeichen später lokaler und ungleicher Hebungen im schon gefalteten Gebirgsbau (siehe S. 40, 50, 96 etc.). Hauptsächlich diese tektonische Ursache ist für die große Steilheit dieser Oberlaufsstrecke des Tales, auf die ich bereits S. 155 hingewiesen habe, verantwortlich zu machen. Die Talsohle steigt mit der Muldenachse nach Osten an. Der Fluß hat sich als tiefe enge Rinne in die Schichten eingeschnitten. Das Gehänge zu beiden Seiten ist sehr schroff geböscht und wird von wasserreichen Seitenbächen durchfurcht, die steil in den Hauptbach einmünden, alles Anzeichen einer unreifen Talbildung. Das reiche Pflanzenkleid, welches beide Talwände bedeckt, läßt nur in den obersten Teilen einige geologische Orientierung zu, welche Gelegenheit gibt, wahrzunehmen, daß dort, wo die Gesteine aus der Muldenachse sich gegen S. wieder umbiegen, die für die junge Entstehung des Gebirges charakteristischen, öfters erwähnten, heftigen Knickungen und Zerrungen (siehe S. 45 f., 50, 149 etc.) auftreten, verbunden mit starker Gesteinszerstörung, deren massenhafter Schutt die Verfolgung der Lagerungsverhältnisse sehr erschwert. Die Klüftung aber, die sehr deutlich ausgeprägt erscheint, ist nahezu vertikal gerichtet.

Das Gefälle des Flußbettes nimmt an Steilheit nach oben immer mehr zu bis die Talfurche bei der Annäherung an die Störungszone plötzlich aus der WO.-Richtung, also aus dem Streichen der Muldenachse (Längstalrichtung) talaufwärts betrachtet, beiläufig in die SO.-Richtung (Quertalrichtung) übergeht (siehe Karte II). Unmittelbar an dieser Stelle beginnt auch das Gefälle des Flußbettes sofort abzunehmen, und wird rasch ein sanfteres, wobei die Breite des Tales zugleich wesentlich wächst. Auf Taf. 7 Fig. 2 sind diese Verhältnisse einigermaßen erkennbar; der Bruch des Gefälles, wo die Verschiebung der Talachse beginnt, ist aus dem schematischen Höhenprofil in Taf. 16 Fig. 2 zum Ausdruck gebracht.

Die Zusammenfassung dieser Erscheinungen mit früher erwähnten spricht für lokale junge Hebung und Verbiegung. Man darf annehmen, daß durch die erwähnten ungleichartigen Hebungsbewegungen der alte Fluß in seiner früheren Richtung unterbrochen und in eine andere dem Bau der Mulde folgende abgelenkt wurde, so daß eine spät einsetzende junge Erosiou jetzt den Schichtenbau in schiefer Richtung schneidet, wodurch anch die Veränderung des Gefällwinkels erklärlich wird. Je höher wir ansteigen, desto flacher wird das Gefälle, desto mehr nimmt die Breite des Tales zu und seine Tiefe ab, desto stumpfer werden die Ränder, also auffällige Veränderung gegenüber dem schluchtartigen Charakter des jungen, tektouischen Talabschnittes, eine Deformation der ursprünglichen Talanlage andeutend, wobei der oberste Talabschnitt wohl schon in dem gehobenen — möglicherweise noch immer in langsamer Hebung begriffenen — Schollenteil eingetieft gewesen ist, also einer antezedenten Flußrinne entspricht, die vom Wasser wieder aufgesucht wurde.

Auch im Landschaftsbild tritt der Unterschied beider Talabschnitte sehr deutlich hervor: Soweit der schluchtförmig verengte Längstallauf geht, hat die gegenseitige Beschattung der Talränder zur Folge, daß beide Steilgehänge mit überaus prächtigen alpinen Matten bekleidet sind, auf denen eine schöne Flora in Blüte war, von vorherrschend violetter

Färbung (Geranium, Delphinium, Aconitum etc.), mit Buschwerk von Wildrosen, Weiden und Berberis, deren helles Grün in schönem Gegensatz zu dem Dunkel der noch immer sehr ansehnlichen Fichtengruppen stand. Sobald man jedoch in der breiten, im Sinne des Aufstiegs nach SO. gerichteten Talrinne eingebogen ist, verschwindet der Baumwuchs plötzlich, das Alpengras wird kurz, an Stelle der schönen Flora breiten sich niedere, am Boden kriechende Thujakolonien. Flacher und breiter wird das Tal, felsige Berge treten beiderseits in das Gesichtsfeld und allmählich landen wir auf einem sanft gegen S. ansteigenden, aber tief und unregelmäßig gewellten, weiten grünen Boden. Wir erblicken zunächst nur die firnumhüllten Gipfel des Westzweiges der Bogdo-Ola, während uns die höchste Gruppe durch den früher (S. S2) beschriebenen vorgelagerten Querzug noch verdeckt wird. Somit haben wir die auf dem schematischen Höhenprofil Taf. 16 Fig. 2 dargestellte höchste Schwelle der dritten Gebirgsstufe betreten, die ich in Kap. XI (S. S1 f.) schon so eingehend beschrieben habe, daß ich mich hier auf Anführung einiger ergänzender Beobachtungen beschränken kann.

Der weite Zirkusboden - als solchen kann man diese große Hohlform mit Recht bezeichnen — hat eine mittlere Höhe von 3300 m und die ihn rechts und links im O. und W. begrenzenden Ränder überragen ihn durchschnittlich um 600 m; sie sind in eine Anzahl stumpfpyramidaler Gipfel zerlegt, deren Höhe mit der Annäherung zu der die Hohlform im S. abschließenden ungeheuren Steilwand der zentralen Bogdo-Ola (siehe Taf. 4 Fig. 1) immer mehr zunimmt (S. S5), welche ihrerseits um mehr als 3000 m überthront. Breite Firnhauben krönen alle Gipfel der Seitenränder. Die gegen den Zirkusboden gewendeten Steilabstürze dieser Ränder lassen hier im zentralsten Gebiete in Übereinstimmung mit der Achsenrichtung des Hauptkamms ONO.-Streichen der Schichten erkennen. Im geologischen Bau (siehe Taf. 17 Profil IV) zeigt sich die allmähliche Umbiegung der Schichten aus flacher Muldenanlage zu einem Sattel mit Einfallen nach N., das zuerst schwach, aber mit Fortschreiten gegen S. hin zusehends steiler wird, bis der Schichtenbau in der höchsten dreigipfeligen Riesenwand der Bogdo-Ola nahezu senkrecht, ja etwas überkippt erscheint (S. 39). Gerade dort sind die Verhältnisse jedoch teils infolge der starken Einhüllung mit Firn und Eis, andernteils wegen der starken Zerschluchtung der Wandabstürze und nicht weniger durch die Mengen kriechenden Schuttes in der Störungszone, vor allem auch durch Akkumulation außerordentlich mächtiger Glazialablagerungen leider wenig übersichtlich. Man kann aber doch auch hier an einzelnen Stellen wieder heftige Störungen im allgemeinen Bau, Knickungen, Knitterungen, Stauchungen gewahren, sowie ein Durchdringen der alten, bereits umgewandelten Eruptivgesteine, welche Glieder des Faltenbaus bilden, durch noch jüngeres magmatisches Material. Solche Verhältnisse und das plötzliche Ansteigen zur höchsten Sattelfalte stehen im guten Einklang mit der Annahme später Niveauverschiebungen, wie ich sie des öfteren in den vorhergehenden Kapiteln vertreten habe. Indessen will ich diese Aneinanderreihung tatsächlicher Beobachtungen nicht mehr, als zur Erweisung ihres Zusammenhangs nötig ist, mit theoretischen Erörterungen belasten und verweise in dieser Hinsicht nochmal auf Gröbers Ansichten, die er in Kap. XVIII niedergelegt hat und auf die petrographische Beschreibung des gesammelten Materials durch Glungler in Kap. XIX.

Die Umgebung, in der wir uns befanden, erweckt, wie schon gesagt, den Eindruck eines riesigen Zirkus, in dessen Ränder sich zahlreiche Hohlformen jüngerer Entstehung

sowie von verschiedenartiger Ausbilduug eingetieft findeu uud von mehr oder weniger karähnlicher Gestalt (siehe die Panoramen). Der mächtigste der diluvialen Bogdo-Ola-Gletscher nahm ebenso wie der heutige am Südrande dieses großen Zirkus seinen Ursprung; die anderen heutigen Gletscher wurzeln in kleinen, nicht sehr tiefen Hochmulden in dem östlichen und westlichen Raud. Die Erstreckung des Bodens der großen Hohlform von N. nach S. beträgt bis zum Fuße des mehrerwähnten, dem zentralen Wandabsturze vorgelagerten Querzuges, also so weit der Boden heute unvergletschert ist, ca. 5 km, seine durchschnittliche Breite 21/2 km; er steigt von 3200 m bei der Gefällsknickung am nördlichen Rande bis zu 3600 m an, ist jedoch von außerordentlicher Unregelmäßigkeit, was durch seine glaziale Vergangenheit erklärlich wird. Man kann ihn als ein Schulbeispiel alter Grundmoränenlandschaft bezeichnen. Von den zu einer solchen gehörigen Erscheinungeu fehlt wohl keine: Drumlins, Riesenblöcke etc., auch die kleinen Seen nicht. Alles weist darauf hin, daß die Mächtigkeit der Grundmoränenablagerungen eine außerordentliche ist, wenngleich es an Gelegenheit mangelt, ihren Betrag festzustellen, da die jetzigen aus den nicht unbedeutenden Gletschern der Umrandung abfließenden Wasserläufe (siehe S. 96) in dieser Akkumulation lockeren Aufbreitungsmaterials nur flache Rinnen von unregelmäßigem. wechselndem Verlauf eintieften und der größere Teil der Schmelzwasser versickernd, diese Glazialschuttdecke durchtränkt und total versumpft hat. Es ist anzunehmen, daß die Gewässer am N.-Rande des Zirkusbodens sich in präexistenten Rinnen sammeln und die sehr starken Bäche dort alimentieren, worauf ich bereits früher wiederholt hingewiesen habe.

Der Boden dieser Riesennische ist mit einem lockeren Vegetationskleide bedeckt, hauptsächlich und besonders an allen tiefer gelegenen Stelleu aus Gräseru und Pflanzenformen der Sumpfflora zusammeugesetzt, wie dies in Kap. XIII näher geschildert wurde. Die Versumpfung der Oberfläche ist so stark, daß es für meine Karawane ungemein schwierig war, sich einen Weg darüber zu bahnen und nicht weniger schwierig, eineu trockenen Lagerplatz ausfindig zu machen. Es ging hiebei auch nicht ohne Unfall ab. Nur die höchsten Anschwellungen des Bodens, die Decken der Drumlins bieten hiezu trockene, aber sehr unregelmäßig geformte Stellen. Auf einer solchen wurde das Hochlager in 3435 m Meereshöhe aufgeschlagen. Es ist bezeichneud für die hier stattfindeude außerordentliche Akkumulation und Aufbreitung von feinem lockeren Glazialmaterial, das zum Teil wohl auch aus der Ausspülung der am Fuß der Umrandung einen Gürtel bildenden Moränenzüge herstammt, daß iu diese Decke das daraufliegende Blockmaterial häufig tief eingesunken ist und wo es eine bestimmte reihenweise Richtung einhält, folgen solchen eingesunkenen Blockbetten auch die Wasserläufe, indem sie meistens unter den Blöcken dahinfließen. Begeht mau die Unvorsichtigkeit, um ein leichteres Fortkommen auf dem widerstandsschwachen Boden zu finden, solche Blöcke zu betreten, so sinkt man samt den Felstrümmern bis zum Knie und darüber ein. Nach allen Seiten verzweigen sich diese unterirdischen Wasseradern und sammeln sich allmählich, dem allgemeinen Gefälle folgend, in eine Nordrichtung.

Nirgendwo sah ich auf einer zusammenhängenden Grundmoränendecke eine ähnliche Mannigfaltigkeit der Anhäufung von kleineren Stirn- und Ufermoränenwällen der alten Seitengletscher, teils völlig, teils nur iu einzelnen ihrer Teile erhalten; sie wurden uach dem Zurücktreten des mächtigen, den Zirkusboden einst völlig verhüllenden, großen Gletschers und nach seiner Ablenkung durch den querenden Riegel (S. 82) von den einmündenden

kleineren Gletschern der Umrandung bei ihren letzten Vorstößen gebildet und auf dem alten Grundmoränenboden abgelagert. Dies verleiht dem Bodenrelief der großartigen Hohlform eine besondere Unregelmäßigkeit. Von einzelnen der heute weit zurückgegangenen Seitengletscher (siehe S. 86) sind als Zeugen von eingeschalteten längeren Pausen in der Periode des Rückzuges mehrere hintereinanderliegende Stirnmoränen erhalten geblieben.

Durch solch unwegsames Terrain von versumpften, aus Glazialschutt gebildeten Bodenanschwellungen und dazwischen liegenden stagnierenden Wasseransammlungen vermochte ich mir nur in früher Morgenstunde, so lang alles fest gefroren war, den Weg zu bahnen, um zur Wasserscheide, zum Passe Gurban-bogdo zu gelangen, der für den Übergang nach S. geprüft werden sollte. Ich hatte angenommen, die wasserscheidende Linie ziehe über den außerordentlich tiefen Einschnitt im Kammgerüste, der die zentrale Bogdo-Ola-Wand von der westlichen Fortsetzung der Kette trennt (siehe S. 37, 89, 101), jener tiefen Depression, die in allen hier beigegebenen Panoramen besonders gut ausgeprägt erscheint. So erwartete ich also eine Kammwasserscheide, genauer gesagt einen Schartenpaß zu finden. Mein Erstaunen war daher nicht gering als ich, eine Moränenwelle um die andere überschreitend, mich plötzlich auf einer besonders hohen dieser Glazialschuttanhäufungen befand, die durch das Zusammenstoßen einer älteren Ufermoräne des Grum Grschimailo-Gletschers mit der alten Stirnmoräne eines von einem Gipfel im W.-Rande abfließenden Gletschers entstanden war und hier wahrnehmen konnte, daß ich mich nun schon auf der Höhe der Wasserscheide befand. Der Kammeinschnitt aber lag noch weiter im S. vor mir und schon unter meinem Standpunkt. Ich hatte es also mit einer sehr jugendlichen Wasserscheide zu tun, einer sekundären Bildung, die lediglich der Akkumulation von Glazialschutt ihre Entstehung verdankt, einem "glazialen Aufschüttungspaß oder aufgeschütteten Eisrandpaß" im Sinne der Sölchschen Klassifikation. 1) Eine in ihrem unausgeglichenen Stufenlauf alle Kennzeichen der Jugendlichkeit an sich tragende, auf S. 82 f. und 101 f. eingehend beschriebene Talrinne von zur Schau getragener glazialer Einwirkung führt zwischen Grum Grschimailo-Gletscher und dem Hauptgletscher des Pik Schokalsky, unmittelbar anschließend an die Moränenhöhe, hinab zur tiefen Depression des Hauptkammes (siehe Karte II u. III), der im übrigen in seinem ganzen Lauf die Rolle der Hauptwasserscheide bewahrt. Dieser hohe sattelförmige Moränenwall tritt in enge Verbindung mit jenem, dem Grum Grschimailo-Gletscher im N. vorgelagerten felsigen Querzug (siehe S. 82 f., 167) und sperrt auf solche Weise den Zirkusboden in seiner ganzen Breite derart gegen S. ab, daß einerseits alle Gewässer von hier ab teils oberirdisch, teils unterirdisch nach Norden fließen und anderseits nur, was aus den Gletschern am Südabhang dieses Querzuges entströmt, der Südseite zu Gute kommt. Dieser verbauende Moränendamm ist wenigstens teilweise auf den Abbildungen Taf. 1 und Taf. 7 Fig. 9 sichtbar. Die Wasserscheide befindet sich demnach in beträchtlicher Entfernung nördlich vom eigentlichen Hauptkamme und liegt sogar noch etwas hinter dem Querriegel; sie kann aber nach meinen früheren Ausführungen (S. 82 f.) erst nach dem letzten und endgültigen Eisrückzug entstanden sein.

Es ist eine immerhin bemerkenswerte Tatsache, daß die einzige Möglichkeit, das

¹⁾ J. Sölch, Studien über Gebirgspässe in Forschungen zur Deutschen Landes- und Volkskunde. Stuttgart 1908, S. 249, 261, 264.

Abh. d. math.-phys. Kl. XXVII, 5. Abh.

zentrale Bogdo-Ola-Gebiet zu überschreiten (siehe S. 101), durch einen so jugendlichen glazialen Aufschüttungspaß geboten wird. Ich habe früher (S. 82 f.) darauf hingewiesen, daß zur Zeit des Hochstandes der diluvialen Vereisung der größte Bogdo-Ola-Gletscher, von dem der heutige Grum Grschimailo-Gletscher nur ein geringes Überbleibsel ist, über den hohen N.-Rand seines heutigen Bettes, dem vorgelagerten felsigen Querzug hinweg, nach N. floß, was natürlich durch einen langen Zeitraum angedauert haben muß, weil sonst die außerordentliche Mächtigkeit der den Bogdo-Ola-See abdämmenden Stirnmoräne nicht erklärlich wäre (S. 154 f.), ebensowenig wie andere bereits beleuchtete glaziale Züge im morphologischen Charakter und im Laudschaftsbilde des Nordabhangs. Zu jener Zeit als der größere Teil der Eismassen des Nordabhangs über dem Querriegel hinweg noch einen nördlichen Abfluß nahm, ein anderer Teil einen südlichen, muß also die Wasserscheide auf dem Eise selbst gelegen haben, das über den Riegel hinweg eine Wölbung bildete. Erst nach dem endgültigen Schwinden des Eishochstandes, also nach dem Ablauf der diluvialen Vereisung, bildete sich infolge später Schwankungen des Eisstandes der erwähnten Seitengletscher eine neue glaziale Schuttakkumulation auf der Decke der diluvialen Grundmoräne und verursachte so die heutige Wasserscheide. Der Paß gehört demnach einer sehr jungen Vergangenheit an. Als feststehend kann also angenommen werden, daß während der Dauer des diluvialen Eishochstandes ein beträchtlicher Teil der ungeheuren, am N.-Rand gebildeten Eismassen durch die große, öfters besprochene tiefste Lücke, welche das höchste Kammgerüste zerteilt, nach S. abgeflossen ist. (Transfluenz im Sinne Pencks.) 1) Sowohl die Gestalt dieser Lücke, als die der steilen Talränder des nach S. hinabziehenden Gurbanbogdo-Tales, wie ich es S. 82 f. und S 101 f. beschrieben habe, die Trogform dieses Tales, die totale Abschleifung seiner Ränder in Rundhöckerform vom Fuße bis zur Scheitelhöhe (siehe Taf. 10 und 11), die Stufen, Seen, Nischen weisen mit Sicherheit auf den großen Anteil hin, den Gletschertätigkeit an der Ausgestaltung dieser Talfurche hat, sowie an der Vertiefung der Lücke selbst. Nach dem orographischen Bilde des Gebirges kann ein sehr großer Teil dieses Gletschereises nur von dem Nordabfall der höchsteu zentralen Wanderhebung herabgekommen sein.

Man muß bei Betrachtung dieser Verhältnisse nun die Frage aufwerfen, auf welche Weise die außerordentlich tiefe Schartung im höchsten Kammgerüste der Bodgo-Ola zustaude kam, der breschenförmige Einschnitt, wie er sowohl im schematischen Profil der vertikalen Gliederung (Taf. 16 Fig. 1) ausgedrückt ist, als aus den Panoramen ersichtlich wird. Es handelt sich hier um ein plötzliches Absinken der Kammlinie von 6500 zu 3645 m. Da die letztgenannte Cote sich aber nur auf die heutige, in jugendlichen Aufschüttungen liegende Paßhöhe bezieht, wie dies eben erörtert wurde, und der Kammeinschnitt in dem Felsgerüste noch ca. 200 m tiefer liegt, so kommt hier sogar ein Wert der Kammdepression von über 3000 m in Betracht. Wie bedeutend man nun auch die Kraft glazialer Erosion einschätzen mag, eine Frage, auf deren theoretische Erörterung ich mich in diesem Berichte nicht eiulassen will, so wird man doch selbst in dem Falle, daß man der Erosion des Gletschereises die Entstehung gewisser Kammdepressionen zuschreibt (Glaziale Destruktionspässe nach Sölch)²). eine Erscheinung von dem selten vorkommenden Ausmaße des Gurbanbogdo-Passes — im weiteren Sinne auf die eigentliche Kammlücke ausgedehnt — kaum

¹⁾ Alpen im Eiszeitalter, S. 812.

auf solche Ursachen zurückzuführen geneigt sein. Anderseits muß man aber zweifellos so bedeutenden Eismassen, wie sie durch diese Lücke sich hindurchbewegt haben, ein tiefes Einschneiden in ein stark zugeschärftes Kammstück schon zutrauen und glazialer Tätigkeit wenigstens einen großen Anteil an ihrer Ausgestaltung unbedenklich zubilligen können, unter der Voraussetzung, daß präglaziale Eintiefung an jener Stelle vorhanden war oder leicht zerstörbares Gestein die erodierende glaziale Tätigkeit erleichterte. Alle diese Faktoren, erodierende und abtragende Kräfte, reichen aber meines Erachtens doch nicht aus, um eine Kammdepression im Betrage von mehr als 3000 m erklärlich zu machen, wenn wir uns den diluvialen Hochstand des Eises nicht in einer aller Wahrscheinlichkeit widersprechenden Höhe vorstellen wollten.

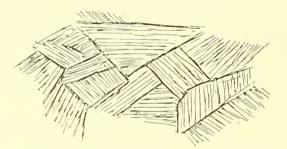
Scharfer Wechsel in den Gesteinsschichten und infolge hievon Herauswittern 'und Ausräumen der zwischeu härteren Gesteinspartien eingeschlossenen besonders weichen, oder etwa Zertrümmerung spröder Einschlüsse kann bei dem homogenen, geschlossenen, von N. nach S. gefalteten Bau des Gebirges, wie er in Kap. VI und XX1) geschildert wurde, ebenfalls kaum in Betracht kommen, um die Eutstehung einer so gewaltigen Bresche zu erklären. Als weit wahrscheinlicher darf die Möglichkeit gelten, daß durch Druckvorgänge bei sehr jugendlichen Hebungsprozessen einzelne Gesteinszonen bis zu feinster Schieferstruktur verpreßt wurden —, wofür ich einige lehrreiche Beispiele aus der Hochregion auführen werde — und unter besonderen Bedingungen später in sich zusammengestürzt sind und ausgeräumt wurden. Senkrechtes Einschneiden in den Gipfelbau, erleichtert infolge vertikaler Klüftung, kann deshalb nicht als Ursache für die Bildung der Gurban-bogdo-Lücke herangezogen werden, weil gerade in der höchsten Kammregion, wo die Schichtenstellung ohnedem eine nahezu saigere ist, die Klüftung kaum ausgeprägt erscheint und somit Zerstörung und Abtragung nicht unterstützen konnte. Ebenso können tektonische Ursachen, wie Verwerfung, beim Auffaltungsprozeß insoferne nicht mit Sicherheit verantwortlich für diese Bildung gemacht werden, als im allgemeinen in den das eigentliche Paßtal begrenzenden beiden Steilrändern einseitige Unterschiede des geologischen Baues nicht erkennbar sind. Es ist aber dennoch nicht als ausgeschlossen anzusehen, daß es infolge sehr junger Bewegungen und Verschiebungen gegeneinander in der höchsten Kammregion dort zu tiefgreifender Gesteinszerrüttung kam und es wäre wohl auch anzunehmen, daß eine Einsenkung von schartenartiger Form schon früher entstanden sei (siehe oben) und durch die spätesten Krustenbewegungen wesentlich vertieft, endlich durch starkes Eingreifen großer Eismassen weiter ausgestaltet wurde.

Als ein wichtiges Merkmal hiefür ist die auffällige, stufenförmige Zerschneidung der unteren Teile der gewaltigen Westwand des westlichsten der drei Hauptgipfel zu erwähnen, dessen Wandabsturz zur östlichen Umwallung des Paßtales gehört. Dieser stufenförmige Abfall ist deutlich in Taf. 4 Fig. 2, auch einigermaßen in Panorama Taf. 2 zum Ausdruck gekommen. Ich habe diese Stelle an der Westflanke des zentralen Massivs mehrmals umgangen und in die von nahezu senkrechten Wänden begrenzten ungeheuren spaltenartigen

¹⁾ Wie im Verlaufe des Lesens der Korrekturen leider erst jetzt festgestellt wurde, hatte sich in der Numerierung der Kapitel ein Irrtum eingeschlichen. Infolgedessen wurde bisher auf dem geologischtektonischen Beitrag von Dr. Gröber als Kap. XVIII verwiesen, während es Kap. XX heißen sollte. Ebenso wurde auf dem petrographischen Beitrag Dr. Glunglers als Kap. XIX verwiesen, während es Kap. XXI heißen sollte.

Lücken hineingeblickt, durch welche die einzelneu Riesenklippen des Westabfalles der zentralen Gruppe voneiuander getrennt werden, wobei ich keine Anzeichen dafür finden konnte, daß diese, so bedeutende Dimensionen annehmende Zerschneidung der Felsmassen durch Erosion des Wassers entstanden sein könnte. Wenn die Homogeuität der Gesteinsmassen und die saigere Schichtenstellung einen direkten tektonischen Nachweis auch nicht gestatten, so ist der Gedanke an späte Bruchbewegungen oder Erneuerung von solchen verbunden mit Absinken als Ursache für die Entstehung der tiefen Paßlücke schon deshalb nicht von der Hand zu weisen, weil ja bereits nachgewiesen wurde (S. 103), daß der untere Teil des Gurban-bogdo-Tales einem Querbruch folgt, dessen Achse in der Richtung gegen die tiefe Schartung liegt. Auch trägt der Oberlauf des Tales, also gerade der vom Paß nach S. hinabziehende Teil, wie dies aus den früheren Schilderungen hervorgeht, alle Kennzeichen einer sehr jugendlichen Bildung an sich, die man berechtigt ist, in enge Beziehung zu jungeu Niveauveräuderungen iu der zeutralen Kammregion zu bringen. Ich muß mich begnügen auf alle diese Möglichkeiten hinzuweisen, ohne eine vollgültig beweisende Erklärung für eiue so seltene Erscheinung, wie sie uns in dieser ungewöhnlich tiefeu Bresche vor Augen tritt, geben zu können.

Entsprecheud der wichtigen Rolle, welche dem Gurban-bogdo-Paß in der Gliederung dieses Gebirges zukommt, vermittelt er Übergänge nach mehreren Seiteu; allerdings keiue solchen, welche leicht genug siud, um ihre Ausbildung zu Verkehrswegen zu ermöglichen. Der mich begleitende kirgisische Mollah machte mir hierüber eingehende Mitteilungen (siehe Karte II). Diesen zufolge kann man durch eineu Eiuschnitt in dem den obersten Talboden im W. begreuzenden Gebirgsrand schwierig auf die hochgelegene oberste Stufe eines Nebentales des Da-tun-gu und von dort, ohne weiteren besonderen Terrainhindernissen zu begegnen, über begrünte, sanfte Kämme in das Tal Schimo-gu, sowie durch dieses nach Urumtschi oder Foŭkan gelangen. Ebenfalls von der Hochstufe unterhalb des Passes gelangt man in der Richtung nach O., dann SO. über den wasserscheidendeu Kamm in das obere Dön-chon-dse, dieses querend zu dem Ausläufer eines felsigen Rückens, der es von einem Nebentale des Du-dun-dse-Tales trennt. Über diesen Scheiderücken soll ein schwieriger Übergang in den letztgenaunten Talzweig führen; weiter in der Richtung nach SO, gelangt man nach Übersteigung eines anderen hohen Zwischenkammes in das Tal Er-dao-cho. Diesem abwärts, über seine Mündung hinaus folgend, erreicht man die uördliche Kaiserstraße, welche zur Stadt Gutschen führt. Leichter und ratsamer, sagte mir der Mollah, sei aber eiu Übergang in das Dön-chon-dse-Tal, wenn man weit mehr im N., schon unterhalb des Nordrandes der obersten Talstufe, dem Laufe eines vou O. eiumündendeu Seitentales des Da-tun-gu einige Kilometer weit auf sehr steilem Terrain aufwärts folge, uud dann eineu der allerdings nicht sehr leicht passierbaren, aber doch auch für Lasttiere geeigneteu Paseinschnitte über die trennende Zwischenkette wähle. Für diesen Weg, dessen Verlauf in Karte II eingetragen wurde, entschied sich Gröber, als er sich mit einem Teil der Leute und Pferde am 10. August von mir trennte, um die Erforschung der Täler des Angaragebirges fortzusetzen. Der dritte Übergang ist der nach S. in das Tal Gurban-bogdo, von dem ich schon in Kap. XI und XII eingehend berichtet habe. Auch über die botanischeu Beobachtungen auf diesem Wege wurde in Kap. XIII das Wichtigste mitgeteilt, weshalb ich mich nun darauf beschränken kann, weitere morphologische Erscheinungen, die sich in der Hochregion boteu, näher zu erörtern.


Während mein Reisegefährte seinen geologischen Untersuchungen im tiefer gelegenen Vorlande uachging, war es meine Aufgabe, die höchsten Regionen insbesondere ihre heutige Eisbedeckung und die Ausdehnung der früheren zu erkunden, sowie das Material für die topographische Festlegung des Hochgebirges zu gewinnen. Allerdings wurde auch mein alpiner Ehrgeiz angesichts der großartigeu Formen der zentralen Gruppe mächtig angeregt, einen Versuch zur Bezwingung eines ihrer höchsten Gipfel zu unternehmen. Bei näherem und sorgfältigem Studium der Waudabstürze und der zur kulminierenden Region hinziehenden Kämme aber, die mir hinsichtlich der Steilheit und Zerklüftung des Firnes und besonders über die außerordentliche Lawiuengefährlichkeit der Firnhäuge (S. 81) keinen Zweifel ließ, kam ich auf Grund meiner reichen alpinen Erfahrung zu dem Ergebnis, daß ein solches Unternehmeu ein Waguis sei, das wenig Aussicht auf Erfolg biete; wenigstens insoweit es sich um einen Angriff auf die N.-Wände, sowie auf den westlichen oder östlichen Abfall des Zentralmassivs handelt. Ob dessen Südseite günstigere Möglichkeiten biete, ließ sich damals noch nicht feststellen. Immerhin möchte ich dieses ungünstige Urteil nicht in jeglichem Sinne aufrecht erhalten. Ich will es durchaus nicht als ausgeschlossen ansehen, daß es einigen Auserwählten aus den Besten der Bergsteigergilde gelingen würde, auch diese wundervollen Hochgipfel zu bezwingen, wenn sie die ohnehin hier recht kurze Dauer des Hochgebirgssommers ausschließlich dazu benützen könnten, alle verschiedene Möglichkeiten auszuprobieren, um einen Zugang zu dem kröuenden Hochkamm ausfindig zu machen. Auf diesem selbst scheinen sich keine besonderen Hindernisse mehr zu bieteu. Voraussetzung für ein derartiges Unternehmen bliebe aber die Sicherung der Verproviantierung auf etwa sechs Wochen für die Bergsteiger und für ihre Begleitmannschaft. Wie aber dieses Problem zu lösen sei, vermöchte ich nach den von mir gemachten Erfahrungen nicht anzugeben, da mir ein Aufenthalt von kaum der Hälfte dieser Zeit in der Hochgebirgszone in Bezug hierauf schon nicht geringe Schwierigkeiten bereitete.

Nachdem ich durch solche Feststellungen mein alpines Gewissen beruhigt hatte, handelte es sich für mich darum. andere weniger hoch gelegene und nicht zu schwer erreichbare Punkte ausfindig zu machen, die lehrreichen Einblick in den Bau des Gebirges und den besten Überblick über die Formen der zentralen Gruppe sowie Ausblick auf ihre Fortsetzungen nach O. und W. bieten könnten.

Ein besonders auffälliges Glied im Relief der Hochregion, der dem zentraleu Wandabsturz vorgelagerte eigentümliche Querzug, auf dessen besondere Rolle in der Glazialgeschichte der Bogdo-Ola ich mehrmals hinzuweisen hatte und dessen Form besonders anschaulich im Panorama Taf. I erscheint, war natürlich in erster Linie Gegenstand meiner Untersuchung. Da er sich (siehe Karte II) als eine Abzweigung der östlichen Umrandung des großen Zirkus erweist, die sich ihrerseits nahe dem Ostabfall des zentralen Gipfelgerüstes von diesem abspaltet, mußte dort, wo die Scharung der drei Züge stattfindet, die lehrreichste Übersicht zu erwarten sein, um so mehr, als der östliche Zirkusrand dort auch seine höchste Höhe erreicht (S. 85, 167). Man durfte voraussetzen, dorten auch das zu Füßen des zentralen Wandabsturzes gebreitete große Gletscherfeld, den Grum Grschimailo-Gletscher (S. 81 f.), in seiner ganzen Ausdehnung und mit allen seinen Verzweigungen überblicken zu können, was schon wenig im N. hievon durch den Querzug selber noch verwehrt wird. Die Ersteigung einer der in der Scharungszone aufragenden, stumpf pyramidenfömigen,

vergletscherten Kammanschwellungen, deren Erreichung keine sonderlichen Schwierigkeiten im Wege zu stehen schienen, wurde daher von mir zunächst geplant.

Da im steilfelsigen Absturz des östlichen Zirkusrandes, wie S. 167 hervorgehoben, die Umbiegung des Schichtenkomplexes zur höchsten Sattelfalte gut erschlossen ist, mußte ein Aufstieg über ihn durch den ganzen Komplex der Schichtenfolge führen und Gelegenheit geben, eine vollständige Sammlung von Handstücken aus ihr zu schlagen (siehe Kap. XX). Ich beschloß daher über diese Felswand emporzusteigen, um so die Kammhöhe zu gewinnen, ihr alsdann so weit als möglich nach S. zu folgen, wobei ich schließlich, da der Schichtenbau sich je mehr nach dieser Richtung desto steiler aufrichtet, in die Zone der ausstreichenden Schichtenglieder gelangen und über ihre Köpfe hinwegschreiten mußte. Diesen Vorsatz führte ich am 13. August durch, ohne auf meinem Wege bedeutende Hindernisse zu finden. Die Folge von Gesteinsproben wurde geschlagen, der Kamm erreicht und gegen S. und dann in Richtung SSO. begangen. Gerade dort aber, wo sich besonders interessante Aufschlüsse erwarten ließen, mit ansteigender Höhe im S., breitete sich eine immer dichter werdende Firndecke über die flächenartig verebnete Kammhöhe und verdeckte die ausstreichenden Schichtenköpfe. Da die Firndecke aber weit mehr aut das gegen N. und O. gerichtete Gehänge beschränkt bleibt (siehe Taf. 4 Fig. 1), so glückte es mir durch Ausweichen gegen das westliche Gehänge wenigstens auf einige Aufschlüsse von besonderem Werte zu stoßen.

In feinste Schieferform gepreßtes und ineinander geschobenes Eruptivgestein.

Hier traf ich auf eine ausstreichende Zone von etwa 100 m Mächtigkeit, bestehend aus dunklen, fast schwarzen Schiefern, welche ich auf den ersten Blick für dynamometamorphe Tonschiefer zu halten geneigt war. Die Schieferung war so fein, daß die Lamellen oft nur die Stärke des feinsten Papiers erreichten; sie erschienen bündelweise kreuz und quer ineinander geschoben, wie dies in nebenstehender Zeichnung angedeutet ist. An manchen Stellen waren die Lamellen auch durch senkrecht zur Schieferung gehende Klüftung in feiuste Nädelchen zerlegt. In Panorama Taf. 1 sieht man links am Abhang des überfirnten Plateaus ähnliche Bildungen den Firnschnee durchbrechen. Bei der petrographischen Untersuchung dieser gebrechlichen Gebilde stellte es sich heraus, daß es sich hier nicht um Tonschiefer handelt, sondern um eingeschaltete Ergußgesteine, die durch den Gebirgsdruck in der beschriebenen eigenartigen Weise verpreßt waren. Es scheint sich um Gänge zu handeln, welche in verhältnismäßig junger Zeit die schon umgewandelten Glieder des alten, durch Störungen aufs neue zerrütteten Schichtenbaus durch-

drungen haben (S. 167), demnach wohl zur Zeit der letzten Phasen größerer Gebirgsbewegungen, welchen die heutige Gestalt der Bogdo-Ola zu verdanken ist. Hiebei mag aus verschiedenen Richtungen gekommener Druck, wie in Kapitel VI (S. 48) auseinandergesetzt wurde, stark verpressend auf das aufgestiegene aber schon erstarrte Magma gewirkt haben. Ich bin auf solche eigenartige Gebilde nur in diesem nördlichen Teile der Kammregion gestoßen. In den südlicheren Teilen traf ich sie nicht mehr, trotzdem gerade dort an der Zusammensetzung der höchsten Teile des Gebirges jüngere Erguß- und Ganggesteine den größten Anteil haben (siehe Kap. VIII S. 59, sowie Kap. XXI)¹). Die letzten Bewegungsvorgänge scheinen demnach im Norden besonders kompliziert gewesen zu sein, worauf schon die öfters erwähnten Verbiegungen an den Stufen hindeuten (S. 39 f., 56, 96, 166).

Der Umstand, daß das Auftreten einer mächtigen Zone von Ganggesteinen, die so außerordentliche Zeichen der Verpressung, Umwandlung und Zerstörung zeigen, auf diesen Teil des Gebirges beschränkt bleibt, legte den Gedanken nahe, daß die zum sonstigen orographischen Bau des Gebirges so wenig passende Erscheinung des zu meinen Füßen gelegenen longitudinalen Gletschertales, das zwischen dem hohen nördlichen Wandabsturz der zentralen Gruppe und dem ihr vorgelagerten, quer über den großen Zirkusboden streichenden Riegel eingetieft ist, hiemit in Zusammenhang gebracht werden könne. Ich wurde in dieser Ansicht bestärkt durch den Umstand, daß die Erstreckungsrichtung dieses Riegels annähernd dem allgemeinen Streichen der Schichten folgt und daß er aus einer Zone äußerst dichter, der Verwitterung besonderen Widerstand leistender Gesteine (Kalksilikathornfelsen etc. besteht (siehe Kap. XXI), während der ihm südlich gegenüberliegende Absturz der zentralen Bogdo-Ola-Erhebung aus nicht weniger harten Gesteinen der Diabas-Reihe aufgebaut ist. Es besteht demnach ein hoher Grad von Wahrscheinlichkeit dafür, daß zwischen diesen beiden Gliedern harter Gesteine, der allgemeinen Streichrichtung folgend, jene Zone verpreßter und zerstörter Ergußgesteine, welche ich in der Kammregion noch in ihrem Bestande vorfand, sich fortgesetzt hat, also auch dort eingeschaltet war, und durch zerstörende und ausräumende Kräfte vielleicht schon in präglazialer Zeit entfernt wurde, jedenfalls aber bei Eintritt der großen Vereisung der glazialen Erosion vollends zum Opfer fiel. Mit anderen Worten: Ich halte das Tal, in welchem sich heute der größte nördliche Bogdo-Ola-Gletscher, der Grum Grschimailo-Gletscher erstreckt, für ein präglazial augelegtes, zum überwiegenden Teile durch glaziale Erosion ausgestaltetes Längstal. Mag man auch im allgemeinen nicht geneigt sein, der Erosionskraft des Gletschereises so bedeutende Wirkungen zuzubilligen, wenn nicht besondere Umstände sie begünstigen, so scheint mir doch in diesem Falle, wo ein so leicht zerstörbares Gestein zwischen sehr harten Zonen lag, die Annahme einer solchen Wirkung vollkommen gerechtfertigt, zumal eine andere und bessere Erklärung für die Entstehung dieser im Bau des Bogdo-Ola-Gebirges einzigartigen Erscheinung nicht leicht zu finden wäre. Von derartigen Auswitterungserscheinungen von etwas weniger bedeutendem Ausmaß, welche ähnlichen geologischen Verhältnissen ihr Entstehen verdanken, habe ich übrigens schon früher (S. 161 f.) berichtet.

Auf den mehrfach hervorgehobenen wichtigen Umstand, daß dieser jetzt den Nordrand des Grum Grschimailo-Gletschertales bildende Riegel zur Zeit des Hochstandes der diluvialen Vereisung vom Eise überflutet war, das damals in seinem überwiegenden Teile

¹⁾ Siehe Anmerkung S. 171.

nach Norden abfloß, sei nochmals hingewiesen. Schon die abgeschliffenen Formen jenes Gebirgszuges, wie sie in Taf. 1 uns vor Augen treten, lassen keinen Zweifel darüber, wie sehr die Bearbeitung durch Gletschereis die Gestalt seiner Kammlinie und seines Nordabhanges beeinflußt hat. Auch der südliche, dem Gletscher zugewendete Abhaug ist bis zur Kammlinie hinauf abgeschliffen, zeigt aber auch die Stadien des Eisrückzuges in undeutlich erhaltenen Fragmenten von zwei etagenweise übereinanderliegenden Schliffkehlen.

Auf meinem Weiterwege zur Gipfelregion gelangte ich über die firnbedeckte, plateauartige, aber durch starke Einsenkungen gebrochene Kammerhebung zunächst zu einer kuppelförmigen Auschwellung (3915 m), die mir bereits einen guten Einblick in die Gestalt des Gebirges vermittelte und die Aufnahme von Panorama 1 gestattete. Ein gleichmäßiger, seiner Unterlage entsprechend, wellenförmig eingesunkener Firnmantel hüllt, beginnend von einer Höhe von etwa 3800 m an, das ganze Gebiet ein: die stumpfkonischen Gipfel und die dazwischen liegenden Depressionen von geringer Tiefe. Lappenförmige Eiszungen hängen über die Steilwände gegen die Taleiuschnitte zu beiden Seiten hinab, etwas tiefer am Ostabhang gegen das Tal Dön-chon-dse, weniger tief nach W. gegen den weiten Zirkusboden. Da ich im wesentlichen die Eigenart der heutigen Gletscherbedeckung dieses Gebirgsteiles bereits in Kap. XI geschildert habe, will ich hier nur noch einige ergänzende Beobachtungen anfügen: Aus der das Kammplateau verhüllenden allgemeinen Firndecke zieht eine kleine Eiszunge auch nach NW. in ein Seitental hinab, das 11/2 km unterhalb meines Hochlagers in den die weite Fläche des höchsten Talbodens durchfurchenden Hauptbach einmündet. Das Zuugenende hat dort meiner Schätzung nach etwa 3500 m und ein unbedeutender, durch eine kleine Stirnmoräne des Rückzuges abgedämmter See liegt wenig unterhalb der Zunge. Auf der östlichen Seite des Beckenrandes ist dies der am tiefsten herabreichende Gletscher. Dem breiten Eislappen, der von dem östlichen Teil des Grum Grschimailo-Gletschers in das Tal Dön-chon-dse absinkt, ist ein bedeutend umfangreicherer, durch eine vor dem rezenten Rückzug angehäufte, auffällig große Stirnmoräne abgedämmter See vorgelagert. Der Umfang dieser Moräne ist eine ausnahmsweise Erscheinung; ihre Mächtigkeit mag mit der reinen N.-Exposition und der bedeutenden Ausdehnung des Einzugsgebietes zusammenhängen. An sämtlichen Eiszungen des Gebietes lassen sich im übrigen die Auzeichen gegenwärtigen raschen Schwindens beobachten, so daß nur wenigen von ihnen Zeit blieb, junge Stirnmoränen aufzuwerfen (S. 86). Besonders ist dies bei den annähernd nach S. und W. gerichteten Gletscherenden der Fall und daher auch sogar bei dem Südende des Grum Grschimailo-Gletschers, wenngleich dort das Eis nicht so ganz plötzlich, fast zungenlos abschneidet, wie dies bei dem Hauptgletscher des Pik Schokalsky (siehe S. S3) der Fall ist.

Der Grum Grschimailo-Gletscher füllt heute nicht einmal mehr die ganze Breite seines jetzigen Bettes aus und kann überhaupt nur als ein ärmlicher Rest seines diluvialen Vorfahrers angesehen werden. Bei seiner Begehung, die ich einige Tage nach dieser Besteigung ausführte, fand ich fünf mehr oder weniger erhaltene Ufermoränen auf der orographisch rechten Seite: vier jüngere und eine, diese an Höhe wesentlich übersteigende, weit ältere (70—80 m hoch), die dem Laufe des nördlichen Felsrandes folgt, von ihm aber noch durch einen Graben getrennt ist, durch welchen einst zur Zeit hohen Eisstandes die großen Wassermengen der seitlichen Abflüsse des Gletschers herabgeleitet wurden. Dieser älteste erhaltene Ufermoränenwall liegt vom heutigen Eisrand etwa 75 m entfernt und

innerhalb dieses Zwischenraumes ziehen, treppenförmig niedriger werdend, die erwähnten vier jüngeren Ufermoräuen entlang, welche zusammengehören und die Etappen des letzten zum Teil schon rezenten Schwindens des Gletschereises andeuten; ihre Höhen fallen von 15-18 m außen zu 4-6 m durchschnittlicher Höhe innen ab. Die beträchtlich höhere äußere Moräne gehört jedoch einem älteren Zyklus an. Es lassen sich also auch hier drei größere Stadien oder Phasen der diluvialen Vereisung erkennen, wie sie aus meinen früheren Darlegungen (S. 148, 163) hervortreten und dieses Verhältnis steht in annähernd guter Übereinstimmung mit dem am Chigogletscher beobachteten verwandten Erscheinungen (Kap. XI und XII). Auch die innerste und niedrigste Seiteumoräue tritt nicht ganz an den Eisrand heran, was als weiteres Zeichen raschen Schwindens anzusehen ist. Zwischen beiden breitet sich vielmehr eine etwas aufgewölbte Schuttfläche, unter welcher sich noch totes Eis befindet. Der nördliche Seitenrand des Gletschers zeigt durchaus jenen walzenförmig gerundeten Steilabbruch, wie ich ihn schon bei Beschreibung der Endzunge geschildert habe (S. 82). Im Eis der Abbruchwände sieht man ungemein komplizierte und unregelmäßig verpreßte Schichtungsverhältnisse, die sich aus dem starken, aber ungleichmäßigen Druck erklären, den die aus den Nischen des großen Wandabsturzes vorbrechenden Firnmassen auf die darunter gelegene Eisanhäufung ausüben. Die Höhe des seitlichen Eisabbruches schätzte ich im mittleren Teil des Eisfeldes auf ca. 40-50 m. Doch konnte ich wegen der Konvexität der Abbruchswand den höchsten Teil der Decke vom Fuße aus nicht sehen, so daß hier die Eismächtigkeit wohl nicht unwesentlich mehr betragen dürfte. Da die Wölbung des Eises sich allmählich gegen die Mitte des sehr ausgedehnten kuchenförmigen Eisfeldes hin fortsetzt, wo der Scheitel liegt, so darf man die gesamte Eismächtigkeit im Durchschnitt auf nicht unwesentlich mehr als 100 m veranschlagen. Die eigenartig konvexe Form der Seitenwände des Eiskörpers beruht meines Erachtens auf Wärmerückstrahlung aus der dem Eisrand entlang laufenden dunklen, fast schwarzen Schuttdecke der Grundmoräne, welche daher besonders aufnahmsfähig für die starke Insolation ist. Infolge der Rückstrahlung wird die Abschmelzung gerade in den unteren Teilen der Eiswaud außerordentlich begünstigt. Es findet also dort eine Unterschneidung statt. Am oberen Rand des Eiskörpers wird aber außer durch direkte Bestrahlung hauptsächlich durch die abfließenden Schmelzwasser eine Abrundung hervorgerufen, während die in halber Höhe liegenden Teile der Eismauer von beiden Faktoren weniger zu leiden haben und daher stark gewölbt erscheinen. Ich habe ähnliche Vorkommnisse auch an einigen anderen Tian-Schan-Gletschern wahrgenommen, wenn auch nirgends so stark ausgebildet wie an diesem, weil hier im O. die klimatischen Faktoren noch energischer einwirken, als in weiter westlich gelegenen Teilen des Tian-Schan-Gebirges.

Eine andere eigenartige Erscheinung, die zu erwähnen ist, besteht darin, daß die jüngeren Ufermoränen in dem Maße, als sie gegen das Gletscherende hin vorrücken, sich einander mehr und mehr nähern und endlich in einen einzigen allmählich abdachenden und eine ansehnliche Breite erreichenden Wall verschmelzen, der zunehmend mehr an den Seitenrand des Eises herantritt und sich ihm endlich nahezu anschließt. Dies ist nach meiner Ansicht nur auf die zunehmende Verengung des Gletschertales zurückzuführen. Dort kann man auch die besondere Erscheinung beobachten, daß im Gegensatz zur Zusammensetzung des Moränenwalles im Oberlauf des Gletschertales, wo er aus grobem Blockmaterial gebildet ist, sein Ende hier überwiegend aus feinerem Material besteht, ja teilweise

aus großen Mengen sandigen Lehms und lehmgemischtem Sande, mit feinen Gesteinsfragmenten durchsetzt. Nur zum geringeren Teil kann dies auf Auswaschung der iu Spalten des Eises angehäuften feinen Bestandteile und auf normale subglaziale Ausspülung der Grundmoräne zurückzuführen sein, deren feineres Material in solcher Weise am Gletscherende akkumuliert wurde. Es ist vielmehr anzunehmen, daß Zermalmungsprodukte im Moränenmaterial in großen Mengen mitgeführt werden, den verpreßten Gesteiuspartien entstammend, die, wie früher (S. 174) gezeigt wurde, an der Zusammensetzung des Bodens dieses Gletschertales wesentlichen Anteil haben. Im Zusammenhange hiemit halte ich es für erwähnenswert, daß sich auch in den alten Ufermoränen der zurückgetretenen Gletscher am Westrande des Zirkus auffällig mächtige Anhäufung von Sand bemerkbar macht. Die hiezu gehörigen lehmigen Bestandteile sind wegen der größeren Neigung des Gehänges jedenfalls, wenigstens an der Oberfläche der Moränen, durch Regengüsse und Schneeschmelze entfernt worden. Auch dieses Vorkommnis kann nur auf vollständige Zermalmung eingeschlossener, verpreßter Gesteinspartien durch das Gletschereis zuürckgeführt werden. Sehr starke Abspülung der Gletscherdecke, besonders gewaltig zur Zeit der Frühjahrsschneeschmelze wirkend, findet aber zweifellos am Grum Grschimailo-Gletscher statt und macht hier wie bei allen Gletschern dieses Gebietes neben anderen Gründen die Reinheit der Oberfläche erklärlich, wofür ich eingehendere Erklärung schon früher (S. 93) gegeben habe.

Ein aus sehr grobem Blockmaterial bestehender alter Ufermoränenwall ist noch bis einige hundert Meter über das heutige Zungenende hinaus iu seiner Form wohl erhalten, weiterhin aber zerstört und zu einer unregelmäßigen Blockanhäufung umgewandelt, die eine bedeutende Ausdehnung erreicht, bei etwa 25-30 m Höhe. Aus dieser verhältnismäßig geringen Höhe läßt sich jedoch keineswegs ein Schluß auf die Eismächtigkeit zur Zeit des letzten großen Rückzugsstadiums ziehen, weil hier die hoch aufgeworfenen alten Stirnmoränen eines großen Gletschers des Pik Schokalsky in nahezu rechtem Winkel gegen die alten Ufermoränen des Grum Grschimailo-Gletschers aufstießen, sie zerstörten und mit ihnen verschmolzen. Hingegen fludeu wir, sobald wir aus dem engen Oberlauf des Paßtales in den nach S. sich erweiternden Teil gelangen, am linken Rande eine alte Ufermoräne am Fuße des hohen schroffen Talrandes teilweise gut erhalten, besonders unversehrt beim oberen Moränensee (S. 84 und siehe Taf. 14 Fig. 3). Wir sehen dort einen gewaltigen Blockwall von großer Breitenausdehnung, der heute noch mehr als 80 m Höhe erreicht. Beim Abstiege nach S. hatten wir uns mühsam den Weg über seinen Scheitel hinweg zu bahnen, ehe wir nahe dem S.-Ufer des Sees wieder auf gangbareren Boden hinab gelangen konnten. Steile Schuttkegel, welche aus Schluchten der begrenzenden Bergwände herabkommen, setzen auf diese Moräne ab; in den tieferen Lagen wird sie von Bergschutt nahezu völlig eingehüllt. Der große Moränensee, welchen ich früher beschrieben habe, reichte einst hoch an diese Seitenmoräne hinan, wie man an der Bedeckung des unteren Teiles des Blockwalles mit feinen Seeablagerungen, welche in scharfer Horizontallinie nach oben abschneiden, deutlich erkennen kann.

Auf den Verlauf meiner Höhenwanderung über den östlichen Zirkusrand zurückkommend, erwähne ich noch, daß ich die zuerst erreichte Höhe bald wieder verließ und sodann dem auf- und abwogenden Kammplateau längere Zeit weiter nach S. hin folgte, bis ich endlich eine kuppenförmige Anschwellung (4045 m) gewanu, unmittelbar vor einer uoch mehr nach S. vorgeschobenen aufragend, bei welcher sich der vielbesprochene Querriegel dem Ostrande

des Zirkus angliedert, was anf Taf. 4 Fig. 1 links gut in die Erscheinung tritt. Der betretene Gipfel besteht aus einer chaotischen Anhäufung lose übereinanderliegender, großer, dunkelgrüner und graner Blöcke von Kalksilikathornfels und Keratophyrgesteinen, welche bei ihrer großeu Härte trotz der Angriffe ungemein starker Temperaturgegensätze nur zur Blockverwitterung neigen (S. 93). Der Gipfelbau bietet das Bild vollständiger Zerstörung; er ist als Rnine eines Berges zu bezeichnen. Nur an den Flanken sieht man anstehendes Gestein zutage treten.

Ich gewann hier sowohl vollkommenen Einblick in das Tal des Grum Grschimailo-Gletschers, als Ausblick auf die Fortsetzung der Kette gegen O. und W. Der 3000 m hohe Steilabsturz der zentralen Bogdo-Ola gewährte, von dem im Gletschereise wurzelnden Fnße bis zur Firsthöhe entschleiert, in seiner überfirnten Formenpracht einen unbeschreiblich großartigen Anblick (Taf. 4 Fig. 1). Die Ansschau nach O. bestätigte meine früher von anderen Punkten gemachte, bereits in Kap. VI niedergelegte Wahrnehmung, daß sich vom Hauptkamm schon unmittelbar im O. des höchsten Zentralmassivs ein Kamm abspaltet, aus welchem höhere und schroffer gebante Gipfel aufragen, als die der östlichen Fortsetzung des Hauptkammes angehörigen. In letzterem ist die vorherrschende Gipfelform eine stumpfpyramidale mit sanfteren Böschungeu an den Nordflanken als an den südlichen, was sich ans der uach S. etwas überkippten höchsten Sattelfalte der zentralen Zone erklärt (S. 39 und 167). Die übrigens ziemlich starke Überfirnung ist hauptsächlich auf die Nord- und Ostabhänge beschräukt, wiewohl kleinere von Firn erfüllte Hochmulden auch in den Süd-Gehängen zu bemerken sind (S. 36).

Meiu Standpunkt war besonders günstig für den Ausblick nach S., wo der Blick, der Furche des Gurban-bogdo-Tales folgend, bis in die weite Wüstensteppe drang, ehe er an der langgezogenen Mauer des Dschargös-Tan mit seiner nur schwach gebrochenen Kammlinie eine Schranke fand. Nach W. hin bildete die herrliche Bergform des Pik Schokalsky mit ihrem reichen, vielgestaltigen Firnmantel (S. 37, 83) den Hauptschmunk des Panoramas. Die Möglichkeit der Ersteigung dieses Gipfels scheint mir gegeben, dürfte jedoch bei der großen Ansdehnung und starken Zerrissenheit aller Kämme sehr viel Zeit erfordern und nicht ohne bedentendere Schwierigkeiten sein. Den Weg über den NW.-Grat möchte ich auf Grund sorgfältiger Beobachtung als den ratsamsten bezeichnen.

Meine bisherigen Beobachtungen hinsichtlich der im Verhältnis zu ihrer Höhe reichen Befirnung der westlichen Fortsetzung der Kette fand ich auch von hier aus bestätigt. In Kap. XI habe ich indessen diese Verhältnisse bereits eingehend gewürdigt. Infolge des raschen Absinkens des ganzen Faltenbans nach dieser Richtung (S. 37, 48) konnte man jedoch die Kammregion nur auf verhältnismäßig knrzer Strecke verfolgen. Sehr belehrend war der Blick nach N. über die durch eine Hochfläche abgeschnittene obere Stufe des alten Gebirges (S. 40, 56, 96 etc. nnd Taf. 6) und bestätigte anch in dieser Hinsicht in unwiderleglicher Weise alle bisherigen von anderen Punkten ans gemachten Wahrnehmungen, sowie die hieraus gefolgerten Schlüsse über die jungen Hebungen in diesem Gebiet und über seine wechselreiche Erosionsgeschichte. Hinweg über die alte, jngendlich erodierte Denndationsebene, dem überlebenden Rest einer alten Gebirgsbildung, traf das Ange auf die reich zertalten Ketten der Angaragesteine und ihre beckenförmigen Weitungen, sowie noch darüber hinaus auf die im Sonnenglast brütende, ausgedürstete Ebene, welche hier der Welt des ewigen Eises so nahe gerückt ist, daß der Gegensatz an sich schon einen

besonderen Reiz ausübt (S. 123). Die nicht häufig gebotene Möglichkeit, auf eiuer eisgepanzerten Hochwarte zwischen zwei großen Wüstengebieten zu stehen, regt den Naturforscher zu besonderen, in unmeßbare Zeiträume sich verlierende Vorstellungen an von den Einwirkungen und Wandlungen, welche das vor ihm ausgebreitete Relief erfahren hat, bis aus grundverschiedenen Elementen sich das gegenwärtige, seltsam gegensätzliche Naturbild gestalten mußte.

Aber auch Ausblicke eröffnen sich auf die wechelvolle fernere Zukunft, der dieses in seinem Bau wie in allen Naturverhältnissen an den schroffsten Gegensätzen reiche Stück unserer Erdkruste entgegengeheu muß, bis sich sein letztes Schicksal erfüllt — der Ausgleich alles Gegensätzlichen und hiemit das Erlöschen alles Lebens. Wohl nur an wenigen Stellen der Erde begegnet der Reisende ähnlicher Aneinanderreihung von Ungleichartigkeiten, welche seine Gedauken mit zwingender Notwendigkeit in solche Richtung leiten muß.

Es war für mich auch besonders wertvoll einen vollständigen Überblick auf die Befirnung der O.- und W.-Ränder des großen Zirkus zu gewinnen und sie im Bilde festzuhalten, wie dies im kleinen Panorama Taf. 4 Fig. 1 geschehen ist. Das größere dort aufgenommene Panorama (Taf. 1) ist auch iu klimatischer Hinsicht ein interessantes Dokument, weil es deutlich wiedergibt. wie Massen von Strato-Cumulus-Gewölk aus S. aufstiegen und sich gegen SW. und W. hin in Alto-Stratus umwandelten. Es ist dies verhältnismäßig selten der Fall; meistens kommen in dieser Gegeud die wolkenbildenden Winde aus NW. (siehe Kap. II S. 15).

Um meinen Einblick in den Gebirgsbau zu vervollständigen und besonders um die Vereisung des nach SW. gerichteten Teiles der Hauptwasserscheide richtig schätzeu zu Iernen, was vom Ostgipfel (siehe oben) nur unvollkommen möglich war, sowie um das Kartenbild durch weitere Peilungen und photographische Aufnahmen zu sichern, erstieg ich wenige Tage später auch einen Gipfel in der W.-Umrandung der großen Talstufe (siehe Karte II). Der Aufstieg gab mir Gelegenheit festzustellen, daß der Schichtenbau des W.-Randes dem des östlichen völlig entspricht, wenngleich er dort nicht in so vollkommener Weise erschlossen erscheint, weil die Überschüttung des Gehänges mit Moränenschutt weit bedeutender ist. Dies liegt wohl zum Teil an der Ostexposition der Gletscher, aber auch daran, daß manche Moränen, wie vorher erwähnt, in ihren unteren Teilen aus überraschend feinem, lockerem Material (Sand und Kies) bestehen, welches sich ausbreitet und am Gehänge hinabkriecht. Aus der Kongruenz des Baues beider Talränder kann geschlossen werdeu, daß Verwerfungen kein Anteil an der Entstehung dieser großen Hohlform zukommt.

Der Aufstieg am W.-Rand erfolgte mühsam, teils über alte Grund- und Ufermoränen und nach Erreichung des Gletschers etwas leichter über diesen, da er nur von wenigen Spalten durchzogen ist, und die durchschnittliche Neigung des Eises kaum 28 Grad übersteigt. Die erreichte Kammregion zeigte die gleiche plateauförmige Ausbildung wie die bereits beschriebene des O.-Randes. Ich bewegte mich auch hier über eine wellenförmig eingesunkene Firndecke zunächst in S.-Richtung, daun nach SO. und erreichte auf solchem Wege eine kuppenförmige Erhebung (3985 m), welche einen vorzüglichen Blick auf die zentrale Hauptgruppe, auf Pik Schokalsky und eine beherrschende Aussicht auf die Fortsetzung der Kette nach W. eröffnete: sie bildete somit eine willkommene Ergänzung der am O.-Gipfel gebotenen und wurde in einem umfassenden Panorama (Taf. 2) festgehalten. Dieses ausdrucksvolle und lehrreiche Bild enthebt mich der Aufgabe von Ausbreitung und

Charakter der Vergletscherung des Gebirges weitere Mitteilungen zu macheu, um so mehr als das Wesentlichste hierüber schon in Kap. XI hervorgehoben wurde.

Der Gipfel besteht, ebenso wie die früher erstiegene Kuppe des O.-Randes, aus einer chaotischen Anhäufung von Blöcken der öfters genannten Eruptivgesteine (S. 178). In ihnen herrschte eisenhaltiges Gestein in solcher Menge vor, daß die Peilungsarbeiten ungemein gestört wurden. Die Ablenkung der Magnetnadel nach verschiedenen Richtungen war derart, daß ich nach vielfachen Versuchen meinen Standpunkt verändern und eine mit dichtem, isolierendem Firn bedeckte Erhebung des Kammes aufsuchen mußte. Es scheint hier besonders Keratophyrgestein stark vorzuwalten, das (siehe Kap. XXI) einen reichen Magnetitgehalt besitzt, "welcher in zahllosen Individuen von mikrolithischen Dimensionen in sehr guter Kristallform das Gestein durchschwärmt".

Da mir nach beendigter Arbeit noch genügend Zeit blieb, machte ich den Versuch auch die noch weiter nach S. gerückte, unmittelbar vor Pik Schokalsky aufragende Kuppe zu erreicheu. deren Erhebung ich etwa um 150 m höher schätzte, als den von mir verlassenen höchsten Standpuukt. Ich überschritt das weite Firnfeld, das im Vordergrund des großen Panoramas Taf. 2 breiteu Raum einnimut und im Panorama Taf. 4 Fig. 1 etwas westlich vom Pik Schokalsky erscheint. Bei der außerordentlichen Klarheit der Luft an jenem Tage unterschätzte ich jedoch die Entfernung und mußte, um nicht von der Nacht überrascht zu werden, schon vor Erreichung meines Zieles den Abstieg antreten, der daun auf einem anderen Wege als der Aufstieg erfolgte. Ich gewann hiebei einen vorzüglichen Einblick in den Schichtenbau der bereits südlich vom Paßeinschnitt das Gurbanbogdo-Tal umrandenden Steilwände und konnte mit Sicherheit dort das steilere Abfallen der Schichten nach S. im Vergleiche zum nördlichen Sattelflügel feststellen.

Nachdem ich die wichtigsten Arbeiten am N.-Fuße des zentralen Kammgerüstes in ziemlich ausreichender Weise erledigt hatte und da wegen der mit nur wenig Unterbrechung herrschenden heftigen und kalten Nordwinde meine an Kälte nicht gewöhnte sartische Begleitmannschaft gegen längeren Aufenthalt protestierte — das Tagesmaximum hatte in den letzten Tagen niemals 9 Grad überstiegen und die Temperatur sank schon am Spätnachmittag stets unter 0 Grad -, so entschloß ich mich am 16. August zum Übergang nach S. ohne einen Versuch zu unternehmen, in der Kammregion noch etwas weiter nach W. zu gelangeu. Ich empfand später Reue hierüber, weil die Folge zeigte, daß der Schlüssel zur Lösung noch bestehender Zweifel in den tektonisch-geologischen Verhältnissen, besonders über das Verhältnis der Dun-schan-Gesteine zu den die zentrale Gebirgsgruppe zusammensetzenden (siehe S. 61 f.) gerade in der westlichen Kette zu finden sein muß. Wenn meine der Unbilden der Witterung müde Begleitmannschaft nach Süden drängte, wo sie bessere Witterungsverhältnisse zu finden hoffte, so mag, den Ereignissen vorgreifend, gleich hier erwähnt werden, daß diese Hoffnung sich nicht erfüllte. Die außerordentlichen thermalen Gegensätze zwischen den überhitzten Ebenen im N. wie im S. und den so ungemein bedeutenden, darum stark erkalteten Höhen des Gebirges führen eben an beiden Abhängen allzu häufig, ja fast regelmäßig stürmische Ausgleichsprozesse herbei. Diese erwiesen sich entsprechend den am S.-Abhang noch gesteigerten Gegensätzen dort sogar noch heftiger als im N. Es kam in meinem Hochlager nahezu täglich zu wilden Gewitterstürmen, die von starken Temperaturrückschlägen gefolgt waren. Die Beobachtungen und wissenschaftlichen Unternehmungen in den Hochregionen wurden hiedurch auch weiterhin sehr erschwert.

XVII. Der Südabhang der Zentralgruppe.

Der Übergang zur S.-Seite gestaltete sich an einigen Punkten für die Lastpferde schwierig und gefährlich, besonders bei Querung des auf der ersten Stufe unterhalb des Passes liegenden, durch Blöcke aufgefüllten Seebeckens (S. 83, 101) und dann wieder bei Überschreitung der hohen Blockmoräne (S. 84, 178) zu Seiten des um zwei Stufen tiefer liegenden großen Moränensees. Auch die noch tiefer unten den Talboden bildende, wellenförmige, grundlos versumpfte, begrünte Grundmoräne erwies sich als tückisch für die Lastpferde und gefährlich für das Gepäck.

Über die morphologisch wichtigen Erscheinungen, welche sich sonst auf diesem Wege bieten, habe ich in den Kap. XI und XII das Wesentlichste mitgeteilt. Ich verweise hier daher nur nochmals auf die den Weg kennzeichnenden Abbildungen Taf. 10, 13, 14, welche mehr als eine Beschreibung darzutun geeignet sind, daß dieser Teil des Talbodens und seiner Umrandung alle typischen Merkmale der vom Gletschereise einst völlig eingehüllten Landschaft an sich trägt. Es ist sozusagen kein Fußbreit des ganzen Reliefs, der dies nicht erwiese. Dieser Charakter ist dem Boden und den Steilrändern des Gurban-bogdo-Tales selbst in seinem Unterlaufe allenthalben, ja sogar, wenn auch in etwas gemilderter Form, bis nahe an seinem Ausgange in die große südliche Ebene immerhin noch scharf genug ausgeprägt, daß selbst die außerordentlichen Einwirkungen des ariden Klimas, das in dem tiefen Niveau zur unumschränkten Herrschaft gelangt, ihn auch dort nicht ganz zu verwischen vermochten.

Auf untergeordnete Störungen, die sich in den Bau der großen Sattelfalte einschieben, habe ich des öfteren hingewiesen (S. 39, 45 f., 50, 149, 166 etc.). Beim Abstiege vom Passe zeigen sie sich an beiden Talrändern in Form von Stauchungen und kleinen sekundären Falten. In Taf. 11 tritt eine solche auf der rechten Bildseite deutlich in die Erscheinung. Es handelt sich offenbar um Hinaufbiegung einzelner Schollen beim Absenken größerer Massen. In dem gleichen Bilde macht sich auch der scharfe Gegensatz zwischen der gesamten Talanlage und der jetzigen Flußrinne sehr bemerkbar. Wir sehen hier ein breites, wohlausgebildetes. typisches, glaziales Erosionstal, in welchem eine verhältnismäßig schmale, jugendliche Rinne eingesenkt ist, deren unausgeglichener Lauf nur mit junger Hebung des Gebirges einerseits und in Verbindung hiemit stehendem stufenförmigen Absinken der Gebirgsmasse nach S., sowie mit der infolge dauernder Klimaverschlechterung weit geringeren jetzigen Wasserführung, also mit ihrer abnehmender Erosionskraft, in befriedigender Weise erklärt werden kann (S. 106, 108 f).

Ich schlug mein Lager nicht weit vom breit geöffneten Eingange des ersten orographisch linken Seitentales in einer Seehöhe von 3270 m auf, auf alter Grundmoräne unter dem gewaltigen Felsabsturz eines vorspringenden Sporns des westlichsten Gipfels der Zentralgruppe; es stand am Fuße auskeilender, zum Teil begrünter, alter Ufermoränenwälle (siehe Taf. 14 Fig. 2), hinter welchem zwei höhere und ältere Ufermoränenzüge in staffelförmiger Erhebung parallel verlaufen. Meine Absicht war, im Hintergrunde dieses Tales zu beherrschenden Höhen emporzusteigen, um einen guten Einblick auch in den Bau des Süd-Abfalles der Zentralgruppe zu gewinnen, von welchem bislang noch nicht das mindeste bekannt geworden war.

Das Relief des Tales, an dessen Eingang ich lagerte, gibt Kunde von so starker Einwirkung einer totalen diluvialen Vereisung, im Gegensatz zu den heute vorhandenen spärlichen Resten, daß eine geuauere Beschreibung geboten ist. Infolge der auf seinem Boden angehäuften jungen Ablagerungen bietet es auf den ersten Blick ein recht verworrennes Bild. Klarheit hierüber konnte ich erst gewinnen, als mir von verschiedenen hochgelegenen Punkten aus ein Überblick ermöglicht war. Eine so vielfache Ineinanderschiebung und Vermischung verschiedenartiger Moränenzüge mit ungeheuren Mengen von Verwitterungsschutt und Bergsturztrümmern ist mir selten vor Augen getreten. Die gebirgszerstörenden Agentien haben hier am S.-Abhang noch weit intensiver in den Bau eingegriffen als am N.-Rande, ohne jedoch den einstigen Zusammenhang der Glazialbildungen völlig verschleiern zu können. Bei seiner Mündung in das Gurban-bogdo-Haupttal hat dieses Nebental schon eine Breite von über 1 km. Es verbreitert sich aber nach hinten trichterförmig bis zu einer durchschnittlichen Tiefe von etwa 41/2 km bei einer mittleren Achsenrichtung von ONO. nach WSW., so daß sein Hintergrund die Gestalt eines weiten Zirkus von mehr als 4 km Durchmesser annimmt. Der den Talschluß bildende Bogenwall, zu welchem heraustretende Glieder des S.-Abfalles der hohen zentralen Gipfelgruppe gehören. greift weit von W. über O. uach S. einerseits, nach WSW. andererseits aus. Gegen O. bildet er den Scheidewall gegen ein anderes großes, mit dem Gurban-bogdo parallel verlaufendes Quertal, das Chigo-Tal, von dem noch mehr die Rede sein wird. In seinem weiteren Südlauf spaltet sich dieser Scheidewall in zwei Ketten, von denen jede eine Anzahl 4000 m überragender, befirnter Gipfel trägt. Die westliche hievon ist der als O.-Rand des Gurbanbogdo-Tales erscheinende Hochgebirgszug, dessen Bau und morphologischen Charakter ich bereits in Kap. VI und XI eingehend gewürdigt habe.

Nur im untersten Teil des Seitentales ist die Sohle ziemlich gleichmäßig geböscht und wird dort von einer mächtigen Decke von Grundmoräne eingenommen, die in reich begrünten, eine schöne und eigenartige Alpenflora tragenden, gerundeten, unregelmäßigen Bodenwellen rasch ansteigt. Zahlreiche Quellen treten aus dieser Ablagerung aus und versumpfen den Boden an vielen Stellen. Ein starker Bach durchschneidet diese alte Moränenanhäufung, deren reiche Pflanzendecke nach oben allmählich in ein Blockmeer ausläuft, das augenscheinlich von einem nicht alten Bergsturze herrührt, sowohl nach Beschaffenheit der Felstrümmer zu schließen, als nach dem plötzlich steiler werdenden Böschungswinkel des Gehänges. Die Neigung wird von hier au bald so steil (über 40 Grad), daß wir beim Aufstiege es ratsam fanden, die tief eingeschnittene Rinne eines kleinen Baches zu benützen, weil die in dessen Bett liegenden großen Blöcke gute Dienste als Stufen leisteten. Es ist auch nicht ausgeschlossen, daß ein Gefällsknick des Talbodens die Ursache seiner plötzlichen Versteilung ist, was jedoch bei der vollständigen Verschüttung sowohl des Bodens als der unmittelbaren Umrandung mit ungeheuren Mengen von Gebirgsschutt und Trümmern kaum festgestellt werden konnte. Immerhin lassen mehrmalige Veränderung der Streichrichtung und Schichtenstörungen, die in einem der das Tal teilenden hohen Felszüge sich zeigen, wovon gleich die Rede sein wird, mit großer Wahrscheinlichkeit hierauf schließen.

Erst sobald man sich etwa um 350 m erhoben hat, gewahrt man, daß dieses weite Talbecken dreifach gegliedert ist; doch erst auf einer noch weit bedeutenderen Höhe läßt sich vollkommen überblicken, daß es aus drei Talzweigen zusammengesetzt ist, von denen jeder

in einer besonderen Nische des den allgemeinen Talschluß bildenden Gebirgswalles wurzelt (siehe die Skizze Taf. 16 Fig. 3). Der am meisten gegen S. zu gelegene Talast entspringt in der Südecke des allgemeinen Beckenrandes in einer weiten Hohlform, welche — eine seltene Erscheinung in diesem Gebirge — als wohl ausgebildete Karnische bezeichnet werden darf und zwischen reich befirnten Gipfeln von 4400—4500 m Höhe eingetieft ist. Während die Karwände im überwiegenden Teil eisfrei sind, ziehen einige Gehängegletscher von der Kammhöhe zum Karboden (ca. 4100 m) herab und nähren ein Firnfeld, welches die ganze Breite des trogförmigen Talastes einnimmt und in seinem oberen Teile z. T. von großen Mengen jungen Gehängeschuttes überdeckt wird. Erst im Mittellaufe wird das sehr steil geböschte Eisfeld völlig frei hievon und zieht in blendender Reinheit zu Tale, wo es bei ca. 3700 m als breiter Eislappen auf Grundmoränengehänge ausläuft, ohne eine Endmoräne zu bilden, was ebenfalls wieder auf raschem, noch immer andauerndem Rückzug hinweist.

Der mittlere Talast ist von etwas geringerer Breite und nimmt seinen Ursprung in den tiefen Nischen, welche durch das spitzwinklige Schneiden der seitlichen Wälle mit dem talschließenden, schroffen Felswall entstehen. Dieser ist in der Mitte eingesunken zu einem breiten, flachen Sattel von 4255 m Höhe. Die tiefste Einsenkung des Sattels ist trotz der bedeutenden Höhe firnfrei; ebenso wie die darunter absetzende Wand. Nur von dem ihn im S. überragenden Gipfel zieht ein schmales Firnfeld tief herab, während sein Nordflügel von dem ungeheuren, mehr als 1000 m hohen Wandabsturz eines von der zentralen Hauptgruppe gegen S. kapartig vorspringenden, pyramidenförmigen Felsgerüstes (siehe Taf. 3) mit außerordentlicher Steilheit überragt wird, so daß dort Firnanhäufung, übrigens auch schon wegen voller Südexposition, ausgeschlossen ist. Im übrigen zeigen alle Talwände die starken Einwirkungen ehemaliger totaler Vereisung. Der gauze weite Boden dieses jetzt vom Gletschereise völlig verlassenen mittleren Talzweiges wird von chaotischen Trümmermassen eingenommen, welche ein schwer entwirrbares Gemisch von Moränenmaterial, Bergsturztrümmern und Verwitterungsschutt darstellen. Viel Moränenschutt wird noch immer aus einem weit über 200 m hohen, alten Ufermoränenwall zur Linken (Südrand) des Talastes heruntergeführt, worüber gleich näheres folgt. Nach den Dimensionen dieser Glazialablagerung und nach der außerordentlichen Auffüllung mit alter Grundmoräne zu schließen, welche wir in den tieferen Teilen dieses Talbodens antreffen, läßt sich mit Sicherheit auf einen besonderen Hochstand des nun völlig entschwundenen diluvialen Gletschers schließen.

Der dritte und nördlichste Talast endlich wurzelt in einer weiten, mehrfach gegliederten, tiefen Nische des Zirkus, in welcher ein großer Gletscher, der "Südgletscher" (siehe S. 89 f.) seinen Ursprung nimmt. Dieser eigenartige, blendend weiße Eisstrom, der in einer ziemlich tiefen Furche des dritten (nördlichsten) Astes des gemeinsamen Tales abfließt, von den ihn umgebenden dunklen Moränenmassen scharf abgegrenzt, stellt einen ganz merkwürdigen Typus dar (Taf. 3 und Taf. 12 Fig. 2), für welchen ich in unseren europäischen Gebirgen keiu Analogon wüßte. Dies veranlaßt mich, meinen früheren Angaben hierüber noch einiges nachzutragen: Das Nährgebiet des schönen, aber stark an Schwindsucht leidenden Eisstromes ist ziemlich kompliziert: Fünf große und einige kleinere Firnschluchten führen aus hoch über dem Sammelbassin hängenden Gebirgsnischen, welchen man keine Ähnlichkeit mit Karen zusprechen kann, das Firnmaterial herab, aus welchem er ernährt wird. Von den bedeutendsten dieser Firnrinnen ist eine in einem abspaltendeu Kamme des westlichsten der drei Zentralgipfel eingetieft, zwei andere Arme

greifen in die höchste befirnte Region dieses Gipfels selbst ein und ein vierter, und wohl der das meiste Firnmaterial beibringende, liegt in einer tiefen Nische zwischen dem eben erwähnten, nach S. heraustretenden, pyramideuförmigen Felsgerüste und dem großen westlichen Hauptgipfel. Infolge der bedeutendeu Höhe der Umrandung erreichen einige dieser Zuflüsse Längen von mehr als 2000 m. Etliche Hängegletscher vermehren zwar noch durch fallendes Material die große Firnmenge, die sich in einem kesselförmigen Becken sammelt. dennoch wird man nach der Konstanz der hauptsächlich ernährenden Zuflüsse kaum berechtigt sein, hier von einem regenerierten Gletscher zu sprechen. Das Sammelbecken ist als eiu Kessel zu bezeichnen, offeubar entstandeu durch die korradierende Tätigkeit der konvergierend gegeneinander wirkenden steilen Zuflüsse. Es sind verhältnismäßig junge Furcheu, in denen diese liegen: sie scheinen erst stärker in das Berggerüst eingetieft worden zu sein, als die Maximalvereisung des Gebirges schon entschwunden war. Hierauf läßt mich wenigstens die stark gerundete Form der zwischen den einzelnen Firnkanälen sich heraushebenden Felssporen schließen (Taf. 12 Fig. 2). Wie aus der Skizze Taf. 16 Fig. 3 ersichtlich ist, haben die bedeutenderen Zuflußrinnen südliche oder südwestliche Exposition. Wenn sie nichtsdestoweniger immer noch reiches Material herabführen, kann man dies wohl mit Grund auf schützende Beschattung durch die fast rechtwinklig gegeneinanderstoßenden, die Umrahmung dieses Talzweiges bildeuden Felswände zurückführen.

Aus diesem Sammelkessel entwickelt sich die etwas über 2 km lange Talzunge des "Südgletschers", deren Eiskörper teils infolge starken und ungleichmäßigen Druckes der steilen und aus verschiedenen Richtungen kommenden Zuflüsse, teils auch infolge Stufung des Untergrundes ein Bild merkwürdiger Zerrissenheit und Verpressungen bietet. Die Eisklippen, in welche die Masse aufgelöst erscheint, sind öfter derartig gegeneinauder verworfen, dats in jedem einzelnen der einander benachbarten Eiskegel die Schichtung nach anderer Richtung geht. Dazu kommen noch die tausendfach wiederholten Ausschmelzungsunebenheiten (Kegel. Taschen etc.), welche der außerordentlich starken, direkten Bestrahlung und der kräftigen Rückstrahlung aus dem fast schwarzen umgebenden Schuttgürtel ihr Entstehen verdanken. Nach der steilfelsigen Umrahmung, nach deren vorwiegenden Exposittion gegen S. und SW., endlich nach der ganzen Art der Ernährung dieses Gletschers sollte man eine reiche Schuttbedeckuug seiner Oberfläche erwarten; es ist daher um so erstaunlicher, daß sie völlig frei hievon ist, wie alle anderen Bogdo-Ola-Gletscher. Dies kann also nur auf Ursachen zurückgeführt werden, die für das ganze Gebiet gleichartig wirksam sind, wie ich sie S. 93 f. erklärt habe. Die Entstehung einer solch eigenartigen Gletscherphysiognomie, wie sie besonders in Taf. 12 Fig. 2 gut zum Ausdruck gelangt, 1) kann nach meiner Auffassung nur auf eine intensive, der Vereisung besonders ungünstige andauernde Klimaveränderung zurückzuführen sein.

Am orographisch rechten Ufer der Zunge gewahrt man, nur stellenweise erhalten, drei hintereinander sich erhebende Ufermoränen, als deren Fortsetzung die bereits er-

¹⁾ Leider ließ sich kein Standpunkt für die Aufnahme des Gletschers gewinnen, wo die volle Entwicklung besonders der Zunge zum Ausdruck kommt. Infolge des nach den verschiedensten Richtungen ausgreifenden Nährgebietes kann von jedem Standpunkt aus immer nur ein Teil in das Bild gebracht werden und die merkwürdige, ziemlich breite Eiszunge erscheint in diesem Bilde nur als ein schmaler Wulst. Nur wenn ich Zeit gefunden hätte, die Kammhöhe am Ausgange des Nordrandes zu ersteigen, wäre es möglich gewesen, eine vollkommenere Wiedergabe dieses ebenso schönen als eigenartigen Gletschers aufzunehmen.

Abh. d. math.-phys. Kl. XXVII, 5. Abh.

wähnten (S. 182), tief bei der Ausmündung des Tales in das Haupttal anhebendeu und dorten keilförmig auslaufenden Moränenzüge anzusehen sind; der jüngste wird dort im Mündungsbereiche von dem nächstfolgenden um beiläufig 20 m überragt, und dieser von dem ältesten etwa um den gleichen Betrag oder mehr. Der älteste, höchste und unmittelbar am Talrande liegende ist aber stellenweise durch Gehängeschuttkegel deformiert, während eigentümlicherweise gerade nur der zweite stark durch Wassererosion zerschnitten, der dritte und jüngste. jedoch keineswegs rezente, sehr gut erhalten ist. Den orographisch linken Zungenrand hingegen begleiten, allerdings nur auf ein Stück seines Laufes, neben einer rezenten ebenfalls noch zwei ältere Ufermoränen; sie liegen in Entfernungen von 100 bis zu 150 m auseinander und sind stark zerschnitten. Auch aus diesen Erscheinungen könnte man auf mindestens zwei, vielleicht drei Beharrungsstadien in der Rückzugsgeschichte des diluvialen Eismantels schließen. Die früher erwähnten großen Endmoränengruppen des alten Gurbanbogdo-Gletschers im Haupttale (Kap. XI und XII), von welchen auch später noch die Rede sein wird, würden hiemit in guter Übereinstimmung stehen. Es muß aber nochmals betont werden, daß alle älteren Moränenzüge dieses Nebentales nur bruchstückweise und unvollkommen erhalten geblieben sind, am besten im Unterlaufe des Tales. Höher oben, wo sie oft durch Gehängeschutt oder Bergsturzkegel überschüttet oder zerstört wurden, ist es schwer sich größere Teile hievon zu rekonstruieren. Wo es gelingt, kommt man zur Feststellung von Höhen für diese alten Ufermoränenbildungen, die zwischen 50 und 100 m und darüber schwanken.

Ungleich bedeutendere Verhältnisse lassen sich an einem mächtigen Moränenwall feststellen, der nahe der Begrenzung zwischen dem mittleren und südlichen Talast sich erhebt. Es ist dies ein sehr breiter Wall von einer mitteren Höhe von 200-250 m. Diese gewaltige Anhäufung von Glazialschutt entstand aus den Seitenmoränen der in den beiden einander benachbarten parallelen Talästen herabziehenden, das ganze Relief einhüllenden, diluvialen Gletscher. Bei näherer Untersuchung zeigte es sich, daß dieser Moränenrücken als Kern einen Zug anstehenden Gesteins enthält, der im obersten Teile der großen Schuttanhäufung in Form eines scharf gezackten, schmalen Felskammes durchbricht. Es haben somit die beiden alten Gletscher ihre Ufermoränen an einem sie trennenden niederen Felszug emporgeschoben. Beispiele solcher Art, wo ein zwischen zwei parallelen Gletschern verlaufender Felsrücken durch Moränenschutt nahezu verhüllt wird, habe ich im Tian-Schan mehrmals, so z. B. im nördlichen Kiukönik-Tal und am S.-Rand des großen Yuldus-Tales beobachten können. Eine eigenartige Erscheinung ist die auffallend grüne Färbung im Schutte dieses hohen Moränenwalles; sie hebt sich lebhaft von der zum Teil violetten, teils rotbraunen Verwitterungsfärbung der Felsen des südlichen Talrandes ab. Offenbar stammt der überwiegende Teil des Materials dieser großen Ufermoräne aus der Umwallung des Talschlusses, wo grünes Epidositgestein verschiedener Ausbildung an der Zusammensetzung des Gebirges beteiligt ist (Kap. XXI). Ich habe diese Gesteine dort im Schichtenbau der Kammregion angetroffen, wo sie in Form mächtiger Bänke, begleitet von Breccien, und von Gängen jüngeren Eruptivums durchschwärmt, auftreten. Infolge des Gebirgsdruckes und stark ausgebildeter Klüftung zeigt dieses Gestein öfter, wenn auch nicht in gleichem Grade, wie gewisse Gesteine des Nordabhangs,¹) sehr feine Schieferung und ist daher den

¹⁾ Siehe meine Ausführungen über die tiefe Kammdepression am Gurban-bogdo-Pass, S. 170 f., 174.

zerstörenden und abtrageuden Kräfteu mehr ausgesetzt als die es umgebenden Felspartien. Es läßt sich überhaupt in diesem Teile der Kammregion überall dort, wo die Einschartungen besonders tief sind, noch mit Sicherheit feststellen, daß solche Gesteine ausgewittert sind. Da der feste Kern des Moränenwalles als zackiger Felszug aus dem Schutt herausragt, was nicht nur in seinen höchsten sondern auch in den tiefsten Teileu der Fall ist, wo er durch Abräumung des Schuttes stellenweise freigelegt wurde, konute man in diesem Zwischenzug wesentliches Abweichen der Streichrichtung gegenüber der in der allgemeinen Zirkusumwallung vorherrschenden normalen erkennen. Während diese im allgemeinen W.-O. geht oder doch nur schwach hievon abgelenkt ist, zeigt sich hier entschiedenes N.-O.-Streichen und ein um 20 Grad steileres Einfallen als in der Umgebung und zwar nach verschiedenen Richtungen. Offenbar hat eine Verschiebung dieser Scholle aus der normalen Lage stattgefunden, verbuuden mit Schrägstellung und Absinken; es kann mithin angenommen werden, daß für die ursprüngliche Anlage dieses Talkomplexes eine tektonische Störung, Verbiegung oder lokal begrenzte Verwerfung verantwortlich zu machen ist, was ich schon früher (S. 183) angedeutet habe. Alle andereu von mir am Südabhang in nahe gelegenen Örtlichkeiten gemachten Beobachtungen, z. B. die stufenförmige Zerschneidung der tieferen Teile des Westgipfels bei der Mündung dieses Nebentales im Haupttal (S. 171 f.), die bedeutenden Verwerfungen im Haupttale selbst (S. 103), die Anlage des Chigo-Tales (S. 87, 107) stehen in guter Übereinstimmung mit diesem Vorkommnis. Es sind kleinere ergänzende Züge zu dem tektonischen Bilde, dessen Hauptlinien in Kap. VI entworfen wurden.

Wenn die Dreigliederung der großen Hohlform dieses Nebentales somit unbedenklich als auf tektonischen Störungen beruhend anzusehen ist, so sind die Reste anderer abgesunkener Gesteinsschollen, welche hiefür Zeugnis geben könnten, zweifellos unter der ungeheuren Anhäufung alten Glazialschuttes begraben. Diese aber sind ein Beweis für die außerordentliche Mächtigkeit der durch dieses Nebental abgeflossenen frühdiluvialen Eismassen, welcher sich gut in das Bild der großen diluvialen Vereisung des Haupttales fügt, das ich in Kap. XI u. XII entworfen habe. Der mit weit über 400 m angenommene diluviale Hochstand der Vereisung, der im vorigen Kapitel für den Nordabhang geschätzt wurde, findet hiedurch entsprechende Bestätigung auch für den Südabhang. Leider lassen sich für ziffermäßig genauere Feststellungen wegen Fehlens irgend welcher topographischer Unterlage und bei der außerordentlichen Zerstörung der Felsumrandung hier kaum feste Anhaltspunkte gewinnen; es sei denn bei längerer Untersuchungszeit, als sie mir zu Gebote stand.

Wenn es mir gelang, trotz der verwirrenden Vermischung von Glazial- und Verwitterungsschutt die Gliederung und die morphologischen Züge dieses interessanten Nebentales einigermaßen festzulegen, so danke ich dies gerade der Unbeständigkeit der Witterungsverhältnisse (S. 181), die mich zwang, zu der seinen Hintergrund beherrschenden Kammregion viermal emporzusteigen (S. 107), bis ich dort meine Arbeiten auf den überfirnten Höhen zum Abschluß bringen konnte. Verließ ich bei vollkommen klarem Himmel in aller Frühe das Lager, so war nach Stunden, als ich gegen Mittag die Kammregion erreicht hatte, schon schweres Strato-Cumulus-Gewölk aus N. herangezogen (S. 180), das sich an den Hochkämmen unbeweglich festlegte. Wiewohl ich dann bis in die späten Nachmittagsstunden unter den schwierigsten Verhältnissen auf schmaler Firnschneide aushielt, wurde mir erst beim dritten Aufstiege das Glück zu Teil, die Befreiung der Höhen von den Dunstmassen abwarten zu können. An den anderen Tagen kam es erst nach Sonnen-

untergang zur völligen Aufklärung. Es traf sich auch, daß ich schon auf halbem Wege zu meinem hohen Ziele durch plötzlich ausbrechenden Schneesturm zurückgetrieben wurde. Als ich das erste Mal den Sattel betrat, welcher in die den mittleren Talast abschließende Umwallung eingetieft ist (S. 184), wartete meiner dort eine Überraschung. Zum ersten Male traten mir die außerordentlich kühn gebauten, firngekrönten Felsgipfel vor Augen, welche den von der zentralen Hauptgruppe sich abspaltenden Ast krönen; wundervoll ragten sie mit ihren ausdrucksvollen Konturen in den klaren Abendhimmel. Keine Karte, keine Nachricht ließ ahnen, daß sich hier eine Folge wundervoller Berge erhebt, welche den drei kulminierenden Erhebungen der zentralen Gruppe an Höhe nahezu ebenbürtig sind, an Kühnheit des Aufbaus ihnen kaum nachstehen (siehe Taf. 3). Zwischen diesem Hochgebirgswall und meinem Standpunkt auf dem Sattel war das bedeutende Tal eingefurcht, in dessen Tiefe sich mir nun der große, nach S. hinausfließende Gletscher entschleierte, der Chigo-Gletscher, von dessen Dasein vor meinem Besuche des Gebietes nichts bekannt war, wiewohl er der größte Bogdo-Ola-Gletscher ist. Ich habe von diesem schönen Eisstrom in früheren Darlegungen (S. 87 f.) und hinsichtlich seiner Umrandung dorten und S. 107 f. bereits alle wesentlichen Merkmale hervorgehoben, so daß ich mich nun auf Mitteilung einiger ergänzender Beobachtungen und daraus abgeleiteter Gedanken beschränken kann. Auch das Einzugsgebiet dieses Gletschers greift tief ins Gerüste der höchsten Teile des Gebirges ein bis nahe zur Firsthöhe des Ostgipfels, des Kulminationspunktes der ganzen Gruppe. Die einzelnen Zuflußrinnen erreichen daher Längen bis zu 2500 m. Außerdem empfängt der Gletscher noch bedeutende Zuflüsse aus der mächtigen Firndecke, welche auf der Kammregion des von diesem sich abspaltenden Gebirgsastes liegt (Taf. 12 Fig. 1). Auch hier ist ähnlich wie beim "Südgletscher" der große Gegensatz zwischen der Steilheit und der bedeutenden Höhe der Zuflüsse zur verhältnismäßig geringen Neigung der unmittelbar sich aus ihnen entwickelnden Eiszunge sehr auffällig. Eine solche Übersteilung des Einzugsgebietes ist ein merkwürdiges Gegenbild zum Typus unserer alpinen Gletscher. Es entsteht auch hier im Vereinigungspunkt der aus verschiedenen Richtungen und von großen Höhen herabkommenden Firnströme eine eher als Kessel denn als Trog oder Mulde zu bezeichnende Hohlform als Sammelbecken, aus dessen Abfluß die Gletscherzunge ernährt Auch von den Gletscherformen des zentralen Tian-Schan unterscheiden sich die in dieser Arbeit vorgeführten Gletscher durch sehr wesentliche Merkmale, schou vor allem durch den Mangel eines Firnbeckens im üblichen Sinne, so daß man einen eigenen Namen zu ihrer Charakterisierung prägen sollte. Vielleicht könnte man für solche Bildungen die Bezeichuung "Bogdo-Ola-Typus" in die Wissenschaft einführen.

Dieser Typus ist aber, wie ich schou betont habe (S. 185), ein jugendlicher, entstanden durch die nicht lange nach Ablauf der Maximalvereisung eingetretene tief eingreifende Klimaveränderung. Von meinem hohen Standpunkte aus (4530 m), wo die morphologischen Zeichen der alten Maximalvereisung, wie ich sie früher geschildert habe, sich in ihrem Zusammenhang überblicken ließen, suchte ich mir den Hochstand des eiszeitlichen Chigo-Gletschers zu rekonstruieren (siehe auch S. 88) und komme auf Grund aller früher mitgeteilten Merkmale zur Anuahme eines hier mindestens um etwa 500 m über der heutigen Eisdecke gelegenen Niveaus. wobei ich betonen muß, daß es sich auch in diesem Falle, da eine Begehung des Terrains nicht stattgefunden hat und jegliche topographische Unterlage fehlt, nur um Schätzung, um einen ganz rohen Annäherungswert handeln kann. Denkt mau sich nun den

Eisstand um 400 bis 500 m höher au die Umranduug hinanreichend, gleichzeitig auch die Überfirnung der Ränder entsprechend, so ergibt sich ein Bild, das mehr Ähnlichkeit mit der ehemaligen Vereisung kleiner alpiner Quertäler zeigt, weil dann die Randformen selbst nicht so wesentlich verschieden voneinander sind. Die Umwandlung zum jetzigen Typus ist dem extremen Einfluß des heute herrschenden ariden Klimas zuzuschreiben.

Für die Durchführung einer Ersteigung der zentralen Hauptgipfel würde dieser Gletscher als Zugangsweg zweifellos mehr Aussicht auf Erfolg bieten als die von mir früher erwähnten Zugänge von der Nordseite (S. 173). Ich habe die in Betracht kommenden Verhältnisse von verschiedenen hohen Standpunkten aus geprüft und fand, daß die Überschreitung der Zunge einem unternehmenden Alpinisten kaum Schwierigkeiten bieten würde und jedenfalls auch den Zugang zur Hochregion vermitteln kann. Ob aber hiebei ein gänzlicher Erfolg in Aussicht steht, dürfte in erster Linie von der Beschaffenheit des Firneises der außerordentlich steilen oberen Firnzuflüsse abhängen, welche zur Kammregion des östlichen Hauptgipfels der Zentralgruppe emporführen. Die Beschaffenheit der Firndecke wechselt aber in solch extrem kontinentalem Gebiet, wie ich mich überzeugen konnte, in sehr wesentlicher Weise schon von einem Tage zum anderen. Die Veränderung war eine so überraschende und alle meine in dieser Hinsicht im zentralen Tian-Schan gesammelten Erfahrungen derart übertreffende, daß ich sie für wichtig genug halte, auch über diese Verhältnisse hier das Wesentliche zu berichten. Als ich zum ersten Male die Hochregion des Südabhanges betrat, hatten vorher starke Schneefälle stattgefunden und alles vergletscherte Gelände erschien mir, weil mit einem dichten, fast gleichmäßigen Schneemantel bedeckt, unschwer überschreitbar. 1) Am folgenden Tage herrschte heftiger Sturmwind sogar in den Tälern. Vom Tale aus sah man, wie der Wind den Schnee von den Hochkämmen entführte, wie er ihn beständig zu fahnenartig flackernden Wölkchen formte, die sich nach obeu auflösten. Als ich dann am nächsten Tage wiederum die Hochregion aufsuchte, war ich von dem veränderten Aussehen des Firneisgebietes geradezu überrascht. Allenthalben trat gelbgrünliches Eis zutage, besonders an den Aufwölbungen; nur in muldenförmigen Vertiefungen lagen noch Schneeanhäufungen. Die infolge des Klimas nie gebundene, stets pulvrig trockene Beschaffenheit des Schnees erleichtert es dem Wind sehr, ihn von seiner Unterlage zu entfernen. Bei einem Aufstiege müßte man daher darauf gefaßt sein, Tausende von Stufen in blankes Eis schlagen zu müssen, eine langwierige Arbeit, in dereu Bewältigung sich mindestens drei erprobte Eismänner zu teilen hätten, da sie rasch vor sich gehen muß. Es handelt sich hier um Bezwingung ca. 1500 – 2000 m hoher steiler Eishänge. Schon auf einem kaum über 200 m hohen steilen Gehänge, welches ich zu

¹⁾ Diese Auflagerung findet immerhin nur an Gehängen statt, die eine Neigung von weniger als 60 Grad haben. An den steileren Flanken rutscht der trockene Pulverschnee stets ab. Nach einem von lang andauerndem Schneefall gefolgten Gewitter sah ich, als ich bei aufklärendem Wetter abends aus dem Zelte trat, wie alle reich beschneiten Steilwände, welche meinen Lagerplatz umschlossen, Schauplatz einer merkwürdigen Bewegung waren. Was auch in unseren Alpen nach heftigen Schneefällen an einzelnen Stellen vorkommt, daß in Steilschluchten und besonders schroffen Gehängestellen der lockere Neuschnee in Kaskaden abfließt, war in der Bogdo-Ola eine ganz allgemeine Erscheinung. Von allen Wänden herab in ihrer ganzen Breite und Höhe ergossen sich die Schneelawinen von einem Steilabsatz zum andern und sammelten sich endlich am Fuße zu hohen Wällen. Es war ein merkwürdiges Schauspiel, das stundenlang währte, dessen Ende ich nicht abwarten konnte, da mich die Nacht ins Zelt zurnektrieb.

überwinden hatte, um auf einem der Gipfel am Schluß des mittleren Talastes zu gelangen, war lange Stufenarbeit vonnöten. Bei alledem sind die oberen Teile des Chigo-Gletschers infolge bedeutender Gefällsbrüche im Felsbette sehr zerklüftet, so daß man außer einer Anzahl Spaltengruppen auch einige breite Schründe zu überschreiten hätte. Ein abschließendes Urteil über die Möglichkeit der Erreichung der höchsten Gipfel der Zentralgruppe auf dem Wege über den Chigo-Gletscher wage ich somit nicht auszusprechen.

Von dem mehrfach erwähnten breiten Sattel im Hintergrunde des mittleren Talastes (4255 m) stieg ich zunächst über zu Trümmern verwitterte Gratpartien, dann über sehr steilen Firn in Richtung SSO. an und erreichte nicht ohne Schwierigkeiten den fein zugespitzten Gipfel eines Firnkegels von ca. 4400 m Höhe. Dorten mußte ich die Wahrnehmung machen, daß der Überblick über den Verlauf der Kämme gegen N. durch den ins Gesichtsfeld scharf heraustretenden, kolossalen Wandabsturz des allzu nah gelegenen, pyramidenförmigen Vorgipfels (S. 184) sehr gehindert war und andererseits den Ausblick nach S. ein annähernd um 150 m meinen Standpunkt überragender schlanker Firngipfel verwehrte, von dem mich eine etwa 70 m tief eingesenkte Scharte noch trennte. Um eine umfassende Aufnahme des Südabfalles der Bogdo-Ola machen zu können, blieb es mir daher nicht erspart, den etwas heiklen Abstieg über einen schmalen, zerrissenen, klippigen Grat hinab in diese Scharte zu wagen, sowie den Aufstieg über den mir zugekehrten, völlig überfirnten Steilschenkel des nächsten Gipfels. Eine nur dünne und ungleichmäßige Schneeschicht lag dem Firneis auf. Dank der ausgezeichneten Stufenarbeit des mich begleitenden Tirolers Wenter vollzog sich jedoch alles glatt und wir erreichten die Gipfelhöhe (4530 m). Noch waren die Hochkämme frei, als ich das runde, kaum für zwei Mann und einen großen photographischen Panoramenapparat Platz gewährende Gipfelplateau betrat. Allein von N. drängte schon bedenklich dichtes Gewölk heran. Die Aufstellung eines solchen Apparates, besonders auf überfirntem Terrain, wo er gegen ungleiches Einsinken zu schützen ist, gestaltet sich stets zu einer schwierigen und zeitraubenden Arbeit. Hier mußte zudem wegen des ungenügenden Raumes Wenter erst in dem etwa 60 Grad geneigten, nach W. gerichteten Eishang des Gipfels einen zur Arbeit gesicherten Standpunkt für sich ausschlagen, für mich einen am entgegengesetzten Abhang, um mir die Bedienung des Objektivs zu ermöglichen. Es bedurfte auch sonst der Aufbietung besonderer Vorsicht, um Gefahr für uns und den Apparat abzuwenden und diesen endlich für die schwierige Aufnahme bereit zu machen. Von den vielen Panoramenaufahmen, die ich auf hohen Berggipfeln machte, war dies wohl die schwierigste. So verging denn eine geraume Zeit, bis alle für die Exposition nötigen Vorarbeiten erledigt waren. Inzwischen waren aber auch die herrlichen Formen der Gipfelregion bereits durch weiße Wolkenbänke verhüllt und erschienen wie geköpft. Stunde auf Stunde harrte ich nun mit meinem Begleiter auf der schmalen, windumtosten, eisigen Höhe aus, in der Hoffnung, daß die Macht der Sonne oder des Windes den neidischen Dunstmassen Herr würde. Aber die Qual dieses Ausharrens unter schwierigen Verhältnissen sollte nicht belohnt werden. Wagnis und Mühe wurden zu einem vergeblichen Opfer. Enttäuscht und verstimmt traten wir den schwierigen Rückweg an, ehe ihn die einbrechende Dunkelheit besonders gefährlich machen konnte. Noch ein zweites und ein drittes Mal (S. 107, 187) mußte dieser Leidensweg durchmessen werden. ehe das Werk endlich gelang. Auch beim dritten Male, wiewohl wir des Weges schon gewohnt und mit seinen Tücken vertraut, bereits um 101/2 Uhr vormittags die Gipfelhöhe

erreicht hatteu, fanden wir die Bergfirste durch von N. hereinbrechende Dunstmassen schon verhüllt, ehe der Apparat aufnahmsfähig war. Wiederum hieß es unter qualvollen Umständen bei scharfer Kälte warten in einer durch die Euge und Gefährlichkeit des Standpunktes erzwungenen Unbeweglichkeit. Dabei gestaltete die Zweifelhaftigkeit des Ausgangs das Warten zu einer noch schwerer zu tragenden Seelenfolter. Von Zweifeln und Sorgen beunruhigt. den Körper von eisigen Windstößen durchschauert, harrte ich auf diesem Orte meines Mißvergnügens wiederum nahezu fünf Stunden aus, die mir so lange wie Tage erschienen. Schon ließ wich das träge Beharren der Wolkenschichten auf den Kämmen befürchten, daß auch dieses letzte Zeitopfer, das ich zur Erlangung des begehrenswerten Lichtbildes noch bringen konnte, vergeblich sein würde, da erhob sich schließlich, als ich es kaum mehr zu hoffen durfte, doch noch ein Kampf von Wind und Sonne mit den Dunstmassen, den ich in äußerster Spannung verfolgte. Die Peripetien erfüllten mich bald mit freudiger Zuversicht bald mit entsagender Niedergeschlagenheit. Erst einer sehr kräftigen, plötzlich aus N. hereinbrechenden atmosphärischen Strömung gelang es, die stagnierenden Wolkenschichten zu lockern und nun wurde das Licht bald Herr über die Trübung. Die Dunstgebilde färbten sich rosig; sie wurden durchsichtig und lösten sich endlich nach oben völlig auf. Wie durch Zaubergewalt waren sie endlich entschwunden uud ein tiefblauer Himmel wölbte sich über das großartige Hochgebirge. Die hohen Kämme dehnten sich in strahlender Reinheit und ihre herrlichen Konturen schnitten scharf vom dunklen Firmament ab. Ungestört konnte nun die Arbeit zu Ende geführt werden. Als ihr Ergebnis entstand ein geographisches Dokument: das Pauorama des Südabhanges, Taf. 3.

Die kristallene Klarheit der Luft gestattete an jenem Tage besonders weiten Ausblick nach S. Man vermochte der Furche des vom Chigo-Gletscher abfließenden Baches durch die äußersten Züge des Berglandes zu folgen und erblickte jenseits des langen gleichmäßigen Walles des Dschargöß-Tau die großen Ansiedelungen von Turfan und Toksun inmitten des unregelmäßig verteilten dunkleu Grüns reicher Kulturen sich in der lichtgrauen, sonnenbeglänzten Ebene der Halbwüste breiten. Zwischen diesen beiden Oasen, noch tiefer im S. aus der Senke von Luktschun glänzte der Spiegel des großen Sumpfsees Bodschante-kul auf (S. 13 und 105). Der Unterlauf des Chigo-Tales erschien nun als breites grünes Alpental. Es erweckte mein Erstaunen, daß selbst so nahe dem Gluthauch der Wüstensteppe die Einwirkung des Gebirgsklimas sich noch kräftig zu behaupten vermag¹). Wie weit hinaus diese alpine Vegetationsdecke reicht, vermochte ich von meinem Standpunkte aus leider nicht genauer festzustellen. Jedenfalls aber war schon im Mittellauf des Tales kein Wald mehr sichtbar, weder am Talboden noch an den Gehängen, was übrigens auch den später im parallelen Gurban-bogdo-Tale gefundenen Verhältnissen entspricht (S. 127 f.).

Den Abfluß des Chigo-Gletschers sah ich als starken Bach zuerst nach O., dann nach SO., endlich energisch wieder nach SW. umbiegen. Der seinen Lauf begleitende dunkle Vegetationsgürtel gestattete jede Kurve auf der hellen Steppenfläche zu unterscheiden (S. 105, 108). Hinter den letzten Terrainwellen entschwand er meinem Blicke. Die Karten geben keinerlei Aufschluß über seinen Lauf (S. 33). Ich konnte aber später,

¹⁾ Ich verweise auf meine Schilderung des Sabawtschö-Tales (Vorläuf. Bericht 1. c. S. 54 f.). wo ähnliche, wenn auch nicht ganz so scharfe Gegensätze wie hier, sich geltend machen.

als ich auf dem Wege vom unteren Gurban-bogdo-Tale in die große Ebene austrat, das leuchtende Band eines Flusses beobachten, der zu den östlicheren der beiden im SO. des Sayopu-Sees sich dehnenden Seen träge durch sumpfigen Boden heranmäandert und in ihn einmündet.

Ich schließe hieraus, daß zur Zeit eines Hochwasserstandes der vereinigten drei Flüsse, welche die Kette des Dschargöß-Tau durchbrechen (S. 104 f.), ein Teil des überflutenden Wassers, dem natürlichen Gefälle des Bodens der wannenförmigen Senke am Fuße des Dschargöß-Tau nach W. folgend, periodisch den östlichsten dieser Relikten eines großen tertiären Sees erreicht.

Noch lange hingen meine Blicke wie gebannt an dem Aufbau der bewundernswert reich geformten Gipfelkuppen des gewaltigen Ostrandes des Chigo-Tales und an seinem Riesenabsturz von ca. 3000 m Höhe. Aus einem Netz von Wandschluchten und Rissen des dunklen Gesteins leuchtet noch immer das blendende Weiß, welches aus der reichen Firndecke des Kammes ernährt wird. Aber alle diese und die Firnfelder, welche noch heute in Hochmulden liegen, sind die verschwindenden Reste einer einst geschlossenen diluvialen Firndecke, welche sich unschwer aus deren sehr deutlich vor Augen tretenden einstigen Zusammenhang rekonstruieren läßt. Schon ein Blick auf das Panorama (Taf. 3) würde genügen, um die Überzeugung von einer tiefgreifenden und dauernden Klimaveränderung zu bekräftigen, von der diese Gegend betroffen wurde; nur einer solchen kann ein derartiger Wandel in so hoher Lage zu danken sein! Die Vorstellung, daß eine Erniedrigung der mittleren Jahrestemperatur dieser heißen und trockenen Gegend um wenige Grade genügen könne, um den alten Eismantel, der dieses Gebirge einst völlig einhüllte, wieder erstehen zu lassen, wird angesichts eines derartigen Bildes kaum überzeugend wirken.

Zum erstenmal sah ich von dieser hohen Warte aus auch die Art der Überfirnung der höchsten Teile in der östlichen Fortsetzung des Hauptkammes deutlicher, da infolge von dessen energischer Umbiegung nach OSO. und dann nach SO. (Kap. VI) hinter den sich erniedrigenden Ausläufern der Chigo-Talkette und durch ihre tieferen Einschartungen hindurch nun die hohen vergletscherten Gipfel, welche dem Hauptkamme angehören, noch in das Rundbild hereinragten. Als ich im Rückwege den Sattel wieder erreichte, konnte ich wahrnehmen, daß die beiläufig 600 m hohe Böschung des Gehänges bis hinab zum Gletscherboden keine derart steile ist, daß man nicht ohne besondere Schwierigkeiten dort hinab hätte gelangen können. Mit dieser Feststellung mußte ich mich jedoch begnügen, ohne einen Versuch zur Überschreitung des großen Eisstromes zu unternehmen, weil die täglich zunehmende Unbeständigkeit der Witterung befürchten ließ, daß ich auch bei längerem Verweilen in dieser Hochregion dennoch ihre weitere Durchforschung nicht hätte abschließen können, dabei aber die Lösung dringenderer Probleme wegen der Kürze der noch zu Gebote stehenden Sommerzeit gefährden würde.

Es herrschte während meines dortigen Aufenthaltes fast stets in den tieferen Lagen unter Tags Südwind, während er in den hohen Regionen meist aus N. wehte. Der aus den überhitzten Tiefen am Nordfuße aufsteigende Luftstrom, der begreiflicherweise einen größeren Feuchtigkeitsgehalt hat als der südliche, nahm im allgemeinen, doch nicht immer, auch eine bedeutendere Stärke an als dieser. Es kam vor, daß im Lager (3270 m Seehöhe) starker Südsturm herrschte verbunden mit Schneetreiben, während 400 m höher im Tale nur schwache Luftbewegung ohne Niederschläge beobachtet wurde. Einmal (23. August) brach im Tale

ein uugemein heftiges Gewitter los, begleitet von Hagel und Schneetreiben, während die Höhen über 5000 m hievon völlig verschont blieben. Die Spannungsunterschiede zwischen überhitzten Tiefen und erkalteten Höhen kommen meistens schon in den Lagen zwischen 3000 und 5000 m zum Ausgleich. Während jener Gewitterkatastrohe z. B. wurde alles Terrain innerhalb der erwähnten Höhengrenzen in ein dichtes, nach oben scharf abschneidendes Schneekleid gehüllt. Infolge der in den Abendstunden verstärkten Abkühlung der extremen Höhen fällt aber der Nordwind um diese Zeit herab, so daß im Tale bald nach sinkender Sonne böige Nord- und Nordwestwinde auftraten, verbunden mit leichtem Schneefall. Nachts gegen 10 Uhr legte sich aber gewöhnlich der Wind völlig und es wurde meistens sternenklar. Im übrigen verweise ich in Bezug auf einige Besonderheiten der Witterung im Hochgebirge auf Kap. II und XXII.

Die Tage, an denen die Witterungsverhältuisse Arbeiten in den Hochregionen nicht gestatteten, verwendete ich zur Orientierung in den tiefer gelegenen Gebirgsteilen, wobei besonders die Ränder des Gurban-bogdo-Tales eingehend untersucht wurden. Da dort, wie mehrmals hervorgehoben, die Felswände von der Talsohle bis zur Kammhöhe vom Eise geglättet sind, die ehemalige Firn- und Eisbedeckung aber nahezu entfernt ist, tritt der geologische Bau besonders deutlich in die Erscheinung. Es boten sich aber, außer den bereits in Kap. VI und weiterhin mitgeteilten, keine besonders erwähnenswerten neuen Tatsachen. Wiederholt zeigten sich im Südschenkel der großen Sattelfalte jene öfters erwähnten sekundären, kleinen Fältelungen und Schichtenverbiegungen, die jedoch das bekannte geologische Gesamtbild nicht weseutlich zu alterieren vermögen. Von anderen im Unterlaufe sich häufenden bedeutenderen Störungen und Unregelmäßigkeiten war S. 103 schon die Rede und Weiteres wird noch berichtet werden.

Infolge des schon geschilderten Stufenbaus (S. 83 f., 101 f.) im steilen Oberlaufe des Tales (Taltreppe) führen die periodisch herabstürzenden Hochwasser außerordentlich große Mengen von Schutt zu Tale, so daß dort, wo die Talsohle eine sanftere Böschung anzunehmen beginnt, die alten Glazialablagerungen mehr und mehr durch junges Alluvium überdeckt werden und die auf den Stufen gebildeten Seen (siehe früher), schon jetzt stark aufgefüllt, ihrer völligen Zuschüttung entgegen sehen. In den tieferen Lagen des Gurban-bogdo-Tales, wo das Gefälle ein gleichmäßigeres ist, zeigen sich die alten, wenn auch vielleicht nicht die ältesten Glazialablagerungen in ihrem überwiegenden Bestande freigelegt und sind auch so ziemlich in ihrer ursprünglichen Gestalt besonders in den Talweitungen erhalten geblieben. Namentlich ist dies der Fall bei der Mündung eines auch heute noch durch ansehnliche Vergletscherung ausgezeichneten, von W. einmündenden Seitentales, über welches ich schon (S. 90) das Wichtigste hervorgehoben habe. Die aus seiner Mündung austretende Stirnmoräne eines alten Nebengletschers hatte sich dort au eine offenbar zur gleichen Zeit aufgeworfene alte Endmoräne, welche einen längeren Stillstand im Rückzuge des Hauptgletschers bezeichnet, aufgestaut. Die Mächtigkeit und

¹⁾ Aus dem Umstande, daß diese Gruppe von Glazialablagerungen, wie aus Karte II ersichtlich wird, schon unterhalb der im Oberlauf abgelagerten, also jüngsten Gruppe der großen Endmoränenanhäufungen des Tales gelegen ist, darf man schließen, daß sie einem Rückzugsstadium der diluvialen Vereisung angehört, welches dem letzten unmittelbar voranging. Gerade dieser Phase der diluvialen Geschichte scheint aber, wie aus meiner Schilderung der Verknüpfung der Moränen auf S. 90 hervorgeht, wieder eine stärkere Gletscherentwicklung vorhergegangen zu sein. Dies steht in Übereinstimmung mit den

Abh. d. math.-phys. Kl. XXVII, 5. Abh.

Ausdehnung des Glazialschuttes ist daher dort recht bedeutend und die Formen des Bodenreliefs sind sehr unruhig; es hat sich dort ein Schuttgebirge in der Talsohle gebildet, das mit reichen Alpenwiesen und Strauchwerk bedeckt ist. Der Fluß hat sich mehr als 80 m tief darin eingeschnitten und zeigt in den zwei darin hinterlassenen Terrassenstufen (S. 92, 103) Stillstandsperioden im Verlaufe der Entwicklung oder zyklische Veränderungen seiner Erosionstätigkeit an (S. 99). Hinter dieser, einer der größten Stirnmoränen des Hauptgletschers, befinden sich zwar noch zwei bedeuteud kleinere, von denen jede etwa 100-150 m hinter der anderen zurückliegt; sie zeigen jedoch nur kleinere Phasen in der letzten Rückzugsgeschichte des Eises au, welche man vielleicht berechtigt ist, in Beziehung zu einer der Flußterrassen zu bringen, d. h. als gleichaltrig anzusehen. Auf die weiter talabwärts liegenden Stirnmoränen komme ich gleich zu sprechen. Festgestellt konnte werden, daß aus allen in den beiden Talrändern eiugeschnittenen Nebentälern, selbst in solchen, in deren Hintergrund nur mehr in Hochmulden Firnlager verbunden mit kleinen Gehängegletschern auftreteu (Taf. 13), bedeutende Mengen Moränenschuttes in das Haupttal hinausgefrachtet wurden. Da diese, im Haupttale sich ausbreitend, wenn sie uahe beieinander lagen, miteinander verschmolzen und gegen Moränenablagerungen des Hauptgletschers aufgestaut wurden, ja mauchmal wulstförmig über die Grundmoräne hinübergeschoben siud, so entstund fast im ganzen Mittellaufe des Tales ein Moräuengebirge von sehr mannigfaltigen Formen, dessen Überschreitung meiner Karawane öfters recht unbequem wurde. Auch für diese Zeugen eines großen Eisvorstoßes in der Bogdo-Ola darf das gleiche Alter angenommeu werden, wie für die eben erwähnten Bildungen; sie gehören dem vorletzten Vereisungsstadium an.

Auf den begrünten Decken dieser Moränenwälle und auf den breiten Terrassenstufen, welche darin liegen, werden öfters Umzäunungen von Winterniederlassungen der Kirgisen oder Torgouten bemerkbar (S. 131). Ein breiter, alter Bergsturzkegel am rechtsseitigen Talrande hat die Moränenanhäufungen auf einer langen Strecke überschüttet und vermehrt noch die Unregelmäßigkeit des Reliefs. Zahlreiche Quellen treten dort aus dem Gehänge heraus; da sie in den Geschiebelehm der Grundmoräne nicht erodieren können, versumpfen sie die Alpenböden auf weiten Strecken. Im Bett des tief eingeschnittenen Hauptflusses zeigen sich Anhäufungen von Blöcken, von denen jedoch nur wenige gerollt erscheinen: die meisten sind nur kantengerundet oder gar scharfkantig, da sie in überwiegender Menge der Grundmoräne eutstammen und demnach nur einen verhältnismäßig kurzen Trausport im Flußbett erlitten haben. Mit der normalen Erosionskraft des heutigen Flusses sind selbst derartige Blockbetten nicht wohl zu erklären; vielleicht aber auf periodisch vermehrte Wasserführung zurückzuführen.

Iu ähnlicher Weise liegen die Verhältnisse auf einer Strecke von 6—7 km vom Lager abwärts. Im Niveau von ca. 2450 m werden die Moränenanhäufungen wieder besonders mächtig. Es ließ sich erkennen, schon aus der vorgeschrittenen Zersetzung der Gesteine und aus der starken Lehmbildung in den höheren Teilen daß hier die Stirnmoräne eines weit älteren Eishochstandes dem Anscheine nach während des Rückzuges abgelagert

Verhältnissen der Erosion am Nordabhang, welche ich auf S. 98 zum gleichen Stadium gezogen habe und schließt sich auf das beste an die Entwicklungsgeschichte der Vereisung des Nordabhanges an, wie ich sie S. 147. 148, 160 darlegte.

wurde. Die Talrinne wurde hiedurch derart aufgefüllt, daß der Fluß etwas nach SO. abgelenkt und nun iu einer jugendlichen Engschlucht steilgestellte schiefrige Gesteine durchbricht (S. 103), welche von Dr. Glungler als Quarzitschiefer bestimmt wurden (siehe Kap. XXI). Ich habe von diesem Teile des Tales in Kap. XI (S. 91 f.) und XII (S. 102 bis 106) die wichtigsten morphologischen Erscheinungen hervorgehoben. Des verständlichen Zusammenhangs halber kann ich in den folgenden Ausführungen wenigstens einige Wiederholungen nicht ganz vermeiden.

Alle diese Moränenauhäufungen, welche den ganzen Bestand der Gesteine des Gebirges enthalten, haben zwar durch spätere Erosion sehr unregelmäßige Formen angenommen; doch ließ sich beim Überblick von einem hohen Rücken des linken Ufers, welcheu ich übersteigen mußte, um der Flußverengung auszuweichen, erkennen, daß es sich, wie erwähnt. hier um Reste einer sehr alten Stirnmoräne von ungemein großer Ausdehnung handelt; sie füllt die Talsohle auf eine Länge von mehr als 2 km aus und breitet sich abwärts, wo das Tal beträchtlich auseinandertritt (ca. 2300 m), auf einer Längserstreckung von beiläufig 1 km auch infolge von Auswaschung fächerförmig aus. In der Verengungsstelle schätze ich ihre Mächtigkeit auf etwa 150-200 m. Etwas oberhalb von der Stelle, wo ich von der Ausweichstelle durch ein Nebental (siehe Karte II) wieder in das Haupttal eintrat, schneidet der Fluß tief in diese Ablagerung ein, so daß ihre Zusammensetzung einigermassen erkennbar war. Ich konnte aber nicht wahrnehmen, daß der Fluß den Felsgrund erreicht. Zwei Terrassenstufen liegen dort, wie auch weiter talaufwärts, im orographisch rechten Gehänge übereinander und ziehen talauswärts (S. 91, 103), Stillstandsperioden oder Veränderung in der inter- und postglazialen Flußerosiou bezeichneud. Ganz sicher ist es nicht festzustellen gewesen, ob in dieser Endmoränenanhäufung Zeugen einer Phase des Rückzugs nach dem maximalen Hochstand des diluvialen Gurban-bogdo-Gletschers zu sehen sind oder Kennzeichen eines erneuten Eisvorstoßes nach Ablauf der Maximalvereisungsperiode. Auch in den geweiteten Mündungen der Nebentäler zu beiden Seiten sieht man hier beträchtliche Anhäufungen von Glazialschutt: teils Reste von Stirnmoränen teils von Grundmoränen der früheren Nebengletscher. So fand ich das Seitental, durch welches ich unterhalb der Blockierungsstelle des Haupttales wieder in dieses austrat, von solchem offenbar sehr altem Glazialschutt stark aufgefüllt. Zahlreiche Quellen treten dort aus dem lehmigen Untergrund zutage und eine reiche Strauchvegetation, besonders sehr hohe Weidensträucher und Espenbäume haben sich darauf angesiedelt. Mein Tiroler Begleiter Wenter hatte, um der Enge auszuweichen, verführt durch den Umstand, daß das Terrain am rechten Ufer für die Lasttiere leichteres Überschreiten versprach, mit der Karawane einen anderen Weg eingeschlagen, der aber einen mehrere Stunden erfordernden Umweg bedeutete; die Richtung ging seitwärts nach W. über eine buchtförmig in die hohen Talränder eingreifende, höchst eigenartige, niedere Vorstufe mit sehr unregelmäßiger, durch Verwitterung streckenweise in ein Blockmeer verwandelter, von verschiedenen höheren Kuppen mannigfach durchsetzter Oberfläche, so daß er an der Peripherie dieser in Karte II erkennbaren Schwelle, entlang dem Steilufer eines umrandenden Flußtales die Hindernisse umgehen mußte. 1) Uber einen

¹) Diese eigenartige Oberflächenform, mitten in einem ganz anders gearteten Relief, besitzt die Gestalt eines niedrigen Sockels von 3 km Breite und 2 km Länge, rings umgeben von weit überragenden Gebirgsrücken. Da ich das Gelände nicht selbst überschritten habe, konnte ich von seiner Zusammensetzung und seinem Bau nur das Stück des Ostrandes sehen, der zur Schlucht des Gurban-bogdo-Flusses abfällt. Danach

kleinen Paß 120 m über der Talsohle gelangte er sodann in das Quellgebiet eines entgegengesetzten umrandenden Nebentales und an dessen Steilrand entlang, hernach in der Talsohle selbst marschierend, erreichte er wieder das Hanpttal. Wenter fand an beiden Mündungen der Nebentäler alte begrünte und bewachsene Moränen, also ganz ähnliche Verhältnisse, wie ich ihnen auf meinem Wege an der anderen Talseite begeguete.

Aus dem Komplexe aller dieser Moränenanhäufungen haben sich mächtige Schottermassen weit hinaus im Tal verbreitet (S. 92, 103), in welchen sich die in den Glazialablagerungen des Mittel- und Oberlaufes liegenden zwei Terrassenstnfen fortsetzen. Demnach sind sie im ganzen Tallaufe eine konstante Erscheinung als Zengen von Schwankungen in der spät- und postglazialen Wasserführung und Talvertiefung. Die Tiefenerosion des heutigen Flusses, der nur eine verhältnismäßig enge Furche in der glazialen Akkumnlationsmasse des Mittel- und Unterlaufes, nnr eine schmale Rinne im Felsenbett des Oberlanfes (S. 102) znstande gebracht hat, überhanpt die höchst nnregelmäßige Gefällskurve des Gurban-bogdo-Tales denten zusammen mit den andauernden, z. T. rapiden Rückzng (S. 90, 99) der Gletscher daranf hin, daß wenigstens zur Zeit die Klimaverschlechterung noch im Fortschreiten begriffen ist. Daß die Verhältnisse am Nordabhang nicht viel anders liegen, wurde bereits nachgewiesen. In solcher Weise traten mir auf der Wanderung durch das Gurban-bogdo-Tal die Zeugen des wechselreichen Verlaufs der letzten diluvialen Vereisung und ihr Znsammenhang mit einer rasch eingetretenen (S. 80, 99, 106) und rasch fortschreitenden Klimaverschlechterung deutlich vor Angen. Ich habe aber schon früher nachgewiesen, daß die ganze Anlage der Täler, besonders des Südabhanges (S. 87, 92, 97, 99 f.) nnr mit der Wirksamkeit ehemaliger weit bedeutenderer Flüsse¹) erklärt werden kann. Die große Vereisung fand fertige in einer feuchtigkeitsreicheren Zeit entstandene und ausgebildete Täler vor, in welche sie ihre Spnren eingrub, ihre Ablagerungen hinterließ. Es ist aber wahrscheinlich, daß unter diesen sich noch Reste alter Flußablagerungen finden, die vom Eise nicht ansgeräumt wurden, und möglicherweise nnter diesen noch Ablagerungen der frühesten Vereisung? (S. 92).2) Da

zu schließen besteht er aus den gleichen steilgestellten Quarzitschiefern, wie die ganze Umrandung der Schlucht. Man kann sich die Entstehung dieser von hohen Steilrändern umgürteten Stufe nur als durch einen polygonalen Einbruch entstanden erklären, der in engem genetischen Zusammenhang steht mit den tektonischen Störungen, welchen, wie auf S. 103 f., 171 f., 187 berichtet wurde, die Richtung und Gestalt eines großen Teiles des Gurban-bogdo-Tales beeinflußt haben(siehe auch S. 41, 56). Mit der tiefgreifenden Wirkung, die das Absinken im Süden, in den zentralasiatischen Graben, auf das ganze Gebirge ausübte, stehen solche kleinere Niveanverschiebungen wohl im Einklang. Aus dem Umstand, daß die Decke des Sockels über die Köpfe steilgestellter verschieden harter Schichten hinwegläuft, erklärt sich ihre höchst unregelmäßige Ausbildung. Den gegen das höhere Gebirge abstoßenden Bruchrändern folgt im O. der Gurban-bogdo-Fluß, im Norden und Süden die Seitentäler, wie sie in Karte II eingetragen sind, an deren Rändern entlang (siehe oben) der Wenter'sche Weg führte.

¹⁾ Siehe auch Note S. 80.

²) Im Zusammenhang mit dem noch fortschreitenden Absinken am Südfuße des Tian-Schan, den ehemals kräftigen, klimatischen Schwankungen und der Mächtigkeit und auffälligen Ungleichartigkeit der Schotter im Gurban-bogdo-Tal (Genaueres hierüber später) würden diese Verhältnisse sich mit der Hypothese gut vereinbaren, die O. Ampferer (Über einige Grundfragen der Glazialgeologie, Verhandlg. d. K. K. Geolog. Reichsanstalt 1912. Nr. 9) hinsichtlich des Inngletschers und anderer diluvialer Alpengletscher vertritt. In verwandtem Sinne faßt einen solchen Wechsel der Ereignisse bezüglich des Arkansas-Tales Stephen R. Capps auf (Pleistocene Geology of the Leadville Quadrangle, Colorado. Bull. 386 of U. S. Geolog. Survey 1909, S. 15 f.), kommt jedoch zu etwas anderen Ergebnissen als Ampferer. Die Unabhängigkeit

aber, wenigstens soweit meine Beobachtungen gehen, die Tiefenerosion der heutigen Flüsse die Moränen und fluvioglazialen Ablagerungen nicht bis zum Grunde durchschnitten hat (S. 91, 103 f.), so kann ich in dieser Hinsicht nur einer Vermutung Ausdruck geben.

Mehr als 15 km talabwärts von der beschriebenen letzten großen Endmoränenablagerung reichen diese Schotter; ihr Zusammenhang ist durch zahlreiche Einbrüche periodischer Wasserläufe und durch einige ständige Flußläufe öfters gestört. Die Terrassenstufen sind breiter am rechten als am linken Ufer, was durch den nach W. im großen ganzen eine konkave Linie beschreibenden Lauf des Hauptflusses erklärt wird. Die Decken der Hochterrassen sind fast horizontal und sehr gefestigt, manchmal tischeben und mit Kies und lockerem Geröll bedeckt; ihr ausgebrannter Boden erscheint durch weit auseinanderstehende Wüstensträucher von Kugelform wie gesprenkelt. Nur sehr allmählich dacht diese ungeheure Schotteranhäufuug gegen S. und SW. ab. Noch einige Kilometer unterhalb der großen Endmoräne ist der sehr reißende Fluß beiläufig 100 m tief darin eingeschnitten; weiter talabwärts nur mehr 70-80 m, ohne daß ich irgendwo anstehendes Gestein in seinem Bett bemerken konute. Der Betrag postglazialer Erosiou reicht also nicht zu solcher Tiefe hinab. Die Abbruchwände gegen den Fluß sind meist nahezu senkrecht. Im Niveau von etwa 1800 m treten die Ufer weit auseinander, das Gefälle nimmt stark ab. Der Fluß verläuft in eugen Mäandern und verzweigt sich dann bald in mehrere Arme. Dort dehnen sich reich mit Weiden, Pappeln und Espenbäumen, sowie mit vielem Buschwerk bestandene, flache, sumpfige Auen (Kapitel XIII, S. 127 f.), deren dunkles Grün einen angenehmen Gegensatz zu deu wüstenhaften, steinigen Böden der Terrassen bildet, über welche mein Weg meistens dahinführte. Auch dort, wo ich in die Auen hinabstieg, vermochte ich anstehenden Fels im Flusse nicht zu ermitteln und konnte deshalb nirgends den vollen Betrag der Schotteranhäufung mit Sicherheit feststellen. Jedenfalls entspricht ihre außerordentliche Mächtigkeit und Ausdehnung durchaus dem Ausmaße und der Bedeutung der Glazialwirkungen, welche dem ganzen Oberlaufe des Tales sein eigentliches Gepräge verleihen. Daß aber der diluviale Gletscher noch weiter hinabreichte, dafür zeugen beträchtliche, unregelmäßige Anhäufungen von Moränenresten, welche ich in einem 11/2 km oberhalb einer verfallenen chinesischen Kupferschmelze (S. 92, 101 etc.) von rechts einmüudenden, heute nur periodisch Wasser führendeu Tale antraf und noch weit größere Moränenablagerungen, die in unmittelbarer Nähe dieser alten Werkanlage, wenn auch vielfach zerschnitten, erhalten geblieben sind, anscheineud geschützt durch die Buchtform der Talränder (Seehöhe 1725 m). Die Gesteinsfragmente, auch große Blöcke dieser Glazialbildung zeigen besonders in den äußeren Teilen der Ablagerung einen noch viel stärkeren Zersetzungsgrad, wie die der vorher beschriebenen Moränen; viele sind bis ins Innere zermürbt. Ein hieraus entstandener brauner Lehm bedeckt ringsum das Gelände, das stark versumpft ist. Auch unter Berücksichtigung der zweifellos stärkeren Einwirkung klimatischer Kräfte in solch tiefer Lage kann man dieser Glazialablagerung jedenfalls ein sehr hohes Alter zusprechen. Auf Grund des Hochstandes des diluvialen Eises in diesem Tale, dessen Mächtigkeit nach der Höhe der Gletscherschliffe in den Talwänden zu schließen (S. 84, 91, 188f., 193), mit 400-450 m vielleicht noch wesentlich zu gering eingeschätzt ist,

der Schotterdecken von den Endmoränen vertreten neuerdings auch E. Moesch. Die große Eiszeit in der Nordschweiz (Beiträge z. geolog. Karte d. Schweiz, Lief. 31, 1911) und F. Nußbaum (vergleiche Zeitschrift f. Erdkunde, Berlin 1914, S. 761 f.), sowie andere Schweizer Glazialgeologen.

kann es keiuem Zweifel unterliegen, daß der diluviale Eisstrom noch viel weiter hinaus, sicherlich noch in die Ebene gereicht haben muß (S. 92, 93, 104). In diesem Gebiete aber läßt sich nicht erwarten, daß die Ablagerungsspuren der Eiszeit heute noch sichtbar erhalten geblieben sind. 1)

Der besondere Eigentümlichkeiten zeigende Charakter der fluvioglazialeu Schotter verdient einige Betrachtung: Zusammensetzung und Beschaffenheit ist eine sehr ungleichartige; besonders in den nahe der Endmoräne liegeuden Teilen läßt sich infolge des Vorwaltens großer, wenig gerundeter Blöcke und vielen Lehms die Ablagerung nur schwer von wirklicher Moräne unterscheiden. Gerundete und nahezu kantige Blöcke erscheinen dort fast in gleicher Menge und es ist bezeichuend, daß gerade diese moränenartigen Teile ein steileres Gefälle zeigen, als benachbarte feinkörnigere, mehr schotterähnliche Partien, so daß man hier wohl von einer Verknüpfung von eigentlicher Moräne mit Schottern sprechen darf. Da ich aber auch etwas weiter talauswärts an einigen Stellen ähnliche Verhältnisse, wenn auch in wesentlich kleiuerem Maße beobachten konnte, erkläre ich mir diese Vorkomunisse durch kleinere Schwankungen, also späte kürzere Eisvorstöße während der Rückzugsperiode, wo dann mit Moränenschutt stark belastete Eisteile abgetrennt und als totes Eis zurückgeblieben waren, uach dessen Vernichtung die Moränentüberlagerung in situ verblieb.

Anderseits kommen aber auch an manchen Stellen Anhäufungen kiesartig feinen Gerölles mit Sand und Lehm vor, Ablagerungen, welche ich allerdings nur in der Nähe von Mündungen einiger Nebentäler beobachtet habe. Dieses feinere Material scheint mir daher in buchtartigen Erweiterungen der Talränder niedergeschlagen zu sein. Im großen ganzen ist es bei aller Unregelmäßigkeit der Mischung nach Größe des Materials sowohl, als nach Bestand aus gerundeten und fast noch kantigen Geschieben doch unverkennbar, daß nach außen, also talabwärts, die Korngröße abnimmt und nur dort, wo aus Nebentälern eine starke Zufuhr von Material stattfand, dieses Verhältnis unterbrochen wurde. Auch zeigt sich nur in den höchsten Lagen vorherrschend feines Korn, während in den mittleren manchmal ganz plötzlich wieder grobkörnige Partien auftreten.

Auch der Grad der Verfestigung dieser Schuttmassen ist in den einzelnen Teilen verschiedenartig. Lockere Partien wechseln mit mehr verfestigten, was wohl, da solche verfestigte Schichten nicht durchhalten, nur auf besondere lokale Anhäufung kalkhaltiger Gesteinstrümmer (Kalksilikathornfelse) zurückzuführen sein mag. Ausgesprochen konglomeratisch verfestigte oder Nagelfluhbänke sah ich aber nicht. Diese große Unregelmäßigkeit iu Beschaffenheit und in der Lagerung läßt auf mannigfachen Wechsel der Wasserführung während der Rückzugsperioden des Eises schließen, der späten klimatischeu Schwankuugen entsprechen dürfte, welche auch mit späten Vorstößen einzelner Nebengletscher verbunden gewesen sein mögen.

Nur eingehendere Untersuchung, wozu mir zumal bei der schweren Zugänglichkeit der Einschnitte nicht genügend Zeit zu Gebote stand, könnte mehr Klarheit und Sicherheit in die Beurteilung dieser verwickelten Verhältnisse bringen und vielleicht zu einer ganz genauen chronologischen Gliederung der glazialen und fluvioglazialen Bildungen dieser

¹⁾ Vorläufige Ergebnisse etc. Petermanns Mitteilungen, Ergänzungsheft 149, S. 35, 37, 41, 42, 52, 98. Zeitschrift Berliner Gesellschaft für Erdkunde, Jahrgang 1910, S. 236, 305, 313. Hettners Geographische Zeitschrift 1912, S. 8, 9, 16, 17.

Gegend führen, denen ein ziemlich ungleichartiges Alter zuzukommen scheint. Auch die Flußerosion, deren Wirkung die beiden Terrassenstufen zu danken ist, kann zwar als jugendlich angesehen werden, weil diese Stufen gleichsinnig in dem Schotter wie in der Moräne liegen (S. 91 f., 103), aber allen Anzeichen nach entspricht jede Stufe einer besonderen Klimaschwankung des ablaufenden Diluviums. In dieser Hinsicht ist zu erwähnen, daß ich im Oberlaufe des Tales auf der ebenen Decke der oberen Terrassenstufe, die in Moräne liegt. Reste von jüngerer Moräne aufliegen fand, was natürlich nur durch einen späteren nochmaligen Vorstoß des Eises, vermutlich von einem Nebengletscher kommend, erklärt werden kann.

Bezüglich der im Unterlaufe des Tales obwaltenden geologischen Verhältnisse habe ich die wichtigsten Tatsachen bereits in früheren Kapiteln hervorgehoben. Nur über die Störungszone sind noch einige ergänzende Einzelheiten nachzutragen. Aufwärts von der Stelle, wo die Obstruktion des Haupttales durch Glazialschutt stattfindet (S. 194f.) und wo der beschriebene polygonale Einbruch, sowie die Ablenkung des Flußlaufes stattfindet, ist das allgemeine Streichen der Gesteine noch nahezu unverändert W.-O. mit geringer Abweichung nach N. und bis dahin reicht auch die große Sattelfalte, wie aus Taf. 17, Profil IV zu ersehen ist. Innerhalb ihres Baues liegen hier nur Schichtenknickungen und Verbiegungen. Es folgen nun talabwärts die schon beschriebenen kleineren Verwerfungen in beiläufiger Richtung NO.-SW. und zwar nur in der linken Umwallung, die gegen das rechte Ufer abstoßen (S. 187). Es ist nun sehr bezeichnend, daß alle die auffälligen Störungen, der Einbruch und die gleich näher zu beschreibenden kleinen Längsbrüche alle innerhalb der Zone liegen, wo die Sattelfalte in eine ziemlich enge Mulde umbiegt und daß mit dem abermaligen Umbiegen des Schichtenkomplexes zu einem Sattel die Verhältnisse beginnen wieder normal zu werden. Unmittelbar bei der Stelle, wo mich mein Weg aus dem Nebental — dort Streichen W.—O. schwach nach S. abgelenkt, und Fallen 70 Grad S. - wieder in das Haupttal führte, beginnt ein energisches Absinken des Gebirgskomplexes nach S. und gleichzeitig wird ein völlig verändertes, höchst unruhiges geologisches Bild entschleiert. In einem unmittelbar folgenden linken Nebental von Richtung NO.-SW., das einer Verwerfung folgt, sind die Schichten auf den Kopf gestellt, fallen nach N. und S. weg und sind schief zur ursprünglichen Streichrichtung verschoben, so daß das Streichen bald OSO, bald WNW, geht. Ähnliche seltsame geologische Bilder machen sich auch noch eine kurze Strecke weiter talabwärts innerhalb dieser Störungszone bemerkbar, wo in den umgekippten Schollen mehr N.-Fallen überwiegt, bis dann eine neue Sattelfalte mit regelmäßigem N.-Fallen anhebt, die aber im Vergleich zur großen Hauptfalte weit geringeres Ausmaß aufweist. Auch die folgenden Falten werden in Richtung nach S. zunehmend enger bei stetig abnehmender Höhe der Talränder, wobei es für das Absinken nach S. bezeichnend ist, daß die Südschenkel der Falten stets kürzer und steiler sind als die Nordschenkel.

Die Gesteinsfolge entspricht sehr annähernd derjenigen im N.; doch finden sich die Äquivalente der Gesteine des Nordens im S. infolge des starken Absinkens des ganzen Baues in einem etwa 800 m tieferen Niveau als dorten (S. 40, 60). Dabei ist die Umwandlung der einzelnen Glieder des Schichtenbaus, beeinflußt durch Dynamometamorphose sowohl, als durch Kontaktwirkung (siehe Kap. XXI), eine viel weiter gehende. Auch die Zersetzung der Gesteine des Südens ist eine wesentlich tiefer greifende, schon wegen der

stärkeren klimatischen Einwirkung, welche durch die Zerrüttung in der Bruchzone begünstigt wurde. Nichtsdestoweniger war es ermöglicht, die Parallelisierung der einzelnen Glieder der nördlichen mit der südlichen Folge zu sichern.

Es sind nur vereiuzelte im S. auftretende Elemente des Gesamtbaues, welche am Nordabhang nicht oder doch uur wenig vertreten sind. Zu den ersteren zählen hauptsächlich die Quarzkeratophyre (Kap. XXI) und zu den letzteren die kupferhaltigen Gesteine (Epidotskarn), welchen wir am Nordabhang (siehe S. 139) zwar als Grabschmuck in Ansiedelungen am Fuße des Gebirges begegnet waren, die wir aber auf unserem Wege durch das Gebirge nicht anstehend finden konnten, woraus auf eine geringe Verbreitung geschlosseu werden darf. Am Südabhang traf ich solche unmittelbar unter der höchsten Kammregion und zwar dort, wo Gänge eines Eruptivums sich verzweigen, das von Dr. Glungler als Cordieritliparit beschrieben wird. Die dort geschlagenen Stücke haben aber bei Weitem nicht den hohen Kupfergehalt, den ähnliche Gesteine aufweisen, welche tiefer unten iu einem linken Nebeutale in der Nähe von Lager g anstehend in Verbindung mit Quarzkeratophyr angetroffen wurden, besonders aber solches Material, welches noch unverhüttet in großen Haufen bei einem Schmelzwerke lag. Wie mir später vou den Bewohnern der kleinen Festung (S. 129) am Sayopu-See mitgeteilt wurde, stammt dieses aus einem orographisch rechten Seitental, das wenige Kilometer oberhalb der verfallenen Bauten einer schon mehrfach erwähnten großen chinesischen Kupferschmelze eiumündet. Dieses Gestein (siehe Kap. XXI) mit starkem Auflug von Malachit oder auch von Kupferlasur hat einen sehr hohen Kupfergehalt, so daß bei einigermaßen sachgemäßer Verhüttung solche als sehr lohuend sich erweisen müßte. Allein bei den unglaublich primitiven Methoden der Chineseu, wie ich sie auch in verschiedenen weit auseinander gelegenen anderen Teilen des Tian-Schan antraf (Kiukönik-Tal, Muis-Tal, Tugarak-dan etc.) scheint auch die Verarbeitung so reicher Erze wie die des Gurban-bogdo-Tales nicht nutzbringend zu sein. Weuigstens waren die nahe am Ausgang des Tales errichteten ausgedehnten Bauten dieser Kupferschmelze (Taf. 14 Fig. 1) in mehr oder weniger starkem Zustande des Verfalles und wir fanden sie gänzlich von Menschen verlassen. Berge von schwarzen, glasigeu Schlacken mit grünlichem Malachitüberzug umgeben die in einem trostlosem Zustande befindlichen umfangreichen Bauten. Auf einigen isolierten Kuppen, deu durch Wassererosion getrennten Teilen eines alten Endmoränenzuges (S. 197 f.) sah man kleine zierliche Tempelchen, welche für die ehemals zahlreiche chinesische Arbeiterbevölkerung und die Beamten errichtet waren, nunmehr aber das Schicksal des Verfalles der Werkbauten teilen.

Man hatte mir am Nordabhang versichert, das Werk sei noch im Betrieb und mehrere huudert chinesische Arbeiter seien dort beschäftigt. In der Veste Sayopu behaupteten die Leute, es sei erst im Laufe des Jahres durch Hochwasser zerstört und dann verlasseu worden. Der Zustand der Bauten und die Ansiedelung von Pflanzenkolonien auf den meisten Schlackenauhäufungen sprachen gegen eine solche Annahme. Allein das ausgedehnte Innudationsgebiet des Flusses und die Umstände, unter welchen ich es antraf, deuten wenigstens darauf hin, daß durch Hochwasser häufig Beschädigungen vorgekommen sein müssen und daß hiedurch verursachte wiederholte Unterbrechungen des Betriebes vielleicht einen Grund für das Verlassen des Werkes gegeben haben können.

Zweifellos verursachen schon die wilden sommerlichen Stürme im Hochgebirge, von denen ich wiederholt berichtet habe (S. 105, 126, 128, 159, 193), — ganz abgesehen von den

alljährlich zur Zeit der großen Gletscherschmelze (S. 93 f., 99) katastrophal herabstürzenden Fluten des Hauptflusses — die als Folge der besonderen hier obwaltenden extremen klimatischen Verhältnisse häufig in den Sommermonaten sich einstellen, öfters plötzliches, außerordentlich starkes Anschwellen des Flusses, der dann, seine Ufer überschreitend, die Auen seiner Umrandung mit verheerender Gewalt überflutet.

Das 100—120 m breite Flußbett bot zur Zeit, als ich die Örtlichkeit besuchte, ein Bild grauenhafter Verwüstung. Es war erfüllt von einem Chaos von Felsblöcken und Trümmern, teilweise von außerordentlicher Größe, von Anhäufungen entwurzelter Baumstämme, Sträuchern, Wurzelwerk und Schlamm. Das Aussehen eines großen Teiles der angeschwemmten Bäume deutete darauf hin, daß sie schon längere Zeit hier lagen, also vielleicht während der letzten Frühjahrsschneeschmelze oder noch früher herbeigefrachtet wurden. Andere aber erwiesen durch den noch erhaltenen grünen Schmuck des blättertragenden Gezweiges, daß sie erst vor ganz kurzer Zeit hierher geschwemmt waren, von Hochwassern, deren Entstehung offenbar mit den von mir im Gebirge erlebten Stürmen zusammenhing. Die Gewalt der herabgestürzten Gewässer muß eine furchtbare gewesen sein: darauf deuteten auch auf meinem Wege weiterhin zum Sayopu-See die noch wenig konsistenten, weil noch nicht völlig trockenen, tischebenen Tonflächen (S. 128), welche dort ein weites Gebiet bedeckten und in der anschaulichsten Weise die Entstehung des Takyrbodens durch den Schlaum solcher Schichtfluten lehren.

Angesichts dieser sogar in der gegenwärtigen ariden Klimaperiode noch bestehenden Verhältnisse kann jedenfalls die besondere Mächtigkeit und Ausdehnung fluvioglazialer Schotter in dieser Gegend nicht überraschen. Solche sind auch in der Nähe der Kupferschmelze am Fuße der Talränder in zwei hohen Stufen ausgebildet, wie aus Taf. 14, Fig. 1 ersichtlich ist. Daneben sind aber, wie ich eben (S. 197 f.) hervorgehoben habe, auch unzweifelhafte Moränen hier erhalten geblieben, aus deren Lage und Verbreitung sich der am tiefsten herabreichende, wenigstens teilweise erhaltene Endmoränenwall in seiner ursprünglichen Gestalt trotz seiner argen Deformierung durch Erosion dennoch unschwer rekonstruieren ließe. Da das Niveau, in welchem die Moräne angetroffen wurde, wie erwähnt 1725 m beträgt, würde sich für den diluvialen Gurban-bogdo-Gletscher eine Länge in Luftlinie von etwa 25 km ergeben. Aus meinen früheren Ausführungen (S. 92, 93, 104, 197) geht aber hervor, daß auf noch weit tieferes Hinabreichen der alten Gletscher geschlossen werden darf.

Für das Vorhandensein von Grundmoräue bei der Kupferschmelze spricht die starke Versumpfung in der dichten Vegetationsdecke selbst höher gelegener Uferteile durch kleine Bäche, deren Wasser auf der Lehmschichte des Moränenbodens sich nach allen Richtungen verzweigt, ebenso die reiche Besiedelung der Flußumrandung mit prächtig entwickelten, tief wurzelnden Bäumen (Weiden, Pappeln, Espen und Eleagnus), welche zusammen mit Buschwerk wahre Dickichte bilden (S. 128, 197). Daß auch die Moränenbildungen, welche nahe den Mündungen eines unweit im W. parallel ziehenden großen Quertales beobachtet wurden (siehe Karte II), dem gleichen Altersstadium angehören, wie die schon beschriebenen (S. 197) von der Kupferschmelze, ist ihrer Beschaffenheit nach wahrscheinlich. Indessen konnte wegen Mangel an Zeit nicht tiefer in das Tal eingedrungen werden, um festzustellen, wie ihr Verhältnis zu etwa dort vorhandenen Terrassenbildungen sei, was einen Schluß auf ihre Zugehörigkeit zu einem bestimmten Stadium der Vereisung erlaubt hätte. Es ist zu beachten, daß beide Moränengruppen in reifen Tälern liegen,

die demnach schon fertig ausgebildet waren zur Zeit, als die Gletscher bis in diese Tiefen herab stießen (S. 92).

Der Verlauf des erwähnten Paralleltales wurde, da wir es nur an seiner Mündung betraten, in die Karte nur gestrichelt eingetragen. Ich sah durch die breite Lücke seiner Mündung bis hinauf zu den Bergen seines Ursprungsgebietes, welche ungeachtet des dort schon tief abgesunkenen Hauptkammes, auch auf ihrer Südflanke noch reichen Firnschmuck zeigen. Weiter talauswärts tritt nun das die Ränder des Gurban-bogdo-Tales bildende Gebirge breit auseinander und ist iu einzelne Schollen zerlegt, die gegen S. an Höhe allmählich verlieren; sie gruppieren sich zu einem weit gedehnten Bogen, der eine große abdachende Ebene von wüstenhaften Charakter umschließt. Der Faltenbau ist auch in diesen absinkenden Ketten noch erkennbar (siehe S. 104). Die fluvioglazialen Schotterterrassen verbreitern sich, sind mehr und mehr zerstört und verlieren sich endlich unter jüngeren Aufschüttungen. Hier treten nun am Fuße der niederen auslaufenden Gebirgsketten, die aus kalkigem Schieferton, Tonschiefer und Quarzitschiefer bestehen, Konglomerate auf (siehe S. 76 f., 104), die fast ausschließlich von ziemlich feinkörnigem und kantigem Material gebildet werden, das durch ein stark toniges, etwas sandiges Bindemittel verkittet ist; stellenweise überwiegt der Quantität uach das Bindemittel die Eiuschlüsse und bildet überhaupt mit wenig Geröllen die obere Decke. Das Material entstammt dem Schichtenbau der erwähnten dahinter aufrageuden niederen Ketten und hat jedenfalls keiuen weiten Transport erlitten; nur wenig hievon kam aus den höheren Gebirgsteilen; solche Fragmente. die gewöhnlich auch etwas größer sind, haben aber meist gerollte Form. Der Härtegrad dieses Konglomerates ist ziemlich beträchtlich, seine Färbung meist gelblichgrau bis bräunlich. Die Schichtung ist an vielen Stellen deutlich und fast durchweg beiläufig horizoutal. Kreuzschichtung kommt, soweit ich sehen kounte, nicht vor, ebensowenig waren andere Unregelmäßigkeiten bemerkbar, welche an Deltabildung erinnern könnten. Auch Anzeichen von späteren Störungen der Lagerungsverhältnisse sind nicht vorhanden. Das Zurücktreten von Sand uud Rollkies schließt auch den Gedanken an Seeablagerung aus.

Ungefähr 4 km führte mich mein Weg entlang dieser Bildungen, worauf ich nach SW. abschwenken mußte. Soweit sich im unerträglichen Sonnenglast der Wüstensteppe die Terrainformeu ringsum überblicken ließen, scheinen sich aber diese Konglomeratbäuke noch weiterhin fortzusetzen. Durch Erosion junger Nebeuflüsse, deren Betten heute trocken sind, vermutlich aber periodisch noch Wasser führen, sind sie stark zerschnitten. So überschritt ich auf meinem Wege ein ca. 100 m breites Trockenbett. Die Flüsse sind demnach jünger als die Konglomerate. Die gesamte Mächtigkeit dieser Bildung läßt sich bei ihrer fast horizontalen Schichtung nicht wohl feststellen, weil wir nicht wissen können, wie tief sie in der Aufbreitungsdecke des Wanneubodens hinabtaucht, von dessen Zusammensetzung später die Rede sein wird. Es ist aber berechtigt, eine bedeutende Mächtigkeit für die den Wannenboden auffüllenden Seeablageruugen anzunehmen und infolgedessen auch ein tiefes Hinabreichen der Konglomerate. Alle Umstände scheinen mir dafür zu sprecheu, daß diese Gebilde in einer Trockenperiode abgelagert und später in schwach bewegtem oder stagnierendem Wasser verfestigt wurden. Nach meiner schon früher geäußerten Auffassung (siehe S. 92, 105, 128 f.) war einstens die ganze wannenförmige Senke zwischen dem Südfuß der Bogdo-Ola-Kette und dem Nordfuß des Dschargöß-Tau am Ende der Glazialzeit, aber auch schon früher, von einem flachen See erfüllt, dessen

geringe Reste der Sayopu- und die ihm benachbarten Seen darstellen. Die Konglomerate sind meines Erachtens als Schuttbildungen einer dem Diluvium vorangegangenen trockenen Zwischenzeit anzusehen, wo Gebirgsschutt langsam aus den Talmündungen herauswnchs und sich am Gebirgsrand zn einem Gürtel zusammenschloß, der später zeitweise stark mit Löß bedeckt wurde. Mit dem Herannahen der feuchtigkeitsreichen Diluvialepoche sind diese Ablagerungen durch die aus den mit Schutt aufgefüllten Tälern mit nur schwacher Bewegung anstretenden Gewässer konglomeratisch verfestigt worden. Von dem in der Wanne nach und nach sich bildenden und ebenso allmählich zurücktretenden See wurden Terrassen als stadiale Hochwasserstandslinien hinterlassen; sie fallen in Steilwänden zum Boden der Wanne ab. Die Brandungsinteusität eines großen flachen Sees hat die Steilufer geschaffen. Rasches Sinken des Wasserspiegels infolge klimatischer Einflüsse (S. 106) mag als Ursache der guten Erhaltung der Uferränder anzusehen sein.

Nach allem, was über die Tektonik des Bogdo-Ola-Gebirges in den vorhergehenden Kapiteln, besonders in Kap. VI mitgeteilt wurde, unterliegt es keinem Zweifel, daß diese große zwischen der Hanptkette und dem Nordfuß der Dschargöß-Kette liegende Furche als eine Grabenbildung anzusehen ist, deren Entstehung mit dem am Südfuße der Dschargöß-Kette eingebrochenen weit tieferen "zentralasiatischen Graben" in engem Zusammenhang steht und wohl gleichzeitig mit diesem gebildet wurde. Wollte man diese wannenförnige Längsfurche als Schichtenmulde auffassen, so stehen dem die Mitteilungen Obrutschews2) über Bau und Zusammensetzung des Dschargößtau und des "Tals der Seen (siehe auch S. 104, 129), ebenso wie die Darstellung im Profil von Bogdanowitsch3) entgegen. Auch für alle anderen Möglichkeiten, denen sonst Wannen ihre Entstehung verdanken, fehlen hier die Kennzeichen. Hingegen deutet die ganze Form dieser Zwischenrinne, besonders ihres Bodens, sowie die Beschaffenheit ihrer Ränder ganz entschieden auf Grabensenkung hin. Zu welcher Zeit die Wanne sich zuerst mit Wasser gefüllt hat, ist mit Sicherheit schwer zn entscheiden. Man kann jedoch annehmen, daß schon bald nach ihrer Bildung die umgebenden hohen Ränder ihre Gewässer in diese Hohlform ablieferten, daß also schon frühe ein See hier stund (Hanhaiperiode! S. 54, 76 f.), der seinen Abfluß nach S. in das Turfanbecken durch die Lücke des Dawantschin-Passes nahm (S. 104 f., 192), and nater Einwirkung wiederholter klimatischer Schwankungen zurückging, sich erneuerte nnd wiedernm schwand.

Die Ablagerungen, welche Obrutschew⁴) bei seiner Querung des Beckens nahe am Südrande fand, (siehe S. 80): bis 300 m hohe Hügelketten aus grobem Konglomerat, wechsellagernd mit feinem, dann wieder Konglomerate, in welchen gerundete Fragmente von Kopfgröße vorkommen, ferner Sandsteine mit konglomeratischen Zwischenlagen und kohligen Partien, in den oberen Horizonten kalkig tonige Bänke und dünne Tonschichten wechselnd mit Konglomeraten und sandigen Tonen mit Pflanzenresten, können meines Erachtens nur als im Seebecken eingespülte Flußablagerungen einer frühen, also spättertiären

¹⁾ Obrutschew, der sie aus großer Entfernung von seinem Wege aus sah, beschreibt sie folgendermaßen (Zentralasien etc. l. c. II, S. 644): "niedrige, aus grauem Geröll bestehende Rücken mit gelben Steilflächen (Gobisedimente?), Züge, welche bis an den Fuß der Berge reichen".

²) l. c. II, S. 639 f.

³⁾ Trudi Tibetzkoi Expedizi, l. c., Bd. II, Tafel V.

⁴⁾ l. c. II, S. 641.

Periode (Hanhai) angesehen werden, wiewohl kein Fund gemacht wurde, der eine genauere Altersbestimmung ermöglichen könnte. Obrutschew erwähnt besonders, daß in den Sandsteinen die Schichtung sehr unregelmäßig sei und die konglomeratischen Bänke und kohligen Partien sich auskeilen und zwar nach verschiedenen Richtungen auseinandergehen, was meines Erachtens wohl auf Deltabildung hinweist. Es ist vielleicht ihre starke Dislozierung (N. Fallen 50-60 Grad), welche Obrutschew geneigt machte, diese Ablagerungen für "älter als Gobisedimente", für mesozoisch zu halten. Mir will es jedoch nach der ganzen Schilderung scheinen, welche er von der Zusammensetzung dieser Bildungen gibt, daß sie wenig Gemeinsames mit den sonst in den Bildungen der Angaraserie auftretenden Besonderheiten aufweisten. Vielmehr halte ich ihre Entstehung, wie gesagt und wie gleich noch weiter erwiesen werden soll, als Ergebnis der Einspülung von Flüssen in das Becken für höchst wahrscheinlich. Obrutschew fand auf diesen Bildungen in diskordanter flacher Lagerung alte Alluvialschichten": graugelbe, sandige, feine Gerölle und über diesen graue Konglomerate. Von einer wenig weiter nördlich gelegenen, also vom Rande entfernteren Stelle des Beckens, nahe dem südöstlichsten der drei Seen (siehe auch S. 104, 129) beschreibt Obrutschew¹) ähnliche Bildungen, deren untersten Horizont er lediglich auf Grund der Färbung geneigt ist, zum Jura zu stellen, während er die obere diskordant darauf lagernde Serie als Gobischichten anerkennt. In diesem ganzen Komplex ist bezeichnender Weise das Fallen nach N. nur mehr bis 30 Grad. Da ich aber in einer aus ganz ähnlichen Bildungen bestehenden Hügelkette links (südöstlich) von meinem Wege zum Sayopu-See,2) also nahe am N.-Rande des Beckens Einfallen nach S. beobachtet habe, scheint mir genügender Grund dafür gegeben, alle diese von Obrutschew erwähnten Bildungen als von Flüssen in den durch kurze Trockenperioden unterbrochenen, feuchtigkeitsreichen Zeiten des späten Tertiärs in dieses Becken hineingespült anzusehen, in gleicher Weise, wie ich dies auch in anderen Teilen des Tian-Schan zu beobachten Gelegenheit hatte. Ich erinnere hier z. B. nur an die unvergleichlich mächtigeren und großartigeren Bildungen des Karagai-tasch-Beckens (oberes Kok-su-Gebiet), denen die oben geschilderten Ablagerungen ihrer Zusammensetzung nach sehr ähneln.3) In diesem Becken mag wohl während einer später eingetretenen längeren Trockenperiode der größte Teil solcher Bildungen zerstört und abgetragen worden sein; mit mehr Wahrscheinlichkeit aber kann angenommen werden, daß sie durch spätere Erosion der während der einzelnen Phasen der Eiszeit sehr reißend gewordenen Flüsse ausgeräumt wurden.

Jedenfalls sind aber die von mir oben erwähnten und beschriebenen, feinen, jungen Konglomeratbildungen am Nordrande des Beckens jünger als die von Obrutschew und mir beobachteten gröberen Ablagerungen. Wir sehen auch aus allen diesen Vorkommnissen wieder, wie verschieden, ihrem Alter und ihrem Entstehen nach, vielenorts jene Bildungen sein können, welche bisher unter dem Sammelnamen "Gobi Sedimente" in der Literatur aufgeführt werden. Ich verweise im Zusammenhang hiemit auf meine früheren Ausführungen (S. 54, 76 f.).

Die Zerschneidung der Konglomerate am Nordufer, von welcher ich gesprochen habe, ist den postglazialen Flüssen zuzuschreiben sowie den späteren in deren Betten

¹⁾ l. c. S. 642.

²) Von hier gefundenen eigentlichen charakteristischen Seeablagerungen, schlammig sandigen Bildungen, habe ich schon S. 104 gesprochen.

³⁾ Zeitschrift der Gesellschaft für Erdkunde, Berlin 1910, S. 231 f.

herabgelangten periodischen Wasserläufen. Überhaupt deutet die vielfache, tiefe Zerschneidung der mächtigen fluvioglazialen Schottermassen darauf hin, daß auch zu Beginn des Postdiluviums der Wasserreichtum noch bedeutend war, dann aber (S. 106) rasch und dauernd abnahm. Solche Verhältnisse, welche ich in einem früheren Kapitel geschildert habe, erweisen deutlich, wie wechselvoll das Schicksal des in der Wanne angesammelten Sees sich gestaltet hat und zwar in enger Abhängigkeit von den klimatischen Wellen der sich einander ablösenden kürzeren Trocken- und Feuchtigkeitsperioden, über welche wir keine präzisen Feststellungen zu machen vermögen.

Selbst die jüngste Geschichte des Beckens ist zweifellos von solchen, wenn auch noch kleineren Pulsationen beeinflußt gewesen, wie aus den spärlichen und leider nur bis zu einer Tiefe von 4-5 m reichenden Aufschlüssen in den rezenten Niederschlägen des Wannenbodens geschlossen werden darf. Hier treten Dokumente der in den letzten kleinen Wellen ausklingenden, der endgültigen Austrocknung vorangehenden klimatischen Schwingungen zu Tage. Wo immer sich auf meinem Wege Aufschlüsse zeigten (S. 105, 128), sah ich als tiefsten Horizont ungeschichtetes grobes Gerölle, - bezeichnender Weise einzelne Fragmente bievon mit dunkler Schutzkruste überzogen; darüber sieht man wechsellagernde horizontale Schichten von feinerem Gerölle und Sand, welches von der den größten Teil des heutigen Wannenbodens - soweit ich ihn überblicken konnte - bildenden Takyrdecke überlagert wird. Es ist anzunehmen, daß auch in bedeutender Tiefe noch eine ausgedehnte zusammenhängende, mächtige Tonschichte liegt, worauf die starken, aus dem Boden sprudelnden Quellen schließen lassen, die ich beim See Sayopu antraf (siehe S. 129), sowie die zahlreicheren, welche Obrutschew an verschiedenen Stellen dieses Wüstensteppengebietes hervortreten sah, wo ihnen sowohl die Bildung kleiner Oasen in der sonst trostlos ariden Ebene zu danken ist, als auch versumpfte Strecken mit höckerigen Salzsümpfen. 1)

Soweit meine Beobachtungen reichen, und auch nach den Berichten Obrutschew's zu schließen, treten auf dem weiten Wannenboden keine bedeutend ausgedehnten Salzflächen auf — nur kleinere in der Nähe der Seen werden von Obrutschew erwähnt. Dieser Umstand erklärt sich daraus, daß bei der steilen Neigung des Bodens (S. 104) das Wasser im Becken nie stagniert, anderseits stets frische Zuflüsse aus dem Gebirge empfängt und in seinem Abfluß, der nach dem Turfanbecken durch die öfters erwähnte Lücke des Dschargöß-Tau beim Dawantschin-Paß hindurchführt, nicht behindert war. Unter anderen Umständen hätte sich in diesem Klima sonst Salzschlamm in erheblicher Menge bilden müssen, aus welchen ausgedehnte Salzablagerungen entstanden wären.

Als ich mit meiner Karawane talauswärts zog,²) lagen erhitzte, zitternde Luftschichten über dem von einem weitausgreifenden Kranz blauender, kahler, niederer Bergzüge umfaßten weiten Wannenboden, so daß die Umrisse der Landschaft verschwommen erschienen. Die Gewalt der Sonnenstrahlen war niederdrückend, kaum zu ertragen. Der Gegensatz zwischen den durch oft unangenehm empfundene niedere Morgen- und Abendtemperaturen ausgezeichneten, erkalteten Höhen hinter mir und den hohen Wärmegraden des vor mir liegenden Trockengebietes kam in eigenartiger Weise zum Ausdruck: In der weiten Landschaft war kein Laut vernehmbar, keines Vogels Fittig kreuzte das brütende

¹⁾ l. c. II, S. 641, 642, 643.

²) Die Gegend, wo die weite Talmündung allmählich in die Ebene ausläuft, liegt im Niveau von 1350 m (S. 104).

Luftmeer, nichts Lebendes war zu sehen, keine Spur menschlicher Einwirkung auf die trostlos öde Monotonie der Natur wahrnehmbar. Da erhob sich plötzlich ein starkes Brausen und bald ertönten stoßweise wie der Atem eines Riesen in kurzen Intervallen, dumpfen Schüssen zu vergleichen, laute Detonationen. Die kühle von den vereisten Bergeshöhen herabfallende Luft, durch die Furchen der steil nach S. geneigten Quertäler gepreßt und hiedurch stark komprimiert, verursachte, nach nur kurzem Lauf beim Austritt in die überhitzte Ebene sich plötzlich ausdehnend, diese eigenartigen, heftigen Geräusche.

Der Rückblick zu den strahlend rein am Dunkelblau des Firmamentes sich abhebenden vergletscherten Kämmen des vielgestaltigen Hochgebirges bot einen merkwürdigen Gegensatz zur Formenarmut des vor mir in horizontaler Linie sich scheinbar ins Unbegrenzte dehnenden Reliefs der Niederung.¹) Mit Gefühlen tiefen Bedauerns schritt ich dazu, das wenn auch rauhe und stürmische, so doch kräftigende Höhenklima wieder mit der erschlaffenden Hitze der Tiefen zu vertauschen. Ein im Sonnenglast bliukendes Firnfeld auf einem besonders hohen pyramidenförmigen Gipfel der westlichen Raudkette, der sich weit nach S. hinausschiebt (S. 91), bildete noch lange eine eigenartige Zier der ariden Landschaft. Es ist der letzte jähe Aufschwung des Gebirges vor seinem Abfall zur Wüstenebene, eine als ein Wahrzeichen über alle Höhen des halbkreisförmig weitgezogenen Beckenrandes beherrschend hinausragende Berggestalt (Abbildung Tafel 3 links im Bilde).

Die sonstige traurige Monotonie dieser Landschaft mit ihren stumpfen Formen und fahlen Farben wurde erst weiter im S. durch zarte Lichttöne belebt. Die horizontalen Liuien der endlos scheinenden Ebene finden in weiter Ferue im S., in den zuerst duftig wie Schemen auftauchenden feinen, zackigen Konturen des Kammes des Dschargöß-Tau schließlich ihre Begrenzung. Vom See Sayopu sah man auf unserem Wege dahin wegen des von seinem verdunstenden Spiegel in der heißen Mittagszeit aufsteigenden Wasserdampfes nur ganz verschwommene Umrisse. Man konnte ihn nur vermuten dort, wo sich ein großer, schleierhafter, grauer Fleck dehnte, innerhalb der bald blaßviolett bald zartgrün angehauchten sanften Welleu des weit gedehnteu hellen Steppenbodens, über welchem die dunkelvioletten Schatten kleiner, ziehender Wolken als bewegliche Figuren dahin huschten. Weit entfernt im W. tauchten hie und da schemenhaft einzelne Bergformen auf mit blinkenden Firnfeldern; sie gehören deu wenig bekannten Ketten im Quellgebiet des Archo-tu-Flusses an (S. 7), welche zum Teil bis über 4500 m ansteigen.

Als ich den eigentlichen Wannenboden betrat, machte ich sogleich unangenehme Bekanntschaft mit tischebenen Tonflächen, von denen schon erwähnt wurde (S. 128, 201), daß sie noch nicht völlig trocken und konsistent geworden waren; ihre Überschreitung mit den schwer beladeuen Lasttieren konnte daher auch nicht ohne Fährlichkeiten durchgeführt werden. Die oberste, aus hellgrauem Ton mit beigemischtem feinem

¹⁾ Man sah von hier aus wegen der öfter besprochenen eigenartigen Knickung der Hauptkammachse (siehe S. 4, 21 f.) nur die im Oberlaufe des Chigo-Gletschers sich erhebende Ostgruppe mit ihren kühnen Gipfelbildungen, von der zentralen Hauptgruppe aber nur die nach S. heraustretenden Vorgipfel. Überhaupt wurde meine Erwartung durch Fernaufnahme ein Gesamtbild des zentralen Hochgebirges aus den Niederungen des Südens gewinnen zu können, enttäuscht. Die breite Entfaltung der allzu nahen, stumpfen, aber doch noch immer beträchtliche Höhe erreichenden südlichen Randketten stellt sich als monotone Kulisse vor die Formenpracht des vereisten Hochgebirges, deren höchste Kammteile nur wenig überragend im Bilde erscheinen.

Sand bestehende Tafel, eine Schichtflutablagerung, deren Entstehung den erst vor kurzem im Gebirge niedergegangenen schweren Unwettern zuzuschreiben war, stund also im engen Zusammenhang mit den geschilderten, höher oben im Tale bei der Kupferschmelze beobachteten schlimmen Verwüstungen (S. 201).

Auf beträchtliche Entfernung dehnte sich diese jugendliche Tafel nach allen Richtungen vom Fuße des Gebirges hinaus in die Ebene, bis sie auf meinem Wege auf einer ähnlichen älteren, stark verhärteten Schichte allmählich absetzte. Schon der Umstand, daß ihre Oberfläche noch gänzlich frei von Geröll war, sprach für die Neuheit ihrer Entstehung, ebenso die eigenartige Erscheinung, daß die auf der darunter liegenden Schichte angesiedelten. knäuelförmigen Wüstenpflanzen (Peganum, Astragalus, Lycium, Ephedra etc.) nur mit ihren oberen Teilen aus der Schlammkruste herausragten, zum Teil auch nahezu oder ganz hievon bedeckt waren. Hingegen fand sich auf dem älteren, schon befestigten Takyrboden, der bald darauf betreten wurde, bereits eine dünne Schichte Kies in Vermischung mit Geröllen, von deren Fragmenten viele schon begannen sich mit einer schwachen, dunklen Schutzkruste zu überziehen.

Die alte Tonfläche, aber auch schon die junge, waren von einem Netz tiefer breiter Trockenrisse durchzogen, was besonders auf der jungen Fläche für den Marsch der Karawane nicht unbedenklich war. Hier folgte allerdings der Verlauf der Risse dem System der darunter liegenden älteren Spalten, allein nicht alle Teile der Tondecke waren schon von diesem mit Zerreissung verbundenen Trocknungsprozesse ergriffen. Zum Teil überdeckte das neue lockere Tonaggregat geschlossen das ältere Spaltennetz, ähnlich wie auf einem zerklüfteten Gletscher nach einem ergiebigen Neuschneefall durch die frische Schneedecke die alten Spalten dem Blicke entzogen werden. Betraten die Pferde solche Stellen, so brachen sie durch die frische Tondecke tief in die früheren Spalten ein und konnten nur mit Aufwand großer Mühe wieder herausgebracht werden. Man mußte daher bei Überschreitung dieser Strecke in ähnlicher Weise zu Werke gehen, wie bei der Qerung eines spaltenreichen Firnfeldes und große Umwege waren unvermeidlich, um den gefahrdrohenden Stellen auszuweichen. Auf dem älteren Tonboden machte zudem das dort angesiedelte hohe kugelförmige Strauchwerk streckenweise das Gelände sehr unübersichtlich (siehe S. 128 f.).

Der Boden fällt auf unserem sich in Richtung WSW. bewegendem Wege ganz allmählich ab, etwa 28—30 m pro Kilometer gegen den Seenkomplex hin, der in einer langen, flachen, die große Senke in Richtung NW. bis SO. durchfurchenden Rinne liegt (siehe Karte I und Spezialkärtchen). Diese stellt demnach den niedrigsten Teil der ganzen Depression dar und in ihr ist das Niveau des Sayopu-Seespiegels mit 1140 m der tiefste gemessene Punkt. Von dort gegen den Nordrand des Dschargöß-Tau steigt der Boden, wenn auch nur wenig, so doch konstant wieder an. Mit wachsender Annäherung zum See Sayopu gelangten wir aus dem Takyrgebiet mehr und mehr auf geröllbedeckte Flächen, die allmählich in eine lehmige Kieswüste übergehen, wo nur die größeren Gesteinsfragmente gerollt und mit einer schwachen dunklen Schutzkruste überzogen sind; sie entstammen den Konglomeraten der beschriebenen (S. 203 f.), aus alten Flußablagerungen bestehenden Hügelketten. In flachen Einsenkungen dieses Bodens war gewöhnlich seine Beschaffenheit mehr sandig, an aufgewölbten Stellen mehr lehmig, was wohl auf Windwirkung zurückzuführen ist.

Die Sonne stand schon ziemlich tief, als wir uns dem See näherten und die Schleier der Luft über der weiten, wüstenhaften Ebene wurden zunehmend durchsichtiger, so daß man nun die in geringer Entfernung zum S.-Ufer des Sees schroff abfallenden und zerrissenen Mauern des Dschargöß-Tau hinter dem Wasserspiegel aufragen sah. In den Darstellungen der russischeu Militärkarteu, denen auch Obrutschew in seinem Routenblatt XIV folgte, erscheint das Gebirge zu weit vom Südufer des Sees Sayopu entfernt und nähert sich mehr den beiden anderen südöstlich hievon gelegenen Seen. Das Gegenteil hievon ist richtig. Gerade am Sayopu-See tritt der Abfall des Dschargöß-Tau am weitesten nach N. vor, worauf die Kette eine schwach südöstliche Richtung annimmt und sich demnach von den beiden anderen Seen mehr und mehr entfernt. Erst jenseits der bedeutenden Kammdepression des Dawantschin-Passes (1063 m) ändert sich der Verlauf des Dschargöß-Gebirges; in eine scharfe NO.-Richtung eintretend, strebt es nun der Bogdo-Ola-Hauptkette zu, der es sich im Meridian von Turfan anschaart (siehe S. 33, 104 f.). Die große Senke nimmt also gerade am Dawantschin-Passe, da dort ihr Rand am stärksten nach S. zurückweicht, eine buchtartige Form an und so vermochte der alte See gerade an dieser Stelle, wie mehrfach erwähnt, sich seinen Abfluß nach S. zu erodieren.

Überhaupt ist gerade das Seengebiet in allen mir vorliegenden Karten recht ungenau dargestellt. Dieses Geläude wurde schon von der Expedition Pjewtzows durchzogen (S. 22, 29), in dessen Karte ein großer und zwei unverhältuismäßig kleiu ausgefallene Seen eingetragen sind. Die gleiche Darstellung fand auch Aufuahme in Grum Grschimailos Übersichtskarte (S. 26). Von der Karte Regels wurde schon hervorgehoben, daß sie statt drei Seen deren fünf enthält (S. 31). Roborowsky nahm in seiner Karte nur zwei Seen auf (S. 28); Bogdanowitsch in der seiuigen dagegen vier (S. 29). Die Obrutschew'sche Darstellung (S 29 f.) in seinem Routenblatt XIV ist verhältnismäßig noch die beste; nur hat er die Größenverhältnisse der einzelnen Seen nicht zutreffend wiedergegebeu. Der Sayopu-See sollte bedeutend größer und der südöstlichste See wesentlich kleiner dargestellt sein. Auch übernimmt Obrutschew aus der Pjewtzow'scheu Karte einen aus SW. kommenden großen Zufluß des Sayopu-Sees, sowie eine Darstellung, nach welcher die drei Seen durch Wasserläufe mit einander verbunden wäreu, 1) wiewohl Obrutschew selbst, dem Wortlaute seiner Beschreibung nach,2) nur wahrgeuommen hat, daß ein Bach sich in den südöstlichsten See ergießt. Dieser wohl nur periodische Wasserlauf wurde übrigeus auch von mir als hell leuchtendes, durch die graue Ebene ziehendes Band wahrgenommen (S. 104 und 191). Auch binsichtlich der Namensbezeichnung für die drei Seen herrscht in der Literatur beträchtliche Verwirrung. Obrutschew bezeichnet den östlichsten mit dem Namen Aidin-kul, den mittleren und westlichsten nennt er beide Sayopu. Pjewtzow hingegen beneunt den westlichsten Aidin-kul und den anderen gibt er in der Reihenfolge uach Osten die Namen Tudun-kul (überfließeuder See) und Tuslyk-kul (salziger See), Namen, welche den Eigenschaften jeuer Seen durchaus entsprechen und auch mit den von mir ermittelten Bezeichnungen übereinstimmen. Nur ist hervorzuheben, daß die am westlichsten See angesiedelten Bewohner (S. 129) hiefür neben dem Namen Aidiu-kul³) auch noch die Bezeichnung Sayopu anwenden, nach der kleinen gleichnamigen Ortschaft, in

¹⁾ Im Texte des Pjewtzow'schen Werkes (l. c. I, S. 336) ist bei der Beschreibung des Seengebietes von diesen Wasserläufen übrigens nichts erwähnt.

²) l. e. II, S. 643 f.

³⁾ Die Bezeichnung Aidin-kul scheint mir eine Korumpierung von Aiin-kul zu sein, was so viel als Quellensee bedeuten würde.

welcher sie leben. In der russischeu 40 Werstkarte (S. 27 und 105) ist der westlichste See Aiuak-kul (also wiederum Quellensee) und der mittlere Aidin-kul oder Sayopu benannt. Übrigens ist in jener Karte auch Form und Lage der drei Seen nicht der Wirklichkeit entsprechend eingetragen und die Karawanenstraße wird dort irrtümlich mitten durch die beiden kleineren Seen hiudurchgeführt.

Nach meinen Beobachtungen ist der westlichste, also der eigentliche Aidin-kul, der bei Weitem umfangreichste (siehe Spezialkärtchen). Bei einer größten Länge von 8 km besitzt er eine durchschnittliche Breite von 3 km, hat aber eine sehr unregelmäßige Gestalt, an seinem O.-Ende schmal zulaufend, am W.-Ende breit gedehnt und in der Mitte die größte Breite erreichend. Die Ufer sind flach; nur im mittleren Teile des südlichen Seeufers tritt, wie bereits erwähnt, der schroff abfallende Nordfuß des Dschargöß-Tau nahe heran. Vom Fuße der Steilwände sieht man eine sehr flache, sanft geneigte, felsige Vorstufe, die bei oberflächlichem Hinsehen leicht mit einem Schuttkegel verwechselt werden könnte, als schiefe Ebene zum Wasserspiegel herabziehen und darin verschwinden. Offenbar haudelt es sich um eine über eine abgesunkene Scholle hinweglaufende Brandungsfläche des alten großen Sees, dessen Gewässer einstens hoch an die Felsmauern des Dschargöß-Tau hinangereicht haben dürften. 1)

Der das Südufer des Sees begreuzende Gebirgszug ist nur eine Vorkette und wird durch ein Längstal von dem in gleicher Richtung streichenden höheren Gebirge getrennt, was in allen bisherigen Darstellungen des Gebirgs nur bei Obrutsche w richtig wiedergegeben ist. Obrutsche w benennt die Vorkette Sayopu-tagh, das höhere Gebirge dahinter Dschargöß-Kette. Durch die Längstalfurche läßt er den schon erwähnten, aber in Wirklichkeit nicht bestehenden Zufluß des Sees laufen. Vom Nordufer gesehen bildeten die stark zerschluchteten, den See um etwa 800 m überragenden, kahlen Felsmauern der ersten Kette damals in ihrer schleierhaft zarten, rosavioletten Färbung einen reizvollen Abschluß der Wasserfläche.

Daß der anscheinend kahle Zustand des Gebirges nur auf Täuschung beruht und daß ansehnliche Fichtenbestände (Picea Schrenkeana) in vielen seiner Schluchten sich finden und bis zur Scheitelhöhe des Gebirges hinaufreichen, wurde schon (S. 129) erwähnt. Diese Wahrnehmung bildete für mich aber damals eine Überraschung, da ich in einem so ariden Gebiete das Auftreten von Koniferen als ausgeschlossen erachtet hatte. Man geht wohl nicht fehl, wenn man diese Bestände als die letzten Vertreter einer basalalpinen Flora ansieht, die in einer feuchtigkeitsreicheren Phase der klimatischen Geschichte dieser Gegend ihr ganzes Relief umhüllte, das heute nur noch mit einem dürftigen, lückenhaften Kleide von Xerophyten bedeckt ist. Mit zunehmender Austrocknung des Landes ist die basalalpine Flora verschwunden und ihre letzten Überlebenden, die Koniferenbestände, haben sich hier in den feucht schattigen Schluchten des Gebirges erhalten.

Auch an einer Stelle des nördlichen Seeufers zeigt das Relief des Bodens noch einige Plastik. Es sind Hügelzüge von 70—80 m Höhe, die dort nahe an das Ufer herantreten; sie bestehen aus jenen früher (S. 204) beschriebenen, teils sandig tonigen, teils konglomeratischen Ablagerungen, welche ich ebenfalls für Restbestände von Einspülungen großer Flüsse in den ehemaligen See halte. Im übrigen sind die Ufer zwar ringsum ganz flach, aber dennoch nur in geringem Betrage versumpft. Am Nordufer reichen Wiesen mit dichtem

¹⁾ Bei näherer Untersuchung müßten sich in diesen Mauern wohl die alten stadialen Niveaus des Sees nachweisen lassen. Zu solchen Untersuchungen konnte ich keine Zeit gewinnen.

Abh. d. math.-phys. Kl. XXVII, 5. Abh.

und hohem Graswuchs, sowie Kulturen von mäßiger Ausdehnung - meistens Haferfelder, deren Ernte gerade (Mitte August) eingebracht wurde - bis nahe zum Wasser heran. Nur ein schmaler Gürtel, teils aus Strauchwerk (siehe S. 129), teilweise aus niederem Schilf bestehend, trennt den Wasserrand von der Kulturzone. Einzeln stehende Karagatschbäume, die über die weiten Wiesenflächen zerstreut sind, zeigen, da sie schutzlos den stärksten Einwirkungen von Sonne und Wind ausgesetzt sind, ungemein fantastische Formen. Der für mich eine Überraschung bildende Reichtum an geschlossenem Graswuchs in dieser der Insolation so sehr ausgesetzten Gegend scheint weniger dem Druckwasser des Sees. als den vielen aus dem Boden tretenden Quellen (siehe S. 105, 129) zuzuschreiben sein. Aber auch die bei jedem heftigen Winde stattfindende Absetzung von düngendem Lößstaub (S. 127, 136), welcher durch die Pflanzendecke festgehalten wird, mag für das Gedeihen dieser Oase von besonderem Einflusse sein. Es findet also hier durch Einwehung, an andern Stellen des Beckens durch Anschwemmung (S. 128, 201, 206 f.) fortgesetzt Erhöhung des Bodens statt, wodurch sich die außergewöhnliche Wurzellänge der Wüstensträucher erklärt. Sanddünen hingegen gibt es in diesem Becken, soweit ich es kennen gelernt habe, keine. Die Bedingungen für künstliche Bewässerung sind hier am See so günstige, daß die geringe Ausdehnung des Kulturlandes wundernehmen muß (S. 129).

Das Wasser des Sees hat nur einen ganz schwachen Salzgeschmack; es ist etwas trüb, graubräunlich und hatte, als ich es am 24. August um 5 Uhr morgens am Nordufer untersuchte, eine Temperatur von 15,7 Grad. Die vorhergehende Nacht war in unserem Lager sehr frisch, fast allzu kühl (Minimum + 8,7°), wiewohl die Hitze des Tages vorher und des folgenden Tages bei ungehinderter, heftiger Insolation außerordentlich belästigend war (+ 31°). An jenem Morgen wurde der Seespiegel von einem aus SO. wehenden Winde stark bewegt und die Brandung am flachen Strande war erheblich. Es handelt sich hier, wie ich aus den Angaben der Seeanwohner entnehmen konnte, um eine im Sommer regelmäßig des Morgens eintretende Erscheinung: Die in der Nacht auf den Höhen des Dschargöß-Tau stark erkaltete Luft fällt am frühen Morgen zur Tiefe herab und verursacht ein stürmisches Aufwühlen des Sees: in der kühleren Jahreszeit soll der See meistens ruhig und klar sein. Zahlreiches Wildgeflügel, hauptsächlich Enten und Gänse, bevölkert ihn; von den spärlichen Uferbewohnern nicht belästigt, führt es hier ein idyllisches Dasein.

Es gibt nicht ein einziges Fahrzeug am See, da er, so viel mir berichtet wurde, keine Fische enthält, welche die Anwohner zur Schiffahrt auf ihm veranlassen könnten. Durch das Fehlen oberirdischer Zu- und Abflüsse wird die Abwesenheit von Fischen genügend erklärt. Ich habe schon früher (S. 208) betont, daß die Darstellungen der russischen Karten in dieser Hinsicht irreführend sind. Ich konnte keinerlei Zuflüsse wahrnehmen, außer einigen sich aus den Quellen bildenden kleinen Bächen, die bald versinken, auch nicht irgend einen Abfluß gewahren. Übrigens versicherten mir auch die Bewohner des Örtchens Sayopu, daß solche nicht vorhanden seien, daß der See aber von zahlreichen unterirdischen Quellen gespeist werde; diese dürften wohl den dolinenartigen Verlauf nehmenden Abwassern des nahen Dschargöß-Tau zu verdanken sein, ebenso wie die erwähnten zutage tretenden Quellen des nördlichen Uferlandes. 1) Nach dem außerordentlich geringen Salzgehalt zu schließen, dürfte aber ein ständiger Wechsel des Wassers stattfinden; es muß demnach ein unterirdischer Abfluß

¹⁾ Auch Obrutschew stellte sowohl an diesem See (siehe S. 208) als an anderen Stellen des Beckens in der Nähe der beiden östlicheren Seen zahlreiche Quellen fest. l. c. II, S. 642, 643.

vorhanden sein; doch vermochte ich nicht festzustellen wohin er führen mag. Die Quellen in der Nähe des Sees speisen einige Bäche, die mehrere Meter tief steilufrig in den lehmigen Grund eingeschnitten sind und, ihre Umgebung versumpfend, wieder verschwinden; ihr Wasser ist süß und wohlschmeckend. Bei solchem Reichtum an gutem Wasser erscheint es merkwürdig, daß außer der kleinen Niederlassung Sayopu keinerlei Ansiedelung am See vorhanden ist.

Die chinesischen Befestigungen der Provinz Hsin-kiang machen ja ganz allgemein auf den europäischen Reisenden mehr oder weniger den Eindruck von Spielerei oder eines oft ans Lächerliche grenzenden Anachronismus, da ihre ganze Anlage, sowie das Material, aus dem sie gebaut sind, kaum einer Kriegführung widerstehen könnte, wie sie vor 300 Jahren in Europa geübt wurde. Die primitive, aus Lehm hergestellte Umwallung von Sayopu aber ist wohl das Naivste, was man in dieser Hinsicht sehen kann. Über der krenelierten Brustwehr des Walles erheben sich von 8 zu 8 m Holzpfosten, die durch Stricke miteinander verflochten sind, um eine Erstürmung des Walles abzuhalten. An jedem dieser Pfosten ist eine kleine farbige Fahne befestigt. Um diese Embleme aber zu schonen, sind sie mit Stroh umwickelt, da sie jedenfalls nur bei festlichen Gelegenheiten, bei Inspektionen und dergleichen paradieren sollen. Unter jedem Pfosten liegt ein Haufen zur Verteidigung bestimmter Steine. Die Besatzung besteht, wie in den meisten kleinen befestigten Orten dieser Gegend, aus alten chinesischen Milizmännern, die kaum die Bezeichnung Soldaten verdienen und absolut nichts Kriegerisches an sich haben; sie befassen sich mit Feldbau und Viehzucht. Außer ihnen wohnt noch eine kleine Anzahl von Sarten und Dunganen hier, welche an dem Karawanenbetrieb von Turfan nach Urumtschi beteiligt sind. Der Ort macht, wie seine Bewohner, einen sehr ärmlichen Eindruck und der innerhalb der Umwallung angehäufte Schmutz, sowie der herrschende üble Geruch waren derart, daß sie mich veranlaßten, mein Lager auf einer Wiese außerhalb der Mauern aufzuschlagen.

Von den beiden anderen Seen, die ich nicht selbst aufsuchen konnte, berichtet Obrutschew, daß der östlichste stark salzhaltiges Wasser führe, worauf übrigens auch sein Name Tuslyk-kul = Salzsee hinweist; streckenweise soll er sogar aus Salzsumpf bestehen. Der mittlere See wird an seinem W.-Ende von starken Quellen gespeist und führt daher dort offenes süßes Wasser; an anderen Stellen aber soll er nach Obrutschew salzhaltig sein und stark versumpfen. Die Ufer sind besonders flach und veranlassen daher häufiges Austreten des Wassers und Versumpfung der Umrandung, weshalb der Name Dudun-kul = überfließender See, diesen Umständen entspricht. Nach allen diesen Verhältnissen will es mir scheinen, daß man von einer noch jetzt fortschreitenden Austrocknung der ehemals so wasserreichen Wannensenke zwischen Bogdo-Ola und Dschargöß-Tau mit einiger Wahrscheinlichkeit sprechen kann und daß hiemit wohl auch eine zunehmende Entsüßung der dort noch vorhandenen größeren Wasseransammlungen verbunden sein wird. Mit dem vermutlich sich fortsetzenden allmählichen Zurücktreten der auf den Hochkämmen der Bogdo-Ola jetzt noch aufgespeicherten Firnvorräte, deren Abflüsse jetzt hauptsächlich diese Senke speisen, müßte dieser Prozeß auch wohl noch weiter fortschreiten. Daß die Gletscher der Bogdo-Ola wenigstens zur Zeit meiner Reise sich in einem Zustand des Schwindens befanden, ist zwar sicher, weniger jedoch ob diese rückschreitende Bewegung nicht etwa nur vorübergehend ist. Nur wiederholte und systematische Beobachtungen könnten hierüber Aufschluß geben, werden aber in diesem entfernten, schwer zugänglichen Gebiet kaum durchführbar sein. Bei dem vollständigen

Mangel an meteorologischem Beobachtungsmaterial aus der Gegend am Südfuße der Bogdo-Ola — die Station vou Luktschun (S. 12) besteht leider längst nicht mehr — vermögen wir auch nicht mit Sicherheit festzustellen, nach welcher Richtung gegenwärtig das Klima oszilliert. So sind wir auch nicht in der Lage zu sagen, ob der Höhepunkt einer Klimaverschlechterung schon erreicht ist oder ob etwa der Beginn einer Periode der Besserung sich ankündet, ähnlich wie dies für die Nordseite des Tian-Schan neuerdings angenommen wird.1) Man könnte. wenigstens für diese Gegend, vielleicht auf Grund der Armut an permanent fließenden Gewässern und wegen der abnehmenden erodierenden Kraft der vorhandenen, sodann wegen des zweifellos bestehenden, wenn auch bis jetzt noch schwachen Salzgehaltes der stehenden Gewässer, geneigt sein, eine zunehmende Austrocknung anzunehmen, die zum völligen Schwinden jeglicher Feuchtigkeit führen muß, so wie es von Elsworth Huntington geschieht. 2) Für den vorsichtigen Beobachter dürfte es indessen gewagt erscheinen, sich hierüber ein feststehendes Urteil zu bilden.3) Maßgebend für eine solche allgemeine Folgerung könnten vor allem die Ergebnisse regelmäßig fortgesetzter, systematischer Untersuchungen des Salzgehaltes aller stehenden Gewässer dieser Gegend sein, dann längere Beobachtungen über die Dauer der Wasserführung zeitweise trockner Flußbetten, sowie über die jahreszeitlichen Schwankungen im Wasserquantum der ständigen Flüsse. Mit welchen ungeheuren Schwierigkeiten solche Beobachtungen aber in einer derartigen Gegend verbunden wären, braucht nicht erst erläutert zu werden. Ich kann mich jedoch nur der Überzeugung von H. H. Haydeu anschließen, welche er hinsichtlich ähnlicher Verhältnisse in Tibet äußert,4) daß ohne solche Untersuchungen jede sichere Basis für die Beurteilung fehlt.

Mit der Erreichung des Sayopu-Sees kaun ich den Bericht über die Bereisung der Bogdo-Ola-Gruppe schließen. da alles wissenschaftlich Bemerkenswerte von den Beobachtungen, welche bei der Fortsetzung der Reise zum Dun-schan-Sattel und bei dessen Überschreitung, sowie auf dem Wege zurück nach Urumtschi gemacht wurden, schon in den Inhalt der vorhergehenden Kapitel, besonders VI, VII, VIII, IX und XIII, verflochten wurde.

XVIII. Über einige Ergebnisse meiner Beobachtungen.

In deu vorhergehenden Kapiteln habe ich den hauptsächlichen Gehalt meiner in der Bogdo-Ola-Gruppe gemachten Beobachtungen niedergelegt. Es ist eine einfache Aneinanderreihung von Tatsacheu, verbunden mit Beschreibung von besonders charakteristischen Erscheinungeu. wie sie ähnlich nur in einem von den stärksten Gegensätzen beherrschten Landgebiete zutage treten. Das Bedeutungsvollste suchte ich, soweit es die oft recht widerlichen Naturverhältnisse zuließen, in photographischen Aufnahmen festzuhalten. Die hievon reproduzierten, in dieser Abhandlung nur z. T. veröffentlichten Lichtbilder dürfen wohl Geltung als Naturdokumente beanspruchen, die meinen Mitteilungen als Belege dienen, ja vielleicht öfters mehr als meine Darlegungen beweiskräftig erscheinen.

¹) L. S. Berg, Semlewedenie, Jahrg. 18/1911 russ., S. 23-119. Derselbe. Das Problem der Klimaänderung in geschichtlicher Zeit. Geogr. Abhdlg., Bd. X, Heft 2. Leipzig 1914.

²) The Rivers of Chinese Turkestan and the Dissication of Asia. The Geogr. Journ., vol. 28, p. 352 f. The Depression of Turfan. Ibidem, vol. 30, S. 254 f. und The Pulse of Asia, l. c., p. 299 f.

³⁾ Merzbacher. Ergebnisse der Forschungen Aurel Steins in Hochasien. Petermann's Mitteilungen, Jahrg. 1915/II, S. 349 f.

⁴⁾ Burrard and Hayden, l. c., S. 204 f.

Ich war bestrebt bei Schilderung der durchreisten Landschaften und bei Hervorhebung der sie charakterisierenden geographischen und morphologischen Züge mich einer Ausdrucksweise zu bedienen, die auch ohne ausschließliche Anwendung gewisser neu in die Beschreibung der Landformen eingeführter, wenn auch noch nicht ganz allgemein anerkannter Bezeichnungen — von denen mir einige noch dazu, wenigstens in der deutschen Übersetzung, nicht dem ursprünglich in sie hineingelegten Sinne völlig zu entsprechen scheinen — den Besonderheiten des Bodenreliefs gerecht wird, und wie ich glaube auch allgemein verständlich ist.

In dem Bewußtsein, daß eine einmalige flüchtige Bereisung eines so komplizierten Gebirgsgebietes, die sich nicht einmal auf alle seine Teile erstreckt hat, nicht genügen kann, um Irrtümer in den Beobachtungsreihen auszuschließen, muß ich es mir versagen. alle Einzelheiten des mitgeteilten Tatsachenmaterials zu gruppieren und daraus weitgehende, generalisierende, theoretische Folgerungen zu zieheu. Befinden sich doch in der Kette meiner Beobachtungen mancherlei Lücken, welche mir erst bei Sichtung und Verarbeitung des gewonnenen Materials so recht vor Augen getreten sind. Um für die Mehrzahl meiner Beobachtungen den Anspruch auf Gültigkeit auch für die weiter östlich gelegenen Teile des Tian-Schan zu erhebeu, hätte ich meine Forschungen, wie ich dies früher hervorgehoben habe, von den gleichen Gesichtspunkten ausgehend, viel weiter gegen O. hin ausdehnen müssen. Erst hiebei würde es sich herausgestellt haben, ob eine Anzahl der von mir bisher festgestellten, eigenartigen geographischen, geologischen und geomorphologischen Verhältnisse Bestätigung und Geltung auch im weiteren Sinne zu beanspruchen haben. Für die Möglichkeit einer solchen ergänzenden Forschungsreise in diesem entlegenen Gebiet besteht allerdings für die nächste Zukunft leider wenig Aussicht. Ich möchte aber nicht in den Fehler verfallen, aus einer verhältnismäßig geringen Anzahl in einem eng begrenzten Gebiet gemachten Beobachtungen ein theoretisches Lehrgebäude aufzustellen, welchem auch Geltung für ausgedehntere Räume zukommen soll.

Nur einzelne Gruppen der von mir beobachteten Erscheinungen halte ich daher für geeignet, daraus weitergehende Schlüsse zu ziehen. Namentlich zur Bestimmung der aus der gegenwärtig vorhandenen Vereisung des Gebirges sich ergebenden Lage der heutigen Schneegrenze scheint mir das Beobachtungsmaterial auszureichen. Ich greife hieraus zunächst eine gewisse Anzahl von Daten heraus, die sich, ohne den Dingen Gewalt anzutun. so gruppieren lassen, daß verlässige Schlußfolgerungen hieraus gezogen werden können.

Am besten scheinen mir hiezu geeignet die Beobachtungen aus der Umgebung des Gurban-bogdo-Passes und zwar, aus den von dort nach N. und nach S. ausstrahlenden parallelen Kämmen, welche einerseits die Umwallung der höchsten Talstufe des Da-tun-gu-Tales im N. und die des Gurban-bogdo-Tales im S. bilden (S. 79 f., 85, 163, 174 f.), da diese besonders auffällige orographische Gleichartigkeit aufweisen.

In großen Zügen meine bisherigen ausführlicheren Mitteilungen rekapitulierend, sei hervorgehoben, daß bei Betrachtung der Talränder des obersten Bodens des Da-tun-gu-Tales sich ergibt (siehe Karte II und Taf. 4, Fig. 1), 1) daß sie von einer Höhe von un-

¹⁾ Nur der orographisch linke Zug ist in dieser Abbildung wiedergegehen, von dem rechten nur der erste Gipfel und ein Teil des folgenden.

gefähr 4000 m in ihrem Wurzelgebiete, in einem Lauf von beiläufig 6 km nach N. mit nur wenig gebrochener Kammlinie bis zu 3000 m absinken. Die herausragenden Gipfel zeigen ziemlich regelmäßige, wenig steile Konusformen, zwischen welchen Mulden eingetieft sind. die den aus der geschlossenen flächenhaften Firndecke der Kammregion abfließenden Firn aufnehmen, was zur Bildung kleiner Muldengletscher Anlaß gibt. Als breite Eislappen hängen deren Enden an gleichmäßig sanft geböschten Gehängen der beiden Gebirgszüge herab und enden jetzt in einer nahezu horizontal verlaufenden Linie, die nach N. hin unbedeutend absinkt, während die Zeugen der ehemaligen weit bedeutenderen Ausdehnung als Grund-, Seiten- und Endmoränen am Gehänge sichtbar sind (siehe auch Taf. 4, Fig. 3). Die Gleichheit der orographischen Bedingungen dokumentiert sich in dem gleichmäßigen Verlauf der Gletscherenden, welcher beweist, wie schon früher hervorgehoben wurde (S. 86), daß das Firneis, sobald es in ein gewisses Tiefenniveau gelangt, wo die mittlere Sommertemperatur eine bestimmte Höhe erreicht, dem völligen Abschmelzen nicht entgehen kann, falls nicht besondere orographische Verhältnisse einen Schutz dagegen bieten. Man kann diese Linie demnach als eine Grenze des Gleichgewichts zwischen Zufuhr und Abschmelzung bezeichnen.

Die beiden einander gegenüberliegenden Ketten gleichen sich sowohl in ihrem orographischen Bau, als in der Art ihrer Firnbedeckung und den sich aus ihr entwickelnden Gletschern nahezu vollkommen. Der einzige Unterschied in dieser Hinsicht besteht darin, daß bei vollkommen freier Exposition der orographisch linke Gebirgszug (Talrand) dieser weiten Talstufe mit seiner dagegen gerichteten Abdachung annähernd nach O. gerichtet, also hinsichtlich Beschattung etwas begünstigt ist gegenüber dem orographisch rechten Gebirgszug der beiläufig nach W. sich richtet. Da aber außerdem, wie früher geschildert wurde (S. 83), auch die Höhen der Enden der gegen O., gegen die Täler Dönchon-dse und Du-dun-dse abfließenden kleinen Gletscherzungen bestimmt wurden, so dürften diese beiden hohen Ränder der obersten Talstufe als ganz vorzüglich geeignet für eine Bestimmung der heutigen Schneegrenze auf Grund der Höfer'schen Methode erachtet werden. Es ist dies um so mehr der Fall, als die Beobachtungen in vorgerückter Sommerszeit, Mitte August, gemacht wurden, was eine große Annäherung an den höchsten Stand anzunehmen erlaubt. Es geht aus meinen früheren Darlegungen hervor (S. 84 f.), daß die so gewonnenen Werte auch Gültigkeit für den Nordabhang der nach W. und O. sich fortsetzenden Hauptwasserscheide beanspruchen dürfen, weil schon der Überblick über die orographischen Formen dieser Ketten, als auch die klimatische Einwirkung auf sie keine abweichenden Verhältnisse hinsichtlich der Firnablagerung erwarten läßt.

Die für die Gletscherzungenenden erhaltenen Werte, die, wie früher erörtert wurde (S. 85 f.), in Bezug auf die Bedingungen ihrer Gewinnung allen Voraussetzungen entsprechen, welche man an die Verwertung der Höfer schen Methode zur Berechnung der klimatischen Schneegrenze stellen kann, sind die folgenden: Für die orographisch linke (westliche) Talrandkette ergab sich ein Mittelwert von 3450 m. Die mittlere Höhe der Firnumrahmung der vier von mir zur Bestimmung in Betracht gezogenen Gletscherzungen konnte ich von meinem 3985 m hohen Standpunkt in dieser Kette, der einen beherrschenden Überblick gewährt, gemeinsam mit meinem Tiroler Begleiter Wenter mit Hilfe von Peilungen und nach genauer Prüfung aller Verhältnisse mit einer so annähernden Genauigkeit schätzen, daß die Fehlermöglichkeit kaum +-25 m überschreiten kann. Das Ergebnis ist ein Mittelwert von 3750 m. Das

arithmetische Mittel aus beiden Werten ist demnach 3605 m. Für die orographisch rechte (östliche) Talrandkette stellt sich der Betrag für die mittlere Höhe der Gletscherzungenenden (siehe S. 86) auf 3600 m und der von einem vorzüglich hiezu geeigneten Standpunkt in 4045 m Höhe ermittelte Wert der Firnumrahmung aller zur Berechnung herbeigezogenen Gehängegletscher auf 3800 m. Das arithmetische Mittel für den nach W. gerichteten Hang ergibt also 3700 m und die mittlere Zahl aus den für beide Hänge festgestellten Werten (3605 und 3700 m) wäre demnach 3652 m für den Nordabhang. Diese Zahl dürfte für dieses Gebiet um so mehr der wahren heutigen Schneegrenze sehr nahe kommen, als ich hiebei sehr vorsichtig zu Werke ging und sogar die für benachbarte Täler mitgeteilten, etwas tieferen Werte der Gletscherzungenenden (S. 83) außer Berücksichtigung ließ.

Die für den Südabhang in Betracht kommenden beiden Ketten, welche die Ränder des Gurban-bogdo-Tales bilden, zeigen, wie sich schon bei Betrachtung der Abbildungen Taf. 3 und 13 ergibt, ebenfalls recht geeignete Verhältnisse für die Berechnung nach der Höfer schen Methode. Hier ist jedoch aus Gründen, welche früher (S. 90) dargelegt wurden, der gegen W. gerichtete Hang der für die Firnbildung begünstigtere. Auch dort konnten die Umrahmungen der Firnbecken in beiden Ketten von sehr hohen Standpunkten aus völlig überblickt werden, so daß deren Höhenwert, auch diesmal unterstützt durch Peilungen, mit ähnlich annähernder Genauigkeit festgestellt wurde. Die mittlere Höhe der Gletscherzungen der westlichen Randkette, also mit östlicher Exposition, ergab, wie früher (S. 90) mitgeteilt wurde, einen Wert von 3800 m. Die mittlere Höhe der Firnumrandung wurde auf 4200 m geschätzt, was für die Schneegrenze der Westkette zu einem arithmetischen Mittel von 4000 m führt. Für die Ostkette (mit Westexposition) ergab sich ein mittlerer Zungenendenwert von 3700 m und die Schätzung der Höhe der Firnumrandung führte zu einer Annahme von 4050 m. Mithin ist hier das für die Schneegrenze in Betracht kommende arithmetische Mittel 3875 m. Der Durchschnitt der Werte für die Ost- und Westseite ergibt nun die Zahl 3937 als Betrag der wirklichen Schneegrenze des Südabhanges. Hiezu muß bemerkt werden, daß zur Ermittlung dieses Betrages ebenso wie am Nordrande nur die kleinen Muldengletscher an den Gehängen herangezogen wurden und die tief herabhängenden großen Gletscher im Oberlaufe des Tales außer Betracht geblieben sind. Bei dieser angewendeten Vorsicht dürfte das geförderte Zahlenmaterial wohl Anspruch auf Geltung erheben, insoweit als bei solcher Berechnungsmethode, ohne Unterstützung einer genauen topographischen Karte, sowie bei nicht mehrjährig wiederholten Beobachtungen, überhaupt verlässige Ergebnisse möglich sind. Die gewonnenen Werte können meines Erachtens wie alle in derartiger Weise ermittelten Zahlen nur Anspruch als Schätzungen erheben. Da wir aber aus den das innerste Asien durchziehenden Gebirgsketten überhaupt noch sehr wenig methodisch ermittelte zahlenmäßige Werte von Beobachtungen über jetzige oder klimatische Schneegrenzen besitzen, dürfte dem von mir zutage geförderten Zahlenmaterial immerhin einige Bedeutung zugebilligt werden. Die heutige Schneegrenze für den Nordabhang der Bogdo-Ola wäre demnach auf 3652 m, für den Südabhang auf 3937 m anzusetzen. 1) Der bedeutende Unterschied von 285 m zwischen Nord- und Südabhang

¹⁾ Es verdient hervorgehoben zu werden, daß die Nadelwaldgrenze für den Nordabhang der Bogdo-Ola, deren obere Grenze ich (S. 125) mit 2600 m für geschlossenen Bestand und mit 3000 m für Einzel-

kann nur mit der höhereu Sommertemperatur des Südabhanges und mit seiner größeren Trockenheit erklärt werden, was ja auch im Vegetationsbild der beiden Abhäuge, wie ich es in Kap. XIII geschildert habe, deutlich zum Ausdrucke kommt.

Ziehe ich im Vergleich zu diesen Zahlen die am tiefsten herabreichenden Ablagerungen der früheren Vereisung, wie ich sie auf S. 140 dieses Berichtes für den Nordabhang zusammengestellt habe, und verzichte ich darauf, die wahrscheinlich aber nicht sicher als glazial anzusprechenden Funde als Beweismaterial vorzuführen, und nehme ich daher als tiefste Stelle, wo am Nordabhang unzweifelhaft glaziales Material festgestellt wurde, die Höhe von 940 m an, so bedeutet dies, daß die alten Moränen am Nordabhang 2712 m unter dem Niveau der heutigen Schueegrenze liegen, ein Wert, der den bedeutendsteu diesbezüglicheu Größen des europäischen Alpengebietes mindestens ebenbürtig ist. Ich möchte bei dieser Gelegenheit jedoch nochmals darauf hinweisen, daß das um einige hundert Meter tiefer liegende alte Seebecken zwischen Sangun und Schimo-gu (siehe Karte II) mit hoher Wahrscheinlichkeit als Zungenbecken eines großeu diluvialen Gletschers anzusehen ist.

Für den Südabhang findet sich eine Beschreibuug der am tiefsten hinabreichenden alten Glazialablagerungen auf S. 194—201. Dorten sind wohl wegen der von mir oft betonten starken klimatischen Einwirkungen die alten Moränen in den tiefen Lagen mehr der Zerstörung ausgesetzt gewesen und daher vielfach nicht mehr erhalten oder doch nicht mehr erkennbar. Ich lasse auch hier alle zweifelhaften Funde außer Berechnung und nehme als die am tiefsteu herabreichende Moräne die bei der verlassenen Kupferschmelze an, welche sich im Niveau von 1725 m befindet. Gegenüber der für den Südabhang festgestellten heutigen Schneegrenze von 3937 m bedeutet dies einen Höhenunterschied von 2212 m, der demnach ebenfalls alpinen Verhältnissen eutspricht. Hiebei möchte ich nochmals darauf hinweisen, wie es im Laufe dieser Abhandlung mehrmals geschehen ist, daß auf einer so schmalen, im N. und S. isolierten Gebirgskette wie die Bogdo-Ola es ist, selbstverständlich sich keine Eismasseu von gleicher Mächtigkeit bilden und entwickeln konnten, wie in den auch horizontal gewaltig nach der Breite ausgedehnten Teilen des zentralen und östlichen zentralen Tian-Schan.

Es wäre nuu vou hervorragendem Interesse festzustelleu, welche Höhe die eiszeitliche Schneegrenze in diesem Gebiete erreichte und wie bedeutend somit die Depression zwischen dem heutigen und dem diluvialen Niveau anzusetzen ist. Ich muß aber hier das Bekenntnis ablegen, daß wenn mir schon die bisher angewendeten Methoden zur Ermittlung der klimatischen Schneegrenze noch unanches an Zuverlässigkeit und Genauigkeit zu wünschen übrig zu lassen scheinen, so ist dies in noch weit höherem Maße der Fall bei allen bisher angewendeten Methoden zur Ermittlung der diluvialen Schneegrenze. Ich will jedoch ohne weiteres zugeben, daß die zur Schätzung der diluvialen Schneegrenze in den europäischen Gebirgen mit Vorliebe verwendete Kurowsky'sche Methode dorten vielfach zur Ermittlung von anuäherud richtigen Werten geführt haben mag, weil für die in Untersuchung gezogenen Gebiete verlässige, alle die als Faktoren zu berücksichtigenden Oberflächenformen wiedergebeude topographische Karten vorhauden sind und benützt werden konnten und weil auch

bäume ermittelt habe, im Verhältnis zur ermittelten Schneegrenze des Nordabhanges ein Verhältnis ergibt, welches sich nicht sehr von dem in den europäischen Alpen ermittelten entfernt. Siehe auch die in Kap. XIII (S. 116) niedergelegten Zahlenwerte für die Alpenwiesengürtel.

die untersuchten Gebirgsabschnitte in allen Einzelheiten ihres Baus und besonders in Bezug auf alle aus der Glazialzeit hinterlassenen Spuren und Ablagerungen genau bekannt sind, da sie von verschiedenen kompetenten Forschern wiederholt eingehend untersucht wurden. Es können also die besonders in den europäischen Alpen mit Hilfe der Kurowsky'schen Berechnungsmethode gewonnenen Größen wohl als der Wahrheit sich sehr wesentlich nähernde Werte angesehen werden.

Ganz anders liegen aber die Verhältnisse in fremden, noch wenig erforschten Gebieten, für welche entweder noch gar keine oder nur in mehr oder weniger beschränktem Grade als verlässig anzunehmende topographische Aufnahmen vorhanden sind, und welche überdies bisher von Forschungsreisenden nur ganz flüchtig untersucht werden konnten. Meines Erachtens kann solchen Feststellungen auch sogar aus topographisch mehr im Detail aufgenommenen und wenigstens einigermaßen erforschten Gebieten, wie z. B. das kaukasische Hochgebirge, nur mit gewissem Vorbehalt ein wissenschaftlicher Wert beigelegt werden, da die topographischen Karten mancher Teile dieses Gebirges für solche Berechnungen nicht die genügende Genauigkeit besitzen und da überdies der Wert der einzelnen Blätter ein recht ungleichartiger ist. In nicht wenigen Einzelfällen müßte demnach eine Anzahl von nicht ziffermäßig zu fassender Faktoren in Betracht gezogen werden, welche die Ergebnisse sehr wesentlich beeinflussen können.

Vollends bei den zentralasiatischen Gebirgen kann ich die bisherige Grundlage bei weitem nicht als ausreichend zur Erlangung von Werten halten, welche einer strengen wissenschaftlichen Prüfung standhalten, und auf welche sich weittragende Hypothesen aufbauen lassen. Schon der Zahl nach sind diese Beobachtungen höchst unzulänglich; die von den einzelnen Beobachtern angewendeten Methoden sind uns meist nicht bekannt, die Messungen sind oft nur vereinzelte, die Schätzungen nicht immer von Willkürlichkeit frei, so daß ein großer Teil des gewonnenen Materials als ein rein zufälliges anzusehen ist, dem allgemein gültige Bedeutung nicht beigelegt werden kann.

Es kann den für zentralasiatische Gebirge vielfach in die Literatur aufgenommenen Zahlengrößen auch schon deshalb kein besonderer Wert beigelegt werden, weil — ich habe hierauf wiederholt und auch in dieser Schrift mehrfach hingewiesen (S. 93, 104) — am Saume der zentralasiatischen Gebirge, infolge der zerstörenden Einwirkung des ariden Klimas auf die Gesteine, die meisten Zeugen diluvialer Vereisung an den felsigen Talrändern sowohl, als auch in den Schuttanhäufungen besonders in den tieferen Niveaus nicht erhalten geblieben sind. Ein beträchtlicher Teil der alten Glazialablagerungen ist dort auch zweifellos unter den eine ungeheure Mächtigkeit erreichenden jugendlichen Ausschüttungen, welche ganze Gebirgszüge begraben haben, verborgen.

Schon für den Himalaya, der doch infolge maritimer Luftzufuhr weit weniger den starken zerstörenden klimatischen Gegensätzen ausgesetzt ist als die Innerasiatischen Gebirge, nimmt Lydekker an. 1) daß dort "the athmospheric erosive agencies have acted with a much greater degree of rapidity and energy, than they have ever done in the Alps and have thus obliterated to a far greater extend the evidence of a former more extensive glaciation etc.".

Auch Östreich²) hebt hervor, wie sehr zerstörende klimatische Kräfte die Eiszeitspuren im Himalaya beseitigt haben. Daß solche Vernichtungsarbeit in Zentralasien, wo

¹⁾ Memoires Geolog. Surv. of India, vol. XXII, S. 40 f.

Petermanns Mitteilungen, Ergänzungsheft 155. Die Täler des östlichen Himalaya, S. 52, 71.
 Abh. d. math.-phys. Kl. XXVII, 5. Abh.

die Härten des Kontinentalklimas das Naturbild in so hervorragendem Maße beeinflussen, wo besonders die Tiefen der Schauplatz ungemilderten Wirkens atmosphärischer Kräfte sind, eine noch viel weiter gehende gewesen sein muß, leuchtet ohne weiteres ein. Ebenso betont Granö¹) diesen Umstand; nachdem er von einer Anzahl Bildungen berichtet hat, die möglicherweise bei sorgfältigerer Prüfung sich als glazial erweisen könnten und sich in wesentlich tieferen Niveaus finden, als die bisher als zweifellos glazial angegebenen und in Betracht gezogenen, fährt er fort: "Wie dem auch sei, verdient die Frage eine gründliche Untersuchung. In dem trockenen Klima sind die Spuren jener möglichen älteren Eiszeit durch Verwitterung und Stauberdebedeckung dem Blick des schnell vorbeiwanderndeu Reisenden entzogen worden." Diese Beispiele ließen sich um viele andere vermehren.

Es fehleu somit die unerläßlichen Voraussetzungen, um die Greuzen feststellen zu können, bis zu welchen nameutlich die aus dem Hintergrund der großen Tian-Schan-Täler in die Ebenen hinausgeflossenen diluvialen Gletscher sich ausgedehnt haben. Zudem haben sich bisher noch höchst selten Forschungsreisende überhaupt der Aufgabe unterzogen, die Ablagerungen am Außenrand des Gebirges auf das Vorhandeusein von Glazialspuren genauer zu untersuchen. Ein solches Bemühen könnte immerhin wenigsteus dort, wo besonders günstige Verhältnisse für deren Erhaltung obwalten, nicht ergebnislos sein, wie die Vorkommnisse in der Ebene im S. des südlichen Musarttales beweisen, von welchen ich früher berichtet habe.2) Dort war allerdings die diluviale Vereisung, wie die ungeheuren in verschiedenen Teilen dieses großeu Tales angehäuften Moränenzüge erweisen, 3) besonders mächtig und es geht schon aus den zahlreichen, hoch in den Talwänden des südlichen Musarttales hinterlassenen Glazialspuren, die eine beiläufige Rekonstruktion des diluvialen Eisstriches gestatten, hervor, daß diese diluvialen Gletscher weit in die Ebene hinausgereicht haben müssen, so daß die von mir in einer Entfernung von ca. 50 km vom Gebirgsrande im Niveau von etwa 1250 m aufgefundenen Granitblöcke vielleicht noch nicht einmal die tiefste Grenze des diluvialen Eises in jener Gegend bezeichnen. Von dem hohen Hinaufreichen von glazialen Einwirkungen an den Rändern verschiedener Talzüge, hinsichtlich des Überflutens von Gebirgskämmen durch die diluvialen Eisströme, sowie über glaziale Ablagerungen außerhalb der Mündungen mancher Täler habe ich eine größere Anzahl von Beobachtungen in meinen Reiseberichten niedergelegt. 4)

Ich hatte beabsichtigt auf Grund der mit Zahlen belegten ausführlichereu Erörterung aller dieser Beobachtungen und unter Benützung einer Reihe anderer, bisher noch nicht veröffeutlichter, vou mir gesammelter Daten über glaziale Vorkommnisse an der Hand meines Kartenwerkes über die Gletscher des zentralen Tian-Schan eine annähernde graphische Rekoustruktion der großen diluvialen Tian-Schan-Gletscher herzustellen, aus welcher sich auch ein beiläufiger Schluß über deren Ausdehnung außerhalb ihres Tallaufes hätte ziehen lassen, so daß mancherlei Belege zur Frage über die Höhe der diluvialen Schneegrenze sich hieraus ergeben könnten und somit auch für die eiszeitliche Depression. Leider ist die Fertig-

¹⁾ J. G. Granö, Beiträge zur Kenntnis der Eiszeit in der nordwestlichen Mongolei. Helsingfors 1910, S. 92.

²⁾ Vorläufiger Bericht, l. c., S. 35, 48, 98. Zeitschr. Ges. f. Erdk., Berlin 1910, S. 237 f.

³⁾ Ibidem, S. 34f.

⁴⁾ Ibidem, S. 22, 29, 30, 34 f., 48, 58, 61, 77, 81, 84 f., 86, 87, 88 f., 91, 93, 94. Zeitschr. Ges. f. Erdk. Berlin, l. c., S. 232, 233, 308, 313. Mitteil. Geogr. Ges. München, Bd. V, 1910, Abb. Taf. 22, 23.

stellung dieses Kartenwerkes, das, wie ich bereits angekündigt habe, 1) bald erscheinen sollte, durch den Krieg verzögert worden, weil die daran beschäftigten Zeichner zum Heeresdienst abgerufen wurden. Ein vorläufiger Überblick über das in dem Kartenwerk enthaltene reiche Material läßt mich aber doch schon jetzt die Tatsache erkennen, daß die eiszeitliche Depression der Schneegrenze im zentralen Tian-Schan kaum hinter derjenigen in den europäischen Alpen zurückstehen dürfte. Ich gerate durch diese Feststellung allerdings in Widerspruch zu den Anschanungen von Professor Machatschek, wie sie dieser scharf beobachtende Forscher in mehreren seiner Veröffentlichungen niedergelegt hat, 2) in denen er als Betrag der eiszeitlichen Depression für den zentralen Tian-Schan den Wert von 700 m. für den westlichen Tian-Schan 600 m, für die Ferghana-Kette 8—900 m errechnete.

Es liegt mir selbstverständlich durchaus ferne, die von Professor Machatschek für den westlichsten Teil des Tian-Schan auf Grund seiner eigenen, sorgfältigen und jedenfalls gewissenhaften Beobachtungen veröffentlichten Ergebnisse anzuzweifeln. Höchstens möchte ich auch bei dieser Gelegenheit darauf hinweisen, daß eben der wichtige Umstand nicht berücksichtigt ist, daß Glazialspuren wohl auch in tieferen Niveaus der untersuchten Gebiete vorhanden gewesen sein könnten. Hingegen vermag ich das zur Ermittlung der veröffentlichten Werte für den zentralen Tian-Schan benützte Material nach meinen vielfachen Erfahrungen nicht als ausreichende Stütze für weitgehende Schlüsse anzuerkennen — Machatschek gibt übrigens die Unzulänglichkeit der Grundlage selbst zn - und zwar ans folgenden Gründen: Machatschek legt seiner Schätzung der Schneegrenze im zentralen Tian-Schan einige Angaben von Professor Friederichsen zu Grunde³) und zwar nimmt er als Wert, welchen Friederichsen für die Enden der diluvialen Gletscher am Nordabhang des Terskeu-Ala-Tau feststellte, die Höhe von 2600 m an. 4) Dieser Wert würde aber nnr für eines der von Friederichsen besuchten Täler, für das Turgen-Ak-su-Tal zutreffen und auch hier nnr, wenn außer Berücksichtigung bleibt, daß er auch in tieferen Niveans dieses Tales noch Ablagerungen antraf, deren glaziale Entstehung sehr wahrscheinlich ist, nm so wahrscheinlicher, als er in dem benachbarten, parallelen Ak-sn-Tal in viel tieferem Niveau eine alte Endmoräne antraf und deren Höhe mit 1923 m bestimmte. 5) Da die Berge des Terskeu-Ala-Tau im Hintergrand des Ak-su-Tales sogar um ein geringes niedriger sind als in dem des Turgen-Ak-sn, die sonstigen orographischen Bedingungen aber die gleichen, wäre eigentlich nicht einzusehen warum im letzteren die alten Gletscher um 700 n höher geendet haben sollten als im Ak-sn-Tal. Außerdem hat Friederichsen anch bei der Mündnng des nicht weit entfernten, gleichfalls parallelen Barskauntals nahe am Issyk-kul-Seeufer, also in einem Niveau von beiläufig 1700 m Schuttablagerungen gefunden, 6) welche er zwar aus Mangel an Zeit nicht näher nntersnchen konnte, für welche er aber die

¹⁾ Physiographie des Tian-Schan, l. c., S. 8.

²) Zeitschr. f. Gletscherk., Bd. VIII, 1913, S. 114f., 122. Der westliche Tian-Schan, l. c., S. 97f. Gletscher- und Eiszeitstudien im westlichen Tian-Schan. Verhandl. d. 18. Deutsch. Geograph.-Tages 1912, S. 69f. Über einige Ergebnisse neuer geographischer Forschungen im Tian-Schan. Deutsche Rundschau für Geographie, Jahrgang XXXIV, S. 6f. Zur physiographischen Entwicklung Zentralasiens in der Quartärperiode. Hettners Geogr. Zeitschr., Bd. XX, S. 368f.

³⁾ Forschungsreise in den zentralen Tian-Schan, l. c.

⁴⁾ Zeitschr. f. Gletscherkunde, l. c., S. 114. Der westliche Tian-Schan, l. c., S. 97.

⁵⁾ Forschungsreise in den zentralen Tian-Schan, l. c., S. 64.

⁶⁾ Ebenda, S. 55.

Möglichkeit, daß es glaziale Ablagerungen seien, nicht in Abrede stellt. Ähnlich spricht er sich hinsichtlich der an den Mündungen anderer Paralleltäler gefundenen jungen Schuttablagerungen aus. 1) Ich selbst bin bei einer Querung der Kette von S. nach N. durch eines dieser Paralleltäler, das Soukatal, 2) vom Passe abwärts ununterbrochen über mächtige Glazialablagerungen gewandert und habe einen sehr bedeuteudeu Endmoränenwall, welcher offenbar sogar einem Rückzugsstadium angehört, noch im Niveau von etwas unter 2000 m gefunden. Auch D. Muschketow³) nimmt an, daß die diluvialen Gletscher des Terskeu-Ala-Tau sich in das diesem Gebirge vorgelagerte Becken Ala-basch-Konurlen erstreckt hätten, also bis zum Niveau von durchschnittlich 1800 m.

Fassen wir nun die Verhältnisse im Ak-su-Tale, weil es das bestbekanute der großen, nach N. herabziehenden Quertäler des Terskeu-Ala-Tau ist, näher ins Auge, so fiuden wir, daß die Berge in seinem Quellgebiete die Höhe von etwa 4200 m erreichen. Die heutigen Gletscher sind dort nur von geringer Ausdehnung. Wenn ich den Isohypsen der 2 Werst-Karte Blatt N 12 Vertrauen schenken darf, enden die jetzigen Gletscher dort durchschnittlich in einer Höhe von wenig unter 1800 Saschen = ca. 3840 m. Auch in der näheren Fortsetzung dieser Kette nach O. sind den Angaben der 2 Werst-Karte zufolge die Verhältnisse die gleichen. Man gelangt also bei Schätzung der heutigen Schneegrenze im Quellgebiete des Ak-su nach der Höfer'schen Methode zu einem beiläufigen Wert von etwa 4000 m. Wollte man die gleiche Methode auch zur Schätzung der diluvialen Schneegrenze als statthaft anerkennen, so würde man, wenn man — und zwar mit voller Berechtigung die Tiefe des Herabreichens der diluvialen Gletscher des Terskeu-Ala-Tau nach N. auf mindestens 1900 m annimmt, zu einer diluvialen Schneegrenze gering geschätzt im Werte von etwa 3050 m gelangen und somit zu einer eiszeitlichen Depression von etwa 1000 m, also um 400 m mehr als Machatschek aunimmt. Meines Erachtens kann nicht wohl bezweifelt werden, daß die diluvialen Gletscher der Maximalvereisung bis in das Issyk-kul-Becken hinabreichten.

Sogar in den dem Terskeu-Ala-Tau an Höhe weit nachstehenden Gebirgszügen im N. des Issyk-kul, in den Ketten des Kungeu-Ala-Tau und Transilenischen Ala-Tau ist das Verhältnis kein wesentlich anderes. J. W. Muschketow führt⁴) Moränenbildungen am Nordufer des Issyk-kul an, von denen er (auf Tafel N) eine "oserähnliche Bildung" wiedergibt. Demuach hätten sich im N. die diluvialen Gletscher trotz ihrer südlichen Exposition bis nahe zum Ufer des Sees erstreckt, was übrigens auch Bogdanowitsch⁵) annimmt.

W. M. Davis⁶) sah bei Tschoktal am Nordufer des Sees Moränen in Höhe von 6700' = 2040 m, also ebenfalls nahe am Seeufer.

Für den Nordabhang des Transilenischeu Ala-Tau besitzen wir eine wertvolle Untersuchung von J. E. Dimitriew. 7) Dieser Forscher fand im Tal der kleinen Almatinka

¹⁾ Ebenda, S. 71.

²) Semenow schätzte die Schneelinie im Hintergrund dieses Tals auf 3485 m. Hingegen beträgt die Schätzung der Schneelinie für die ganze Kette durch Sewerzow 12000' = 3658 m, offenbar etwas zu hoch.

³⁾ Von Prschewalsk nach Ferghana. Iswestyia K. R. G. G., Tom. XXXI, 1912, S. 56 f.

⁴⁾ Turkestan II, S. 78.

⁵⁾ Ergebnisse der Pjewtzowschen Tibet-Expedition, l. c. II, S. 2.

⁶⁾ Exploration in Turkestan, Bd. I, S. 86.

⁷⁾ Die Gletscher im Quellgebiet der kleinen Almatinka. Iswestyia Turkestan, Abteil. K. R. G. G., Tom. VI, 1897 russ.

(Tuyuk-su) eine große bewaldete Moräne im Niveau von 1700 m. Dimitriew gibt nun auf Grund seiner weiteren Untersuchungen die heutige Firnlinie im Quellgebiet des genannten Flusses auf 3650 m an. Nach Blatt L 15 der 2 Werst-Karte kann ich die durchschnittliche Höhe im Rande des Ursprungsgebietes auf 3800 m annehmen. Bringt man dies mit der Höhe der alten Moräne von 1700 m in Beziehung und wollte man nach der gleichen rohen Methode die diluviale Schneegrenze schätzen, so käme man auch hier auf einen Wert von etwa 2700 m und somit auf eine diluviale Depression zwischen 900 und 1000 m.

Was nun die von Machatschek angeführten Beobachtungen von G. Prinz¹) anbetrifft, die er über die Gletscher im Stromgebiet des Bayumkol-Flusses veröffentlicht, so muß ich gestehen, daß manches in den Prinz'schen Ausführungen, wie in seinen graphischen Darstellungen sich so wenig im Einklang mit meinen eigenen Beobachtungen, sowie mit meinen topographischen und photographischen Aufnahmen bringen läßt und daß übrigens auch die von Prinz verwendeten geographischen Namen gegenüber den von mir ermittelten teilweise so verschieden sind, daß ich vor der Schwierigkeit zurückschrecke, die Prinz'schen Ausführungen im einzelnen einer Besprechung zu unterziehen und den Versuch aufgab, sie in Parallele mit meinen eigenen Ergebnissen zu bringen.

Bekanntlich hat meine Expedition in zwei aufeinanderfolgenden Jahren das Bayumkol-Gebiet dreimal besucht und jedesmal mehrere Wochen der Untersuchung seiner Hochregion gewidmet. Die Gletscher des Haupttales wurden von meinem Mitarbeiter H. Pfann photogrammetrisch aufgenommen. Die Höhen der sie umrahmenden hauptsächlichen Gipfel wurden von einer Basis im Westzweige des Talschlusses aus, trigonometrisch ermittelt. Als Ergebnis dieser Arbeiten ist nun eine sehr detaillierte Karte des Bayumkol-Gletschergebietes im Maßstabe von 1:25000 entstanden, welche ein Blatt meines früher erwähnten großen Kartenwerkes über die Gletscher des zentralen Tian-Schan bilden wird. Wiewohl ich nur ungern aus den Ergebnissen dieser Arbeit schon jetzt Näheres veröffentliche, will ich zur Stütze dieser Ausführungen in Bezug auf das Bayumkol-Gebiet eine Ausnahme machen. Auf Grund der in Höhenschichten von 50 m Abstand angelegten Spezialkarte kann die Firnlinie im ausgedehnten Gletschergebiet des Bayumkol-Talschlusses auf 3800 m festgelegt werden, während für die Höhen der Umrandung sich ein Mittelwert von 5200 m errechnet, das Gletscherende des Mittelgletschers aber bei 3150 m liegt. Lasse ich nun vollständig außer Betracht, daß sich im Tekes-Tale Ablagerungen finden, die dem Glazialbestand des Bayumkol-Tales entstammen und auch sogar den Umstand, daß die Randketten gegen das Tekes-Tal vom diluvialen Bayumkol-Gletscher überflutet waren?) und schätze ich nach der mehrfach angewendeten rohen Methode die diluviale Schneegrenze auf Grund des in meiner Karte niedergelegten hypsometrischen Materials, das in einigen Seitentälern des Bayumkol-Tales gewonnen wurde, so gelange ich zu einem Wert von 2635 m, mithin zu einer Depression von 1165 m, welche ganz sicherlich als ein Minimalwert anzusehen ist. Es läßt sich aber schon jetzt sagen, daß für die größeren Gletscher des zentralen Tian-Schan sich noch höhere Werte ergeben werden, ganz besonders große für jene des Südabhanges. Ich will jedoch meinen späteren Veröffentlichungen hierüber nicht weiter vorgreifen.

¹⁾ Mitteilungen der K. K. Geograph. Ges., Wien 1909, S. 10 f.

²⁾ Vorl. Ber., 1. c., S. 8.

Übrigens hat auch Friederichsen wiederholt hervorgehoben, 1) daß die Syrtflächen einst unter Eis gelegen haben — was in Übereinstimmung mit meinen eigenen Beobachtungen steht 2) — und daß in ihren Abhängen glazial ausgestaltete Täler eingetieft sind, Umstände, woraus ebenfalls auf eine starke eiszeitliche Depression geschlossen werden darf.

Diese Ergebnisse stehen in gutem Einvernehmen mit den Berichten über andere neuere Forschungen in Zentralasien. Bisher lagen für uur recht wenige zentralasiatische Gebirge einigermaßen verlässige, ziffermäßige Nachweise für die Grenzen des Herabreichens diluvialer Gletscher vor. In neuerer Zeit sind aber durch berufene Forscher, welche speziell ihre Aufmerksamkeit diesen Verhältnissen zuwandten, einige wichtige Beobachtungen gemacht worden. Das Ergebnis ist uicht geeignet, die Aunahmen Machatscheks und das von ihm hiefür angeführte Zahlenmaterial zu bestätigen. So berichtet Granö, 3) daß die alten Moränen im Katun-Tale in einer Meereshöhe von 300—350 m liegen, die der Tschuliman-Biya-Gletscher in 400 m und faßt seine Feststellungen dahin zusammen, daß die eiszeitliche Depression im östlichen Altai 12—1300 m betrage.4)

R. von Klebelsberg berichtet⁵) über seine glazialgeologischen Beobachtungen in den Gebirgen Bocharas und erwähnt (S. 238), daß "die eiszeitliche Vergletscherung in diesem Teile Zeutralasiens ungleich größer und ausgedehnter war, als bisher angenommen wurde". Aus dem Hissar-Gebirge ragten die Gletscher bis in die Niederung (etwa 900 m) herab. womit auch das letzte Bedenken gegen die Annahme einer lokaleu Vergletscherung an der Nordseite des Kim-kutan bei Samarkand schwindet. Im Wachsch-Tale sprechen die Befuude dafür, daß nicht nur die hochgelegenen Seitentäler, sondern das Haupttal selbst vergletschert war. In der Kette Peter des Großen fand von Klebelsberg am Schuruk-Gletscher die Firnlinie im Niveau von 3800-3900 m uud stellte einen um ca. 1000 m tieferen junghistorischeu Gletscherstand fest. Dieser Reisende hebt hervor (S. 287), daß ein letztes Maximum ähnlich dem alpinen um die Mitte des 19. Jahrhunderts "bei fast allen Gletschern deutlich in Erscheinung tritt" und fügt hinzu: "Ungleich weiter an den Hängen und in die Täler hinab reichen die Spuren des eiszeitlichen Höchststandes der Vergletscherung. Es ist nicht zweifelhaft, daß in diesem Teil Zentralasiens die eiszeitliche Vergletscherung in ihren Beziehungen zur heutigeu den alpinen Verhältnissen nicht nachgab", ferner: "zahlreiche kleine alte Gletschermulden ließen berechnen, daß die Depression der eiszeitlichen Firnlinie gegeuüber der heutigen zum mindesten einen ähnlichen Betrag ausmacht wie in den Alpen".

Vou den übrigeu mir bekannt gewordenen Stützen einer solchen Annahme erwähne ich nur die Beobachtungeu von Obrutschew⁶) in dem weit nach Westen vorgeschobenen Dschaiir-Gebirge, dessen Maximalerhebung kaum wesentlich über 2000 m beträgt, so daß

¹⁾ Forschungsreise etc., l. c., S. 123, 130, 164 f.

²⁾ Physiographie des Tian-Schan, l. c., S. 5.

³⁾ Morphologische Forschungen im östlichen Altai. Zeitschr. Ges. f. Erdk., Berlin 1914, S. 329 f., besonders S. 340 f.

⁴⁾ Bei dieser Gelegenheit möchte ich zur Ergänzung der Mitteilungen von F. Machatschek in Zeitschr. f. Gletscherk. VIII, 1913, S. 117 noch hervorheben, daß Granö (Beiträge zur Kenntnis der Eiszeit etc., l. c., S. 88) den Betrag der eiszeitlichen Depression im östlichen Gebiet des Chinesischen Altai auf 1100—1200 m schätzt und an den Quellen des Kran auf mindestens 1400 m.

⁵⁾ Mitteil. Deutsch. und Österr. Alpen-Ver. 1913.

⁶⁾ Das Dschungar. Grenzgebiet etc., l. c., S. 400.

von ihm nicht anzunehmen ist, daß es eine im Vergleich zu den eigentlichen Hochgebirgen Zentralasiens stehende ausgedehnte Vereisung jemals getragen habe. Dennoch finden sich auch dort die alten Glazialablagerungen in tiefem Niveau. Obrutschew bestimmte im Tale Boto-Mainak die Höhe einer Moränenkuppe mit 1029 m und das Ende der Moränen am Fuße der Karabtschuk-Berge sogar auf 977 m.

Für die Ketten der größten Hochgebirge Innerasiens liegen, abgesehen von den bereits erwähnten, aus neuerer Zeit bis heute nur vereinzelte Beobachtungen vor, aus denen sich keine Folgerungen für verlässige Bestimmung der eiszeitlichen Depression der Schneegrenze ziehen läßt.¹) Von Feststellungen aus der letzten Zeit sind die von Aurel Stein²) für das Kuen-lun-Gebirge zu erwähnen, wenn es auch nur wenige sind. Die heutige Schneegrenze für die das Jurun-kasch-Quellgebiet begleitenden Ketten, die eine durchschnittliche Kammhöhe von 6300 m erreichen mit Gipfeln bis über 7000 m, wird von Stein für die Nordseite auf 5350 m, für die Südabhänge auf wenig unter 6000 m geschätzt, was also ein Mittel von 5675 m ergibt,3) wobei zu bedenken ist, daß die Beobachtungszeit Ende August war, eine für diese Gegend nahezu schon winterliche Jahreszeit. Die obwohl geschlossen überfirnte höchste Kammregion bildet jetzt dennoch nur kurze Gehängegletscher aus. Nur am Nordabhang des Pik K 5 (Mus-tagh) und besonders im Quellgebiet des Nissaflusses scheinen größere Talgletscher vorzukommen. Von diesen reichen der Kasch-kul-Gletscher und der Otragh-kul bis zu etwa 4000 m herab, also um 1675 m unter die heutige Schneegrenze. Stein fand aber alte Moränen noch 5 km unter den heutigen Gletscherenden. Für ihre Höhenlagen finden sich leider im Reisebericht keine Angaben. Meines Erachtens dürften aber auch im Kuen-lun ebenso wie in anderen innerasiatischen Gebirgen morphologisch geschulte Beobachter Beweise für ein tiefes Herabreichen der diluvialen Gletscher aufzufinden imstande sein.

Die Frage, ob analogisch mit der eiszeitlichen Geschichte Europas auch im Tian-Schan die diluviale Eiszeit sich in mehrere Eiszeitsperioden gliederte, ist noch nicht spruchreif. Nach dem bisher geförderten Material kann eine bestimmte Ansicht darüber nicht geäußert werden, ob die allerdings in unzweifelhafter Weise erwiesenen Oszillationen der diluvialen Eisdecke nach Dauer und Intensität als wirkliche Perioden aufzufassen sind, insoferne als der Verlauf der diluvialen Vereisung durch Interglazialzeiten unterbrochen wurde, oder ob in einer als einheitlich zu betrachtenden Vereisungszeit nur stadiale Rückzugsbewegungen mit erneuten Vorstößen wechselten. Auch meine in dieser Abhandlung niedergelegten Beobachtungen über die ehemalige Vereisung der Bogdo-Ola reichen zur Klärung dieser Frage nicht aus. Es kann dies um so weniger der Fall sein, als für die diluviale Eisbedeckung dieses Gebirges ganz besondere Verhältnisse maßgebend sind, die von denen des gesamten übrigen Tian-Schan stark abweichen.

¹⁾ In der Abhandlung von Viktor Paschinger, Die Schneegrenzen in verschiedenen Klimaten, Petermanns Mitteilungen, Ergänzungsheft Nr. 173 findet sich das bisher bekannt gewordene, lückenhafte und in Bezug auf Verlässigkeit und Verwendbarkeit sehr ungleichwertige Material zusammengestellt (siehe S. 22—29) über Schneegrenzen in Innerasiatischen Gebirgen, wobei jedoch nichts über eiszeitliche Verhältnisse erwähnt wird.

²⁾ Ruins of Desert Cathay. Exploration in Central Asia and westernmost China by Aurel Stein, 2. Bd. London 1912.

³⁾ Siehe dagegen die Daten in Paschinger, l. c., S. 25 f. Siehe auch K. Östreich, Himalaya-Studien. Zeitschr. f. Erdk., Berlin 1914, S. 417 f.

Im Gegensatz zur gewaltigen Breitenentwicklung des zentralen und östlichen Tian-Schan türmt sich die Bogdo-Ola als verhältnismäßig schmaler und jäh abfallender Wall zwischen zwei tiefeu Senken auf (siehe Kap. VI, S. 35 f., 40 f.). Wenn daher auch in den zeutralen Teilen des Gebirges infolge ihres besonders hohen Hinausragens über die damalige klimatische Schneegrenze die Entwicklung einer Eisdecke sehr begünstigt war, so konnte diese doch nicht durch namhafte Zuflüsse aus großen Seitentälern und Nebenketten vermehrt werden. Da also das Gebirge von seiuer extremen zentralen Höhe rasch zu niedrigen Niveaus absinkt, mußten auch die vom Zentrum nach N. und S. an den Abhängen hinabgleitenden Eisströme schou bald au Mächtigkeit verlieren. Trotz dieses eigeuartigen Verhältnisses läßt sich von der Bogdo-Ola sagen, daß die von der Eiszeit dort zurückgelassenen Spuren und Ablagerungen auf gesonderte Phaseu der Entwicklung hindeuten, und zwar in der Art, daß im großen ganzen von einer einstigen Maximalvereisung ausgehend eine Entwicklung in absteigender Linie stattfand, welche jedoch durch Wellenbewegungen erneuter Eisanschwellung nach Ablauf von Abschmelzperioden gebrochen wurde.

Die Mächtigkeit der Eisdecke verminderte und vermehrte sich entsprecheud ab- und ansteigenden klimatischen Wellen einige male mit der Besonderheit, daß jedem Anschwellen eine gesteigerte Abnahme folgte, die zuletzt infolge entscheidender Klimaveränderung einen rapiden Verlauf dem Ende zu nahm (siehe S. 99, 106, 109, auch Aumerkung, S. 80).

Ich habe bereits früher mehrfach (besonders S. 148) darauf hingewiesen, daß zwei, wahrscheinlich drei größere Phasen im Verlaufe der Vereisung der Bogdo-Ola festgestellt werden können. Um dies zu erhärten, ist es nötig, die wichtigsten Beobachtungen an beiden Abhängen miteinander in Parallele zu bringen, wobei ich jedoch gleich auf eine besondere Schwierigkeit hinweisen muß, die sich der genauen zeitlichen Parallelisierung der vorgefundenen Verhältnisse in den Weg stellt. Diese liegt in dem ungemein großen Höhenunterschied begründet, der zwischen den einzeluen Teilen dieses Gebirges obwaltet, wie er öfters in diesen Abhandlungeu betont wurde und besonders aus Kap. VI uud aus Profil Taf. 16, Fig. 1 sich ergibt. Eiu solch erheblicher Unterschied in der vertikalen Entwicklung mußte zur Folge haben, daß in einem bestimmten Zeitabschnitt des ablaufenden Diluviums von denjenigen Teilen des Zentralkammes, die nicht viel über 4000 m sich erheben, keine nennenswerteu Firnmengen mehr nach den Tiefen abflossen, als von der über 6000 m kulminierenden Gipfelgruppe immer noch mächtige Eisströme in gewisse Täler hinabgezogen sind. Diese warfen daher, sei es im Stadium des Rückzuges, sei es bei ihrer längeren Stabilität, noch Moränen auf zu einer Zeit, als in anderen Tälern die glaziale Einwirkuug schon längst erloschen war (S. 147 f., 160 f.). Aus diesem Grunde mußte ich bei Auswahl der Daten, welche einander gegenübergestellt werden dürfen, um eine Gliederung in dem Verlaufe der diluvialen Vereisung zu erweisen, mit besonderer Vorsicht zu Werke gehen.

Als erwiesen kann gelten, daß in der Zeit der diluvialen Maximalvereisung das ganze Gebirge unter einer geschlossenen Firn- und Eisdecke gelegen hat. Den Charakter eines vom Eise verlassenen Reliefs bekunden die meisten der dieser Abhandlung beigegebenen photographischen Aufnahmen, besonders die Panoramen. Von den vielen für eine totale Vereisung sprechenden, von mir angeführten Tatsachen hebe ich nur eiuige der wichtigsten hervor: so die Überflutung des felsigen Querzuges,

welcher der zentralen Gipfelgruppe im N. vorgelagert ist, durch Eismassen, welche in dieser Richtung abflosseu (S. 82 f., 169 f., 173, 175 f.), dann das Hinaufreichen der Rundhöckerformen und anderer Zeichen von Abschleifung bis empor zu den Kämmen (S. 90 f., 92 f., 106, 170, 182, 183 f., 187 f., 197), ferner die mit charakteristischen Knicken (Taf. 14, Fig. 2) wohl ausgebildete Trogform des Gurban-bogdo-Tales (S. 92, 102, 170), sowie das mächtige Kar im dreiteiligen Lagertal am Südrand (S. 183 f.), den Knick in der Steilwand des Da-tun-gu-Tals (S. 150) und viele andere Anzeichen, die ich nicht weiter registriere. Die Schätzungen der durchschnittlichen Mächtigkeit der Eisdecke, wie ich sie an verschiedenen Stellen dieser Abhandlung verzeichnet habe (S. 91, 187, 188, 197), bewegen sich zwischen 400 und 500 m, doch sind die Grundlagen hiefür einigermaßen schwankend, Zu den Dokumenten dieser ersten und Hauptvereisung können wohl noch gerechnet werden: der große alte Moränenwall im dreiteiligen Lagertal (S. 184, 186) und die stark zersetzten alten Moränenablagerungen bei der Kupferschmelze im Gurban-bogdo-Tal (S. 197 f., 201 f.). Ein hohes Alter dürfte auch den mächtigen Moränenschuttmassen zugebilligt werden, welche den alten Lauf des Gurbau-bogdo-Flusses verlegt und ihn gezwungen haben, sich einen seitlichen Durchbruch in der beschriebenen jugendlichen, doch immerhin schon wohl ausgebildeten Schlucht zu schaffen (S. 103, 195 f. und Karte II), sowie den in den anschließenden Nebentälern durch Wenter beobachteten, gleichfalls die Kennzeichen bedeutenden Alters tragenden Moränen. Gleichwohl ist es nicht völlig ausgeschlossen, daß diese Bildungen doch schon dem Beginne eines neuen Eisvorstoßes in der folgenden Phase der Glazialentwicklung angehören könnten.

Auf die Wahrscheinlichkeit, daß unter den mächtigen fluvioglazialen Schottermassen des Gurban-bogdo-Tales alte Grundmoräne zu finden sei, die der ältesten Vereisung entstammt, habe ich vermutungsweise hingewiesen (S. 92, 196), sowie auch auf Anzeicheu, welche für eine, ebenfalls dieser ältesten Zeit angehörende Vergletscherung des Dschargöß-Tau sprechen (S. 92, 105, 108, 129).

Die Entstehung der Randseen am Nordrande des Gebirges (S. 85, 142 f., 146 f.) und am Südrande (S. 80, 83, 104 f., 129, 202—207) mit ihren Ablagerungen und Terrassen dürfte ebenso wie die Ausbildung des Durchbruchs der vereinigten Flüsse am Dawantschin-Passe (S. 31, 33, 104, 105) mit der großen Schmelzperiode am Ende der Maximalvereisung in Verbindung gebracht werden. Völlig Sicheres über den Abschluß dieser ersten Periode ließe sich jedoch nur sagen, wenn bei eingehenderer Untersuchung die unter den fluvioglazialen Schottern vermutete Grundmoräne wirklich festgestellt werden könnte und wenn auch außerhalb des Gebirges glaziale Ablagerungen noch erhalten geblieben wären, was jedoch aus mehrfach hervorgehobenen Gründen kaum der Fall sein kann (S. 92, 93, 104, 198, 201).

Mit größerer Sicherheit aber darf behauptet werden, daß viele andere Glazialbildungen, von denen in dieser Schrift berichtet wurde, nach ihrer Beschaffenheit sowohl, als nach ihrer Höhenlage, wie auch nach der Art ihrer Lagerung und Zusammensetzung und endlich nach dem Grade ihrer Verwitterung als einem späteren Entwicklungsabschnitt der eiszeitlichen Geschichte angehörig zu erkennen sind. Für mancherlei Schwankungen, die auch im späteren Verlauf der diluvialen Vereisung stattgefunden haben, habe ich ohnedem eine größere Anzahl von Beobachtungen in dieser Abhandlung niedergelegt (siehe Kap. XI und XII, dann besonders S. 145—155, 169 f., 176—178, 185 f., 196 bis 198).

Auch in diesen jüngeren Bildungen ist es möglich gewesen, mit größter Deutlichkeit zwei verschiedene Altersstadien zu unterscheiden.

Zu den einem älteren, also dem zweiten Vereisungsstadium angehörenden Bildungen und Erscheinungen sind zu zählen am Nordabhang: Die Moränenablagerungeu im Becken III des Sangun-Tals (S. 144) und die zweifellos gleichalterigen Ablagerungen auf der Höhe der Räuder dieses Tals (S. 145, 148); die Moränenanhäufungen auf der den Bogdo-Ola-See begleitenden Hochfläche (S. 160 f.), über welche ein großer Gletscher hinwegfloß und sich hinab durch das große Durchgangskar (S. 146-159 f.) ergoß, vor welchem er die zwischen oberem und uuterem Kloster liegende, hohe, jetzt bewaldete Moräne aufwarf (S. 159) und dann durch das alte, später angeschnittene und eutleerte Tal (S. 146) weiter hinaus nach N. zog, wo er seine Ablagerungen hinterließ und in das große Tal- und Seebecken zwischen Sangun und Schimo-gu hinabreichte (S. 85, 146, 147). Zum gleichen Stadium der Vereisung gehören auch die Überbleibsel einer hohen alten Ufermoräne im Quelltal des Da-tun-gu (S. 165), durch welches unser Aufstieg zum Hochgebirge führte, dann der älteste, 70-80 m hohe Ufermoräuenwall des Grum Grschimailo-Gletschers (S. 176 f.) sowie der alte Blockwall (Ufermoräne), der über das heutige Ende dieses Gletschers hinausreicht (S. 178). Ob die beiden Schliffkehlen in der Südwand des absperrenden Querriegels eiuen längeren Beharrungszustand dieses Stadiums anzeigen oder einen Hochstand der folgenden Vereisungsphase, kann nicht mit Sicherheit entschieden werden.

Hingegen sind mit annähernder Sicherheit ebeufalls dem der Maximalvereisung folgenden Stadium die großen Moränenanhäufungen zuzuschreiben, welche das Entstehen des Bogdo-Ola-Sees veranlaßt haben. Es geht aus meiner Beschreibung dieser mächtigen Glazialablagerung (S. 151, 154 f.) hervor, daß sie keine ganz einheitliche ist. Die folgende Ansicht, die ich mir hierüber und über ihr Alter gebildet habe, fügt sich aber gut in die Reihe der Beobachtungen über den Verlauf der Glazialgeschichte ein, wie ich ihn dargestellt habe, während es auderseits auf Schwierigkeiten stoßen würde, eine mit den übrigen Tatsachen sich deckende Erklärung zu finden. Ich nehme au, daß nach dem Rückzug der Eisdecke am Ende der Maximalvereisung und nach Ablauf der großen, hiemit verbundenen Schmelzperiode, erneutes mächtiges Anschwellen der Eisdecke stattfand, die, wenn sie auch nicht mehr die Dicke der früheren erreichte, doch noch mächtig genug war, den vor der Zentralgruppe liegenden Querriegel (S. 81 f., 173, 175 f.) zu überfluten und im Da-tun-gu-Tal ihre Moränen abzuladen. Auch die bedeutenden Überbleibsel hoher alter Ufermoränen in der Ostbucht des Sees (S. 155) gehören zu diesem neuen großen Eisvorstoß. Man ist berechtigt, wenn auch nicht mit aller Sicherheit, so doch mit voller Wahrscheinlichkeit anzunehmen, daß die absperrende Seemoräne schon dem Rückzugsstadium dieser Vereisuug angehört, weil nur eine lange Stabilität des Eises an dieser Stelle ihre besondere Mächtigkeit (S. 154 f.) erklärlich macht uud weil diese Stabilität infolge Alimentierung durch lange andauernden Zufluß von der in außerordentlicher Höhe kulminierenden Zentralgruppe gesichert war. Die über die Decke der großen Moräne geschobene, eine besondere Stufe bildende kleiuere Moräne könnte wohl durch eine mit nochmaligem schwachen Vorstoß verbundene Oszillation in diesem zweiten Stadium der Vereisung erklärt werden. Es ist aber anderseits auch nicht als ausgeschlossen anzusehen, daß in dem folgenden und jüngsten Stadium der diluvialen Entwicklungsgeschichte noch ein letzter Eisvorstoß bis in das Da-tun-gu-Tal (Sangun) hinabreichte, wofür besonders

die als jung erkanuten Glazialablagerungen (S. 148) in der engen Talfurche des jetzigen schluchtförmigen Mittellaufes sprechen würden.

Am Südabhang lassen sich in das zweite Stadium folgende Erscheinungen eingliedern: Die große Seitenmoräue am oberen Moränensee (S. 84, 178, 181) unter dem Gurban-bogdo-Paß, die zwei älteren hohen Ufermoränen beim Lager im dreiteiligen Tal (S. 182, 185), sowie die Gruppe mächtiger Glazialablagerungen an der Mündung eines von rechts in das Gurban-bogdo-Tal einmündenden Seitentals und die dazu gehörigen, wenig weiter talabwärts angehäuften (S. 90, 193 f.). Die Linien der beiden Schliffkehlen, welche in der Felswand des Ostufers des Chigo-Gletschers erscheinen (S. 88) können ebenfalls diesem Stadium zugerechnet werden, wenngleich es auch nicht als völlig ausgeschlossen zu erachten ist, daß die höhere von beiden, welche nach meiner Schätzung mehr als 250 m über der heutigen Eisdecke liegt, einem der Periode des Schwindens der Maximalvereisung eingeschalteten Beharrungszustand angehören könnte. Ob der älteste und höchste, der begrünte der dort entlang ziehenden Ufermoränenwälle (S. 88) auch noch mit zu diesem Stadium zu ziehen ist, oder zum Beginn des folgenden, läßt sich schwer entscheiden. Immerhin spricht für letztere Annahme der Umstand, daß die jetzt hängend gewordenen Nebengletscher ehemals im Niveau dieser alten Randmoräne einmündeten. Gleichfalls als unentschieden muß ich es hinstellen, ob einige der an den Mündungen von Nebentälern des Gurbanbogdo und innerhalb dieser Täler aufgestauten mächtigen Moränenanhäufungen (S. 91, 92, 106, 194, 195 f.), die allerdings den Eindruck hohen Alters machen, diesem Vereisungsstadium oder dem nächstfolgenden angehören.

Daß aber auf den großen Eisvorstoß, den ich als zweites Stadium bezeichnete, wieder eine Abschmelzperiode folgte, beweisen eine Anzahl Terrassen, welche ihrer Lage nach nur vor Beginn einer dritten und letzten Phase der Vereisung vom Wasser geschaffen sein können. Hieher gehören: Die Terrassen in den Rändern des alten entleerten, über dem heutigen Da-tun-gu-Tal (Sangun) liegenden Tales (S. 146, 147), sowie die zwei Stufen in den Rändern des großen nördlichen Talbodens und Seebeckens (S. 143, 146) und die in dem kleineren Becken zwischen Sangun und Dön-chon-dse (S. 142 f.), endlich auch die Terrassen im Tale Schimo-gu (S. 100), weil in dieses Tal, das nur durch den Abfluß der wesentlich niedrigeren Westkette alimentiert wird, am Ende des Diluviums wohl keine so bedeutenden Eis- und Wassermassen abgeflossen sein können, wie sie zur Erklärung dieser bedeutenden Erosionsbildungen genügen würden. Auch das Entstehen der in den kleinen Becken I und II des Sangun-Tals angehäuft gewesenen, zu Konglomeraten verfestigten Schotter (S. 148) schreibe ich dem Wasserreichtum dieses Zeitabschnittes zu. Die Eigenart der Zusammensetzung der fluvioglazialen Schotter im Gurban-bogdo-Tale und ihre Verknüpfung mit echten Moränen (S. 198), sowie ihre große Mächtigkeit lassen darauf schließen, daß sie zum überwiegenden Teil aus den außerordentlich bedeutenden Moränenablagerungen des zweiten Stadiums der diluvialen Vereisung entstanden sind, also in einer Abschmelzperiode vor Eintritt der letzten und wesentlich schwächeren Vereisungsphase. Hiemit steht auch die wechselvolle Geschichte des Randsees im S. im Einklang (S. 202-207). Was das Alter der beiden großen Terrassenstufen anbetrifft, die im Gurban-bogdo-Tale sowohl in den Moränen als in fluvioglazialen und gemischten Schottern liegen (S. 91 f., 103, 194-196) sowie der im Oberlauf des Da-tun-gu-Tals beobachteten (S. 165), so ist die untere hievon zweifellos erst beim Ablauf der letzten Vereisung entstanden. Hinsichtlich der oberen sprechen hingegen mancherlei Anzeichen dafür, daß sie der Zeit vor dem Beginne dieses letzten Eisvorstoßes, also der Abschmelzperiode des zweiten Stadiums angehören dürfte. Insbesonders zeigt hiefür auch die Feststellung von junger Moräne auf der Decke der oberen Terrasse im Oberlauf des Gurban-bogdo-Tals (S. 199). Auf die Wahrscheinlichkeit, daß die Rinnen, durch welche dem "Südgletscher" sein Firnmaterial zugeführt wird, erst nach der Entblößung des Scheitels und der Abhänge des Gebirges vom Eis eingetieft wurden (S. 185), sei im Zusammenhang mit den eben hervorgehobenen Tatsachen nochmals hingewiesen. Nach alledem dürfte die Annahme genügend gestützt sein, daß eine Abschmelzperiode der Zeit unmittelbar voranging, welcher die nun aufzuzählenden, mit Sicherheit als jünger erkennbaren glazialen Erscheinungen angehören.

Als solche sind anzusehen am Nordabhang: Die mächtigen Moränenbildungen, welche in der schluchtartigen Verengung des Da-tun-gu- (Sangun-) Tales unter dem Niveau des angeschnittenen alten Tals abgelagert wurden (S. 148 f.), dann die Grund- und Randmoränen im Quelltal des Da-tun-gu (S. 165), sowie die in der Weitung der obersten Talstufe auf die Grundmoräne aufgeschobenen Seiten- und Endmoränenwälle der Nebengletscher (S. 86, 168 f.), ferner die vier jüngeren Randmoränenwälle des Grum Grschimailo-Gletschers (S. 176 f.) und endlich die Moränenanhäufungen, auf welchen der Gurban-bogdo-Paß liegt (S. 169, 170).

Dem gleichen Stadium gehören an am Südabhang: die Seen und die sie absperrenden Moränenwälle auf den Stufen der Seentreppe im Oberlaufe des Gurban-bogdo-Tals (S. 101 f.); die jüngeren Ufermoräuenwälle am Lagerplatz im dreiteiligen Tal (S. 182, 185), sowie die hinzugehörigen des "Südgletschers" (S. 185, 186), ferner ein Teil der in den Nebentälern des Gurban-bogdo-Tals an den Mündungen aufgestauten Moränen (S. 91 f., 106, 194 f.), welche offenbar den durch späte Klimaschwankungen veranlaßten Eisvorstößen zu danken sind, endlich die tiefer gelegenen Ufermoränen des Chigo-Gletschers (S. 87, 188 f.).

Dieser letzten größeren Wandlung in der Diluvialgeschichte des Tian-Schan kann, wie schon aus dem Umfang und der geringeren Mächtigkeit der von ihr hinterlassenen Ablageruugen zu schließen ist, keine sehr lange Dauer mehr beschieden gewesen sein. Nach meiner Überzeugung ist die entscheidende und dauernde Klimaveränderung infolge endgültiger und völliger Absperrung der maritimen Luftzufuhr durch den allmählich immer höher angestiegenen Himalayawall rasch hereingebrochen¹) (S. 99, 106, 108 f., 182, 196, 205). Während infolgedessen den meisten Nebentälern bald die aus den geschwundenen Firnlagern ihres Hintergrundes zugeführte Wasserlieferung entzogen wurde (S. 98 f., 105, 152 f., 160), blieb den im Alimentierungsbereich der höchsten Zentralgruppe gelegenen Haupttälern am Ende des letzten Eisvorstoßes der Diluvialzeit noch immer durch die Schmelzwasser der von dort herstammenden mächtigen Eismassen für längere Zeit eine bedeutende Wasserführung gesichert. Hieraus ergaben sich die starken Erosionswirkungen in den Glazialablagerungen und Schottern des Gurban-bogdo-Tals (S. 91, 103, 194—196), sowie die, welche sich im Oberlaufe des Da-tun-gu-Tals (S. 163, 165) und in dessen Mittellauf (S. 145, 148) bemerkbar machen.

Zusammenfassung. Das mangelhafte Bild, das aus der hier vorgeführten Gruppierung des auf meiner Reise zustande gebrachten Beobachtungsmaterials sich entwerfen

¹⁾ Siehe auch Fußnote auf S. 80 dieser Abhandlung.

läßt, ist nicht deutlich genug, um hieraus Züge erkennen zu lassen, welche für eine sichere Teilung des Verlaufes der diluvialen Vereisung dieses Gebirges in mehrere Eiszeiten zeugen, wie sie der Glazialzeitsteilung in den europäischen Alpen entsprechen würden. Im Gegenteil spricht manches dafür, daß schon die geschilderten Unterschiede in Bau, Lage und Gestalt der Bogdo-Ola, wie sie gegenüber der Gesamtmasse des übrigen Tian-Schan hervortreten, nicht einmal eine völlige Übereinstimmung des Verlaufes der diluvialen Vereisungsgeschichte mit der des zentralen und östlichen Tian-Schan erwarten lassen, geschweige denn einen der diluvialen Entwicklungsgeschichte der europäischen Alpen parallelen Gang. Schon der von mir mehrfach als besonders wichtig bezeichnete Umstand der eigentümlichen Lage und des ungeheuren Höhenunterschiedes in den vertikalen Verhältnissen der einzelnen Teile des Gebirges mußte einen weitgehendeu Einfluß auf die Art der Vereisung und auf ihren Verlauf ausüben (S. 224).

Nichtsdestoweniger lassen doch die angeführten Tatsachen den sicheren Schluß zu, daß einstens ein geschlossener Eismantel von sehr beträchtlicher Mächtigkeit das ganze Gebirge einhüllte und daß diese Eishülle, nachdem sie an Ausdehnung und Dicke stark vermindert und zurückgeschoben war, von neuem anwuchs und nach vorwärts rückte, ohne jedoch ihre ursprüngliche Stärke und Ausbreitung wieder zu erreichen, daß endlich dieser Wellenbewegung dann noch eine dritte von verminderter Größe und Bedeutung folgte. Wenn wir also nicht behaupten können, daß diese Oszillationen der Eisdecke nach dem Grade ihrer Ausdehnung und Dauer, sowie nach ihrer Intensität die Annahme mehrerer Eiszeiten rechtfertigen, schon deshalb nicht, weil Bildungen einer Interglazialzeit nicht beobachtet wurden, so stützt das vorgeführte Material immerhin die Annahme dreier deutlich voneinander geschiedener Stadien oder Phasen der Vereisung, die auch in den Wirkungsverhältnissen des strömenden Wassers jener Zeiten deutlich zutage treten, also in der wechselvollen Erosionsgeschichte sich spiegeln, wie ich sie geschildert habe (Kap. XII und S. 152 f., 160, 196 f. etc.).

Der Ausgang des Diluviums aber war in diesem Gebirge jedenfalls grundverschieden von dem in den europäischen Alpen. Dorten waren die in der Postglazialzeit eingetretenen Veränderungen die Folge einer nicht einmal sehr starken Klimaschwankung; hier aber das Ergebnis von fuudamentaler Klimaveränderung, welche als Nachwirkung von tektonischen Vorgängen eintrat. Dieses Verhältnis tritt nicht nur in der Bogdo-Ola, sondern im Antlitz des gesamten Tian-Schan deutlich hervor. Um den außerordentlichen Betrag dieser Klimaveränderung voll zu würdigen, muß der heute in einem der aridesten Klimate der Erde wurzelnde Südabhang des Gebirges betrachtet werden. 1) In fast allen seinen Teilen sind, ungeachtet der Eingriffe des jetzt herrschenden extremen Trockenklimas, die Züge noch unverwischt, welche ihm die Erosionstätigkeit des fließenden Wassers in einer feuchtigkeitsreichen Periode seiner Geschichte aufgeprägt haben.

¹⁾ Kaschgar mittlere Jahrestemperatur + 12,4°; mittlere Niederschlagsmenge 46.

Luktschun , , , + 13,3°; , , , so gering, daß kaum meßbar.

Yarkend , , , +12,3°; , , , 13. Siehe übrigens Hann, Handbuch der Klimatologie, 3. Aufl., Bd. III, über zentralasiatische Klimaverhältnisse, S. 314 f.

Die gegenwärtigeu Mengen des fließenden Wassers hätten auch in mehrfacher Potenzierung nicht die Wirkungen zustande bringen können, wie wir sie zwar allenthalben im Tian-Schan — man beachte die reiche Durchtalung des ganzen Gebirges 1) — nirgendwo aber in so ausgeprägter Weise als an seinem Südabhang beobachten können. Die Eiszeit. gewiß auch schon die ausgehende Tertiärzeit 2) war nach meiner Überzeugung auch eine Zeit größerer Feuchtigkeit und die von namhaften Glazialgeologen gepflegte Hypothese, daß ein Sinken der mittleren Jahrestemperatur um 3—4 Grad schon genüge, 3) um die Eiszeitverhältnisse im allgemeinen und im besonderen die in Zentralasien und im Tian-Schan hiemit zu begründeu, würde meines Erachtens zu einer ausreicheuden Erklärung der dort in so auffälliger Weise zutage tretenden Gegensätze in der jungen Ausgestaltung des Gebirges nicht führen. Meine Auffassung vom Wesen der Eiszeit ist vielmehr überwiegend die, daß — abgesehen von anderen hier nicht zu erörternden Faktoren — eine Temperaturerniedrigung allein ohne gleichzeitige oder iutermittierende Perioden größerer Feuchtigkeitszufuhr nicht genügen köune, um ein bedeuteudes Ausmaß der Vergletscherung von Gebirgen überhaupt verständlich zu machen.

Das ganze Problem der Eiszeit in dieser Schrift aufzurollen ist uatürlich nicht am Die Literatur hierüber ist als bekannt vorauszusetzen.4) Wenn schon eine kritische Prüfung der darin enthaltenen Erklärungsversuche und Hypothesen mich in meiner eben ausgesprochenen Ansicht bestärkt, so tragen nicht weniger meine in verschiedenen Klimaten, in verschiedenen Teilen unserer Erde, besonders aber in Zentralasien gemachten zahlreichen eigenen Beobachtungen hiezu bei. Ausnahmslos habe ich gefunden, daß die den feuchtigkeitsreichen Winden ausgesetzten Bergflanken auch die verhältnismäßig reichere Befirnung tragen, ja daß diese Erscheinung auch dort zutage tritt, z. B. an Südabhängeu von Gebirgen, wo die mittlere Jahrestemperatur höher ist, als an den entsprechenden, von trockenen Winden bestrichenen, aber kälteren Nordabhängen. Hiemit im Einklang steht auch die als allgemein gültig anerkannte Erscheinung, daß die Höhe der klimatischen Schneegrenze vom Rande der Kontinente (insonderheit vom westlichen) nach ihrem Innern ansteigt, also vom ozeanischen, d. i. feuchten und warmen Klima der Küsten landeinwärts uach dem trockenen, wenn auch häufig gleichzeitig kälteren Innern hin, höher liegt. Es ist also das Übergewicht des Niederschlags, wie es sich in diesen Verhältnissen ausdrückt, für die Vermehrung des Firns und der Vereisung verantwortlich zu machen. Was uns die Literatur an Beobachtungen auf Forschungsreisen in vergletscherten Gebirgen gebracht hat, liefert in weitaus überwiegendem Teile Beiträge für die Richtigkeit dieser Anschauung. Anderseits zeigt uns die Armut oder Abwesenheit von Vergletscherung. z. B. in den sibirischen Gebirgszügen, wie wenig niedrige Temperatur bei Mangel an Zufuhr feuchtig-

¹⁾ Ein Vergleich von Übersichtskarten, wie die zu Friederichsen's Morphologie etc., l. c. oder zu Merzbacher, Vorläufiger Bericht, l. c., mit Karten europäischer Gebirge ist in dieser Hinsicht lehrreich.

²⁾ Siehe Kap. X. Die tertiären Ablagerungen.

³) F. Machatschek, Der westliche Tian-Schan, l. c., S. 100 f. Physiographische Entwicklung Zentralasiens, l. c., S. 372, 376, 382. Gletscher- uud Eiszeitstudien, l. c., S. 68 f. Vorläufige Mitteilungen über Ergebnisse einer Studienreise im westlichen Tian-Schan. Mitteil. K. K. Geogr. Ges., Wien 1910, S. 121 f. Zeitschr. f. Gletscherk. VIII, l. c., S. 123 f.

⁴) Von neueren Veröffentlichungen hierüber scheint mir besonders wertvoll und gerade auch für die früheren Verhältnisse im Tian-Schan sehr beachtenswert: W. W. Lamansky, Das Absterben der Gletscher und die Eiszeit. Zeitschr. f. Gletscherk. VIII, 1913, S. 175—194.

keitsreicher Luft eine Vergletscherung herzustellen vermag. Wenn nun solche klimatische Verhältnisse heute für den Betrag der Firnbildung in Gebirgen maßgebend sind, warum sollten wir nicht annehmen, daß ihr Einfluß auch in der Vergangenheit ausschlaggebend war?

Über die mir auf meinen Reisen am Südabhang des Tian-Schan vor Augen getretenen unwiderleglichen Beweise eines einstens dort herrschend gewesenen feuchten Klimas habe ich an vielen Stellen dieser Abhandlung, besonders auch S. 78—80, 105, 196, 198 eine Reihe von Tatsachen angeführt. Es würde über Rahmen und Zweck dieser Schrift wesentlich hinauswachsen, wollte ich eine vollständige Aufzählung und Schilderung solcher Vorkommnisse geben, wie sie mir auf meinen Reisen so zahlreich vor Augen getreten sind. Ich muß auf meine in früheren Veröffentlichungen aufgeführten Beobachtungen und die dort beigegebenen Bilder verweisen;¹) ich werde übrigens eine größere Anzahl photographischer Aufnahmen, die als unwiderlegliche geographische Dokumente zur Erhärtung dieser Verhältnisse gelten können, in einer anderen Abhandlung veröffentlichen.

Nur einige besonders bedeutsame Tatsachen möchte ich hier noch hervorheben: Fast alle Quertäler, die den Südabhang des Tian-Schan durchfurchen, sind wohlausgebildete Erosionstäler und zum großen Teile sogar tiefer eingeschnitten, als die Täler des Nordabhangs. Viele von ihnen sind heute fast wasserlos, andere wasserarm und bei nur sehr wenigen steht ihre heutige Wasserführung einigermaßen im Verhältnis zu ihrer Gestalt und Entstehung. Es tritt uns vielmehr allenthalben ein Mißverhältnis vor Augen zwischen der Geringfügigkeit der heutigen Wassermengen und den groß ausgestalteten Formen der Gefäße (Täler, Becken etc.), in welchen sie enthalten sind. In dieser Schrift selbst habe ich, was die Verhältnisse in der Bogdo-Ola betrifft, häufig hierauf hingewiesen.

In beckenförmigen Weitungen, welche viele der südlichen Tian-Schan-Täler aufweisen, sind mächtige Anhäufungen zum großen Teil jungtertiärer, ihrer ganzen Beschaffenheit nach fluviatiler und zu Konglomeraten, untergeordnet zu grobkörnigen Sandsteinen verfestigter Schottermassen, teilweise auch solche diluvialer Entstehung abgelagert worden, in welche sich die heutigen Flüsse enge, zum Teil canonförmig junge Rinnen eingeschnitten haben. Ich nenne hier aus der Reihe meiner hierauf bezüglichen Beobachtungen in der Reihenfolge von W. nach O. die Täler: Kissyl-su (Kaschgar), Argu, Tangitar, Tegermen, Kurumduk, Apatalkan, Bedel, Kendagül-bulak, Kukurtuk, Kaündü, Terek, Tilpitschek, Kepek-tschai. Kungei-kok-su, Kiukönik, Groß-Yuldus, Karagai-tasch, Kotyl u. a. m. Diese Ablagerungen zeigen vielenorts im allgemeinen, wenn auch mit Unterbrechungen, welche in Zusammenhang mit kurzen Klimaschwankungen stehen, in ihren unteren Lagen gröberes, nach oben an Größe abnehmendes Korn, entsprechend der mehr und mehr abnehmenden Transportkraft der alten Flüsse. Zusammensetzung und Beschaffenheit ihres Materials deutet meistens auf Transport aus dem Innern des Gebirges. In manchen dieser, auch in anderen Tälern, haben die ehemals sehr wasserreichen Flüsse in älteren Ablagerungen, auch in harten Schiefergesteinen, im Kotyl-Tal sogar in Granit regelmäßig ausgebildete Längsterrassen geschaffen. Diese in vielen bedeutenden Nebentälern des zentralen Tian-Schan ausgebildeten Talstufen ließen sich, soweit sie verfolgt werden konnten, stets in Übereinstimmung bringen, sowohl mit ähnlichen Vorkommnissen in den großen Haupttälern, in welche die Nebentäler ausmünden, sowie mit denen in den eigenen Seitentälern und sprechen überall

¹⁾ Siehe besonders Physiographie des Tian-Schan, l. c., S. 14-16.

eine überzeugende Sprache von dem Zusammenwirken des einstigen großen Wasserreichtumsvon seinen Schwankungen und von dem präglazialen Alter der Talbildung. 1)

Fast noch mehr ist dies der Fall bei den zahlreichen, im Innern des Gebirges vorhanden gewesenen großen Seen, die, nach den wohlerhaltenen Terrassen zu schließen, eine oft staunenswerte Spiegelhöhe erreicht hatten (z. B. Buchten des alten Tekes-Sees im äußeren Kok-su und unteren Kapsalyan-Gebiet, Mittellauf des Agias, hochgelegene Becken im Oberlauf des Kaldschat-Flusses etc.). Sind manche dieser zentralen, im Innern des Gebirges gelegenen Becken auch zweifellos durch tektonische Vorgänge von geringem Ausmaß entleert worden, so waren solche Vorgänge jedoch rein lokaler Natur und stunden auch, soweit erkennbar, zeitlich in keinem Zusammenhang miteinander; Bildung und Verschwinden dieser stehenden Gewässer kann nicht in Beziehung zu allgemeinen tektonischen Veränderungen gebracht werden.

Fluviatile Ablagerungen habe ich in den Talwänden mancher Flüsse, öfters auf kleinen Terrassenresten in mehr als 80 m Höhe über heutigem Flußniveau erhalten gefunden. Die Aufzählung aller solcher, den hohen Betrag einstiger Wasserführung bekundender Beobachtungen ist hier nicht möglich. Die außerordentlichen Mengen des von den Flüssen aus dem Innern des Gebirges herausgetragenen Schotters, der, wo nicht durch späte Erosion weggeräumt, an allen Mündungen der heute so wasserarmen Täler angehäuft ist und dort sich zu Gürteln von großer Ausdehnung und sehr bedeutender Mächtigkeit zusammenschließt, ist eine der auffälligsten Escheinungen, welche fast alle dem Südabhang entlang reisenden Beobachter hervorgehoben haben. Ganze Gebirgszüge sind in diesen Anhäufungen begraben oder, wie Futterer2) sagt, um den ungeheuren Betrag der Aufschüttungen der aus dem Gebirge kommenden Flüsse zu kennzeichnen: "das Gebirge steckt bis zum Hals darin". Von ihm, wie von anderen Beobachtern, besouders Muschketow, Bogdanowitsch, Obrutschew etc. wurden diese Vorkommnisse eingehend beschrieben. Diese grobklastischen Bildungen wurden, soweit sie jungtertiär sind, meistens zu Konglomeraten verfestigt, die öfters, wie z. B. am Südrande des Chalyk-tau, zwischen Kissalyk und Suchun mauerförmige Gebirgszüge bilden, deren Material aber nicht etwa aus dem Schutt der nahe am Gebirgsrande anstehenden Angaragesteine stammt, sondern in reicherem Maße die Gesteine aus den inneren Tälern enthält, die aber auch außerdem leicht als fluvioglaziale oder fluviatile Bildungen erkennbar sind. Über verwandte Erscheinungen könnte ich von anderen Talmündungen des Südrandes berichten und sie durch viele photographische Aufnahmen belegen.

Aber auch jüngere Aufschüttungsmassen, diejenigen diluvialen und selbst späteren Ursprungs haben vielenorts, je nach Gehalt des Wassers an kalkigen Bestandteilen, mehr oder weuiger verfestigten Zustand erlangt und sind teilweise durch die jungen, am Südrande des Tian-Schan noch immer nicht zum Abschluß gebrachten tektonischen Bewegungen³) disloziert worden. Auch begegnet man öfters jungen, gleichfalls verfestigten Flußschottern, die in Decken von mehr oder weniger bedeutender Mächtigkeit diskordant über älteren grobklastischen Bildungen liegen. Solche vom Gebirgsfuße nach auswärts sanft abdachende Bildungen wurden von mir zwischen Tugarak-dan und Dschurga sowie nahe bei Bugur

¹⁾ Nicht früher als ins Miocan kann ihr Beginn verlegt werden.

²⁾ Durch Asien II, l. c., S. 177.

³⁾ Siehe u. a. Futterer. a. a. O., S. 147, 149.

beobachtet. Futterer bespricht¹) ein solches Vorkommnis bei Su-baschi im S. von Toksun, wo dislozierte, pleistozäne und altdiluviale Ablagerungen diskordant von mächtigen jungdiluvialen Terrassenschottern überlagert werden. Der gleiche Reisende betont in seiner ausführlichen Schilderung der mächtigen Aufschüttungsmassen am westlichen Rand des Kaschgar-Beckens,²) daß ihre unteren Lagen stets grobklastisch sind und mit Unterbrechungen, die auf kleinere Klimaschwankungen hinweisen, nach oben feiner werden, daß sie aber auch vom Gebirgsrand nach außen zum Tarym-Becken zusehends feineres Korn annehmen und daß ihr Material "aus den uralten Umrandungs-Gebirgen des westlichen Tarym-Beckens" stamme. Nach seiner Ansicht haben in der damals viel feuchtigkeitsreicheren Zeit diluviale und spätere Flüsse diese außerordentlichen Schuttmengen aus dem Gebirge herausgefrachtet.

Ich habe diese Ablagerungen auch im östlichen Teil des Kaschgar-Beckens kennen gelernt, wo die Verhältnisse ähnlich sind. Die Mächtigkeit dieser jungen klastischen Bildungen ist dort aber noch wesentlich bedeutender als im W. und sie sind auch, weil die Flüsse den dort zum großen Teil aus Kalk bestehenden Gebirgen entstammen, mehr konglomeratisch verfestigt. Die jüngeren Gewässer haben ein Wirrsal steilwandiger Engschluchten in diese ausgedehnten Ablagerungen eingeschnitten, welche ihre Zusammensetzung und Lagerungsverhältnisse gut erschließen. Das allmähliche Kleinerwerden des Kornes tritt auch hier als eine allgemeiue Erscheinung vor Augen, wenn man aus dem Gebirge zur Ebene abwärts wandert, so z. B. besonders auffällig auf dem Wege von Sugun-Karaul nach Kaldy-Jailak. Alle diese Ablagerungen zeigen ihrer Beschaffenheit nach so sehr ihre fluviatile Entstehung an, daß ihre Bildung keine andere Deutung zuläßt. Die hier angeführten Vorkommnisse könnten noch beliebig vermehrt werden, scheinen mir aber ausreichend.

Nach alledem dürfte es feststehen, daß gewaltige Wassermassen im späten Tertiär sowohl, als im Diluvium noch das Gebirge erodiert und ihre Gerölle an die Ränder hinausgetragen, teilweise auch in die damals noch zahlreich vorhandenen großen randlichen Seebecken hinein verfrachtet haben.

Wenn auch das sogenannte Hanhaimeer oder der Gürtel der den Südfuß des Tian-Schan noch im spätesten Tertiär umgebenden großen flachen Seen³) wegen des fortgesetzten Ansteigens der Gebirge im S. immer mehr schrumpfte und infolge abnehmender Zufuhr trotz Abflußlosigkeit bereits nahezu eingetrocknet war, so waren doch im Diluvium die damals von den, wenn auch schon zurücktretenden Gletschern des Hochgebirges genährten, sehr wasserreichen Flüsse noch immer imstande, eine Anzahl Randseen von ungemein großer Ausdehnung zu alimentieren. Was heute hievon noch erhalten ist, sind teils verhältnismäßig unbedeutende Reste, teils Salzsümpfe, wie der Schor-köl im NO. von Kaschgar. Von dem im Diluvium noch sehr wasserreichen Becken am Südfuße der Bogdo-Ola habe ich in dieser Abhandlung eine eingehende Schilderung entworfen (S. 203 f.). Auch von dem ehemaligen großen, jetzt zum Teil versumpften, zum Teil vertrockneten See Bodschante-kul im S. von Turfan habe ich mehrfach berichtet⁴) (S. 3, 105). Es sei hier weiters an das ungeheure

¹⁾ Verhandl. VII. Intern. Geogr.-Kongr., l. c., S. 792. Durch Asien II, l. c., S. 202 f. und siehe hinsichtlich eines anderen ähnlichen Vorkommnisses ebenda, S. 124.

²⁾ Ibidem, l. c., S. 20-70.

³⁾ Siehe auch Futterer, Verhandl. d. VII. Intern. Geogr.-Kongr., l. c., S. 790.

⁴ Siehe auch Roborowsky, Zentralasien etc., l. c. I, S. 104 f., 384 f. und Karte in Bd. III.

Becken im S. von Kutscha und Bugur erinnert, von dessen ehemaligem Wasserbestand nur noch unbedeutende Reste (der See Sary-kamysch und die Sümpfe bei Schah-Jar) vorhanden sind. Der große Randsee Bagratsch-kul bei Karaschar, wie bedeuteud sein Umfang auch heute noch ist, da ihm der ein riesig ausgedehntes Gebiet vergletscherten Hochgebirges entwässernde Fluß Chaidik-gol noch immer große Wassermengen zuführt, nimmt doch jetzt nur mehr ein Viertel des Beckens ein, das er ehemals ausgefüllt hat. 1) Auf dem Boden dieses ungeheuren Beckens waren schon vor dem Diluvium im späten Tertiär tonig mergelig sandige Bildungen niedergeschlagen worden, die heute nur mehr in zerstreuten Überbleibseln vorhanden sind, da sie von den in der Diluvialzeit ungemein reißend gewordeuen Flüssen zum größten Teile wieder entferut wurden. Jetzt sieht man bei der Durchwanderung des Beckens, soweit es trocken geworden und zugänglich ist, vorherrschend diluviale Ablagerungen. Im S. von Chami liegt gleichfalls ein ungemein ausgedehntes Seebecken am Rande des Gebirges, von welchem sich als letzter Bestand noch der See Toli erhalten hat.

Ich muß mich für die Begründung meiner Schlüsse auf die Aufführung dieser Erscheinungen beschränken, da es im Rahmen dieser Schrift nicht meine Aufgabe sein kann, von allen ehemaligen diluvialen Randseen zu berichten, deren es ja auch am Nordrande des Tian-Schan so viele sind und die besonders zahlreich in auderen zentralasiatischen Gebirgen, namentlich im Altai auftreten. Die Altaiischen, teilweise heute uoch ziemlich umfangreichen und sehr zahlreichen Seen sind immerhin nur verhältnismäßig geringe Überbleibsel von ihren weit ausgedehnteren Vorgängern, welche in der feuchtigkeitsreicheren Eiszeit dort viele Depressionen innerhalb des Gebirges und au seinem Rande ausfüllten, wovon wir durch die Ergebnisse aller neueren Forschungsreisen in diesem Gebiete unterrichtet wurden.²) Es sei im Zusammenhang hiemit nochmals darauf hingewiesen, daß, wie früher hervorgehoben, die großen Gletscher des heute ausgetrockneten Tian-Schan-Südhangs ein tieferes Niveau erreicht haben als am heute feuchtigkeitsreicheren Nordabhang. Diese Seenbildungeu standen zweifellos in unmittelbarer und engster Beziehung zur Vergletscherung und zum Niederschlagsreichtum der hinter ihnen ansteigenden Gebirge, köuuen also nicht in Aualogie mit den Verhältnissen der bekannten großeu ehemaligen amerikanischen Landseeu und solcher anderer Erdteile gebracht werden. Wir köunen nach alledem nicht daran zweifeln, daß im späten Tertiär und zur Eiszeit der Tian-Schan und Zentralasien überhaupt unter dem Eiufluß eines viel feuchteren Klimas gestanden haben, als es das heutige ist.

Dieses Verhältnis ist ja nach vielfach vorherrschender Auffassung als eine allgemeine Erscheinung in der eiszeitlichen Geschichte von Gebirgsländern anzusehen. Als ausschlaggebend wird aber doch von manchen Glazialforschern lediglich eine Erniedrigung der mittleren Jahrestemperatur angesehen. Nur unter Voraussetzung einer gleichzeitigen stärkeren Feuchtigkeitszufuhr pflichte auch ich einer solchen Anschauung bei mit der Modifikation jedoch, daß meines Erachtens bei dieser Annahme auch schou eine geringe Erniedrigung der Sommertemperatur genügen würde, da für das Wachstunder Gletscher bei reichlicher Feuchtigkeitszufuhr die Verminderung der Abschmelzung das Maßgebende ist, welche ohnedem bei vorherrschender sommerlicher Bewölkung stark unterbunden wird. Wolken- und Nebelbildung aber, welche die Wirkung der Sonnenstrahlen abschwächen und die Häufigkeit von Schneefällen begünstigen,

¹) Siehe auch Roborowsky-Pjewtzow. Trudi Tibetzkoi Exped. I. c., III, S. 78 f. und ebenda Kosslow, S. 103 f.

²⁾ Von den vielfachen neueren Veröffentlichungen sei nur erwähnt; Granö, Beiträge etc., l. c., S. 91, 124.

sind mit dem feuchtigkeitsreichen Klima gemäßigter Zonen stets enge verbunden und waren jedenfalls in jener ehemaligen feuchten Klimaperiode Zentralasiens dort vorherrschend.

Denken wir uns aber als allein maßgebend eine Erniedrigung der heutigen mittleren Jahrestemperatur des westlichen Tarym-Beckens (siehe die meteorologischen Augaben in Anmerkung S. 229) sogar um 4 Grad, so würde sie noch immer bei weitem keinen den Wärmeverhältnissen in der europäischen und amerikanischen Eiszeit entsprechenden Tiefstand erreichen. Außerdem würde sogar eine ähnliche, wie für die Diluvialzeit jener Erdteile vermutete Vermehrung des Niederschlags gegenüber dem heutigen Stand nicht einmal genügen, um am Nordrande des Tarym-Beckens wieder eine Eiszeit hervorzurufen.

Man könnte sogar wohl der Auffassung zustimmen. daß eine Klimaschwankung von solchem Ausmaß, auf deren Begründung durch die viel erörterten klimatischen, terrestrischen, kosmischen. geologischen und astrophysikalischen Hypothesen hier übrigens nicht eingegangen werden kann, den Unterschied zwischen den meteorologischen Verbältnissen in der Eiszeit und den heutigen, sowie die hieraus entstandenen Einwirkungen auf das Relief der Landoberfläche für die meisten der hievon betroffenen Länder genügend zu erklären vermöchte.

Demgegenüber ist jedoch das Ausmaß solcher Veränderungen und die Gegensätzlichkeit zwischen den in der Gegenwart auf das Relief des Landes einwirkenden Kräften im Verhältnis zu jenen in der Eiszeit vorwaltenden für Zentralasien im allgemeinen, namentlich aber für den Tian-Schan und ganz besonders für dessen Südabhang so bedeutend und so ganz außer Vergleich mit den Verhältnissen in anderen Gegenden, daß wir berechtigt sind, anzunehmen, es könnten hier außer den überhaupt für die Eiszeit allgemein gültigen, noch besondere verschärfende Ursachen vorhanden gewesen sein.

Als eine solche erachte ich hauptsächlich die im Tertiär begonnenen, bis ins Quartär andauernden und nach der Ansicht mancher Himalayaforscher bis heute noch nicht zum völligen Abschluß gekommenen Hebungsvorgänge im S. des asiatischen Kontinents, welche das Ansteigen des Himalaya zur Folge hatten, bis zu seiner Erreichung der an Kamm- und Gipfelhöhe alle anderen Gebirge der Erde übertreffenden heutigen Vertikalverhältnisse. Daß solche späte Hebungen von bedeutendem Ausmaße ausgedehute Teile unserer Erdkruste betroffen haben, kann wohl heute als allgemein anerkannte Erscheinung gelten und die Zeugnisse hiefür mehren sich fortwährend. 1) Speziell für den Himalaya erscheint die Annahme einer solchen späten Hebung durch Zeugnisse der meisten angloindischen Geologen gesichert. Ich verweise

¹⁾ Aus der neueren geographischen Literatur sei hier nur angeführt: Jos. Bowman (Bull. Amer. Geogr. Soc. 1914, S. 161—183), der aus seiner letzten Reise in die zentralen Anden Gebiete beschreibt, die im Tertiär und älteren Diluvium um mindestens 1500—2000 m geboben wurden. Tarr & Martin (Recent change of level. in Alaska. Journ. R. G. G. Soc., Bd. XXIX, 1906, S. 30—42), wo die Verfasser auch die Ansicht vertreten, daß die Mt. Elias-Kette eine sehr junge Erhebung sei. Tarr & Buttler (The Yakutat Bay Region, Washington 1909, ref. in Zeitschr. Ges. f. Erdk., Berlin 1914, S. 181 f.), wo von den dortigen rezenten Niveauveränderungen berichtet wird, deren Ausmaß für ein eiuziges Jahr schon erstaunlich groß ist. Joh. Elbert, Die Sunda-Expedition des Vereins für Geographie und Statistik. Frankfurt a. M. Festschrift zur Feier des 75 jährigen Bestehens des Vereins. Frankfurt a. M. 1911/12 (ref. in Petermanns Mitteilungen 1913/II, S. 27 f.). Exploration in Turkestan, l. c., Part II/II, S. 259 hinsichlich Pamir, S. 264, hinsichtlich Alai-Tal. Von der Fülle älterer Literatur hierüber führe ich, da das Register zu umfangreich würde, als klassischen Zeugen nur an: Richthofen, China II, S. 756, wo der berühmte Forscher das Eintreten der Steppenperiode im Innern Nordchinas dem Umstande zuschreibt, daß der Zutritt feuchter Seewinde ins Innere durch hohes Ansteigen von Gebirgszügen im SO. verhindert wurde.

in dieser Hinsicht auf die in dieser Schrift (S. 49—51) angeführte reiche Literatur.¹) Wenn wir nun diese Annahme als feststehend erachten, so handelt es sich jetzt darum, die mit Notwendigkeit sich hieraus ergebenden Folgen anzuerkennen und sie in Beziehung zu der in die gleiche Periode fallende, so ungemein scharfe, keineswegs zyklische, sondern im gleichen Sinne fortschreitende Klimawandlung im Tian-Schan zu bringen. Eine solche Koinzidenz schließt jede Zufälligkeit aus; sie bietet daher eine ausreichende Erklärung für Verhältnisse, die wir auf andere Weise schwer oder gar nicht zu deuten vermöchten.

Es kann wohl nicht bezweifelt werden, daß Länder, die von der Zufuhr maritimer Feuchtigkeit abgeschnitten werden, ohne weiteres der Austrocknung anheimfallen müssen. Dieser Prozeß mußte aber infolge Ansteigens des Himalaya-Gebirges durch die allmähliche Verminderung und schließlich gänzliche Abschneidung des Zuflusses der vom Meere her nach dem Innern des Kontinents fließenden dichteren Luft potenziert werden, weil die in Verbindung mit starker Erwärmung des zentralasiatischen Bodens zur Ausbildung einer ausgedehnten Region verminderten Luftdrucks führte. Die Bedingungen der atmosphärischen Zirkulation wurden hiedurch für diese Gegenden völlig verändert: Es mußten im Sommer die kalten trockenen Winde (vorherrschend aus Richtung NO., N. und O.) herbeigezogen werden.²)

Hiemit begann der Austrocknungsprozeß. In Verbindung mit der in der Postglazialzeit in der nördlichen Hemispbäre ohnedem stattgefundenen allgemeinen Temperatursteigerung wurden große Landstrecken Zentralasiens unter dem Einfluß vermiuderter Bewölkung und größerer Durchlässigkeit der Luft für die Sonnenstrahlen außerordentlich erwärmt. Mit der steigenden Erwärmung trat dann auch eine Verschärfung in der Bildung von Luftdruckminima ein. Auf solche Weise und da in der Richtung der von N., NO. und NW. kommenden Luftströmungen keine bedeutendeu Hindernisse in Gestalt von Bodenerhebungen im Wege liegen, wurden im Sommer aus den Polargegenden ständig Winde herbeigezogen, die keinen Wasserdampf mehr abzugeben hatten, sondern im Gegenteil aus der Oberfläche Turkestans noch Feuchtigkeit aufsaugten, also zu einem außerordentlich hohen Betrag der Verdunstung führten. Mit der hiedurch hervorgerufenen zunehmenden Vernichtung der früher vorhanden gewesenen zusammenhängenden Pflanzendecke, besonders des Waldes. mit der fortschreitenden Verminderung der in Seen. Flüssen etc. vorhandenen Wassermengen, also aller Feuchtigkeit aufspeichernden und produzierenden Elemente, hat demnach der Austrocknungsprozeß progressiv zunehmen müssen. Aus solchen Gründeu hat die Koinzidenz der erreichten Maximalerhebung des Himalaya mit dem Ablauf der diluvialen Periode bewirkt, daß der Gang der Ereignisse in der Postglazialzeit, wie ich des öfteren hervorgehoben habe, in Zentralasien sich anders abspielen mußte, als in Europa und Nordamerika, wenn ihr Verlauf in der Eiszeit selbst auch offenbar ein annähernd paralleler

¹⁾ Außerdem seien noch angeführt: E. W. Vredenburg, A Summary of the Geology of India II. Ed. London 1910. K. Östreich in Verhandlungen Deutschen Geographentags, Nürnberg 1907. Betrachtungen über die Hochgebirgsnatur des Himalaya. Derselbe, Himalaya-Studien, l. c., S. 418, 425. Auch F. Machatschek, Neuere Arbeiten zur Morphologie Zentralasiens (Hettners Geogr. Zeitschr. 1914, S. 261 f.), pflichtet der Annahme quartärer Hebung des Himalaya bei.

²) Natürlich will und kann ich in dieser Schrift im Hinblick auf meine Schlußfolgerungen diese Verhältnisse nur iu ihren allgemeinsten, magistralen Zügen hervorheben ohne Rücksicht auf die mancherlei Modifikationen, welchen dieses unanfechtbare klimatische Gesetz im einzelnen und besonders für bestimmte Gegenden ohne Zweifel unterliegt.

gewesen sein mag, 1) was ich gerade auch für die Verhältnisse in der Bogdo-Ola früher eingehend erörtert habe. 2)

Um die am schärfsten hervortretenden Veränderungen, diejenigen am Südabhang des Tian-Schan. erklärlich zu machen, deren außerordentlicher Betrag einigermaßen gewürdigt wurde, bietet die Ausbildung der Landmassen Südasiens zu den höchsten Gebirgsketten der Erde die am meisten einleuchtende Begründung: Zur Zeit als die Zufuhr feuchter Winde vom südlichen Ozean den Tian-Schan noch erreichte, vermochte gerade sein Südabhang den größten Anteil ihres Feuchtigkeitsgehaltes abzufangen. Dies erklärt die damals dort vorherrschende Neigung zur Bildung großer Gletscher, sowie deren Hinabreichen in noch tiefere Niveaus als ihn die Eisströme des Nordabhanges erreichten. Diese starke Feuchtigkeitszufuhr konnte auch den bedeutenden Wasserreichtum der Flüsse schaffen und lange Zeit erhalten, welche die bedeutenden Erosionstäler ausgebildet haben und erstaunliche Mengen von Gesteinschutt in deren Weitungen, sowie vor dem Gebirgsfuße ablagerten. Als aber den feuchten Winden der Zutritt zum Südabhang immer mehr behindert und zuletzt ganz abgeschnitten wurde. mußte gerade dieser die Wirkung einer solchen Veränderung früher, schneller und einschneidender erleiden als der Nordabhang, weil auf letzteren noch gewisse Verhältnisse mildernd einwirken konnten, welche am Südabhang nicht zur Geltung kamen.

Hier kommt in Betracht die höhere Breite, der Umstand, daß das Vorherrschen der großen Längstäler den Zutritt der relativ feuchtigkeitsreicheren Westwinde, welche auch die stärksten sind, in das Herz des Gebirges begünstigte und endlich die Stellung der einzelnen Randketten gegen die Richtung der jeweils herrschenden Winde. Auch ist zu berücksichtigen, daß die feuchtigkeitsreichen Westwinde des Frühlings und Sommerbeginns ausschließlich den Ketten des Nordabhangs zugute kommen und ebenso verhält es sich mit den zyklonalen Luftströmungen, die in jenen Jahreszeiten in verteilten Zentren Nordasiens entstehen und den Zufluß feuchter Winde zum Tian-Schan-Nordabhang im Gefolge haben. Anderseits schützen die äußerst hohen randlichen Längsketten im Norden die inneren Täler vor dem Zutritt austrocknender NO.-Winde und begünstigen auf solche Weise die Erhaltung der Gletscher und großen Flüsse des Nordabhangs, deren Überschuß ihn bewässert und befruchtet. Die hiedurch hervorgerufene und erhaltene Vegetationsdecke gewährt Schutz gegen die Zerstörung des Bodens durch thermale Gegensätze und durch die gewaltige Einwirkung des Windes, umwandelnde Kräfte, deren Spiel der Südabhang mit seinen vorherrschenden Quertälern schutzlos preisgegeben ist.

Ich glaube nach alledem nicht, daß man, um die großen Veränderungen in den zentralasiatischen Gebirgen und besonders im Tian-Schan zu erklären, die seit der Eiszeit eingetreten sind, das Ansteigen der Landmassen im S. als mitentscheidenden Faktor ausschließen kann. Wenn es richtig ist, was W. M. Davis betont³): "Eine Theorie kann so lange als richtig angesehen werden, als sie allen bekannten Tatsachen gerecht wird, die wir beobachtet haben, oder auf Grund von geologischen und biologischen Prinzipien gefolgert haben", so muß die Bedeutung der von mir begründeten Folgerungen anerkannt werden.

¹⁾ Siehe meine Ausführungen in Physiographie des Tian-Schan, l. c., S. 17 f.

²⁾ Kap. XIII, besonders S. 114, 115 f.

³⁾ Zeitschr. Ges. f. Erdk., Berlin 1915, S. 126.

XIX. Bemerkungen zu den Karten.

Als Grundlage für die dieser Abhandlung beiliegenden topographischen Darstellungen des Bogdo-Ola-Gebirges hatte ich, wie aus Kap. V hervorgeht, fast keinerlei fremdes Material zur Verfügung, als die dort uach Wert und Bedeutung geschilderten Grum Grschimailo'scheu Karten. Zur Herstellung der Karten dienten meine Itineraraufnahmen, welche, wie während des ganzen Verlaufes meiner vierjährigen Reisen im Tian-Schan beständig, so auch für die Zeit der Bereisung der Bogdo-Ola regelmäßig durchgeführt wurden. Da als Ausgangspunkte der Itinerarstrecken durch das Tian-Schan-Gebirge Örtlichkeiten mit bekannten geographischen Koordinaten dienten und einige solcher auch auf meinen Wegen geschnitten wurden, und da hiezu noch eine Anzahl selbst ausgeführter Breitenbestimmungen trat, so erhielt das Itinerarnetz ein großes Maß von Festigkeit. Auf die eigentliche zentrale Bogdo-Ola-Gruppe (Blatt II) treffen 18 Blätter meiner Itinerar-(Krokier-) Aufnahmen im Format von 21:28 cm, die auf Papier mit vorgedrucktem Formular und einem quadratierten Netz ausgeführt wurden, dessen einzelne Quadrate 1/2 cm messen.

Zur Arbeit wurden benützt zwei von W. Sedlbauer in München für meine Reisen eigens konstruierten Bussolen von 8 cm Durchmesser, festgemacht in rechteckigen starken Aluminiumdosen von $12 \times 8^{1/2}$ cm Ausmaß, deren dicke Wäude und kräftiger Boden auch bei starkem Druck nicht verbiegbar sind und demnach verlässiges Visieren ermöglichen. Die hochkantig stehenden Nadeln dieser Instrumente mit schneidenförmigen Enden ruhen auf fein geschliffenen Pinuen; die Sperrvorrichtung besteht aus einem starken, durch Druck bequem ausschaltbareu Messinghebel. In dem Bussoleukessel ist eine sehr empfindliche runde Libelle von 2 cm Durchmesser eiugeschliffen. In dem unveränderlich im rechten Winkel zu den Dosenwänden ruhenden Springdeckel der Aluminiumdose befiudet sich ein mit Fadenkreuz versehenes kleines Diopterfernrohr von 71/2 cm Länge eingefügt, dessen Mitte sich um eine Achse bewegt, an der befestigt ein unverbiegbarer Zeiger über eine mit großer Gradeinteilung versehenen Peilscheibe aus Aluminium gleitet, so daß die Ablesung des Winkels auch noch zu beliebiger Zeit nach erfolgter Visierung und nach Entfernung des Fernrohrs vom Auge in bequemer und sicherer Weise erfolgen kann. Die Beschaffenheit dieser Bussolen ermöglichte es, bei der Itineraraufnahme mit besonderer Sorgfalt und Genauigkeit zu arbeiten.

Die Deklination der Magnetnadel wurde im Observatorium in Taschkent vor der Abreise von dort nochmals geprüft und festgestellt. Da bei der mehrjährigen Dauer der Reise eine Nachprüfung im folgenden Jahre nicht möglich war, so wurde allgemein für alle Ablesungen während der Jahre 1907 und 1908 die östliche Deklination von Taschkent zu Grunde gelegt: für 1907 ÷ 6° 12′ 3″, für 1908 ÷ 6° 12′ 15″ uud nach Osten übertragen auf die verschiedenen geographischeu Längeu uach einer im Taschkenter Observatorium angefertigten Tabelle, welche nach der Heimkehr bei Überprüfung durch Professor Biedlingmaier in München für die Aufuahmezeit im Bogdo-Ola-Gebiet eine durchschnittliche östliche Deklination von ÷ 7° anzunehmen erlaubte. Die Wegelängen ergaben sich nach der aufgewendeten Zeit und zwar mit Hilfe von 3 ganz gleichen Uhren von Paul D. Nardin in Locle Nr. 10539/40/41. die im Observatorium von Neufchätel für die verschiedensten Lagen. Temperaturen und andere Verhältnisse geprüft waren, überdies

während der Reise in bestimmten Zeiträumen nach Kulminationsbestimmungen mit dem Theodoliten verglichen und gestellt wurden. Die Dauer jeder Pause des Marsches wurde sorgfältigst in die betreffenden Krokierblattrubriken eingetragen.

Das Reisen vollzog sich vorzugsweise, mit selbstverständlicher Ausnahme der Bergbesteigungen, zu Pferde. Da aber bei Gebirgsreisen, die in einem bestimmten Zeitabschnitte zurückgelegten Wegelängen je nach Beschaffenheit und Neigung des Geländes sehr verschiedenartig sind, wurde des öfteren an Lagerplätzen durch Ausmessen einer Basis von 100 m Länge ermittelt, wie lange ein bestimmtes Pferd auf ebener Strecke, auf wenig steilem oder steilem Gelände von mehr oder weniger großen Schwierigkeiten zurückzulegen vermag und zwar für leichtes Gelände auch in verschiedenen Gangarten des Pferdes. Aus allen diesen Beobachtungen konnten dann Mittelwerte gezogen werden, die nur ganz unbedeutend von der Wirklichkeit abweichen können. Obendrein wurde die Vorsicht angewendet, daß der jeweils Krokierende (auf der Reise durch die Bogdo-Ola-Gruppe meist F. Wenter) stets das gleiche erprobte und sichere Pferd ritt. Gangart des Pferdes und Beschaffenheit der Geländestrecken sind mit gewissen angenommenen Bezeichnungen für den Grad der Schwierigkeit und der Steilheit des Weges in die Krokierblätter sorgfältig eingetragen worden.

Für den Ausgangspunkt jeder täglichen Wegstrecke und für ihren Endpunkt liegen die Höhenwerte der Lagerstationen vor, wo alltäglich abends 8 Uhr und morgens 6 Uhr Ablesungen an 3 Bohne'schen Aneroïden von 10 cm Durchmesser gemacht wurden, sowie Beobachtungen mit einem Assmann'schen Aspirations-Psychrometer und einem Minimumund Maximum-Thermometer. Diese Ablesungen wurden kontrolliert durch Siedethermometer-Beobachtungen, welche auf dem Marsche an jedem zweiten Tage erfolgten und überdies an Stationen mit mehrtägigem Aufenthalt durch die auf einem Naudet'schen Barographen gewonnenen Diagramme. Während des Marsches selbst wurden für die wichtigeren Punkte Höhenwerte durch Aneroïd- und Schleuderthermometer (feucht und trocken) und an besonders wichtigen Punkten durch Siedethermometer-Beobachtungen gewonnen. Alle diese Beobachtungen finden sich an den betreffenden Stellen in die Rubriken der Krokierblätter eingetragen.

Bei Aufnahme des Weges wurde selbst bei ungünstigen Witterungsverhältnissen keine Mühe gescheut, um bei jeder wesentlichen Wegkrümmung Richtungsablesungen zu machen; welche demnach äußerst zahlreich sind. Um aber den Wegaufnahmen möglichst viel Halt zu geben, wurde stets eine Anzahl hervorragender Punkte, von denen manche während mehrerer Marschtage im Gesichtsfelde blieben, so oft als nur immer möglich angepeilt und führte der Weg über solche Punkte hinweg, so wurde von ihnen aus stets zurückgepeilt. Insbesondere aber waren wir bemüht, von den erstiegenen Berggipfeln aus zahlreiche Peilungen sowohl auf vorher schon angepeilte Punkte als auch auf andere, namentlich auf die wichtigsten der in der Rundschau sich bietenden Berge auszuführen. Da nun die weit überragenden Höhen der Hauptgipfel zum Teil schon aus der Ebene im N. und S. sichtbar sind, und selbstverständlich auch von allen von uns erstiegenen

¹) Ich unterlasse hier, um dieses Kapitel nicht zu umfangreich zu machen, eine genaue Anführung der verwendeten Instrumente, ihrer Nummern, ihrer Prüfungs- und Korrektionslisten, weil diese wichtigen Einzelheiten im Anschluß an die Veröffentlichung der Ergebnisse des gesamten, in 4 Reisejahren gewonnenen meteorologisch klimatischen Beobachtungsmaterials erfolgen werden.

hochgelegenen Punkten aus, so gelang es, deren genaue Lage mit großer Sicherheit aus dem Mittel der Schnittpunkte der in ungemein großer Anzahl vorgenommenen Peilungslinien zu bestimmen, ganz abgesehen von der Ermittlung ihrer Lage auf trigonometrischem Wege von einer in Urumtschi abgemessenen Basis aus. (Hievon später mehr.) Zu den von den erstiegenen Hochgipfeln aus vorgenommenen Peilungen wurde außer dem schon beschriebenen Peilkompaß auch noch ein L. Casella'sches Taschenaltazimut Nr. 374 angewendet. Im übrigen mußte man sich für die Bestimmung von Entfernungen mit Schätzungen begnügen, für welche man indes auf längeren Reisen nach einiger Zeit eine ziemlich große Sicherheit gewinnt. Wie sich besonders aus der Prüfung einer großen Anzahl von Peilungen von verschiedenen Seiten aus nach den gleichen Punkten hin ergab, kam das Mittel der geschätzten Entfernungen der Wirklichkeit sehr nahe. Überhaupt hatte die sorgfältige und häufige Durchführung der Peilungen zur Folge, daß Fehler in den Schätzungen, die hauptsächlich bei unsichtigem Wetter vorkommen, leicht berichtigt werden konnten, so daß das ganze Kartenbild eine besondere Konstanz gewann.

Die Geländeformen zu beiden Seiten des Weges wurden teils durch Schummerung teils durch Schraffen in ihren charakteristischen Zügen festzuhalten gesucht, überdies die Bergformen durch Profilzeichnungen und Photographien gesichert. Höhe und Tiefe der in unmittelbarer Nähe ober- und unterhalb der Wege liegenden Geländeformen, sowie Tiefe und Breite der Flußbetten, Betrag der Böschungswinkel etc. wurden geschätzt und diese Schätzungen stets sogleich in die Krokierblätter eingetragen. Für die Darstellung des den Weg begleitenden Reliefs diente der Braunstift, für die Gewässer der Blaustift, für die Wege der Rotstift, so daß ungeachtet der vielen eingetragenen Einzelheiten die Itinerarblätter recht klare Bilder ergaben, um so mehr als, wenn irgend möglich, noch am Abend eines jeden Marschtages oder doch am folgenden Morgen die während des Weges ermittelten und nur flüchtig eingetragenen Einzelheiten in sorgfältigster Weise ergänzt wurden.

. Das wichtigste Material zur Herstellung einer genauen Geländezeichnung lieferten aber die photographischen Apparate. Von solchen hatte jeder der Reiseteilnehmer einen oder gar mehrere stets bei sich und machte fleißigen Gebrauch hievon. Insbesonders versäumte man nicht, wenn die Verhältnisse es irgendwie erlaubten, an jedem wichtigen Itinerarpunkt photographische Aufnahmen der Umgebung verbunden mit Peilungen zu machen. Von größter Bedeutung in dieser Hinsicht aber erwiesen sich die auf den erstiegenen Berggipfeln ausgeführten panoramatischen Aufnahmen. Für diese Aufnahmen bediente ich mich einer großen Roß-Camera von Roß & Co. Ld. in London mit mehreren verschiedenen Roß-Görz-Objektiven (Doppelanastigmat und Weitwinkel). Diese ausgezeichnete Camera besitzt besondere Vorrichtungen für die Rundbilderaufnahmen. Die Plattengröße ist 8½: 10 engl. Zoll, also 21½: 25½ cm.

Anfangs- und Endpunkt eines jeden Einzelblattes der Rundbilder wurden angepeilt und überdies auch die bedeutendsten der in das Einzelblatt fallenden Berggipfel. Da die Standpunkte des Aufnahmeapparates durch Peilungen aus verschiedenen Richtungen und Rückpeilungen mit annähernder Sicherheit festgestellt waren, so lieferten diese Rundbilder ein besonders wertvolles Hilfsmittel sowohl bei Konstruktion der Karten wie bei der Wiedergabe der Geländeformen, der Vergletscherung usw. Freilich war die Verbringung eines solch großen, schweren Apparates und aller seiner Zubehör auf hohe vereiste Berg-

241

gipfel mit besonderen Schwierigkeiten verbunden. Das hiedurch gewonnene wichtige topographische Material bildet indes eine entsprechende Kompensation solcher Art, daß für die in Karte II und III in genauer Zeichnung — einer Kombinierung von Schummerung und Schraffen — wiedergegebenen Bergformen Anspruch auf erhebliche Naturtreue geltend gemacht werden darf. Andere Teile des Kartenbildes, dereu Geländeformen nicht topographisch im einzelnen gesichert werden konnten, sondern nach Ausblicken und Photographien von Übersichtspunkten aus ermittelt sind, haben in der Karte eine Darstellung durch Kurvenlinien gefunden, welche keineswegs wirkliche Isohypsen veranschaulichen sollen, aber doch als geeignet zu erachteu sind, den Verlauf der Kämme, die allgemeinen Bergformen, die Böschungsverhältnisse, den Charakter des Geländes usw. mit einigermaßen annähernder Richtigkeit wiederzugebeu.

Die durch topographische Aufnahme festgelegten Flußläufe sind in den Karten durch ausgezogene blaue Linien gekennzeichnet worden; hingegen diejenigen, deren Verlauf nur — allerdings mit einem hohen Grad von Wahrscheinlichkeit — angenommen wurde, finden sich durch gestrichelte Linien angedeutet.

Die in die Karten eingetragenen Koten unterscheiden sich in hypsometrisch von mir ermittelte, welche durch Zahlen ohne weitere Beigabe bezeichnet sind und solchen, welche auf Grund sorgfältiger Visierungen geschätzt wurden; diese Höhenzahlen stehen in Klammern. Außerdem ist einer kleinen Anzahl solcher die Bezeichnung ca angefügt, womit eine beiläufige Schätzung angedeutet wird, welcher bei Bergketten ein mittlerer Kammerhebungswert zukommt.

Die Berechnung der Höhen aus den mit den oben aufgeführten Instrumenten gemachten Beobachtungen, soweit sie die Bogdo-Ola-Gruppe betreffen, hatte der ehemalige Assistent am hiesigen Geographischen Institut, jetziger Reallehrer in Nürnberg, F. Lex, übernommen.¹) Da es für dieses Gebiet an genügend nahe gelegenen Basisstationen zur Reduktion der Barometerstände auf Meeresniveau fehlt, so mußte sich der Berechner eine eigene Methode für die Lösung seiner Aufgabe zurechtlegen. In allgemeinen Umrissen beruht diese auf der Annahme, daß die barometrischen Verhältnisse in Urumtschi, das als Basisstation für die letzten drei Tage vor der Ausreise diente, für welche Zeit sie auf Grund der festgestellten mittleren, korrigierten Barometer- und Temperaturstände ermittelt wurden und zwar unter Berücksichtigung der als nötig erachteten Interpolationen und unter gleichzeitiger Benützung der aus den dreijährigen Strokowsky'schen Beobachtungen (siehe Kap. II)²) als notwendig abzuleitenden Korrektionen, noch einen weiteren Tag nahezu die gleichen konstanten mittleren Werte lieferten, d. i. am folgenden Tage, wo die ersten Beobachtungen auf der Reise selbst gemacht wurden. Da die Höhe von Urumtschi mit

¹⁾ Ich kann im Rabmen dieses Kapitels die von Herrn Lex in Betracht gezogenen besonderen Eigenschaften der einzelnen Instrumente, wie sie sich auf mehrjährigen Reisen herausgestellt hatten, nicht ausführlich mitteilen, ebensowenig die von ibm nach mehrfachen Versuchen schließlich als geeignet befundene und angewendete Berechnungsmethode im einzelnen darlegen. Dies gehört ebenso, wie die Einzelheiten über die Instrumente selbst, wie früher erwähnt, in eine besondere Abbandlung über die Ergebnisse meiner klimatisch-meteorologischen Beobachtungen auf vierjährigen Reisen im Tian-Schan.

²⁾ Die Listen der täglichen Beobachtungen, die auf der Station Urumtschi während der ganzen Dauer meiner Reise in der Bogdo-Ola gemacht wurden, sind mir auf meinen Wunsch in liebenswürdiger Weise durch Direktor Stelling vom Petersburger Zentralobservatorium zur Verfügung gestellt worden, wofür ich an dieser Stelle meinen wärmsten Dank zum Ausdruck bringe.

912 m (siehe S. 6) in solcher Weise als Basis angenommen wurde, so hatte unter Berücksichtigung einer weiteren eintägigen barometrischen Konstanz in der Ausgangsstation und mit dem, wie oben angegeben, korrigierten dortigen Barometerstand als Grundlage, für den folgenden Beobachtungspunkt auf der Reise die Höhendifferenz zu Urumtschi berechnet zu werden. In dieser Weise wurde dann von einem Beobachtungspunkt zum folgenden weitergeschritten, indem immer die an den betreffenden Lagerstationen zu bestimmten Terminen gemachten Morgen- und Abendablesungen der Instrumente der Berechnung zu Grunde gelegt, der entsprechende Wert der während des Tages auf dem Marsche gemachten Ablesungen aber durch Interpolation gefunden wurden. Die tägliche Periode des Luftdruckverlaufes konnte bei diesem System als Fehlerquelle deshalb ausgeschaltet werden, weil es sich für dieses Stück der Reise um einen Zeitraum von nur wenig über einen Monat handelte, und zwar gerade für den Monat August, wo, wie wir wissen (siehe S. 15), die normale tägliche Amplitude des Luftdrucks in Urumtschi eine ziemlich konstante Größe darstellt und überhaupt die geringste Veränderlichkeit im ganzen Jahreslaufe aufweist. Es kann daher angenommen werden, daß die tägliche Periode des Luftdrucks in den Mittelwerten kurzer Beobachtungsreihen zum Ausdruck kommt, und die Annahme erscheint berechtigt, daß die Größe der errechneten Höhenunterschiede durch den täglichen Gang des Luftdrucks stets im gleichen Sinne beeinflußt wurde. Einige besonders zu diesem Zweck vorgenommenen Kontrollberechnungen haben dies außerdem auch bestätigt.

Die Zuverlässigkeit der für die erstiegenen Berggipfel ermittelten Höhenwerte wird dadurch wesentlich erhöht, daß während dieser Ausflüge zwei Kontrollaneroïde im Hauptlager zurückblieben und überdies die Diagramme des jeweils dort aufgestellten Barographen den Tageslauf des Luftdrucks dokumentieren. Endlich ist als ein für die Vertrauenswürdigkeit der Beobachtungsreihe nicht zu unterschätzender Umstand anzusehen, daß bei der Reise durch die Bogdo-Ola die Expedition sich von Urumtschi allmählich entfernte und auf einem anderen Wege dahin zurückkehrte, wo sie dann noch eine Woche lang blieb; während dieser Zeit konnten die Beobachtungen mit den gleichen Instrumenten fortgesetzt und ihr Gang kontrolliert werden. Zu den Höhenberechnungen wurden die Jordan'schen Tafeln verwendet.

Um Höhe und Lage der zentralen Gipfelgruppe auf trigonometrischem Wege zu ermitteln, war außerhalb Urumtschi und zwar im W. der Stadt, nahe am Archo-tu-Fluß, eine Basis abgesteckt worden. Die Basisvermessung wurde, wie alle derartigen Arbeiten auf meiner Expedition, mit einem Hildebrand'schen "Kleinen Universal-Theodolith" ausgeführt und mit einem Invardraht von besonderer Güte, der von Guilleaume in Paris etaloniert, von Dr. Gasser durch einen Mikroskopkomparator nachetaloniert und noch mit eigenen, 40 mm langen, auf dem Drahte selbst unter der Teilmarchise aufgetragenen Teilungen versehen ist. Die Gesamtlänge der Basis beträgt 791.877 m. ihre Höhe über Urumtschi 23 m. Für die Festlegung der Basis wurde die Pjewtzow'sche Bestimmung der Lage von Urumtschi (siehe S. 5) 43° 47′ 22″ N. Br., 87° 35′ 3″ Ö. L. als Ausgangspunkt angenommen. Auf solche Weise konnte die genaue geographische Lage der Hauptgipfel ermittelt werden, was für den Halt des aus den Itineraraufnahmen hergestellten Kartenbildes von besonderer Wichtigkeit ist. Die Berechnungen hat Diplom-Ingenieur R. Hesselbarth, Assistent am Geodätischen Institut der Technischen Hochschule in Müncheu ausgeführt; er nimmt für die ermittelten

Höhen — Ostgipfel 6512 m, Mittelgipfel 6501 m, Westgipfel 6397 m — eine Genauigkeit von + ÷ 30 m an. 1)

Die Umzeichnung der Krokierblätter erfolgte im Maßstab von 1:100000 durch einen topographischen Zeichner des Topographischen Bureaus im K. Bayerischen Generalstab unter Benützung meiner Tagebucheinträge, Profilzeichnungen, photographischen Bilder, sowie sämtlicher Einzelangaben der Itinerarblätter. Von diesen vielen Einzelheiten mußte allerdings beim Entwerfen der definitiven Karte im Maßstabe von 1:200000 durch Dr. Gröber leider vieles weggelassen werden, um die Klarheit des Kartenbildes nicht zu beeinträchtigen. Indessen konnte hievon mancherlei in der Beschreibung des Reiseweges (Kap. XV—XVII) zur Verwertung gelangen, wenn auch gewisse Angaben, wie z. B. die jeweilige Breite von Flußbetten, ihre Tiefe unterhalb des Weges, die Winkel der Böschungen, die Breite von Terrassen, das Ausmaß der Moränenanhäufungen, die für die plastische Vorstellung des Geländes nicht ohne Bedeutung sind, wegfallen mußten.

Um ein für die Reproduktion der Karten ungeeignetes Format zu vermeiden, war es geboten, den See Sayo-pu und seine Umrandung, sammt den durch die Senke am Südfuß des Gebirges führenden Teil des Itinerars, der ohnedem sehr wenig topographisch festzuhaltende Formen bietet, abzutrennen, um sie in einem eigenen Kärtchen darzustellen. Eine besondere Wiedergabe des Weges vom See Sayo-pu zurück nach Urumtschi erschien deshalb als unnötig, weil er sich in einigen der in Kap. V angeführten russischen Karten schon im ganzen annähernd zutreffend dargestellt findet mit Ausnahme der von mir im einzelnen schon berichtigten Ungenauigkeiten (siehe S. 29 f. und besonders S. 208 f.) Ich konnte mich somit für diesen bereisten Abschnitt darauf beschränken, ihn in der Übersichtskarte (I) in einem kleineren Maßstabe (1:1000000) zur Auschauung zu bringen.

Als Grundlage für diese Übersichtskarte dienten ebenfalls zunächst die Itineraraufnahmen der Expedition, insbesondere für den Gebietsteil aber, der zwischen der Stadt Manas im W. und der Station Zchan-tschü im O. sich erstreckt, konnten die Grum Grschimailo'sche Übersichtskarte, die russische 40 W.-K., sowie das Kärtchen Roborowskys der Umgebung von Manas²) zum Teil, jedoch mit nicht unwesentlichen Modifikationen, besonders auch was die Nomenklatur betrifft, benützt werden. Bei Darstellung des Dawantschi-Passes und der ihm benachbarten Gebiete bin ich der nach meinen eigenen Erfahrungen als allein richtig auzusehenden Darstellung Obrutschews (siehe S. 30) gefolgt. Für alle übrigen Teile der Karte war das selbst gewonnene topographische Material maßgebend. Hinsichtlich der Darstellungsweise topographisch festgestellter und anderer, nur vermuteter Flußläufe, sowie bei Eintragung der selbstbestimmten und anderweitig ermittelten Koten gilt das schon für Karte II früher Hervorgehobene.

Für die Einpassung der Karte in das Gradnetz, welche ebenfalls durch Herrn Hesselbarth besorgt wurde, stunden zur Verfügung:

a) die in einem unserer Lager im Chosutai- (Manas-) Tal ausgeführte Ortsbestimmung, deren Ergebnis eine Breite von 43° 47′ 58″ ist;

¹⁾ Bei dieser Gelegenheit möchte ich auch nachtragen, daß ich die in Kap. XI, S. 80 über die Vergletscherung angeführten Grundflächenmaße ehenfalls den Bemühungen von Diplom-Ingenieur Hesselbarth verdanke, der sie mit einem Ott'schen Pelarplanimeter Nr. 7176 im Geodätischen Institut der Technischen Hochschule ausführte.

²) Siehe Kap. VI, S. 45, wo ich auch üher dieses Gehiet und über einen Teil des in meine Karte aufgenommenen Kotenmaterials nähere Mitteilungen gemacht hahe.

- b) die schon angeführte geographische Lage von Urumtschi (siehe S. 5 und 242);
- c) die von Urumtschi aus trigonometrisch ermittelte Lage der Bogdo-Ola-Hauptgipfel (siehe oben);
- d) die geographische Lage von Toksun¹) nach Roborowsky (l. c., Bd. I, S. 101; Bd. III, S. 3 und 7) mit 42° 46′ 52″ N. Br., 88° 40′ 21″ Ö. L.;
- e) die geographische Lage von Luktschun nach Roborowsky (l. c., Bd. I, S. 106; Bd. III, S. 3 und 7) mit 42° 41′ 57″ N. Br., 89° 42′ 28″ Ö. L.

Demnach war eine mehr als genügende Anzahl geographischer Positionsbestimmungen für die Konstruktion der Karte vorhanden.

Es ist nun sehr erfreulich für mich gewesen, daß sich die Einpassung des Itinerars in das Netz dieser Positionen ohne Schwierigkeiten vollzog und daß sich hiebei fast durchweg eine gute Übereinstimmung mit den russischen Karten ergeben hat, immer ausgenommen, — und zwar aus den in Kap. V und VI hervorgehobenen Gründen — Darstellung und Lage des eigentlichen Hochgebirges. Leichte Zusammenschiebungen von einzelnen Routenstrecken und geringe Dehnung anderer mußten zwar vorgenommen werden, doch sind deren Beträge von nur geringem Ausmaße.

Als Ergebnis dieser Einpassung des Itinerars zwischen die geographisch festgestellten Positionen stellte es sich z. B. heraus, daß die Lage von Manas nur um 0° 1' mehr nach O. zu rücken ist, aber um 0° 5' weiter nach S. gegenüber den Angaben der 40 W.-K. Es steht dies aber fast in voller Übereinstimmung mit dem von mir öfters gerühmten Kärtchen des Manas-Gebietes von Roborowsky (siehe oben), aus welchem sich als Breite von Manas 44° 13' 30" ergibt, während sie nach meiner Karte I mit 44° 14' 30" beträgt, nach anderen russischen Karten aber mit 44° 20' N. Br. Dementsprechend waren auch die Stationen der "Kaiserstraße" (siehe S. 44) zwischen Manas und Urumtschi um ein weniges nach S. zu verschieben und der Lauf dieser Straße erfährt eine unbeträchtliche Veränderung gegenüber den Angaben der russischen Karten (siehe auch S. 9 u. 94). Eine bedeutendere Verschiebung erfährt hingegen die Länge von Foŭkan, die nach der 40 W.-K. SSO 0' 30", nach Grum Grschimailos Übersichtskarte 88° 4', nach meinem Itinerar aber 88° 7' 30" Ö. L. beträgt. Noch bedeutender ist jedoch die Verschiedenheit der Breite, nämlich nach der 40 W.-K. 44° 0', nach Karte Grum Grschimailo 44° 5', nach meinem Itinerar aber 44° 11' N. Br. Eine nochmalige Überprüfung aller Verhältnisse, die für den Marsch meiner Expedition von Foukan bis zum Bogdo-Ola-See in Betracht kommen, ergab aber, daß die von mir ermittelte Breite zuverlässig ist und daß Foukan auf den russischen Karten zu nahe ans Gebirge gerückt erscheint. Demnach ist auch die Veränderung in der Richtung der Straße von Urumtschi nach Foukan erheblich, steht aber wieder fast in Übereinstimmung mit der mehrerwähnten Spezialkarte Grum Grschimailos. Nicht unbeträchtlich ist ferner in meiner Darstellung gegenüber allen russischen Karten der Unterschied im Verlaufe einer größeren Anzahl von Flüssen. Ich glaube aber hierin für meine Angaben Geltung in Anspruch nehmen zu dürfen.

Was die Nomenklatur anbetrifft, so habe ich sie sowohl für Blatt I, wie für Blatt II in sorgfältigster Weise zu ermitteln gesucht. Erst nach mehrfacher Einziehung von

¹⁾ Nach Pjewtzow, l. c., Bd. I, S. 398 420 46' 9" N. Br., 880 40' 0" Ö. L. Ebenda, S. 392 wird die Breite mit 420 46' 47,4" angegeben.

Erkundigungen und nach kritischer Prüfung aller Auskünfte entschloß ich mich zur Aufnahme eines Namens. Ich kann mich hier damit begnügen, auf meine diesbezüglichen früheren Ausführungen (S. 95) hinzuweisen. Die Benennung der Flüsse, welche dem Nordabhang des östlichen Tian-Schan entströmen, verdanke ich hauptsächlich, ebenso wie mancherlei andere Nachrichten hierüber, der eingehenden Auskunft eines hohen torgoutischen geistlichen Würdenträgers, dem das Vertrauensamt eines Kurators und Erziehers des jüngeren, dem geistlichen Stand bestimmten Sohnes der Torgoutenfürstin im Großen Yuldus-Tal anvertraut war, wo ich mich längere Zeit aufhielt. Dieser für einen Mongolen sehr gebildete Mann, der auch einige Kenntnis des Chinesischen, Türkischen und Russischen besitzt, zeigte auffallend genaues Wissen von den von seinen Stammesgenossen regelmäßig durchwanderten Gebieten. Er stellte an der Hand der russischen Karten, die ich mit ihm durchnahm und für welche er lebhaftes Verständnis zeigte, eine Anzahl der dort angeführten unzutreffenden Benennungen richtig; seine Angaben schienen mir durchaus vertrauenswürdig.

Es muß hier außerdem hervorgehoben werden, daß es mit geographischen Benennungen in diesem Teile der Welt überhaupt sehr spärlich bestellt ist. Gerade für das unbewohnte Hochgebirge, weil es auch für die Bevölkerung an seinem Fuße keinerlei materielles Interesse bietet, fehlen eingeführte, allgemein bekannte geographische Namen fast gänzlich, was bei der Beschreibung und Schilderung solcher Gebiete oft recht unbequem wird und zu gewissen wiederholten Umschreibungen nötigt. Wenn ich dennoch mit Ausnahme von zwei Fällen (S. 37, 81), die mir gerechtfertigt scheinen, mich enthalten habe, die Landkarte eines im Herzen Asiens gelegenen Gebietes mit weiteren europäischen Namen zu versehen, so entspricht dies einem von mir auch in vorher unbetretenen Teilen der Alpen, des Kaukasus usw. stets befolgten Grundsatze, die geographischen Karten, wenn nicht ganz besondere Gründe es rechtfertigen, nicht durch Aufnahme von ortsfreinden, willkürlich herbeigezogenen Personennamen zu bereichern, es sei denn, daß die Verdienste der Träger dieser Namen um die geographische Wissenschaft im allgemeinen oder im besonderen um das in Betracht kommende Gebiet eine solche Ehrung fast geboten erscheinen lassen. Ich kann Benennungen wie Humboldt-Kette, Marco-Polo-Gebirge, Suess-, Semenow- etc. Kette nur zustimmen, halte auch etwa solche Benennungen wie Kette Peters des Großen, Alexanders des III. aus anderen Gründen für wohl gerechtfertigt, erachte es aber gerade in Bezug auf die Kartographie Zentralasiens nicht für ratsam, darin sonstige Namen von Westeuropäern aufzunehmen, auch schon deshalb nicht, weil sie von der hier als maßgebend in Betracht kommenden offiziellen russischen Kartographie sicher nicht angenommen und auch von der einheimischen Bevölkerung nicht verstanden würden. Zwar verkenne ich keineswegs den Nutzen solcher Benennungen für die beschreibende Darstellungsweise, möchte aber dennoch davon abmahnen, fremde, vorzüglich asiatische Sprachgebiete mit zahlreichen europäischen Benennungen zu durchsetzen, zumal mit solchen Namen, die nur in einem sehr beschränkten Teile der Welt bekannt sind oder Geltung besitzen.

Was die Schreibweise fremder geographischer Namen anbetrifft, so habe ich mich stets zu dem Grundsatze bekannt, daß sie auf phonetischer Grundlage mit Hilfe unserer deutschen Schriftzeichen allein sehr wohl durchführbar ist, und daß man hiezu nicht deutsche Buchstaben mit besonderen Betonungszeichen beschweren sollte, denen in der deutschen Aussprache kein entsprechender Laut zukommt. Mögen die Philologen in ihren sprach-

wissenschaftlichen Abhandlungen ein ë, ě, č, ó, š, z, ú, sowie a. m. für nötig erachten, so will ich hierüber nicht rechten. Hingegen sollte die Ausdrucksweise des Geographen von solchen Betonungszeichen, die selbst dem Manne von Bildung nicht geläufig oder verständlich sind, und von denen doch hauptsächlich nur die Philologen den richtigen Gebrauch zu machen verstehen, verschont bleiben. Ebenso verwerfe ich eine verzwickte Schreibweise wie z. B. Qysil für Kysil, Qumaryq für Kum-aryk, Azarbeidjan für Aserbeidschan, Qiblâ für Kiblah, Aghyz für Agüss, Bakhty für Bachty, Aq-su für Ak-su, Širäz für Schiras, Bachdäd oder gar Bardād für Bagdad u. a. m.

Zu widerraten ist meines Erachtens ebenso die Wiedergabe eines weichen sch mit j — man könnte allenfalls hiefür noch sh anwenden —, noch weit mehr die Wiedergabe eines weichen s durch z usw.

Ich bin der Ansicht, daß sich mit den normalen deutschen Lautzeichen oder einer besonderen Kombination von solchen die bei den Völkern Zentral- und Vorderasiens eingebürgerten Benennungen und deren Aussprache besser wiedergeben lassen als mit den in obigen Beispielen gekennzeichneten Bemühungen. Ich habe immer "Tian-Schan" geschrieben und gesprochen, wie es auch Russen, Engländer und Franzosen ausnahmslos tun, habe diesem Namen auch von Angehörigen der Turkstämme, sowie von Mongolen und Chinesen allgemein nur so aussprechen hören. Mag in der Aussprache einzelner Chinesen das a auch einen etwas näselnden für unser Ohr an das e anklingenden Ton verraten, so scheint es mir doch nicht gerechtfertigt, es mit ë wiederzugeben, ein Schriftzeichen, für das wir im Deutschen keinen entsprechenden Laut haben. Ohnedem wird es uns ebensowenig gelingen, die reiche Modulation der chinesischen Aussprache und die außerordentliche Mannigfaltigkeit der chinesischen Silben- und Wortschrift ganz äquivalent mit unserer deutschen phonetischen Schrift wiederzugeben, wie die große Anzahl harter Kehl- und Zungenlaute, welche zahlreichen türkischen Dialekten eigen sind und deren feineren Tonschattierungen.

In geographischen Abhandlungen und Karten sollte man nach meinem Dafürhalten die nur verwirrend wirkenden Verkünstlungen bei Wiedergabe fremder Namen beiseite lassen und sich mit der auch in der deutschen Schrift, für geographische Zwecke wenigstens, genügend vorhandenen Möglichkeit annähernd genauer Wiedergabe begnügen. Mit richtiger Verwendung unseres Alphabetes oder einer Kombination unserer Buchstaben läßt sich, wie ich glaube, auch der Klang schwieriger fremder Namen phonetisch annähernd richtig und gut verständlich wiedergeben. Die von der Royal Geographical Society für die englische Schreibweise fremder geographischer Namen herausgegebenen Regeln scheinen mir ganz das Richtige zu treffen. Es wäre eine ebenso dringende wie dankbare Aufgabe für den "Deutschen Geographen-Tag" sich neuerdings mit dieser wichtigen Frage wieder einmal zu befassen, um eine verwirrend verschiedenartige Schreibweise der gleichen geographischen Namen in Karten, Reisewerken etc. hintanzuhalten.

¹⁾ Wollte man sich schon mit a oder e nicht begnügen, warum nicht das gut deutsche ä anwenden?

XX. Geologischer Teil von P. Gröber

mit 8 geologischen Profilen (Taf. 17 und 18) und 1 Ansichtszeichnung (Taf. 16A) sowie 1 Panorama (Taf. 4. Fig. 4).

Die Zeit, die mir für die geologische Untersuchung der Bogdo-Ola zur Verfügung stand, verwandte ich zur eingehenden Aufnahme des aus Angaraschichten aufgebauten, dem hohen Hauptgebirge im N. vorgelagerten, niedrigen Berglandes. Seine große Armut an Vegetation und seine, infolge geringer Höhe große Übersichtlichkeit, ließen erwarten, daß man in kürzerer Zeit zu greifbaren und wertvollen Ergebnissen gelangen würde, als in dem hohen, schwer gangbaren Hauptgebirge. Dazu kam, daß ich beim Marsche von Foŭkun zum oberen, am Bogdo-Ola-See gelegenen Kloster bereits feststellen konnte, daß im Vorlande, d. h. in der Angaraserie eine Reihe leicht unterscheidbarer Schichtkomplexe und Leithorizonte vorhanden seien, während das Hauptgebirge aus einer sehr mächtigen und einförmigen Schichtenfolge besteht, in der die Auffindung einzelner Etagen in der zur Verfügung stehenden kurzen Zeit kaum möglich gewesen wäre.

Ich habe mich daher genauer nur mit dem Vorlande befaßt, während im Hauptgebirge nur ziemlich kursorische Begehungen ausgeführt wurden.

I. Profil II (Taf. 17) und V (Taf. 18) Sangun-Tal.

Die mitgeteilten Beobachtungen beziehen sich auf die Wände der rechten Talseite. Auf der linken Talseite herrschen die gleichen Verhältnisse, die Aufschlüsse sind dort aber etwas weniger gut. Beim Eintritt in das Tal stehen zunächst in einiger Entfernung vom Wege graugrüne, stellenweise Kohle und rotes Gestein enthaltende Mergel an, die nicht näher untersucht wurden; sie fallen zunächst steil nach S. ein unter ca. 60—70 Grad. Je weiter man nach S. fortschreitet, desto flacher wird das Fallen; es beträgt nach ca. 10 Min. noch 30—40 Grad S. Hier stellen sich graue Sandsteine, die zum Teil schwach konglomeratisch sind, und tonige harte Mergelschiefer mit schlechten Pflanzenresten ein. Auf diese legen sich großlöcherige hellgraue, von eisenreichen Partien durchzogene (Tigersandsteine), zum Teil grobe Sandsteine und mächtige grüne Mergelschiefer mit Sandsteinbänken, in dem in Profil V dargestellten gegenseitigen Mächtigkeitsverhältnis. Diese Schichten biegen in einer Mulde aus dem 30—40 Grad S.-Fallen in ca. 1—2 Grad N.-Fallen um und begleiten weiterhin nahezu horizontal gelagert (schwach nach S. ansteigend) ca. ½ Stunde den Weg. Bis hieher fasse ich die tektonischen Verhältnisse unter Sattel I zusammen, von dem mir nur der Südwestschenkel bekannt ist.

Bei der Einmündung eines Seitentales von orogr. rechts tauchen die grünen Mergel und Sandsteine, dann rasch niedergebogen, steil S. fallend unter jüngere Schichten unter. An der Grenze beider liegen:

oben: 15-20 m gelbe gefrittete (ursprünglich blaugraue) rot verwitternde Klingtone mit Pflanzenresten,

7-8 "andesitische Lavaströme mit prächtig erhaltenen Gekröse-Oberflächen,

3 " Kohlenflöz (Steinkohle),

inten: 1 , roter Sandstein.

Merkwürdigerweise liegen die einen Hügel bildenden gefritteten Tone dem obersten Lavastrom auf und sie enthalten weder dünne Lavalagen noch werden sie von einer solchen bedeckt. Da das Gekröse der Lavabank auf den nach S. geneigten und nach S. blickenden Flächen sitzt, so kann die Deutung gar nicht in Frage kommen, daß diese Schichten in überkippter Lagerung sich befinden. Es ist vielmehr wahrscheinlich, daß über den gefritteten Tonen noch eine Lavabank gelegen hat, die vor Ablagerung der nun folgenden Kohlenserie wieder weggeräumt worden ist. Ich glaube kaum an die Möglichkeit, daß die Tone auf der noch heißen Lava des obersten Stromes sich abgesetzt haben und hiebei gefrittet worden sind. Denn — ganz abgesehen von der schweren Vorstellbarkeit eines solchen Vorganges — unser oberster Lavastrom besitzt nur eine Dicke von 3 m; er dürfte kaum so lange eine hinreichende Hitze behalten haben können, bis die Sedimentation der ca. 20 m mächtigen, nunmehr gefritteten Tone abgeschlossen war.

Die auffallend gefärbten, zinnoberroten und schwefelgelben gefritteten Klingtone bilden einen markanten Leithorizont — wenigstens für das Profil des Sangun-Tals. Wie deutlich sie hervortreten, kann aus dem Profil V (Taf. 18) ersehen werden, das die Gesteine in ihrer natürlichen Farbe und soweit sie austehend beobachtet wurden, wiedergibt.

Auf die Klingtone folgen graugrüne Mergelschiefer (weich), eine braune Toneisensteinbank und reichliche Steinkohlenflöze von zum Teil beträchtlicher Mächtigkeit (1 m bis 1,5 m); das Fallen wird allmählich immer flacher S. und die Kohlen treten nach oben zu immer mehr zurück, so daß im Hangenden die hellen Mergel vorwiegen. Darauf folgt eine schön aufgeschlossene, muldenförmige Biegung der Schichten (Mulde I), die nunmehr steiler nach N. fallen (ca. 50 Grad), und nach S. zu kommen die tieferen, an Kohle reichen Horizonte der "Kohleserie" wieder heraus; nach 10-12 Min., von den Klingtonen ab gerechnet, treffen wir abermals auf die auffälligen Grenzschichten der Sandstein- und Kohlenserie. Hier ist jedoch die Mächtigkeit der Klingtone bedeutend geringer (5-6 m), in ihrem Liegenden befindet sich nur mehr ein ganz schmächtiger Lavastrom (50 cm) und das Eruptivum ist hauptsächlich durch 2-3 m mächtigen Tuff vertreten, der große Bruchstücke von Baumstämmen von sehr schlechter Erhaltung führt. Auch das Kohlenflöz, hier von 5-6 m Mächtigkeit, und die rote Sandsteinbank finden sich im Liegenden der Grenzschichten wieder. Unter diesen kommt in einem ziemlich regelmäßigeu Sattel (Sattel II) die Sandstein- und grüne Mergelserie heraus. Den Kern des Sattels bilden die obersten Horizonte der bereits beim Eingang des Tales vorgefundenen Schichtenfolge, die hier durch Kohle, grüne Letten und braune Toneisen-Sandsteine gebildet wird; in letzteren habe ich Fischreste gefunden, die ersten, bisher aus dem Tian-Schan bekannt gewordenen. Außerdem fanden sich Equiseten und Podozamites lanceolatus mit dem Fisch (vgl. Romanowski I, l. c., S. 40 f. und 126 f.).

Diese Befunde beweisen das unterliassische, möglicherweise ein noch höheres Alter dieser Schichten und wir können sie — was schon aus dem ganzen petrographischen Charakter klar war — als Angaraschichten und als ungefähr gleichaltrig mit der kohleführenden Etage des Ili-Beckens und des Kara-tau betrachten.

Die Sandsteine des Hangenden sind zum Teil sehr grobkonglomeratisch — ich habe abgerollte Blöcke von 60—70 m Durchmesser gesehen — und enthalten mächtige Reste von sehr schlecht erhaltenen Baumstämmen.

Auf die Sandstein- und grüne Mergelserie legt sich wieder die Kohlenserie; auch die Grenzschichten treten wieder auf und zwar abermals in der Mächtigkeit reduziert und zwar in folgender Reihenfolge:

oben: Lava, gelbe und rote gefrittete Tone, Kohle, unten: rote Sandsteine.

Hier liegt diesmal die Lava auf den gefritteten Tonen und zeigt normales Verhalten. Die oben geäußerte Anschauung, daß die gelben und roten Klingtone, die ich weiter abwärts im Tale angetroffen habe, von Lava bedeckt und gefrittet worden sind und daß die Lava vor Ablagerung der Kohlenserie abgetragen worden sei, erfährt nun durch das Vorkommen von Lava über den gefritteten Tonen eine Stütze.

Die hangende Kohlenserie fällt 45—50 Grad nach S. ein und ist ganz ähnlich entwickelt wie in der ersten Mulde; nach oben zu treten die Kohlen zurück, und in den obersten Partien habe ich keine Flöze mehr gesehen. Höher folgen: helle, gelblich-graue, zum Teil recht derbe Konglomerate, die rote Mergellager enthalten, darüber grüne und rote Mergelschiefer. Diese erleiden eine muldenförmige Umbiegung (Mulde II), die besonders schön auf der linken Talseite aufgeschlossen ist (vgl. Profil V, Taf. 18 u. Fig. Va). Der Südschenkel der Mulde steigt flach nach S. an und es treten wieder die gelblichen Konglomerate und roten lettigeu Partien auf.

Etwas abseits, östlich vom Wege (das Tal erleidet eine Ausweitung) ist ein Sattel (Sattel III) aufgeschlossen, in dessen Kern die obersten Horizonte der Kohlenserie, rote und grüne schwachkohlige Letten, graue kohlige Sandsteine etc. liegen; auf diese legen sich im steilen Südschenkel des Sattels wieder die gelblichen Konglomerate, dann die sehr reduzierten roten und grünen Mergelschiefer. Schließlich folgen auf diese eine Serie bisher noch nicht angetroffener, harter, dickbankiger Tonschiefer und Sandsteine von blaugrauer bis bräunlichgrauer Farbe; sie setzen die südliche Hälfte der Ostumwallung der schon erwähnten etwas über 1 km langen Aussackung des Sangun-Tales zusammen. Oberhalb der Aussackung verengt sich das Tal bedeutend; die harten Tonschiefer und Sandsteine bilden auf eine längere Strecke (ca. 2 km) die Talflanken, in dem sie dauernd steil südlich fallen (50 bis 60°); auf ihnen liegen dünne, Posidonienschiefern ähnliche, schwarze Papiertonschiefer, die zum Teil Gips und rote Lagen enthalten, und höchst bituminös sind.

Ich denke sie als Sumpfablagerungen. Wenig oberhalb Lager b gehen sie muldenförmig (Mulde III) gebogen in sehr flaches Nordfallen über, und unter ihnen tauchen wieder die harten Tonschiefer empor, die ca. 3¹/₂ km vom Lager b talaufwärts die Talflanken bilden.

Von der Verengung des Tales ab bis hieher sind die harten und weichen Tonschiefer von einer Terrasse zu beiden Seiten des Tales horizontal abgeschnitten, die mit Löß und harten Schottern bedeckt ist. Diese Terrasse, auf die später noch genauer eingegangen werden soll, ist am unteren Ende ca. 15 bis 18 m in der Mitte ca. 30 m und am oberen Ende 50 bis 60 m über dem heutigen Flußbett gelegen.

Wie gesagt, erreichen die harten Tonschiefer, die der obersten Abteilung der im Sangun-Tal vertretenen Glieder der Angaraserie angehören, ca. 3½ km oberhalb Lager b ihr Ende; sie stoßen hier gegen Quarzite, schwarzblaue Tonschiefer und Grauwacken, die sogleich ein höheres Gebirgsland bilden, an einer Verwerfung ab. Über dieses ältere Gebirge soll weiter unten gesprochen werden.

Ich fasse die Angaraserie des Sangun-Tales, wie folgt, zusammen:

- D2 Blauschwarze, zum Teil gipsführende und rote Tone enthaltende, bituminöse Papiertonschiefer, 300 m bekannt.
- D1 Dickbankige, blaugraue Tonschiefer und graugelbe harte Sandsteine gegen das Liegende zu ca. 2000 m.
- C4 Grüne zum Teil rote Mergelschiefer, 200 m.
- C3 Gelblichgraubraune Konglomerate mit roten Mergellagern, 300 m.
- C2 Grüne Tonschiefer, Mergelschiefer, braune Toneisensteine, weißliche Sandsteine, wenig bis keine Kohle, aber häufig kohlige Partien enthaltend, 500 m.
- C1 Desgleichen, doch mit reichlichen Kohlenflözen, 500 m.
- Ca Grenzschichten: gefrittete, rote und gelbe Tone mit Lava, Kohle, rote Sandsteinbank.
- B Sandsteine und grüne Mergel; die Sandsteine als feinkörnige, konglomeratische, auch als Tigersandsteine entwickelt, mit Baumstämmen, 400—500 m.
- A Toneisensandsteine mit Kohle und grünem Mergel, bekannt bis 100-120 m.

Die durchschnittliche Streichrichtung der Angaraschichten zu beiden Seiten des Sangun-Tales ist SW.—NO. Ziemlich genau an diese Richtung halten sich steilstehende Schichten und die Sattel- resp. Muldenachsen. Flacher geneigte Schichten dagegen weichen immer etwas von dieser Richtung ab. Fallen sie z. B. flacher nach S. so werden sie nach ONO. bis W.—O. streichen, bei Nordfallen in NNO.-Streichen abgelenkt. Hierüber später mehr.

II. Dön-chon-dse-Tal.

Die Aufschlüsse sind hier bei weitem weniger gut, als im Sangun-Tal, wenigstens was die rechte Talseite anbelangt; die linke Talseite ist gut aufgeschlossen. In dem Übersichtsprofil Nr. III (Taf. 17) ist von der liuken Talseite her einiges übertragen. Ferner sind die Verhältnisse hier auch etwas komplizierter.

Beim Austritt des Tales in die Wüste treffen wir zuerst auf der rechten Talseite auf graue Mergel, wenig Sandsteine und reichlich Kohle, die zunächst steiler, dann flacher nach Süd fallen; nach etwa 10 Minuten treten in einer hervorragenden Kuppe rote und gelbe Schichten mit Lava auf, deren Fallen nicht festzustellen ist. Der Komplex reicht aber nicht bis zur Talsohle, au der schlecht aufgeschlossene Kohle und Mergel sich finden. Diese auf der rechten Talseite gelegenen Verhältnisse habe ich nur vom linken Ufer aus gesehen. Die linke Talseite gibt klaren Aufschluß über die Lagerungsverhältnisse. Auch auf dieser stehen beim Ausgang des Tales in die Wüste Mergel an, die braun gefärbt sind; sie fallen 10 bis 15° S. Auf ihnen liegt ein 3 m dickes Kohlenflöz und auf diesem rote und gelbe gefrittete Klingtone, die Lava enthalten. Auf die Lava folgt die B.-Serie der hellen Sandsteine und grünem Mergel. Diese Gesteine sind muldenförmig gebogen, so daß die gefritteten Gesteine und Laven in dem kleinen auf Profil VIa (Taf. 18) sichtbaren und hinter dem rot bekuppten Berg herumziehenden Seitentale bis auf den Talboden hinabtauchen; darauf steigen die Gesteine steiler (ca. 25 bis 30°) nach Nord fallend wieder an. Diese Mulde liegt gerade in der streichenden Fortsetzung der roten Kuppe der rechten Talseite, deren Gesteine, wie gesagt, die Talsohle des Dön-chon-dse-Flusses nicht erreichen.

Die Kuppe stellt also den im Muldenkern erhalten gebliebenen Rest der gefritteten Gesteine dar; nach Süden zu steigt die Serie der grauen und braunen Mergel, Sandsteine und Kohlenflöze, steil nach Nord fallend, wieder auf. Die Schichten, um die es sich hier handelt, gehören der A-Serie an.

Ich habe einige Komplikationen im Bau beobachtet, die von Wichtigkeit sind: Wie man in Profil-Ansicht VIb sieht (Orientierung in der Erläuterung zum Profil), fallen auf der linken Talseite die Schichten unter 30 bis 45° und mehr nach W. ein. Denken wir uns nun z. B. die roten gefritteten Gesteine des Muldenkernes über das Tal hinüber nach O. zu in gleichem Winkel ansteigeud, so würden sie weit höher zu liegen kommen, als sie in dem Tal auf der rechten Talseite in der erwähnten roten Kuppe liegen. Es müssen also die Gesteine der A-Serie nach O. zu wieder etwas niedergebogen werden. Dies ist auch tatsächlich der Fall; im uutersten Teile des kleineu, begangenen (rote Route auf der topographischen Karte), beim Ausgang des Dön-chon-dse in die Wüste ausmündenden Tales, sind die Gesteine der niedrigen, 5 bis 10 m hohen Gratausläufer steil nach O. zu niedergebogen, was sich auch entlang dem Fuße der linken Talumwallung feststellen ließ. Auf Profil VI b tritt dies deutlich hervor. Hier ist das auf der linken Talseite des Ansicht-Profils liegende, als Profil dargestellte Stück etwa entlang der Achse des auf die Mulde südlich folgenden Sattels gezogen und man erkennt an schönem Aufschluß, daß die Niederbiegung so stark ist, daß die roten und gelben Gesteine hier im Bereich des Sattels tiefer zu liegen kommen, als im Kern der Mulde auf der rechten Talseite. Es dürfte also abermals ein Ansteigen nach O. zu im Bereich der Talfurche vorhanden sein.

Dieser Bau weist auf heftige Faltung hin, deren Streichrichtung dem linken Talrand etwa parallel geht und SO.-Streicheu besitzt.

Wie sich von einem erhöhteu Standpunkt aus erkennen ließ, steigen die Gesteine östlich des Dön-chon-dse-Tales nicht mehr nach O, zu an, sondern liegen flach — abgesehen natürlich von den ONO. streichenden Falten. Von diesem erhöhten Standpunkt aus (Endpunkt der roten Routenlinie durch das kleine Tal und Standpunkt bei Aufnahme des Panoramas) sieht man nach SW. und W. zum Sangun-Tal blickend, daß die Sandsteine des Hangenden der besprochenen Mergel-, Kohlen- und Eruptivum-Serie (A) mit den B-Sandsteinen des Sangun-Tales sich vereinigen. Hierdurch wird die Deutung der Mergel-, Kohlenund Eruptivum-Serie als A-Serie sicher gestellt. Von Wichtigkeit ist, daß im Sangun-Tal in der A-Serie kein Eruptivum sicher beobachtet worden ist, wenn nicht die roten Lagen beim Talende (vgl. S. 247) als solche zu denken sind; diese kommen aber tiefer vor. Der Standpunkt befindet sich da, wo die Sandsteine durch die NO. streichende Faltung in horizontaler Lagerung belassen worden sind (vgl. Profil III und V); sie fallen jedoch unter 5 bis 10° nach SW. ein, und zwar ununterbrochen bis zum Sangun-Tal. Nahe am Dön-chon-dse-Tal steigen sie steiler, zu 30 bis 40° SW. fallend, an, um dann hart am linken Talrand steil nach O. zu fallen. Es ist dies der gleiche Sattel der auf Profil VIb zu sehen ist und dessen Achse deutlich ca. 4 bis 5 km nach SO. verfolgt werden kann; er streicht, wie gesagt, S. 40 bis 45° O., genau auf den Hauptgipfel der Bogdo-Ola los. Hierüber später mehr.

Im Profil des Sangun-Tales (Taf. 18 Fig. V) sahen wir, daß auf die flache Lagerung der Sandsteine eine Mulde, (Mulde I) in der die Kohlenserie C 1—2 entwickelt ist, sich anschließt. Es ist nicht zweifelhaft, daß die Mulde, in deren Kern auf der rechten Talseite

des Dön-chon-dse die Kuppe aus roten gefritteten Gesteinen sitzt und die im Profil VIa dargestellt ist, die Fortsetzung der Mulde I bildet; ihr Verlauf ist vom Standpunkt der Panoramaaufnahme (siehe vor. Seite) gut zu übersehen.

Der südlich anschließende Sattel ist leider im Dön-chon-dse-Tal auf der rechten Talseite schlecht aufgeschlossen. Was zu sehen ist, ist im Profil VI zur Darstellung gebracht. Auf der linken Talseite konnte die im Sattelkern liegende A-Serie nicht genauer untersucht werden. Vor allem war es nicht möglich, Fossilien zu finden, die nach den lohnendeu Funden im Sangun-Tal zu erwarten gewesen wären. Soweit sich erkennen ließ, treten zu den Toneisensteinen und braunen Mergeln keine neuen Gesteiusarten hinzu.

Auf der rechten Talseite tritt der südliche Sattelschenkel in einem herausragendem. von harten roten, gefritteten Tonen gebildetem und gekröntem Hügel deutlich heraus. Bei Lager e legen sich auf die B-Sandsteine und grünen Mergel die Gesteine der

C1 Kohlenserie; an der Grenze beider Serien liegen die aus dem Sangun-Tal häufig

erwähnten Grenzschichten: rote gefrittete Klingtone, Lava und Kohle.

Über C1 folgt C2 in gleicher Entwicklung wie im Sangun-Tal. Ersteigen wir den westlich von Lager e von diesen Schichten gebildeten Grat, der etwa NO.-SW.-Richtung hat (die Seitenroute über das Bergland führt über ihn hiuweg), so sehen wir, nach W. blickend. folgendes Bild: In einer Entfernung von 3 km liegt die breite Furche des bereits wohlbekannten Sangun-Tales und wir erkennen deutlich auf seiner linken Seite die Mulde II (wie sie im Profil Va dargestellt ist). Die Schichten, auf denen wir stehen, streichen in flach nach S. konkaven Bogen nach WSW. und vereinigen sich mit den Gesteinen der C1 und C2-Serie des Nordschenkels von Mulde II des Sangun-Tales. Die Muldenachse streicht etwas links (südlich) von unserm Standpunkt vorbei.

Beim Sangun-Tal bilden die roten und grünen Mergelschiefer C4 den Muldenkern: nach O. zu spitzt die C4-Serie sich mehr und mehr aus, indem sich die Schichten von Nordund Südschenkel, in einer Kurve über die Achse hinwegstreichend, vereinigen. Etwa 1 km im O. des Sangun-Tales treten an ihre Stelle, im Muldenkern unter ihnen emportauchend, die brauugelben Konglomerate mit roten Mergellinsen (C3), die bis uahe zu unserm Standpunkt heranziehen. Das Gelände dacht sich vom Grat allmählich zum Sangun-Tal ab. Da nun im Bereich der Muldenachse gegen O. hin immer ältere Schichten zutage treten, so muß die Muldenachse nach O. zu schärfer ansteigen als das Gelände.

Es wurde bereits festgestellt, daß auch die Achse der Mulde I sowie des Sattels II uach O. zu vom Sangun-Tal her unter 5 bis 10° Neigung ansteigen. Auf Taf. 16A. die die Aussicht vom "Signalberg" beim oberen Kloster am Bogdo-Ola-See wiedergibt, kann man dieses Ansteigen nach O. sehr gut sehen; es hält ungefähr genau bis zu dem Grat an. Östlich des Grates herrscht scharf ausgeprägtes Ostfallen der Muldenachse. Die Achse des Sattels, der die in ONO. bis NO. streichenden Falten gelegte Landschaft emporgehoben hat, liegt genau in der Fortsetzung der Achse des bereits beim Ausgang des Dön-chon-dse-Tales in die Wüste und bei Sattel II festgestellten Sattels von S., 40 bis 45° O.-Streichen.

Die Interferenz des SO. streichenden Sattels und der Mulden und Sättel von NO.-Richtung bringen einen unübersehbaren Wechsel und eine Fülle der Streichrichtungen zustande, die sich im einzelnen gar nicht aufzählen lassen; sie sind besonders ausgeprägt im Bereich des steilen, zum Teil fast saigeren Stückes des Ostschenkels des SO. streichenden Sattels. Wo die Schichten der Angara-Serie von der NO.-Faltung nur schwach betroffen worden sind, wie z. B. im Nordschenkel von Mulde I und in ihrem Kern, ließ sich S. 30 bis 40° O.-Streichen der Gesteine feststellen.

Welche Erscheinungen durch zwei sich kreuzende Faltensysteme zustande kommen, habe ich bereits bei Gelegenheit des vorläufigen Berichtes über meine Reise im südlichen Tian-Schan erörtert,1) so daß ich hier davon absehen kann. Die Erkenntnis, daß die mannigfachen Änderungen der Streichrichtung durch zwei sich kreuzende Faltungen und nicht durch Brüche hervorgerufen worden ist, bewahrte mich vor einem erheblichen Irrtum: Bei der Beschreibung des Profils durch das Sangun-Tal bin ich mit Stillschweigen hierüber hinweggegangen. Ich habe S. 249 davon gesprochen, daß das Sangun-Tal eine Aussackung 2 km nördlich von Lager a besitzt2); auf dem Südschenkel von Sattel III treten zunächst Sandsteine und harte Tonschiefer (D1) auf. Diese streichen nun nicht nach NO., wie die Gesteine bisher zumeist, soudern nach S. 55° bis 60° O. und fallen unter 80° steil nach SW. ein. Nur wenig südlich der 3h 10m erreichten Ecke streichen die gleichen Gesteine wieder NO. und falleu ca. 30 bis 40° nach SO. ein, wie auch die nördlich des 3h 01m erreichten, SO. streichenden Komplexes von Schichten. Dieser Wechsel in der Streichrichtung hatte mich bei der ersten Begehung des Sangun-Tales veranlaßt, nördlich und südlich von dem abnorm streicheudem Schichtenkomplexe Brüche anzunehmen. Die Beobachtungen im Dön-chon-dse-Tal brachten mich jedoch auf den Gedanken, daß die Schichten doch zusammenhängen und nicht durch Brüche getrennt seien, und daß die abweichende Streichrichtung durch eine Niederbiegung der Schichten nach W. zu, zustande gekommen sei. Ich unternahm deshalb vom Dön-chon-dse-Tal zum Sangun-Tal eine Seitenexkursion, die mir außerdem den Anschluß an die Route durch das Sangun-Tal brachte, (was auch für die topogr. Karte von Wert war); es stellte sich hiebei in der Tat heraus, daß hier keine Brüche vorhanden sind. Würde ich die Brüche hier belassen haben, so hätte ich die harten und weichen Tonschiefer D1 und D2 als oberstes Glied der den höheren Teil der Bogdo-Ola zusammensetzenden Gesteinsserie ansehen müssen, da besonders die D1-Gesteine den südlich folgenden Tonschiefern etc. des "alten Gebirges" sehr ähnlich sind, während sie in der Tat die obersten hier entwickelten Teile der Angara-Serie darstellen.

Zu erwähnen ist noch, daß die grünen und roten Mergelschiefer (C4), deren Mächtigkeit auf dem Nordschenkel von Sattel III stark reduziert war, südlich des Grates, im Nordschenkel (von Mulde II beim Döñ-choñ-dse-Tal) gänzlich fehlen. Auf den hellen Konglomeraten (C3), die bereits reduziert erscheinen, folgen direkt Sandsteine von graubis gelbbrauner Farbe, in denen ich nicht genau bestimmbare Baumstämme³) gefunden habe. Ob diese Schichten als D1 oder C4 zu deuten sind, darüber später mehr.

Auf der rechten Talseite stehen gegenüber dem Lager e blaue harte Tonschiefer an, die denen von D1 völlig gleichen; sie fallen sehr steil nach S. ein und finden sich an

¹⁾ Zentralbl. d. n. Jahrb. f. Min. Geol. Pal. 1910. Während diese Abhandlung sich im Druck befand, ist auch schon die ausführlichere Arbeit über diesen Gegenstand erschienen: P. Gröber. Der Südliche Tian-Schan, Geographische Abhandlungen, herausgegeben von A. Penck, Bd. X, Ser. I, 1914. (Vgl. hiezu meine Anmerkung S. 51) G. M.

²) Vgl. hiezu Profil V. ³) Vgl. Kap. IX S. 71.

einer Stelle, wo man die Kohlenserie erwarten sollte, die noch gut auf der linken Talseite entwickelt ist, hier aber zu fehlen scheint.

Beim Marsch talaufwärts von Lager e steigt man vom Talboden auf eine ca. 50 m über dem Fluß liegende Terrasse empor, die leicht gewellt und von Löß bedeckt ist. Der Aufstieg vollzieht sich in einer schmalen Schlucht, die in S. fallende Sandsteine und Tonschiefer (zurücktretend) eingeschnitten ist. Von der Terrasse aus sieht mau auf dem gegenüberliegenden Teil der rechten Talflanke Südfallen, das alsbald in Nordfallen übergeht. Wir haben also eine Mulde vor uns und zwar ist dies die Mulde II, 1) deren Achse uuseru Weg etwa bei der Gabelungsstelle mit dem Wege talaufwärts und des Weges zum Saugun-Tal kreuzen dürfte.

Etwa gegenüber der Mitte der Terrasse sehen wir auf dem rechten Ufer einen schön aufgeschlossenen, flachen Sattel, der unzweifelhaft aus rötlichen Sandsteinen besteht. Es ist dies die Fortsetzung des Sattels, den wir, vom gleichen Standpunkt aus nach W. blickend, mit aller Deutlichkeit beobachten können. Hier jedoch ist er sehr steilschenkelig. Ich halte dieseu Sattel für die Fortsetzung von Sattel III des Sangun-Tal-Profils.

An diesen Sattel schließt sich eine Mulde, die außerordentlich flach ist und in deren breiten Kern die Schiefer D2 des Sangun-Tales auftreten. Die weitgehende Übereinstimmung im Bau der Mulde im Sangun-Tal und Dön-chon-dse zeigt sich aus den Profilen.

Es ließ sich bis jetzt also feststellen, daß die Falten, die wir im Sangun-Tal angetroffen haben, in nahezu gleicher Beschaffenheit zum Dön-chon-dse reichen, und daß auf der linken Talflanke die Achse eines fast genau SO. streichenden Sattels mit flacherem und langem West- und sehr steilem aber kurzem Ostschenkel entlangzieht, der an vielen Stellen Biegungen des normalen NO.- bis ONO.-Streichens hervorgerufen hat. An ihn schließt sich östlich eine schmale, wohl steilscheukelige Mulde an von gleichem Streichen.

Bei Lager dI stoßen die D2- und obersten D1-Schichten gegen dunkelrote und graugrüue Sandsteine und Grauwacken an einer Verwerfung ab; es ist dies die gleiche, die wir bereits im Sangun-Tal vorgefunden haben.

Ogun-schañ-dse und Folgerungen.

Die Schilderung des Profils durch dieses Quertal beginnt am besten gleichfalls beim Austritt des Tales in die Wüste. Das Tal ist trocken; nur im untersten Teil rieselt ein dürftiges Rinnsal, dessen Wasser einer Quelle (vgl. Karte u. S. 95) entstammt. Betrachten wir die rechte Talseite: Entlang den ersten 1½ km vom Gebirgsrand ab, stehen Sandsteine und grüne Letten an; sie sind von kleinen Spezialfaltungen und Knickuugen betroffen worden. Im allgemeinen bilden sie eine Mulde. In den tiefen Teilen treten (so am Taleingang) bituminöse Schiefer und etwas Kohle, sowie Toneisensteine auf. Das Tal hat zunächst beiläufig SO.-Verlauf; wo es in die SN.-Richtung umbiegt, tauchen unter den Sandsteinen und grünen Mergeln zunächst rote und gelbe gefrittete Tone mit Pflanzenresten, direkt unter diesen Kohlenflöze, tief braune eisenschüssige Sandsteine und Toneisensteine. Diese Bildungen sind in einen Sattel gelegt, der besonders gut auf der linken Talseite

¹) Beim Aufstieg auf die Terrasse und etwas weiter im N. enthält ihr Nordschenkel einen kleinen Spezialsattel, der mich bei der Aufnahme sehr gestört hat, aber nicht von Wichtigkeit ist; er ist auf Profil III und VI angedeutet.

aufgeschlossen ist, wo der Kamm eines Berges von den roten, auffallenden Schichten, die zu einem Sattel gebogen siud, gebildet wird. Kurz vor der erneuten Ausbiegung des Tals in eine mehr östliche Richtung stellen sich wieder die Sandsteine und grünen Mergel ein. Diese Schichten sind unzweifelhaft der B-Serie, den unter den roten und gelben Klingtonen gelegenen Schichten der A-Serie des Sangun- und Döñ-choñ-dse-Tales, parallel. Wo das Tal in die SO.-Richtung umbiegt, legen sich auf die B-Gesteine dunkelrote und graue Sandsteine mit Kreuzschichtung und schlechten Pflanzenresten, die etwa genau bis zur Mitte des Weges von hier bis zum Lager c anhalten; sie fallen sehr flach unter wechselnden Winkeln, aber nie mehr als 8 bis 10° (meist flacher) nach Süden ein. Auf sie legen sich die blauen, harten, dickbankigen Tonschiefer (D1) und die Papiertonschiefer (D2), die uus bereits wohl bekannt sind, in flacher Mulde; bei Lager c stoßen diese Gesteine gegen rote und graue Sandsteine sowie graugrünen Grauwacken an einer Verwerfung ab.

Die Streichrichtung ist zu beiden Seiten des Tales fast genau OW. und verbinden wir die Achse von Sattel II im Dön-chon-dse und im Ogun-schan-dse mit einander, so sehen wir, daß sie zwischen beiden Täleru O.—W. gerichtet ist.

Von Wichtigkeit ist in diesem Profil, daß hier die Gesteine der C-Serie, wenigstens wie wir sie aus dem Sangun-Tal kennen gelernt haben, gänzlich fehlen; auf die wohl erkennbaren B-Sandsteine und Mergelschiefer legen sich harte Sandsteine, die denen des Sattels III des Dön-chon-dse und des Sangun-Tales, (Südschenkel des Sattels) völlig gleichen.

Diese Verhältnisse lassen sich auf zweierlei Art erklären: entweder die C-Serie ändert sich faziell nach O. und SO. zu, oder aber die C-Serie ist nur im Sangun-Tal erhalten, im Gebiet des Dön-chon-dse und mehr noch im Gebiet des Ogun-schan-dse vor Ablagerung der Sandsteine und Tonschiefer abgetragen worden, so daß also die D1-Serie diskordant aufgelagert wäre. Strikte Beweise paläontologischer Natur für die eine oder andere Deutung fehlen. Es muß erwogen werden, welche die wahrscheinlichere ist. Ich neige für die zweite und zwar aus folgenden Gründen:

- 1. Es ist die petrographische Beschaffenheit der Sandsteine des Ogun-schañ-dse völlig gleich der in der unteren Hälfte des D1-Horizontes der im Sangun-Tal liegenden Sandsteine: in letzterem scheinen allerdings häufiger Tonschieferbänke vorzukommen als im Ogun-schañ-dse, allein es ist auch möglich, daß sie dort meinen Blicken entgangen sind.
- 2. Es liegen im Sangun-Tal im Südschenkel von Sattel III die D1-Gesteine fast unmittelbar auf den C3-Konglomeraten auf; die C4 grünen und roten Mergelschiefer, die in Mulde II eine nicht unerhebliche Mächtigkeit von mindestens 200 m gehabt hatten, sind bis auf wenige Meter reduziert. Beim oben häufig erwähnten Grate bei Lager e im Dön-chon-dse liegen die Sandsteine direkt den Konglomeraten C3 auf, die ihrerseits stark reduziert sind. Die Entfernung dieser Punkte von den noch mehr oder weniger gut erhaltenen C4-Gesteinen beträgt im Sangun-Tal 2 km, bis zum Grat bei Lager e kaum 3 km. Es ist ganz unwahrscheinlich, daß auf eine so kurze Entfernung hin ein so vollkommener Fazies-Wechsel von bunten Mergeln zu Sandsteinen hin stattfinden kann, wobei auch von Übergangsbildungen, die eine zwischen Sandstein und Mergelschiefern stehende Ausbildung besitzen, keine Spur vorhanden ist, zumal auf der rechten Seite des Dön-chon-dse,

höchstens 1 km östlich vom Grate, auch noch die C1—2-Schichten durch Sandsteine und Tonschiefer ersetzt worden sein müßten. Noch wahrscheinlicher wird die Richtigkeit der Annahme einer Transgression dadurch, daß

- 3. im Ogun-schañ-dse die Kohlenserie C1 und C2, sowie die Konglomerate C3 von zusammen 700 bis 800 m Mächtigkeit fehlen, und die den D1-Sandsteinen des Sangun-Tales völlig gleichenden Sandsteine des Ogun-schañ-dse der B-Serie, die auch nicht mehr ganz die sonstige Mächtigkeit erreicht, unmittelbar auflagern. Man gewinnt also den Eindruck, als ob gegen O. hin die D1-Sandsteine sukzessive über immer ältere Schichten zu liegen kommen, daß also mit anderen Worten die D1-Schichten transgredieren. Gestützt wird diese Anschauung
- 4. dadurch, daß der D1-Komplex nach O. zu nicht oder nur unbedeutend an Mächtigkeit zunimmt. Wenn die in 800 bis 1000 m Mächtigkeit bekannten Gesteine der C-Serie in der Tat faziell nach O. zu durch Sandsteine ersetzt würden, so müßten diese erheblich anschwellen.

Ich habe an keiner Stelle deutlich gesehen, daß an der Auflagerungsfläche der Sandsteine eine Diskordanz sich findet. Es scheint überall Konkordanz zu herrschen. Nur im Ogun-schañ-dse ist Diskordanz wohl allein erkennbar. Dies kann aber nicht als Argument gegen die Annahme einer diskordauten Auflagerung angesehen werden; da die Diskordanz sehr flach sein kann und nicht im einzelnen Aufschluß mit Händen greifbar zu sein braucht.

Zu bemerken ist, daß diese Diskordanz innerhalb der Angara-Serie liegt, und daß die D1-Sandsteine nicht etwa als Gobi-Sedimente aufzufassen sind; dies zeigt sich schon aus dem Funde von Baumstämmen (siehe S. 253) in D1 bei Lager e im Dön-chon-dse.

Auch spricht der ganze Charakter der Sandsteine sowie der höher folgenden dickbankigen Tonschiefer gegen Gobi-Sedimente, und der Gips, der stellenweise in den Papierschiefern vorkommt, beweist nichts gegen das Angara-Alter dieser Schichten.

In allen drei Profilen, im Sangun-, Döñ-choñ-dse- und Ogun-schañ-dse-Tal fanden wir, daß die Angara-Serie durch einen Bruch vom alten Gebirge getrennt ist. Es bedarf wohl keiner Auseinandersetzung, daß es sich hierbei jedesmal um denselben Bruch handelt, der an verschiedenen Stellen überschritten wurde. In dem Gebiet zwischen Dön-chon-dse und Ogun-schañ-dse bin ich auf dem Bruche entlang gezogen. Der Weg, auf dem man von Dön-chon-dse (vom Lager dI) zum Ogun-schan-dse (Lager c) zieht, folgt genau der Bruchlinie (siehe Karte II u. IIa). Dies hat seinen guten Grund; denn alle Tälchen, die zwischen Dön-chon-dse und Ogun-schan-dse nach N. ziehen, nehmeu ihren Ursprung in den unmittelbar südlich der Bruchlinie steil aufsteigenden, wall- oder mauerartigen Kamm und sind in die harten Gesteine nur wenig tief eingeschnitten. Im Bereich der Angara-Serie sind die Täler bedeutend tiefer eingeschnitten und haben einen breiteren, allmählich ansteigenden Boden. Man mußte also hier fortwährend steil auf- und absteigen, aus einem Tälchen, über einen Rücken, in das andere. Bei der Verwerfung steigen die Talböden steil nach S. auf und. wo sie die Durchschnittshöhe der Angara-Kämme überqueren, läuft der Weg. Dies muß naturgemäß dort der Fall sein, wo über die Angara-Kämme hinaus sich das stehengebliebene ältere Gebirge erhebt - also entlang der Verwerfung. (Vgl. S. 39, 94, 99, 145 f. u. Taf. 16, Fig. 2.)

Die Richtung der Verwerfung ist hier O. 20° N.; nach WSW. streicht sie gerade auf die Stelle los, wo wir im Sangun-Tal die Verwerfung lokalisiert haben.

Nach O. zu habe ich sie noch ca. 6 km weit verfolgt. Vom Lager c aus führt nach O. eine allmählich ansteigende, breite Rinne empor zu einem Paß, von dem aus man in das Dudun-dse-Tal hiuabblickt (vgl. Karte II). Im Süden der Rinne bildet über Lager c ein Kamm von ca. 300 bis 400 m Höhe, der aus Grauwacken und Sandsteinen besteht, die Umwallung; im N. wird sie von dem an einen mauerartigen Abfall ausstreichenden Schichtkopfe vom oberen D1 gebildet. Im Boden der Rinne kommen häufig stark zerrüttete Gesteine heraus, weshalb anzunehmen ist, daß sie genau dem Bruche folgt; ihre Richtung ist hier O. 10° bis 5° N., und zwar biegt der Bruch, je mehr man nach O. kommt, desto mehr in die O.-Richtung um. Östlich von zum Dudun-dse führenden Passe ist sie fast genau O.—W. gerichtet. Von einem gegen das Dudun-dse-Tal vorgeschobenen, kanzelartig endenden Grat läßt sich der Verlauf des Bruches auf der anderen Seite dieses Tales schön übersehen, wie man aus Taf. 17, Profil IV zu erkennen vermag.

Wo die Verwerfung aufgeschlossen ist, sieht man, daß sie steil nach N. fällt.

Westlich vom Sangun-Tale hat die Verwerfung ziemlich annähernd SW.—NO.-Richtung. Wir können also konstatieren, daß sie in einem gegen N. etwas konvexem Bogen verläuft.

Einen ganz ähnlichen Verlauf wie die Verwerfung nehmen die Streichlinien der Gesteine der Angaraserie: westlich vom Sangun-Tale und zwischen Sangun-Tal und Dön-chon-dse SW.—NO., zwischen Dön-chon-dse und Ogun-schan-dse OW.-Richtung. Auf dieses wichtige Faktum werde ich noch später zurückzukommen haben.

Ferner haben wir gesehen, daß die in NO.- resp. OW.-Falten gelegte Angaraserie von W. her bis zum Dön-chon-dse emporgehoben wird; östlich vom Dön-chon-dse aber scheint die Faltung, die den SO.-Sattel gebildet hat, kaum eingewirkt zu haben, da die Gesteine des Kernes von Sattel II sowohl im Dön-chon-dse als im Ogun-schan-dse in gleicher Höhe liegen.

Nach den bereits zitierten Ausführungen in meinem vorläufigen Bericht¹) haben wir anzunehmen, daß hier, wo die kreuzende Faltung sich nicht bemerkbar macht, die ursprüngliche Streichrichtung der Längsfaltung der Bogdo-Ola feststellbar ist: sie ist (und war) nahezu OW. mit leichter Ablenkung nach NO. Wir dürften also nicht fehlgehen, wenn wir annehmen, daß die NO.-Richtung, die in dem Gebirgsstück zwischen Sangun-Tal und Dön-chon-dse herrscht, dadurch zustande gekommen ist, daß die ursprünglich ONO. streichenden Falten nach O. zu emporgehoben worden sind.

Westlich vom Sangun-Tale läßt sich leichtes Ansteigen nach W. beobachten, das etwa bis zu dem Ostrande des alten auf Taf. 16 A und Taf. 9, Fig. 4 gut sichtbaren Talbodens reicht. Von da ab sinken die Falten nach W. zu ein und verschwinden alsbald unter Lößaufschüttung (vgl. Panorama Taf. 4, Fig. 4).

Betrachtet und vergleicht man die Profile II bis IV (Taf. 17), so fällt auf, daß die Falten, die wir im Sangun-Tale festgestellt haben, sich auch noch im Dön-chon-dse in etwa gleicher Ausbildung wiederfinden, daß dagegen im Ogun-schan-dse Mulde II und Sattel III in Wegfall gekommen sind. Man könnte den Grund hiefür darin suchen, daß die D-Schichten, wie Mulde III zeigt, schwächer gefaltet worden sind, als die Gesteine der Serien A—C, und daß diese vor der diskordanten Auflagerung der D-Serie bereits gefaltet gewesen sind. Jedoch ist im Dön-chon-dse-Tal Sattel III auch innerhalb der D-Serie sehr

^{1) 1.} c., S. 253.

deutlich ausgeprägt, während er weiter östlich verschwunden ist. Mulde II und Sattel III sind also als Brachysinklinale und Antiklinale aufzufassen.

Wohlgemerkt handelt es sich bei dem Aufsteigen des NO. gefalteten Angara-Schichten-Bündels vom Sangun-Tal zum Dön-chon-dse und seiner sehr steilen und raschen Niederbiegung beim Dön-chon-dse und seinem Flachliegen bis zum Ogun-schan-dse keiueswegs um Brachyantiklinale oder Synklinalen, sondern um Interferenz zweier Faltungen.

Das "junge Gebirge" von Urumtschi.

Im NW. von Urumtschi wird Kohle abgebaut, die bei den Gruben verkokt werdeu: viel kostbares Gas entflieht hiebei ungenutzt. Der Koks wird in Urumtschi verbraucht.

Die Kohlengruben liegen am Nordfuß des Kysyl-Tau = roten Berg von Urumtschi (vgl. S. 8), nach dem die alte Stadt ihren chinesischen Namen erhalten hat: "Chum-Miao-Tse" = rote, heilige (Tempel-) Stadt. Zu den Grubeu reitet man von der heutigen Stadt, an den Ruinen der alten vorüber und dann ein weites, flaches, ungefähr OW. gerichtetes Tal langsam ansteigend, hinauf (vgl. Profil I, Taf. 17).

Die Kohlenserie ist schlecht aufgeschlossen und unter den Lößaufschüttungen des Tales verborgen. Im Südwall des Tales sehen wir, daß unmittelbar über dem nach Norden fallenden obersten Kohlenflöz rote und schwefelgelbe, gefrittete Klingtone und Lava liegen; dann folgen nach S., an beiden Seiten eines kleinen Quertales, löcherige. feinkörnige Sandsteine, die zum Teil getigert sind und mächtige Partien grüner Letten enthalten; — ich zweifle nicht daran, daß sie der B-Serie des Sangun-Tales parallel sind und daß die Kohlenserie = der A-Serie ist. Auf die Sandsteine folgen gelbe und rote Letten, untergeordnet Sandstein; etwas höher kommt auch Lava vor, und über ihr rote, konglomeratische und lettige Sandsteine; dann weißer Sandstein, darüber schließlich rote und gelbgraue Mergel in flacher Mulde (Nordflügel flach, Südflügel steiler). Diese hat Obrutschew weiter östlich entlang dem Wege nach Manas angetroffen; er ist geneigt, sie als Gobisedimente zu deuten, was ich nicht anzuerkennen vermag. Diese Gesteine siud nicht genau mit denen der nördlichen Bogdo-Ola vergleichbar; ihre Mächtigkeit dürfte (von der B-Serie ab) ca. 500 m betragen; die B-Serie hat etwa 200 m Mächtigkeit. Beim Kohlenbergwerk streichen die Schichten O. 5° bis 10° S. gegeu O. hin; beim Rückweg nach Urumtschi konstatierte ich, daß sie sich allmählich mit einigen Schwankungen nach O.-W. drehen. Bei dem im N. von Urumtschi im Rücken einer großen Tempelanlage und bei der großen Brücke aufragenden Felswand (vgl. S. 7 u. Taf. 15, Fig. 2) ist die Schwankung des Streichens bereits bis ONO. gediehen. 1) Weiter im N. habe ich beim Marsch nach Urumtschi bei einer eben aufgeschlossenen Kohlengrube bereits O. 25° N.-Streichen vorgefunden. Die Angaraserie beschreibt bei Urumtschi also einen nach N. konkaven Bogen.

Von diesem Tempelberg aus zeigt sich, daß der "Rote Berg" einem Sattel entspricht, dessen Nordschenkel steil, dessen Südschenkel flacher ist und der sehr weit auslädt. Auf seinem Südschenkel, am Südfuß des "Roten Berges" sieht man die gefritteten gelben und roten Tone der A-Serie leuchten, die auch im O. des Osttores von Urumtschi austehen. Der Berg verdankt seinen Namen jedenfalls den rötlichen Konglomeraten und Sandsteinen, die unter der A-Serie als tiefste Horizonte der Angaraschichten liegen. Im Kerne des Sattels

¹⁾ Vgl. Obrutschew, l. c., S. 650.

kommen, wie schon durch Obrutschew festgestellt wurde, mit leichter Diskordanz unter der Angaraserie liegende oberkarbonische Tonschiefer mit Kalken heraus. Diese Gesteine stehen auch in einigen kleinen Hügeln an, die bei der Basis (siehe S. 242) auf dem linken Ufer des Archotu-Flusses liegen.

Diese Schichten sind leicht gefaltet; der Tempelberg wird von einem steileren Sattel dieser Gesteine gebildet, der genau auf die Mitte des "Roten Berges" losstreicht; ob er jedoch in der Tat deu Kern des großen Sattels des "Roten Berges" bildet, ist mir nicht bekannt. Von großem Interesse ist aber, daß hier die untersten Angaraschichten und ihre Auflagerung bekannt werden, wozu die Aufschlüsse des nördlichen Bogdo-Ola-Gebietes keine Möglichkeit boten.

Es wäre von Interesse zu wissen, mit welchem der Sättel des Sangun-Tales der Sattel des "Roten Berges" in Verbindung steht. Mir will es scheinen, als bilde er nicht die Fortsetzung eines dieser Sättel, da er viel breiter ist, als einer von ihnen und auch viel höher emporsteigt, so daß die tiefsten Horizonte herauskommen. Es kann sein, daß seine Achse im Meridian des Sangun-Tales, — wenn er nicht eine Brachyantiklinale ist — ungefähr 2-3 km nördlich vom Gebirgsrande vorüberstreicht und daß der Rest von Sattel I, den wir im Sangun-Tal vorgefunden haben, ein Stück seines Südschenkels ist.

Aus Profil II, III und IV (Taf. 17) ist zu sehen, daß der gesamte Faltenbau schief gestellt und nach S., gegen die Verwerfung geneigt ist, so daß man gegen das Gebirge hin immer jüngere Schichten antrifft; es ist also möglich, daß die Angarascholle beim Niedergehen eine Neigung gegen die Verwerfung erhalten hat.

Die gleichen Verhältnisse herrschen auch bei Urumtschi; im S. liegen oberkarbonische Gesteine, gegen welche die Angaraschichten an einem Bruche abstoßen, wie aus den Beobachtungen Obrutschews¹) zu entnehmen ist und wie ich auch selbst gesehen habe.

Das ,alte Gebirge".

Südlich von der oft erwähnten Verwerfung liegt eine zu gewaltiger Höhe aufragende Gesteinsfolge, die aus eng zusammengehörigen, konkordant übereinanderliegenden Schichten besteht und die das Gebirge bis zu seinem Südrand in seiner ganzen Breite aufbaut.

Etwas genauer ist mir die petrographische Beschaffenheit der Gesteine dieser Serie bis zum Bogdo-Ola-See bekannt geworden. Ferner liegen mir die Gesteinsstücke vor, die Merzbacher bei der Besteigung sowohl des nördlich als des südlich von den Bogdo-Ola-Hauptgipfeln aufragenden Panorama-Berges (siehe S. 173 f., 180 f. u. 186) geschlagen hat. In der Umgegend des Ak-kul²) habe ich auch selbst etwas genauer gearbeitet. Nur kursorisch ist hingegen die Aufnahme im oberen Dön-chon-dse, im oberen Ogun-schan-dse, im Da-tun-gu,³) und im Gurban-bogdo gewesen. Die tektonische Übersicht, die in diesem ganzen Gebiete gewonnen wurde, ist jedoch ziemlich vollständig.

Beginnen wir mit dem Da-tun-gu-Tal (vgl. Taf. 17, Profil II): Nach Überschreitung des Bruches stehen zu beiden Seiten des plötzlich zur Schlucht gewordenen Tales (vgl. S. 145) harte schwarze und blaugraue Tonschiefer in ziemlich dicken Bänken, braune bis dunkelgrüne Quarzite, dunkle, feinkörnige, feldspatreiche, feingebänderte Grauwacken in wirrer Folge

^{1) 1.} c., S. 648. 2) Linker Nebenfluß des oberen Dön-chon-dse.

³⁾ Der vom Bogdo-Ola-See hinabfließende Bach heißt vom See bis zur Verwerfung Da-tun-gu, von der Verwerfung bis zur Wüste Sangun (vgl. S. 94).

an; es läßt sich jedoch feststellen, daß die Tonschiefer im Hangenden vorwiegen, in den obersten Partien fast allein vorhanden sind, aber gegen die tiefen Horizonte hin den anderen Gesteinen gegenüber mehr und mehr zurücktreten. Diese fallen zunächst ca. $20-25^{\circ}$ nach N. ein und streichen O. 35° N. Je weiter man talaufwärts schreitet, desto steiler wird die Neigung der Schichten und ca. 7 km in Luftlinie im S. von der Verwerfung sind sie steil aufgebogen und bilden einen Sattel. Hier bestehen die Talgehänge aus Quarziten roter Farbe und hellgrünlich-grauen Kalksilikathornfelsen; diese Gesteine halten etwa bis Lager 2 an (vgl. Karte II u. IIa). Dann stellen sich in steilschenkeliger, etwas nach N. überkippter Mulde Tonschiefer ein.

Bei einer kleinen Schlucht, durch die der Sangun-Bach bricht und die kurz oberhalb des Tonschiefers liegt, stellen sich \(\) stehende, weiter flußaufwärts zu 50-55° N.-Fallen übergehende, vorwiegend hellgrüne, weißgesprenkelte (Feldspate), feinkörnige, grauwackenartige Konglomerate ein. Es kommen auch grobkonglomeratische Gesteine vor, die aus Geröllen von Kalksilikathornfelsen, diabasischen Porphyren und abgerollten einzelnen Mineralien zusammengesetzt sind. Diese Gesteine machen den Eindruck, als seien sie kurz nach oder während einer Eruptionsperiode entstanden und sehen zum Teil wie Porphyrbreccien aus. Die Serie dieser Gesteine, die alle wohlgeschichtet erscheinen (nirgends fand sich Eruptivgestein), spitzt beim unteren Ende der großen, den Bogdo-Ola-See abstauenden alten Moräne zu einer kleinen Mulde ein, und beim Nordende des Sees beginnt sie in flacheres N.-Fallen überzugehen. Zu beiden Seiten des Sees legen sich die Schichten immer flacher und fallen am Südende des Sees flach ca. 10° nach S. ein; weiter südlich biegen sie sich jedoch wieder zu N.-Fallen auf. Diese Mulde ist sehr flach. Die Streichrichtung ist nach wie vor O. 35° bis 45° N.

Vom Südende des Sees ab sind wir in ein großes, von der zentralen Bogdo-Ola herabziehendes Seitental eingetreten und nach NO. zu hinaufgestiegen. Der Unterlauf des Tales liegt genau im Streichen und folgt fast genau der Mulde. Die zu beiden Seiten des Tales ausstreichenden Schichten steigen allmählich gegen O. zu an. Es handelt sich hierbei nicht etwa darum, daß man z. B. NO. streichende und N. fallende Schichten in einem Tal von OW.-Richtung quert und so den Eindruck gewinnt, als stiegen die Schichten im Streichen an, obgleich man bloß weiter zur Sattelachse vordringt. sondern es findet ein zweifelloses Ansteigen auf der Muldenachse nach O. zu statt (vgl. S. 166).

Bevor ich die geologischen Verhältnisse dieses Tales weiter hinauf verfolge, will ich kurz die Beobachtungen im "alten Gebirge des Dön-chon-dse" besprechen.

Im Dön-chon-dse folgen südlich vom Bruche rote und grüne Sandsteine, Quarzite und Grauwacken, hin und wieder mit Tonschiefern. Diese Gesteine sind in einen steilen Sattel gelegt, dessen nördlicher Schenkel von der Verwerfung zur Zeit abgeschnitten wird. An ihn schließt sich eine nach N. überkippte steilschenkelige Mulde schwarzen festen Tonschiefers an; darauf steigen die Schichten wieder steil (bei Lager d II), zunächst senkrecht stehend, dann immer flacher N. fallend gelagert an und bilden einen flachen Sattel, auf den weiter südlich eine flache Mulde folgt, deren Achse etwa durch das Tal geht, in dem ich zu den Pässen zwischen Da-tun-gu und Dön-chon-dse aufgestiegen bin, und die die Fortsetzung der flachen Mulde bildet, die bereits beim unteren Da-tun-gu-Tal erwähnt

¹⁾ Wegen genauerer Gesteinsbeschreibung siehe Kap. XXI.

worden ist. Beim Vergleich der Profile II, III und IV erkennt man die Übereinstimmung im Bau des "alten Gebirges" im Da-tun-gu und Dön-chon-dse. Von Interesse ist, daß der erste Sattel des "alten Gebirges", der im Da-tun-gu-Tal 5 km von der Verwerfung entferut ist, im Dön-chon-dse hart an diese herantritt; seine Achse muß also schärfer NO. streichen, als die Verwerfung, von der der größte Teil des Nordschenkels des Sattels spitzwinkelig abgeschnitten ist. Dementsprechend nühern sich der Verwerfung gegen O. hin die Tonschiefermulde und der steile Nordschenkel des weiten flachen, südlich anschließenden Sattels.

Kehren wir zu dem großen Seitental zurück, das wir beim Abzweigen meiner Route zum Dön-chon-dse (siehe Karte II) verlassen haben. Die Schichten steigen allmählich nach Süden zu an; beim Passe Gurban-Bogdo wird das Fallen steiler und erreicht 45° N.; ein Stück weiter südlich verdeckt der mächtige Grum-Grschimailo-Gletscher das Anstehende. In der Westflanke der steil und ungeheuer hoch aufsteigenden Hauptgipfel des Gebirges läßt sich der Bau nicht genau verfolgen; nur einige heftig geknickte Falten sind an einigen Stellen sichtbar.

Östlich vom Gurban-Bogdo-Passe hat Merzbacher, wie bereits erwähnt, beim Aufstieg auf den ersten nördlichen Panoramaberg (vgl. S. 173 f.) eine Gesteiusserie geschlagen, in der grob- und mittelkörnige Diabase und hellgrüne Kalksilikathornfelse fast allein herrschen (beim Gipfel fand sich auch verpreßtes, tonschieferähnliches Gestein, vgl. Profil IV); die Hauptgipfel bestehen aus ähnlichen Gesteinen. Südlich von den Hauptgipfeln liegt eine breite Tallücke; jenseits derselben erhebt sich ein hoher Kamm, in dessen Westflanke ich flacheres Westfallen glaube gesehen zu haben. Ich mußte hier leider eilen, um die Hauptkarawane, von deren Aufenthalt ich keine Kenntnis hatte, auf dem Rückwege nach Urumtschi einzuholen oder zu suchen.

Merzbacher hat beim Aufstieg auf den südlichen Panoramagipfel (siehe S. 186) eine Gesteinsserie geschlagen, die im wesentlichen aus Diabas, stark umgewandelten Effusivgesteinen, dann Kalksilikathornfelsen und veränderten Grauwacken und Konglomeraten besteht. Von großer Wichtigkeit aber ist, daß am Gipfel und auch tiefer schön ausgebildeter blasiger Diabasporphyr auftritt. 1) Hierdurch wird mit einem Schlage klar, daß nicht etwa die Diabase während der Faltung des Gebirges in die Grauwacken etc. eingedrungen sind, sondern daß sie bei der Ablagerung dieser Schichten empordrangen. Hierauf weist auch der Umstand hin, daß dieses dem Diabasporphyr ähnliche Gestein in Geröllen in den Konglomeraten sich findet, die ich nördlich von der den Bogdo-Ola-See abstauenden Moräne gefunden habe. Eine Parallelisierung von Schichten in der Serie der "alten Gesteine" begegnet großen Schwierigkeiten, da die umgewandelten Gesteine der zentralen Zone und des Südabhangs in nicht oder doch wenig umgewandelten Gesteinen des Nordabhangs ihre Äquivalente haben können, was sogar wahrscheinlicher ist, als die Ansicht, daß die umgewandelten Gesteine älter seien. Immerhin glaube ich, daß die Gesteine nördlich vom ersten Sattel im "alten Gebirge des Da-tun-gu-Tales und die des unteren Gurban-bogdo-Tales gleichalterig und die jüngsten sind. Ich glaube auch, daß die bei den aus dem großen Seitental zum Dön-chon-dse führenden Pässen anstehenden Tonschiefer und Grauwacken mit diesen gleich zu setzen sind, und es ist wohl möglich, daß diese Bildungen gegen den Hauptgipfel hin und am Südabhang von Umwandlungen getroffen worden sind.

¹⁾ Wegen der besonderen Umbildung der Diabasgesteine siehe Kap. XXI.

Links von der Schlucht, durch die der Gurban-bogdo-Fluß bricht, habe ich steil nordfallende Grauwacken, bei Lager g ebenso fallende Tonschiefer vorgefunden, die den Gesteinen im Sangun-Tal zwischen Bruch und ersten Sattel völlig gleichen und mit ihnen gleichzusetzen sein dürften. Die Streichrichtung ist hier ONO. bis OW.; nach S. schließt sich ein steilschenkeliger, aber flachfirstiger Sattel an; an diesen eine flache Mulde aus den gleichen Gesteinen. Der Sattel streicht O. 5° S., die Gesteine der Mulde nähern sich, je weiter man nach S. kommt, einem O. 10° S.-Streichen.

Ich möchte, bevor ich auf die tektonischen Verhältnisse im Überblick eingehe, die Frage erörtern, welches Alter die Gesteine des "alten Gebirges" haben können. Diese Frage ist nicht nur für die Bogdo-Ola von einigem Interesse, sondern vor allem für denjenigen Teil des östlichen Tian-Schan, den wir 1908 vor und nach der Bogdo-Ola-Reise besucht haben, wo petrographisch sehr ähnliche Gesteine in großer Mächtigkeit auftreten. Fossilien fanden sich in der Bogdo-Ola in ihnen nicht.

Vergleichen wir auf Profil IV die Faltung der Angaraserie mit der des "alten Gebirges", so fällt auf, daß beide den gleichen Faltungscharakter tragen: im allgemeinen regelmäßige Mulden und Sättel von weitem Ausmaß und geringer Steilheit.

Im Sangun-Tal sahen wir, daß die D2 und D1-Schichten gegen die Verwerfung hin anfangs flach, dann etwas steiler nach S. aus Mulde III heraus ansteigen; die Gesteine des "alten Gebirges" nehmen dieses Ansteigen südlich der Verwerfung ihrerseits auf und führen es bis zum ersten Sattel in gleichem Sinne weiter. Ganz ähnlich ist das Bild in Döñ-choñ-dse. Wir erhalten somit den Eindruck, als seien Angaraserie und "altes Gebirge" von der gleichen Faltung betroffen worden und daß wir durch den Bruch in die Lage gesetzt sind zu sehen, daß die Faltung sowohl in den jüngeren Schichten wie in den früher tiefer gelegenen alten in gleicher Weise gewirkt hat. Es wird somit wahrscheinlich, daß Angaraserie und "altes Gebirge" in stratigraphischem Konkordanzverhältnis oder nahezu in solchem stehen, da sie sich in tektonischer Konkordanz befinden. Das "alte Gebirge" ist also keinesfalls älter als oberstes Unterkarbon, da der ganze übrige Tian-Schan allenthalben vor dieser Zeit energisch gefaltet worden ist. Wir sind also in der Lage, unsere Gesteine (da die Angaraserie alt- oder mitteljurassisch ist, siehe Kap. IX) entweder dem Oberkarbon, Perm oder der Trias zuzuweisen — ein immerliin recht unerfreulich großer Spielraum.

Die Bogdo-Ola bildet, wie sich aus Profil IV leicht ersehen läät, einen gewaltigen Sattel, der Spezialfalten besitzt; die Achse des Sattels geht durch die Hauptgipfel und folgt dem Kamm: sie zieht W. 20° S. nach Westen hin und streicht gerade auf die Mitte des niedrigen Gebirgsrückens los, der die Bogdo-Ola mit dem östlichen Tian-Schan verbindet (Dun-Schan, vgl. Karte I u. Ia).

Nun hat Obrutschew¹) an der Hand ungemein zahlreicher Beobachtungen festgestellt, daß dieser Rücken einen Sattel bildet. Er besteht aus harten Sandsteinen und Mergeln mit eingeschalteten Korallenkalkbänken, tiefer aus dunkelgrünen, dunkelgrauen, tuffähnlichen Gesteinen (vgl. die Grauwacken zwischen Schlucht und Moräne des Bogdo-Ola-Sees im Da-tun-gu-Tal), grauen und dunkelgrünen Tonschiefern etc. etc. Diese Gesteine sind nicht umgewandelt, Eruptivgesteine fehlen; sie stimmen völlig mit den Gesteinen des "alten Gebirges" der Bogdo-Ola überein und stehen mit ihnen im Streichen in Verbindung; sie

¹⁾ Zentralnaia Asiia, sjewernüü Kitai, i Nan-schan, l. c., Bd. II, S. 645 ff.

gehören zweifellos der gleichen Serie an, möglicherweise bilden sie etwas höhere Horizonte dieser Serie, als die, welche in der Bogdo-Ola entwickelt sind. Nun hat Obrutschew den ungemein wichtigen Fund von Lepidodendron, cf. Haidingeri und Cordaites, cf. principalis gemacht, was beweist, daß unser "altes Gebirge" aus oberkarbonischen Gesteinen besteht.

Es wurde bereits hervorgehoben, daß die Bogdo-Ola einen gewaltigen Sattel mit Spezialfalten bildet; die Achse dieses Sattels streicht vom Dun-Schan¹) her O. 20° N., bis zu den Hauptgipfeln dem Kamme folgend; östlich von den Hauptgipfeln erfolgt eine plötzliche Biegung der Kammlinie und der Sattelachse in die OW.-Richtung, die sich noch ca. 8 km nach O. zu verfolgen läßt (vgl. S. 36 u. 37 f.).

Diese Biegung liegt gerade dort, wo die Verlängerung des im Dön-chon-dse festgestellten, SO. streichenden Sattels den Kamm trifft. Es entsprechen sich also das NO. streichende Stück der Falten der Angaraserie, des Bruches und des Kammes, sowie ihr OW. streichendes Stück (siehe Karte Ia u. IIa). Es ist jedoch hervorzuheben, daß die Richtung des Kammes gegen W., zum Meridian von Urumtschi hin, ungefähr immer die gleiche W. 20° S. bis O. 20° N. bleibt, während die Angaraschichten und der Bruch, je weiter man nach W. kommt, sich desto schärfer einem SW.-Streichen und sogar der SSW.-Richtung nähern. Südlich von der Sattelachse, aber westlich von der Verlängerung der Achse des südöstlich streichenden Quersattels herrscht OW. und leichtes OSO.-Streichen, während nördlich von der Kammlinie sich scharfes NO.-Streichen findet. Die Streichrichtungen divergieren also nach O. Die Kammlinie nimmt nach W. hin allmählich an Höhe wesentlich ab und die Sattelachse des großen Bogdo-Ola-Sattels sinkt nach W. ein (siehe Kap. VI u. Profil Taf. 16, Fig. 1). Es wurde oben dargelegt, daß auch die Angaraserie nach W. zu einsinkt. Auch nach O. zu nimmt von den Hauptgipfeln ab der Kamm an Höhe etwas ab; gleichzeitig dreht sich dieser etwas nach OSO. Aus Karte Ia (übrigens auch aus der von Grum Grschimailo)2) ist dies deutlich erkennbar; man sieht hier auch, daß die Angaraserie nach SO. dreht, nachdem sie etwa bis zum Er-dao-cho eine OW.-Richtung gehabt hat.

Es ist aus solchem Verhalten klar, daß dieser Bau durch Interferenz zweier Faltensysteme zustande gekommen ist, und zwar wurde einmal der gewaltige Sattel der Bogdo-Ola gebildet, der ursprünglich dem OW.-Streichen stark genähertes ONO.-Streichen besessen hat; diesen kreuzte dann ein SO. streichender Sattel, der nicht minder gewaltig ist. Er steigt von dem niedrigen Dun-schan-Rücken nach O. zu bis zur höchsten Bogdo-Ola empor, hat dort einen flachen First und sinkt dann nach O. wieder ein. Die Hauptgipfel der Bogdo-Ola liegen gerade da, wo sich die Achse des OW.-Sattels und des scharf gefalteten westlichen Firststückes des SO.-Sattels schneiden. Die Senke von Urumtschi und der niedrige Dun-schan-Rücken kamen so zustande, daß hier den Sattel eine Mulde kreuzt. Die zahllosen Streichrichtungsänderungen, die Obrutsche w festgestellt hat, lassen die Interferenz der Faltungssysteme deutlich werden. Nach O. hin steigt dann die Sattelachse wieder hoch hinauf an.

Wäre der Sattel ein regelmäßig stehender, so müßte man erwarten, daß die Achse unbeirrt in ihrem ganzen Verlauf ONO. oder OW. streiche, trotzdem sie durch einen kreuzenden Sattel emporgehoben und wieder niedergebogen wird (vgl. meine Ausführungen im vorläufigen Bericht über meine Reise im südlichen Tian-Schan, l. c.). Nun beschreibt aber

¹⁾ Bezeichnung Obrutschews für die niedere Schwelle zwischen Urumtschi und Sayo-pu.

²⁾ Es sind dort Kohlengruben angegeben.

die Sattelachse einen flach nach N. konvexen Bogen, und zwar streicht sie ONO. solange die Heraushebung nach O. zu anhält; OW. aber streicht sie, wo sie der flache First des SO.-Sattels quert, und wird beim Absteigen gegen O., nach OSO. abgebogen. Dies läät vermuten, daß der O.—W.-Sattel nach S. zu übergelegt ist (vgl. vorläufigen Bericht, l. c., Fig. 4a und 4b) und würde auch dem allgemeinen Faltungsbild entsprechen, da die Faltung im Tian-Schan, wie Suess bereits erkannt hat und wie ich es im südlichen Tian-Schan bestätigt gefunden habe, (südgerichtete Überschiebungen) von N. nach S. gewirkt hat.

Es fragt sich nun, in welcher Reihenfolge die Faltungen erfolgten? Ich habe im südlichen Tian-Schan festgestellt, daß zuerst die O.—W.-, dann die NNO.—SSO.-Faltung auftrat. Dies ist wohl auch hier der Fall; denn die durch die O.—W.-Faltung angelegten Sättel und Mulden springen kräftiger hervor und bestimmen das Relief mehr als die SO.-Falten; ferner scheinen diese nicht durch O.—W.-Falten aus ihrem normalen Verlauf abgelenkt zu sein, während dies bei den O.—W.-Falten der Fall ist.

Wann die Verwerfung entstanden ist, läßt sich nicht mit Sicherheit entscheiden. Wenn man annehmen will, daß sie ursprünglich geradlinig verlaufen ist, so kann man glauben, daß sie ihren nach N. konvexen Verlauf durch Einwirkung der SO. streichenden Faltung erhalten hat, zumal sie nach N. einfällt; denn wenn eine Verwerfung nach N. geneigt ist und die Gesteinserien, die sie trennt, gemeinsam nach O. zu gehoben sind, so kommen in die horizontale nach O. zu immer tiefer gelegene und nach N. vorgeschobene Teile auf die Höhe einer horizontalen Ebene. In dieser Annahme werde ich dadurch bestärkt, daß sie westlich von Urumtschi, wo der Westschenkel der durch den Dun-schan gehenden SO.-Mulde wieder ansteigt, nach WNW. zu streicht, sowie in der Bogdo-Ola die Biegung der Streichrichtungen der Gesteine nach O. zu mitmacht (siehe Anmerkung auf S. 265).

In der Bogdo-Ola haben wir keine Möglichkeit, das Alter dieser beiden Faltungen genau zu fixieren; wir können nur sagen, daß sie postjurassisch waren. Nach Analogie mit dem südlichen Tian-Schan halte ich sie für tertiär.

Das Angara-Gebirge südlich von Manas.

Anschließend an die Beschreibung der in der Bogdo-Ola gemachten Beobachtungen will ich noch kurz mitteilen, was ich im Süden von Manas gesehen habe; denn die hier vorgefundenen Verhältnisse stehen in enger Verbindung mit denen in der nördlichen Bogdo-Ola.

Ich habe das Gebirgsland südlich von Manas an zwei Querprofilen kennen gelernt, von denen das eine bei der Reise vom Yuldus-Tal nach Schicho-dse (Ende Juli 1908), das andere auf dem Wege von Manas nach Jangule-bazar. während die Hauptkarawane Anfang September nach Dschincho zog, aufgenommen wurde.

Die Routen finden sich auf der beigegebenen Karte I eingetragen. Ich bespreche zunächst die wenigen Beobachtungen auf der Route Manas-Jangule-bazar.

Beim Austritt des Tales Schü-gu-lan stehen orographisch rechts graue (im Liegenden grüne) dann rote Mergel an, steil S. fallend und den Südflügel eines nicht mehr ganz erhaltenen Sattels bildend. Das Streichen ist O.—W., wie überall in diesem ganzen von der Route berührten Gebiet. Das Fallen wird dann flacher und es treten zunächst rote Steinmergel mit Gips, dann in bunter Folge gelbe, rote und grüne Mergel auf. Die Aufschlüsse halten jedoch nur etwa 1½ bis 2 km weit nach Süden an; weiter südlich ist alles von Löß verhüllt, der von den höheren Teilen der niedrigen, das Flußtal begleitenden Berge vom

Regen herabgewaschen wird und auf den Talgehängen kleben geblieben ist. Diese niedrigen Berge bilden eine 5—6 km breite Zone; sie erheben sich am Eingang des Tales 100 m über dem Talboden und nehmen nach S. an relativer Höhe etwas (bis etwa 250 m) zu. Diese Hügelzone fällt orographisch rechts (or. links ließ sich das Terrain nicht überblicken) zu einer Ebene ab, die terrassenartig 50—60 m zum Flußbett abstürzt. Auf eine Strecke von 20 km ritten wir ohne Aufschluß zu sehen an ihrem Abfall entlang, bis wir wieder auf diesmal flach N. fallende rote und grüne Mergel trafen, die an einigen Stellen aus dem Terrassenhang stoßen.

Der Weg verläßt sodann das Flußtal; ca. 2 km oberhalb stehen braune Sandsteine an. Man steigt auf den terrassenartigen Absturz hinauf und gelangt in das Bereich einer schwachwelligen Ebene. 1) Dort sieht man, daß links vom Flusse Schü-gu-lan die Hügelzone bedeutend weiter nach S. reicht, als auf dem rechten Ufer (vgl. Karte) und daß die Ebene auf der linken Seite nur etwa 5—6 km breit ist.

Bis zum Bazar sind die Aufschlüsse sehr schlecht, südlich hievon findet man eine mächtige Sandsteinserie mit mehr oder weniger steilem Nordfallen und mit kohligen Partien, manchmal Pflanzenreste enthaltend. 8 km im S. von Jangule-bazar stoßen diese Gesteine, die unverkennbar als zur Angaraserie gehörig anzusehen sind, gegen altes Gebirge an einer Verwerfung ab.

Beim Rückweg nach Manas wurde wieder der 5-6 km breite Wüstenstreisen gequert und dann in die Westfortsetzung der Hügelzone eingetreten; beide lassen sich weit nach W. zu versolgen. Von Aufschlüssen ist nichts zu sehen, nur westlich vom Bazar erkennt man, daß auf den Sandsteinen bunte, N. fallende Mergel ausliegen, die fraglos mit denen zusammenhängen, die man ebenso nördlich vom Aufstiege aus dem Schü-gu-lan-Tal auf die Terrasse anstehen sieht. Dann trifft man erst wieder ganz draußen im nördlichsten Teile der Hügelzone auf bunte, steil N. fallende Mergel, welche die streichende Fortsetzung derjenigen bilden, die im unteren Schü-gu-lan-Tal vorgefunden wurden.

Ob dies Angaraschichten oder Gobisedimente sind, weiß ich nicht; ich halte sie eher für Angaraschichten.

Auf dem Wege von Manas nach Schicho-dse kann man im S. der nördlichen Kaiserstraße die Hügelzone nach W. zu verfolgen. Gequert habe ich sie, von S. kommend, auf dem Wege Yuldus-Schicho-dse; sie wird auch aus vorwiegend roten Mergeln, die N. fallen, gebildet. Die Gehänge sind aber dort von Löß stark überwachsen, so daß nur schlechte Aufschlüsse vorhanden sind. Die Hügelzone ist etwa 9 km breit. Südlich hievon folgt eine 5—6 km breite Ebene, die die Fortsetzung der im O. angetroffenen Ebene darstellt (siehe oben).

Im S. wird diese Ebene von einem vielgestaltigen Hügelland abgeschlossen, dessen Fuß in ziemlich gerader, O. 5 Grad S. gerichteter Linie verläuft.

Vom Basar Se-dschön-ga kommt ein breites Tal her, das wir in SN.-Richtung durchschritten haben; die Schilderung der geologischen Verhältnisse möge der Einheitlichkeit wegen in der Richtung taleinwärts gegeben werden (siehe Profil VII, Taf. 18).

¹⁾ Der Sinn dieses Satzes ist nicht ganz klar; doch wagte ich die Fassung nicht zu ändern aus Furcht, den gemeinten Sinn zu verfehlen. Wegen Abwesenheit Dr. Gröbers in Argentinien, wo während des Krieges jede Verbindung mit ihm abgeschnitten ist, hatte ich die Korrektur seines Beitrages zu dieser Arbeit selbst zu übernehmen (siehe auch S. 264). G. M.

Zunächst trifft man auf gelbliche und rötliche Schichten, die 20 Grad N. fallen und O. 5—10 Grad S. streichen. Tiefer folgen rote Mergel und weiterhin grüne und violette, zurücktretend rote Mergel, die steiler nach N. zu fallen scheinen. Weiter südlich treffen wir auf einen breiteren Komplex roter Mergel, die steil stehen und kaum merklich nach S. geneigt sind.

Wenig weiter südlich folgen grüne Sandsteine, die steil nach S. fallen und die Südhälfte eines Sattels darzustellen scheinen (vgl. Profil VII). Dann finden sich mächtige weiße Sandsteine, die nördlich und südlich vom Dorfe Se-dschön-ga anstehen und vielleicht eine Mulde bilden. Südlich vom Dorfe kommen unter ihnen 45 Grad S. fallende graugelbbraune Sandsteine heraus; diese werden in einem flachen Paß überschritten. Dort wo der Weg in ein kleines Tal hinabsteigt, findeu sich in diesen Pflanzenreste (vgl. Kap. XXIV). Schon 5 km weiter im S. erhebt sich das "alte Gebirge", das in einer späteren Arbeit behandelt werden soll. In dem Zwischenstück sind die Aufschlüsse schlecht; hin und wieder sieht man rote Schichten. In der Nähe des Dorfes Se-dschön-ga findet sich Kohle. Die ganze Gesteinsserie gehört der Angaraserie an und es ist mir nicht zweifelhaft, daß die Angaraserie auch hier gegen das südlich liegende Gebirge an einer Verwerfung abgesunken ist.

Genaue Beobachtungen, vor allem über den Faltenbau der Angaraserie habe ich wegen der Hast der Reise dort nicht machen können. Die Luftsättel im Profil und der dort angenommene Zusammenhang der einzelnen Komplexe ist ganz hypothetisch. Ich kann auch nicht wagen, die hier vorgefundenen Schichten mit irgend einer der in der nördlichen Bogdo-Ola unterschiedenen Stufen zu parallelisieren.

Ich zweifle jedoch nicht, daß die graubraunen Sandsteine im Streichen mit den gleichen Gesteinen zusammenhängen, die wir weiter östlich bei Jangule-bazar gefunden haben, indem sie auf weite Erstreckung hin O. 5—10 Grad S. streichen, was sich auch von erhöhtem Punkte aus feststellen ließ.

Die Verwerfung südlich von Se-dschön-gu uud Jangule-bazar zwischen altem Gebirge und Angaraserie sind Teile ein und desselben großen Bruches und es ist mir nicht zweifelhaft, daß dieser die Fortsetzung der in der nördlichen Bogdo-Ola und südlich von Urumtschi vorgefundenen Verwerfung darstellt, die sich somit auf eine Erstreckung von 250 km verfolgen läßt, und die dem nördlichen Teil des östlichen Tiau-Schan ein Hügelvorland von Angaraschichten gegeben hat. Ich möchte nur kurz erwähnen, daß diese Verwerfung noch über 100 km weiter nach W. reicht; sie ist mir bis zum Kloster Zagan-ussun im SW. von Schicho, bei Sügoschur (vgl. Kap. VI, S. 43) bekannt geworden.

Die Verwerfung liegt südlich von Manas in annähernd gleicher Breite wie in der nördlichen Bogdo-Ola; sie muß also, wie aus Karte Ia hervorgeht, westlich von Urumtschi wieder nach NW. streichen, um deu Anschluß an das Stück südlich von Mauas zu erreichen. Auch die Angaraschichten müssen westlich von Urumtschi nach NW. streichen, was wir ja auch tatsächlich ein Stück weit beobachten konnten. Dieser Bau bildet das Gegenstück zu den SW.—NO. streichenden Angaraschichten und zu der Verwerfung östlich von Urumtschi. Die Erniedrigung des Gebirges im S. von Urumtschi und sein Ansteigen nach W. hin haben wir oben als Folgeerscheinung der Interfereuz eines O.—W.-Sattels mit einer SO.—NW.-Mulde hingestellt; die Verhältnisse westlich von Urumtschi fügen sich gut in dieses Bild ein.

XXI. Petrographischer Teil von Georg Glungler

mit 2 Tafeln Dünnschliffe.

Die Gesteine der Bogdo-Ola-Gruppe beanspruchen aus mehr als einem Grund das lebhafteste Interesse des Petrographen und des Geologen. Auf einem verhältnismäßig beschränkten Raum ist hier eine Reihe von wohl charakterisierten Gesteinstypen vereinigt, deren einzelne Vertreter bei aller Schärfe der Ausprägung des gemeinsamen Grundcharakters doch die mannigfachsten Modifikationen in Bestand und Struktur aufweisen. Die Tiefengesteine scheinen allerdings vollständig zu fehlen; sie geben aber ihre Gegenwart im Untergrund wenigstens durch die Beeinflussung der Oberflächengesteine deutlich genug zu erkennen. Schon die zahllosen Quarzadern, welche diese nach allen Richtungen netzartig durchtrümern, müssen als die letzten Ausläufer aplitischer und pegmatitischer Gänge aufgefaßt werden. Die Kontakterscheinungen aber vollends, wie sie sich in den Gesteinen über Tage zeigen, setzen die Anwesenheit metamorphosierender Magmen unter Tage notwendig voraus. Frittungen etwa, wie sie im Kontakt mit den Effusivformen der Eruptivgesteine sich finden, fehlen zwar auch in diesem Gebirgsteil nicht; aber sie sind ganz lokale Phänomene. Im allgemeinen sind die metamorphen Wirkungen ganz von der Art, wie sie am Kontakt mit Tiefengesteinen aufzutreten pflegen. Muschketow, Romanowsky, Ignatiew, Sewerzow, Friederichsen, Keidel, Richarz, Kleinschmidt, Limbrock, Leuchs, Gröber und Merzbacher haben für verschiedene Teile des Tian-Schan verschiedene Tiefengesteine nachgewiesen und beschrieben. Kurt Leuchs bezeichnet in seinen geologischen Untersuchungen im Chalyk-tau, Temurlyk-tau und Dsungarischen Alatau (l. c.) die weite Verbreitung von Graniten und dementsprechend die große Ausdehnung des von ihnen beeinflußten Gebietes geradezu als Charakteristikum für den Tian-Schan. Gewiß schlummert auch innerhalb der Bogdo-Ola-Gruppe der eine oder der andere Tiefengesteins-Lakkolith im Schoße der Erde. Ja, die Entfernung des vulkanischen Herdes von der Erdoberfläche kann gar nicht groß sein.

Nach Beckes Regel ist Pyroxen bei hoher Temperatur stabil, Amphibol bei niederer. In den normalen Kontaktgesteinen kommt also jener wesentlich in der inneren, letzterer in der äußeren Kontaktzone vor. Ist das Zurücktreten der einen und die Zunahme der anderen Mineralgattung proportional der Entfernung von dem Zentrum der metamorphosierenden Agentien, so ist der Vergleich der lokalen Verbreitung der beiden Vorkommnisse ein zuverlässiger Wegweiser zum Sitz des Eruptivherdes. In den Kontaktbildungen des Bogdo-Ola-Gebirges bebauptet ein diopsidischer Pyroxen die unbestrittene Vorherrschaft. Die Kontaktgesteine gehören also vorzugsweise dem Bereich des inneren Kontakthofes an.

Die Hauptmasse der Gesteine der Bogdo-Ola-Gruppe setzt sich aus Sedimenten zusammen, welche zu den Kategorien der Sandsteine, Tongesteine und Kalksteine gehören und namentlich am Südabhang starke metamorphe Beeinflussung widerspiegeln. Durchbrochen und zum Teil auch überlagert werden diese Schichten aber von Erguß- und Ganggesteinen, welche chemisch und mineralogisch polare Gegensätze darstellen. Unter den Sandsteinen ziehen besonders die Grauwacken durch ihre Einschlüsse von Fragmenten

der verschiedensten präexistenten Gesteine die Aufmerksamkeit auf sich. Unter den Tongesteinen finden sich auch solche, deren Material unverschwemmt zu sein scheint. Die Kalksilikathornfelse liefern treffliche Beispiele für den Antagonismus der Kohlen- und Kieselsäure und deren Gleichgewicht, wie es sich in der gleichzeitigen Anwesenheit von Karbonaten und freier Kieselsäure nach der Formel CaCO₃ + SiO₂ ← CaSiO₃ + CO₂ Ausdruck verleiht. Zugleich geben sie ausgezeichnete Belegstücke für einzelne der von Dr. V. M. Goldschmidt in seinem höchst instruktiven Werk über die Kontaktmetamorphose im Kristiania-Gebiet aufgestellten Klassen der Kontaktgesteine. In den Effusivbildungen liegen Spaltprodukte vor, in denen die liparitischen Quarzkeratophyre den sauern, die feldspatärmeren Diabase den basischen Pol vertreten; dazwischen liegen Ergußgesteinsformen dazitischen Charakters.

Eine bezeichnende Eigentümlichkeit aller Gesteinstypen ist der Reichtum an Natron und die Armut an Kieselsäure, die Fülle an farblosen oder schwach gefärbten und der Mangel an farbenkräftigen Gemengteilen. Unter den Alkalifeldspaten genießt allerwärts der Albit den Vorrang. In den Ton- und Sandsteinen findet sich ein unverhältnismäßig hoher Betrag von klastischem Feldspat-Detritus. Braune Magnesiaglimmer und kräftig gefärbte primäre Hornblende treten allenthalben bis zum Verschwinden zurück.

Die Identifizierung der einzelnen Gesteine begegnet indes vielfach nicht geringen Schwierigkeiten. Vor allem ist die geologische Erscheinungsform der verschiedenen Gesteinskörper, oft das einzige Kriterium zur Entscheidung der Frage, ob ein Gang- oder Ergußgestein, ja ob eine Eruptivbildung oder ein Sediment vorliegt, nicht immer mit ausreichender Sicherheit festgestellt. Auf Bergen, deren Gipfel mit Firn, deren Einmuldungen mit Gletschereis und deren Wände mit Gehängeschutt in reichem Maße bedeckt sind, ist die Ausbreitung der einzelnen Felsarten auf weitere Entfernungen überaus schwer zu verfolgen. Man muß daher den Forschern, welche auf pfadlosen Höhen von 4000-5000 m ein verhältnismäßig reiches Gesteinsmaterial gesammelt haben, Dank wissen, auch wenn manche Frage noch nicht genügend geklärt erscheint. Sodann ist die Untersuchung durch die außerordentliche Feinheit des Gesteinskornes sehr erschwert. Die Mehrzahl der Proben ist für Auge und Lupe kryptomer. Nicht selten sinkt die Korngröße bis zu trichitischer Zartheit herab. In den Kalksilikathornfelsen sind Dimensionen von 0,005 bis zu 0,03 mm nicht Ausnahme, sondern Regel. In der dazitischen Lava ist ein Feldspat von 0,2 mm in seiner Hauptentwicklungszone schon ein Riese in seinem Geschlecht. Überdies haben Gesteinsverwitterung im innigen Verein mit Gesteinszersetzung die tiefgreifendsten Umbildungen hervorgerufen. Die Prozesse der Saussuritisierung, Uralitisierung, Chloritisierung und Serizitisierung haben nicht selten die einzelnen Vorkommnisse bis zur Unkenntlichkeit metamorphosiert. Eudlich liegt auch keinerlei petrographische Literatur über dieses Gebiet vor. Vor der Merzbacher'schen Expedition war es, besonders in seinen höheren Teilen, nicht einmal betreten, viel weniger untersucht. "Auf den Schultern anderer stehen und weiter sehen" ist hier also ausgeschlossen.

Unter solchen Verhältnissen kann die Aufgabe dieser Abhandlung nicht sowohl in der Unterstützung oder Bekämpfung irgend einer petrographischen Theorie bestehen, als in der erstmaligen, wenn auch nicht Grund legenden Vermittlung eines Überblickes über die Verhältnisse der Gesteine jenes entlegenen Gebirgsabschnittes.

Beschreibung der Gesteine.

Psephite und Psammite.

Unter den Sedimenten, welche in hervorragendem Maße an dem Aufbau der Bogdo-Ola-Gruppe sich beteiligen, spielen Psephite und Psammite eine nicht geringe Rolle. Man kann verschiedene Spezies der weit verbreiteten Gesteinsfamilie unterscheiden. Arkosen, Grauwacken und Konglomerate bilden wohl charakterisierte Gruppen mit mannigfaltig abgestuften Varietäten.

Arkose.

Wo das Sangun-Tal übergeht in das Da-tun-gu-Tal, kurz nach der Verwerfung und unfern vom ersten Sattel, wechsellagern helle Sandsteine und dunkle Tonschiefer. Hier findet man ein Gestein, welches seinem äußeren Habitus nach sehr viel Ähnlichkeit mit dem Taviglianaz-Sandstein des schweizerischen Eozän zeigt. Es ist ein dichtes, dunkelgraues Gestein mit Stich ins Bläuliche. Unter dem Mikroskop zeigt sich als herrschende Mineralkombination Orthoklas mit zwillingslamelliertem Plagioklas und Quarz. Sehr reichlich ist auch Kalzit, teils als Verwitterungsprodukt der Feldspate teils als authigener Gemengteil vertreten. Selten ist ein grünlicher Biotit und ebenso vereinzelt farbloser Muskovit. Etwas häufiger dagegen erscheinen Schüppchen von dunkelgrünem Chlorit und winzige Prismen von dunkelgrüner Hornblende mit starker Absorption parallel der Hauptentwicklungszone. Zirkon ist spärlich, Magnetit reichlich in dem Gestein verteilt. Letzterer stellt sich nicht bloß in unregelmäßigen Körnern und Fetzen sondern auch in ausgezeichneter kristallographischer Umgrenzung dar. Die kleinen Oktaëder bilden einen Schmuck des Mineralbestandes. Man kann dieses Gestein um seines Reichtums an Feldspaten willen mit Fug als Arkose bezeichnen. Arkoseartig erscheinen auch verschiedene Varietäten der Grauwacke. So zeigt eine feinkörnige Grauwacke südlich von der Schlucht des Da-tun-gu-Tals und eine nahezu dichte aus dem Ogun-schan-dse-Tal sehr auffallend die Charaktere des regenerierten Granits. Da sie aber nicht bloß Einschlüsse von Mineral- sondern auch von Gesteinsfragmenten führen, so sollen sie doch unter die Grauwacken subsumiert und mit diesen interpretiert werden.

Grauwacke (Taf. I, 2).

Die Grauwacke ist weit verbreitet; sie bildet einen erheblichen Bruchteil des Gebirgsganzen. Man findet sie im Da-tun-gu- wie im Dön-chon-dse- und im Ogun-schan-dse-Tal. Ebenso steht sie südlich vom Hauptgipfel auf der linken Talseite bei der Schlucht an, durch die der Gurban-bogdo-Bach bricht. Die verschiedenen Proben bekunden große Mannigfaltigkeit in ihrer Entwicklung und Ausbildung. Allen gemeinsam ist die Mineral-Assoziation: Alkalifeldspat, Quarz, Chlorit, Kalzit und Eisenerz. Vielfach beobachtet man auch Zirkon, Apatit, Epidot und Muskovit. In der Verteilung der einzelnen Gesteinselemente sowie in deren relativem Mengenverhältnis offenbart aber jede der vorliegenden Gesteinsproben ihre besondere Eigenart.

Arkoseartig ist die grünlichgraue, feinköruige Grauwacke im Tal des den Bogdo-Ola-See entwässernden Baches, südlich von der Schlucht mit der Brücke. Unter den Alkalifeldspaten ist Albit durch Messungen La und cals herrschender Gemengteil sichergestellt. Daneben erscheint auch Albit-Oligoklas oder aber auch Andesin. Die Feldspate sind zwar vielfach durch gute kristallographische Formengestaltung ausgezeichnet, aber uicht selten teils zu glimmerigen Substanzen teils zu Kalzit zersetzt. Der Quarz ist nicht häufig, tritt jedoch in verhältnisuiäßig großen Körnern auf. Das Eisenerz ist durch seine Leukoxenbildung als titanhaltig erwiesen. Apatit und Zirkou erscheinen nur in ganz vereinzelten Individuen, etwas häufiger dagegen der Titanit. Die Rolle des die einzelnen Gesteinskomponenten verkittenden Zements spielt vorzugsweise der reichlich vorhaudene Chlorit, meist in schuppenförmiger, zuweilen aber auch in faseriger Ausbildung. Er füllt die Zwickel zwischen den großen Kristallfragmenten aus, umgibt flaserig die einzelueu Mineralkörner und setzt in gewundeuen Zügen durch das ganze Gestein. Mauchmal bildet er auch eisblumenähnliche Aggregate. In den Chlorit ist nicht selten der Epidot mit guter kristallographischer Umgrenzung eingebettet. Charakteristisch ist neben der reichlichen Entwicklung des Bindemittels das geringe Maß der Abnutzung des Gesteiusmaterials, ein Zeichen, daß dasselbe keinen weiten Transport erfahren hat. Die Einreihung dieses Gesteinstypus in die Grauwackenspezies muß durch den Einschluß eines Gesteinsfragmentes als gerechtfertigt gelten, welches große Ähnlichkeit mit der Grundunasse eines Keratophyrs aufweist.

Noch feineres Korn zeigt die bräunlichgraue, im ersten Sattel des Ogun-schau-dse-Tals geschlageue Grauwacke. Der rotgefärbte Orthoklas ist vielfach perthitisch mit Albit verwachsen. Unter den Plagioklasen nimmt auch hier der reine Natronfeldspat die dominierende Stellung ein: aber auch Labrador konnte nachgewiesen werden. Im Unterschied vom erstgenannten Gestein kommen hier neben Chlorit auch Biotit und Muskovit zur Geltung. Ebenso ist Zirkou sehr häufig iu das Gesteinsgewebe eiugestreut. Ein vorzüglich erhaltener Kristall mit ausgezeichneter Endausbildung mißt 0,073 mm. Einen weiteren Uuterschied begründet das Auftreten von Pyrit und Anatas, die öfters beobachtete Zwillingslamellierung des Kalzits und die Bildung des Biudemittels durch Tonschiefermaterial, wo nicht die einzelnen Gesteinselemente unmittelbar aneinander grenzen. Gemeinsam aber ist beiden Gesteinsproben die Führung von Quarz, Apatit und Magnetit, sowie der Charakter der Gesteinseinschlüsse. Ja, man beobachtet hier an verschiedeuen Stellen das Auftreten von eng gescharten, leistenförmigen, mehr oder minder parallel geordneten, sauren Feldspaten, welche in ihrer Erscheinung ganz der trachytoiden Grundmasse der Keratophyre gleichen. Diese Ähnlichkeit wird in dem letzteren Gestein noch durch die Verwebung zahlreicher Eiseuerzkörnchen mit den leistenförmigen Feldspaten erhöht.

Der Art, aber nicht dem Mengeuverhältnis der einzelnen Gesteinseinschlüsse nach steht die dunkelfarbige Grauwacke aus dem Da-tun-gu-Tal südlich von der Brücke, aus deren dichtem Untergrund nur vereinzelte Gemengteile sich einsprenglingsartig hervorheben, mit dem vorigen Gestein auf gleicher Stufe. Unter dem Mikroskop erscheint diese Varietät in ihren einzelnen Partien als ein eruptives, in ihrer Gesamtheit als ein klastisches Gebilde. Während in den oben behandelten Proben nur einzelne Gesteinsbruchstücke zwischen das übrige klastische Material eingewoben sind, besteht hier die Hauptmasse aus solchen Gesteinsbrocken. Einzelne größere Mineralkörner verleugnen auch hier ihre klastische

Natur nicht. Neben ihnen aber finden sich auch andere, welche sich durch ihren hohen Grad von Idiomorphismus als echte Einsprenglinge darstellen. Identifiziert konnten Albit-Oligoklas und Andesin werden. Aus einer vielfach unauflöslichen Grundmasse leuchten leistenförmige Feldspatmikrolithe heraus. Daß es sich hier tatsächlich um eine Grundmasse handelt, wird durch die sphärolithische Ausbildung gewährleistet. Sind die Feldspatsphärolithe auch nur von geringem Durchmesser, so zeigen sie doch ein seltenes Maß von Vollkommenheit. Das dunkle Achsenkreuz auf lichtem Grunde hebt sich wie eine zierliche Medaille von seiner Umgebnng ab. Wieder eine andere Partie im Gestein ist aus feinkörnigen Quarz-Feldspat-Aggregaten gebildet, die offenbar von einem anderen Muttergestein sich herleiten. Charakteristisch ist die Umwandlung der Feldspate in Kalzit, die zuweilen so weit geht, daß nur noch schwache Spuren des ursprünglichen Minerales übrig geblieben sind, sowie die weitgehende Chloritisierung, die nicht bloß die Einsprenglinge ergriffen hat sondern auch der Grundmasse einen grünen Farbenton verleiht. Es liegen hier wohl die Überreste, teils eines keratophyrischen, teils eines liparitischen Gesteins vor. Man könnte in diesem Gestein wohl auch ein Eruptivgebilde vermuten, das Material aus dem Nebengestein in sich aufgenommen; aber die weitgehende Abrundung einzelner einsprenglingsartiger Kristallindividuen, sowie der geologische Zusammenhang deuten auf Grauwacke.

An dem nämlichen Fundort tritt auch ein Trümmergestein auf, in welchem zwei sehr charakteristische, weit voneinander abweichende effusive Gesteinsformen verkittet zu sein scheinen. Es ist ein grünlich graues Gestein, in welchem aus einer dichten Grundmasse von grünlicher Färbung zahlreiche helle Feldspatmineralien porphyrartig sich hervorheben. In der einen Partie sieht man Albiteinsprenglinge, öfters mit doppeltem Lamellensystem, von ansehnlicher Größe, welche in einer Grundmasse schwimmen, in der man noch eine zweite Feldspatgeneration in Verbindung mit winzigen Quarzkörnern unterscheiden kann. Dazu kommen Chloritschüppchen, Apatit. Zirkon und Ilmenit mit starker Titanitumrandung. Auch Titanit in Form von Insekteneiern ist sehr häufig, Kalzit dagegen trifft man nur in Spuren an. Erzhäufchen mögen die letzten Überreste resorbierter Biotite oder Hornblenden sein. In einem anderen Teil des Schliffes findet man eine Partie, in welcher lauter kleine, leistenförmige, nach allen Richtungen sich kreuzende Feldspate stark veränderte Pyroxene durchschneiden oder einschließen. Wir haben es hier wohl mit einer Verbindung von quarzarmem Keratophyr mit einem Diabasfragment zu tun.

Aus dem Dön-chon-dse-Tal liegen zwei Grauwackenproben vor, welche einander insofern sehr nahe stehen, als das eine Gestein einen Einschluß in sich birgt, welcher der Gesamtmasse des anderen sehr ähnelt. Jenes ist dem ersten Sattel, dieses dem Gebirge zwischen dem ersten Sattel und der Verwerfung entnommen. Das erstere ist ein rötlich braunes, feinkörniges Gestein mit tongallenartigem Einschluß. Unter den Feldspaten herrscht Albit, wie überhaupt die nach dem Albitgesetz lamellierten Plagioklase einen wesentlichen Bestandteil des ganzen Gesteines bilden. Außerdem nehmen an dessen Konstitution Quarz in großen gerundeten Körnern und Kalzit, teils in einheitlichen und regelmäßigen Individuen teils in einzelnen Lappen teil. Auch Chlorit ist nicht selten. Das Zement trägt die Art feinkörnigen Tonschiefers; doch sind die einzelnen Gemengteile desselben gar nicht mehr mit Sicherheit zu bestimmen. Das Eisenerz ist reichlich vorhanden.

Ein Zirkon mit Dimensionen von 0,104 und 0,054 mm ist durch seinen guten Erhaltungszustand ausgezeichnet. Einzelne Gemengteile aber sind so stark mit kohligen Massen oder feinen Erzpartikeln bestäubt, daß die Diagnose sehr erschwert ist. Die tongallenförmigen Einschlüsse stellen sich unter dem Mikroskop als Quarz-Feldspat-Aggregate mit sehr reichlichem Eisenerz dar. Unter den Feldspaten kommt auch hier dem Albit die unbedingte Vorherrschaft zu.

Die Ähnlichkeit des Gesteins vor dem Sattel mit diesen Einschlüssen des Gesteins aus dem Sattel ist überrascheud. Es ist ein dichtes, flachmuschelig brechendes, graubraunes Gestein, charakterisiert durch die Kombination von Orthoklas und zwillingslamelliertem Plagioklas mit Quarz, etwas Chlorit und Magnetit. Es ist ebenso wie jener Gesteinseinschluß mit die Pigmentierung bedingendem Rost überzogen und mit einer Masse ausgestattet, welche auf das polarisierte Licht nicht mehr wirkt. Was an diesem Gestein aber besonders auffällt, das ist ein Einsprengling, der nach Licht- und Doppelbrechung, sowie nach der optischen Orientierung als Diopsid angesprochen werden muß und die durchschnittliche Größe der übrigen Gemengteile um mehr als das Sechsfache übertrifft. Die Gegenwart dieses Einsprenglings rechtfertigt die Annahme, daß sich uns hier in der Hauptsache die Grundmasse eines porphyrischen Gesteins von liparitischem Charakter präsentiert.

Polymiktes Konglomerat.

Seiner Zusammensetzung nach mit den Grauwacken verwandt, aber durch seine Korngröße von ihnen verschieden, ist ein Gestein, welches in dem Da-tun-gu-Tal südlich von der Schlucht mit der Brücke gefunden worden ist. Es enthält Gemengteile, welche 15 mm im Durchmesser halten und nimmt deshalb den übrigen Grauwacken gegenüber eine Sonderstellung ein. Unter dem Mikroskop stellt das Gestein das reinste, aus den verschiedensten Typeu zusammengesetzte Mosaik dar. Feldspate, unter denen wiederum der Albit den Vorrang hat, vielfach in zwei Generationen, Kalzit in einzelnen großen Individuen und kleinen langgezogenen Körnern, Chlorit in Blättern und faserigen Aggregaten, die häufig von Titansäuremineralien eingefaßt siud, seltener Zirkon und etwas häufigerer Magnetit, Titanit in der Insekteneierform und Anatas, Pyrit mit ausgezeichneter kristallographischer Formenentwicklung, Ilmenit mit Leukoxenrand und Mineralien der Amphibolreihe bilden den Mineralbestand. Diese Gesteinskomponenten sind aber nicht gleichmäßig auf das ganze Gestein verteilt, sondern bilden die verschiedensten Gruppierungen. Hier beobachtet man idiomorphe Feldspateinsprenglinge von ansehnlichen Dimensionen, eingebettet in einer an Sphärolithen überaus reichen Grundmasse; dort durchschneiden wohl umgrenzte Feldspatleisten eine offenbar aus Pyroxenen hervorgegangene Chloritmasse. An einer dritten Stelle sieht man eiu überaus feinkörniges Aggregat aus vielfach chloritisierten Amphibolprismen und Plagioklasen mit viel Titansäuremineralien. Zusammengehalten aber werden die verschiedenen Gesteinsbruchstücke durch Chlorit, der die einzelnen Gesteinselemente flaserig umzieht und vielfach auch in ansehnlichen Schuppen in das Gesteinsgewebe eingeflochten ist. Die einzeluen Teilstücke sind aber so typisch, daß man in ihnen unschwer die Überreste liparitischer und diabasischer Gesteine sowie vou Kalksilikathornfels erkennt.

So wenig Interesse nun auch psephitische und psammitische Bildungen, wie sie in den Arkoseu, Grauwacken und Konglomeraten der oben geschilderten Art vorliegen, dem Petro-

273

graphen abgewinnen können, so wichtig und bedeutsam können sie für den Geologen werden. Mag immerhin die Bildung der verschiedenen Teilstücke der konglomeratischen Massen zeitlich nicht weit auseinander liegen, so kommt doch den Muttergesteinen gegenüber den Derivaten zweifellos die Priorität zu. Es wird notwendig sein, in den Schlußfolgerungen auf die dargelegten Erscheinungen zurückzukommen.

Tongesteine.

Die Tongesteine breiten sich sowohl im Norden wie im Süden des Hauptgipfels aus; sie stehen im unteren Da-tun-gu- und Döñ-choñ-dse- wie im unteren Gurban-bogdo-Tal an, finden sich aber auch an den Pässen, welche vom Da-tun-gu- zum Döñ-choñ-dse-Tal hinüberführen und werden vom Gipfel des nördlichen Panoramaberges angegeben. Es tritt aber zwischen den Gesteinen im Norden und denen im Süden des Hauptgipfels ein unverkennbarer Unterschied hervor, ein Unterschied, der sich nicht bloß auf die metasomatische Periode der Gesteinsgeschichte, sondern auch auf die Genese erstreckt. Die Gesteine des Südens haben nicht nur infolge stärkerer Dislokationen eine tiefer greifende metamorphosierende Beeinflussung erfahren, sondern auch teilweise eine abweichende Entwicklungsgeschichte durchlaufen. Es korrespondieren wohl die Tongesteine in der nach Norden überkippten ersten Mulde im Da-tun-gu- und Döñ-choñ-dse-Tal; es differieren aber diese Felsarten gar sehr von denen des Südabhanges (vgl. S. 40, 55, 60, 199).

Schieferton.

Aus dem ersten Sattel im Da-tun-gu-Tal liegt eine Probe vor, welche sich als ein dichtes, flachmuschelig brechendes Gestein von rotbrauner Farbe darstellt. Es ist in der Hauptsache aus Feldspat und Quarz zusammengesetzt. Die Feldspate gehören sehr verschiedenen Arten an. Die Mischungsreihe reicht vom Albit über Andesin bis zum Labrador-Bytownit. Der Quarz zeigt noch deutlich seine klastisch-allothigene Herkunft. Sehr spärlich sind Chlorit und Epidot; etwas häufiger Magnetit. Letzterer bildet sogar ansehnliche Körner. Kalkspat endlich ist in Lappen von geringen Dimensionen ohne alle kristallographische Umgrenzung über das ganze Gestein verteilt. Der Gesteinskörper scheint geschiefert zu sein. Das Handstück wenigstens ist auf einer Seite von einer Art Strukturebene begrenzt, welche einen mattglänzenden Schimmer zeigt. Im Dünnschliff aber ist von Teilbarkeit des Gesteines nach einer Schicht- oder Schieferungsfläche nichts zu bemerken. Organische Substanz dürfte kaum vorhanden sein. Die staubfein verteilten, starkglänzenden Partikelchen gleichen weniger dem Graphit als dem Magnetit, der im Gestein in größeren Exemplaren reichlich vertreten und durch alle Übergänge mit dem feinen Staub verbunden ist; seine Pigmentierung erhält das Gestein vielmehr durch die Gruppe der Eisenoxyde.

Ganz ähnlich gefärbt, nur mit Stich ins Violette, ist ein Gestein, welches am Südabhang der Bogdo-Ola-Gruppe geschlagen wurde. Aber sowohl makroskopisch wie mikroskopisch trägt es Besonderheiten an sich, welche eine Abtrennung vom Schieferton erheischen; es dürfte Basaltton sein.

Basaltton.

Am Südabhang der Bogdo-Ola-Gruppe treten in rascher Aufeinanderfolge sehr verschiedenartige Gesteine auf. In ansehnlicher Höhe des südlichen Panoramaberges erscheint eine Felsart, welche man als Keratophyr bezeichnen muß. Weiter abwärts steht ein sehr Abh. d. math.-phys. Kl. XXVII, 5. Abh.

weitgehend metamorphosierter Diabas an. Dazwischen findet sich das Gestein, welches als Basaltton zu charakterisieren ist; es bildet das Hangende des stark zersetzten Diabases. Als ein hartes, im Großen flachmuschelig, im Kleinen splitterig brechendes, rötlichviolettes Gestein, ist es für Auge und Lupe völlig dicht. Nur einzelne Schwefelkieskristalle, zum Teil mit vorzüglicher Formengestaltung, heben sich scharf von dem dichten Untergrund ab. Der mikroskopischen Untersuchung stellt diese Probe durch die reichliche Pigmententwicklung, die auch hier vorzugsweise durch Eisenoxyd gebildet wird, große Schwierigkeiten entgegen. In Verbindung mit ihr trübeu auch zahllose winzige Oktaëderchen von Magnetit das Bild erheblich. Stellenweise sind langleistenförmige Feldspatindividuen zu Aggregaten gehäuft, während an anderen Punkten mehr isometrische Kristalle auftreten. Sehr häufig sind die einzelnen Glieder der Epidotgruppe; sie sind aber nicht gleichmäßig über das ganze Gestein verteilt, sondern bilden an verschiedenen Stellen förmliche Haufwerke, die den Eindruck eines Produktes der Saussuritisierung großer Feldspateinsprenglinge hervorrufen. Die einzelnen Mineralindividuen halten nur etwa 0,004 mm im Durchmesser. Zuweilen ist auch Chlorit in die Feldspate eingedrungen, Muskovit findet sich selten. Dagegen zeigt der Kalkspat hin und wieder eine starke Häufung. Am auffallendsten aber ist der Reichtum an Pyrit. Einzelne schmale Gänge, Sprünge und Klüfte sind ganz durch Epidot und Kalkspat ausgeheilt. Das Gesteinsmaterial scheint unverschwemmt zu sein, aber intensive Prozesse der Verwitterung, der Saussuritisierung und Chloritisierung haben hier zusammengewirkt, um ein Gebilde hervorzubringen, das sich als Basaltton kennzeichnet. Es soll indes durch diese Benennung keineswegs ein Präjudiz hinsichtlich der ursprünglichen Muttersubstanz geschaffen werden. Der Name wird nur gebraucht, weil er in der petrographischen Nomenklatur nun einmal Bürgerrecht genießt. Die Vermutuug liegt nahe, daß das Gesteinsmaterial der Hauptsache nach sich vou Diabas ableitet.

Eine ähnliche Bewandtnis dürfte es mit einer Felsart haben, deren Heimstätte dem höchsten Gebirgskamm nahe liegt.

Tonschiefer.

An dem Gehänge des nördlichen Panoramaberges findet sich ein Gestein, das makroskopisch ganz den Habitus eines Tonschiefers an sich trägt (vgl. S. 174 f.). Es ist von schwärzlichgrauer Farbe, besitzt große Härte und ist deutlich geschiefert. Die Strukturebene ist zwar glanzlos, aber doch so scharf uud eben geschnitten, als wenn sie abgehobelt wäre. Auch das Abspringen einzelner Bruchstücke beim Hammerschlag läßt leicht die druckschieferige Gesteiusbeschaffenheit erkennen. Nach dem Albitgesetz zwillingslamellierte Feldspate, verschiedene Glieder der Epidotgruppe und Chlorit bilden den wesentlicheu Mineralbestand. Magnetit und Pyrit sind in feinster Verteilung über das ganze Gestein zerstreut-Dagegen ist Quarz nicht mit voller Sicherheit nachzuweisen. Wenn diese Probe als Tonschiefer bezeichnet wird, so geschieht es mehr wegen des geologischen Zusammenhanges und der äußeren Erscheinungsform, als wegen des mikroskopischen Befundes. Unter dem Mikroskop sieht das Gestein einem intensiv zersetzten Diabas zum Verwechseln ähnlich.

Kristallinische Schiefer.

Die kristallinischen Schiefer sind in diesem Gebiet augensichtlich nichts anderes als höher kristalliu entwickelte Sand- oder Tongesteine; ihr sedimentärer Charakter dürfte außer Frage sein. Mau fludet sie sowohl im Norden wie im Südeu des Hauptgebirgskammes; aber auch bei ihnen tritt der Unterschied der Intensität der metamorphosierenden Agentien sehr deutlich hervor. Die Gesteine des Südens haben nicht bloß eine normale Metamorphose sondern eine mehr oder minder tief gehende metasomatische Pneumatolyse erfahren (vgl. S. 273). Die Umbildung reicht oft so weit, daß man aus dem Charakter der Gesteinsstücke deren Lagerstätte mit ziemlicher Sicherheit a priori ermitteln kann. Zwei Arten von kristallinischen Schiefern sind zu unterscheiden: Kalkphyllit und Quarzitschiefer.

Kalkphyllit (Taf. I, 3).

Im Da-tun-gu- wie im Ogun-schañ-dse-Tal steht diese Gebirgsart an. Hier wie dort ist es der erste Sattel nach der Verwerfung innerhalb des alten Gebirges, in dem sie auftritt. Es ist ein dunkelfarbiges, grünlichgraues, deutlich geschichtetes Gestein. Schon makroskopisch beobachtet man die oft wiederholte Wechsellagerung von helleren und dunkleren Lamellen. Unter dem Mikroskop erkennt man, daß die ersteren von allotriomorphkörnigen Kalkspatindividuen, die letzteren von Quarzfeldspat-Aggregaten mit wechselndem Chloritgehalt gebildet werden. Muskovit und Biotit erscheinen verhältnismäßig selten. Dagegen ist der Zirkon ein häufiger Nebengemengteil. Apatit und Pyrit treten nur ganz vereinzelt auf. Opake Erzkörnchen sind allenthalben in das Gesteinsgewebe eingeflochten. Der Feldspat wurde durch Messungen in Schnitten senkrecht zur ersten und zweiten Mittellinie als Albit erwiesen. Der klastische Charakter des Gesteinsmaterials wird mit unzweifelhafter Sicherheit an dem schlechten Erhaltungszustand des Zirkons erkannt. Dieses Mineral erscheint nicht nur ohne Endausbildung sondern auch mit starker Kantenrundung der kurzen, abgebrochenen Säulchen, so daß es mehr oder weniger Körnerform an sich trägt. Der besonders im Da-tun-gu-Tal sich zeigende grüne Farbenton ist natürlich durch das reichlichere Auftreten chloritischen Pigments verursacht.

Quarzitschiefer.

Der kristallinische Quarzit ist am Südabhang der Bogdo-Ola-Gruppe verbreitet (vgl. S. 103). Es ist eine hellfarbige, sehr feinkörnige, nahezu dichte Felsart. Nur stellenweise beobachtet man fettglänzende Quarzkörnchen und dünne Häutchen hellen Glimmers. Auffallend ist auch makroskopisch schon die starke Imprägnation mit Schwefelkies. Das Mikroskop bestätigt den unbestrittenen Prinzipat des Quarzes, dessen einzelne Individuen sich vielfach in geradlinigen Konturen berühren und häufig parallel laufende Stengel bilden. Umflasert sind die Quarzkristalle oft von glimmerartigen Häutchen, welche als Muskovit beziehungsweise Serizit anzusprechen sind. Der Feldspat ist ein seltener Gast; er stellt sich zuweilen in polysynthetischen Zwillingskristallen dar, deren einzelne Lamellen von außerordentlicher Zartheit sind. Überaus häufig ist der Schwefelkies, zeigt jedoch vielfach eine so weit gehende Zersetzung, daß nur noch im Kern ein unversehrter Bruchteil des ursprünglichen Kristalles vorhanden ist. Ein nicht minder häufiger Gemengteil ist der Epidot, der mit grüngelber Farbe durchsichtig wird und zwischen gekreuzten Nicols die bezeichnende Buntfarbigkeit der so verschieden zusammengesetzten Glieder der Familie zu erkennen gibt. Die Strukturformen sind im Dünnschliff sehr scharf ausgeprägt. Die deutlich hervortretende Parallelordnung der Glimmerzüge ist der Ausdruck einer ausgesprochenen Schichtstruktur. Daneben ist die Pflasterstruktur in sehr typischer Weise entwickelt. Greifen auch einzelne Quarzkörner oft zickzackförmig ineinander ein und sind sie auch manchmal so eng miteinander verzahnt, daß man versncht sein könnte, die Grenzlinien nur für Sprünge eines einzigen Individnums zu halten, so gleicht doch im allgemeinen das Gefüge dem aus ebenflächigen Würfeln zusammengesetzten Straßenpflaster in sehr anffälliger Art. Es liegt ein intensiv metamorphosierter Quarzitschiefer vor, dessen reichliches Zement zu holokristalliner Entwicklung in der Weise gelangt ist, daß die tonigen und kalkigen Substanzen teils in Feldspat und Glimmer teils in Epidot eingegangen sind, während der Eisengehalt bei der Epidotbildung allein völlig aufgebrancht zu sein scheint.

Kalksteine.

Unter der Rabrik der Kalksteine sollen alle die Felsarten anfgeführt und behandelt werden, welche einen erheblichen Prozentsatz an Kalk führen, gleichviel ob dieser Kalkgehalt an Karbonate, Silikate, Phosphate oder anderweitig gebunden ist. Reine Kalksteine sind in diesem Gebiet nicht vorhanden. Die vorliegenden Proben enthalten alle ein größeres oder geringeres Maß an tonigen Sabstanzen. Eine fast lückenlose Reihe führt von kalkhaltigen Tongesteinen durch die Mergel zu den Kalksilikathornfelsen hinüber. In der Mehrzahl der Fälle zeigen alle diese Vorkommnisse eine weitgehende metamorphe Beeinflassung. Anch solche Bildungen, welche neben dem Tongehalt lediglich Karbonate führen, tragen vielfach hornfelsartigen Charakter. Die schieferige Struktur ist dabei zaweilen selbst bei tiefgreifender Umwandlung noch deutlich erhalten; bei den hochentwickelten Kalksilikathornfelsen dagegen ist sie mehr oder minder vollständig verwischt.

Mergel.

In dem Sangnn-Tal steht nahe bei der Verwerfung ein schmntzig grünes, hornfelsartiges Gestein an. Feldspat, Quarz und Chlorit bilden die Hanptgemengteile. Dazwischen aber ist nicht allzu selten Kalkspat eingestrent. Titanit ist in feiner Verteilung reichlich, Zirkon spärlich, Epidot nur in ganz geringer Menge vorhanden, ebenso Serizit und Eisenerz.

Unter deu Feldspaten herrscht der zwillingslamellierte Albit vor, ohne jedoch einen erheblichen Grad von Idiomorphismus zn erreichen; neben ihm erscheint Anorthoklas in gleicher Ausbildung. Der Chlorit behauptet der Menge nach vor allen anderen Gesteinselementen den Vorrang; er tritt in einzelnen Schuppen anf, bildet aber anch vielfach lappige Aggregate. Der grünliche Farbenton ist fast ansschließlich durch ihn hervorgerufen, da der Epidot neben ihm kanm zur Geltung kommt. Der Kalkspat entbehrt der regelmäßigen Umgrenzung völlig; er ist über das ganze Gestein verteilt, aber nnr in Partien von geringen Dimensionen.

Von einer Schieferung oder Schichtung ist zwar in dem Gestein nichts mehr zu bemerken; es dürfte aber dennoch aus Tonschiefer hervorgegangen sein.

An dem Nordschenkel des ersten Sattels tritt im Da-tun-gn-Tal ein Gestein zn Tage, welches schon erheblich reicher an Kalk ist; es baut sich im wesentlichen ans Albit mit Quarz und hellem Glimmer, sowie Chlorit anf, führt Zirkon als Nebengemengteil und Pyrit, Granat und Kalzit als Übergemengteil.

Unter den Feldspaten dominiert wieder der zwillingslamellierte Albit. Der reichlich vorhandene Pyrit zeigt allenthalben die Tendenz nach kristallographischer Formenentwicklung. Die ganz vereinzelt auftretenden Zirkonsäulchen verraten durch ihre starke Abnützuug während des Transportes, abgesehen von allem anderen, recht deutlich den klastischen Charakter des Gesteins.

Besonders charakteristisch ist die nach allen Richtungen verlaufende Durchtrümerung des Probestückes. Quarz, aplitisches Material und besonders Kalkspat füllen die Gänge. Ist der Kalzit auch auf das ganze Gestein verteilt, so sammelt er sich doch vorzugsweise in diesen Spalten an, wie auch das Auftreten des Pyrits und Granats in der Hauptsache an diese Sprünge und Klüfte gebunden ist. Der Quarz erreicht in diesen Spaltenfüllungen eine solche Vollkommenheit der Formengestaltung, daß die Injektionsadern pegmatitischen Charakter gewinnen. Auch dieses Gestein dürfte aus kalkreichem Tonschiefer hervorgegangen sein, und es unterliegt keinem Zweifel, daß an seiner kontakmetamorphen Umbildung gerade jene Injektiouen hervorragenden Anteil genommen haben.

In seiner chemischen und wineralischen Zusammensetzung steht dieser Felsart ein Gestein sehr nahe, welches im Da-tun-gu-Tal kurz vor dem ersten Lager geschlagen wurde; es stellt sich makroskopisch als ein dunkelgraues, dichtes, im Großen flachmuschelig, im Kleinen splitterig brechendes Gestein dar, das von zahlreichen, haarfeinen Kalkspatadern durchzogen ist. Neben Quarz in Verbindung mit Feldspaten, unter denen gleichfalls Albit den Reigen führt, erscheint hier aber als Hauptgesteinskomponent das Karbonat: es durchschwärmt in zahlreichen Kristallen gleichmäßig diese Felsart. Was an demselben sofort auffällt, das ist der hohe Grad des Idiomorphismus; es sind vielfach formvollendete Rhomboëder, in denen es erscheint. Der Mangel an Zwillingslamellen in Verbindung mit dieser idealen Formeneutwicklung läßt Dolomit vermuten (Taf. I, 1). Chlorit tritt bis zum Verschwinden zurück. Pyrit fehlt. An seiner Stelle erfüllt opakes Eisenerz, welches zumeist Magnetit ist, die Klüfte und dringt in das Gesteinsgewebe ein.

Kalksilikathornfels (Taf. I, 4).

Die Kalksilikathornfelse sind vorzugsweise in dem zentralen Teil der Bogdo-Ola-Gruppe zu finden; sie stehen am Hauptgipfel an, sind in dessen Moräne verbreitet, treten an den Gehängen des nördlichen Panoramaberges zutage und erscheinen auch noch am Südabhang des Gebirges. Zumeist tragen sie sehr typischen Charakter; es sind fast durchweg dichte Gesteine von grünlich grauer Farbe; nicht selten zeigen sie eine vorzüglich entwickelte Bänderung, iudem helle und dunklere Lagen wechseln. Die Mächtigkeit der einzelnen Schichten schwankt in ziemlich weiten Grenzen: sind einzelne Lamellen nur ein paar Millimeter dick, so erreicht in anderen der senkrechte Abstand der Begrenzungsflächen 4 cm und darüber. Stellenweise bilden diese Bandhornfelse eine sehr auffallende und charakteristische Erscheinung. Hin und wieder beobachtet man äußerst zierliche Dendriten; ihre braunrötliche Farbe charakterisiert sie als Ausscheidungen von Eisenoxydhydrat auf engen Schichtenfugen des Gesteins.

Unter dem Mikroskop stellen sich die Kalksilikathornfelse in der Hauptsache als ein Gemenge von Plagioklas mit Pyroxen oder Hornblende dar. Eisenerze und Titansäuremineralien sind allenthalben in ziemlich reichlicher Menge vertreten. Desgleichen spielen die einzelnen Glieder der Epidotgruppe eine wichtige Rolle. Quarz tritt sehr zurück. Wollastonit, Granat und Skapolith sind vereinzelte Erscheinungen. Kalzit und Muskovit sind spärlich, etwas häufiger dagegen der Chlorit.

Nach Messungen senkrecht zur ersten und zweiten Mittellinie überwiegt unter den Feldspaten auch in diesen Kontaktbildungen der Albit; neben ihm war Labrador nachzuweisen. Mauchmal übertrifft der Feldspat die übrigen Gesteinselemente durch seine Größenverhältnisse so, daß er eine porphyrartige Struktur hervorruft; es fehlt ihm jedoch allezeit die kristallographische Formvollendung. Uuter den wesentlichen farbigen Gemengteilen hat der Diopsid die Vorherrschaft; er bildet kurze Prismen von hellgrüner Farbe mit schwachem Pleochroismus und seine Dimensionen sind in der Regel überaus gering: bei einer Längenausdehnung von 0.02 bis 0.03 mm erreicht seine Breite zuweileu kaum 0.005 mm und seine Auslöschungsschiefe weicht in gut meßbaren Kristallen nicht viel von 45 Grad ab. Der diopsidische Pyroxen ist derjenige Gemengteil, welcher den tiefen Farbenton in den dunklen Bändern hervorruft; es siud diese Gesteinspartien in der Hauptsache nichts anderes als ein aus Pyroxen gebildeter Mikrolithenfilz. Die Hornblende zeigt einen mehr sattgrünen Farbenton und starke Absorption in der Hauptentwicklungszone. Der Wallastonit ist ausreichend gekeunzeichnet durch die Lage der Achsenebene senkrecht zur Spaltbarkeit, sowie durch seine Stengeligkeit nach der Querachse. Unter den Eisenerzeu ist weitaus am meisten der Ilmenit, in der Regel mit einem Titanitrand umgeben, vertreten; neben ihm stellt sich der Magnetit in ziemlich ansehnlichen Individuen ein. In einzelnen Vorkommnissen ist der Pyrit lokal mit ausgezeichneter Kristallform stark verbreitet. Der Granat bildet nur in einem Probestücke einen sehr charakteristischen Gemengteil. Der Chlorit ist mauchmal zu putzenförmigen Aggregaten gehäuft und der Muskovit erscheint zuweilen in anselinlichen Kristallen.

Im allgemeinen repräsentieren diese Kalksilikathornfelse Kalkgesteine mit einem mehr oder minder erheblichen Gehalt an tonigeu Substanzen. Im einzelnen seien noch folgende Bemerkungen beigefügt:

In einem Seitentälchen des Gurban-bogdo-Tales wurde ein Probestück geschlagen (vgl. S. 195 f.), welches eine gewisse Sonderstellung einnimmt; es ist ein schmutziggrünliches, hornfelsartiges Gestein, welches noch deutlich die ursprüngliche Schichtung des klastischen Materials bewahrt hat. Der farbige Gemengteil ist neben Chlorit, besonders grüne Hornblende. Die Vorherrschaft dieses Minerals läßt erkennen, daß der Fundort des Gesteins schon nicht mehr im Bereich des inneren. sondern des äußeren Kontakthofes gelegen ist. Der eruptive Herd muß offenbar dem Hauptgipfel näher gerückt sein. Als eine weitere Eigeutümlichkeit dieses Vorkommens ist der Reichtum an Kalkspat zu erwähnen: während das Kalkkarbonat in den sonstigen Hornfelsen bis zum Verschwinden zurücktritt, ist es hier sehr reichlich vorhanden. Charakteristisch ist endlich auch die skelettartige Ausbildung des Titaneisenerzes.

Die an den Gehängen des nördlichen Panoramaberges von Professor Dr. Merzbacher gesammelten Kalksilikathornfelse (vgl. S. 173 f.) vertreten den reinsten Typus; sie gleichen den Plagioklas-Diopsidhornfelsen des Kristianiagebietes, welche Dr. V. M. Goldschmidt in die siebte Klasse der Hornfelse gestellt hat und unterscheiden sich von diesen lediglich dadurch, daß sie nicht bloß biotitarm, sondern biotitfrei sind. Wenn brauner Glimmer überhaupt vorhanden war, so hat er offenbar eine Spaltung in der Weise erlitten, daß die Tonerde in den Plagioklas einging, Magnesia und Eisenoxydul in den diopsidischen Pyroxen.

Einen abweichendeu Charakter zeigen die von Dr. Gröber in der Moräne des Hauptgipfels geschlagenen Kalksilikathornfelse; ein im Grossen flachmuschelig, im Kleinen splitterig brechendes, dichtes Gestein steht den bisher geschilderten noch am nächsten; die bräunlichviolette Färbung aber, sowie das Auftreten vereinzelter, tafelförmiger, einsprenglingsartiger Feldspate verleiht ihnen makroskopisch ein eigenartiges Gepräge. Unter dem Mikroskop fällt neben der reichlichen Vertretung der Titansäuremineralien der Mangel an Titaneisenerz auf; auch der farbige Gemengteil besitzt seine Besonderheiten. Vielleicht steht er dem Omphazit nahe.

Von den beiden anderen Proben macht die eine im Handstück den Eindruck einer Brekzie, zusammengesetzt aus verschiedenartigen, auch ungleich gefärbten, eckigen Brocken. Auch im Dünnschliff bekundet dieses Gestein keinen einheitlichen Charakter; in einem feinkörnigen Quarzfeldspataggregat, in welchem der Quarz die Vorherrschaft führt, treten unzählige Mikrolithe aus der Epidotgruppe auf. Daneben erscheint auch vielfach Chlorit in kleinen Fetzen. Innerhalb des feinkörnigen Gemenges aber finden sich Putzen von Adern von gröberkörnigen Aggregaten, die sich meist aus Zoisit, Epidot, Chlorit und Quarz aufbauen. Der herrschende Gemengteil ist hier entschieden der eisenreiche Epidot. Die Quarzdurchschnitte bilden vielfach sechsseitige Tafeln. Der Chlorit mit seinem starken Pleochroismus ist oft zu büschelförmigen Gebilden aggregiert; der Pyrit, in zahllosen Körnchen in das Gesteinsgewebe eingeflochten, entwickelt nicht selten auch scharfe Kristallformeu. Von Kalzit ist keine Spur zu finden. Der Reichtum an Kalktonerdesilikaten mag die Bezeichnung dieser Felsart als eines Kalksilikathornfelses rechtfertigen.

Die dritte Gesteinsprobe stellt sich als ein grünliches, dichtes Gestein dar, aufgebaut aus Epidot, Zoisit und Muskovit als herrschenden Gemengteilen; neben ihnen erscheint spärlicher auch Feldspat. Der Epidot nimmt zuweilen wie der Zoisit recht gute kristallographische Umgrenzung an; Quarz und Titanit sind ziemlich selten. Was dieser Felsart aber ihre besondere Eigenart verleiht, das ist das Auftreten von Granat und Skapolith. Der Granat bildet rundliche Körper, welche zahlreich über das Gestein verteilt sind. Der Skapolith. dem Quarz gegenüber durch den negativen Charakter der Doppelbrechung scharf gekennzeichnet, erscheint in ansehnlichen Individuen oder gehäuften Aggregaten. Es liegt also hier ein Kalksilikathornfels vor, welcher der achten Klasse Dr. Goldschmidts entspricht und überleitet zu den Epidositen.

Epidosit.

Auf bedeutender Höhe des südlichen Panoramaberges findet sich eine Felsart, welche offenbar eine reiche Geschichte hinter sich hat; es ist ein deutlich geschiefertes, grünlichgelbes, durch dunkle Putzen stark geflecktes Gestein. Der Grundton der Farbe (vgl. S. 186) gibt schon dem unbewaffneten Auge zu erkennen, daß es sich um eine sehr epidotreiche Bildung handelt. Die mikroskopische Untersuchung bestätigt den makroskopischen Befund durchaus. Die verschiedenen Glieder der Epidotgruppe haben die unbedingte Vorherrschaft und in dieser Mischungsreihe ist es wieder gerade der eisenreiche Epidot, der an Häufigkeit alle anderen Varietäten weit überragt; neben dem Epidot ist aber der Chlorit auch ungemein verbreitet. Wie es scheint, ist auch Sprödglimmer vertreten. Feldspat und Quarz sind nicht allzu selten. Auch Titanit ist ein häufiger Gemengteil. Dagegen ist Muskovit und Serizit nur stellenweise etwas reichlicher angehäuft.

Der Epidot bildet mit seinen Körneraggregaten ansehnliche Nester und Putzen im Gestein, zieht sich in breiten Strängen durch den Schliff, füllt im Verein mit anderen Gemengteilen die Gänge und Spalten aus und beteiligt sich in feiner Verteilung an der Pigmentierung grundmasseartiger Partien im Gestein. Mit ihm ist aufs engste der Chlorit verknüpft, welcher teils in lang gezogenen Lappen teils in gerundeten Körnern und feinen Schüppchen über das ganze Gestein verteilt ist. Feldspat tritt in ansehnlichen Individuen mit guter Umgrenzung, sowie auch in feinen Körnern auf. Nachgewiesen konnte nur Albit und Anorthoklas werden; sie erscheinen zuweilen mit einem schmalen Kranz von Epidotmineralien umgeben, während sie im Kern stark serizitisiert sind. Mit Feldspat verbunden, zeigt der Quarz ganz ähnliche Entwicklungsformen. Der Titanit kommt nur in gauz unregelmäßigen Partikeln vor. Muskovit und Serizit dürften lediglich Zersetzungsprodukte der Feldspate sein.

Das Gesteiu ist von Gängen, Spalten und Klüften reichlich durchzogen, in denen die auskleidenden Mineralien, namentlich Epidot und Feldspat, senkrecht zu den Kluftwänden angeschossen sind und eine ausgeprägte Parallelordnung einhalten. Der starken Gesteinszerklüftung entspricht auch der Zustand der größeren einsprenglingsartigen Gesteinskomponenten. Die Quarz- und Feldspateinsprenglinge haben zwar ihre idiomorphe Formengestaltung bewahrt, sind aber innerlich in ein Gemenge von lauter kleinen unregelmäßigen Körnern zerdrückt. Einzelne Feldspatindividuen haben auch eine Streckung erlitten und sind von kleinen Körneraggregaten eingehüllt, so daß eine Art Mörtelstruktur entstanden ist. Die Spuren sehr starker Kataklase treten allerwege sehr deutlich zutage, wenn auch die bezeichnende undulierende Auslöschung nur in sehr geringem Maße wahrzunehmen ist.

Die Bezeichnung dieser Bildung als Epidosit ist durch den Reichtum au Epidotmineralien in Verbindung mit den geschilderten Erscheiuungen wohl begrüudet. Aus welchem
Muttergestein aber diese Felsart hervorgegangen ist, läät sich schwer entscheiden. Feldspat und Quarz sind öfters in eine überaus feine Grundmasse eingebettet, welche sich hin
und wieder als ein Gemenge von Chlorit und Epidot, sowie von Quarz und Feldspatmikrolithen darstellt. Diese Gesteinspartien tragen augensichtlich porphyrischen Charakter.
Der Natur der Feldspateinsprenglinge nach, soweit diese festgestellt werden konnte, kann
aber nicht etwa, wie sonst so häufig, ein basisches, sondern nur ein saures Eruptivgestein
als ursprüngliches Substrat vorliegen. Ausgeschlossen ist aber die Möglichkeit nicht, daß
einzelne Kristalle in vulkanischer Asche eingebettet sind. Zwischen diesen Partien hindurch ziehen sich die Bänder der Epidotaggregate in Verknüpfung mit lang gezogenen
serizitisierten Feldspaten und vereinzelten Chloritlappen. Vielleicht haben wir es mit einem
durch Kontaktmetamorphose sehr weitgehend beeinflußten Quarzkeratophyr, vielleicht aber
nur mit einem Tuff dieser Gesteinssorte zu tun.

Viel klarer liegen die genetischen Beziehungen bei einem Epidotgestein zutage. welches zwar auch am südlichen Panoramaberg, aber viel weiter abwärts, schon nahe der Talsohle auftritt. Nach seiner geologischen Erscheinungsform stellt es sich als eine Gangfüllung dar; nach seiner mineralischen Konstitution ist es im wesentlichen ein Gemenge der verschiedenen Glieder der Epidotgruppe, unter denen der eisenreiche Epidot augensichtlich vorwaltet. Als Hauptbegleitmineral ist der Quarz zu nennen. Nicht selten sind auch Titansäuremineralien in Verbindung mit Apatit; sehr spärlich dagegen ist der Feldspat vertreten.

Der Epidot bildet häufig Zwillinge und zeigt die Buntscheckigkeit der Interferenzfarben in sehr charakteristischer Weise. Die Formengestaltung erreicht bei ihm sehr oft

281

ein hohes Maß von Vollkommenheit. Ebenso ist aber auch der Quarz durch seinen Idiomorphismus ausgezeichnet. Von den Titansäuremineralien ist der Grothit sowohl durch seine rötlichbraune Färbung wie durch den rhombischen Durchschnitt zur Genüge gekennzeichnet. Übrigens ist auch der Anatas durch den verhältnismäßig niederen Grad der Doppelbrechung sicher gestellt. Der Apatit ist in langnadeligen Kristallen ausgebildet. Von den spärlichen Feldspaten konnte nur Andesin identifiziert werden.

Was die in dieser Felsart auftretenden Strukturformen anbelangt, so ist neben der idiomorphen Umgrenzung der Hauptgemengteile die typische Entwicklung der Pflasterstruktur zu nennen. Die Geradlinigkeit der Konturen der einzelnen Gesteinselemente ist geradezu überraschend. Bezüglich der Gesteinsbildung ist der Gedanke an thermale Prozesse nicht von der Hand zu weisen. Dagegen liegen beim Epidotskarn die Wirkungen der metasomatischen Pneumatolyse vor.

Epidotskarn.

In der Nähe der Kupferschmelze (siehe S. 200 f.) tritt eine Gebirgsart auf, welche ganz die Charaktere des Epidotskarns an sich trägt (vgl. auch S. 139). Daß dieses Gestein reich an Kupfer ist, lehrt der Augenschein, daß es sehr viel eisenreichen Epidot sowie Eisenerz enthält, die mikroskopische Untersuchung. Ein Handstück zeigt an verschiedenen Stellen den grünen Anflug des Malachits und an anderen den blauen von Kupferlasur. Überdies ist das Gestein so reichlich mit Kupferkies imprägniert, daß der Kupfergehalt sofort in die Augen springt. Im Dünnschliff erscheinen die verschiedenen Epidotvarietäten als weitaus herrschende Gemengteile. Daneben beteiligen sich an dem Aufbau des Gesteins Quarz, Titansäuremineralien, Kalzit und Feldspat. Unter den Titansäuremineralien steht der Anatas oben an, durch seine Zugehörigkeit zu den optisch einachsigen Kristallsystemen und die Niedrigkeit der Doppelbrechung vom Titanit deutlich unterschieden. Kalzit und Feldspat spielen nur eine geringe Rolle. Sehr auffallend dagegen ist der Reichtum an Erz. Die oxydischen Erze sind ja wohl selten, die sulfidischen dagegen überaus stark vertreten. Kupferkies und Eisenkies mögen in gleichem Mengenverhältnis vorhanden sein; im ganzen aber überwiegt der Eisengehalt. Ist doch eine erhebliche Menge von Eisen in den Epidot eingegangen. Vielfach ist das Eisenerz zu Eisenoxydhydrat verwittert. Ganze Schlieren ziehen in mannigfachen Windungen durch das Gestein, die nur aus Rost bestehen. Im Kern jedoch ist das Erz vielfach noch völlig intakt.

Über die Bildungsgeschichte des Epidotskarns gibt die Reihenfolge der Mineralausscheidungen ziemlich zuverlässigen Aufschluß. Es kann keinem Zweifel unterliegen, daß die Imprägnation mit den sulfidischen Erzen erst der Bildung des Eisensilikates folgte. Erscheint doch nicht selten der eisenreiche Epidot als Einschluß des Erzes. Der Epidotkristallisation dürfte eine Zufuhr von Eisen aus einem Tiefengestein zu dem kalkreichen Sediment vorausgegangen sein, wobei die Reaktion etwa nach dem Schema verlaufen sein mag: $2 \text{ Fe Cl}_3 + 3 \text{ Ca CO}_3 = \text{Fe}_2 \text{ O}_3 + 3 \text{ Ca Cl}_2 + 3 \text{ CO}_2$. Der Reichtum an Quarz dürfte sich auf eine Zufuhr von Kieselsäure teils in der Form eines Siliciumhalogenids teils in Form einer wässerigen Lösung gründen. Die Füllung von Adern mit Quarz scheint auf die letztere Art der Genese zu deuten.

Ergussgesteine.

Bei den Ergußgesteinen des Bogdo-Ola-Gebietes sind sehr heterogene Bildungen aufs Innigste vereinigt. Wie oftmals in ein und demselben Gesteinskörper neben basischen Konkretionen saure Schlieren sich als natürliche Begleiterscheinung finden, so sind anch Effusivformen von sehr basischem mit solchen von sehr saurem Charakter enge verknüpft. Die häufig beobachtete Begleitung der Diabase von Quarzkeratophyren ist anch hier zu konstatieren. Als vermittelnde Zwischenglieder aber sind mit den beiden Extremen, Ergußgesteine mit keratophyrischem und dazitischem Charakter vergesellschaftet.

Quarzkeratophyr (Taf. I, 5 und 6).

Die Quarzkeratophyre treten am Südabhang der Bogdo-Ola-Gruppe auf. Die sieben vorliegenden Probestücke sind alle an dem Gehänge des südlichen Panoramaberges geschlagen. Nördlich von den Hauptgipfeln tritt zwar in Verbindung mit Diabas ein Keratophyr, aber nicht ein Quarzkeratophyr zutage. Sämtliche Proben zeigen eine sehr typische Ausbildung.

Alle enthalten in einer feinkörnigen bis dichten Grundmasse von teils dunkelgrauer, teils gelblichgrüner, teils rötlichbrauner Farbe mit Stich ins Violette, Einsprenglinge von zahlreichen Alkalifeldspaten, seltenen Kalkuatronfeldspaten und noch selteneren farbigen Gemengteilen der Glimmer-Pyroxen- und Amphibolgruppe; sie führen Zirkon. Apatit und Eisenerze als Nebengemengteile und Titanit, Anatas, Zoisit und Epidot als Übergemengteile, welche innerhalb der Grundmasse neben meist reichlichem Quarz in einer zweiten Generation mit wechselnden Mengenverhältnissen wieder erscheinen.

Unter den Feldspaten übernimmt der Albit die Führung; neben ihm treten zuweilen auch Anorthoklas und Oligoklas-Andesin auf. Die Zwillingslamellierung erfolgt in der Regel nach dem Albit-, hin uud wieder aber auch nach dem Periklingesetz und manche Vorkommnisse sind mit einem doppelten Lamellensystem ausgerüstet. In der Mehrzahl der Fälle geht die Lamellierung übrigens nicht sehr weit; manchmal ist nur eine einzige schmale Lamelle eingeschaltet und oft erscheint der Albit in einfachen Hälblingen. Während die Einsprenglinge tafelförmig nach M entwickelt sind, tragen die Grundmassefeldspate vielfach Leistenform. Meist zeigen sie einen sehr guten Erhaltungszustand; zuweilen jedoch sind sie auch zu glimmerigen Bildungen stark zersetzt. Chlorit und Epidot haben sich lokal sogar ziemlich reichlich in ihnen angesiedelt. Der Quarz bildet zwar stellenweise ansehnliche Individuen, aber immer ohne jede regelmäßige Umgrenzung. So ausgezeichnet der Idiomorphismus der Feldspateiusprenglinge ist, so wenig bekundet der Quarz die Neigung nach kristallographischer Ausgestaltung; er scheint durchweg nur einer Entwicklungsperiode anzugehören und häufig genug offenbart er auch unter den Bildungen der Effusionsperiode seinen Charakter als letzte Ausfüllungsmasse. Die farbigen Gemengteile sind, wie auch in den sonstigeu Vorkommen der Quarzkeratophyre, eine sehr seltene Erscheinung. Noch am häufigsten tritt der Chlorit nnter den Einsprenglingen wie in der Grundmasse auf; wahrscheinlich ist er Umwandlungsprodukt von Biotit oder aber auch von Diopsid. In einem Vorkommnis konnte der Pyroxen in Spuren unter den Einsprenglingen sowohl, wie in der Grundmasse nachgewiesen werden, immer aber mit einer so weitgehenden Chloritisierung, daß der Diopsid nur noch einen schmalen Rahmen um den Chlorit bildet. Sehr verbreitet ist dagegen stellenweise eine grüne Hornblende mit starkem Pleochroismus, geringer Auslöschungsschiefe und hoher Licht- und Doppelbrechung; sie ist in langen nadelförmigen Kristallen entwickelt. Es sind jedoch nur zwei Vorkommnisse, innerhalb deren sie die starke Verbreitung hat.

Von den Nebengemengteilen erscheint der Zirkon nur in sehr kleinen Säulchen, der Apatit dagegen bildet lange sechsseitige Prismen. Beide Komponenten aber treten stark hinter dem Eisenerz zurück; letzteres gehört teilweise zum Ilmenit, zumeist aber zum Magnetit. Das Magneteisen, vielfach mit vorzüglicher Kristallform geschmückt, ist überaus häufig; nicht selten aber erweist es sich als stark titanhaltig.

Titanit und Anatas sind häufige Übergemengteile. In einem Vorkommnis ist das letztere Mineral in geradezu überraschender Art gehäuft; es ist dasselbe Probestück, in welchem auch der Chlorit so reichlich entwickelt ist. Man geht wohl in der Annahme nicht fehl, daß bei der Umbildung des Biotites vielfach Anatas ausgeschieden worden ist. Zoisit und Epidot mit graugelblicher, beziehungsweise grüngelblicher Farbe durchsichtig, füllt gern Spalten und Klüfte aus, herbergt in manchen Feldspaten und bildet zuweilen auch zahllose Körnchen im Gesteinsgewebe.

Die Struktur der Quarzkeratophyre ist meist auch schon makroskopisch deutlich porphyrisch. Die tafelförmigen Feldspateinsprenglinge mit glasigem Habitus leuchten aus dem dunklen Untergrund recht auffällig hervor, aber auch die schmutziggrünen, leistenartigen Bildungen heben sich von der dichten Verwitterungsoberfläche scharf ab. Unter dem Mikroskop vollends ist der Gegensatz zwischen Einsprenglingen und Grundmasse allenthalben sehr gut ausgeprägt. Die Grundmasse selbst zeigt in der Regel allotriomorphkörniges Gefüge; doch ist zuweilen auch die mikrogranitische Struktur recht deutlich entwickelt. In einem der Vorkommnisse endlich ist auch die sphärische Anordnung der Gemengteile in sehr schöner Weise ausgebildet; vorwiegend strahlen in den Feldspatsphärolithen die nadeligen Gebilde von einem gemeinsamen Zentrum aus, zuweilen aber vergabeln sich die einzelnen Strahlen, so daß förmliche Büschel entstehen. Manche Strahlen übertreffen die übrigen bedeutend an Länge, so daß diese sphärischen Gebilde viel Ähnlichkeit mit dem zierlichen Kieselgerüst mancher Radiolarien gewinnen (Taf. I, 5).

Als eine besondere Eigenart der Quarzkeratophyre ist schließlich der Reichtum der Durchaderung mit begleitenden Bestandmassen hervorzuheben. Da sie im geschieferten Gebirge auftreten, haben diese Felsarten naturgemäß viele Risse, Sprünge und Spalten erhalten; alle aber sind ausgeheilt mit mehr oder minder fremdartigem Gesteinsmaterial. Es sind dies vorzugsweise Quarz, Chlorit, Zoisit und Epidot, oft auch Granat, welche vielfach mit ausgezeichneter Formenentwicklung die Klüfte ausfüllen. In den vorliegenden Proben wechselt die Mächtigkeit dieser Bildungen in ziemlich weiten Grenzen: ziehen in manchen Vorkommnissen diese Injektionen in haarfeinen Adern durch das Gestein, so erreichen sie in anderen eine Breite von 15 mm. Im Gebirge selbst sollen diese Klüfte als eine charakteristische Eigentümlichkeit oft schon in weiter Entfernung sichtbar sein (Taf. I, 6).

Cordieritliparit (Taf. II, 7).

Sehr nahe verwandt mit den Quarzkeratophyren ist ein Cordieritliparit, der auch am südlichen Panoramaberg geschlagen wurde; er läßt aber doch so weitgehende Unterschiede erkennen, daß er eine gesonderte Behandlung beanspruchen darf. Schon für das unbewaffnete Auge heben sich neben zahlreichen glasigen Feldspateinsprenglingen kaum minder

häufige Einsprenglinge von fettglänzendem Quarz hervor. Unter dem Mikroskop zeigt das letztere Mineral hochgradigen Idiomorphismus; es erscheint in Dihexaëderform mit Prisma. Ecken und Kanten sind stark gerundet. Tiefe Einstülpungen der Grundmasse geben Zeugnis von der erfolgreichen Wirksamkeit der magmatischen Resorption. Einsprenglingsartig tritt auch ein Tonerdesilikat auf, welches nach Licht- und Doppelbrechung, sowie nach der optischen Orieutierung als Cordierit zu betrachten ist. Am Rande und auf den Spaltrissen setzt die Umwandlung in grünlichen Chlorit ein; es hat dieselbe jedoch nur sehr geringe Fortschritte gemacht. Biotit oder sonstige farbige Gemengteile sind nicht nachzuweisen. Vielleicht ist der stark verbreitete, sich gern an das Eisenerz anheftende und vielfach von Anatas oder Titanit begleitete Chlorit Umwandlungsprodukt. Sichere Anhaltspunkte für eine derartige Umgestaltung von erdalkalischen Komponenten sind jedoch nicht gegeben. Reichlich vorhanden ist der Magnetit, der auch hier gerne die Klüfte füllt, jedoch auch in ansehnlichen Körnern mit guter kristallographischer Umgrenzung in das Gesteinsgewebe eingeflochteu ist. Auch die Titansäuremineralien sind stark vertreten. In der Grundmasse kehren die Einsprenglinge in einer zweiten Generation wieder; in ihr aber ist der Chlorit in feiner Verteilung so häufig, daß der Farbenton einen Stich ins Grünliche erhält.

Wenn dieses Gestein als Cordieritliparit bezeichnet wird und nicht etwa als Quarzporphyr, so ist dies lediglich in dem guten Erhaltungszustand begründet, welcher so
vollkommen ist, daß er geradezu auffallend erscheint; er kann freilich nicht etwa in dem
Mangel einer weitgehenden Oxydation des Eisengehaltes, wie man sie bei Quarzporphyren
so häufig autrifft, gefunden werden. Natroureiche und kaliarme Gesteine werdeu nicht rot.
Der ausgezeichnete Erhaltungszustand offenbart sich vielmehr in dem glasigen Habitus
der Feldspate und in der Unversehrtheit des Cordierits. Vergleicht man das vorliegende
Gestein mit den Pinitporphyren des ostbayrischen Grenzgebirges, so erscheint der Unterschied frappant. Man kann sich des Eindrucks nicht erwehren, daß man es hier mit
einer Bildung jugendlichen Alters zu tun hat.

Keratophyr (Taf. II, 8 und 9).

Die Keratophyre stehen am Nord- und am Südabhang des Gebirges an (vgl. S. 282). Das Vorkommen am nördlichen Panoramaberg ist ein grünlich graues, im allgemeinen völlig dichtes, hornfelsartiges Gestein, in welchem jedoch auch mit freiem Auge schon einzelue Einsprenglinge zu erkennen sind. Unter dem Mikroskop trägt diese Felsart ganz den Charakter eines porphyrischen Gesteins. In eine sehr feinkörnige, zum Teil schlechterdings unauflösliche Grundmasse sind Einsprenglinge von Albitkristallen eingebettet. Niemals findet sich unter ihnen Quarz. Nur in der Grundmasse erscheinen neben dem Feldspat auch winzige Quarzkörnchen; sie treten indes hinter dem Feldspat sehr zurück. Häufig ist der Epidot, selten der Chlorit. Das stark vertretene Eisenerz gehört dem Magnetit an, welcher in zahllosen Individuen von mikrolithischen Dimensionen in sehr guter Kritallform das Gestein durchschwärmt (vgl. S. 180). Aber auch größere Körner zeigen die Tendenz nach kristallographischer Entwicklung. Neben dem Magneteisen erscheinen auch rote Blättchen mit scharfer Umgrenzung; sie sind wohl als Eisenoxyd anzusprechen. Das ganze Gestein ist reichlich von Gängen und Klüften durchsetzt, welche mit Aplitmaterial gefüllt sind; oft ist jedoch auch Epidot in Verbindung mit dem Eisenerz in die Spalten eingedrungen.

In dieser Verbindung nimmt das letztere die Form des Opazits an, so daß es an kohlige Substanzen erinnert; aber die mannigfachen Zwischenglieder zwischen den kleinsten und größten Kriställchen lassen keinen Zweifel über deren Natur aufkommen (Taf. II, 8).

Noch charakteristischer als dieses Gestein ist das Vorkommen am südlichen Panoramaberg. Den hornfelsartigen Habitus haben beide gemeinsam; es unterscheidet sich aber das letztere von dem ersteren durch den rötlich violetten Farbenton (vgl. S. 186). Bei mikroskopischer Untersuchung stellt es sich als ein typischer Keratophyr mit ausgesprochenem trachytischen Charakter dar (Taf. II, 9).

Die Albiteinsprenglinge, welche vielfach als einfache Hälblinge erscheinen, sind durch hochgradig idiomorphe Formengestaltung ausgezeichnet. Eiusprenglinge von Quarz oder farbigen Gemengteilen sind nicht vorhanden. Als Einsprengling hat der Albit Tafelform, als Grundmassebestandteil Leistenform. Quarz ist nur sehr spärlich in die Grundmasse eingestreut. Ob noch eine Glasbasis vorhanden ist, läßt sich kaum erkennen, schon infolge der überaus starken Imprägnation mit Eisenerz, das sowohl in größeren Körnern, als in staubfeinen Partikeln über das ganze Gestein zerstreut ist. Die Feldspate sind intensiv saussuritisiert. Unter den Umwandlungsprodukten erkennt man neben den verschiedenen Gliedern der Epidotgruppe auch Glimmer und etwas Quarz.

Sehr scharf ausgeprägt ist in diesem Vorkommen die fluidale Anordnung der Feldspatmikrolithe in der Grundmasse, die sich in gewundenen Zügen mehr oder minder parallel durch die einzelnen Einsprenglinge hindurch ziehen. Charakteristisch ist endlich die Anhäufung von Feldspat zu putzenartigen Gebilden, welche den Sanidiniten in den Trachyten und den Olivinfelseinschlüssen in den Basalten auffallend gleichen.

Dazit (Lava).

Im Sangun-Tal sind an der nördlichsten roten Kuppe (vgl. S. 247 f.) dazitische Lavamassen ausgebreitet. Es sind stark poröse Gebilde von im frischen Bruch schmutzig graugelblicher, auf der Verwitterungsoberfläche eisengrauer, stellenweise rotbraun gefleckter Farbe. Die kugeligen, ovalen, oft auch stark in die Länge gezogenen Hohlräume sind glattwandig und zeigen nicht selten starken Glanz. Meist sind die Höhlungen leer, hin und wieder jedoch auch von Mineralneubildungen ausgekleidet. Die Porosität tut der Verbandsfestigkeit wenig Eintrag; die blasigschlackigen Massen teilen vielmehr mit manchen Kalktuffen die Eigentümlichkeit, daß sie gerade durch die Verbindung jener beiden Merkmale einen guten Baustein liefern. Für Auge und Lupe erscheint das Gebilde schlechthin homogen; unter dem Mikroskop aber stellt es sich als ein glasdurchtränkter Mikrolithenfilz dar, der im wesentlichen aus einem Gemenge von Kalknatronfeldspaten und Pyroxenmineralien mit Quarz besteht. Als Nebengemengteile erscheinen Zirkon und Eisenerz.

Die Kalknatronfeldspate gehören in der Hauptsache dem Andesin an; aber auch saurere Mischungen sind vorhanden. So konnte Oligoklas nachgewiesen werden. Die Plagioklase zeigen allenthalben die Zwillingsstreifung nach dem Albitgesetz, wobei die einzelnen Lamellen immer das ganze Mineral durchsetzen und in der Regel gleiche Breitenausdehnung besitzen. Die sonst so weit verbreitete isomorphe Schichtung tritt fast völlig zurück. Zwar beobachtet man zuweilen eine Art Zonarstruktur, aber die äußere Umhüllung bildet nur einen dünnen Saum um den Kern. Nach der Längsachse prismatische Mikrolithe sind nicht selten: die leistenförmigen Durchschnitte wechseln häufig mit den kurz rektangulären.

Viele Feldspatindividuen sind gar nicht lamelliert; es erscheint daher die Vermutung nicht unbegründet, daß sie zum Orthoklas zu zählen sind. Durchweg bekunden die Feldspate recht frischen Habitus. Die Pyroxene liefern die einzigen farbigen Gemengteile. Biotit und Hornblende, welche man auf Grund des sauren Charakters der Feldspate vermuten könnte, scheinen von vornherein gar nicht vorhanden gewesen zu sein. Zwar findet man lokal eine Häufung von rotbraunen Partikeln, welche den Gedanken an eine magmatische Resorption nahelegen könnte, aber die Quantität der Eisenerze ist doch überaus gering. Es liegt offenbar eine Ausscheidung aus reinem pyroxen-dazitischen Magma vor.

Die auftretenden Pyroxene aber gehören verschiedenen Familien an. Die gerade auslöschenden Kristallindividuen erinnern an Hypersthen; aber auch die monoklinen Pyroxene sind verschiedener Art. Zeigen doch die äußeren Zonen öfters eine von dem Kern abweichende Auslöschungsschiefe. Alle sind pleochroitisch. Bei der Winzigkeit dieser Pyroxenmikrolithe aber ist eine genaue Bestimmung ausgeschlossen. Der Zirkon ist nicht gar selten; dagegen sind die Eisenerze überaus spärlich. Außer den bereits erwähnten roten Täfelchen, welche dem Eisenoxyd angehören, konnte in einem Schliff nur ein einziges Magnetitkorn aufgefunden werden. Der Quarz aber ist so häufig in das Gesteinsgewebe eingestreut, daß diese Felsart nicht etwa zu den Andesiten und Porphyriten, sondern zu den Daziten gezählt werden muß.

Die Struktur ist echt hyalopilitisch. Von einem Gegensatz zwischen intratellurischen und Effusionsgebilden kann kaum die Rede sein. Auch die größten Mineralindividuen besitzen in ihrer Hauptentwicklungszone nur Dimensionen bis zu höchstens 0,334 mm; im allgemeinen gehen die Durchmesser über 0,02 bis 0,03 mm nicht hinaus. Nichtsdestoweniger aber schmückt die Kristallmikrolithe in der Regel eine recht gute Umgrenzung. Selbst der Quarz ist nicht xenomorph, sondern automorph; überhaupt teilen die Mineralausbildungsformen ganz den Charakter des Panidiomorphismus, wie er etwa in den aplitischen Ganggesteinen entwickelt ist.

Der Erhaltungszustand des Gesamtgesteines ist ein vorzüglicher. Weder atmosphärische Verwitterung noch postvulkanische Prozesse haben eine tiefgreifende Umbildung hervorgerufen. Wie die Feldspate kaum Spuren von Zersetzung erkennen lassen, so beobachtet man auch in den Augitmikrolithen keine Andeutung einer Chloritisierung oder Serpentinisierung. Das Gestein macht den Eindruck einer neovulkanischen Bildung.

Dazit-Bombe.

Einen noch höheren Grad der Porosität als die Lava erreicht die Bombe von der nördlichen roten Kuppe im Sangun-Tal (S. 247 f.). Das blasige, stellenweise geradezu schaumige Gestein mit rotbrauner Farbe und geringem Eigengewicht baut sich im allgemeinen aus denselben Elementen wie die Lava auf; es ist wie jene im wesentlichen durch die Kombination von Kalknatronfeldspat mit rhombischen und monoklinen Pyroxenen charakterisiert. In einer durch allerlei mikrolithische und kristallitische Gebilde stark entglasten Gesteinsbasis findet man neben zahlreichen polysynthetischen Feldspatzwillingen auch einfache Hälblinge. Die Pyroxene treten hinter den feldspatigen Gemengteilen zurück, doch sind auch sie noch ziemlich reichlich vertreten. Gar nicht selten ist der Quarz. Alle die in das Gesteinsglas eingebetteten Mikrolithe zeigen große Neigung zu kristallographischer

Umgrenzung und bekunden einen recht guten Erhaltungszustand. Die Mandelräume sind teils mit gelbgrünlichen Häuten von Delesit teils mit Kalkspat überzogen und ausgepolstert. Der Delesit ist mit kräftig grüner Farbe durchsichtig und zeigt ziemlich hohe Iuterferenzfarben; es scheint in ihm ein eisenreicher Ripidolith vorzuliegen.

Dazit-Tuff.

Der Dazittuff ist ein verhältnismäßig kompaktes, feinkörniges, dunkelgraues Gestein; seine mineralogische Koustitution ist etwas abweichend von der der Lava und der Bombe. An Alkalifeldspaten konnten Mikroklin und Albit nachgewiesen werden; herrschend sind jedoch auch hier die Kalknatronfeldspate, welche hin und wieder als Kern in den sauren Individuen liegen. Alle Feldspate sind stark zersetzt mit Ausnahme des Mikroklin, welcher auch hier seine starke Widerstandskraft gegen die Einwirkung der Atmosphärilien bewährt. An farbigen Gemengteilen sind offenbar Hornblende oder wenigsteus Pyroxene vorhanden gewesen. Eisenerzanhäufungen, welche den Resorptionshöfen anderer derartiger Gesteine ungemein ähneln, lassen die ursprüngliche Kristallform einer Hornbleude noch gut erkennen und von den Pyroxenen siud noch schwache Überreste vorhanden, welche an die Muttersubstanz erinnern. Der Quarz ist reichlich vertreten und zeigt zuweilen kataklastische Erscheinungen; er tritt in scharfeckigen Splittern und gerundeten Körnern auf. Einzelne Zirkonsäulchen sind durch treffliche Formenentwicklung ausgezeichnet. Es liegt hier ein Kristalltuff vor. welcher Ähnlichkeit mit einem sehr einsprenglingsreichen Porphyr hat, sich aber von einem solchen durch den geringeren Grad des Idiomorphismus der Gemengteile erheblich unterscheidet.

Diabas (Taf. II, 10-12).

Unter allen effusiven Gesteinsformen des Bogdo-Ola-Gebietes ist der Diabas am meisten verbreitet; er tritt an den Hauptgipfeln auf und erscheint an den nördlichen und südlichen Vorbergen; er setzt den Gipfel des nördlichen Panoramaberges zusammen, tritt an dessen Gehängen zutage und steht auch an der Talsohle an. Der Kalksilikathornfels, welcher in diesem Gebirgsteil reich entwickelt ist, wird von dem Ergußgestein des Diabases an den verschiedensten Stellen durchbrochen. Ebenso bildet diese Felsart den Gipfelgrat des westlichen Hauptgipfels, von welchem Wenter bei einem Besteigungsversuch eine Probe mitnahm. Auch auf der Höhe des südlichen Panoramaberges ist Diabas ausgebreitet; besondere Faziesbildungen finden sich an dessen Wänden. Endlich stößt man auf Diabas auch noch südlich von einem rechten Seitentälchen des Gurban-bogdo-Tales.

Der Diabas bildet sowohl Decken als auch Gänge. Die weitgehendsten Modifikationen in Färbung, Korngröße, Bestand und Struktur sind gerade an diesem Gesteinstypus entwickelt. Die feldspatreichen Bildungen zeigen sehr lichte Färbung; im allgemeinen aber herrscht dunkelgrauer Farbenton vor. Einzelne Vorkommnisse tragen auch ausgesprochenen Grünsteinhabitus. Die Korngröße wechselt von mittelkörniger bis zur feinkörnigen und dichten. Neben feldspatreichen begegnet man auch feldspatarmen Varietäten und was das Gefüge anlangt, so läßt auch schon die makroskopische Betrachtung verschiedene Arten der Strukturordnung erkennen.

Unter dem Mikroskop haben alle Vertreter dieser Felsart die Kombination eines mehr oder minder basischen Kalknatronfeldspates mit Augit gemein. Von den Nebengemengteilen ist Ilmenit am weitesten verbreitet; nur in einer Gesteinsprobe scheint er völlig zu fehlen. Dagegen ist Apatit, ebenso wie Zirkon nur sporadisch verteilt. Auch das Magneteisen reicht nicht an die Menge des Titaneisens heran. Von Übergemengteilen sind Chlorit, Uralit, Epidot, Zoisit, Muskovit, Titanit, Magnetkies und Pyrit, Quarz und Kalzit zu nennen.

Die Feldspate gehören den verschiedensten Mischungsverhältnissen an: vom Albit bis zum Anorthit sind alle Plagioklase vertreten; meist sind sie tafelförmig nach M, vielfach jedoch auch gestreckt nach der Kante P/M uud iu einzelnen Fällen auch von isometrischem Habitus. Der zonare Aufbau ist in einzelnen Vorkommnissen ungemein häufig, während er in anderen sehr zurücktritt. Wo die Zonarstruktur zur Geltung kommt, setzen die einzelnen isomorphen Schichten in der Regel scharf gegen einander ab, gehen aber zuweilen auch ohne feste Grenzlinien allmählich ineinander über. Die Zwillingslamellierung folgt meist dem Albitgesetz, doch trifft man eng gescharte Lamelleusysteme nur bei deu sauren Varietäten. Manchmal ist eine Zwilliugsstreifung überhaupt nicht zu beobachten. Anderseits gehört das gleichzeitige Auftreten eines doppelten Lamellensystems nicht gerade zu den Seltenheiten. Vielfach bekundet der Feldspat noch unversehrte Frische; in der Mehrzahl der Fälle dagegen ist die glasige Erscheinungsweise infolge starker Zersetzung völlig verschwunden. Vielfach ist Chlorit von den Rändern und Spaltrissen her eingewandert, meist aber hat die Saussuritisierung zu einem Gemenge von Zoisit, Epidot, Muskovit und Quarz geführt und nur noch schwache Spuren des Mutterminerals zurückgelassen.

Der Pyroxen wird nuit grüner Farbe von geringer Inteusität und schwachem Pleochroismus durchsichtig: in einem Vorkommnis aber zeigt er braunvioletten Farbenton mit kräftigem Farbenwechsel. Rhombische Pyroxene waren in keinem Probestück nachzuweisen; dagegen ist in einem Gestein der Pyroxen mit kleinen Achsenwinkeln gar nicht selten. Die Zwillingsbildung uach der Querfläche ist eine überaus häufige Erscheinung. Neben den eigentlichen Juxtapositionszwillingen beobachtet man auch Kristallindividuen mit einer einzigen eingeschalteten schmalen Zwillingslamelle, die häufig genug die Spaltbarkeit unter schiefem Winkel kreuzt. Exakte Auslöschung ist die Regel, Ausnahmen fehlen jedoch keineswegs. Chloritisierung und Uralitisierung haben von dem Augit oft wenig übrig gelassen. So kommt es, daß Chlorit und grüne Hornblende oft einen wesentlichen Anteil an dem Aufbau des Gesteines nehmen und die bekannte Grünfärbung verursachen. Als Nebenprodukte erscheinen bei diesem Prozeß gerne Epidotmineralien oder auch Kalzit.

Der überaus verbreitete Ilmenit zeigt häufig vollkommene Spaltbarkeit und Zwillingsbildung. An den Rändern setzt die Leukoxenentwicklung ein, und gar zierlich schaut zwischen gekreuzten Nikols das dunkle Auge des Erzkorns aus der leuchtenden Titanitaureole heraus. Auch Sagenitbildung ist nicht allzu selten.

An das Eiseuerz heften sich gerne die farbigeu Gemeugteile. Apatit und Zirkon, Pyrit und Magnetkies geben zu keinerlei Bemerkung Anlaß. Der Quarz, der gar nicht selten ist, füllt geru die Interstitien zwischen den Feldspaten aus. Biotit kommt nur in einer einzigen Probe vereinzelt vor. Kalzit offenbart allewege seine Natur als Sekundärprodukt.

Hinsichtlich der Strukturordnungeu sind so ziemlich alle Möglichkeiten erschöpft. Ein Vorkommen zeigt in seinem Gefüge rein gabbroiden Charakter. Die Feldspate sind dick tafelförmig oder geradezu isometrisch. Die Pyroxene fügen sich selten mit guter Umgrenzung iu das Gewebe. In anderen Fällen dagegen ist die porphyrische Struktur auch makroskopisch schou scharf ausgeprägt. Feldspate und zum Teil Augite erscheinen in zwei Generationen. Einsprenglinge, die im Durchmesser 10—15 mm halten, liegen in einer dichten Grundmasse eingebettet: und auch, wo der Gegensatz zwischen Einsprenglingen und Grundmasse nicht so in die Augen springt, ist er bei der mikroskopischen Untersuchung noch sehr gut wahrnehmbar. Zwischen diesen beiden extremen Strukturformen bewegen sich solche, welche das bezeichnende ophitische Gefüge in höherem oder niederem Grade aufweisen. Intersertale Strukturordnung ist keine Seltenheit, und es ist namentlich der Quarz, welcher dabei eine Art Zwischenklemmungsmasse bildet.

Als ein Beispiel für gabbroides, hypidiomorphkörniges Gefüge kann das Gipfelgestein des nördlichen Pauoramaberges angeführt werden; es ist sehr feldspatreich. Oligoklas-Andesin, Andesin, Labrador-Bytownit und Bytownit sind vertreten. Zonarstruktur ist verbreitet. Doppellamellierung vereinzelt. Die Verwitterung setzt im Kern ein, die Einwanderung von Chlorit erfolgt von außen her. Die Saussuritisierung hat geringe Fortschritte gemacht, die Uralitisierung ist weiter gediehen. Der grün durchsichtige Augit mit schwachem Pleochroismus von grün zu gelblichgrün, mit selten zonarem Aufbau und häufiger Zwillingsbildung nach der Querfläche, mit mangelhaftem Idiomorphismus und guter Spaltbarkeit nach dem Prisma, mit gedrungen prismatischer Entwicklung und wenig ansehnlicher Korngröße ist gar nicht selten von Spaltrissen aus und vom Rande her in grüne Hornblende umgewandelt. Die Identität des reichlichen Eisenerzes mit Ilmenit ist nicht bloß durch Leukoxenumrandung und Spaltbarkeit, soudern auch durch die Zugehörigkeit zum hexagonalen Kristallsystem sicher gestellt. Gitter- und netzförmige Sagenitbildung zeigt schwache Ansätze. Als ein Vorzug dieses Gesteins kann endlich sein Apatitgehalt gelten (Taf. II, 10).

Die porphyrische Struktur wird am besten durch das gangartig auftretende Gestein des südlichen Panoramaberges illustriert, das in einer dichten, aus Feldspat-Epidot- und Augit-Mikrolithen gebildeten Grundmasse zahlreiche Einsprenglinge von vorherrschend tafelförmigem Labrador enthält, sehr viel Magnetit, teils in kleinen Oktaëdern, teils in der staubfeinen Verteilung des Opazits führt und eine weitgehende Zersetzung der Feldspate zu Albit, Zoisit, Epidot, Muskovit und Quarz erlitten hat. Dieses Gestein ist wohl als Zwischenglied, zwischen den Daziten und Porphyriten einerseits und den Diabasporphyriten anderseits, zu betrachten.

Die ophitische Strukturordnung hat eine höchst typische Ausbildung in dem Gestein von der Talsohle des nördlichen Panoramaberges gefunden. Die von Feldspatleisten zerschnittenen, großen Augitkörner mit ihrer mangelhaften kristallographischen Umgrenzung zeigen auf weite Entfernung hin die gleiche optische Orientierung, und die Primogenitur des Feldspates ist über allen Zweifel erhaben. Als eine besondere Eigentümlichkeit gerade dieser Felsart mag das Auftreten von winzigen Zirkonsäulchen mit pleochroitischen Höfen in dem nicht allzu seltenen Chlorit genannt sein (Taf. II, 11).

Der Grünsteinhabitus ist besonders an Wenters Gipfelgestein entwickelt (siehe S. 287). Es ist eine graulichgrüne Bildung, deren porphyrische Struktur auch makroskopisch schon deutlich hervortritt. Der Wechsel von helleren und dunkleren Bestandteilen ist besonders auf der Schieferungsfläche in die Augen springend. Unter dem Mikroskop sind zwar noch einzelne Überreste von Feldspaten als Zeugen vergangener Zeiten und verschwundener

Verhältnisse zu erkennen; im allgemeinen aber sind die Feldspate zu Saussurit zersetzt und die Pyroxene zu Chlorit umgewandelt. Ziemlich reichlicher Quarz erscheint sekundär zugeführt und als Neubildung tritt Pyrit auf. Besondere Erwähnung verdient die ausgezeichnete Entwicklung der Fluidal- und der Pflasterstruktur. Die Feldspatmikrolithe zeigen nicht bloß vorzügliche Parallelordnung, sondern auch die gleiche optische Orientierung, und einzelne Vertreter der Epidotgruppe bilden lokal ein Mosaik wie es typischer kaum gefunden werden kann.

Lavaartigen Charakter mit blasiger Struktur trägt das Gipfelgestein des südlichen Panoramaberges zur Schau, das sich auch durch seinen verhältnismäßig reichen Gehalt an Kalzit von den übrigen Vertretern dieser Familie unterscheidet (Taf. II, 12).

Durch ansehnlichen Quarzgehalt und intersertales Gefüge ist das Vorkommen an den Gehängen des nördlichen Panoramaberges ausgezeichnet. Als besonderes Charakteristikum sei an diesem sehr feinkörnigen Gestein der saure Charakter der Feldspate angeführt.

Besondere Beachtung endlich verdienen noch die Vorkommnisse im Gurban-bogdo-Tal, südlich vom rechten Seitentälchen. Dort erreicht die Basizität der Feldspate den höchsten Grad; die Mischungsreihe der feldspatigen Gemengteile geht von Oligoklas-Andesin bis zum Anorthit. In diesen mittel- bis feinkörnigen Gesteinen von grauer Farbe mit echt diabasisch-körniger Struktur und glasigem Habitus findet sich auch der Pyroxen mit kleinem Achsenwinkel und der Augit mit der seltenen braunvioletten Färbung. Schließlich lassen sich an ihnen auch am besten die Prozesse der Uralitisierung und Chloritisierung mit der Ausscheidung der bezeichnenden Nebenprodukte verfolgen.

Wenn alle diese Felsarten als Diabase bezeichnet werden, so soll durch diese Namengebung der Frage der Altersbeziehungen wieder in keiner Weise präjudiziert werden. Der Name wird nicht im Sinn einer Beschränkung auf vorkarbonische Gesteine gebraucht; er wird vielmehr nur als Bezeichnung für olivinfreie Ergußformeu gabbroider Magmen mit der charakteristischen Eigentümlichkeit, wie sie im geschieferten Gebirg mit seltener Regelmäßigkeit auftritt, benützt. Aus der kurzen Schilderung der einzelnen Vorkommnisse ist wohl ersichtlich, daß sowohl Trapp und Melaphyr wie Diabas im Sinne Weinschenks vertreten sind. Wenn gleichwohl diesen verschiedenen Typen nicht eine gesonderte Behandlung gewidmet wurde, so erscheint dies darin begründet, daß es sich bei ihnen doch nur um strukturelle Modifikationen, beziehungsweise um Verschiedenheiten in dem Erhaltungszustand einzelner, dem eigentlichen Basalt gegenüber gut abgegrenzter, aber unter sich sehr ähnlicher Felsarten handelt.

Schluss.

Die Bogdo-Ola-Gruppe bildet innerhalb des Gebirgsganzen ein eigenartiges Gebirgsglied, das nicht bloß in orographischer sondern auch iu petrographischer Beziehung, infolge seiner Besonderheiten, abweichenden Charakter trägt; sie besteht aus einem Hauptmassiv mit niedrigeren Vorbergen, welche sich nach Norden und Süden in verschiedenen Faltensystemen gegen die vorgelagerten Ebenen verflachen. Im Norden durchbrechen die Da-tungu-, Dön-chon-dse- und Ogun-schan-dse-Talungen in unter sich parallelen Richtungen die Schichten. Im Süden hat der Gurban-bogdo-Fluß sein tiefes Bett gegraben (siehe Karte IIa).

In den nördlichen Quertälern entsprechen die den gleichen Sätteln und Mulden angehörigen Felsarten einander augenscheinlich. Außerdem dürften aber auch die Gesteine des Südeus in Korrespondenz mit denen des Nordens stehen. Es sind nur die ersteren entsprechend den weiter reichenden Dislokationen, viel stärker durch die metamorphosierenden Agentien beeinflußt worden als die letzteren (vgl. S. 59 f.). Ein Vergleich des Kalkphyllits im Norden mit dem Quarzitschiefer im Süden, der mergelartigen Gesteine im Da-tun-gu-Tal mit denen bei der Kupferschmelze, des nördlichen Schiefertones mit dem südlichen Basalt- ton kann dafür die Bestätigung liefern. Dynamo- und Kontaktmetamorphose haben dabei offenbar intensiv zusammengewirkt (siehe S. 59, 199 f., 273). Schieferton und Basaltton haben natürlich auch eine verschiedene Entwicklungsgeschichte durchlaufen.

Die Tiefengesteine schlummern noch im Schoß der Erde und haben nur durch ihre Wirkungen Kunde von ihrer Anwesenheit gegeben.

Die kalkreichen Sedimente breiten sich vorzugsweise in der zentralen Zone aus. Hier sind hauptsächlich die Lagerstätten der Kalksilikathornfelse (vgl. S. 62 f.). Gegen die Peripherie hin treten Konglomerate, Tongesteine, Grauwacken und Sandsteine in den Vordergrund. Eine genaue geographische Abgrenzung der einzelnen Kategorien innerhalb der sedimentären Schichten ist nicht möglich. Es sind ja nicht bloß die kalkreichen Absätze mit mehr oder weniger tonigen Substanzen durchsetzt, sondern es treten auch verschiedene Gesteinstypen zuweilen in Wechsellagerung miteinander auf.

Die kristallinen Schiefer sind lediglich als höher kristallin entwickelte Sedimente zu betrachten.

Für die Bestimmung des geologischen Alters dieser Schichten liegen nur sehr dürftige Anhaltspunkte vor. Im Bogdo-Ola-Gebiet selbst wurden naturgemäß keine Fossilien angetroffen. Fossilfunde in dem benachbarten Grenzgebiet, welche Obrutschew geglückt sind, deuten wohl auf Oberkarbon. Gröber glaubt daher die Bogdo-Ola-Schichten denselben oder etwas höheren Horizonten zuweisen zu dürfen (vgl. S. 60—63, 262 f.).

An der Unsicherheit der Altersbestimmung für die Sedimente partizipiert selbstverständlich auch die Beurteilung der Altersbeziehungen der Eruptivgesteine, welche jene durchbrochen haben. Vom Standpunkt der Petrographie aus kann man bei besonnenem Verfahren kaum mehr als Vermutungen aussprechen. Die Gesteinsfragmente, welche in den Grauwacken eingeschlossen sind, zeigen eine überraschende Ähnlichkeit mit einzelnen Familien der Eruptivbildungen, wie sie hier vorliegen: es sind besonders Diabas und Keratophyr, die ihre Repräsentanten in dem klastischen Material haben. Die Ähnlichkeit zwischen den Sedimenteinschlüssen und den vorliegenden Eruptivgesteinen ist so auffallend, daß die Vermutung enger genetischer Beziehungen nahe liegt. Wenigstens ist die Möglichkeit nicht ausgeschlossen, daß die Bildungsperioden der beiden Gesteinsarten einander so nahe stehen, daß die eruptiven Felstypen ihr Material noch mit den sedimentären Schichten mischen konnten.

Andererseits sind die Ergußgesteine selbst wieder einer sehr weitgehenden Zersetzung anheim gefallen. Die Mineralneubildungen, welche dabei auftraten, gehören vorzugsweise den spezifisch schweren Gliedern der Epidotgruppe an. Der Reichtum an jenen Kalktonerdesilikaten ist geradezu ein bezeichnendes Charakteristikum jener effusiven Gesteinsformen. Bei dieser Sachlage dürfte die Annahme nicht unbegründet erscheinen, daß die metamorphosierenden Prozesse in Verbindung mit dem Druck einer Gebirgsbildung standen (vgl. S. 59). Die Schichtenfaltung mag zu neuen Eruptionen Anlaß gegeben und diesen die Wege geöffnet haben, so daß an den bereits bestehenden Bildungen tiefgreifende Umbildungen stattfinden konnten.

Eine auffallende Intaktheit zeigt der Cordierit-Liparit; er dürfte wohl zu den jüngsten Bildungen gehören und anläßlich der letzten Aufwölbung zutage getreten sein.

Im übrigen muß die gestellte Aufgabe als gelöst gelten, wenn es gelungen ist, von der tatsächlichen Wirklichkeit, wie sie in der Merzbacher'schen Gesteinssammlung vor Augen liegt, ein anschauliches, naturgetreues Bild zu liefern.

XXII. Meteorologisches aus der Bogdo-Ola von Fr. Lex.

Von G. Merzbachers Expedition wurden nahezu vier Wochen des August 1908 in der Bogdo-Ola zugebracht und während dieser Zeit zum ersten Male in diesem Gebirge meteorologische Beobachtungen von längerer Zeitdauer vorgenommen. Hiebei ist es als günstig zu bezeichnen, daß sich die angestellten Beobachtungen hauptsächlich auf drei Stellen verteilen, so daß von diesen mehrtägige Beobachtungsreihen zustande kamen.

Im Lager am oberen Tempel über dem Bogdo-Ola-See weilte die Expedition vom Abend des 3. August bis zum Morgen des 10. August, im Lager nördlich vom Gurbanbogdo-Paß vom Abend des 11. August bis zum Morgen des 16. August und im Lager südlich vom Paß vom Abend des 16. August bis zum Morgen des 22. August. Das erstgenannte Lager befand sich in einer Höhe von 2505 m, das zweite in einer Höhe von 3435 m und das dritte in einer Höhe von 3270 m.

Als ein weiterer günstiger Umstand muß es bezeichnet werden, daß 1908 in Urumtschi am Nordfuß der Bogdo-Ola von Strokowsky (siehe S. 12 f.) meteorologische Beobachtungen angestellt wurden. Diese waren erhältlich und boten wertvolles Vergleichsmaterial.

Regelmäßige Beobachtungen wurden während der Reise in der Bogdo-Ola zweimal im Tag vorgenommen, um 6 a und um 7 p. Zu diesen Zeiten wurden die Ablesungen von 3 Aneroiden und eines Aspirations-Psychrometers gemacht, ferner Notizen über die Bewölkung und die allgemeine Witterung. Auch ein Naudet'scher Barograph wurde verwendet. Von Zeit zu Zeit wurden dann noch Siedethermometerbestimmungen angestellt und Maximumund Minimumthermometer benutzt (siehe hierüber Näheres S. 239).

Das barometrische Material wurde noch von Professor Messerschmitt (1912 †) bearbeitet, der Rest der meteorologischen Beobachtungen vom Verfasser.

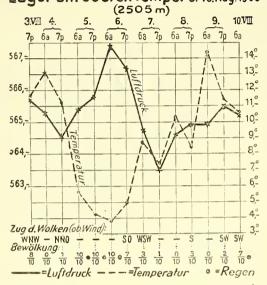
Die folgenden Tabellen enthalten in Rubrik 1 den Namen der Örtlichkeiten, in 2 die Seehöhe derselben, in 3 das Datum, in 4 die Beobachtungszeit, in 5 den Luftdruckwert, gewonnen als Mittel der drei reduzierten Aneroidablesungen, in 6 die Lufttemperatur, in 7 die Temperaturextreme der Nacht und des Tages, in 8 die Feuchtigkeitsverhältnisse der Luft, in 9 die Bewölkungsverhältnisse und in 10 allgemeine Bemerkungen über die tägliche Witterung.

Außerdem sind noch Diagramme beigegeben, welche die annähernd gleichzeitigen Luftdruck- und Temperaturverhältuisse in den Bogdo-Ola-Lagern und in Urumtschi illustrieren sollen. Was nämlich die Beobachtungstermine in Urumtschi anlangt, so sei erwähnt, daß die Morgenbeobachtungen erst um 7 Uhr und die Abendbeobachtungen erst um 9 Uhr angestellt wurden.

Tabelle Ia.

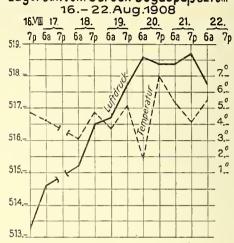
	1	. 2	3	4	5	6	1 7	7		8		9		10
	Ort	Hõhe m	Datum	Beob- achtungszeit	Luft- druck	Tempe-	Temper.			e Relat. Feucht.	Wolkenzug	Wolkenform	Bewöl- kung	Bemerkungen
	Gumüdü	630	1908 1. Aug.	6 a	702.6	21.9			11.2	57		Cu.	2	Heißer Morgen. Lästige Schwü- le. Gegen Abend Firmament frei, Nachlassen der Schwüle. Schwa- che Böen aus SE. Nacht kübl.
	Foŭkan	560	2. ,	6 a	704.8	23.6	_	_	10.9	51		Ci. S.	$\frac{2}{}$.	Gegen 10a Cu. über d. Hoch- kämmen d. Bogdo-Ola, nachmitt.
	r im Da-tun-gu Sanguntal)	1370	2. ,	7 p	641.1	19.4		_	9.3	55		Ci. S. gleichm. verteilt	4	starkes Ausbreiten, gegen Abend Herabsinken u. Verschwinden. Im S. Rauch von einem ungeheuren Waldbrand.
			3. ,	6 a	643.0	14.8	_	-	10 0	80		Ci. S.	3	Schon Früh sehr warm; die Luft
des Sees	er oberhalb Bogdo-Ola- beim zwei- n Kloster	2505	3. ,	7 p	565.7	11.7	_	_	6.4	61	_		_	empfindl. trocken. Luft durch Rauch stark getrübt. Gegen Mittag auf dem Hochplateau wolkenlos, windstille, Rauchsäulen gerade empor, schwach nach SE. abge- bogen. Abend alles klar.
			4. ,	6 a	565.3	13.1	_	_	7.1	62	-	-	0	Sonniger Morgen. Abends Trübung; bei Anbruch der
	ogdo-Ola-See	1990			602.11)		_	-	5.8	39		-	_	Nacht heftiger Regen; dau-
La	ger wie oben	2505	4. , 5. ,	7 p 6 a	564.5 565.4	11.3 5.6	0.7		6.3	62 100	NNE.	Cu. Ni.	$\frac{1}{10}$	ert die ganze Nacht.
			5.	7 p	565.8	4.3	_	6.4		100	_	Ni.	10	Morgens wolkenbruchart. Regen, hält den ganzen Tag u. die folgende Nacht an.
			6	6 a	567.4	3.9	_ 1	_	6.1		_	Ni.	10	Regendauertan, wird schwä-
			6. ,	7 p	566.7	4.9	_	-	6.3	98	SE.	Cu.	7	cher, setzt gegen Mittag aus. Langsam. Aufklaren. Berge in starke Neuschneedecke ge- hüllt. Abend völliges Aufklaren. Nachts wolkenlos.
			7. ,	6 a	564.8	8,8	4.2		5.6	66	WSW.	A. St.	3	Morgen sonnig. Nachmitt. emp-
			7. ,	7 p	563.5	7.2	_ '	16.6	5.6	74	_	Cu.	1	findl. Hitze, bei Beginn d. Dämmerung sehr empfindl. Temperaturfall bei völlig klarem Himmel.
			8. ,	6 a	564.6	10.3	1.7		7.0	75	-	_	0	Schöner Morgen. Mittelstark. Wind aus NNW., mittags schwä-
			8. π	7 p	564.9	8.4	-	21.1	7.9	94	S.	Cu.	3	cher, nachmitt. Aussetzen.
			9. ,	6 a	564.9		6.0	-	8.1	66	_	_	0	Witterungscharakter wic gestern.
			9. ,	7 p	565.5		_	22.3	8.4		SW.	Cu.	2	outin.
			10. ,	6 a	565.2	10.5	9.8	-	6.9	73	SW.	Ni.	7	4-4 ⁴⁵ a leicht. Regen. Morgen trüb, regendrohend; später klarer;
	er im oberen Da-tun-gu	2210	10. ,	7 p	585.5	13.5	_	-	7.9	67	SW.	Cu. N.	7	nachmitt. Aufklaren 2-3 Stund; später Trübung. Abend schwacher Regen von 8-11 ³⁰ p.
			11	6 a	584.9	13.3	8.1		8.5	76	SW.	Ci. S.	2	

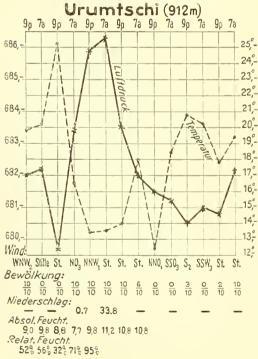
¹⁾ Ein Aneroid.

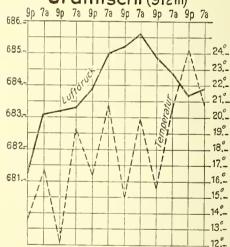

Tabelle IIa.

1	2	3	4	5	6	7		8		1	9		10
Ort			Beob- achtungszeit	Luft- druck	Tempe- ratur		Temper. Maximum		Relat. Feucht.	Wolkenzug	Wolkenform	Bewöl- kung	Bemerkungen Siehe auch S. 180, 181.
	m	-	Pocht		C.0	nachts			0/0	Wo	Wol	1-10	·
		1			0.	naents	tags	111111	70			1-10	
Lager nördlich vom Gurban-bogdo- Paß	3435	1908 11. Aug.	7 p	504.5	5.0	-	_	5.1	77	-	Ni.	10	Seit 4p Regen mit Hagel. Berge leicht beschneit.
I an		12. ,	6a	503.7	2.4	_	-	4.2	77	W.	Cu.	1	Sonnenklarer Morgen. Kalt; gegen 9a von S. hinter dem
		12. ,	7 p	503.0	0.3	-	-	4.8	100	_	Ni.	10	Hauptkamm massenhafte Cumuli, in Stratus übergehend. Trübung den ganzen Tag. Nachm. drei in kurzen Pausen folgende Gewitter, eisiger Wind und Schneetreiben, heftiger Schneefall den ganz. Abend, die Nacht durch bis Tagesanbruch.
		13. ,	6 a	502.4	- 0.8	- 1.2	-						.3 cm Schnee.
		13. ,	7 p	503.4	2.4	-	11.6	4.2	78	N.	Cu.	3	Aufklaren am Morgen. 9a wol- kenlos, kühl. 3-4p leichtes Schneegestöber von NW., abends trüb und kühl.
		14. ,	6a	503.7	0.8	- 2.3		3.4	71	WSW.	Cu. Ni.	2	Nachts leichter Schneefall; tags Himmel dicht bewölkt, hef-
		14. ,	7 p	503.5	- 0.8	_	9.7			NW.	Cu.	2	tiger Wind von N. sich verstärkend: 2p sehr heftig bei Temperatur von +90; Temperatur abnehmend 6 p schon — 10, Boden gefroren.
		15. ,	6 a	503.1	0.5	— 2.7	_	3.8	78	NNW.	S. Cu.	10	Nacht kalt, ohne Niederschlag. Morgens Himmel bedeckt, gegen
		15	7 p	502.7	3.2	_	12.2	4.6	72	SW.	Cu.	2	7a Aufklaren; Wind noch immer heftig von N., Nachlassen gegen 11a, gegen Mittag Berge frei; 2p neue Trübung, erneuter heftiger Nordwind. Aufsteigen von Cumuli aus S., gegen 3p dichtes Gewölk um die höchsten Kämme. Abends legt sich der Wind. Temperatur steigt. Nachts neuer heftiger Wind.
		16	6 a	501.4	2.6			4.1	79	SW.	Cu. Ni.	7	2a leichter Regen. Morgens Sturmwind aus S., gegen 9a Nachlassen. 5p heftiges Ge-
Lager südlich vom Paß	3270	16	7 p	513.3	4.7		_	4.6	71	NE.	'Cu, Ni.	2	witter mit starken Regen- güssen und Hagel.

			2	3	4	5	6	7		8	3		9		10
	Ort		Höhe	Datum	Beob- achtungszeit	Luft- druck	O Temperatur	_	g Temper.	E Absol.	Relat.	Wolkenzug	Wolkenform	-1 Bewöl- or kung	Bemerkungen Siehe auch S. 187—193.
Lage	r südlich Paß	vom	3270	1908 17. Aug.	6a	514.6	4.2	-		3.5	56	sw.	Ni.	6	Morgen trüb, ziemlicher Wind von S. Mit Zunahme des Tages Abnahme des Windes. Nachmittag klar und sonnig; Abends trüb, heftiger Wind aus NW.
				18	6 a 7 p	515.2 516.5	3.1	-	_	2.8	47 67	s.	Ni.	7	Die ganze Nacht sehr heftiger Sturm aus NW., auch Morgens, dabei Himmel wolkenlos, gegen Mittag Nachlassen des Windes. Trübung, schwacher Regen. Wind stoßweise heftig aus N. und NW.; 1/29p Windstille und Schneefall. Ende 1/210 sternklar und ruhig.
				19. ,	6 a 7 p	516.7 517.7	3.7 5.1	_	_	3.6	60 77	SSW.	Ci. S.	3	Morgens schwacher Wind aus N. Zunahme der Bewölkung. 1/27a Auflaren. 11a Wolkenbänke aus N., bis das ganze Gebirge bedeckt ist. Abend Aufklaren.
				20	6 a 7 p	518.6 518.4	7.1	_		3.2	63	S. WSW.	Ci. St.	10	Morgens aus NW. schweres Gewölk gegen die hohen Kämme, gegen 7a lichter; 10 ³⁰ wieder Wolkenbänke, Nachmittags Auf- klaren. Abend windstill.
				21		518.4	5.3			4.9	65 S1	SW.	Cu. Ni.	3 10	Morgens klar; 8a zunehmende Trübung, heftiger kalter Wind mit scharfem Hagel, gegen 11 a furcht- barer Hagelsturm, Schnee und Regen, 5-600 un höher windstill, klar und sonnig. 1 ³⁰ p Gewitter, Hagel, Schnee, Regen, Donner, Blitz. 6 ³⁰ p Wind von unerhörter Heftigkeit; dann Auf- klaren. Die Aneroide ihren Stand nicht verändert.
	im südli an-bogdo		2040	22. . 22. .		518.7 598.4	5.5 17.8	_	_	7.9	58 52	sw.	Cu.	5	Schon morgens von N. massenhaftes Gewölk, kalter Wind. 10 ¹⁵ a Graupeln. Später Aufklaren. An den Hochkämmen lebhaft ziehende dichte Wolken. 3 p im Gebirge Gewitter mit Hagel.
									ţ						


Tabelle Ib.




Tabelle IIb.

Lagersdl.vom Gurban bogdopass 3270m

Urumtschi (912m)

Die Witterungsverhältnisse im Lager am oberen Tempel vom 3. bis 10. August.

Das Charakteristischste in dieser Witterungsperiode war, wie sich aus einem Vergleich der Beobachtungen im Lager mit denen in Urumtschi ergibt, die Ausbildung einer Föhnwetterlage.

Zeigte der Barometer in Urumtschi am 4. früh noch 682.2 mm, so war er am Abend auf 679.6 mm gefallen; gleichzeitig war die Temperatur von 20.2° auf 25.2° gestiegen, (9 p!) und die relative Feuchtigkeit von 56°/0 auf 32°/0 gesunken; auch in der Bergstation hatte der Luftdruck abgenommen (0.8 mm), aber auch die Temperatur, während die relative Feuchtigkeit sich nicht geändert hatte.

Am Abend meldete dann die Bergstation Trübung und bei Anbruch der Nacht heftigen Regen, der die ganze Nacht andauerte und am nächsten Morgen sogar als wolkenbruchartig bezeichnet wurde.

Auch der Beobachter in Urumtschi berichtete von der Verschlechterung des Wetters; am Morgen des 5. maß er 0.7 mm Niederschlag. Das schlechte Wetter hielt in der Bergstation bis zum Mittag des 6. an; in Urumtschi konnte am 6. früh sogar 33.8 mm Niederschlag gemessen werden (das in Urumtschi in den Jahren 1907, 08 und 09 von Strokowski beobachtete Niederschlagsmaximum betrug 42.2 mm am 22. Juni 1907. Vgl. S. 14).

Gleichwie vorher schönes und trockenes Wetter mit fallendem Barometer verbunden war, so war das Regenwetter mit steigendem Barometer in Zusammenhang und zugleich mit Abnahme der Temperatur.

Im Lager stieg der Luftdruck vom 4. abends bis 6. früh um 2.9 mm, in Urumtschi um 6.7 mm; die Temperatur sank in der gleichen Zeit im Lager von 11.2° auf 3.9°, in Urumtschi von 25.2° auf 13.6°. Was die Windverhältnisse anlangt, so verzeichnete Urumtschi am 5. früh zwar NE.3, Abends aber NNW.1, den typischen Regenwind nach Föhn neben NW. und N. (Strokowski).

Vom 6. August berichtete dann Merzbacher, daß der Regen gegen Mittag aussetzte, daß es langsam aufzuklaren begann und die Berge sich in starke Neuschneedecke gehüllt zeigten. Abends trat völliges Aufklaren ein; die Nacht war wolkenlos.

Die Verbesserung des Wetters war wieder mit einem Fallen des Barometers und mit einem Steigen des Thermometers verbunden (siehe Diagramme!).

Der geschilderte Witterungsverlauf erinnert an ähnliche Verhältnisse im Vorland der Alpen bei Südföhn und nachfolgenden W.- und NW.-Windniederschlägen.

Die Föhnwetterlage rief in der Beobachtungszeit relativ große Luftdruckschwankungen hervor: War der Luftdruck in Urumtschi vom 4. früh bis Abends um 2.6 mm gefallen, so stieg er bis zum 6. früh wieder um 6.7 mm; hernach fiel er bis zum 8. Abends um 5.8 mm, und stieg dann langsam wieder an. Ähnlich waren die Luftdruckschwankungen im Lager: vom 4. früh bis Abends fiel der Luftdruck hier um 0.8 mm, stieg dann bis zum 6. früh um 2.9 mm, fiel dann bis zum 7. Abends wieder um 3.8 mm, während die nächsten Beobachtungstermine wieder steigenden Luftdruck zeigten.

Was die Temperaturverhältnisse während der Föhnwetterlage anbelangt, so wurden sie in ihrem Zusammenhang mit den anderen Witterungsfaktoren schon oben angeführt. Die Temperaturverhältnisse in den nachfolgenden Schönwettertagen vom 7. bis 9. August sind dadurch charakteristisch, daß in der 2505 m hohen Lagerstation die Morgen-

temperaturen höher sind als die Abendtemperaturen; in dem 912 m hohen Urumtschi ist dies wenigstens im Mittel der Fall.

Auch die Feuchtigkeitsverhältnisse der Luft während des Föhn- und nachfolgenden Regenwetters wurden oben in Zusammenhang mit der Wetterlage gekennzeichnet. Vom zweiten Schönwetterteil der Beobachtungszeit (7. bis 9. August) sei angeführt, daß im Lager, im Gegensatz zu den Temperaturverhältnissen, am Abend Dampfspannung und relative Feuchtigkeit größer waren als am Morgen; im Mittel betrug die Dampfspannung am Morgen 6.9 mm, am Abend 7.3 mm, die relative Feuchtigkeit 69% und 84%. In Urumtschi war das gleiche der Fall, wenigstens im Mittel; die Werte sind 8.1 mm und 9.4 mm und 49% und 60%.

Was schließlich die Windverhältnisse anbelangt, so sei nur angeführt, daß während der Schlechtwetterperiode Urumtschi wie Lagerstation Winde mit nördlicher Komponente, hauptsächlich NW. aufwiesen, während der Schönwetterperiode aber vorwiegend Winde mit südlicher Komponente.

Die Witterungsverhältnisse in den Hochlagern nördlich und südlich vom Gurban-bogdo-Pass in 3435 m und 3270 m Höhe vom 11. bis 22. August.

Das Hauptcharakteristikum der Witterung in beiden Lagern waren die häufigen Regen- und Schneefälle, manchmal mit Gewittern verbunden. Diese traten in der Regel in den Nachmittagsstunden auf und waren häufig von heftigen Hagelfällen begleitet. Regen- und Schneefall dauerten zuweilen längere Zeit an: sie fanden außer am Nachmittag auch noch in der Nacht statt. Der Vormittag dagegen war meist durch Aufklaren gekennzeichnet.

Der Hauptwolkenbringer war der NW. im nördlichen wie im südlichen Lager; dabei zeichnete er sich durch eine besondere Heftigkeit aus.

Die Luftdruckschwankungen zeigten in den Hochlagern nicht das Ausmaß, wie im ersten Lager während der Föhnperiode. Die Differenzen zwischen den Morgen- und Abendwerten überschritten nur an 2 Tagen 1 mm (1.3 mm). Ähnliches war in Urumtschi der Fall. Dort betrug die Differenz ebenfalls nur zweimal über 1 mm (1.4 und 2.2 mm).

Was den Verlauf des Luftdrucks in der ganzen Zeit vom 11. bis 16. August (Lager nördlich vom Paß) betrifft, so hat hier, mit einer Unterbrechung am 13., eine stetige Abnahme des Luftdrucks stattgefunden: Am 11. Abends betrug der Luftdruck 504.5 mm, am 16. früh nur 501.4 mm. Im Lager südlich vom Paß konnte dagegen vom 16. bis 20. ein stäudiges Steigen des Luftdrucks festgestellt werden, von 513.3 mm bis 518.6 mm. Das Gleiche war in Urumtschi der Fall: dort stieg der Barometer von 681.3 mm auf 685.6 mm. Vom 20. ab fand dann an beiden Stationen wieder ein Fallen statt.

Hinsichtlich der Temperaturverhältnisse sei angeführt, daß in beiden Hochlagern das Mittel der Abendwerte etwas größer war als das der Morgenwerte, nämlich im Nordlager 2.0° gegen 1.1° und im etwas niedrigen Südlager 5.1° gegen 4.0°. In Urumtschi war das Umgekehrte der Fall. Dort waren wieder die Morgenwerte etwas höher als die Abendwerte, nämlich in der Zeit vom 11. bis 16. August 19.4° gegen 18° und in der Zeit vom 16. bis 22. August 19.3° gegen 17.5°. Das Diagramm von der letzten Periode zeigt deutlich den Unterschied der Morgen- und Abendwerte an beiden Stationen.

Was die Feuchtigkeitsverhältnisse anbetrifft, so gaben die Abendbeobachtungen, entsprechend der täglichen Verschlechterung der Witterung vom Nachmittag an, im Durchschnitt höhere Werte als die Morgenbeobachtungen. Die absolute Feuchtigkeit betrug im Mittel im Nordlager am Morgen 4.0 mm, am Abend 4.7 mm, die relative Feuchtigkeit 76% gegen 82%. Im Südlager sind die Werte 3.6 mm gegen 4.7 mm und 58% gegen 71%. In Urumtschi ergaben die Abendbeobachtungen zwar auch einen größeren Wert, aber hinsichtlich der absoluten Feuchtigkeit nur um 0.1 mm, sowohl in der Zeit vom 11. bis 16., als in der Zeit vom 16. bis 22. August. Die Zahlen der relativen Feuchtigkeit sind 55% gegen 64% und 55% gegen 66%.

XXIII. Fossile Pflanzen aus dem Tian-Schan,

gesammelt während der Merzbacher'schen Forschungsreisen, hestimmt von J. Schuster.

Mit 2 Tafeln (A und B).

Die hier zu besprechenden Pflanzenversteinerungen sind weniger das Ergebnis systematischer Aufsammlungen als vielmehr charakteristische Stichproben reicher Pflanzenablagerungen aus dem östlichen und zentralen Tian-Schan. Wenn auch das Material im einzelnen spärlich und im allgemeinen weder sehr gut noch vollständig erhalten ist, so kommt ihm doch ein außergewöhnliches Interesse zu; einmal aus dem Grunde, weil von sämtlichen Fundplätzen Pflanzenfossilien bisher nicht bekannt waren und zweitens, weil dadurch die hisher noch offene Lücke in der fossilen Flora von Asien, welche durch die Funde in Turkestan, Zentral-Sibirien, China und Indien hegrenzt wurde, wenigstens teilweise und vorläufig ausgefüllt werden kann.

Übersicht der Fundorte und Pflanzenarten.

- A. I. Bogdo-Ola.
 - I. Sangun-Tal (siehe Taf. 18, Profil V).
 - Aus Horizont A mit Fisch (Taf. A, 11) im ersten Sattel des Sangun-Tales:
 Equisetites aff. ferghanensis Seward Mém. Com. Géol. nouv. sér. 38, 1907,
 S. 17; Taf. A, 4 und 7 und B, 12—14.
 - 2. Erste rote Schichten über Lavastrom:

Cladophlebis denticulata Brongn. Hist. vég. foss. 1828, S. 301;

Baiera angustiloba Heer Fl. foss. arct. V, 2, 1878, S. 24;

Phoenicopsis angustifolia Heer l. c. IV, 2, 1876, S. 51;

Pityophyllum longifolium (Nath.) Moell. K. Sv. Akad. Handl. XXXVI, 6, 1903, S. 40;

Podozamites lanceolatus (L. et H.) Heer var. latifolia Heer l. c. IV, 2, 1876, S. 109.

- 3. Bogdo-Ola-Seetal = Sangun-Tal (siehe Profile auf Taf. 17):
 - a) Erste Klingtone (vgl. S. 247 f.):

Baiera angustiloba;

Phoenicopsis angustifolia.

b) Kurz nach den ersten Klingtonen im Hangenden des untersten Kohlenflözes: Cladophlebis denticulata:

Baiera angustiloba;

Phoenicopsis angustifolia.

c) Zweite Klingtone:

Phoenicopsis angustifolia.

- A. II. Ogun-schañ-dse-Tal (siehe Profile in Taf. 17 und 18).
 - 1. Erster Lavaberg:

Baiera angustiloba:

Phoenicopsis angustifolia.

2. Dön-chon-dse-Tal: (Sandsteine von D 1, Profil II):

Equisetites columnaris Brongn. Prodr. Hist. foss. vég. 1828, S. 37.

3. Dudun-dse-Tal (Profil III):

Phoenicopsis angustifolia.

4. Im Norden des Koi-aschu-Passes am Gebirgsrand:

Equisetites n. sp.?

- B. Aus dem Gebiet des Kaschflusses. I. Mittleres Kasch-Tal.
 - 1. Im Hangenden des Karbonkalkes auf beiden Seiten des 4-5 km breiten Tales und in den Nebentälern; Lavaserie nahe dem Lager des "blaubeknopften Sangha".
 - a) Nördlicher Aufschluß:

Equisetites columnaris;

Cladophlebis denticulata (Taf. A, 1—3);

Baiera angustiloba (Taf. B, 1);

Phoenicopsis angustifolia;

Pityophyllum longifolium (Taf. B, 3-4);

Podozamites lanceolatus typ. (Taf. B, 6) und var. latifolius (Taf. B, 7).

b) Südlicher Aufschluß:

Equisetites aff. ferghanensis (Taf. A, 5-6 und B, 15).

2. In der Nähe des Lama-Klosters Bogdan-kurö und zwar im Norden hievon, gleichfalls im Hangenden der Karbonkalke und Quarzporphyre auftretenden, von jüngeren Laven durchbrochenen Angaraserie:

Equisetites columnaris;

Cladophlebis denticulata;

Phoenicopsis angustifolia;

Steinkohle mit Sphärolithen ("Pila"). 1)

- 3. Temurlyk-Tal.
 - a) Orographisch linkes Seitental des Kasch-Tales und zwar des oberen Mittellaufes, höher als "blauknöpfiger Sangha" und Bogdan-kurö (aus den Sandsteinen und Konglomeraten):

Equisetites columnaris (Taf. B, 11);

Cladophlebis denticulata:

Phoenicopsis angustifolia:

Podozamites lanceolatus var. latifolius.

¹⁾ Vergl. über diese Kohle J. Schuster, Zur Mikrostruktur der Kohle, N. Jahrb. f. Min. 1912, II, S. 39.

- b) Am Weg von Karkara nach Temurlyk (Kukuluk-tau) gekauft: *Tylodendron scythicum* (Roman.) Schuster.
- 4. Im Haugenden des Karbonkalkes des Borogobosun-Tales, das orographisch rechts in das untere Kasch-Tal mündet (Kasch-Serie, Horizont b und c):

Tylodendron scythicum (Taf. B, 8).

- 5. Tasch-malyk-Tal im Süden von Kaschgar am Nordabhang des Alai-Pamir, Südraud des Kaschgar-Beckens:
 - a) 25 km talaufwärts von Tasch-malyk, linke Seite des Geß-Tales; pflanzenführende Schiefer und Sandsteine mit Kohle:

Equisetites n. sp.? (Taf. B, 9);

Phyllotheca Ammoni Schuster n. sp. (Taf. A, 9);

Pityophyllum longifolium (Taf. B, 2 und 5);

Cyclopitys Heeri Schmalh. Mém. Acad. sc. Pétersb. XXVII, 4, 1879, S. 88 (Taf. A, 8).

b) Westlich von Tasch-malyk, ungefähr 35 km im Südwesten von Kaschgar:

Equisetites n. sp.? (Taf. B, 10);

Pityophyllum longifolium;

Cyclopitys Heeri Schmalh.

C. Im Süden von Utsch-Turfan, östlich vom Gräberfeld (Kok-schal-Gebiet):

Chondrites cf. affinis Heer (Taf. A, 10).

Die fossile Flora des Tian-Schan.

Die folgende Tabelle soll einen vollen Überblick über das gesamte Material bilden, soweit dieses eine Bestimmung zuließ.

Algen.

1. Chondrites cf. affinis Heer (Taf. A, 10).

Schachtelhalme.

- 2. Equisetites columnaris Brongniart (Taf. B, 11).
- 3. Equisetites aff. ferghanensis Seward (Taf. A, 4-7 und B, 12-15).

Farne.

- 4. Equisetites n. sp.? (Taf. B, 9-10).
- 5. Phyllotheca Ammoni Schuster n. sp. (Taf. A, 9).
- 6. Cladophlebis denticulata Brongniart (Taf. A, 1-3).

Gingko.

7. Baiera angustiloba Heer (Taf. B, 1).

? Cordaiten.

8. Phoenicopsis angustifolia Heer.

Nadelhölzer.

- 9. Pityophyllum longifolium (Nathorst) Möller (Taf. B, 2-5).
- 10. Cyclopitys Heeri Schmalhausen (Taf. A, 8).
- 11. Podozamites lanceolatus typ. (Taf. B, 6) und var. latifolius Heer (Taf. B, 7).
- 12. Tylodendron scythicum (Romanowski) Schuster (Taf. B, 8); Abdrücke und Steinkerne.

Brennstoffe.

- 13. Steinkohle mit Sphärolithen ("Pila").
- 14. Braunkohle ("Torf"), erdig-mulmig, aus undeutlichen Cuticulafetzen bestehend.

Charakter der Flora und ihr geologisches Alter.

1. Paläozoikum.

Unter den angeführten Resten ist mir in erster Linie das eigentümliche Fossil aufgefallen, das aus dem Borogobosun-Tal teils als Abdruck teils als Steinkern vorliegt. Der letztere erinnert äußerlich etwas an Lepidodendron-Arten, wie z. B. Lep. fusiforme im sogenannteu Bergeria-Erhaltungszustand, und in der Tat wurdeu übereinstimmende Fossilien von Romanowski mit Lepidodendron verglichen. Die genauere Betrachtung der Felder zeigt aber, daß diese nichts mit Lepidodendron gemein haben, sondern die Abdrücke der Markoberfläche von wahrscheinlich Araucarien-ähnlichen Nadelhölzern darstellen, wie sie namentlich aus dem Perm des Rheingebietes unter dem Namen Tylodendron bekannt sind. Nun kommen ähnliche Markkörper von anderen Koniferen auch in der Trias, z. B. im Keuper vor; hier ist aber doch die Form der Felder der Markoberfläche, soweit bekannt, eine etwas andere als bei den vorliegenden Exemplaren (Taf. B, 8). Ich kann diese um so eher dem Permokarbon zuweisen, als auch der geologische und zoopaläontologische Befund (Spirifer glaber) mit Sicherheit das gleiche Alter erweist. Leider sind sonst keinerlei Pflanzeneinschlüsse vorhauden, so daß es uugewiß ist, ob, wie es bei Tylodendron am wahrscheinlichsten wäre, Perm vorliegt oder oberstes Karbon (obere Ottweiler Schichten), da aus jüngeren Karbonablagerungen, soweit mir bekannt, typische Tylodendron-Markkörper nicht bekannt sind. Es ist mir demnach sehr wahrscheinlich, daß die Karbonserie um das Borogobosun-Tal dem obersten Karbon bezw. einer hierher gehörigen Goudwana-Facies angehört.

Ein identischer Markkörper wurde am Weg von Karkara uach Tenuurlyk (Kukuluk-tau) gekauft, woraus wenigstens vermutet werden darf, daß auch in dieser Gegend derartiges Karbon ansteht.

2. Mesozoikum.

Der weitaus größte Anteil entfällt auf das Mesozoikum, dem 10 bestimmbare Typen zugewiesen werden müssen. Besonders reich sind Reste von Schachtelhalmen vertreten, allerdings meist fragmentarisch erhalten, so daß eine spezifische Bestimmung nur teilweise möglich ist.

So finden sich in der Bogdo-Ola, im Sangun-Tal, sehr zierliche Diaphragmen (Taf. A, 4 und B, 13—14) eines Schachtelhalmes, auch ausgebreitete Blattscheiden (Taf. B, 12), aber so gut wie nichts von den Stämmen bzw. Internodien, weshalb eine definitive Bestimmung nicht gegeben werden kanu. Auf der anderen Seite sind gerade Diaphragmeu von dieser charakteristischen Form schou Romanowski aufgefallen, der sie als Asterocyclites beschrieb, und die von Seward als Equisetites ferghanensis¹) bezeichneten Reste aus dem Jura von Ferghana stimmen mit den vorliegenden so gut als möglich überein, so daß ich sie unbedeuklich damit identifizieren würde, könnte ich Stammreste zum Vergleiche herausziehen. So kann mau nur auf einen sehr elegauten Typ schließen, welcher auch dem jurassischen Equisetites lateralis nicht unähnlich gewesen sein dürfte, während in der Trias

¹⁾ Hier ist überall die Schreibweise ferghanensis durchgeführt, welche dem Genius des turkestanischen Sprache gemäßer ist.

entsprechend zarte Formen kaum vorkommen. Ich spreche mich also, wenn auch mit Vorbehalt, schon aus dem Grunde für Jura aus, weil entsprechende Diaphragmen (Taf. A, 5-6 und B. 15) sowie feine Stengelreste (Taf. A, 7) vom südlichen Aufschluß des mittleren Kaschtales vorliegen, wo eine typisch jurassische Florengesellschaft gesammelt wurde. Ein Licht auf die Frage könnte vielleicht der Ganoidfisch werfen, der mit den Schachtelhalmresten zusammen im Sangun-Tal gefunden wurde (Taf. A, 11). Ein liassisches Alter wäre hier nicht ganz ausgeschlossen, aber der botanische Befund spricht, wie gesagt, mehr für die gleiche Juraablagerung, der auch die übrigen Pflanzenreste angehören.

Ein zweiter Schachtelhalm, der mehrfach und besser erhalten ist, dürfte einer neuen Art angehören. Er würde durch seine Form an sich mehr für Trias sprechen, würde nicht die Begleitslora eine solche Annahme als unzutressen. Dagegen ist es nicht unwahrscheinlich, daß ältere Angaben von Equisetum arenaceum, aus dessen Bestimmung Muschketow auf Rhät schloß, gleichfalls auf Jura sich beziehen. Das vorliegende Material wenigstens hat für die auf dem karbonischen Kalk liegenden Schichten stets Jura ergeben. Der hier zu beschreibende Schachtelhalm von Tasch-malyk und dem Nordabhang des Koi-aschu-Passes ist von Funden der zuerst genannten Lokalität auf Tas. B. 9 und 10 dargestellt. 1) Jedenfalls wird es gestattet sein, derartige Formen, solange unsere Kenntnisse nur auf Abdrücken basieren, im Anschluß an Seward zu Equisetites zu stellen, besonders wenn, wie im vorliegenden Falle, die Blüten unbekannt sind. Andere Reste sind namentlich durch die Form und Dimension der Blattscheide ausgezeichnet (Tas. A. 9), welche etwas an indische Phyllothcca-Arten erinnert. 2)

Die übrigen Pflanzenreste bieten zu systematischen Bemerkungen kaum einen Anlaß, dagegen dürften einige Bemerkungen über die Verbreitung schon mit Rücksicht auf die Altersfrage nicht ohne Interesse sein. Sehen wir von den als neu angenommenen Schachtelhalmen ab, so kommen 8 Arten in Betracht. An turkestanische Vorkommnisse schließen sich an: Equisetites forghanensis und columnaris, Cladophlebis denticulata, Pityophyllum longifolium, Phoenicopsis angustifolia, Podozamites lanccolatus. Die beiden letzteren sind ferner aus der Mandschurei bzw. Mongolei bekannt, Baiera angustiloba auch aus China, Cyclopitys Heeri aus Rußland (brauner Jura). Durch die vorliegenden Bestimmungen ist die Lücke in der einheitlichen fossilen Flora vom Kaukasus, Turkestan, Mandschurei, Mongolei, China und Korea durch ein passendes Äquivalent im Tian-Schan ausgefüllt. Aber auch Japan, Sibirien, Bornholm, England weisen die gleichen Typen auf. So kann die Frage nach dem geologischen Alter nur auf den Jura und zwar auf den Dogger entfallen. Dies setzt eine Transgression über Trias voraus; letztere Formation ist aber im Tian-Schan bis jetzt nicht nachgewiesen, falls man nicht etwa den Fund im Sangun-Tal mit Fisch und Schachtelhalm dafür in Anspruch nehmen will, was mir indes nicht sehr wahrscheinlich ist. Wäre die Flora liassisch (etwa homolog Gresten oder Steierdorf), so würde die Zu-

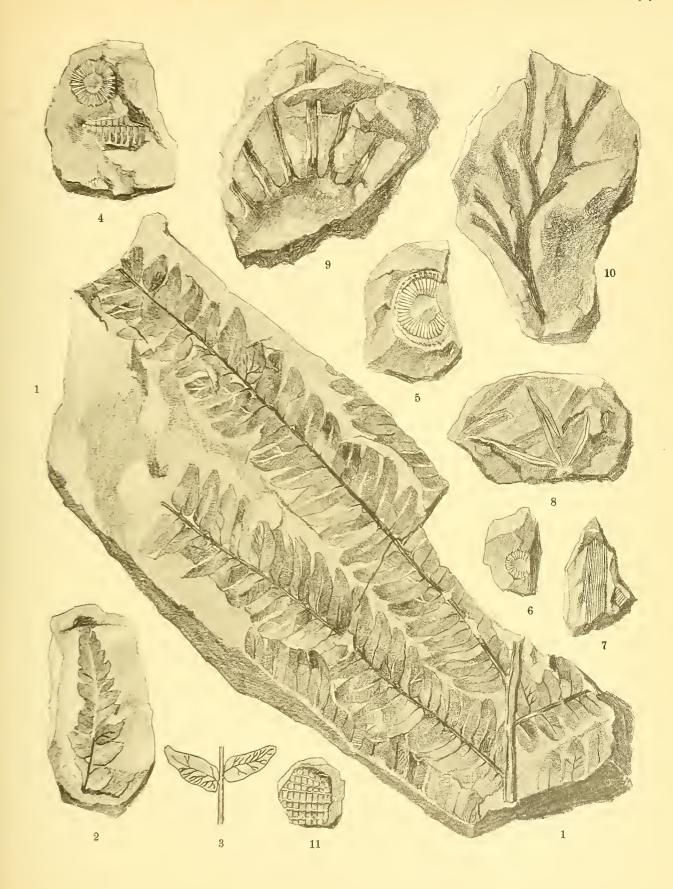
¹⁾ Equisetites n. sp.? (Taf. B, 9 und 10): Internodien ungefähr doppelt so lang als breit, Rippen schmal.

²⁾ Phyllotheca Ammoni Schuster n. sp. (Taf. A, 9): Zähne der Blattscheiden derb, bis 3 mm breit, am Grunde breit, scheibenförmig verwachsen; ziemlich große Form, charakteristischer Begleiter jurassischer Typen im Tasch-malyk. — Benannt nach Oberbergdirektor Professor Dr. L. v. Ammon, dem der Expeditionsleiter für frühere Bearbeitung von Material, der Verfasser für ständige Förderung seiner phytopaläontologischen Arbeiten zu Dank verpflichtet ist.

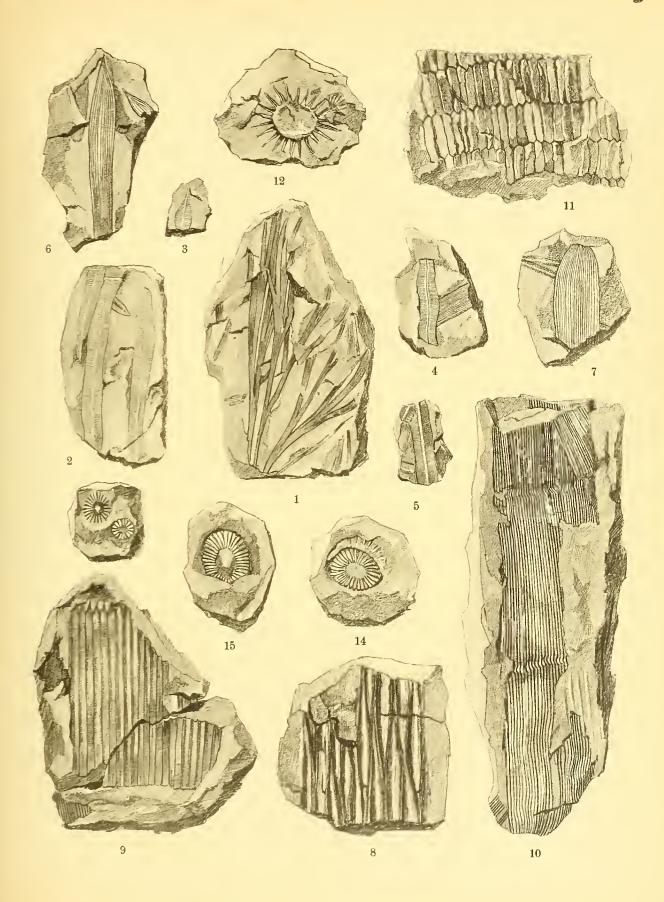
sammensetzung sicher eine andere sein; für den Fischfund soll indes die Möglichkeit nicht geleugnet werden, während in allen anderen Fällen die Zusammensetzung der Flora nur für Jura spricht. Wir können daher die Gesamtheit dieser Schichten, die Angaraschichten, in den Dogger stellen und gleichaltrige Ablagerungen derselben in verschiedenen Teilen des östlichen und zentralen Tian-Schan auf Grund der Pflanzenfossilien feststellen. 1) Dies beweist, daß zu jener Zeit keine allgemeine Transgression (Angarameer) im Tian-Schan herrschte, sondern zahlreiche einzelne Süßwasserbecken von einer gleichartigen Uferflora bestanden waren, von der jetzt wenigstens die Haupttypen bekannt sind; daß die bisher klaffende Lücke zwischen Turkestan und der Mongolei dadurch einheitlich überbrückt ist, dürfte als das Hauptergebnis der fossilen Pflanzenaufsammlungen zu betrachten sein.

3. Kanäozoikum.

Bei Utsch-Turfan wurde zusammen mit Häcksel das auf Taf. A, 10 abgebildete Fossil gefunden, welches oberflächlich eine gewisse Ähnlichkeit mit einer schlecht erhaltenen Baiera besitzt, jedoch bei näherer Betrachtung wohl nur bei Chondrites untergebracht werden kann, wo das bekannte Flysch-Fossil Chondrites affinis das ähnlichste Vergleichsmaterial bildet. Chondriten kommen allerdings auch schon im Apt vor, allein diese Formen sind hinsichtlich der Verzweigung verschieden und so möchte ich wenigstens andeuten, daß hier möglicherweise eine eozäne Ablagerung vorliegt. Leider läßt sich aus den Häckseln nichts entnehmen; doch sind sie anders als die aus Phoenicopsis, Baieraund Equisetiten-Fetzen bestehenden aus dem Jura.


Schließlich ist hier noch eine in kleinen Schmitzen auftretende und von Kalkspatadern durchzogene erdig-mulmige Braunkohle zu erwähnen, die sich in den Hanhai-Schichten fand und keine mikroskopisch bestimmbaren Bestandteile mehr erkennen ließ; sie dürfte dem Pliozän angehören.

Schlussbemerkung.


Von einer speziellen Literaturliste²) kann hier abgesehen werden, da eine solche erst von Seward in seinen Jurassic plants from Caucasia and Turkistan (Mém. Com. Géol. nouv. sér. 38, 1907, S. 45 bis 48) aufgestellt wurde. Als Ergänzung sei nur noch auf die von O. M. Reis in seiner Binnenfauna der Fischschiefer in Transbaikalien (Rech. Géol. et minières le long du chemin de fer de Sibérie, livr. 29, 1909, S. 53 bis 62) beschriebenen Pflanzen aus dem Turga-Schiefer von Witim hingewiesen, welche jungjurassisch-altkretazisch sein dürften: jedenfalls besteht zu den Jurapflanzen des Tian-Schan keinerlei Beziehung.

¹⁾ Eine Bestimmung der verschiedenen Stufen innerhalb des Schichtenkomplexes läßt sich auf Grund unserer bisherigen Kenntnis hier wie auch bei den übrigen mesozoischen Floren Asiens nicht gewinnen; dazu wird es noch vieler Aufsammlungen und Untersuchungen bedürfen.

²⁾ Einen vollen Überblick über die mesozoischen Floren Asiens gibt Seward, Mesozoic plants from Afghanistan and Afghan-Turkistan in Palaentologia Indica IV, 4, new ser., Calcutta 1912, S. 47; die Einsichtnahme dieser Publikation verdanke ich Herrn Geh.-Rat A. Engler. (Anmerkung während des Drucks.)

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Tafelerklärung.

A.

- 1-3. Cladophlebis denticuluta Brongniart.
- 4-7. Equisetites aff. ferghanensis Seward vgl. auch B, 12-15.
 - 8. Cyclopitys Heeri Schmalhausen.
 - 9. Phyllotheca Ammoni Schuster n. sp.
 - 10. Chondrites ef. affinis Heer.
 - 11. Schuppen eines Ganoidfisches, welcher zusammen mit den auf Taf. A, 4 und B, 12-14 abgebildeten Resten von Equisetites aff. ferghanensis Seward vorkommt.

В.

- 1. Baiera angustiloba Heer.
- 2-5. Pityophyllum longifolium (Nathorst) Möller.
 - 6. Podozamites lanceolatus typ. und
 - 7. var. latifolius Heer.
 - 8. Tylodendron scythicum (Romanowski) Schuster.
- 9-10. Equisetites n. sp.?
 - 11. Equisetites columnaris Brongniart.
- 12-15. Equisetites aff. ferghanensis Seward vgl. auch A, 4-7.

Die Herkunft der Fossilien ist in der "Übersicht der Fundorte und Pflanzenarten" angegeben. Zeichnungen (von Hildegard Helmerichs) in natürlicher Größe, Originale im paläontologischen Museum zu München.

XXIV. Über fossile Fische aus der Bogdo-Ola von Maurice Leriche und Otto M. Reis. (Mit Tafel 19.)

Über fossile Fische von Maurice Leriche.

Description d'Heterolepidotus Merzbacheri, espèce nouvelle des Terrains mésozoïques du Tian-Schan, par Maurice Leriche.

Pl. 19.

Les échantillons rapportés d'une couche à Poissons, intercalée dans la formation houillère de la chaîne de Bogdo-Ola, dans le Tian-Schan, renferment des nombreux restes des Poissons, malheureusement très dissociés et très fragmentaires.

Ces restes semblent appartenir à une même espèce de la famille des Eugnathidés. Ils comprennent: 1º des parties isolées du squelette céphalique (pièces operculaires, rayons branchiostèges, traces d'orbitaires et d'os du crâne); 2º des parties plus ou moins importantes du tronc et de la queue.

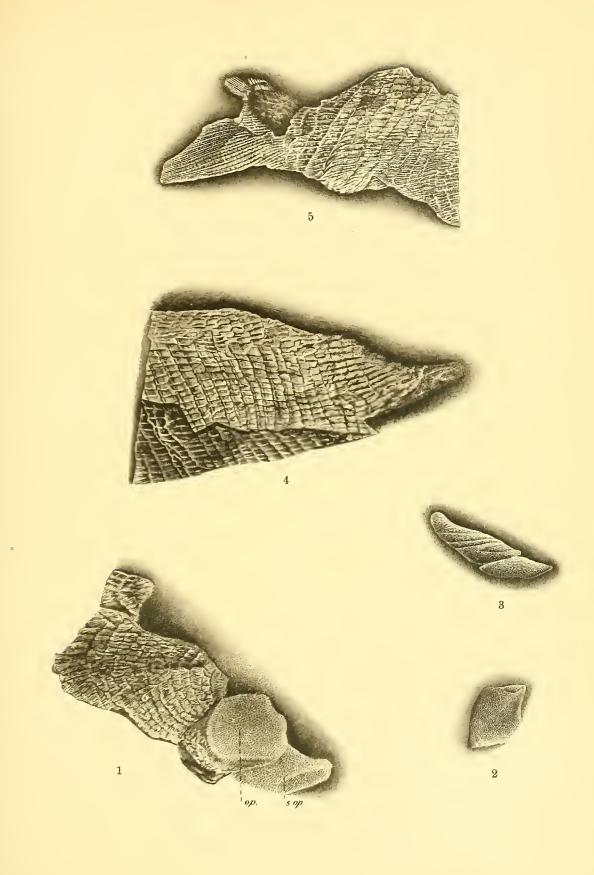
L'opercule (Pl. 19, fig. 1, op. fig. 2) est plus long que haut. La suture qui le sépare du sous-opercule est très faiblement oblique.

Les rayons branchiostèges (fig. 3) forment de larges lames.

Les pièces operculaires, les rayons branchiostèges, les orbitaires et les os du crâne sont couverts, à la face externe, d'une granulation serrée, qui a une tendance à se transformer en côtes tuberculeuses, sur les rayons branchiostèges.

Les écailles (fig. 1, 4, 5) sont assez épaisses. Celles des rangées antérieures (fig. 1) sont plus hautes que longues. Celles de la face ventrale, dans la partie postérieure du tronc et dans la région caudale (fig. 4, 5), sont basses et fort allongées.

Elles sont ornées de petites côtes longitudinales, bien marquées dans la partie antérieure du tronc, affaiblies et réduites en nombre dans la partie postérieure. Dans la région caudale, ces côtes sont limitées à la moitié postérieure des écailles et denticulent le bord postérieur de celles-ci.


A la face interne (fig. 4), les écailles sont renforcées par un bourrelet, qui est situé dans leur moitié antérieure et qui est parallèle à leur bord antérieur.

La nageoire caudale est fourchue et garnie de fulcres bien dèveloppés (fig. 5).

Le Poisson qui vient d'être décrit appartient au groupe des Eugnathidés, à écailles épaisses, représenté par les genres Eugnathus L. Agassiz, Heterolepidotus Egerton, Allolepidotus Deecke, Ptycholepis L. Agassiz, Neorhombolepis A.-S. Woodward.

Il diffère:

- 1º du genre *Allolepidotus*, par ses os operculaires plus solides et par ses écailles plus allongées et striées à la face externe;
- 2º du genre *Ptycholepis*, par ses écailles moins allongées, moins fortement striées à la face externe, et renforcées par un bourrelet à la face interne;
 - 3º du genre Neorhombolepis, par ses écailles moins allongées et striées à la face externe.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

La forme relativement élevée le rapproche davantage du genre *Heterolepidotus*, que du genre *Eugnathus*.

Il se distingue facilement de toutes les espèces connues du genre Heterolepidotus, notamment par l'ornementation plus accusée de ses écailles.

L'espèce nouvelle établie pour ce Poisson est dédiée à M. le Professeur G. Merz-bacher; au cours de l'un de ses voyages d'exploration dans le Tian-Schan son collaborateur, Mr. P. Gröber a trouvé les premiers restes de poisson dans les Schistes des grès marneux du Groupe du Bogdo-Ola.

Le genre *Heterolepidotus* est connu depuis le Trias supérieur jusqu'au Kimeridgien inférieur, inclusivement. La plupart des espèces décrites jusqu'ici proviennent du Trias supérieur et du Lias.

Explication de la Planche 19.

- Fig. 1. Partie du squelette céphalique et partie antérieure du tronc d'un individu, vues du côté droit. op., opercule s. op., sous-operculc.
- Fig. 2. Opercule droit, incomplet, vu par la face externe (les bords postérieur et inférieur ne sont pas conservés).
- Fig. 3. Rayons branchiostèges droits, vus par la face externe.
- Fig. 4. Moule interne et empreinte externe de la partie postérieure d'un tronc. L'échantillon montre l'empreinte interne des écailles du côté gauche et l'empreinte externe des écailles du côté droit. On distingue, sur les empreintes internes, le sillon imprimé par le bourrelet de la face interne des écailles.
- Fig. 5. Portion de la queue et de la nageoire caudale d'un individu, vue du côté droit. On distingue les fulcres du bord inférieur de la nageoire caudale.

Les figures 1, 4 et 5 sont en grandeur naturelle; les figures 2 et 3 ont subi une légère réduction.

Über fossile Fische aus der Bogdo-Ola von Otto M. Reis.

Das Material besteht aus einer größeren Anzahl von unzusammenhängenden Fragmenten des Schuppenkleids, vereinzelten Schädel- und Schultergürtelknochen und unvollständigen Flossenfragmenten. Es hat außerdem den Nachteil, daß alle Skelettgebilde fast lediglich im Abdruck in einem etwas rauhen feinsandigen Gestein vorliegen. Bestimmung kann daher nur mit allem Vorbehalt bezüglich der Skulptur und der Form der Schuppenkleidfragmente erfolgen. Dies hat einige Schwierigkeit, da ja diese beiden Merkmale, bei Neigung zu etwas abweichender Gestaltung, je nach der Körperregion wechseln. Besser erhaltene Teile des Schuppenkleides zeigen nun eine dorsoventrale Verschmälerung und eine kaudale Verlängerung der Schuppen, welche in vieler Hinsicht. besonders auch bei dem Auftreten einer feinen, weitgestellt gegabelten Längsskulptur, an Ptycholepis erinnert. Die Kopfknochen und Schultergürtelteile sind ebenfalls stark skulpturiert, verraten aber eine viel geringere Neigung zur Verlängerung der Skulpturleisten als dies bei den bekannten Ptycholepis-Arten der Fall ist. Die Fragmente der Flossen zeigen eine paarige Flosse mit schwachem Fulcralbesatz und dichtern Zusammenschluß der Flossenstrahlen, das Fragment der Schwanzflosse desgleichen. Die Gliederung scheint hier länger als breit zu sein. Es ist aus den Flossenstrahlen gerade in diesem

Fall nicht leicht zu sagen, ob ein paläozoischer heterocerker Fisch oder ein mesozoischer Typus vorliegt. Die erwähnten äußeren Merkmale können auf *Ptycholepis* bezogen werden, von welcher Gattung dann eine neue Art vorläge. Es ist aber hervorzuheben, daß die wichtigsten Teile zu einer unzweifelhaften Feststellung von Genus und Spezies fehlen.

Die Gattung Ptycholepis kommt in wenigen Arten in der oberen Trias von Connecticut und Italien vor, hat aber ihre Hauptverbreitung im unteren und oberen Lias Europas.

XXV. Verzeichnis der Pflanzen vom Bogdo-Ola-Gebirge, 1)

gesammelt von Professor Dr. G. Merzbacher und bearbeitet von Boris Fedtschenko, Oberbotaniker im Kaiserlichen Botanischen Garten zu St. Petersburg.

Vorwort.

Vorliegendes Verzeichnis enthält nur einen kleinen Teil der Pflanzen aus dem riesigen Herbarium des hochverdienten Tian-Schan-Forschers, Professor G. Merzbacher, namentlich diejenigen, welche in der wenig bekannten Gegend des Bogdo-Ola-Gebirges aufgesammelt wurden.

Wir gedenken einige allgemeinere Betrachtungen über die Flora der von Professor Merzbacher untersuchten Gebiete erst später zu bringen und veröffentlichen zurzeit nur dieses Verzeichnis mit dem Wunsche, wenigstens eine vorläufige Idee über den Charakter der Flora dieser Gegend zu geben.

Einige von den von uns angeführten Pflanzen sind ganz besonders interessant, und zwar nicht nur die prächtige neue Art Chrysanthemum Merzbacheri B. Fedtschenko sondern auch die bekannte Lilie Lilium tenuifolium.

Bei der Untersuchung der Professor Merzbacher'schen botanischen Ausbeute hatte ich die Beihilfe von Frl. N. Desjatowa, der ich einen Teil der Arbeit übergab.

St. Petersburg, 16. Juli 1913.

I. Gnetaceae.

1. Ephedra monosperma Gmel. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. In der Umgebung von Urumtschi und am Südrand des Gebirges. 2.—29. VIII.

II. Liliaceae.

2. Lilium tenuifolium Fisch. Turkestania chinensis: Montes Bogdo-Ola. Am Wege von Foŭkan zur Bogdo-Ola, in der unteren Alpenwiesenzone. 2.—3. VIII.

Das Auffinden des Lilium tenuifolium Fisch. im Bogdo-Ola-Gebirge ist ziemlich unerwartet, da bekanntlich die Gattung Lilium dem Tian-Schan und Dsungarischen Alatan gänzlich fehlt. Allerdings kommt diese schöne Art im Altai, sowie in der östlichen Mongolei vor.

Wäre es nicht möglich, daß diese Pflanze von etwaigen Gärten aus der Umgebung stammt? In ihrer Pracht ist die vorliegende Pflanze viel kräftiger usw. als die gemeine ostasiatische Pflanze.

¹⁾ Siehe im Übrigen meine Ausführungen in Kap. XIII, S. 109 f. G. M.

III. Iridaceae.

3. Iris halophila Pall. Turkestania chiuensis: Montes Bogdo-Ola et opp. Urumtschi. In der Umgebung von Urumtschi. 26.—29. VIII.

IV. Salicaceae.

4. Populus hybrida M. B. Turkestania chinensis: Montes Bogdo-Ola. Aufstieg zum Bogdo-Ola-See, am Gehänge in schwacher Baumform massenhaft. 4.—8. VIII.

V. Polygonaceae.

- 5. Atraphaxis frutescens (L.) C. Koch. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Lager am Südrande der Bogdo-Ola und am Nordrand. 2.—29. VIII.
 - Am Wege von Foŭkan zur Bogdo-Ola in der trockenen Lehm- und Kiessteppe, allenthalben in großen Mengen; auch noch höher bis zum See hinauf an allen sehr trockenen Stellen. 2.—5. VIII.
 - Vom Sayopu-See nach Urumtschi. 25. VIII.

VI. Chenopodiaceae.

- 6. Eurotia ceratoides (L.) C. A. M. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Auf dem Tempelfelsen von Urumtschi und an steinigen Stellen der Kiessteppe in großen Mengen zerstreut. 2.—29. VIII. und 4. IX.
- 7. Suaeda physophora Pall. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Vom Sayopu-See nach Urumtschi und am Nordrand in niederen Regionen. 2.—30. VIII.
- 8. Arthrophyton (Haloxylon) Ammodendron (Bge.) Litur. Turkestauia chinensis: Montes Bogdo-Ola et opp. Urumtschi. Am Wege von Foŭkan zur Bogdo-Ola in der trockenen Lehm- und Kiessteppe, in großen Mengen. Auch noch höher oben. 2.—5. VIII. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Nach Foŭkan in der trockenen Lehm- und Kiessteppe massenhaft. 2. VIII.

VII. Caryophyllaceae.

- 9. Stellaria Sp. Turkestania chinensis: Montes Bogdo-Ola. Unteres Lager am Südrande der Bogdo-Ola. 26.—29. VIII.
- 10. Cerastium vulgatum L. Turkestania chinensis: Montes Bogdo-Ola. Lager am Südrande des Bogdo-Ola. 21.—25. VIII.
- 11. Cerastium trigynum Vill. Turkestania chinensis: Montes Bogdo-Ola. Unteres Lager am Südrande der Bogdo-Ola. 21.—25. VIII.
- 12. Alsine verna (L.) Wahlenb. Turkestania chinensis: Montes Bogdo-Ola. Hochlager im Süden der Bogdo-Ola. 21.—25. VIII.
- 13. Dianthus superbus L. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone von 2000—2800 m an besonnten Stellen, auch am Südabhang öfters. 6.—25. VIII.

VIII. Ranunculaceae.

- 14. Delphinium dasyanthum Kar. et Kir. Turkestania chinensis: Montes Bogdo-Ola. In der Zone der Alpenwiesen von 2200—2600 m an feuchten Stellen. 6.—14. VIII.
- 15. Thalictrum isopyroides C. A. M. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. In der Umgebung von Urumtschi, auch am Nordrande häufig. 2.—29. VIII.

IX. Cruciferae.

- 16. Lepidium latifolium L. Turkestania chinensis: Montes Bogdo-Ola. Lager am Südrande der Bogdo-Ola. 26.—29. VIII.
- 17. Diptychocarpus strictus Trautv. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. In der Umgebung von Urumtschi und am Eingang der Gebirgstäler. 26.—29. VIII.

X. Crassulaceae.

- 18. Sedum Ewcrsii Led. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone von 2000—3500 m an Felsen und steinigen Stellen, mit Vorliebe in der Kammregion. 10.—20. VIII.
 - Hochlager im Süden der Bogdo-Ola. 21.—25. VIII.
- 19. Sedum Aizoon L. Turkestania chinensis: Montes Bogdo-Ola. In gleicher Verbreitung wie voriges, jedoch nicht am Südrand. 6.—12. VIII.

XI. Saxifragaceae.

- 20. Saxifraga hirculus L. Turkestania chinensis: Montes Bogdo-Ola. Hochlager im Süden der Bogdo-Ola. 21.—27. VIII.
- 21. Parnassia ovata Led. Turkestania chinensis: Montes Bogdo-Ola. Alpenwiesenzone an trockenen Stellen. 8.—15. VIII.

XII. Leguminosae.

- 22. Medicago falcata L. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Am Wege von Foŭkan zur Bogdo-Ola, in der Lehm- und Kiessteppe. 2.—3. VIII.
- 23. Oxytropis Sp. Turkestania chinensis: Montes Bogdo-Ola. Unteres Lager am Südrande der Bogdo-Ola. 21.—25. VIII.
- 24. Astragalus Sp. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. In der Umgebung von Urumtschi und am Gebirgsrand. 26.—29. VIII.
- 25. Astragalus Sp. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Lager am Südrande der Bogdo-Ola. 21.—25. VIII.

XIII. Rutaceae.

26. Peganum Harmala L. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Vom Sayopu-See nach Urumtschi, auch am Nordrand des Gebirges. 27. VIII.

XIV. Zygophyllaceae.

27. Zygophyllum macropterum C. A. M. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. In der Umgebung von Urumtschi und am Eingang der Gebirgstäler. 26.—29. VIII.

XV. Umbelliferae.

- 28. Neogaya mucronata Schrenk. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Am Wege von Foŭkan zur Bogdo-Ola in der Lehm- und Kiessteppe. 2.—3. VIII.
- 29. Aegopodium alpestre Lcd. In der niederen Alpenwiesenzone an trockenen Stellen. 6.—10. VIII.

XVI. Gentianaceae.

30. Gentiana algida Pall. d. sibirica. Turkestania chinensis: Montes Bogdo-Ola. Hoch-lager im Süden der Bogdo-Ola. 21.—25. VIII.

- 31. Gentiana prostrata Haenke. Turkestania chinensis: Montes Bogdo-Ola. An gut befeuchteten Stellen der Alpenwiesenzone von 2200-3000 m, häufig am Nordabhang. 6.—15. VIII.
- 32. Gentiana Walujewi Rgl. et Schm. Turkestania chinensis: Montes Bogdo-Ola. Gleiche Verbreitung wie vorige. 6.—15. VIII.
- 33. Gentiana barbata Froel. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Vom Sayopu-See nach Urumtschi. 28. VIII.
- 34. Gentiana aurea L. = G. umbellata M. B. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone des Nordabhanges von 2200—2800 m, häufig an feuchteren Stellen. 6.—15. VIII.

XVII. Boraginaceae.

35. Myosotis silvatica Hoffm. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone allenthalben bis zu 2600 m an nicht zu feuchten Stellen. 6.—18. VIII.

— Hochlager im Südeu der Bogdo-Ola. 21.—25. VIII.

XVIII. Labiatae.

- 36. Dracocephalum imberbe Bge. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone an trockenen Stellen von 1800—2400 m. 6.—15. VIII.
- 37. Dracocephalum nutans L. Turkestania chinensis: Montes Bogdo-Ola. Gleiche Verbreitung wie voriges. 8.—18. VIII.

XIX. Scrophulariaceae.

38. Pedicularis cheilanthifolia Schrenk. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone von 2200—2700 m an trockenen Stellen, auch am Südrand. 10.—26. VIII.

XX. Rubiaceae.

- 39. Galium boreale L. Turkestania chinensis: Montes Bogdo-Ola. In der höchsten Alpenwiesenzone bis hinauf zur Kammregion. 10.—20. VIII.
- 40. Galium vernum L. Turkestania chinensis: Montes Bogdo-Ola. In der mittleren Alpenwiesenzone. 8.—18. VIII.

XXI. Campanulaceae.

- 41. Campanula glomerata L. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone von 2000—2800 m. 6.—12. VIII.
- 42. Codonopsis ovata Beuth. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone zwischen 1800—2600 m an nicht stark befeuchteten Stellen. 8.—18. VIII.

XXII. Compositae.

- 43. Erigeron pulchillus. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone von 1800—2400 m. 6.—12. VIII.
- 44. Achillea Millefolium L. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone zwischen 1800 und 2600 m an etwas trockenen Stellen. 6.—15. VIII.

- 45. Chrysanthemum (Pyrethrum) Merzbacheri B. Fedtschenko n. sp. 1) Radix fere indurata. Caules usque 50 cm alti, adscendentes numerosi, crassiusculi, glabrescentes, sub capitulo paulo pubescentes. Folia versus basin caulis congesta, late oblongo-elliptica, pinnatipartita, primo iterum pinnata vel subpalmatim partita, pinnulis lineari-lanceolatis, apice mucronulatis. Capitulum apice caulis unicum, magnum (usque 90 cm diametro). Involucri foliola nigrescentia, dorso viridescentia, glabra, dense imbricata. Flores radii rosei, discum 2 plo. superantes, lineari-lanceolati, apice angustati, 10 denticulis. A absunt.
 - Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Am Wege von Foŭkan zur Bogdo-Ola in der trockenen Lehm- und Kiessteppe, allenthalben in großen Mengen; auch noch höher bis zum See hinauf, an allen sehr trockenen Stellen. 2.—3. VIII.
- 46. Tanacetum tenuifolium Jacquem. Turkestania chinensis: Montes Bogdo-Ola. Hochlager im Süden der Bogdo-Ola. 21.—25. VIII.
- 47. Senecio nemorensis L. Turkestania chinensis: Montes Bogdo-Ola. Häufig in der Alpenwiesenzone von 1800—2500 m an etwas trockenen Stellen, zusammen mit S. Tianschanicus. 6.—15. VIII.
- 48. Saussurea involuerata Kar. et Kir. Turkestania chinensis: Montes Bogdo-Ola. In der Hochalpenregion über 3300 m im trockenen Schutt unter stark beschattetem Felsgehänge. 10.—15. VIII.
- 49. Aronicum altaicum (Pall.) DC. Turkestania chinensis: Montes Bogdo-Ola. In der mittleren und hohen Region der Alpenwiesen des Nordabhanges. 6.—18. VIII.
- 50. Saussurea pygmaea DC. Turkestania chinensis: Montes Bogdo-Ola. Hochlager im Süden der Bogdo-Ola. 21.—25. VIII.
- 51. Saussurea amara DC. Turkestania chinensis: Montes Bogdo-Ola. Vom Sayopu-See nach Urumtschi. 27. VIII.
- 52. Saussurea sp. Turkestania chinensis: Montes Bogdo-Ola. In der Hochregion über 3000 m im trockenen Steinschutt (Moränen) in der Nähe der Gletscher an schattigen Stellen. 10.—18. VIII.
- 53. Carduus nutans L. Turkestania chinensis: Montes Bogdo-Ola. In der Alpenwiesenzone von 1800—2600 m an nicht stark befeuchteten Stellen. 8.—18. VIII.
- 54. Mulgedium tataricum (L.) DC. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Vom Sayopu-See nach Urumtschi. 27. VIII.
- 55. Mulgedium azureum DC. Turkestania chinensis: Montes Bogdo-Ola et opp. Urumtschi. Am Wege von Foŭkan zur Bogdo-Ola in der trockenen Lehm- und Kiessteppe, allenthalben in großen Mengen; auch noch höher bis zum See hinauf und in den unteren Alpenwiesen, an allen sehr trockenen Stellen. 3.—7. VIII.

¹) Es war beabsichtigt, von dieser schönen neuen Sp. (vgl. S. 113, 119) eine kolorierte Abbildung der Beschreibung beizufügen. Herr Fedtschenko hatte eine solche vorbereitet. Durch den Kriegsausbruch ist ihre Übersendung unmöglich gemacht worden.

Sachregister.

A.

Acantbalimon 112. Achillea millefolium 113, 311.

d'Acocha siehe d'Espinha.

Aconitum 127, 167. A. Napellus 113.

Acta Horti Petropolitani 31, 115.

Aegopodium 127. Ae. Alpestre Ldl. 123, 310.

Afghanistan 51, 64, 73.

Agias (Tal und Fluß) 2, 82, 112, 252. Aidin kul 22, 80, 208 f.; Bedeutung des Namens 208 und siehe Sayopu-See.

Ainak-kul 209.

Airan-nor 44.

Ak-kul 259.

Ak-su, Stadt 79.; Tal und Fluß 219, 220.

Ala-basch-konurlen 220.

Alai, Richtung 47; Tal 235.

Albert A. (cit.) 1.

Aleuropus 119.

Alexander-Kette 45, 125,; durch Randbrüche begrenzt 45.

Alexander III. Kette 245.

Alfredia 127.

Algen 301.

Alhagi camelorum 118, 130. A. Muschketowi 123. A. spinosa 130.

Alisme 112, 113.

Allen-Alexander 34.

Allium 112, 113, 127.

Allolepidotus 306. All. Deeke 306.

Alluvium 78, 193, 204.

Almatinka Kleine = Tuyuk-su 220.

Alpinistisches und Bergbesteigungen 107, 146, 173, 174 f., 176, 178, 179, 180, 181, 187 f., 189 f., 191 f., 214, 215, 239, 240, 242, 259, 261, 278. Alsine verna Wablbg. 113, 309.

Altai-Gebirge 4, 9, 43, 68, 109, 119, 127, 132, 134, 222, 234, 308; Grenze gegen Tian-Schan 43, 46 f., 94.

Alyssum 119.

Ammon L. von 303. Ampferer O. 196, cit. 196 f.

Anabasis 130.

Andesit (Lava) 247 f., 250, 251, 258.

Andischan (Erdbeben) 42.

An-dzi-chai 94.

Anemonen 113, 127. A. narcissiflora 113.

Angara-Gebirge: Serie, Formation, Ablagerungen 7, 11, 39, 41, 54, 55, 57, 58, 63, 64, 68, 70, 179, 204, 232, 247.

Entstebung der Bezeichnung 64.

- Literatur 64-73, 304.

Abh. d. matb.-pbys. Kl. XXVII, 5. Abh.

Angara-Gebirge: Entstehung der Formation 71, 72, 73 f., 75, 304,; enthält keine marinen Reste 69 f., 73 f.

- Verbreitung, Ausbildung, Mächtigkeit 7, 38, 64, 65-73, 124, 232, 247-258, 264 f., 304,; im nördl. und nordöstl. Asien 64, 65, 73,; feblen im Süden 40, 41, 42,

— Geologischer Bestand 7, 39, 40, 49, 59 ff., 63, 64, 135, 141 f., 143, 247, 248, 249, 250—259, 264—266, 267—292, 299—301.

- Orographisch-Geotektonisches 7, 58, 63, 69, 75, 135, 141 f., 143, 247—259, 263—266.

Interferenz zweier Faltungsrichtungen 47 f., 253, 257, 258, 263 f., 266.

Übereinstimmung des tekton. und orograpb. Streichens 47, 262, 264 f., 266.

Konkordanz der Faltung in Angara und "altem Gebirge" 43, 49, 57, 64, 262.

Durch Verwerfung vom "alten Gebirge" getrennt 39, 43, 47, 49, 50, 64, 72, 144—146, 249, 256 f., 259—262, 265, 266, 269, 271, 275, 276.

Charakter, Verlauf und Alter der Verwerfung 50, 64, 256 f., 259-266.

- Alter der Formation 63-75, spez. 71 f., 74 f., 248, 302-304.

- Fossile Pflanzenfunde 64, 65, 68, 69, 71 f., 248, 250, 253, 254, 256, 266, 299-305.

Fossile Fischreste 71, 248, 299, 303, 304, 306 ff.
Kohlenvorkommen 11, 64, 67, 68, 72, 73, 141, 247-251, 254, 256, 258, 266, 300, 301.

Naphta und Kupfer 11, 64.
Starke Denudation 39, 63, 119, 124, 137, 142, 143, 247.

Bunte Färbung 63, 64, 74, 119, 123, 124, 137, 141, 142, 248—251, 258, 264—266.

Armut an Vegetation 63, 119, 123, 124, 247. (siehe auch unter Tian-Schan).

Année Geographique 6, 32, 36.

Anutschin D. 63.

Apatalkan-Tal 79, 231.

Aplotaxis = Saussurea involucrata 113 (und siehe Saussurea).

Aptien 304.

Aquilegia 127. A. glandulosa 113.

Aralo-Kaspisches Meer 73.

Araucarien 302.

Archotu-Fluß = Langsan 7, 10, 30, 206, 249, 259; andere Namen 7; Ursprung 7.

Argu-Tal 231.

Arkansas-Tal 196.

Arkosa 59, 269, 270, 272.

Aronicum altaicum 312.

Arrow-Smith (Karte von Asien) 34.

Artemisien 111, 114, 119, 128, 129, 138. A. fragrans 118. A. maritima 118, 130. A. scoparia 130. A. songharica 118. A. Sieversiana 130.

Arthrophyton ammodendron 309 (siehe auch Saxaul und Haloxylon).

Assmanns Psychrometer 239, 292.

Asperula humifusa 123.

Asterocyclitas 302.

Astragalus 128, 207. A. altaicus 119. A. hypogaeus 129, nov. sp. 113, 310. A. Palassii 129. Astuna 41.

Atragene sibirica 120, 128 (siehe auch Clematis). Atraphaxis frutescens C. Koch 118, 309. A. lanceo-

lata 118, 120, 128, 129, 130. A. pungens 120. Aufschüttungspaß glazialer 169 (siehe auch Sölch J.). Austrocknungsproblem 211, 212, 236 f.

Avena 120. Azaleen fehlen im Bogdo-Ola-Gebiet 117.

В.

Baeren 133.

Bagratsch-kul (See) 3, 42, 44, 57, 234 (siehe auch Karaschar).

Bai (Stadt) 41, 42, 62, 66, 72.

Baiera 304. B. angustiloba Heer 299, 300, 301, 303, 305.

Baikal-See 33.

Bailey-Willis 49, 64, 69, cit. 49, 68, 69, 72, 79. Bandgras 118 (siehe auch Bromus, Lasiogrostis etc.). Barbaraea 127.

Barkul (Berge) 9, 55; Stadt 34.

Barlyk 44.

Barograph siehe Naudet.

Barskoun-Tal 125, 219. Basalt (Basaltton) 273 f., 290, 291.

Basismessung 240, 242 f.

Baumgrenzen und Waldgürtel 124 f.

Bayan-chu 126.

Bayum-kol (Tal) 106, 125, 221.

Becke's Regel 267.

Bedel (Tal) 231.

Bell M. S. cit. 11, 19, 23, 30.

Berberis 120, 124, 128, 145, 167. B. altaica 127. B. integerrima 129.

Berg L. S. cit. 212.

Beŭ-schan (auch Bai-schan) 22, 41; ein Horst 41.

Biedlingmaier Prof. 238.

Bisch-balyk 8, 34; Bedeutung des Namens 34.

Blackwelder E. cit. 68, 70.

Blanford (siehe Medlicott und Blanford).

Bochara 222.

Bodenbender 80.

Bodschante-kul (See) 3, 105, 191, 233. Bogdan-kurö (Kloster) 300 (siehe auch Torgoŭten-

Klöster und -Tempel).

Bogdanowitsch K. J. 4, 22, 45, 64, 232; über Erdbebeu von Wjernoe 45; über marines Mesozoikum 70, eit. 4, 22, 28, 45, 48, 57, 60, 62, 70, 72, 203, 208, 220.

Bogdo Ola. Der Name, seine Bedeutung und Berechtigung 1, 19, 29, 34; seine weite Verbreitung in Asien 18; andere Benennungen 20, 28, 31.

- Erforschungsgeschichte und Literatur 21-26, 268, 292.

Bogdo-Ola. Das Kartenmaterial: Karten von Bell, Carey und Dalgleish, Younghusband 30, von Bogdanowitsch 28, 208.

- Karten von Forsyth, Prschewalski und Ney-Elias 31, von Friederichsen 32.

Karten von Grum-Grschiwailo 24, 26 f., 28, 30, 46, 58, 94, 95, 164, 208, 238, 243, 244, 263.

Karten von Hiouen-tsang und J. G. Renat 33, von Klapproth 31, 32, 33, 100.

Karten von Matussowsky 30, von Obrutschew 29 f., 208, 209,

- Karten von Petermann, Wenjukow und Arrow-Smith 34.

- Karten von Pjewtzow 29, 208, 244, von Regel 5, 21 f., 31, 208.

Karten von Potanin, Huntington, Church 32, von Pelliot 32.

- Karten von Roborowsky 28, 44, 46, 100, 101, 105, 208, 243, 244.

Karten des Russischen Militärtopograph. Instituts: 40 Werst-Karte 6, 26, 27, 28, 31, 36, 46, 58, 94, 95, 100, 101, 208, 209, 210, 243, 244, 245, 100 Werst-Karte 28.

- Karten dieses Werkes siehe unter Karten.

- Mystische Beziehungen des Gebirges zum Menschen, Sagen etc. 18 f., 20, 158.

- Die B.-O. als Landmarke 17-21.

- Die geographische Lage 1, 2, 18, 22, 242.

- Längen- und Breitenausdehnung, Begrenzung 18, 35 f., 46 f., 52, 80, 144.

— Höhenverhältnisse: Gipfelhöhen 1, 3, 4, 21,

22, 37, 46, 85, 242 f.; Kammhöhen 1, 4, 18, 37, 46, 61, 85, 107, 154, 170, 176, 181, 184, 188, 190; relative Höhen 16, 18, 37, 39, 61, 81, 154, 167, 170, 192, 224, 229.

Knickungen in der Streichrichtung der Hauptachse 36, 37 f., 46 f., 192, 206, 262, 263.

- Ausichten über Entstehung der Knickungen 47, 48, £0, 58, 60.

Die aus den Knickungen der Zentralachse sich ergebenden Täuschungen 36 f., 38 f., 137, 206.

Die südöstliche Abzweigung vom Hauptkamm und ihre Höhenverhältnisse 23, 38, 107, 137, 179, 188, 192, 206.

- Die Bogdo-Ola allseits von Brüchen begrenzt

43, 44, 94, 136, 138, 139, 141, 148. Eine schmale Wasserscheide zwischen zwei Senken 18, 35 f., 45, 52, 134, 144, 154, 180, 216, 223.

- Unrichtige Darstellung in den Karten 18, 21, 22, 26, 27, 29, 30, 31, 32, 33, 137, 138, 191, 208 f., 210. - Anblick von der Steppe 137, 140, 141, 142.

- Von Süden (von Turfan) aus die Hauptgruppe nicht

sichtbar 22, 38, 206. Zweiteilung der Zentralgruppe 26, 29, 31, 37, 169.

- Der Nordabhang ein Stufenbau, Schilderung 38, 39 f., 50, 56, 63, 64, 81, 84, 85, 94, 96, 108, 140, 146, 152, 162, 165, 167, 168. Der Südabhang ein Steilabfall; seine Auf-

lösung 39, 40, 45, 56, 90 f., 100, 103, 114, 182, 199, 202.

Einsinken der Gebirgsmasse nach Westen 4, 36, 37, 46, 48, 58, 61, 85, 107, 154, 179, 263.

Die Bogdo-Ola ein wohlerhaltener Falten-bau 35, 38, 39, 45, 50, 54, 55, 153, 162, 171, 199, 202, 248-262, 263, 290 f.

Bogdo-Ola. Ursachen der Erhaltung des Faltenbaus 57 f.; über Alter der Faltung 49, 153, 264.

Unregelmäßigkeiten und Knickuugen in den Falten 39, 45, 50, 56, 149, 167, 175, 182, 183, 195, 199, 261.

Von der zentralen und höchsten Gipfelgruppe 18 f, 36 f., 81 f., 137, 167, 171 f., 175, 179, 180, 182, 184, 185, 189, 190, 192, 224, 242 f., 261, 262, 263, 278, 287.

- Der ihr vorgelagerte Felsriegel 82, 167, 168, 169,

170, 173, 175, 178, 224 f., 226.

Die Fortsetzung der Zentralgruppe nach Westen 37, 46, 61, 84, 85, 137, 140, 147, 154, 162, 169, 179, 180, 181, 227, 263; ihre Höhenverhältnisse 84, 85, 154, 181, noch unerforscht 61, 181; Vergletscherung 37, 82, 84 f., 86, 137, 147, 154, 164, 167, 179, 180, 214.

Die Fortsetzung der Zentralgruppe nach Osten 36, 38, 46, 85, 137, 179, 263; ihre Höhenverhältnisse 36, 38, 46, 85, 263; Vergletscherung 36, 46, 85, 86, 167, 179, 214, noch unerforscht 36, 85.

Wannenförmige Senke am Südfuß 35, 76, 80, 83, 92, 105, 128, 129, 130, 192, 202 f., 204 f., 208, 209 f., 211, 243; Niveauverhältnisse 104, 205, 207.

- Orographisches und Tektonisches 34-50, 53, 55 f., 59 f., 61, 62, 64, 76, 85, 90 f., 94, 96, 97, 100, 102, 103, 107, 108 f., 134, 139, 141, 144 f., 146 f., 148, 149, 153, 161, 162, 165, 166, 167, 168, 171, 172, 173, 174, 175, 179, 180, 181, 182, 183 f., 185, 186, 187, 193, 199, 203 f., 205, 206, 208, 214, 224, 260, 262, 263, 264, 290 f. (siehe auch hei Angara, bei , Altes Gebirge" und bei Tian-Schan). Von Rumpf- und Verehnungsflächen (Pene-
- plain) 40,56, 96, 114, 152, 156, 159, 160, 161, 162, 179. Von Verwerfungen, Brüchen und Bruchbewegungen stark beeinflußt 37, 39, 40, 41, 43, 47, 48, 49, 50, 52, 57, 58, 61, 64, 76, 103, 107, 108, 134, 136, 138, 141, 145, 153, 171, 172, 186, 187, 193, 196, 199, 259, 260, 261, 262.

Auch von sehr jungen tektonischen Bewegungen beeinflußt 40, 47, 48, 49, 50, 56, 76, 77 f., 86, 96, 97, 100, 102, 106, 108 f., 139, 148, 149, 153, 161, 162, 164, 166, 167, 171, 172, 175, 179, 182, 196, 232, 235 f.

Altes Gebirge. Geologischer Bestand 39, 40, 49, 55, 56, 59 f., 61 f., 63 f., 93, 137, 145, 149, 160, 162, 171, 174 f., 178, 181, 186, 187, 195, 199 f., 202, 247, 249, 253, 259 f., 262, 267-292; Granite und andere Tiefengesteine fehlen, weil nicht gehoben 39, 48, 52, 55, 56, 267, 291 (siehe auch bei Lakkolith); annähernde Identität des Bestandes am N.- und S.-Abhang, doch im S. weit stärker umgewandelt 40, 55, 59, 60, 61, 199 f., 261, 262. 267, 273, 274 f., 290 f.; Schwierigkeit der Trenning in Horizonte 59 f., 61, 200, 261, 268; starke Zersetzung im Süden 40, 87, 91, 114, 197, 199 f., 268, 274; Kalksilikathornfels und Eruptivum bilden die höchsten Erhebungen 59, 60, 62 f., 261, 267, 277, 278, 287, 291; gänzlich verpreßte Gesteinsschichten 171, 174 f., 178, 186, 261, 267 f., 274; Alter der Gesteine 39, 59, 60 f., 62 f., 262, 263, 264, 291; über Faltung, Verwerfungen und Tektonisches siehe oben die betreffenden Titel; nber Konkor danz der Faltung mit dem Angaragebirge und Verwerfung, welche das Angaragebirge trennt, siehe unter Angara. Siehe auch die Spezialtitel der einzelnen Gesteinsarten.

- Bogdo-Ola. Tertiärablagerungen und Periode 75-80, 83, 92, 97, 104, 105, 129, 130, 141, 202 f., 204 f., 207, 209 und siehe Tertiär unter T., dann bei Eocän und anderen Spezialtiteln.
- Unterschiede im Bau des Gebirges gegen andere Teile des Tian-Schan 50 f., 52 f., 55 f., 60, 63, 75, 93, 109, 110, 153, 229, 267, 290.
- Besiedelung und Verkehr 94, 95, 101, 129, 130 f., 136, 137, 138, 139, 140 f., 162 f., 164 f., 172, 194, 200, 210, 211; Reste früherer Niederlassungen 120, 137, 139, von Klöstern und Tempeln 20, 130, 146, 150 f., 155, 156 f., 158 f., 162, 200, von Mönchen 150, 155, 156 f., 158 f.; Chinesen 92, 94, 101, 131, 138, 157, 158, 200, 211, 246; ihre Abneigung gegen Gebirge 131, 138; Dunganen 8, 9, 10, 94, 129, 140, 211; Herkunft und Namen 9; Aufstand 8, 9, 120, 137, 139; Sarten 11, 129, 131, 140, 162, 181, 211; auch Tarantschi 11; Kirgisen siehe unter K., Mongolen und Torgoŭten siehe dorten.
- Fauna 131-134, 156, 210 und siehe die zoologischen Sondertitel.
- Talbildung: Allgemeines 57, 75, 87, 91, 92, 94—109, 110, 139, 145 f., 147, 148, 149 f., 152, 153, 155, 160 f., 162, 163, 164, 165, 166, 172, 175, 182, 183, 196, 249; vorherrschend Quertalbildung 56 f., 75, 94, 96 f., 110, 164, 166; am Nordabhang 94—100, 108 f., 136, 139, 140 f., 144 f., 148, 149 f., 152, 153, 155, 160 f., 162, 163, 164 f., 166, 172, 175; am Südabhang 87, 91 f., 100-109, 182, 183, 187, 196, 201 f.; reichere und tiefere Durchtalung im Süden 79, 87, 108, 231; üher Niveauverhältnisse einiger Täler 153, 155, 156; Taltreppen am Südabhang 56, 83 f., 101 f., 107, 160, 170, 172, 182, 193, 228; ein alter Talboden 145 f., 147, 160, 226, 227, 228; Alter der Talbildung 92, 97, 153, 160 f., 196; präglaziale Anlage 87, 89, 92, 97, 98, 99, 102, 107, 109, 160, 175, 187, 196, 201 f.; im Diluvium und Postdiluvium keine Talbildung, nur Zerschluchtung 153 f., 160; hängende Täler 88, 99, 105, 106, 108, 149, 227; ein Zirkus am Nordabhang 85 f., 146 f., 167 f., 180, 228; dreiteiliges Tal am Südrand 183 f., 190, 225, 227, 228.
- Erosion und Erosionsgeschichtliches: 44, 79, 91 f., 95, 96 f., 98 f., 100, 102, 103 f., 105, 106, 108 f., 122, 130, 138, 139, 140, 141, 142, 143, 144 f., 146, 147, 148, 149 f., 151, 152, 153, 155, 160, 163, 164 f., 166, 168, 179, 182, 191, 195 f., 197, 198 f., 200 f., 202 f., 204 f., 208, 210, 212, 228, 229; neue Erosion folgt alten Linien 56, 91, 96, 97, 108 f., 166, 168 und siehe oben; in früherer Zeit mehr Wasser, bedeutendere Erosion 63, 87, 91 f., 97, 99 f., 102, 104, 106, 151, 153, 163, 166, 182, 194, 196, 227, 228; Trockenheit alter Erosionstäler 98, 99, 105, 107, 108, 119, 143, 146, 147, 150, 152, 153, 160, 202, 231; periodisch ungeheure Wassermengen 19, 93 f., 99 f., 105, 106, 120, 126, 128, 138, 139, 141, 148, 150, 159, 163, 178, 193, 194, 200 f., 208 f., 293, 294; Zunahme der Wassermenge aufwärts an der Talmündung 98 f, 122, 139; Beckenbildungen 97, 102, 103, 142, 143, 144 f., 146, 147, 148, 149, 160, 179, 202 f., 216, 249, 253; vermutlich älteste Flußablagerungen 92, 96, 225; Seen am Südabhang 29, 30, 31, 33, 105, 191 f., 208 f.,

Bogdo-Ola. Vergletscherung 36, 46, 80-94, 98, 99, 105, 107, 137, 143, 144, 148, 168 f., 170, 174, 176 f., 179, 180, 184 f., 186 f., 190, 192, 211, 214, 224; Ausmaß und Verteilung auf beide Ahhänge 80, 86, 87, 174, 176, 177, 178, 184, 186, 188, 192, 202, 206, 216, 224, 243; orographische Bedingungen der Verteilung 81, 86, 87, 90, 185, 214, 224; der Grum-Grschimailo-Gletscher 81f., 91, 101, 168 f., 170, 173, 175, 176 f., 178 f., 226, 228, 261; Chigo-Gletscher 38, 87 f., 89, 107, 188 f., 191, 206, 227, 228; Zungenende und Talausgangshöhe 89, 108; Ahfluß 105, 191 f.; der "Südgletscher" 87, 89 f., 184—186, 188, 228; Zuugenendenhöhe 89; Bogdo-Ola-Typus 188 f.; Schutt-freiheit des Eises und ihre Ursache 82, 83, 87, 93 f., 178, 184, 185; totes Eis 82, 177, 198; über Mittelmoränen 81, 87; rasche Veränderlichkeit von Eisdecken 189; Niveaus einiger Zungenenden 82, 83, 84, 85 f., 89, 90, 176, 184, 214-216; Raschheit des Eisrückzugs steht in Verbindung mit Fehlen von Zungen- und Stirnmoränen 83, 86, 90, 91, 99, 106, 148, 150, 153, 176, 177, 184, 185, 196, 214, 224; Abfluß uördlicher Gletscher nach Süden 82, 83, 169, 170, 176; hängende Täler siehe bei Talbildung; über Taltreppen und Stufenseen siehe ehendort und hei Gurhan-bogdo-Tal. Rezente und alte Glazialablagerungen und Erscheinungen am Nordabhang 82 f., 85, 86, 98, 108 f., 111, 122, 143 f., 145 f., 147, 148, 149, 151, 154, 155, 156, 157, 159, 160, 161, 163, 165, 167, 168 f., 170 f., 176 f., 178, 180, 214, 226, 228. Rezente und alte Glazialablagerungen und Erscheinungen am Südabhang 83 f., 87 f., 89 f., 91 f., 102 f, 106, 109, 178, 182, 183 f., 185 f., 187, 193, 194 f., 196, 197, 198 f., 200 f., 216, 225, 227, 228; einige Niveaus von solchen 92, 93, 194 f., 197, 201, 216. Terrassenbildungen im Norden 100, 142, 143, 145 f., 147, 148, 163, 164, 165, 225, 249, 254; Terrassenbildungen im Süden 91, 92, 103, 104, 194, 195, 196, 197, 199, 200, 202, 203, 225, 226, 227, 228. Randseen im Norden 83, 141, 142, 146, 147, 225; im Süden 79, 80, 92, 105, 130, 160, 202 f., 204 f. 216, 225; Ablagerungen dieser Seen 80, 92, 104, 105, 202 f., 204, 205, 209. Fluvio glaziale Bildungen, auch Schotterdecken 91 f., 103, 143 f., 145, 148, 149, 150 f., 196, 197, 198 f., 201, 202, 205, 225, 227, 249; Verhältnis von Schottern zu Endmoränen 92, 196 f., 198, 227. Schliffkehlen 88, 150, 176, 226, 227. Geschiebelehm 144, 146, 150 f., 194. Ablagerungen frühester Vereisung? 92, 196, 225. Klimatische Einwirkungen beseitigten alte Glazialspuren 92, 93, 104, 182, 197, 198, 216, 217 f., 219, 225. Glazialgeschichtliches, Stadien oder Zyklen der Vereisung? 82 f., 86 f., 88, 90, 91 f., 93, 106, 147, 148, 149, 151, 154 f., 160 f., 163 f., 165, 168, 169, 170 f., 176 f., 178, 182, 183 f., 185, 186 f., 188 f., 192 f., 195, 196 f., 198 f., 201, 202 f, 211, 216 f., 224 f., 226 f., 228 f., 233, 234 f., 236 f. (siehe auch die Titel Klima, Klimageschichtliches und Diluvium). Interglazialzeit? 144, 223, 229. Übertiefungsproblem 106, 109, 147, 148, 228. Diluviale Eisuächtigkeit 88 f., 91, 92, 93, 94, 99, 105, 153, 154, 155, 160, 170 f., 175 f., 178, 182, 184 f., 186, 187, 188 f., 192, 193, 197, 201, 224, 225, 226, 229. Uher Schneegrenzen 86, 99, 100, 213, 214 f., 218 f., 220 f.; über klimatische Schneegrenzen 230.

Bogdo-Ola. Meteorologisches 15, 16, 90, 136, 159, 163, 180, 181, 187 f., 189 f., 190, 192 f., 200 f., 206, 210, 292-299; über Beohachtungsmethode und Instrumente 292. Weiteres siehe unter Urumtschi Meteorologisch-Klimatisches.

- Klimatisches 84, 85, 86, 92, 93, 100, 104, 105, 110 f., 114, 116, 122, 126, 134, 135, 139, 141, 160,

165, 177, 185, 211, 212.

Klimageschichtliches 71, 78, 94, 98, 99, 102, 108 f., 142, 150, 152, 153, 182, 189, 196, 198 f., 203 f., 205 f., 209, 216, 224, 228, 229; früheres Klima weit feuchter 63, 74 f., 78, 79, 83, 86, 87, 92, 94, 96, 98, 99, 100, 102, 104, 105, 108, 129, 130, 150, 152, 153, 154, 163, 182, 192, 196, 204 f., 209, 231, 233, 234 f.; Raschheit der Klimaänderung 83, 86, 99, 106, 108 f., 154, 196, 224, 228 f., 236 f. Eiszeit eine Folge von Temperaturerniedrigung? 192, 230 f., 234 f. (siehe auch Titel Klima unter K.).
Vegetation 63, 64, 91, 109—130, 137, 138, 140,

— Vegetation 63, 64, 91, 109—130, 137, 138, 140, 143 f., 145, 149, 151, 156, 161, 194, 195, 197, 201, 207, 209, 210, 308—312; hesonderer Charakter der Flora 110 f., 112 f., 114, 115, 116 f., 118, 123 f., 127, 128, 165, 166, 167, 168: ihre verwandtschaftlichen Beziehungen 109, 119, 127, 134; Entwicklungsgeschichtliches 114 f., 116, 209; Exposition ruft fundamentale Unterschiede hervor 110 f., 112, 126, 165, 166; Abhängigkeit vom Bodenrelief 111, 112, 115, 116, 118, 126, 166, 168; geselliges Zusammenleben einzelner Formen 112; Inselbildung 111, 112, 118; Eindringen der Steppenflora ins Gebirge 109 f., 111, 115, 123; floristische Höhengürtel 111, 116; Wüstensteppenflora 117—120, 128, 129, 130, 136 f., 138, 207, 209—212; Verzeichnis der alpinen Flora 113, 114; Gratflora 111, 115; Strauchflora 127; Fehlen hesonderer Arten 117; charakteristische Flora der Südseite 113 f.; Alpenwiesen 114, 123, 128, 130, 131, 138, 151, 156, 161, 162, 163, 166, 168, 194, 209 f.; Alpenwiesengürtel 116, 123, 151, 152, 156, 165, 216, 309—312; Krummholz fehlt 117, 127; Baumgrenzen und Waldgürtel 121, 123 f., 125 f., 127, 151, 152, 156, 158, 160, 162, 165, 167, 201, 209, 215 f.; Waldhrände 126 f., 158 f., 162, 165, 293; Flußläufe an Vegetationsgürtel kenntlich 95, 119, 122, 127 f., 136, 191.

 Unvollständigkeit meiner Forschungen in der Bogdo-Ola 25, 34 f., 49, 56, 76, 92, 95, 98, 133, 135, 143, 144, 148 f., 155, 192, 198, 201 f.,

213, 268.

Bogdo-Ola-See 24 f., 83, 98, 124, 126, 130, 145, 147, 150, 151 f., 154, 155 f., 157, 159, 162, 226, 244, 247, 251, 259, 269, 270, 292, 293, 309, 312; Niveau 83, 98, 293; Entstehung 98, 151, 154, 155; die abdämmende Stirnmoräne 83, 98, 151 f., 154 f., 156, 159, 162, 170, 226, 260, 261, 262; Ufermoränen 155, 226; Abfluß 151, 152, 156, 270; Südende 155, 161 f., 163, 260; Klöster und Tempel 20, 130, 156 f., 158 f., 162, 200, 226, 247, 251, 292, 293, 296 f. Bohnesche Aneroide 239, 292.

Bohnesche Aneroide 239, 292.
Bonsdorf, General 22.
Boragineaen 113, 119, 311.
Borgora-Tal 51.
Bornholm 303.
Borochodsur-Tal 121.
Borogobosun-Tal 301, 302.
Botanischer Garten Kais. Russ. 109, 308.

Boto-mainak-Tal 223. Bowman Js. cit. 235. Boxeraufstand 10. Braunkohlen 301, 304. Breitenbestimmungen 238. Bretschneider E. cit. S.

Bromus 111. 119, 128 (siehe auch Bandgras, Lasiogrostis etc.)

Bronnikow M. M. 42. Buddha = Ta-mo-fu 156, 157 und siehe dort.

Bugur. Stadt 232, 234.

Bupleurum 127.

Barrard und Hayden cit. 49, 73, 78, 79, 96, 212. Buüluk-Paß-Höhe 46.

Cadonopsis ovata Benth. 113, 311. Calligonum 128, 129. C. murea Bg. 118. Calvstigia 112.

Campanulaceaen 113, 311. C. glomerata L. C. 113, 311.

Cancrinia 113. Capparis 128, 130. Capps Stephen R. cit. 196. Caragana (Verbreitung) 117.

Carduus 111, 127. C. nutans L. 312. Carex 112, 123 (siehe auch Cyperaceae und Riedgräser).

Carey und Dalgleish cit. 19, 23, 31. Caruthers Douglas cit. 19, 55; Karte 46; über Grenze zwischen Altai und Tian-Schan 47. Caryophillaceae 309.

Caselfasches Taschenaltazimut 240.

Centaurea ruthenica 114.

Cerastium 113, 127. C. lithospermifolium 112. C. scerame 129. C. trigynum Vill. 309. C. vulgatum L. 118, 309.

Ceratocarpus arenarius 118, 129.

Cervus capreolus pygargus Gray 133 (siehe auch Reh). Cervus eustephanus Blanford 132 (siehe auch Maralhirsch).

Chaidadschan = Da-tun-gu 25, 125 und siehe dort. Chaidik-gol-Fluß 57, 234. Chak (Salzsumpf) 94.

Chalyk-Tan 2, 53, 127, 154, 232; Berechtigung des Namens 2.

Chami-Hami siehe dort.

Chan-go-dse = Dön-chon-dse 94 und siehe dort.

Che-goŭ-dschū 137.

Chenopodiaceae 118, 309. Chigo-Fln& und -Tal 22, 80, 87, 89, 100, 104, 107, 108, 183, 187, 191; ein tektonischer präglazialer Graben 87, 89, 92, 107, 148, 187; Talränder 88, 167, 183 f., 190 f., 192; Chigo-Gletscher siehe unter Bogdo-Ola, Vergletscherung.

Chimborazo 20.

China 49, 51, 66, 67, 68, 69, 70, 71, 79, 299, 303; chinesische Sprache 246.

Chinesen siehe unter Bogdo-Ola-Besiedelung.

Chodschent 65.

Chondrites cf. affinis Heer 301, 304, 305.

Chorcho-tő-Fluß 136.

Chorispora 111. Ch. Bungeana 123. Ch. exscarpa 112. Ch. sibirica 120 (siehe auch Libanotis).

Chrysanthemum Merzbacherii B. A. Fedtschenko 113, 119, 308, 312.

Chrysoplenium 113.

Chubala siehe Archotu.

Chum-miao-tse 258 (siehe auch Hung-miao-tse). Chuug-tschan-tsui 8 und siehe Roter Berg und

Kissyl-Tau. Church P. W. cit. 23, 32, 92, 132, 133.

Chustai-Tal und -Fluß = Chosutai und Manas 82, 132; Ortsbestimmung 243 (siehe auch Manas). Chutubeŭ (Höhe) 44.

Cirsium elodes M. B. 113.

Ciclopitys Heeri Schmalh. 301, 303, 305.

Cladophlebis denticulata Brongn. 299, 300, 301, 303, 305.

Clematis 127 (siehe auch Atragene). Clementi Cecil cit. 5; Ortsbestimmungen 5; Höhe von Urumtschi 6.

Compositeaen 113, 115, 119, 311.

Connecticut 308.

Conspectus florae Turkestanicae 115, 117.

Convolvula lineata 118.

Conway Sir M. 49.

Cordaites 301. C. couf. principalis Germ. Geinitz 61, 263. C. aequal. Goeppert 64.

Cordieritliparit 200, 283 f., 292 (siehe auch Liparit). Cornus 127

Corydalis 113.

Cotoneaster 120, 124, 137, 145.

Crassulaceae 310.

Cruciferae 111, 113, 119, 310.

Cyperaceae 112, 113 (siehe auch Carex und Riedgräser).

D.

Dabasun-nor 94; Höhe 44.

Dalgleish (siehe Carey uud Dalgleish).

Da-tun-gu-Tal und -Fluß 24 f., 80, 94, 96, 97 f., 100, 105, 124, 125, 144 f., 146 f., 150, 151, 152, 154, 158, 162, 164, 168, 172, 225, 226 f., 228, 259, 260, 261, 262, 269, 270, 272, 273, 275, 277, 290, 291, 293; verschiedene Namen 25, 94, 125, 259; Gefällsverhältnisse 97; ein alter Talboden 145 f., 147, 160, 226, 227, 228; oberste Talstufe 85, 86, 96, 167 f., 180, 213 f., 228; Längstalverlauf eines Abschnittes 96, 166, 260; Zweifel über das Hauptquelltal 162, 164 f., 226—228, 260, 261; Beckenbildungen 97; späte Veränderung des Laufes 98.

Davan-tschan (richtig Dawan-tschin) 22, 31, 38.

Davis W. M. 220, 237, cit. 220, 237.

Dawan-tschin-Paß 3, 38, 92, 104, 105, 203, 208, 225, 243; seine Höhe 3, 104, 208; Fluß 5.

Dazitische Gesteine 58, 137, 268, 282, 285, 287, 289. Deklinationsbestimmung 238.

Delphinium 167. D. dasyanthemum Kar. et Kir. 113, 309.

Demidow Prinz E. cit. 132.

Description de la Chine orientale 9.

Desjatowa Frln. 308.

Deutscher Geographentag 246.

Diabas 60, 166, 175, 260, 261, 268, 271, 274, 282, 287—290, 291; über Sinn der Bezeichnung 290. Dianthus sp. 114. D. superbus 113, 309. Diluvialgeschichtliches 76, 78, 83, 85 f., 87 f., 89 f., 91 f., 99, 105, 106 f., 147 f., 149, 151, 153, 154, 155 f., 168 f., 170 f., 175 f., 177 f., 182, 183 f., 185, 186 f., 188 f., 192 f., 194, 195, 196, 197, 198 f., 201, 202 f., 216 f., 218 f., 220 f., 223 f., 225, 229, 233, 235, 236 f. und siehe unter Bogdo-Ola-Vergletscherung die Titel: Glazialgeschichtliches, Interglazialzeit, diluviale Eismächtigkeit, Schneegrenzen, dann auch Bogdo-Ola Klimageschichtliches.

Dimitriew J. E. 220, 221, cit. 220.

Dipsaceaen 113.

Diptichocarpus strictus Trautv. 114, 118, 130, 310. Djan-Jan-schi 3.

Dodertia orientalis 128, 129.

Dön-chon-dse-Tal 83, 94, 100, 142, 172, 176, 214, 227, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 269, 271, 273, 290, 300, siehe auch Chan-go-dse.

Dogger 65, 66, 71, 303, 304 und siehe Angara, Kimmeridge, Lias, Jura, Mesozoikum etc.

Doronicum turkestanicum 113.

Draba 113.

Dragocephalum 112, 128. D. imberbe Bg. 113, 311. D. nutans L. 113, 311.

Drumlin 146, 168.

Dschair-Kette 43, 131, 222.

Dschargöß-Tau 23, 30, 70, 76, 92, 101, 105, 128, 129, 130, 179, 191, 192, 202, 203, 205, 206, 207, 208, 209, 210, 211, 225; Orographisches 4, 35, 208, 209; Höhenverhältnisse 3, 35, 92; Tektonisches 48, 70; Vergletscherung 92, 105, 129, 209, 225; Bewaldung 129, 209; als eine Brücke 35; Flußdurchbruch 30, 33, 104 f., 192, 203, 208, 225.

Dschi-dschi-su Karawanserail 29, 60.

Dschimisar-Fluß und -Tal 36.

Dschincho Stadt 71, 124, 264; Höhe 49.

Dschirgaltö 43.

Dschity-ogus-Tal 125.

Dschurga 232.

Dschuwan-terek-basch 28, 36; Höhe des Passes 36; ungerechtfertigte Ausdehnung der Bezeich-

Dsungarei und Dsungarisches Becken 4, 67 f., 83, 94, 109, 118, 127; als Wüstenbecken 14, 18, 35; Meteorologisches 43; als Grenze 43; Karte von Renat 33.

Dsungarischer Ala-Tau 43, 67, 109, 124, 125, 134 308; rinnenförmige Einsenkung auf Südrand und deren Niveau 44 f., 94; Grenze gegen Tian-Schan 43, 94, 138; Veröffentlichung von R. Sakrschewsky 43.

Du-dun-dse-Tal 83, 94, 100, 172, 257, 300.

Du-dun-kul siehe Tudun-kul. Dunde-kelde-Tal 72, 73.

Dun-dun-sa 214; Höhe 44.

Dunganen siehe unter Bogdo-Ola Besiedelung und Verkehr.

Dun-schan-Gebirge und -Sattel 3, 4, 9, 16, 21, 29, 35, 37, 46, 47, 58, 60, 130, 181, 212, 262, 263, 261; Höhenverhältnisse 3, 4, 18, 37, 46, 61; Gliederung 30; als Landbrücke 61; Gesteinsbestand 61, 262; Entstehung durch Verwerfungen 37, 47, 263; als Störungszone 48 f., 58. 61, 263; Karawanenstraße 11. 21, 22, 35, 130. E.

Ebereschen 124 (siehe auch Sorbus aucuparia).

Ebi-nor 44, 70; Höhe 44.

Echinops 111. E. sphaerocephalus 120, 123.

Echinospermum 119.

Edemek-daba 28 f.

Elbert Joh. cit. 235.

Eleagnus 128, 129, 201.

Elymus 111, 119, 120.

Empetrum fehlt im Bogdo-Ola-Gebiet 117.

Engler A. Prof. 304.

Eocan 269, 304, (siehe auch Tertiar und Bogdo-Ola-Tertiär, sowie die Spezialtitel: Miocan etc.).

Ephedra 137, 207. E. monosperma 130.

Epilobium 123.

Epidosit 186, 279-281.

Epidotskarn 200, 231.

Equisetites 304. E. aff. ferghanensis Seward 299, 300, 301, 302, 303, 305. E. columnaris Brongn. 300, 301, 303, 305. E. lateratis 302. E. nov. spec. 300. 301, 303, 305.

Equisetum 248. E. arenaceum 303. Equis hemionus Pall. 133 (siehe auch Wildesel).

Equs Prschewalski (siehe Wildpferd).

Er-dao-cho-Tal 172, 263.

Eremurus robustus 123.

Ergußgesteine 159, 282—290, 291. Erigeron 123, 127. E. pulchellus 113, 311.

Espen 124, 127, 195. 197, 201 (siehe auch Populus tremula).

d'Espinha uud d'Acocha 6, 33; Ortsbestimmungen 6. Euclidium 120.

Eugnathides 306, 307.

Eugnathus L. Agassiz 306.

Euphorbien 112.

Eurotia ceratoides C. A. M. 118, 119, 309. Evans Dr. 49.

F.

Faas A., Geologe 42. Faktorei in Urumtschi 11.

Farne 117, 301; fehlen im Bogdo-Ola-Gebiet 117. Fedtschenko B. A. 31, 109, 308, cit. 115, 117,

F. O. A. cit. 115.

Felis nivalis = Irbis = Schneeleopard 133.

Ferghana 50, 64, 65, 70, 121, 122.

Ferghana-Richtung 47. Ferula 123, 127. F. canescens 118.

Festuca 111, 119, 120. F. ovina 119.

Fichten 123, 124, 126, 127, 129, 146, 156, 157, 158, 159, 162, 163, 165, 167, 209 (siehe auch Picaea und Bogdo-Ola Vegetation).

Ficker H. von cit. 17.

Fischreste (siehe unter Angara).

Flechten fehlen im Bogdo-Ola-Gebiet 117.

Föhn-Winde 16, 17, 297 f.

Fön-ho-Epoche 49.

Forsyth Sir T. D. cit. 30.

Fossilienfunde (siehe unter Angara).

Fou-kan. Stadt 26, 37, 97, 100, 117, 131, 140, 146, 162, 172, 247, 308. 309, 310. 312; Höhe 44, 293; geographische Lage 244.

Frech F. Prof. cit. 51, 69.

Friederichsen M. Prof. 45, 47, 222; Morphologie des Tian-Schan cit. 1. 2, 5, 21, 32, 47, 126, 230, 267; andere Veröffentlichungen cit. 125, 126, 219; über Grenze zwischen Tian-Schan und Altai 47.

Fritillerien 112.

Fuchs (Vorkommen) 133.

Fu-scheu-schan = Bogdo-Ola 20.

Futterer K. Prof. 41, 47, cit. 9, 12, 22, 41, 47, 48, 55, 57, 60, 61, 62 f., 66, 232, 233; über Höhe der Bogdo-Ola 22; über Bruchränder im Tian-Schan 41; über Grenze zwischen Tian-Schan und Altai 47.

G.

Galium 123. G. boreale 113, 312. G. verum 113, 311. Galkin N. cit. 8, 11, 23; Reisen 23, 27.

Gan-jah Prinz = Herzog von Lan 157, 158 und siehe unter Lan.

Gasser Dr. 242.

Ga-toŭ-fu, Dorf 138.

Gedeonow, General D. D. cit. 14, 17.

Gentianaceae 113, 310. G. algida Pall. 112, 113, 310. G. aurea L. 113. G. barbata Froel. 113, 129, 311. G. hnmilis 113. G. prostrata Hänk. 113, 311. G. sibirica 113, 310. G. straminaea 113. G. umbellata M. B. 113, 311. G. Walujewii Rg. und Schm. 113, 311.

Geographische Gesellschaft Kais. Russ. 9, 21, 24, 37. Geranium 113, 127, 167. G. collinum glandulosum

Ldb. 113.

Gerste 119, 120, 130, 137, 155.

Geß-Tal 301.

Gingko 301.

Glazialerosion 106, 170 f., 175 und siehe unter Bogdo-Ola-Vergletscherung.

Glungler Dr. G. 55, 59, 195, 200, 267 ff.

Glycyrhiza 118, 128.

Gnaphalium Leontopodium 113 (siehe auch Leonto-

podium).

Gobi-Bildnngen 40, 54, 75, 77 f., 203, 204, 256, 258, 265; Bedentung des Wortes 77; irrtümliche Zusammenfassung mit Hanhai 54, 77 f. (siehe auch Hanhai nnd Tertiär, Bogdo-Ola-Tertiär etc.). Goldschmidt V. M. Prof. cit. 268, 278, 279.

Gondwana-Stufe 64, 65, 66, 73, 302.

Gotschan-Paß (siehe Ulan-su).

Gramineaen 111, 113, 119, 120 und siehe die Spezialtitel: Bromns, Stipa etc. etc.

Granö J. G. cit. 218, 222, 234; über eiszeitliche Depression 222, 234.

Grauwacken 55, 59, 60, 249, 255, 257, 259, 260, 261, 262, 269-272, 291; dem Unterkarbon nahestehend 59, 60. Gresten 303.

Griesbach C. L. cit. 51, 73.

Gröber P. Dr. 2, 5, 34, 42, 45, 47, 57, 58, 60 f., 63, 68, 71, 75, 243, 267, 307; Untersuchungen 42, 43, 44, 51, 57, 60 f., 71, 72, 73, 100, 142, 146, 147, 148, 172 f., 267, 278, 307; über südlichen Tian-Schan 42, 47, 51, 58, 257, 263; über Interferenz zweier Faltnigsrichtungen 47 f., 253, 257, 258, 263 f., 266 nnd siehe unter Angara; Kontroverse über Tektonik des Kaschtales 51; Kontroverse über Alter der Gesteine der Bogdo-Ola 61 f., 262 f., 291; Kontroverse über Bildung der Angaragesteine 72 f., 304; wegen Abwesenheit Korrektur nicht selbst besorgt 265.

Grum-Grschimailo G. E. und M. E. 6, 208; Erforschung der Bogdo-Ola gewürdigt 24 f., 26, 125, 133, 150, cit. 6, 8, 9, 11, 12, 13, 24 f., 117, 121, 124, 125, 126, 133, 150; die Karten gewürdigt 24, 26 f., 28, 30, 36, 46, 58, 94, 95, 164, 208, 238, 243, 244, 263; über Bogdo-Ola-See 24, 25, 98; über Grenze zwischen Tian-Schan und Altai 46 f.; Grum-Grschimailo-Gletscher siehe unter Bogdo-Ola-Vergletscherung.

Grünwedel Prof. Albert 36.

Guelmy M. 9.

Guignes de 8.

Guilleaume'scher Invardraht 242.

Gumüdü 136; Höhe 136, 293.

Gurban-bogdo-Fluß und -Tal 27, 29, 31, 33, 36, 46, 76, 80, 83 f., 89, 90 f., 92, 100, 101 f., 106 f., 127 f., 131, 132, 148, 179, 181, 182, 183, 191, 193, 195, 196 f., 199, 202, 213, 215, 227, 228, 259, 261, 278, 287, 290, 294; Beschreibung des Flußlaufes 83 f., 91 f., 101 f., 103 f., 105, 106, 127 f., 170, 183, 195, 196 f., 200 f., 228; junger Durchbruch 103, 195, 199, 225, 262, 269; Talbildung durch Brüche beeinflußt 46, 52 f., 103, 171 f., 187, 196, 199; eine Bruchstufe 195 f., 199; präglaziale Entstehung 92, 102, 107, 201 f.; Übertiefung 106, 109; der Oberlauf eine Taltreppe 56, 83 f., 101 f., 107, 169, 170, 172, 182, 228; die Seen auf den Stufen 84, 101 f., 178, 182, 193, 228; Trogform des Tals 92, 102, 170, 225; Gletscherschliffe 84, 89 f., 91, 101, 102, 106, 170, 182, 193, 197; die Talränder 89 f., 102 f., 107; Höhen- und Gefällverhältnisse 90 f., 102, 103, 104, 108; wichtig als Verkehrsmittel 101, 131, 169 f., 172; dreiteiliges Nebental 183 f., 190, 225, 227, 228 (siehe auch Kupferschmelze).

Gurban-bogdo-Paß und seine Entstehung 27, 37, 61, 81, 83, 101, 169, 170 f., 172, 213, 227, 228, 261, 292, 294, 296, 298; Höhe 37, 89, 101, 170.

Gutschen, Stadt 4, 10, 11, 26, 35, 44, 172.

H.

Hafer 210.

Haloxylon ammodendron 117 f., 309 (siehe auch Saxaul und Arthrophyton).

Hami auch Chami 22, 26, 27, 34, 58, 70, 126, 234.

Han Dynastie 8.

Han-gu-Tal 150.

Hanhai-Ablagerungen und Periode 49, 54, 76 f., 79, 105, 203, 233, 304; Bedeutung des Namens 54, 77; Bezeichnung von Flußablagerungen als Hanhai ungerechtfertigt 54, 77 f. (siehe auch Gobi und Tertiär).

Hann, Handbuch der Klimatologie 12, 229.

Haplophyllum 129. H. latifolium 129.

Hartmann M. cit. 9.

Hauthal Rudolf cit. 80.

Hayden (siehe Burrard und Hayden).

Hazara und Black Mountains 49.

Hesselbarth Rud. 242, 243.

Heterolepidotus Egerton 306. H. Merzbacheri 306 f.

Hikisch (siehe unter Katalog).

Hildebrandscher Theodolith 242.

Himalaya-Gebirge 79, 109, 119, 134, 217, 228; junge Hebungen und Literatur hierüber 46, 96, 228, 235 f. Hiouen-Tsang 3; Reisewerk 3, 32 f. Hippopheaen 123, 163, Hirse 119, 120, 140. Hissar-Gebirge 222. Hochflächen (siehe Verebnungsflächen und Peneplain). Hochjochferner 87. Höfersche Methode 214, 220. Holdich Col. Sir Th. 49. Hsin-kiang Provinz = Ostturkestan 5, 8, 9, 17, 131,

140, 211; Ausdehnung 9. Huei-huei (siehe Dunganen).

Hung-miao-tse 8, 258 (siehe auch Chum-miao-tse). Humboldt Alex. von 11; über Bogdo-Ola 20; Humboldt-Kette 245.

Huntington Elsworth (Reisen) 23 f., 68; Veröffentlichungen 12, 23 f., 32, 68, 69, 212.

Jangule-bazar 264, 265, 266. Jan-sun-fu, Station (Höhe) 44. Japan 303. Jatschewsky L. A. 64. Jen-tsche-dun-Station 61. Ignatiew J. W. 79, 267. Ili-Gebiet 6, 9, 11, 154, 248; ein Einbruchsbecken 44; Ili-Fluß 34. Indien 299. Inn-Gletscher 196. Inula 114, 128. Invardraht 242. Inyltschek-Gletscher und -Tal 87, 109, 154. Iran-Chabirga = Iren-Chabirgan 4, 31, 53; richtiger Iran-Charbut 53. Irbis = Schneeleopard = Felis nivalis 133. Iridaceae 119, 309. I. Güldenstedtiana 114. I. halophila Pall. 309. lssyk-kul 115, 125, 219, 220. Iswestiva Kais. Russ. Geogr. Gesellsch. 9, 20, 34. Julgun-terek-Paß (siehe Yulgun). Julien Stanislaus N. 32. Juneus 112, 123.

Juniperus Sabina 117, 127 (siehe auch Krummholz und Thuya). Jun-tschan-toŭ = Narat 80 und siehe Narat.

Juraformation 7, 39, 41, 43, 54, 57, 58, 65, 66, 67, 68, 69, 71, 74, 135, 204, 248, 262, 266, 302, 303, 304; Juragesteine fehlen im Süden der zentralen Gruppe 41, 42; im Norden in großer Mächtigkeit als Angaragesteine 39, 43, 54; geologischer Bestand der Randkette bei Urumtschi 7, 11, 64 (siehe auch Angara, Dogger, Kimmeridge, Lias, Mesozoikum etc.).

Jurun-kasch-Fluß 223.

К.

Kaenozoikum 304. Kaiserstraße Nördliche 10, 44, 94, 172, 244, 265; südliche 9 (siehe auch unter Tian-Schan). Kaldschat-Fluß 232. Kaldy-Yailak 233. Kalkphyllit 275, 291. Kalksilikathornfels 59, 62 f., 149, 151, 161, 175, 179, 198, 260, 261, 268, 276, 279, 287. Kandyk-Tas 45; Absinken in Staffelbrüchen 45. Kan-su, Provinz 9, 10, 11.

Kapkak-Tal 125. Kapsalyan-Tal 282. Karabtschuk-Berge 223. Karagai-tasch 204, 231. Karagatsch 121-123, 129, 136, 137, 140, 141, 210

(siehe auch Ulme und Schwarzulme).

Karaschar, Stadt 5, 9, 11, 20, 34, 42, 57, 70, 131, 234; geographische Lage 6, 62; Pferdezucht 11; über das Becken von K. und seine Entstehung 42, 57 und siehe auch Bagratsch-kul.

Kara-Tau 65, 248. Kara-Usen-Tagh 7.

Kao-teng-hiue-tang 9.

Karawanenbetrieb 11, 211; Eisentransport 11.

Kara-yulgun 41.

Kare und karähnliche Formen 84, 87, 89, 90, 91, 93, 99, 146, 159, 168, 184, 225, 226.

Karbonformation 67, 300, 301, 303; Unterkarbon 52, 53, 54, 59, 60, 262; Oberkarbon 54, 55, 58, 60, 62, 259, 262, 263, 291, 302; dieses fehlt im Norden des Tian-Schan 62; tritt in der Bogdo-Ola am Kamme auf, aber nicht marin 62 (siehe auch Paläozoikum).

Kark S. 45. Karkara 301, 302.

Karlyk-Tau 2; Bedeutung des Namens 2; Karlyk-Tagh 55, 101.

Karten, die diesem Werke beigegeben sind 95, 105, 108, 180, 202, 209, 238-246; topographische Grundlagen 95, 105. 108, 180, 202, 238 f., 240 f., 242 f.; Arbeitsmethoden 239 f.; Instrumente 238 f., 292; Darstellungsmethoden 240 f., 242 f.; die Koten und ihre Ermittlung 44, 241 f., 243; die Deklination 238; zur Konstruktion 243 f.; Basisvermessung 240, 242 f.; Rechtfertigung der Namen 95, 244-246; ihre Schreibweise 245 f.

Kartenwerk großes über die Gletscher des Tian-Schan konnte infolge des Krieges noch nicht vollendet werden 218 f., 221.

Karte Russ. im Maßstab von 40 Werst 6, 26, 27, 28, 31, 36, 46, 58, 94, 95, 100, 101, 208, 209 f., 243, 244, 245; ältere Ausgabe 28; 100 Werst-Karte 28.

Karte Russ. im Maßstab von 2 Werst für zentralen Tian-Schan 220, 221 (siehe auch unter Bogdo-Ola: das Kartenmaterial).

Kasch-Fluß und -Tal 3, 21, 51, 53, 57, 58, 64, 70, 71, 74, 124, 125, 300, 301, 303; verwickelte Tektonik, Kontroverse hierüber 51, 54.

Kaschgar, Stadt und Becken 10, 11, 23, 42, 62, 79. 229, 231, 233, 301.

Kasch-kul. Gletscher 223.

Kaschmir 33.

Katalog der Höhen des asiatischen Rußlands von Hikisch 44.

Katun-Tal 222.

Kaukasus 245, 303; Würdigung der topographischen Karten 217.

Kaulbars A. W., General 31. Kaündü-Tal 78. 109, 112, 231.

Keidel H. cit. 2, 42, 45, 52, 66, 69, 72, 79 f., 267; über Brüche und Bruchlinien 42, 45, 50; über Alter des Hanhai 77; über analoge grobklastische Bildungen in Südamerika und Tian-Schan 79 f. Keidel und Richarz cit. 267.

Kendagül-bulak 231.

Kendyk, Ort 100. Kepek-tschai-Tal 231.

Keratophyr 143, 145, 151, 161, 179, 181, 270, 271, 273. 282, 284 f., 291 (siehe auch Quarzkeratophyr).

Keuper 65, 302 (siehe auch Rhat, Trias etc.). Khan Tengri 54; Erklärung seiner Stellung 54.

Khaptn-su-Tal 82.

Khien-long, Kaiser 6, 33. Kim-kutan 222.

Kimmeridgien 307 (siehe auch Dogger, Jura, Lias, Mesozoikum etc.).

Kirgisen: ihre Wanderungen im Bogdo-Ola-Gebiet 36, 101. 131, 133, 162 f., 164 f., 194.

Kissalyk 232.

Kissyl-su-Tal 231 (siehe auch Kaschgar).

Kissyl-Tau 258, 329 und siehe Roter Berg und Chungtschan-tsui.

Kiukōnik-Tal 58, 64, 74, 186, 200, 231. Klapproth M. J., Karte von Zentralasien 31, 32, 33. Klebelsberg R. von cit. 222.

Kleinschmidt und Limbrök cit. 267.

Klewer siehe Medicago.

Klimatisches und klimatische Vergangenheit Zentralasiens 13, 54, 63, 71, 74 f., 76, 78, 79, 80, 87, 94, 98, 99 f., 102, 104, 105, 108, 110 f., 114, 115 f., 121 f., 126, 134, 135, 142, 153, 180, 181, 182, 185, 137, 188 f., 192 f., 196, 198 f., 200 f., 203, 204 f., 209, 211 f., 216, 218, 219 f., 224, 228 f., 230 f., 233, 234 f., 236 f.; vor allgemeiner Vereisung feuchte Periode 78, 79, 87, 94, 102, 107, 150, 152, 153 f., 185, 196, 203 f.; Raschheit des Einstein der Ville 200, 200 f.; Raschheit des Einsteit der Ville 200, 200 f., 200 tritts der Klimaänderung und ihre Andauer 80, 83, 86, 92, 97, 98, 99, 106, 108 f., 154, 182, 185, 192 f., 196, 203, 205, 224 f., 228, 229, 233, 236 f.; Klimaveränderung im Süden schärfer als im Norden 79, 105, 108, 121, 182, 188 f., 192 f., 196, 209, 211, 212, 224 f., 228 f., 231, 233, 237; Eiszeit als Folge von Temperaturerniedrigung? 192, 230 f., 234 f. Siehe auch Bogdo-Ola: Klimageschichtliches und Vergletscherung sowie bei Urumtschi: Klimatisches.

Kobdo 11.

Kochia prostrata 118, 128, 130.

Koeleria cristata 120, 128.

Koi-aschu-Paß 300, 303.

Koi-kaf-Tal 54, 163.

Kok-su-Fluß. Zentral-Tian-Schan 2, 78, 82, 204, 232.

Kok-schal-Tal und und -Fluß 42, 301.

Kok-tepe-Kette 53, 63, 127.

Konfluenzstufen 102.

Konfuzius 156, 157.

Kongor-adzingan-Oola 31.

Konstantinopel 140.

Kontsche-daria 57.

Kordilleren (Argentinien) 79.

Korea 303.

Kosaken 133.

Koslow P. K. 28, 234. Kotyl-Tal 57, 64, 231; Tektonisches 57.

Kran-Fluß 222.

Krapotkin, Fürst cit. 49.

Krasser Fr. 61, 64, 65, 67, 69. Krassnow N. 79, 117, 125, cit. 115.

Kreideformation 54, 65, 66, 68, 304, 307.

Abh. d. math.-phys. Kl. XXVII, 5. Abh.

Kristallinische Schiefer 274-276, 291.

Krotkow N. cit. 11.

Krummholz fehlt im Bogdo-Ola-Gebiet 117, 127.

Kuen-lun-Gebirge 4, 9, 62, 69, 70, 223, 328.

Kuen-Yuan-hien-Schichten 69.

Kuilun (Höhe) 44.

Kui-lutun (Höhe) 44.

Kui-tschoŭ, Becken 68.

Kukuluk-Tau 301, 302.

Kuku-nor 70.

Kukurtuk-Tal 231.

Kuldscha, Stadt 26, 43, 65, 70.

Kulturpflanzen 119, 120 und siehe Gerste, Hirse,

Mais, Melonen etc. Kum-aryk-Tal 42.

Kunges-Fluß und -Tal 3, 34, 51, 53, 57, 58, 74, 125, 131; Entstehung durch Grabenbruch 51, 57; Gesteine 57.

Kungeu-Ala-Tau 125, 220.

Kungeu-kok-su-Tal 231.

Kupferschmelze im Gurban-bogdo-Tal 36, 92, 101, 103, 108, 131, 197, 200 f., 204, 216, 281, 291.

Kupfervorkommnisse 11, 139, 200, 281 (siehe auch Epidotskarn).

Kurla, Stadt 5, 41. Kuropatkin A. N. 31.

Kurowsky'sche Methode 216 f.

Kur-tu (Höhe) 41.

Kuruk-tagh 3, 57; Höhenverhältnisse 3, 41; ein Horst 41.

Kurumduk-Tal 231.

Kuserab 70.

Kutscha, Stadt 3, 34, 42, 58, 62, 124, 234; richtige Schreibweise 3.

Labiateae 113, 311, 329.

Lachsmann, Sibirische Briefe 33.

Lakkolith, die Bogdo-Ola ein solcher 55, 267, 291. Lamansky W. W., über Eiszeit, cit. 230. Lan, Herzog von = Prinz Gan-jeh 10, 157 und siehe unter G.

Langsan-Fluß = Archotu siehe dort.

Lao-tze 156, 157.

Lasiogrostis splendens 118, 119, 128 (siehe auch Bandgras, Bromus).

Leguminoseae 310.

Leontopodium 111 (siehe auch Gnaphalium L.).

Lepidium 111. L. latifolium 114, 118, 310. L. obtusum 118, 128.

Lepidodendron conf. Heideringi Ettingh. 61, 263. L. fusiforme 302.

Leriche, Maurice 71, 306 f., 328.

Leuchs, Kurt cit. 3, 43, 50, 54, 62, 78, 267; Kontroverse über Mächtigkeit der Kok-su-Konglomerate 78; Kontroverse über Grenze zwischen Altai und Tian-Schan 43.

Lex Fr., über Höhe von Urumtschi 6; Bearbeitung meteorologischer Beobachtungen 12, 14, 17, 292-299; Methode zur Berechnung der in die Karte aufgenommenen Koten 241 f.

Liasformation 65, 66, 68, 248, 266, 303, 307, 308 (siehe auch Angara, Dogger, Jura, Kimmeridge und Mesozoikum).

Libanotis 123 (siehe auch Chorispora).

Ligularia 127.

Liliaceae 111, 113, 119, 308. L. tenuifolium Fisch. 308. Lin-schan = Bogdo-Ola 20 und siehe Bogo-Ola: verschiedene Benennungen.

Linum 127.

Liparit 271, 272 (siehe auch Cordierit-Liparit).

Loczy L. von 64, 65, 66, 67, 69, cit. 66 f. Lößbildung 76, 104, 109, 135, 136, 138, 142, 143, 145, 203, 210, 249, 254, 257, 258, 264, 265.

Lonicera 123, 124, 127, 128. L. Alberti Regel 128, 129. Lorenz Th. cit. 67.

Loŭ-sa-gu-Fluß und -Tal 37, 136, 150.

Lukiun-hiue-tang = Kadettenkorps 9.

Luktschun, Ort 3, 22, 41, 101, 191, 212, 229; Höhe 3, 12; geographische Lage 244; Klima 12, 16, 229; meteorologische Station Roborowskys 3, 12, 14; Kärtchen der Senke von Luktschun 28, 101. Lu-tsin-tan = Generalgouverneur 9.

Lycium 128, 207. L. ruthenicum Murr. 118, 129. Lydekker R. cit. 207.

M.

Machatschek F. Prof. 45, 219, 220, 221, 222, cit. 45, 48, 50, 79, 85, 219, 222, 230, 236; über quartare Dislokationen 50; über eiszeitliche Depression 219, 220, 221, 222, 230.

Maili-Kette 43.

Mais 119, 136, 137, 140. Makscheyew A. J., Würdigung Renats 33.

Malcolmia 111, 119.

Manas, Stadt und Tal, auch Oase 3, 5, 10, 34, 44, 124, 133, 243, 244, 258, 264, 265, 266, 328; Höhe 44, 46. 94; Fruchtbarkeit 10; geographische Lage, Ortsbestimmung 243, 244, 329; der Fluß 3, 44, 67. 132, 133; Kärtchen des Manasgebietes 44, 243, 244 (siehe auch Chustai).

Mandronferner 87.

Maudschurei 64, 69, 303. Mandschus 9.

Mannerheim Baron 36.

Maralhirsch 132 (siehe auch Cervus).

Marco Polo-Gebirge 245.

Marder 133.

Matussowsky S. cit. 10, 30.

Maximum-Minimum-Thermometer 292. Medicago falcata L. 118, 120, 310. M. sativa var. Turkestanica = Klewer 119.

Medlicott und Blanford cit. 49, 73.

Melaphyr 57, 270.

Melonen 119, 140.

Mesozoikum, mesozoische Gesteine, Periode etc. 41, 42, 43, 44, 49, 50, 54, 57, 58, 64, 65, 66, 67, 68, 69, 76, 77, 204, 302 f., 304, 306. 308; mesozoische Gebirgsbewegungen? 69; marine Ablagerungen? 70 (siehe auch Angara, Dogger, Jura, Kimmeridge, Lias etc.).

Messerschmidt J. B. Prof. † 292.

Meteorologisches (siehe unter Bogdo-Ola: Meteorologisches und unter Urumtschi: Meteorologisch-Klimatisches, auch bei Lex F.). Meteorologische Zeitschrift 12.

Middlemiss Ch. St. cit. 49, 96. Miloschewitsch K. O. cit. 65.

Miocan 232 (siehe auch unter Bogdo-Ola: Tertiärablagerungen, unter Tertiär bei T., unter Eocan und anderen Spezialtiteln).

Mischenkow A. K. cit. 65.

Mitteilungen Münchener Geogr. Gesellschaft 42, 45.

Mittendorf A. von 122, cit. 122.

Moeringhia umbrosa 123.

Moesch E. cit. 197. Mongolei 4, 11, 31, 32, 64, 65, 69, 218, 303, 304, 308; Karten der Mongolei 31, 32, 34, 329.

Mongolen 131, 132, 245, 246; religiöse Anschauungen 19 (siehe auch Torgouten und Tschacharen.

Montblanc 80. Moschustier 133.

Muis-Tal 200.

Mulgedium 112, 123. M. Tianschanicum 113. M. azureum D. C. 113, 312. M. tataricum D. C. 118, 128, 129, 312.

Mulithu, Berg 20. Mungatö-Tal: Mündung folgt einer Verwerfung 51. Murmeltier 133.

Musart-Fluß und -Tal 2, 66, 82, 117; südliches M. 42, 72, 127, 218.

Musart-Paß 2, 53; als orographische Grenze 2. Muschketow D. J. 45, 220; cit. 45, 47, 220.

Muschketow J. W. 45, 64, 66, 79, 220, 232, 267, 303,

cit. 45, 65, 220. Mus-tagh = K 5. 223.

Myosotis 123, 127. M. sylvatices Hoffm. 113, 311. Myricaria alopecuroides Schr. 128, 138 (siehe auch Tamarix).

Naitak-su-Fluß und -Sattel 33, 36, 47, 104. Namen geographische 2, 8, 95, 244 f.; türkische sind

nur Umschreibungen 2. Nan-schan 22, 126, 328.

Narat-Fluß und -Sattel 33, 36, 47, 80 (auch Juntschan-toŭ).

Nardin Paul D., Uhren 238.

Naudet'scher Barograph 239, 242, 292. Neogaya mucronata Schr. 118, 310.

Neorhombolepis A. S. Woodward 306.

Nesseln 120, 137.

Neufchâtel, Observatorium 238.

Neü-schuü-tsian 67.

Newberry Dr. 68.

Ney Elias, Karte von Asien 31. Nikitin und Matussowsky 30.

Nikolai Michailowitsch, Großfürst 24.

Nissa-Fluß 223.

Nitraria Schoeberi 123, 129, 130.

Noeggerathiopsis Hislopi Bunbury 64.

Noetling F. Dr. 41, 66.

Nord-Karolina 68.

Nußbaum F. cit. 197.

0.

Obo, Bedeutung 19 f. Obrutschew W. A. 4, 64, 138, 203 f., 205, 208, 232, 258, 263, cit. 4, 7, 12, 20, 22, 23, 29 f., 41, 44, 47, 48 f., 55, 56, 58, 60, 61 f., 67, 68, 80, 104, 203 f., 205, 208, 209, 210, 211, 222, 243, 258, 259, 262; über verschiedene Benennungen im Bogdo-Ola-Gebiet 20; Irrtum betreffs Lage und Gliederung der Bogdo-Ola 22 f., 29 f., 38; über ein die Gruppe trennendes Tal 29 f.; Marschroutenblätter 29 f., 208; über Dun-Schan-Gebirge und seine Gesteine 30, 58, 61 f., 263; über Bruchbewegungen und Faltung 41, 44, 49; Auffindung ober-karbonischer Pflanzen 58, 60 f., 62 f., 263, 291; Auffindung einer jurassischen Flora im Süden 41, 67, 68, 69; Korallenfunde 61; über Dsungarischen Ala-Tau 44; Kontroverse betreffend Grenze zwischen Tian-Schan und Altai 47.

Oeleten 6, 9; ihre Kämpfe 9. Oestreich K. Prof. cit. 49, 217 f., 223, 236.

Ogun-schan-dse-Fluß und -Tal 95, 254, 255, 256, 257, 258, 259, 269, 270, 275, 290, 300, 329.

Oldham R. D. cit. 96.

Olug-Yelduz 34 und siehe unter Yuldus.

Oolith 68.

Orobus hybrida 123.

Osten-Sacken Baron von und Rupprecht 31, 117, cit. 117.

Otragh-knl-Gletscher 223.

Ott'scher Polarplanimeter 243, 329.

Ottweiler-Schichten 302.

Otun-kosa-Senke 46, 47, 48; Höhenverhältnisse 46; Entstehnng 47, 48; als Grenze zwischen Tian-Schan und Altai 47; als Störungszone 47, 48 f.

Ovis Karelinii 132. O. Polii 132. O. Ammon 132

(siehe auch Wildschafe). Oxytropis 113. O. coerulea 129. O. glacialis 113. O. humifusa 111. O. lapponica 113, 129. O. sp. 310.

Ρ.

Palāozoikum 52, 54, 58, 59, 63, 64, 66, 68, 69, 74, 302, 308 (siehe auch Karbon, Perm).

Pallas P. S. cit. 19. Pamir 9, 235, 301.

Panicum Italicum erythrospermnm 119 und siehe Hirse.

Papilionaceaen 118, 119.

Pappeln 120, 126, 127, 128, 163, 197, 201 (siehe auch Populus).

Parnassia 127. P. ovata Ld. 113, 310. P. palustris 112.

Parrya 111, 113.

Paschinger Viktor Dr. 223, cit. 223.

Pedicularis 112, 127, 129. P. cheilandifolia Schr. 113, 311. P. rhinantoides 112. P. uliginosa 112.

Peganum 207. P. harmala 118, 128, 129, 310. Peking 23, 33.

Pelliot P. 5 f., 36, cit. 3, 5 f., 9, 11, 23, 32; Schreibweise von Kutscha 3.

Penck A. Prof. cit. 170.

Peneplain 74, 153 (siehe auch Verebnungsflächen). Perm 65, 67, 262, 302, 328; Permokarbon 302 (siehe auch Karbon, Paläozoikum).

Persien 64, 73.

Pe-schan 9.

Peter des Großen-Kette 222, 245.

Pfann H., Anfnahmen 221.

Pfriemgräser 109, 114, 119, 122 (siehe auch Stipa). Phlomis 123.

Phoenicopsis 41, 68, 304. Ph. angustifolia 299, 300, 303.

Photographische Arbeiten 35, 39, 140, 176, 179, 180, 190, 212, 221, 240.

Phragmites 112.

Phyllotheca Ammoni Schuster 301, 303, 305.

Picea obovata 126.

Picea Schrenkeana 123, 125, 127, 151, 156, 209;

Verbreitungsgrenzen 125 (siehe auch Fichten). Pik Schokalsky 37, 83, 101, 137, 142, 178, 179, 180, 181; seine Vergletscherung 37, 83, 84, 101, 169, 176, 178, 179; Endzungenhöhe 83, 84; Entwässerung nach Nord und Süd 84, 101 (siehe auch Schokalsky).

Pinitporphyr 284 (siehe auch Porphyre).

Pitschan, Stadt 41.

Pityophyllum longifolium Nath. 299, 300, 301, 303, 305.

Pjewtzow W. M. 5, 6, 22, 27, 208, cit. 5, 8, 11, 12, 13, 16, 22, 29, 125, 126, 133, 208, 220, 234, 242, 244; Karten 29, 208. Plantago 127.

Pleistocan 76, 78, 233 (siehe auch Tertiar und Bogdo-

Ola: Tertiär, dann Eocän etc.). Pliocän 77, 304 (siehe auch Tertiär und Bogdo-Ola Tertiär, dann Eocän etc.).

Poa 111, 119.

Podozamites lanceolatus 68, 248, 299, 300, 301, 303, 305. P. var. latifolius Heer 305.

 Polygonaceaen 113, 120, 309. P. viviparum 123.
 Populus 124, 128. P. diversifolia 126. P. hybrida
 M. B. 120, 126, 309. P. tremula 124 (siehe auch Pappeln, Espen).

Porphyrische Gesteine 57, 161, 166, 260, 261, 272,

284, 289.

Potanin G. N. 69, cit. 32. Potanin und Rafailow cit. 32.

Potentilla 127. P. nivaea 113.

Potonié H. 66.

Preobraschensky P. J. cit. 45, 328.

Primulaceae 113. Pr. integrifolia 113.

Prinz G. 44, 221, cit. 44, 221, 328.

Proluvium 138 f.

Prschewalsky N. M. 31, 126, cit. 31, 126. Prunus 124. P. padulus 124. Psammite 269 f., 272.

Psephite 269 f., 272.

Ptycholepis L. Agassiz 306, 307, 308.

Pukhithapan, Berg 20.

Pumpelly R. 49, 68, cit. 49, 68.

Quartärperiode, eine Zeit von Gebirgsbewegungen 49, 50, 235 (siehe auch Bogdo-Ola: von sehr jungen tektonischen Bewegungen).

Quarzitische Gesteine 52, 55, 57, 64, 123, 143, 145, 149, 162, 195, 196, 202, 249, 259, 260, 275, 276, 291.

Quarzkeratophyr 145, 200, 268, 280, 282 f. (siehe auch Keratophyr).

Quarzporphyr 52, 53, 57, 58, 69, 74, 145, 151, 284, 300 (siehe auch porphyrische Gesteine).

Rafailow und Potanin (siehe unter Potanin).

Ranunculaceaen 113, 123, 127, 309. R. amoenus

112. R. gelides 112. R. sulphureus 112. Regel Alb. 31, 117, 208, cit. 4, 8, 12, 21, 22, 30, 31, 70, 115, 121, 125, 208; Reisen 21, 31; über Lage von Urumtschi 8; irrtümliche Annahme hinsichtlich Bogdo-Ola 4 f., 8, 21 f., 31, 38; Auffindung fossiler Pflanzen 70.

Rehe 133 und siehe Cervus.

Reis O. M., Oberbergrat 71, 304, 306 f., cit. 304, 328. Reiseschwierigkeiten 61, 91, 101, 135, 136, 158, 161 f., 163 f., 165 f., 168, 169, 173, 178, 181, 182, 187 f.,

190 f., 194, 195, 206 f.

Renat Joh. Gustav, Lebenslauf 33; Karte 33.

Rhät 65, 66, 68, 69, 303 (siehe auch Keuper, Trias etc.). Rheum 118, 138.

Rhododendron, fehlt im Bogdo-Ola-Gebiet 117.

Ribes 127. R. heterostrichum? 123.

Richthofen F. von 54, 68, 69; Chinawerk cit. 4, 8, 9, 11, 47, 64, 66, 67, 69, 70, 71, 72, 79, 235; über angebliche Vulkane 11; über Hanhai 54, 77; über Trias im Tian-Schan 70; über Grenze zwischen Tian-Schan und Altai 47.

Riedgräser 112, 329 (siehe auch Carex und Cyperaceae).

Ritters Erdkunde cit. 5, 8, 9, 11, 16, 19, 20, 34. Roborowsky W. J. 3, 5, 22, 27, 44, cit. 3, 5, 6, 12, 13, 14, 16, 22, 28, 44, 233, 234, 244; Karten gewürdigt 28, 36, 46, 100, 101, 105, 208, 243; Kärtchen der Umgebung von Manas 44, 243, 244; Beobachtungen in Luktschun 3, 22; Höhenbestimmung der Bogdo-Ola 22.

Romanowsky G. D. 45, 64, 267, 302, cit. 45, 65, 68.

Roß-Camera 240 (siehe auch Photographische Arbeiten). Roter Berg bei Urumtschi 8, 258, 259 (auch Chungtschan-tsui und Kissyl-Tau).

Royal Geographical Society 246.

Rubiaceae 311.

Rubus 117.

Rumex 120.

Rupprecht und Osten-Sacken 117 (siehe auch Osten-Sacken und Sertun-tianschanicum).

Rutaceae 310.

Sabawtschö-Gletscher 191. Sabawtschö-Tal 127. Sacho-gu-Fluß und -Tal 125, 136, 150.

Saiga-Antilope = Saiga tartarica L. 133.

Sailenischer Ala-Tau 125.

Sairam-nor 131.

Saissan-Gebiet 4. S.-See 118. S., Stadt, Klimatisches 13.

Sakrschewsky R., Abriß des Dsungarischen Ala-Tau 43 (siehe auch dort).

Salix und Salicaceae 123, 309. S. purpurea 128. S. retusa 123. S. tenuijulis 128, 329 und siehe Weiden.

Salsolaceae 118, 119, 120, 123. S. arbuscula 129. Salzgehalt von Bödeu 94, 118, 121, 139, 205, 214, 233. Salzgehalt von Gewässern 94, 139, 205, 208, 210, 211.

233. Salzsümpfe und -Pfannen 94, 139.

Samarkand 33, 222.

Sammlung der Materialien über Asien (siehe Shornik).

Sando-cho, Station (Höhe) 44.

Sandschi, Stadt 121.

Sangha, der blaubeknopfte 300.

Saugun-Fluß und -Tal 94, 97, 98, 120, 122, 125, 141 f., 144 f., 147, 148, 149, 160, 216, 226, 227, 228, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 269, 276, 285, 286. 293, 299, 302, 303 (siehe auch Da-tun-gu-Tal).

San-tai, Stadt, richtig San-tou 23, 328.

Saosti-Elisun, Wüste 7, 138; Höhenverhältnisse 18. Sarten (siehe unter Bogdo-Ola: Besiedelung und Verkehr, siehe auch Tarantschi).

Sary-dschas-Fluß und -Tal 109, 154.

Sary-kamisch-See 234.

Sary-Mollah 164 f., 172.

Saussurea 111, 113. S. amara D. C. 129, 312. S. involucrata Kar. et Kir. 113, 312. S. pygmaea D. C. 113, 312. S. spec. 312.

Saxaul 117 f., 119 (siehe auch Arthrophyton und

Haloxylon).

Saxifragaceae 113, 310. S. hirculus 113, 310.

Sayan-Gebiet 43, 101, 131.

Sayopu-See 22, 33, 108, 129, 130, 131, 192, 200, 201, 203, 204, 205, 206, 207, 208 f., 210 f., 212, 243, 309, 311, 312; Höhe 3, 129, 207; Boden und Vegetation 129, 209 f.

Sayopu-tagh 209. S. Veste und Ort 211.

Sbornik der Materialien über Asien 23 (auch Sammlung).

Scandix 127.

Sciopus 112.

Scorodosma 118, 138.

Scrophulariaceae 113, 311.

Sedelnikow A. N., über Klima von Saissan 13.

Sedlbauers W. B. Boussolen 238.

Se-dschön-ga, Ort 265, 266, 329.

Sedum 123. S. aizoon 113, 310. S. Ewersii 113, 129, 310. S. Kirilowii 113.

Seebildungen, Seen: über glaziale Randseen siehe unter Bogdo-Ola: Vergletscherung; über Stufenseen siehe ebenda und bei Gurban-bogdo-Tal; über Seen am Südabhang siehe unter Bogdo-Ola: Erosion und Erosionsgeschichtliches.

Seeley H. G. 49. Semenow P. P. 117, 125, 220, cit. 117. Semenow-Kette 245.

Semipalatinsk 11.

Semiretschensk 45.

Senecio 111, 113. S. nemorensis L. 312. S. Tianschanicus 113, 312.

Serafschan-Fluß 65.

Sertum Tianschanicum 117 (siehe auch Osten-Sacken, Rupprecht).

Seward A. C. 64, 65, 302, 303, 304, cit. 66, 68, 71, 304.

Sewerzow N. 32, 125, 220, cit. 117, 220, 267. Siao-kiao = Dunganen (siehe dort).

Sibirien 64, 65, 230, 299, 303.

Siedethermometer 239, 292.

Signalberg 146, 252.

Sileneaen 113.

Sisymbrium 120.

Skatschkow K. A., Bericht über Urumtschi 9, 328. Sölch J. Dr., über Gebirgspässe 169, cit. 169, 170 (siehe auch Aufschüttungspaß).

Solidago 123, 127.

Solonen = Mandschus 9 und siehe dort.

Sophora alopecuroides 130.

Sorbus 127. S. aucuparia var. Tianschanica Trautvett. 123.

Son, Marschall 10.

Soŭka-Tal 220.

Spiraea 127.

Spirifer glaber 302.

Spitaler'sche Tabelle 13.

Suaeda physophora Pall. 114, 118, 120, 128, 129, 309.

Su-baschi 70, 233.

Suchun 232.

Süd-Gletscher (siehe unter Bogdo-Ola: Vergletscherung). Suess Ed. 43. 264: Antlitz der Erde cit. 3, 47, 50,

64; Suess-Kette 245.

Sügoschur 43, 71, 266; Höhe 44.

Sürküp-tagh 67. Sugun-karaul 233.

Suyok-tepe 117. Syr-daria 65, 72.

Szöchöni, Graf 66.

Szötschuan 64, 66, 67.

Sch.

Schachtelhalme 301, 302, 303.

Schah-Jar 234.

Schan-si. Provinz 9, 10, 66.

Schichs. Stadt 44, 266; Höhe 44.

Schicho-dse, Ort 264, 265.

Schichtfluteu 201, 206 f. (siehe auch Takyrboden).

Schimo-gu-Fluß und -Tal 94, 95, 97, 100, 125, 140, 143, 160, 161, 162, 172, 216, 226, 227; alter Talboden 97, 100; alter Seeboden 22, 83, 146, 147.

Schi-tsüan = Sandsteine 68.

Schitzoneura Gondwanensis 65.

Schmetterlinge 133.

Schneeleopard = Irbis = Felis nivalis siehe dort und 133.

Schokalsky J. M., General 37 (siehe auch Pik Schokalsky).

Schor-köl, Salzsee 233.

Schou-gu-Fluß und -Tal 125, 136, 137, 150.

Schü-gu-lan-Tal 264, 265.

Schuruk-Gletscher 222.

Schuster J. Dr. 71, 299 f.; Dank an von Ammon 303,

Schnyler Eugene Dr., Turkestan cit. 9.

Schwarz L., Karte von Sibirien 34.

Schwarznime (siehe Karagatsch und Ulmen).

St.

Statice 123. St. speciosa 120.

Steierdorf 303.

Stein Aurel Sir 212, 223.

Steinböcke 132.

Steinmann G. Prof. 80.

Stellaria graminaea 123. St. sp. 114, 118, 309.

Stelling, Direktor 241; Dank 241.

Steppenboden, Beschaffenheit und Vegetation 118 f., 121, 122, 128, 135 f., 137, 138, 139, 141, 206 (siehe auch Takyrboden).

Stielers Handatlas 19, 41.

Stipa 111. St. capillata 128. St. Lessingiana 119. Stoliczka Ferd. Dr. 70. Strokowsky W. A. Dr. 292, 297; Höhe von Urumtschi

6; Abrif des Klimas von Ürumtschi 12, 13, 16, 17, 241.

Stufenseen 84, 101 f., 178, 182, 193, 228.

Ta-dawan-Paß 3; Höhe 3.

Takyrboden 118, 122, 128, 201, 205, 206 f. (sie he auch Schichtfluten und Steppenboden).

Talbildung (siehe unter Bogdo-Ola: Talbildung und bei Tian-Schan).

Taltreppe 56, 83 f., 101 f., 107, 169, 170, 172, 182, 228. Tamarix 118, 138 und siehe auch Myricaria.

Tamo-fu = Buddha 157, 158, 159 und siehe auch Buddha.

Tanacetum 123. T. tenuifolium Jacquem. 114, 312. Tangentialer Zusammenschub 2, 48, 53 und siehe Bogdo-Ola: Tektonisches.

Tangitar 231.

Taphrospermum altaium? 113.

Tarantschi = Sarten 11, 231 und siehe Sarten.

Tarbagatai 4, 11, 43, 44, 109, 124, 131, 328; Handel mit der Mongolei 11.

Tarr und Buttler cit. 235.

Tarr und Martin cit. 235.

Tarymbecken 4, 83, 233, 235.

Taschkent, Klimatisches 14, 121; Deklination 238. Tasch-kösö 67.

Tasch-malyk 301, 303.

Ta-seng-koŭ-Tal im Dschargöß-Tau 23.

Tataren 11.

Tat-sau-Gebirge, Angaraschichten 66.

Ta-tung-fu, Angarabildungen 66.

Taviglianaz-Sandstein 269.

Tegermen-Tal 231.

Tekes-Fluß und -Tal 34, 58, 74, 109, 112, 125, 154, 221, 232; Entstehung durch Grabenbruch 51.

Telegraphenlinie chinesische 11.

Telli-nor-Höhe 44.

Tempelbauten bei Urumtschi 7, 8; im Bogdo-Ola-Gebiet 20, 130, 156 f., 158 f., 200 (Torgoŭtische siehe dort).

Temurlyk-Tau 44, 74, 301; ein Horst 44 f.

Temurlyk-Tal 300.

Terek-Tal im Chalyk-Tau 42, 231.

Terskeu-Ala-Tau 125, 127, 219, 220, 329.

Tertiar-Formation und -Periode 40, 41, 49, 50, 54, 55, 58, 63, 68, 75—80, 104, 105, 153, 202 f., 204 f.; Verbreitung und Lagerungsverhältnisse dieser Bildungen 75 f., 79, 80, 104, 105, 153, 202 f., 204 f., 209, 231, 232, 233, 234; bedeutendere Entwicklung im Süden 179, 203 f., 232, 233; geologischer Bestand 76, 77 f., 80, 202 f., 204 f., 209, 231, 232, 233; Zeit ihrer Dislokationen 49, 50, 76, 77 f.; ein Fall von scheinbarer Dislokation 78; Ablagerung in Becken 77 f., 79 f., 105, 203, 204 f., 209, 231, 233, 234; Tertiärperiode, eine Zeit großer Feuchtigkeit 153, 203, 204 f., 230, 233, 234 f.; Tertiär, eine Zeit von Gebirgsbewegungen 49, 50, 58, 64, 72, 74 f., 79, 232, 233, 235 f., 264 (siehe auch Gobi und Hanhai, dann Bogdo-Ola: Tertiär und bei Tian-Schan, sowie Eocän, Miocän etc.).

Tethys 65.

Thalyetrum 113. Th. isopyroides C. A. M. 114, 120, 123, 129, 309.

Thlapsi arvensae 120.

Thuya 161, 167 (siehe auch Juniperus und Krummholz). Thymus 127, 129.

Tian-Schan. Rechtfertigung dieser Schreibweise 246; russische Forschung überwiegend 21; eigene Forschungen 1, 2, 3, 5, 41, 43, 45, 52, 82, 110, 112, 221, 230, 232, 241; Veröffentlichungen hierüber, Titel und cit. 1, 2, 3, 42, 45, 54, 70, 78, 79, 87, 98, 105, 106, 109, 121, 138, 163, 191, 198, 204, 212, 218, 221, 222, 230, 231, 237; orographische Teilung und Gliederung 2, 4; Verkehrsmöglichkeiten 4, 9; Grenze gegen Dsungarischen Ala-Tau und Altai 43, 46 f., 94.

- Summarischer Abriß der Tektonik 52 f.: sonstiges Tektonisches 2, 4, 41, 42, 43, 48, 49, 50, 51, 52 f., 58-59, 63, 69, 70, 72, 74 f., 153, 232, 233, 235, 237, 262, 264, 267; Unterschied im Bau zwischen zentral. Tian-Schan und Bogdo-Ola, siehe dorten diesen Spezialtitel; üher junge und jüngste Bewegungen 42, 45, 49, 54, 57, 77 f., 96, 232, 233, 235, 236 f. und siehe unter Bogdo-Ola: junge tektonische Bewegungen; Bedeutung der Faltungsbewegungen 53 f., 59, 69, 75. 264; Oberkarhon am Südahhang 62; Kalke bilden die höchsten Erhebungen 52 f., 59; Verbreitung der Angaragesteine 65, 67, 73, 74, 304; siehe hierüber auch unter Angara; Fossile Flora 301 f., 304.

- Talhildung: Unterschied hierin zwischen Nordund Südablang: der Süden reicher und tiefer durchtalt 79, 87, 108, 230, 231, 237; Ühertiefung 106; Alter der Talbildung 232; im späten Tertiär und Diluvium keine Ausbildung von Tälern, nur Zerschluchtung 153 f.; trockene Erosionstäler 231; Gefällsveränderung unten und zunehmende Wassermengen im Oberlauf 78, 98 f.; Parallelismus der Wasserscheiden 53 und Weiteres über Talbildung unter Bogdo-Ola.

 Erosionsgeschichtliches 230, 231, 232, 233, 234 f., 236 f. und unter Bogdo-Ola: Klimatisches und Klimageschichtliches siehe dort; im Süden einst feuchteres Klima als im Norden 231, 235, 236 f.; von alten Gehirgsseen im Innern 232; Raudseen 44, 70, 94, 105, 233 f.

Zur Vergletscherung, auch Glazialgeschichtliches 53, 78, 82, 87, 98, 149, 177, 186, 216, 218 f., 220 f., 222 f., 229, 230, 233, 234 f., 237; Gletscher des Nordahhangs entwässern nach Süden 82; totes Eis 82; alte Glazialablagerungen am Süd-218, 232, 233, 234, 237; tiefe Niveaus von Glazialablagerungen 219, 220, 221 f., 223; über Schneegrenzen 219 f., 221 f.; eiszeitliche Depression der Schneegrenze 219-223 und siehe unter Bogdo-Oli: Vergletscherung.

- Botanisches: Literatur 115, 117, 122; Beziehungen der Flora und ihre Besonderheiten 109 f., 112, 114, 115 f., 119, 124, 165; Alpenwiesengürtel 116, 216; Waldgrenzen und Gürtel 125 f., 127, 151; Pracht der Fichtenwälder 123 f., 151; Charakter der Ulme und ihre Verbreitung 121-123; Krummholz 117; Auftreten der Caragana 117.

Verschiedenes: vom Tierleben 132, 133 f.; Ruinen zerstörter Niederlassungen 120 f.

Tian-Schan, Östlicher: Vorbereitete Arbeit über Ergebnisse meiner Reisen 42, 50. 51, 58, 74, 231; Karten von Grum Grschimailo 26, von Obrutschew 29, von Potanin 32; größte Breitenentwicklung und Auflösung 3, 4, 7, 35, 47, 53, 58, 61; engste Zusammenschnürung 4, 18, 41; ein eingesunkenes Bergland 53; verdankt seine Gestalt Brüchen, deren Wichtigkeit 42, 48, 51, 53, 57, 58, 74, 75, 105, 153; Begrenzuug durch Längsbrüche 41, 42, 43, 44, 45, 76, 94, 138, 139, 266; Transversalhrüche älter als Längsbrüche 48, 57, 58, 61, 74 f.; sonstiges Orographisch-Tektonisches 52 f., 57 f., 59 f., 61, 69, 70, 74 f., 77 f., 105; vorherrschend Längstalbildung 51, 57, 75, 110, 237; geologischer Bestand 52, 262; Verbreitung der Angaragesteine 64, 65, 67, 73, 74, 266, 304; ihre Besonderheiten und ihr Alter 65—72, 304 und siehe unter Angara; Vergletscherung 149, 186, 216, 234; ehemalige große Landseen 44, 70, 94, 105, 233, 234, 304; Botanisches 115, 117.

Tian-Schan, Westlicher: Forschungen Machatscheks 45, 79, 219; Tektonisches, Faltungsrichtungen 47 f.; Begrenzung durch Brüche 45; Verbreitung der Angaragesteine 64, 65 f.; seltenes Vorkommen jüngerer, prätertiärer Ablagerungen 63; Vergletscherung geringfügig 85; üher eiszeitliche Depression 219 f.; über Flora 114; vom Tierleben 132.

Tian-Schan-Nan-lu = Südliche Kaiserstraße 9 und siehe Kaiserstraße.

Tian-Schan-Peŭ-lu = Nördliche Kaiserstraße 10, 44, 94, 136 und siehe Kaiserstraße.

Tibet 4, 70, 212.

Ti-chua-tschoù = Urumtschi 8 und siehe dort.

Tillo A., General 12, 13, 14.

Tilpitschek-Tal 231.

Toksun, Stadt 3, 9, 10, 22, 23, 28, 30, 33, 62, 100, 191, 233, 328; geographische Lage 244.

Toli-See 234. Tonking 64.

Topographisches Bureau des K. Bayer. Generalstabs 243.

Topotar-Aulie = Bogdo-Ola 20.

Torfbildung 161, 301.

Torgoŭten 70, 131, 157, 194, 245 (siehe auch Mongolen).

Torgoutische Klöster 157, 266, 300 (siehe Bogdankurö, Zagan-ussun und Tempelbauten).

Transbaikalien 64, 69.

Transilenischer Ala-Tau 45, 120.

Trapp_290.

Trias-Formation und -Periode 50, 65, 66, 67, 68, 69, 74, 262, 302, 303, 307, 308; marine? 70 und siehe Keuper, Rhät etc. Trigonella 120.

Triticum 111, 119, 120.

Trollius altaicus? 113.

Tschacharen 131 und siehe Mongolen.

Tschantu 10; Bedeutung des Namens 10.

Tschemischew F. N. 42.

Tschili, Provinz 66.

Tschoglu-tschai-Gebirge 55.

Tschoktal am Issyk-kul 220.

Tschol-Tagh 3, 41, 48, 55; Höhenverhältnisse 3, 41;

Tektonisches 48, 55, 61.

Tschu-Tal und -Ehene 45. Tschugutschak, Stadt 11.

Tschukur-Gehirge 62.

Tsing-ling-Schan 69, 71

Tuan, Boxerprinz 10, 157.

Tuchu-lu, Station, Höhe 44.

Tudun-kul 208, 211, 329; Bedeutung des Namens 208.

Tugarak-dan, Ort 200, 232.

Tumulu-Schichten 66.

Turfan-Becken 3, 16, 18, 20 f., 22, 23, 58, 105, 130, 191. 203, 205, 233; größte Tiefe 3; Bildungsgeschichte 4.

Turfan, Stadt 10, 13, 28, 35, 36, 41, 68, 70, 100, 121, 208, 211.

Turgaschiefer 304. Turgen-Ak-su-Tal 219.

Turkestan Östliches oder Chinesisches = Hsin-kiang 5. 121 und siehe dort.

Turpanat-tagh 20 f., 29; Name unberechtigt 20. Tuslyk-kul 208. 211; Bedeutung des Namens 208. Tuyuk-su = Kl. Alamtinka 220.

Tnyuk-tagh 41, 68.

Tylodendron 302. T. scythicum Roman. Schuster 301,305. Typha 112.

U.

Übertiefungsproblem 106, 109, 147, 148. Uiguren 8, 120.

Ulan-be = Archo-tu 7 und siehe dort. Ulan-su-Paß = Gotschan-Paß 46; Höhe 46.

Ulan-nssn-Fluß 183.

Ulmen 120 f., 143, 156; über Verbreitung und Entwicklung 120-124 (siehe anch Karagatsch, Schwarzulme, Ulmus und unter Bogdo-Ola: Vegetation). Ulmus campestre var. umbraculifera Trautv. 121.

Umbelliferae 113, 310. Umu-chak, Salzsumpf 94.

Urkaschar-Kette 43.

Urnmtschi, Stadt 4, 5, 22, 23, 24, 31, 32, 33, 34, 35, 37, 41, 46, 48, 52, 57, 58, 60, 62, 117, 130, 132, 134, 135, 157, 158, 159, 172, 211, 212, 240, 241, 242, 244, 258, 259, 263, 264, 266, 292, 309, 310, 311, 312; geographische Lage 5, 6, 242, 244; Höhe 6, 242, 296, 298; zur Charakterisierung der Lage 4, 7, 8, 15; an Völkerstraße gelegen, Verkehrsmittel 4, 9, 11, 21, 134, 172; die frühere Stadt in anderer Lage 6, 8, 258; verschiedene Namen 6, 8, 34, 258; Geschichtliches 8, 9; Bevölkerung 8, 10, 11; Handel und Industrie 10 f.: Märkte 11, 162; Bodenverhältnisse, Anbau 10, 135, 297 f.; Bauart und Befestigungen 8; Bogdo-Ola sichtbar 17, 18; Brücke 7, 258; Administratives 5; militärische Anstalten 9; als Verbannungsort 10; Klimatisch-Meteorologisches 10, 12-17, 242; Föhn 16, 17, 297 f.; Jura-Kette im Norden der Stadt 7. 11, 17, 258 f.; torartige Öffnung darin und die dortigen Tempelbauten 7 f., 15 f., 258, 259; Steinkohlen-Vorkommen 11, 258; andere Bodenschätze 11; über angebliche Vulkane 11. Utsch-Turfan, Stadt 42, 301, 304.

Vaccininm fehlt im Bogdo-Ola-Gebiet 117. Vaillant Dr. 5 f.; Ortsbestimmungen 6, cit. 6, 36. Veratrum 127.

Verebnnngsflächen gehobene 40, 56, 96, 114 und siehe Peneplain.

Verhandlingen VII. Intern. Geographen-Kongreß 41. Virginia 68.

Vivien de St. Martin 33.

Võgel 133.

Vogelsang K. cit. 67. Vredenburg E. W. cit. 73, 236 (irrtümlich Voldenburg 328).

Vulkane, angeblich tätige bei Urumtschi 11.

W.

Wachsch-Tal 222.

Waldgrenzen und Waldgürtel 121, 123 f., 125 f., 127, 151, 152, 156, 158, 160, 162, 165, 167, 201, 209 f., 215 f.

Weber W., Geologe 42, cit. 50. Weiden 123, 127, 128, 137, 140, 141, 145, 195, 197, 201 (siehe auch Salicaceae und Salix).

Weinschenk E. Prof. 290.

Weizen 119, 140.

Wenjukow M., Karte von Zentralasien 34.

Wenter Frz., Bergführer 5, 132, 190, 195, 196, 214, 225, 239, 287, 289.

White David cit. 68.

Wiesel 133.

Wild'sche Normen 13.

Wildesel 133 (siehe auch Equs).

Wildkatze 133.

Wildpferd 133 (siehe auch Equs).

Wildrose 120, 123, 127, 128, 137, 140, 141, 145, 150 (siehe auch Rosa).

Wildschaf 131 (siehe auch Ovis).

Wildschwein 133.

Williams W. S., Middle Kingdom cit. 9.

Witim 304.

Wjernoe 117; Erdbebenliteratur 45.

Wojekow A., über Klima von Luktschun 12, 16, 43. Wolf 133.

Wollastonit 278, 329.

Wu-schan-Formation 70.

Wu-tu-ko = Urumtschi 8 und siehe dort.

X.

Xanthium spinosum 118, 129. Xylosteum 127.

Yakutat-Bai 235. Yar-Fluß und -Tal 36. Yarkend, Stadt 10, 129. Younghusband F. E. cit. 19, 30.

Yuldustäler 3, 21, 34, 42, 51, 57, 131, 186, 231, 245, 264, 265; Entstehung durch Grabenbruch 42, 51, 57. Yulgun-terek = Dschuwan-terek-Paß 23, 36, 46,

328; Höhe 36 und siehe Dschuwan.

Yünan, Provinz 64.

Z.

Zagan-ussun, Koster 266. Zaidam-See 126.

Zalesky M. D. 64, cit. 64 f. Zanma-Tal 51; Entstehung durch Grabenbruch 51.

Zchan-tschü, Station 243.

Zeiller R. 64, cit. 68.

Zentralasiatischer Graben 3, 4, 7, 12, 16, 18, 24, 33, 35, 40 f., 100, 103, 196, 203; Ausdehnung, Begrenzung, Alter 35, 41, 49; größte Tiefe 3, 35; Bildungsgeschichte 4, 40, 41, 100, 108.

Zitertő-Paß. Höhe 43.

Zizyphora 113, 123, 127. Z. canescens Benth. 114, 129. Zygophillaceae 310. Z. Rosowii 128. Z. macropterum 104, 118, 129, 310.

Druckfehlerverzeichnis und andere Berichtigungen.

Seite	4	Zeile	1	von	unten	ist	statt:	die von ihm	zu	lesen:	der von ihm.
17	7	,,	8	, ,	oben	,,	2.5	Karte Ia u. b	,,	,,	Karte I u. Ia.
11	7	, ,	14		unten	,,	• 1	Taf, 15c	7.9	,,	Taf. 15 Fig. 3.
**	9	**	7	,.	27	,.	,,	Statschkow	,,	,,	Skatschkow.
,,	10	**	19		oben	*11	,.	Taf. 15b	,,	,,	Taf. 15 Fig. 2.
*1	11	11	15	,,	71	1+	,,	Turbagatei	,,	,,	Tarbagatei.
12	22	**	9	11	unten	1.		Nan-Schau	•1	21	Nan-Schan.
"	23	7.7	7	2.2	,,	**	.,	Julgun	11	,,	Yulgun.
12	23	,,	7	1.	11		**	San-tai	,,	,,	San-toŭ.
7.7	26	21	21	**	**	••	••	Foukon	,,	12	Foŭkan.
77	31	"	2	,,	19	,,	19	Acti	**	,,	Acta.
11	33	77	5	11	22	10	,,	Toksoun	,,	"	Toksun.
	35	"	14	11	oben	17	"	S. 1, 3, 5			S. 1, 2, 5.
19	35	"	18	77	unten	7.7	,,	3500 m	"	,,	3000 m.
77	37	Note	1	. "1	0110011			XXIX	**	,,	XIX.
7.7	39		14		oben	77	"	Kap. IX	"	7.7	VIII.
11	41	20110	7	••	unten		,,	Bd. I	91	,,	Bd. I von "Durch Asien".
17	43		12	77	oben	11		Manaß	27	31	Manas,
17	44	17	1	11	unten		**	C. Prinz	9.1	91	G. Prinz.
7 7	44	17	12	*1		27	1.	S. 98	17	** .	S. 94.
•1		,, Note	4	9.9	7.7	2.9	**	Preobraschenski	77	2.7	Preobraschensky.
**	48	Zeile	3		ton	* 1	**	woh	77	17	wohl.
**	48		14	22	unten	7.9	71	erst nachher	27	7*	
19		9.9		9.9	,,	2.9	71		22	,,	erst weit später. Hauptachse.
*7	49	7.7	11	7.7	oben	• •	11	Hauptsache Tektur	7.7	7.7	Übersicht.
**	49	7.7	11	2.9	**	2.0	**		٠,	a 77	
**	49	7 9	20	7.9	17	9.9	1.2	Das von fast	9.7	7.7	Da von fast.
17	53	* *	4	7 *	unten	9 *	9.0	vrtikalen	, ,	7 9	vertikalen.
17	54	• 1	7	7.9	••	**	9.0	gemeinsame	22	11	identische.
7.1	56	7*	9	7 *	• •	2.7	**	Taf. 18	,,	7.9	Taf. 17.
1.0	56		12/13	2.7	,,	7.7	• •	vorherrschenden	* 9	2.7	bestimmenden.
4.7	57	Note	3			* 1	10	melaphyre	2.7	**	Melaphyre,
• •	57	Zeile		7.7	oben	• •	7.0	Bildungen der	2.9	12	Bildungen, die
7.7		Note	1					Zentralasien	3.7	7.7	Obrutschew: Zentralasien.
4.1	59	Zeile	5	23	unten	• •	**	infolge Umwandlung	9.9	77	eine Folge von Umwand-
											lungsprozessen.
7.7	61	7.7	14	2.7	oben		**	Tian-Scan	22	* 9	Tian-Schan.
**		Note	1			22	9.0	Kum-lun	7.9	, ,	Kuen-lun.
• •	62	77	5			7*	7 1	schon von weiter	77	27	schon viel weiter.
**		Zeile		, .	unten	7*	**	die Dr. Gröber	**	2.7	die von Dr. Gröber.
••	63	• • • • • • • • • • • • • • • • • • • •	18	27	**	**	• •	auf treten	,,	**	auftreten.
		Note	4			*1	٠.	Bd. XIII	٠,	**	Bd. XII.
* 7	65	Zeile	4	,,	unten	2.4	2.0	dsungarischen	27	27	Dsungarischen.

Seite	68	Zeile	9	von	unten	ist	statt.	Perman gehören	Z11	lesen:	Perm angebören.
	69	.,	4	1021	*1	,,	,,	S. 57, 58, 59	,,	,,	S. 53, 58.
• 9	71	••	10	,,	oben			Le Riche			Leriche.
**	71	••	10		",	22	7.7	Dr. M. Reiss	"	"	Dr. M. Reis.
10	71		17	2.7	unten	7.7	11	wegen meiner Expe-	"	,,	während meiner Expe-
**		"		17	directi	"	"	dition	17	17	dition.
••		Note	2			••	71	E. W. Voldenburg	2.3	,,	E. W. Vredenburg.
**	80	Zeile	7	**	oben	• •	13	des Sees abgelagert	,,	,,	eines Sees abgelagert.
27	82	Note	1			,.	7 7	Aigas-Gebietes	,,	17	Agias-Gebietes.
• •	95	Zeile	1	10	**	,,	71	Ogun-dschan-dse	22	**	Ogun-schan-dse.
**	97	,.	7	22	**	••	17	Fukan	٠,	**	Foŭkan.
••	98	2.9	14	11	unten	17	*1	dem tiefen Niveau	2.1	22	der tiefeu Lage.
**	100	7.7	7	**	oben	,,	1.1	erbrinen	,,	11	erbringen.
**	100	**	19	,,	,,	2.7	""	im Charakter	,,	7.7	in Charakter.
2.5	102	77	2	,,	,,	**	**	es setzt	19	,,	er setzt.
7.7	103	, .	4	22	7.7	,,	2.7	Terrassenflächen	,,	,,	Terrassendecken.
**	107	**	20	* 7	,,	17	17	bevor letzte Ver-	,,	,,	bevor die letzte Ver-
								büllung			büllung.
• •	112	49	16	,•	,,	21	9.7	hier in dichten Beständen	Ri	edgräse	er, wie Juncus, Carexzu lesen:
								hier Juneus in dichten	Ве	ständer	n und Riedgräser, wie Carex
• 7	121	21	1	22	2.7	22	77	vermiuderte der	zu	lesen:	verminderte.
7.7	125	Note	2			7.7	,,	Terskei-Alatau	,,	7,7	Terskeu-Ala-Tau.
77	127	Zeile	16	٠,	unten	, ,	19	Terskei-Alatau	,,	,,	Terskeu-Ala-Tau.
,,	128	17	3/4	22	oben	4.9	,,	S. tenujulus	,,	,,	S. tenuijulis.
*7	130	7.9	18	2.7	unten	2.2	22	und urchlässigen	,,,	,,	undurchlässigen.
12	134	7.7	15	7.7	oben	21	,,	des Bogdo-Ola	"	,,	der Bogdo-Ola.
12	134	**	11	22	unten	27	,,	wissenswert ist, daß	"	,,	wissenswert erscheint, so daß.
**	135	**	20	7.7	oben	"	,,	berauben	"	29	rauben.
11	161	**	8		**	,,		zufuhr durch die	,,	,,	zufuhr aus den Gletschern.
"		.,			,			Gletscher	.,	.,	
2.5	161	,,	16	,,	71	,,	,,	Grundmoränenlandscbaft	13	22	Grundmoränenlandschaft
								durch			überdies durch.
7.7	169	• •	6	* *	unten	,,	,,,	Taf. 7 Fig. 9	27	**	Taf. 7 Fig. 3.
	177	19	14	• 7	1,	12	•,	stark gewölbt erscheinen		,,	als starke Wölbung ber-
3.7					.,	.,		o .		•	vortreten.
22	180	**	12	17	oben	11	17	leiten muß	77	• • •	leiten.
77	191	,,	13	17	unten	2.7	19	S. 13 u. 105	,,	,,	S. 3 u. 105.
77	203	71	20	*7	oben	77	9 7	Dscbargößtau	,,	77	Dschargöß-Tau.
33	211	17	13	22	unten	7.7	22	Dudun-kul	27	,,	Tudun-kul.
77	216	,,	õ	,,	oben	+1	7.7	S. 140	71	,,	S. 149.
11	220	22	4	7.7	77	19	3.9	vom Passe	77	77	vom gleichnamigen Passe.
٠,	225	77	9	2.7	unten	7 7	2.9	S. 201	,,	,,	S. 216,
• 7	226	"	8	27	oben	7.7	77	S. 146—159 f.	,,	"	S. 146 und 159 f.
"	226	**	12	27	2.7	27	71	S. 85	77	,,	S. 83,
17		Note	1			,,	22	Pelarplanimeter	,,	17	Polarplanimeter.
17		Zeile		7.7	79	77	77	Karte I mit 44° 14′ 30′′	17	"	Karte 40° 14′ 30″ beträgt.
"	244	,,	23	19	11	71	21	Karten aber mit 44° 20'	17	39	Karten aber 44° 20′ N. Br.
	258	77	10	19	19	21	77	Kysyl-Tau	77	11	Kissyl-Tau.
17	259	"	9	17	unten	27	77	S. 173 f., 180 f. u. 186	22	"	S. 174 f., 180 f. u. 187.
77	266		17	77	,,	"	"	Se-dschön-gu	77	77	Se-dschön-ga.
77	267	17	11	11	oben	22	"	trümern	,,	"	trümmern,
77	278		13	17	,,,	77	7.7	Wallastonit	"	,,	Wollastonit.
*,		, ,		.,	-	- /					

Seite	304	Zeile	12	von	oben	ist	statt:	Kanäozoikum	zu	lesen:	Känozoikum.
,,	304	,,	18	1,	,,	17	,,	Apt	,,	,,	Aptien.
17	311	17	15	,,	,,	,,	,,	Labiatae	,,	,,	Labiateae.
11	311	27	7	,,	unten	,,	,,	Codonopsis	17	,,	Cadonopsis.
3.7	311	,,	4	,,	,,	,,	7.7	pulchillus	,,	79	pulchellus,

Zu Seite 19 Note 1 ist zu bemerken, daß dort der Titel des Werkes von D. Caruthers: Unknown Mongolia, 2. Bd., London 1914 angeführt wurde. Das Werk war von mir vor Ausbruch des Krieges bestellt, kam mir aber dann nicht mehr zu. Erst ein und ein halbes Jahr später gelang es mir, Einsicht in dieses schöne Werk zu erhalten. Es war zu spät, um noch mehr aus den Ergebnissen der verdienstvollen Reisen des Verfassers in dieser Arbeit zu würdigen, als das, was aus den vorausgehenden Veröffentlichungen im Geogr. Journal vol. 41 entnommen werden konnte (siehe hierüber S. 19, 46, 47, 55). Übrigens sind die dem Werke beigegebenen topographischen Karten identisch mit den im Geogr. Journal veröffentlichten, weshalb ihre weitere Würdigung sich erübrigt.

estgipfel 6397 m

KUNSTANSTALTE

ruppe v

Talstufe.

Bündeln feinster Lan von dem dahinterliege en Teil nach Süden f © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Mittelgipfel 6501 m

Beginn der nach SO abzweigenden Kette

Westgipfel 6397 m

Teil der Ostumwallung des Ourban-bogdo-Tales

O. Merzbacher phot,

Panorama der zentralen Bogdo=Ola=Gruppe von Norden

Aufgenommen auf einem Olpfel (4045 m) in der Ostumwallung der obernien Tahtule.

Im Vordergrund: abgetragene Zone feinst geschleferten Eruptivgesteins (einander schneidende Sehleferungsrichtungen), das in Bündeln feinster Lamellen und Nädelchen die Firnschneedecke durchbricht.

Im Mittelgrund: eln von der Ortsumwallung abzwelgender Querriegel (Härtling), aus widerstandsfählgem Kalksilikathornfels, von dem dahinterllegenden, ihn ehemals überfließenden Gletscher abgeschliften.

Zwischen Querriegel und Wandabsturz der zentralen Olpfelgruppe liegt der Grum-Grechimatto-Oletscher, der zur Elszeit den Querriegel überfließend nach Norden zog, jetzt zum überwiegenden Tell nach Süden fließt. Das von ihm eingenommene Tal wurde durch Ausräumung ähnlichen Gesteins, wie im Vordergrund, geschaften.

Östliche Fortsetzung der Hauptwasserscheide

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Taf. 2

nden Querzüge, zwischen ou-sa-gu etc. liegen.

G. Merzbacher phot.

1d w

Aufgen

rg die Wes

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

.

Lage des Gurban-bogdo-Passes

Teil der Ostumwallung des Gurban-bogdo-Tales

Pik Schakalsky

Fortsetzung der Hauptwasserscheide nach Westen

Am Fuße der zentralen Gipfelgruppe, Teil des Grum-Orschimailo-Oletschers

Zentrale Gipfelgruppe (siehe Taf. 1)

Panorama des zentralen und westlichen Teiles der Bogdo-Ola-Gruppe von Norden

Aufgenommen auf einem Gipfel (3985 m) in der Westumwallung der obersten Talstufe

Die aus der westlichen Hauptwasserscheide abspaltenden Querzüge, zwischen welchen die Quellgebiete der Flüsse Schimo-gu, Lou-sa-gu etc. liegen.

G. Merzbacher pho

engletscher

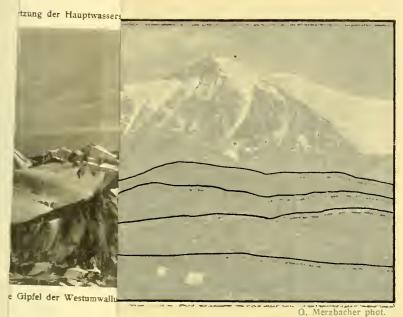
Taf. 3

Gipfel in der Fortsetzung des Hauptkammes nach Osten

G. Merzbacher phot,

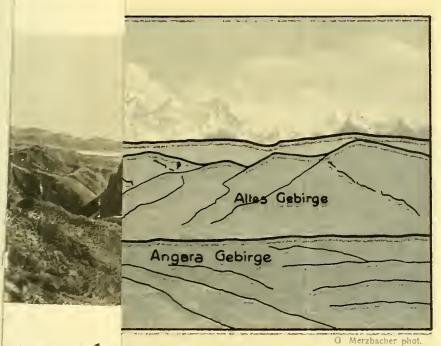
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Panorama der zentralen Bogdo=Ola=Gruppe von Süden


Aufgenommen auf einem Olpfel (4530 m) in der Westumwallung des Chigo-Oletschers

Im Vordergrund die Gipfel der Kette der Westumwallung des Chigo-Tales

G. Merzbacher phot.


© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Taf. 4

Vorden

auf Hochstufe am Nordfuß der Bogdo-Ola erstiegenem Gipfel des Westrandes; am Fiße drei Stufen alter Moranenzüge

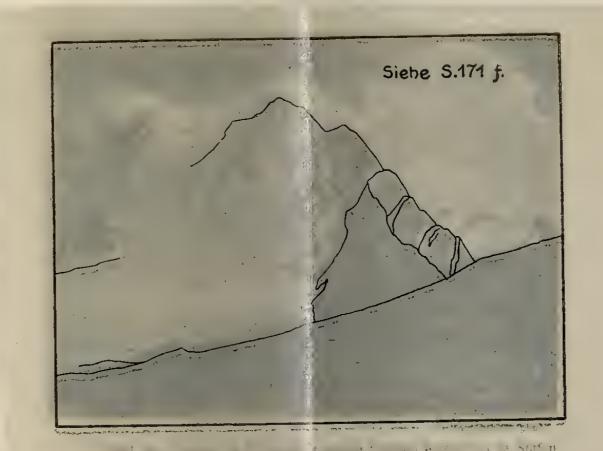
arageste Tig. 5 Teleaufnahme der Bogdo-Ola (Distanz 60 km)

on-chon-dse und Sangt veranschausicht den Aufbau in drei Stufen

n-chon-dse-Tal (Punkt X dei

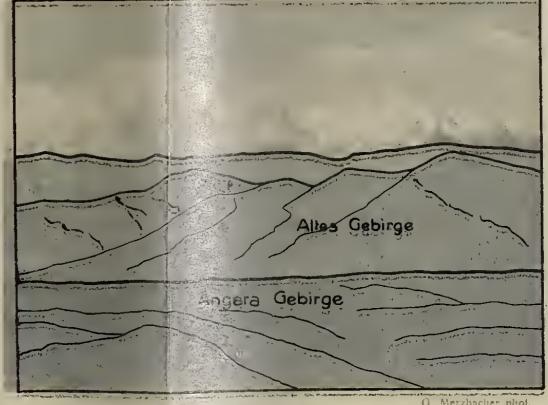
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

Panorama der zentralen Bogdo=Ola=Gruppe von Norden


Aufgenommen auf Höhe 4045 m im Ostwall des obersten Datungutals



Blick auf die Ketten der Angaragesteine


Aufgenommen von Westen nach Osten von einer Höhe zwischen den Tälern Dön-chon-dse und Sangun

Aufnahmepunkt an der westlichen Abzweigung des Nordendes der Dr. Groeberschen Route durch das Don-chon-dse-Tal (Punkt X der Karte II)

, tes if it inzage

veranschaunent den Autoau in drei Stufen

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/: www.biologiezentrum.at

G. Merzbacher phot.

Fig. 1 Unteres Sangun-Tal. Erste Mulde in den Angara-Gesteinen
Charakter der Wüstensteppen-Vegetation

Fig. 2 Steilgestellte Tonschiefer von alter Morane überlagert ger Schlucht des Du-tun-gu-Tals; darüber vom Flusse verlassener alter Talboden

Fig. 3 Ostbucht des Bogdo-Ola-Sees mit Terrassen in alten Ufermoranen, auf welchen Klostertempel errichtet sind

Dön-chon-dse-Tal

Ost

mit oberster flächenhafter Gebirgsstufe und Hochgebirge dahinter (Aufgenommen von hoher Kuppe am W.-Ufer) Fig. 1 Bogdo-Ola-Seetal mit umrandenden zerschnittenen Hochflächen

Da-tun-gu-Tal

Fig. 2 Tele-Aufnahme über den Nordabfall des alten Gebirges und über das Angara-Gebirge hinweg nach Norden Aufgenommen von Gipfel (3985 m) im Westen des Hochlagers 5

Abh. d. math.-phys. Kl. d. K. Bayer. Ak. d. Wiss., Bd. XXVII, Abh. 5.

G. Merzbacher phot.

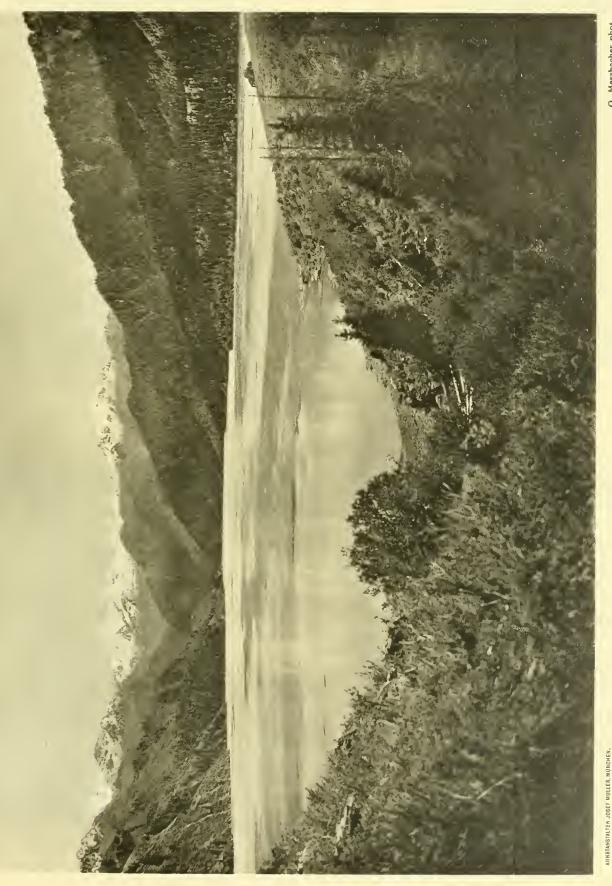

Fig. 1 Bogdo-Ola-Gruppe vom Weg zwischen zweiten und oberen Kloster mit Teil der Hochfläche, Charakter des Waldes und seine Exposition zeigend

Fig. 2 Tal des Aufstiegs zum nördlichen Hochlager Junge Erosion in alter Hochfläche

Fig. 3 Gurban-bogdo-Paß mit Pik-Schokalsky

Bogdo-Ola-See gegen Süden

O. Merzbacher phot.

Im Vordergrund Teil der dicht bewaldeten alten Endmoräne, welche das jetzt vom See erfüllte alte Tal absperrt. In beiden Ufern liegen die in einer alten Verebnungsfläche erodierten, jetzt trocknen Nebentäler. Von der zentralen Oipfelgruppe ist nur ein kleiner Teil sichtbar.

Fig. 1 Zweites Kloster auf Moräne über Bogdo-Ola-See Dahinter bewaldete Moräne am Fuß eines Querzuges

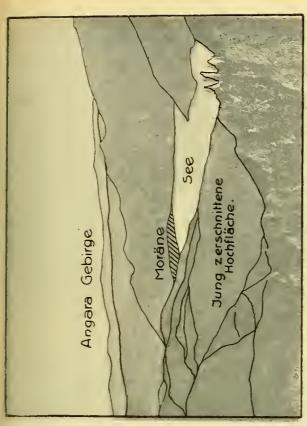
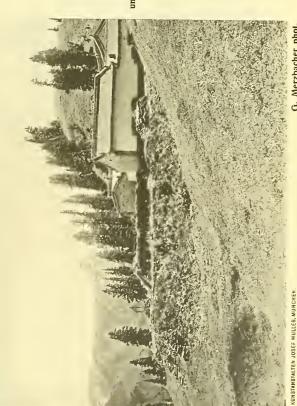



Fig. 2 Teil des Bogdo-Ola-Sees bis zum Nordende mit absperrender Moräne,
Da-tun-gu-Tal und jung zerschnittener Hochfläche, welterhin Angaragebirge
Aufgenommen am hohen West-Ufer

Altes Seebecken

G. Merzbacher phot.

Fig. 3 Oberstes Kloster auf Moräne über Bogdo-Ola-See
Links Hochfläche, dahinter Hochgebirge

Fig. 4 Jung zerschnittene Hochflächen zu beiden Seiten des Bogdo-Ola-See-Tals Aus jungen Engtälern aufstrebender Wald. Hoher Aufnahmepunkt nahe S.-W. See-Ende gegen N.

Eisfeld des Gr. Gr.-Gletschers gehörig

Zum

Flacher See

Fig. 1 Vom Eis verlassene Landschaft unterhalb Gurban-bogdo-Paß mit Enden zurückgetretener Gletscher und aufgefülltem Seebecken

G. Merzbacher phot.

Fig. 2 Mittlerer Moranensee im Oberlauf des Gurban-bogdo-Tales mit Rundhöckern und Moranen

ig 3 Rezenter Gletscherrückzug am Westrand des Gurban-bogdo-Tals

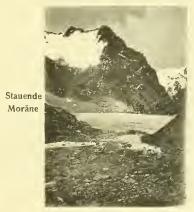


Fig. 4 Teil der aufstauenden Moräne des Sees auf Taf. 14 Fig. 3 (Ergänzung)

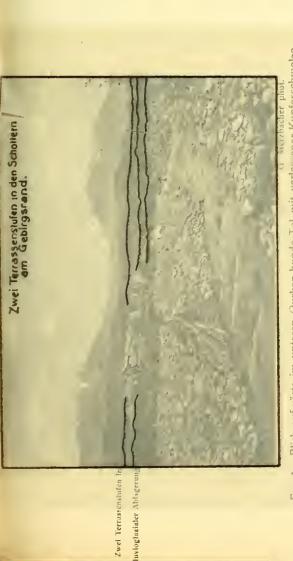
Fig. 5 Absturz eines Hängegletschers des Pik Schokalsky in Moränensee

Oberes Gurban-bogdo-Tal

Olazial erodiertes, in Stufen abfallendes Trogtal, vom Eise geschliffene Talwände.

Fig. 1 Oberlauf des Chigo-Gletschers vom Sattel (4255 m) im Westrand Mittelmoranen im Scheitel der hohen Eiswölbung; zwel Stufen Schliffkehlen im Talrand

Fig. 2 Der "Süd-Gletscher" von annähernd gleichem Standpunkt gesehen Eigenartige Gestalt des Einzugsgebietes und der stark abschmelzenden Zunge


KUNSTANSTALTEN JOSEF MÜLLER, MUNCHEN.

Ablı. d. math.-phys. Kl. d. K. Bayer. Ak. d. Wiss., Bd. XXVII, Abh. 5.

Oestlicher Talrand des oberen Gurban-bogdo-Tals

G. Merzbacher phot.

mit zerschnittener Moränenlandschaft im Tal und Moränensee, aufgenommen von hohem Standpunkt im westlichen Talrand

Blick aufwärts im unteren Ourban-bogdo-Tal mit verlas ener Kupferschmelze Auflüsung des Oebirges in Querschollen F10. 1

Fig. 2 Blick in südl. Nebental auf Lager 6 mit vier alten Ufermoränen sowie aufwärts im Trog des oberen Gurban-bogdo-Tals

Ufermoräne Alte

Abdammungs-

Moräne

Fig. 4 Seitenschlucht im oberen Da-tun-gu-Tal

Junge Erosion in alter Hochfläche

See im obersten Gurban-bogdo-Tal mit alter Ufermoräne

und Abdämmungsmorane, Blick nach Süden

Mündung eines östl. Nebentales in das Gurban-bogdo-Tal Drei Stufen alter Ufermoränen am Südrand Fig. 5

G. Merzbacher phot.

Die Stadt Urumtschi mit der Bogdo-Ola-Kette im Nordosten

Aufgenommen vom westlichen Festungswalt gegen Nordost und Ost

Oasen-Gürtel im Westen und Südwesten von Urumtschi

Fig. 3 Das die Stadt Urumtschl gegen die Wüste im Norden abschließende Angaragebirge mit Obelisk und Tempeln am Gipfel und Tempeln am Fuß

Fig. 4 Dun-Schan-Gebirge mit Karawanserail Dschl-dschl-su

ln-terek-

ے, 30 Km,

5000 m.

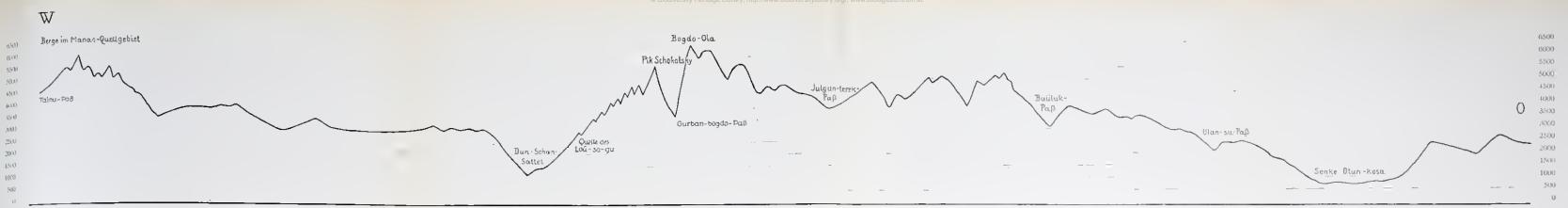


Fig. 1. Hypsometrisches Längsprofil durch den östlichsten Tian-Schan.

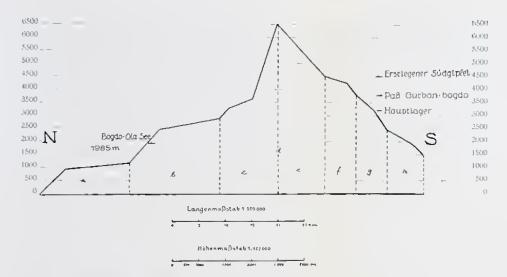


Fig. 2. Schematisches Querprofil durch die zentrale Bogdo-Ola-Gruppe.

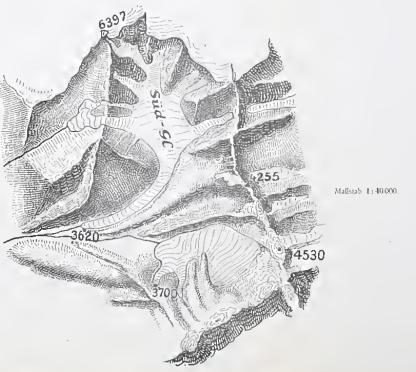
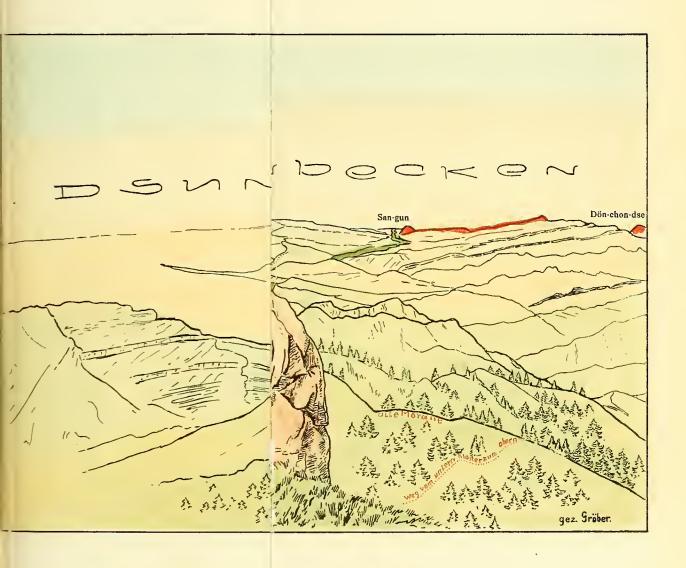
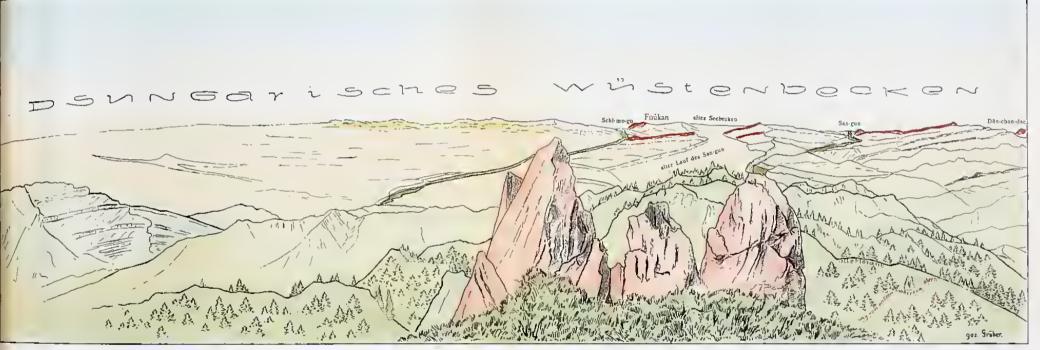
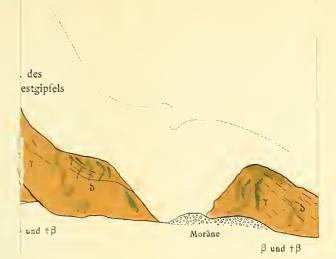




Fig. 3. Skizze des Gletscherbeckens am Südabfall des zentralen Hauptkamms.



Blick vom "Signalberg" oberhalb des oberen Klosters am Bogdo-Ola-See nach N.W.

Im Hintergrund das Südliche Dsungarische Wüstenbecken. Der Mittelgrund zerfällt in zwei Teile; der fernere Mittelgrund enthält die Berge der Angara-Serie; man kann ihr allmähliches Einsinken nach W. hin verfolgen. Der nähere Mittelgrund wird von höheren Bergen aus karbonischen Gesteinen, Grauwacken etc. gebildet; über die Kämme ragen zum Teil die nur an den Nord- und Ostgehängen vorkommenden Picea Schrenkeana. Von links her zieht sich der Fluß Sehi-mo-gu bis zur Wäste; er ist kenntlich an dem

grünen Waldsneisen, der ihn begleitet; von rechts her kommt das San-gun-Tal, durch das der Anmarseh erfolgte, gleichfalls mit Waldstreisen. Ganz rechts siehr man die Furche des Dönschon-dee. (Die toten Partien in den Bergen des serneren Minelgrundes und die leuchtenden roten und schweselgelben sind gefrirete Tone.) Zwischen San-gun und Schimo-gu sieht man den bieiren alten Talbnden des ehemaligen San-gun-Lauses.

MERZBACE

N. N. W.

Profil IV.

В

N. N. W.

Profil III.

N. N. W.

Profil II. D

Diluvium

D2 Dünnblättrige bitus

D₁ Dickbankige feste

C4 Rote und grüne dün

C₈ Brāunliche Conglome

C2 Blaugraue und grüne

C1 Grune Mergel, braun

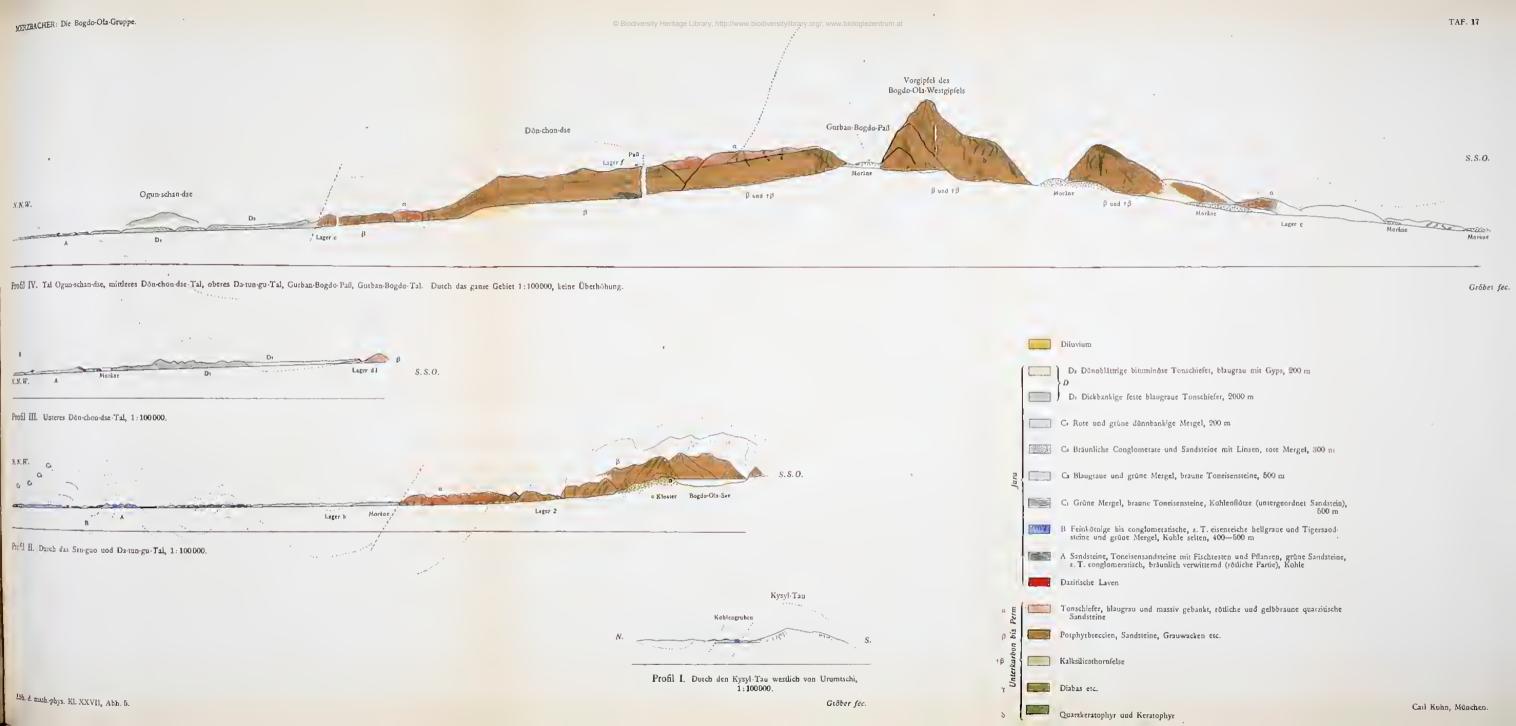
B Feinkörnige bis congl steine und grüne Mer

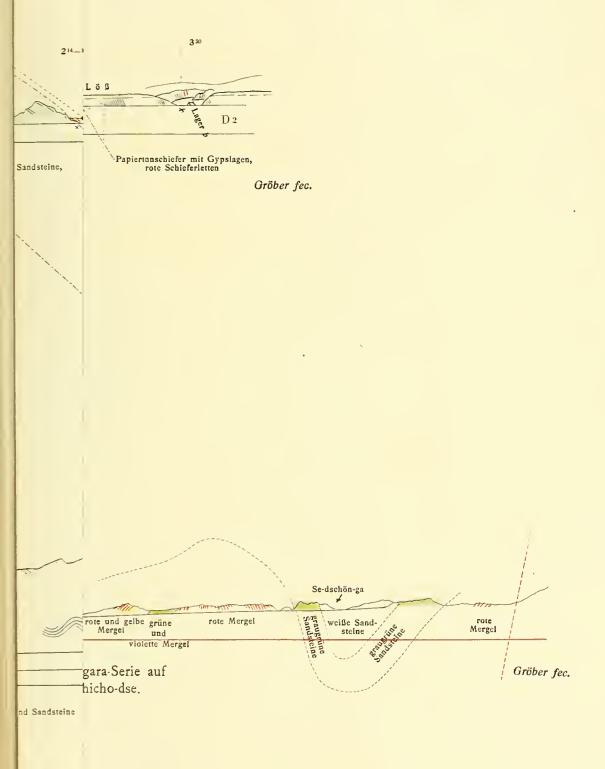
A Sandsteine, Toneisens: z. T. conglomeratisch,

Dazitische Laven

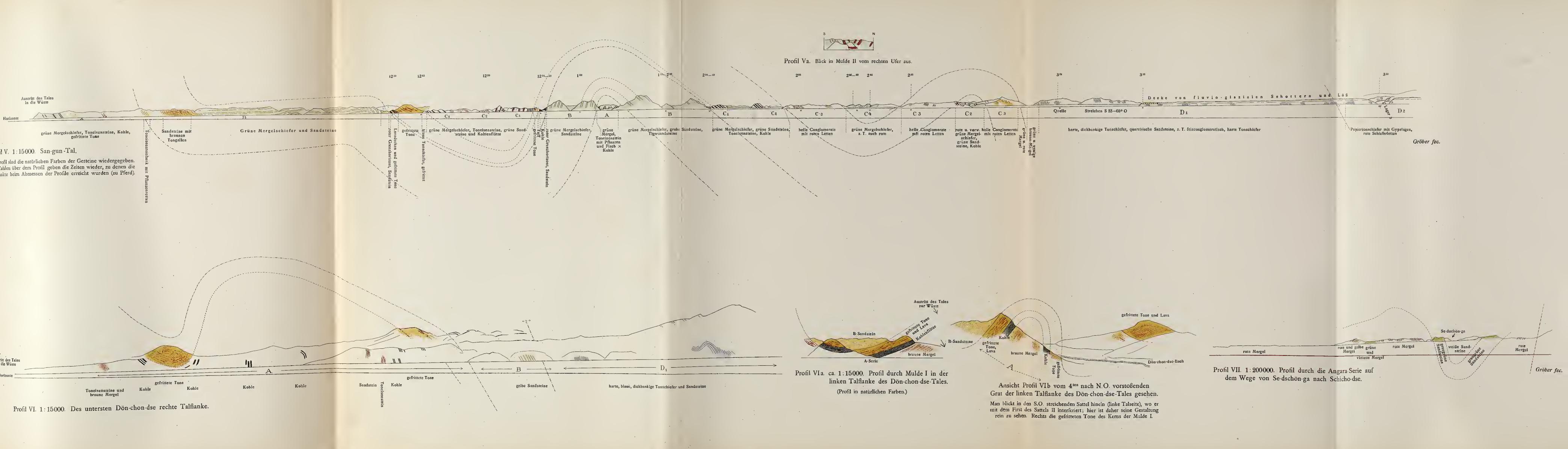
Tonschiefer, blaugrau ur Unterkarbon bis Perm Sandsteine

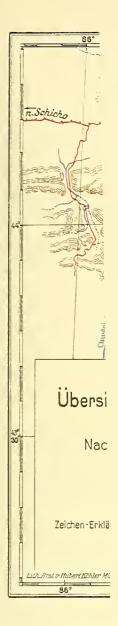
Porphyrbreccien, Sandste

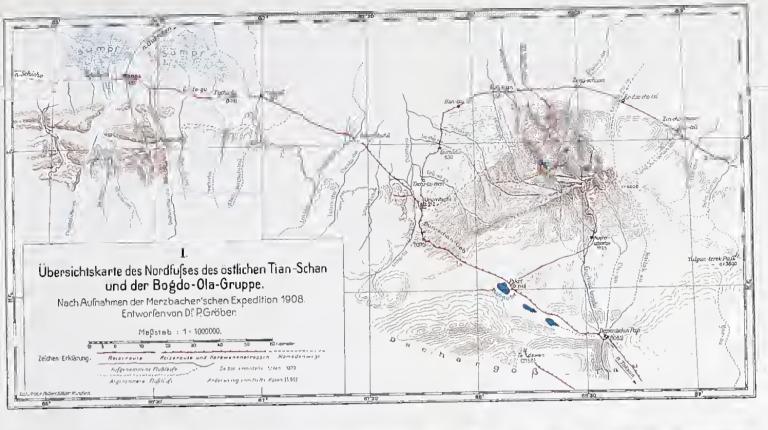

Kalksilicathornfelse

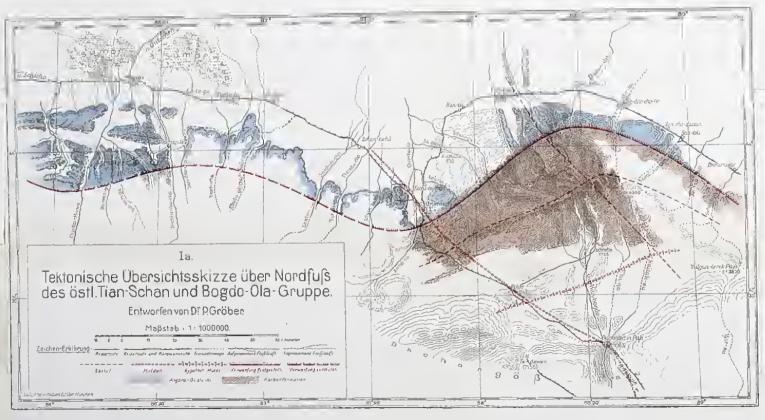

tβ

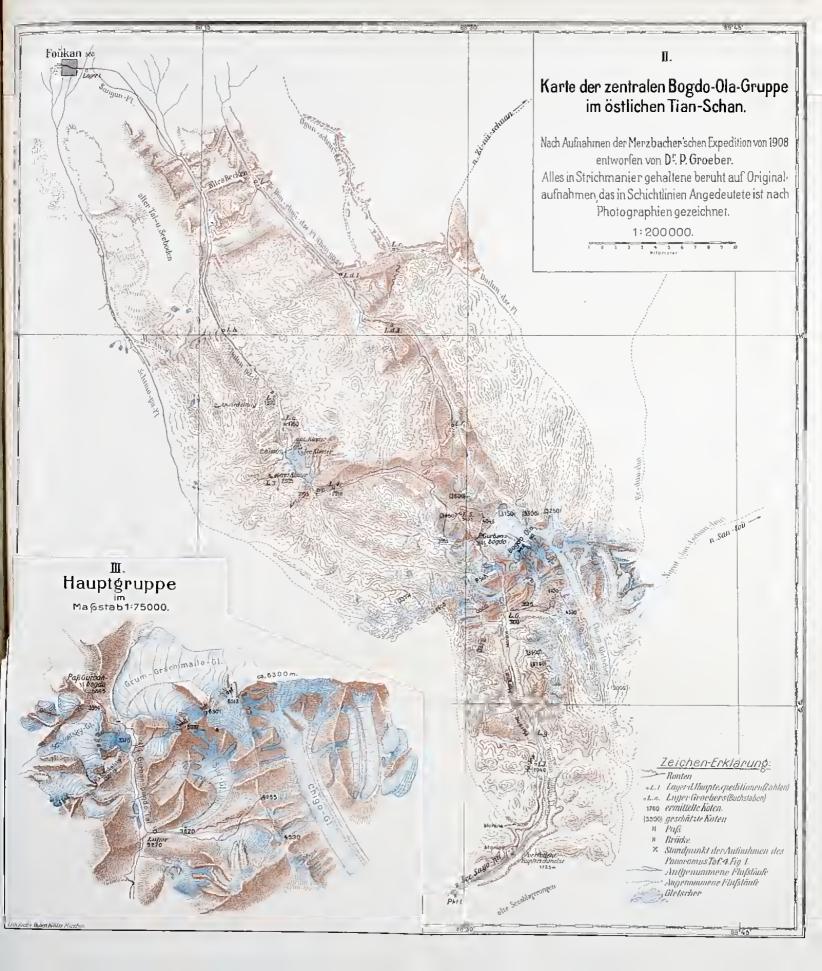
Diabas etc.


Quarzkeratophyr und Ke

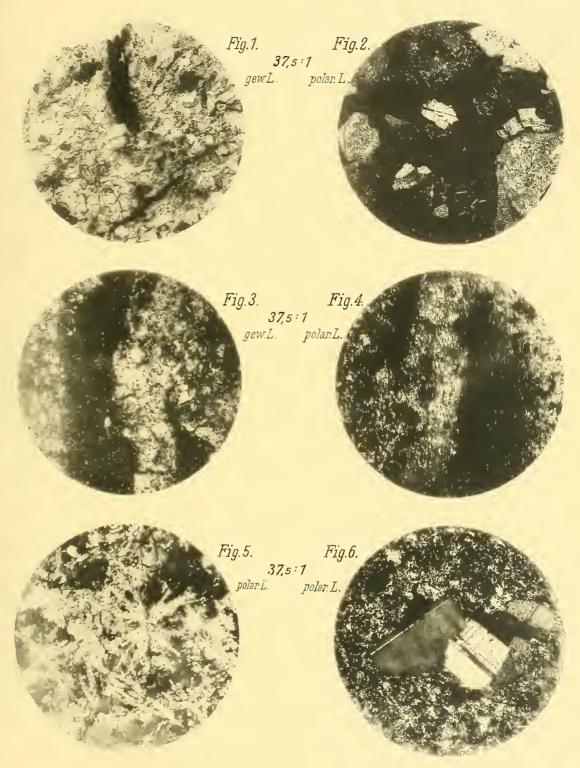

Abh. d. mat



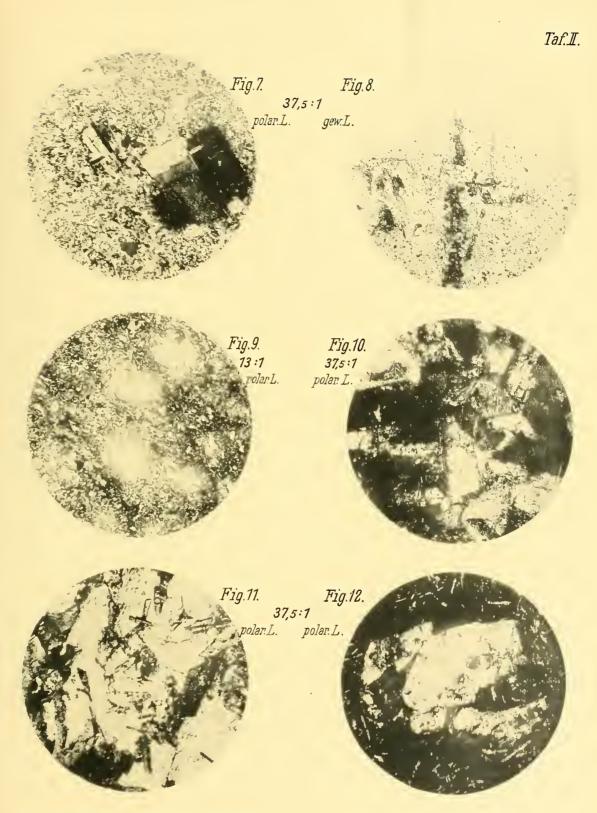

 $@ \ Biodiversity \ Heritage \ Library, \ http://www.biodiversitylibrary.org/; \ www.biologiezentrum.at$



© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

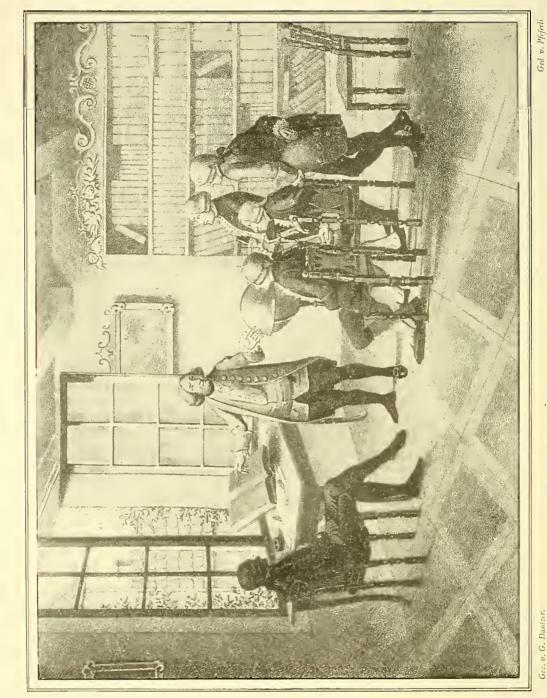


© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at



Taf.I.

Abh.d. k. Ak.d. Wiss.math. phys. Kl. XXVII. Bd. 5. Abh.


Repr.v. Hubert Köhler, München.

Abh. d. k. Ak. d. Wiss. math. phys. Kl. XXVII. Bd. 5. Abh.

Repriv. Hubert Köhler, München.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at

