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Vorwort 

Johannes Kepler gilt als einer der größten Astronomen des 16. und 17. Jahrhunderts, aber auch zur Algebra, 
zur Coss, hatte er Bezug. Er redigierte die Vorlagen zu Bürgis Coss und schrieb eine Einleitung zu dessen Canon 
Sinuum, der Sinustafel mit dem Kunstweg zur schnellen Berechnung derselben. Bürgi betrachtete die Coss als 
wichtiges Hilfsmittel zur Berechnung seines Canon Sinuum, der vermutlich 1598 vollendet war. Allerdings 
wurde die Arithmetica Bürgii, wie sie seit Hansch genannt wird, auch nach der Redaktion Keplers nicht 
gedruckt. 

Die Coss hatte sich am Ende des 16. Jh. als Vorstufe zur heutigen Algebra etabliert, und viele Mathematiker 
der Zeit haben Beiträge geleistet, z.B. Christoph Rudolf oder Michael Stifel, aber auch Nicolaus Reimers Ursus, 
der sonst mehr durch sein Fundamentum Astronomicum 1588 bekannt ist. Das wesentliche Verdienst der 
Cossisten ist die Formalisierung der algebraischen Schreibweise, insbesondere die konsequente Verwendung des 
Potenzbegriffes. Gerade hierbei ist das Werk von Ursus besonders zu beachten. List/Bialas schreiben 1973 
zutreffend: „So verbindet die Coss so verschiedene Geister wie Kepler und Bürgi, Brahe und Ursus.“ 

Kepler steht zu Ursus in besonderer Beziehung, weil er in den Streit zwischen Brahe und Ursus 
hineingezogen worden war. Wegen seiner finanziellen Abhängigkeit von Brahe stellte Kepler sich in diesem 
Streit nach außen hin auf die Seite Brahes, vermied es aber, sich direkt einzumischen. So ist denn seine im 
Auftrag Brahes angefertigte Arbeit Apologia Tychonis contra Ursum auch weniger eine Parteinahme für Brahe, 
als viel mehr eine Auseinandersetzung mit Ursus’ Hypothesenvorstellung. Kepler hatte diese Schrift selbst nur 
als De Hypothesibus Tractatus bezeichnet. Nach seiner Ernennung zum kaiserlichen Mathematiker, nach Brahes 
Tod 1601, schien es Kepler nicht mehr angemessen, weiter an der ungeliebten Apologia zu arbeiten. Schon gar 
nicht wollte er den Ruf von Ursus anfechten, auch weil dieser Brahes und sein Vorgänger im Amt war. 

Noch im Januar 1600, während seiner endgültigen Übersiedlung nach Prag, traf sich Kepler, wohl auf 
eigenen Antrieb, mit Ursus. Dabei sagte er Ursus „seine Meinung ins Gesicht“ über die ohne seine Zustimmung 
erfolgte Veröffentlichung seines Briefes vom 15. Nov. 1595 an Ursus, die ihn beinahe in Konflikt mit Brahe 
gebracht hätte. Seinem Charakter entsprechend schied Kepler jedoch von Ursus in friedlichem Einvernehmen. 

In diesem Brief hatte der noch junge, unerfahrene und noch unbekannte Kepler den kaiserlichen 
Mathematiker Ursus in hohen Tönen gelobt, ihn als seinen Lehrmeister bezeichnet, weil er aus dessen Buch 
Fundamentum Astronomicum gelernt habe. Es erscheint mir daher angemessen, gerade den algebraischen Teil 
von Ursus’ Werk, das Stellenwertsystem in seiner Geodaesia und seine Coss in der Arithmetica Analytica bzw. 
in der ihr zu Grunde liegenden Handschrift Tractatiuncula zu beleuchten. 

Ich danke der Österreichischen Nationalbibliothek Wien (Tractatiuncula, Sign. Cod. Series nova 10943); der 
Herzog-August-Bibliothek Wolfenbüttel (Geodaesia, Sign. Nb 555); der Universitäts- und Forschungsbibliothek 
Erfurt/Gotha (Geodaesia, Sign. Math. 4° 44/8 (4)); der Studienbibliothek Dillingen (Arithmetica, Sign. XVI 
1394); The British Library (De la Roche, Sign. 1605/26); dem Germanischen Nationalmuseum Nürnberg 
(Johann Junge, Sign. 8° H. 2673); der Stadtbibliothek Trier für eine hervorragende Kopie von Ludolph van 
Ceulens Van den Circkel, D elf 1596. 

Meldorf, 13. Mai 2007. 
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G E O D Æ S I A 

RANZOVIANA. 

Landrechnen 

und Feldmessen, samt Messen von allerhand Größen. 
Alles auf eine leichte, schnelle und vormals unbekannte, neue Art, 

günstig, gründlich und deutlich beschrieben 

zu Ehren 
dem edlen, gestrengen 

und ehrenfesten Herrn Heinrich Rantzau, 
seligen Herrn Johanns Sohne, 

der königlichen Majestät zu Dänemark etc. Statthalter 
den Fürstentümern Schleswig, Holstein und Dithmarschen, 

Rat und Amtmann auf Segeberg, 
erbgesessen zu Breitenburg etc. 

Durch 

Nicolaus Reymers von Hennstedt 
in Dithmarschen. 

C UM P RI VILEGIO. 

[1583, bei Georg Defner in Leipzig] 
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EINLEITUNG 

Nicolaus Reimers1 Ursus wurde am 2. Februar 1551 in Hennstedt in Dithmarschen geboren, einem 
Dorf im heutigen Schleswig-Holstein. Über seine Eltern ist nichts bekannt, er hat in seinen 
autobiographischen Angaben nie über diese berichtet. Aus sehr ärmlichen Verhältnissen stammend, 
hat er schulischen Unterricht nicht genossen, insbesondere hat er nie eine der damaligen Lateinschulen 
besucht. Er berichtet selbst: „Ich aber durchlief die Schulen wie die Sau den Garten durchstreift und 
grüßte sie kaum von weitem.“2 3 Der Vergleich stammt offensichtlich aus eigener Anschauung während 
der Zeit, da er mit 18 Jahren, 1569 in Hennstedt, die Schweine hütete.2 Ein Grundwissen kann Ursus 
nur bei seinem Pfarrer in Hennstedt erworben haben, ansonsten lernte er autodidaktisch Lesen und 
Schreiben, Latein und Griechisch und die Mathematik. 

Heinrich Rantzau (1526-1598) auf Schloss Breitenburg bei Itzehoe, Statthalter des dänischen 
Königs im königlichen südlichen Anteil Schleswig-Holsteins, wurde ca. 1574 auf den 23-jährigen 
Ursus aufmerksam und holte ihn auf seinen Hof Hattstedt bei Süderhastedt in Dithmarschen als 
Landmesser. Bei dieser Tätigkeit konnte Ursus sicherlich auf die berühmte Bibliothek Rantzaus auf 
Breitenburg zurückgreifen. Während seiner Zeit auf Hof Hattstedt schrieb Ursus zwei Bücher, die 
beide von seinem Förderer und Mäzen Rantzau auf dessen Kosten gedruckt wurden und die dieser in 
seine Bibliothek aufnahm,4 1580 die Grammatica Ranzoviana, und 1583 die Geodaesia Ranzoviana. 
Dieses Frühwerk Geodaesia, in der Ursus ein Stellenwertsystem zur Basis Vi6 vorstellt, ist 
Gegenstand dieser Untersuchung. 

1584 verließ Ursus den Dienst bei Heinrich Rantzau, vielleicht weil die Landvermessung in 
Dithmarschen abgeschlossen war, trat als Diener bei dem dänischen Edelmann Erik Lange in Dienst 
und besuchte mit ihm 1584 Tycho Brahe auf Ven.5 Über zwei Anstellungen als Hauslehrer in 
Pommern kam Ursus 1586 an den Hof des Landgrafen Wilhelm IV. nach Kassel, wo er Jost (Justus) 
Bürgi zum Freund gewann. Von diesem lernte er Vieles über Astronomie, u.a. auch Paul Wittichs 
Gleichung zur Prosthaphaerese.6 In Straßburg kam Ursus 1587-1591 in Berührung mit der 
akademischen Welt. Hier veröffentlichte er 1588 sein Hauptwerk Fundamentam Astronomicum, das 
ihn auch berühmt machte. 1591 schließlich wurde er als Mathematiker an den Hof Kaiser Rudolphs II. 
nach Prag berufen, wo er am 15. August 1600 an Schwindsucht starb.7 

Ursus schrieb die Geodaesia im Alter von 31 Jahren. Dennoch ist sie als ein Jugendwerk 
anzusehen, da er erst im Alter von 18 Jahren Lesen und Schreiben lernte, und danach wohl auch erst 
Mathematik. In der Geodaesia finden sich kaum wesentlich neue Erkenntnisse, das Buch fallt jedoch 
auf wegen der pädagogisch geschickten Darstellung seines Inhalts. Und es ist nicht lateinisch 
geschrieben, sondern, wie während der Renaissance häufiger, auf Deutsch. Ursus’ „Muttersprache“ 
war allerdings niederdeutsch, frühneuhochdeutsch seine erste „Fremdsprache“. 

Die Geodaesia ist in vier „Bücher“ aufgeteilt und beginnt mit der bemerkenswerten Darstellung 
eines Bruchstellenwertsystems in cossischer Schreibweise, mit hochgestellten römischen Zahlen zur 
Bezeichnung der Exponenten von Potenzen, deren Basis der Bruch Vi6 ist. Ursus verwendet also 
Stammbrüche (Vi6)n mit natürlichem n bis zu n=9. Dabei ist die Darstellung unabhängig von der Basis 
V]6, so dass er im Grunde ein basisfreies Stellenwertsystem darstellt, bei dem statt der Basis /i6 jede 
beliebig andere gewählt werden könnte. Ursus schreibt: „Was hier von den Sechzehnern gesagt ist, 
soll gleichermaßen auch von Vierzehnem, Achtzehnern und von anderen Teilen verstanden werden.“ 
Ursus ist sich somit bewusst, dass man die Basis beliebig austauschen kann. Die cossische 
Schreibweise überzeugt auch heute noch durch ihre Einfachheit in Darstellung und im Rechnen auch 
gegenüber der heutigen Schreibweise mit Brüchen. Allerdings handelt es sich „nur“ um ein 
Stellenwertsystem mit den Potenzen eines Stammbruches und nicht um Bruchrechnung mit beliebig 
verschiedenen Nennern. Ursus dazu: „Brüche sind Teile eines Ganzen, aber nicht gemeine Brüche, 
sondern Sechzehner genannt, sechzehn Teile sind ein Ganzes.“8 

1
 auch Reymers, Raimarus, Raymarus. 

2 Astronomische Hypothesen, Blatt Glr: „Ego vero ut sus per hortum scholas percurri, et vix à limine salutavi.“ 
3 Neocorus, Chronik des Landes Dithmarschen, hrsg. von F.C.Dahlmann, Kiel 1827, Bd. 11, S. 392: „Nicolaus Ursus van 
Henstede hefft, do he alß ein grott Knecht van 18 Jaren de Schwine gehodt, unnd na entfangen Elementis sick sulvest geovet, 

unnd proprio Marte Latinam, Graecam ... gelemet.“ 
4 Peter Lindeberg, Hypotyposis arcium, Hamburg 1591, S. 64f. 
5 Insel im Öresund, Ven (heute schwedisch) = Hven (dänisch). 
6 sind ■ sin(90°-y) = V2 • [sin(a+y) + sin(a-y)]. 
7 Ausführlicher zum Leben und Werk von Ursus siehe bei Dieter Launert, Nicolaus Reimers (Raimarus Ursus), Günstling 

Rantzaus - Brahes Feind, Lehen und Werk, München 1999. 
8 Ursus, Geodaesia 1583, Blatt B2r. 
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Die Basis Vi6 verwendet Ursus nach eigener Aussage, weil in Dithmarschen angeblich die 
Längenmaße jeweils in 16 Teile unterteilt wurden: 1 Rute in 16 Schuh (Fuß), 1 Schuh in 16 
Fingerbreiten, 1 Finger in 16 Strohbreiten, 1 Stroh in 16 Flaarbreiten. Schon die Wortwahl lässt 
erkennen, dass dies kein Abbild der Realität für die Längenmaße in Dithmarschen war. Zwar sind 
Rute, Schuh (Fuß) und Finger9 alte dithmarscher Maße, aber Stroh und Flaar lassen sich nicht 
nachweisen. 

Ursus zeigt Beispiele zum Rechnen mit solchen Bruchzahlen, zuerst das Addieren, wobei einfach 
die Zähler bei gleichem Stellenwert zu addieren sind unter Beachtung von 16er-Überträgen, dann das 
Multiplizieren, wobei die Zähler zu multiplizieren, die Exponenten der Stellenwerte jedoch einfach zu 
addieren sind, wie wir es heute bei der Potenzrechnung tun. Erst dann folgen wie üblich Subtrahieren 
und Dividieren. 

Schließlich noch das Wurzelziehen und das Ziehen der Kubikwurzel. Aus einem Beispiel zum 
Quadrieren heraus zeigt Ursus zuerst das Wurzelziehen als Division, wobei allerdings der Radikand 
bereits bekannt ist. Dann jedoch folgt das eigentliche Wurzelziehverfahren, wie es uns auch heute 
noch bekannt ist durch Gemma Frisius (1508-1555), der es in seiner Arithmeticae Practicae Methodus 
facilisu) 1540 an Hand von vier Beispielen gut verständlich vorführt. Das Verfahren geht schon auf 
Theon von Alexandria zurück, der Sechzigerbrüche verwendete." Auch Johannes Widmann von Eger 
hat in seinem Rechenbuch 148912 neben der elementaren Bruchrechnung schon das Wurzel- 
ziehverfahren beschrieben. Ursus’ Beispiel im Hexadezimalsystem lautet, ins Dezimalsystem 
umgerechnet, 

-\/0,079.204.592.853.784.561.139.226.562.500 = 0,281.433.105.468.750, 

an dem bereits moderne Taschenrechner scheitern. Anschließend folgt das analoge Verfahren zur 
Berechnung von Kubikwurzeln. 

Es ist sicherlich beachtenswert, dass Ursus zwei Jahre vor der Veröffentlichung von Simon 
Stevins13 nur 36 Seiten umfassenden kleinen Schrift De Thiende, die ursprünglich 1585 in 
holländischer Sprache erschienen war und im gleichen Jahr als La Disme in französischer, 
Stellenwertsysteme propagiert. Stevin hatte darin mit Überzeugungskraft die Einführung von 
Dezimalbrüchen und vor allem die Anwendung auf Münzen, Maße und Gewichte verlangt. Es heißt 
bei ihm, dass man die Rute „Anfang“ [Ganze] nennen werde und sie in zehn gleiche Teile teile, deren 
jeder dann „Erstes“ [Zehntel] ausmachen werde; danach werde man jedes Erste in zehn gleiche Teile 
teilen, deren jeder ® sein werde [Hundertstel], und so fort. Stevin weist auch auf das 60er-System der 
Antike hin und dass es nicht das Zweckmäßigste sei. 

Die Sellenwertsystematik wurde schon früh in Indien für die ganzen Zahlen erfunden, mit einem 
eigenen Symbol 0 für „Leere“. Die Araber brachten das Stellenwertsystem nach Westeuropa, wo es ab 
ca. 1000 n.Chr. (Gerbert von Aurillac) auftritt. Spätestens vom 12. Jh. an besaß das Abendland das 
Dezimalsystem für die ganzen Zahlen und das Sexagesimalsystem für Brüche, das bereits die 
Babylonier in sumerischer Zeit benutzten, jedoch noch ohne ein Symbol für die Null. Und die meisten 
Rechenbücher des Mittelalters und der Renaissance in Europa enthalten Abschnitte über die 
Sechzigerbrüche.14 

Ein vollständiges Positionssystem, das Ganze und Brüche einheitlich umfasst, entwickelte sich 
sowohl im Sechziger- als auch im Zehnersystem. Das Sechzigerpositionssystem umfasst dann auch 
die Ganzen in aufsteigenden Sechzigerpotenzen und tritt bei dem Araber Kusyär ibn Labbän um 1000 
n.Chr. auf, in Europa dann in den Alfonsinischen Tafeln (um 1300 n.Chr.), bei Johann von Gmunden 
(ca. 1380-1442), bei Orontius Finäus (1532) und bei Caspar Peucer (1556).15 Das vollständige 
Dezimalsystem, auch mit den Zehnerbrüchen, erreicht seinen Höhepunkt zweifellos bei Simon Stevin. 
Vorläufer finden sich Mitte des 15. Jh. in einer Wiener Handschrift,16 in dem die Beispielrechnungen 
sehr modern aussehen und in dem der Begriff Ziffer (v|/r|(piä) verwendet wird.17 Später dann in 
Christoph Rudolffs Exempel Büchlin von 1530 und in dessen Coss von 1525. 

In der Vorrede widmet Nicolaus Reimers Ursus sein Buch seinem Förderer und Mäzen Heinrich 
Rantzau „als Neujahrsgabe“. Er begründet mit Hinweis auf Plato, warum die Beschäftigung mit der 
Arithmetik, der Geometrie und der Astronomie von besonderer Wichtigkeit und Nützlichkeit ist. Er 
stellt die Arithmetik und die Geometrie allegorisch nebeneinander als „zwei dem menschlichen Gemüt 

9 Otto Mensing, Schleswig-Holsteinisches Wörterbuch, Bd. II, Neumünster 1929, S. 99. 
10 Fol. XXIIII - XXIX. Erstausgabe dieses Buches Antwerpen 1540. Ich danke Helmut Haller in München für diesen Hinweis. 
11 Moritz Cantor, Vorlesungen über Geschichte der Mathematik, Leipzig 1880, Bd. I, S. 420f. 
12 Behende und hübsche Rechenung auff allen kauffmanschafft, Leipzig 1489, ab fol. 29. 
13 Brügge 1548 - Leiden 1620. Helmuth Gericke/Kurt Vogel, Hrsg., Simon Stevin De Thiende, Frankfurt a.M. 1965, S. 21. 
14 Siehe dazu Gcnckc/Vogcl. Simon Stevin De Thiende, S. 41. 
15 Siehe Gencke/Vogel. S. 42f. 
1,1 Hunger/Vogel, Ein byzantinisches Rechenbuch des 15. Jh., Wien 1963. Siehe dazu Gericke/Vogel, S. 45. 
17 Siehe GerickeWogel, S. 45. 
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angeborene Flügel“. Ursus begründet damit, warum er in einem Buch über das Landmessen die aus 
unserer Sicht so unterschiedlichen Bereiche wie die Arithmetik und die elementare Geometrie 
zusammenfasst. Deren „Töchter“ Astronomie und Geodäsie seien daher ebenso verbunden. Die erste 
strebe himmelwärts, die zweite herab zur Erde. Den einen Flügel, die Geodäsie, beschreibt Ursus hier, 
den anderen, die Astronomie, will er dann später in Druck gehen lassen, ein Vorhaben, das er in 
Straßburg 1588 mit dem Fundamentum Astronomicum verwirklicht. 

Obwohl die Geodaesia im Frühneuhochdeutschen des 16. Jahrhunderts geschrieben ist, wirkt die 
Satzstellung an das Lateinische angelehnt, wenn etwa das Verb, nach langen Einschüben, erst am 
Satzende auftritt.18 Den folgenden Text der Vorrede und der Geodaesia selbst habe ich versucht, 
textnah in heutiges Deutsch zu übertragen. Zu lange Sätze habe ich zumeist geteilt, die Interpunktion 
ist heutigem Gebrauch angepasst. Die in heutiges Deutsch übertragenen Originaltexte von Ursus sind 
kursiv gedruckt, in eckigen Klammem [Anmerkung] stehen Anmerkungen, die nicht im Text 
Vorkommen. 

'* Z.B. Vorrede A2v im Original: „Welches Göttliches und Platonisch oraculum mag verstanden werden.“ 
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„Vorrede 
Dem edlen, gestrengen und ehrenfesten19 Herrn Heinrich Rantzau, seligen Herrn Johanns Sohn, 

der königlichen Majestät zu Dänemark etc. Statthalter in den Fürstentümern Schleswig, Holstein und 
Dithmarschen, Rat und Amtmann auf Segeberg und erbgesessen zu Breitenburg etc., meinem 
besonders großzügigen Herrn und lieben Junker. 

Edler, gestrenger und ehrenfester Herr. Euer Gestrengen gehören meine bereitwilligen, 
geflissentlichen Dienste neben Wünschen gottseliger Gnaden und alles Gute zu jeder Zeit. 
Großgünstiger Herr Statthalter: es sagt der hocherleuchtete und weltberühmte Philosoph Plato, dass 
die zwei freien Künste, die Arithmetik und die Geometrie, die Rechen- und die Messkünste, dem 
menschlichen Gemüt zwei von göttlicher Weisheit angeborene Flügel seien, damit der Astronom oder 
Sternkundige gen Himmel fliege und die oberen himmlischen Bewegungen gleichsam gegenwärtig 
betrachte und beschaue.2Ü Diese göttliche und platonische Weissagung oder dieser gottselige Spruch 
mag verstanden werden sowohl von der unaussprechlich nutzbaren Wissenschaft21 der Geodaesie, das 
ist die Kunst von der Messung und Aufteilung der Erde, Äcker und Felder, als auch von der 
Astronomie oder der [Wissenschaft von der] Bewegung himmlischer Körper. Denn es wurde Thaies 
von Milet, einer der sieben Weisen in Griechenland, von einer Magd schimpflich und spöttisch 
verlacht, als er bei der Betrachtung himmlischer Dinge, um diese zu durchsuchen22 und um sie zu 
ergründen, in eine Grube fiel und also die irdischen Dinge vergaß, da er die himmlischen 
betrachtete13 Deshalb sollen diese zwei Wissenschaften, die himmlische Astronomie und die irdische 
Geodaesie, wie die unter vielen anderen vornehmsten zwei Töchter der Arithmetik und der Geometrie 
beide zugleich betrachtet, verbunden oder zusammengefügt werden und beide wie aus einem Grund 
ihren Ursprung nehmend nicht getrennt oder voneinander geschieden werden. Denn ebenso wie der 
Astronom oder Sternseher mit diesen zwei Flügeln aufwärts gen Himmel fliegt und daselbst sein Werk 
vollbringt, so steigt auch der Geometer oder Landmesser mit diesen zwei Flügeln zum Vollbringen 
seines Werkes hernieder zur Erde. Und somit haben diese zwei Wissenschaften, die Astronomie und 
die Geodaesie, keinen großen Unterschied; die eine steigt nur hernieder, die andere fliegt aufwärts. 

Den kleineren dieser zwei Flügel der genannten zwei Wissenschaften, nämlich die Geodaesie, 
habe ich im folgenden Werk aufs Günstigste und Gründlichste, dennoch aufs Leichteste und 
Deutlichste, mit meinem ganzen und besten Vermögen beschrieben und an den Tag gebracht, welche 
ich Euer Gestrengen als meinem großgünstigen Herrn und Heben Junker und Förderer, der mir auf 
allen Wegen, zu allen Zeiten und mit aller Gunst geneigt gewesen ist, der zusätzlich zu diesen 
mathematischen, astronomischen, geometrischen und zur Baukunst14 gehörenden Wissenschaften eine 
besondere Lust und Liebe hat, der mit Messen der Länderei und Felder oftmals beladen wird, da er 
die Verwaltung dieses Landes verantwortlich trägt,15 als ein günstiges und köstliches Kleinod als 
Neujahrsgabe verehrt und zugeschrieben haben will, mit emsiger und dienstlicher Bitte, E.G. wollen 
mir solche Flügel gegen alle Geier, Eulen und Kauze und gegen aller unartigen Vögel unnützes 
Schreien und Schwatzen hochhalten helfen16 

Alsdann will ich zum Zeichen der Dankbarkeit, will's Gott, in künftigen Jahren die Flügel der 
Göttlichen Wissenschaft Astronomie auch auf diese Art und auch zu Euer Gestrengen Ehren mit den 
allerschönsten Federn und mit allerhand Farben geschmückt in Druck gehen lassen. Ich stelle mich 
unter E.G. gnädigen Schutz und befehle mich derselben Gunst. 
Datum aufE. Gest. Hofe zu Hattstedt11 in Dithmarschen, den 14. September 1583. 
E. Gest, gutwilliger Diener Nicolaus Reymers,28 Landmesser. “ 

,1‘ Gestrengen = Ehrenprädikat des Ritterstandes; siehe Grimm, Deutsches Wörterbuch. Ehrenfest = würdevoll; siehe Otto 
Mcnsing, Schleswig-Holsteinisches Wörterbuch. Neumünster 1927-35. 
20 Phaidros 246-248. 

1 Ursus verwendet hier stets das Wort „Kunst“. 
22 „perscrutieren“ 
2> Plato lässt dies Sokrates sagen. Theaitetos 174a. 
24 „Architectur“ 
25 Heinrich Rantzau hatte nach der Eroberung Dithmarschens 1559 als Stellvertreter des dänischen Königs in Dithmarschen den 
Auftrag erhalten, die Vermessung des Landes für die Steuerveranlagung vornehmen zu lassen. Wegen der zwischen dem König 
und Herzog Adolf von Gottorf strittigen Fälle und wegen der späteren Zweiteilung des Landes statt der ursprünglichen 
Dreiteilung dauerte dieser Prozess bis in die 1580er Jahre. 
2<’ Ich habe diesen langen Satz in seiner Form ungeteilt übernommen, weil er die Sprache von Ursus gut wiedergibt, z. B. das 
weite Auseinanderziehen der Satzteile „welche [die Geodaesie] ich E.G als Neujahrsgabe zueignen will“. Fernerhin 
macht Ursus hier, wie auch im Folgenden und in allen seinen späteren Werken von der rhetorische Figur des Hendiadyoin 
ausgiebig Gebrauch, bei der ein Begriff durch zwei Synonyme ausgedrückt wird, wie etwa „nach meinem ganzen und besten 
Vermögen“, „eine besondere Lust und Liebe“, „ein günstiges und köstliches Kleinod“. 
"7 Das ist Kleinhastedt/Lütjenhastedt bei Süderhastedt, nicht das bekanntere Hattstedt nördl. Husum in Nordffiesland. 
28 In der Geodaesia verwendet Ursus seinen deutschen Namen Nicolaus Reymers (in der Vorrede) bzw. Reimers (im Schluss). 
Später benutzt er die latinisierte Form Nicolaus Raimarus (Raymarus), mit dem Zusatz Ursus für das Geschlecht der Baren, aus 
dem er stammt. 
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Die Geodaesia ist in vier „Bücher“ eingeteilt, zusätzlich Vorrede und Schluss. Sie haben etwa 
gleichen Umfang.29 Im ersten Buch der Geodaesia benutzt Nicolaus Reimers Ursus ein 
Stellenwertsystem in cossischer Schreibweise, indem er die Stellenwerte, d.h. die Exponenten zur 
Basis, mit den römischen Zahlen I, II, III, IV, V, ... IX bezeichnet. Er beschreibt allerdings nicht ein 
Stellenwertsystem für die ganzen Zahlen, sondern ein solches für Brüche! Als Basis wählt Ursus Vi6 , 
so dass nach den ganzen Zahlen (in Dezimalschreibweise) die Brüche mit den Nennern 16, 162, 163 

usw. bis zu 169 auftreten. Sein Stellenwertsystem ist im Grunde basisfrei, denn die Basis V)6 ist durch 
jeden anderen Stammbruch ersetzbar; die Basis erschließt sich aus den Überträgen in die nächste 
Stelle. Ursus sagt sogar ausdrücklich in Kapitel 2, dass statt der Basis 16 auch 14 oder 18 oder andere 
Teile gewählt werden können! Er begründet die Wahl von 16 damit, dass in Dithmarschen angeblich 
die Längenmaße in jeweils 16 Teile untergliedert würden, was für Rute/Fuß und Fuß/Finger zutrifft, 
hingegen in anderen Ländern halt eine andere Anzahl Schuh (Fuß) auf eine Rute kämen. Außerdem 
sei die 16 die geschickteste Zahl, weil sie eine Quadratzahl sei, ja sogar das Quadrat einer 
Quadratzahl. 

ln Süderdithmarschen, in weiten Teilen Norderdithmarschens, in Flamburg und Lübeck galt 1 Rute 
tatsächlich 16 Fuß, die Lundener Rute in Norderdithmarschen hingegen 18 Fuß, die Hamburger 
Marschrute nur 14 Fuß. Aber sowohl das Fußmaß wie damit auch die Rute wichen in den 
verschiedenen Regionen voneinander ab.3U 

Ursus ist sich bewusst, dass er keine elementare Bruchrechnung liefert, schon allein wegen der 
cossischen Schreibweise, in der ja quasi Variable verwendet werden, wenn auch noch nicht in der 
Form, wie wir sie nach Viëta kennen. Ursus bemerkt in Kap. 2 „hier aber nicht gewöhnliche Brüche“. 

Selbstverständlich werden bei Ursus noch keine 
modernen Begriffe wie Stellenwert oder 
Zahlensysteme oder Basis verwendet, und er wird 
die heutige Bedeutung derselben, insbesondere im 
Dualsystem, nicht gesehen haben. Er wollte nur 
eine neue Rechenmethode schaffen, die leider 
keinen Nachahmer fand. Ich weiß nicht einmal, ob 
Leibniz, der das Dualsystem beschrieb, an eine 
Verallgemeinerung auf andere Basen als 2 und 10 
dachte. Da die Geodaesia im Frühneuhoch- 
deutschen geschrieben ist, muss Ursus Begriffe 
für die Dezimalstelle einer ganzen Zahl als „statt“ 
oder „stette“, und für den Bruchstellenwert als 
„unterscheid“ oder „der brüche unterscheid“ 
prägen oder teilweise übernehmen. Und er 
beschreibt das Rechnen in einem solchen 
Hexadezimalsystem, jedoch nicht das Umrechnen 
von Dezimalzahlen in ein Sechzehnersystem. Von 
einer Theorie oder Grundlage von 
Stellenwertsystemen kann noch keine Rede sein. 
Dass Ursus jedoch tatsächlich ein 
Stellenwertsystem vor Augen hat, lässt sich 
belegen durch eine Seite aus dem Buch des 
Lübecker Rechenmeisters Johann Junge,31 

Rechenbuch auff den Ziffern und Linien, Lübeck 
1578, Blatt L3v, das Ursus Vorgelegen hat. Dort 
sagt Junge als Einführung zu einem 
Scherzbeispiel, dass er jedem Buchstaben von A 

bis Z (ohne J, O, U) die „Ziffern“ 1 bis 23 zuordne und zusätzlich die 0 als 24. Ziffer. Stehe ein 
Buchstabe bzw. eine dieser „Ziffern“ eine Stelle weiter links, so habe sie den 24-fachen Eigenwert. 
Als einfache Beispiele nennt Junge A0 = 24, BO = 48 und BC = 2-24 + 3 = 51.32 Da Ursus 
nachweislich dieses Buch in Händen und sorgfältig gelesen hatte, ist es wahrscheinlich, dass diese 
Beschreibung eines Stellenwertsystems mit 24 „Ziffern“, bei dem halt die 24 Buchstaben 

SDamititÇ mm bar tfyx/ bas matt mit 
mehr ober (Knignr ala 10.bif AntK 
inrticj bcfchrifbtrt hfttc m3gm/©tc!k ich her* 
nach cm themyd / »nb nehmt ba^tu.*. -fif* 
{ern/Dic fctnO grffah »rtb brbatten ttne folget. 
, 1 i 4 f 6 y S ic H i$ 
a <S (2" 2) <£ 5 © t ' ft i «t 51 
14 if i<5 17 18 ‘9 2? o 
p £ 3 © sesmx 3> & o. 

<ÏBo ich aber eine jMtr »mb eine fkf ;ut 
fintftn -f>anb rücfc / bebcut fie ftch jelbft 24 
tnal/ala 3 c »fl 247 <2> o iff48/ £ £ tp V- 

2(teirt/em CNünljmcjjter rerfaufft einem 
©oltfcISmib tin jîûcfe ©ilbera / roigt B IC B R 

4»/ P lof/ B q$/o 18/foil jnt geben oor A A G P 

äS/ L lot/ c qj/c I $/ D G e-taltr/A A $/ K §/ 

o£|'rç> »nb ber fauffer iff bem t*rf auff'er tu* 
norouchfchûlbtg^-^lf^t^ 

ernte fcharffa. 3ff bie frage / rote »id bem 
QJfinçmdffer in ©umma jtrfomcn fotl-'Ji' 
ttt wie hi< »nten ju 

Abb. 2: Johannes Junge, Rechenbuch 1578, 
Blatt L3v. 24-er Stellenwertsystem. 

Germ. Nat.museum Nürnberg, 8° H 2673. 

’ Vorrede: 5 S., Buch I: 21 S„ Buch II: 22 S., Buch III: 18 S., Buch IV: 16 S., Schluss: 2 S. 
30 Näheres siehe bei Klaus-Joachim Lorenzen-Schmidt, Kleines Lexikon alter schleswig-holsteinischer Gewichte, Maße und 
Währungseinheiten, Neumünster 1990. 
31 Johann Junge aus Schweidnitz, 1567 Schüler von Caspar Frantz in Schweidnitz, 1568 Caspar Schleupner in Breslau, 1570 
Steffan Brechtei in Nürnberg, Andreas Gundelfmger in Nürnberg, Johann Neudörfer in Nürnberg. Weitere biographische 
Angaben im oben zitierten Rechenbuch, Lübeck 1578, und im Teil Tractaliuncula in diesem Buch. 
32 Druckfehler: CC = 51 statt BC. 



Das erste Buch: Vom Landrechnen (Kap. 1-9) 15 

(einschließlich der Null) als Ziffern auftreten können, ihn fasziniert hat. Wahrscheinlich beschreibt 
Johannes Junge die früheste Erwähnung eines solchen Stellenwertsystems mit mehr als zehn Ziffern. 

Nach der Einführung des cossischen Stellenwertsystems folgen, mit Beispielen steigender 
Schwierigkeit, Erläuterungen zum Addieren und Multiplizieren, dann zum Subtrahieren und 
Dividieren, schließlich zum Ziehen von Quadratwurzel und dritter Wurzel. Das Addieren und 
Multiplizieren läuft ja bekanntlich auf das Addieren bzw. Multiplizieren der Zähler hinaus, wobei nur 
auf die Sechzehner-Überträge zu achten ist, beim Multiplizieren noch auf das Addieren der 
Stellenwerte (Exponenten). Beim Subtrahieren muss gegebenenfalls ein Sechzehner-Übertrag vom 
größeren Bruch auf den kleineren erfolgen, beim Dividieren werden die Zähler, nach Stellenwert 
fortschreitend und unter Mitnahme von Resten durch den Zähler des Divisors dividiert, wobei die 
Rechnungen natürlich aufgehen. 

Das erste Buch: Vom Landrechnen 

Kapitel 1: Von Zahlen33 

,,Die Geodäsie ist eine Wissenschaft, um die Größe eines Dinges zu finden. Dies geschieht durch 
Rechnen und Messen. Rechnen ist eine Lehre von Zahlen und enthält Bezeichnung und Rechenart.34 

Bezeichnung der Zahlen ist eine Erläuterung, was jede Zahl bezeichnet, und sie gibt es in ganzen oder 
gebrochenen Zahlen. Ganze Zahlen sind solche, die ganze Dinge bezeichnen, deren Bedeutung in den 
Ziffern35 oder in der Stelle36 liegt. Die Ziffer ist eine Gestalt, mit der eine Zahl bezeichnet wird, und 
davon gibt es zehn. Sie bedeuten also: 

1. eins 2. zwei 3. drei 4. vier 5. fünf 
6. sechs 7. sieben 8. acht 9. neun 0. nichts 

Die Stelle ist ein Ort, an dem die Zahlen vielfältige Bedeutung haben, ln der ersten Stelle von 
rechts einfach, in der zweiten Stelle nach links zehnfach, und in der dritten Stelle hundertfach. Es gilt 
also jede Stelle nach links zehnmal so viel als die nächste zur rechten. 

Der erste Block31 der Zahlen wird von Einern erfüllt, der zweite Block von Tausendern, der dritte 
von tausend mal Tausendern, und so fort ohne Ende. Bei den ganzen Zahlen gibt es also drei Stellen 
[Einer, Zehner, Hunderter], aber von den Blöcken gibt es unzählig viele. Jeder Block hat drei Stellen, 
die erste rechts zählt einen, die zweite zehn, die dritte hundert. Dann fängt ein neuer Block an3H 

Zum Aussprechen großer Zahlen werden die Enden aller Blöcke mit Pünktchen gekennzeichnet. So 
viele Pünktchen vorhanden sind, so oft wird tausend gesagt, dem letzten Tausend das Wörtchen mal 
vorgesetzt. Zum Beispiel: 1.234.567.890 

Eintausend mal tausend39 zweihundertdreißigundvier tausend mal tausend, 
fünjhundertsechzigundsieben tausend, achthundertundneunzig. “40 

Kapitel 2: Von Brüchen 

,, Brüche sind Teile eines Ganzen, hier aber nicht gewöhnliche Brüche, wie in üblicher Rechnung 
gebräuchlich, sondern Sechzehnerbrüche. Das sind Sechzehntel eines Ganzen, sechzehn Teile ergeben 
ein Ganzes. Von einem der ersten Sechzehner sind die zweiten jeweils der sechzehnte Teil der ersten, 
die dritten ein sechzehnter Teil der zweiten, die vierten einer der dritten und so weiter bis ins 
Unendliche. Es bedeutet also jedes Eine eines Bruchteils41 sechzehn des nächstfolgenden Bruchteils 
und ein sechzehntel Teil des vorangehenden Bruchteils, bis ins Unendliche. Wir brauchen aber für 
unser Vorhaben und um unser Werk zu vollbringen nur wenige Bruchteile [im Stellenwertsystem]. 
Darum nehmen wir als Ganzes eine Rute, die ersten Bruchteile nennen wir einen Schuh 41 die zweiten 

33 Von ganzen Zahlen in Dezimalschreibweise. 
„Wirkung“, siehe Kapitel 3. 

35 „Zeichen“ 
36 „Statt“ 
37 „Stand“ 
38 Man bedenke bei dieser heute allzu elementar anmutenden Erläuterung, dass sich das Dezimalsystem mit der Null erst 
allmählich durchgesetzt hatte; Ursus spricht von den römischen Zahlen noch als „den gebräuchlichen Zeichen fur die gemeinen 
Zahlen“. Er gehört nicht zu den universitär gebildeten Gelehrten, sondern bringt seine Erfahrung als Landmesser ein. Außerdem 
schreibt er die Geodaesia in Frühneuhochdeutsch, nicht in Latein. 
39 Es müsste heißen „eintausend tausend mal tausend“. 
40 Man beachte die stellengerechte Sprechweise, etwa „zweihundertdreißig und vier“ statt zweihundertvierunddreißig. 
41 „Unterscheid“ 

„schuch“ = Fuß, Schuh. Die Schreibart „schuch“ ist zeittypisch, auch Jacob Köbel verwendet sie in seiner Geometrei 1570. 
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Bruchteile eine Fingerbreite,43 die dritten Bruchteile eine Strohbreite, und die vierten eine 
Haarbreite44 Dies auch zum besseren Verständnis fiir Anfänger und Laien45 Die Bruchstellenwerte 
bezeichnen wir mit den gebräuchlichen Zeichen für die gemeinen Zahlen:46 1. ein Schuh; II. eine 
Fingerbreite; III. eine Strohbreite; IV. eine Haarbreite. Danach hast du dich im folgenden zu richten. 

1 süderdithmarscher Rute = 4,74 m Stellenwert 

1 Schuh/Fuß = ViftRute = 29,62 cm 
1 Fingerbreite = /16 Schuh = 1,85 cm 
1 Strohbreite = Vi6 Fingerbreite = 1,16 mm 
1 Haarbreite = Vi6 Strohbreite  

/16 

(Vl6)2 

(V,6)3 

(V.6)4 

Was hier von den Sechzehnern gesagt ist, soll gleichermaßen auch von Vierzehnern, Achtzehnem 
und von anderen Teilen verstanden werden, wie viele Schuh oder Teile an irgendeinem Orte oder 
Land auf eine Rute gezählt werden. Dann muss man sich vorstellen, dass jeder Teil der Rute, seien es 
Sechzehner oder anders, wiederum so viele Teile enthält als die Rute Teile in sich hat, und aber ein 
jegliches Teil wiederum so viele Teile und so fort. Summa: So viele gleiche Teile eine Rute hat, so 
viele Teile muss man dem hinteren Bruchteil für eins geben und wiederum eins des vorderen für so 
viele des hinteren rechnen. Es ist aber 16 dafür die beste, bequemste und geschickteste Zahl, denn sie 
ist eine Quadratzahl41 aus einer Quadratzahl. Auch werden allgemein und an fast allen Ecken und 
Orten dieser Lande sechzehn Schuh auf eine Rute gerechnet. “48 

Kapitel 3: Vom Summieren 

Im folgenden dritten Kapitel wird das Addieren in diesem Hexadezimalsystem erläutert. 
Stellengerechtes Untereinanderschreiben und die Bedeutung der Sechzehner-Überträge werden betont. 
Das erste, ganz leichte Beispiel kommt noch ohne Überträge aus, stellt also nur die korrekte 
stellengerechte Schreibweise dar. Das zweite Beispiel zeigt Zehnerüberträge in den Ganzen, die 
beiden folgenden Beispiele liefern dann auch Sechzehnerüberträge, das vierte Beispiel bei einer 
Addition von drei Summanden. Die vier Beispiele sind also für Anfänger nach steigendem 
Schwierigkeitsgrad geordnet. 

„Das Rechnen mit den Zahlen ist eine Lehre, mit den Zahlen etwas zu tun [Rechenoperationen], 
und zwar eine Lehre der Vermehrung oder Verminderung der Zahlen. Die Vermehrung ist eine 
Rechenart, welche lehrt, die Zahlen zu vermehren, und zwar als Summieren oder Vervielfachen. 
Summieren lehrt, viele Zahlen in einer Zahl zusammenzufassen, so dass man die Summe hat. Setz die 
gleichen Dezimalstellen [der ganzen Zahlen] und auch gleiche Bruchteile gerade untereinander, die 
ganzen unter die ganzen, und jeden Bruchstellenwert unter seinesgleichen. Dann fange von rechts an 
vom kleinsten Bruchteil und summiere die ersten untereinander gesetzten Zahlen von oben herunter. 
Und was für eine Zahl aus diesem Summieren sich ergibt, setzt gerade unter eine daruntergezogene 
Linie. Kommt aus dem Summieren der ersten Dezimalstelle eine zweistellige Zahl, so schreibe die 
erste Stelle darunter und behalte die zweite im Sinne und gib sie nach der Summierung der nächsten 
Stelle von oben herab zu deren Summe dazu. Eiwächst nun aber aus den Summen der Bruchstellen 
eine Zahl gleich oder über Sechzehn, so gib für jede Sechzehn eine Eins zum nächsten Bruchteil. Und 
so fahre fort bis zum Ende deiner Rechnung, dann erscheint die Summe der Zahlen unten unter der 
untergezogenen Linie. 

43 Die Fingerbreite ist ein altes dithmarscher Längenmaß, 16 bzw. 18 Finger auf einen Fuß, noch Anfang des 19. Jh. bekannt. 

Hierbei darf man nicht an Zoll denken; der dithm. Zoll maß 2,46-2,48 cm, 12 Zoll = I Fuß. 
44 Strohbreite und Haarbreite sind als Längenmaße nicht überliefert; sie dürften Erfindungen von Ursus sein, um solch kleine 

Stellenwerte zu benennen. 
45 „Einfeltige“ habe ich als „Laien“ übersetzt. 
46 Römische Zahlzeichen. 
47 „eine gevierte Zahl“. 
48 Dies triff zu auf Hamburg, Lübeck, Lauenburg, Kremper Marsch, Wüster Marsch, Süderdithmarschen, Heide, Eiderstedt, 

Husum, Altholstein. Hingegen: Hamburger Marschrute 14 Fuß, Grafschaft Rantzau 17 Fuß, Lunden, Bredstedt, Tondent, Alsen 

jeweils 18 Fuß. 
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Vier Beispiele: 

II III Erklärungen 

342 
534 

12 
3 

2 
12 

11 
2 

Summand 342 12/,6 
2/256 n/4096 

Summand + 534 3
/I6 

12/256 %Q96 

Summe 876 !\(, 14/2S6 876 15 14 13 

Summand 974 4/16 
n!2s6 lü/4096 

Summand + 538 6/i6 ,2/2S6 

974 
538 

0 
12 

10 
4 

Summe 1512 lö/i6 l2/256 H/4096 
Dezimalüberträge bei den Ganzen. 

1512 
U 

10 12 14 

576 

974 

1551 

U 

13 

14 

12 

4- 

12 

13 

12+ 13 =25 = 1U (16) + 9 

13 + 14 + 1Ü =28 = 1Ü + 12 

8 + 7+1 Ü = 16 = 1Ü 
576 + 974+ 1Ü= 1551 
Überträge. Es müsste bei den Ganzen 444- heißen. 

468 
579 
678 

1727 

14 
12 
10 

8 
0 

13 

9 
8 

11 
12 

9 + 8 + 11 =28= 1U+ 12 
8 + 0+ 13 + 1Ü = 22 = 1Ü + 6 
14+ 12 + 10+ 1Ü = 37 = 2Ü + 5 
468 + 579 + 678 + 20= 1727 
Überträge  

Das vierte Beispiel sieht in Ursusscher Schreibweise heute so aus: 

(468+14I+81I+9l") + (579+12‘+8m) + (678+10'+13n+11HI) = 1727+5I+6I1+12m. 

Ganze I II III 

4 6 14 8 9 
7 9 i z o 8 
7 8 10 *_3_  i i 

17 Z 7 $■ 6 12. 
v v v r r 

Abb.: 3: Geodaesia. Das 4. Beispiel zur Addition, Blatt B3v. 
Forschungsbibliothek Gotha, 4° 44/8 (4). 

Zum Vergleich: 
Addition bei Stevin 1585. 
8® 5® 6© + 5® 7© = 

13® 6® 3© 

© ® © heute: 
8 5 6 8,56 
5 0 7 5,07 

13 6 3 13,63 

Kapitel 4: Vom Vervielfachen 

Beim Multiplizieren, das in der Reihenfolge der Rechenarten sogleich nach dem Addieren folgt, 
müssen nun die beiden Faktoren nicht stellengerecht untereinander geschrieben werden; Ursus benutzt 
dies auch im 3. Beispiel. Multipliziert wird nun jede Bruchstelle (und ggf. die ganze Zahl) der ersten 
Zahl mit jeder der zweiten. Dazu müssen „die Zeichen“, also die mit römischen Zahlen geschriebenen 
Stellenwerte addiert werden, um den neuen Stellenwert zu bestimmen. Die Teilprodukte müssen 
allerdings zur anschließenden Addition stellengerecht untereinander geschrieben werden. Wie man an 
den folgenden Beispielen sieht, ist die cossische Schreibweise mit den römischen Zahlen als 
Exponenten der '/^-Brüche einfacher und vor allem übersichtlicher als unsere heutige ausführliche 
Bruchschreibweise. So wird etwa 

(6 + 4/i6) • (2 + 3
/I6) = 12 + 

26
/16 + 12/256 = 13 + 1 °/16 + 12/256 

aus dem folgenden ersten Beispiel durch den Verzicht auf die 16er-Nenner verkürzt zu 
(6 + 41) ■ (2 + 31) = 12 + 261 + 12n = 13 + 101 + 12n, wobei sich das Addieren der (römischen) 

Exponenten übersichtlich gestaltet. Auch hier steigt der Schwierigkeitsgrad der Beispiele, im dritten 
und vierten Beispiel fehlt z.B. ein mittlerer Stellenwert. Jedoch ist die cossische Schreibweise 
einfacher nur für die hier verwendeten Stellenwertsysteme, also für Aufgaben, die ausschließlich 
gleiche Stammbrüche haben und nicht für die elementare Bruchrechnung mit unterschiedlichen 
Nennern. Hingegen kann sie auch für die Benutzung von Variablen verwendet werden, wie es Ursus 
in seiner Arithmetica Analytica 1601 tut. 
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,,Das Vervielfachen lehrt, eine Zahl mit der anderen zu vervielfachen, damit man die daraus sich 
ergebende Zahl hat. Und hier müssen nicht gleiche Dezimalstellen und Bruchteile unter gleiche 
gesetzt werden, sondern du magst sie nach deinem Gefallen setzen. Vervielfache alle Bruchteile der 
unteren Zahl mit jedem Bruchteil der oberen Zahl. Setze gleiche sich daraus ergebende Bruchteile 
gerade untereinander unter die untergezogene Linie, und was aus dem nächsten Bruchteil durch 
solche Vervielfachung erwächst, um eine Bruchstelle weiter zur linken. Ziehe dazu vorher von oben 
herab Linien zwischen die Bruchstellenwerte. Die Einerstellen setze unter die Einer [der ganzen 
Zahlen] und die Zehner unter die Zehner. 

Nach fertiger Vervielfachung summiere alle Zahlen zwischen den von oben abgehenden Linien, 
wie oben gesagt wurde. So erscheint das Ergebnis unten. Alsdann gib die [römischen] Stellenwerte 
der beiden letzten Bruchteile zusammen, so erhältst du den Bruchstellenwert der letzten aus der 
Vervielfältigung entsprungenen Zahl, von dem aus dann jede um einen Bruchstellenwert weiter links 
stehende ein [römisches] Zeichen weniger haben wird. Und wisse, dass aus der Vervielfachung der 
Zahlen eine Fläche erwächst. “ 

Erstes Beispiel: 64/16 • 2 3/16 = 12 + 18/16 + 8/16 + l2/256 = 13 l0/16 
,2/256 

Cossische Schreibweise: (6 + 41) • (2 + 31) = 12 + 181 + 81 + 12" =13+ 10'+ 12" 

Faktor 

Faktor 
Teilprodukt mit j\(, 
Teilprodukt mit 2 

Produkt 
Übertrag 

Die hochgestellten römischen Zahlen 
bedeuten die Bruchstellenwerte, also 

I = '/16 > B = (Vlö)2 = ^256 5 

III = ('/lö)3 = ^4096 USW. 

(6+4‘)-3'= 18'+ 12" 
(6+4')-2 =12 + 8*  

26'= 1Ü + 101 

Zweites Beispiel: 32 12/l6 • 24 14/16= 7 6 8+448/16+
288/16+

l68/256= 7 6 8 +736/16+
168/256= 8 1 4 % 8/256 

Cossisch: (32+121) • (24+141) = 768+448,+228,+ 16811 = 768+736'+168" =814+10I+811 

Faktor 

Faktor 
Teilprodukt mit 14/i6 

Teilprodukt mit 24 

Produkt 
Überträge 

41 -(32+ 12') = 128'+ 48" 
10' -(32+ 12') = 320'+ 120" 
4-(32+ 12‘)= 128+ 48' 

20-(32 + 12*) = 640 + 2401 

48"+120" = 168"= 10Ü+8" 
1281+320'+48l+240'+10Ü = 46Ü+101 

128 + 640 + 46Ü = 814 
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Drittes Beispiel: 36 l0/n, ,4/2S6 ' l3/i6 l4/4096 — 29 l4/]6 
l3/2S6 1 Umk S/6ss36 4

/UM8576 
Cossisch: (36+10'+1411) • (B'+M111) = 29+14*+13ll+7III+8IV+4v 

Faktor 

Faktor 

Teilprod. l4/4096 4
MI

-(36+10'+14n)= 144111 + 40™+ 56v 

10"l-(36+10l+14ll)=360"1+100lv+140v 

Teilprodukt 3/,6 

Produkt 
Der Übertrag +2 
fehlt im Druck. 

3I(36+10'+14")=108,+ 30" + 421" 
10'-(36+10l+14")=3601+100"+1401" 
56v + 140v = 196v = 12Ü + 4V 

40lv + 100IV 

144I"+360I 
12U= 152 = 9U 3IV 

+42 +140 +9U = 43U+7 
30" + 100" + 43Ü = 173" = 10Ü + 13" 
1081 + 3601 + 10Ü = 4781 (= 29 + 141). 
Die Umrechnung von 4781 zu 29 I4

/I6 

fehlt im Druck aus Platzmangel.  

Viertes Beispiel: (4/|6 8/<6 2 12/ 4\ 2   10/ Z , (Z-iZ)/ 3 ,04/ 
- ' 16 + ' 16 I. 

4, 3 

L / 4\ Z _ 16/ 2 
' 16 ) - ' 16 

= Vl6 

(2-32)/ 3 
16 

4- 4/ 2 

+ • 16 

' 16 
4 + (2-48)/,6

5 

,/ 3 , 6/4 
/16 + ' 16 

(2-96)/ 6 , 144/ 8 
' 16 

’ I 144/ + /1« 
+ 12/5 +9/7 
+ /16 + ' 16 

/18 444 / v 2 _ 
l '65 536 j — 340 181 136, 

' 4 294 967 296 

Cossisch: (4'+8"+12lv)2 = 16"+64'"+64IV
+96

V
+192

VI
+144vi" = 11+41I+41"+6IV+12V+9V" 

Faktor 

Faktor 
Teilprod. 
mit l2/,64 

mit 8/|6
2 

mit4/,6 

Produkt 
Überträge. 
« fehlt. 

2 -(4 +8 +12 )= 8 +16 + 24 

1 0
IV

-(4‘+8"+ 12
1V

)=40
V
+80

V1
+120

VI
" 

811-(4I+8II+12IV)=32III+64IV+96VI 

41- (4'+8“+12lv)=16n+ 32m+48v 

Abb. 4: Geodaesia. Das 4. Beispiel zum Multiplizieren, Blatt Clr. 
Forschungsbibliothek Gotha, 4° 44/8 (4). 
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Um das Multiplizieren bei Ursus in seinem Hexadezimalsystem in einfacher Form darzustellen, soll 
hier ein eigenes Beispiel folgen: 

16-n n 
3 12' 5" • 2 IQ1 4m 16 1 

6 24 10 32 2 
30 120 50 48 3 

000 64 4 
 12 48 20 80 5 

6 54 130 62 48 20 96 6 
 3 8 4 3 1 Überträge 112 7 

9 14 6 1 1 4 = 9 14* 6" 1nl 1lv 4V 128 8 
144 9 
160 10 

Oder eleganter, wobei die 16er-Überträge sofort gerechnet werden: 

3 12' 5" • 2 1 ()' 4"' 

7 8 10 
2 5 II 2 

0 0 0 0 
 15 1 4 
 ] 1 Überträge 

9 14 6 1 1 4 

Für die Multiplikation hat Ursus vielleicht zurückgegriffen auf die Schreibweise bei den 
Sexagesimalbrüchen. Dort wird seit al-Hwärizml geschrieben 
2° ■ 2'= 4'(für 2° ■ 

2/6O° = 
4
/6O°) oder 7 9' = 63'''= 1" 3 ”' (für 7/36W) • 9/60 = 63/216ooo), 

ganz wie es Ursus für sein Vi6-Bruchsystem tut.49 

Kapitel 5: Vom Abziehen 

Wenn beim Addieren und Multiplizieren noch nach unten gerechnet wurde, d.h. Summe und 
Produkt unterhalb der Aufgabe auftraten, so wird beim Subtrahieren nach oben gerechnet, d.h. die 
Differenz erscheint oberhalb der Aufgabe, oberhalb von Minuend und Subtrahend. Auch beim 
Subtrahieren muss natürlich stellengerecht untereinander geschrieben werden. Ursus erklärt dann die 
bekannte Methode, wenn ein Subtrahend größer ist als sein Minuend, dass man sich von der nächst 
größeren Stelle einen Sechzehner (oder wenn es sich um die Ganzen handelt, einen Zehner) 
umwandelt. Ursus spricht hierbei, wie auch heute noch manchmal üblich, von „leihen“. Abgearbeitete 
Zahlen werden durchgestrichen, so dass zum Schluss nur die Differenz stehen bleibt. Beim ersten, 
zweiten und vierten Beispiel beachte man, dass bei den Ganzen die nicht durchgestrichenen Ziffern 
zur Zahl dazugehören, auch wenn sie nicht in derselben Zeile stehen, so etwa |5 im ersten Beispiel 
für 125. 

„ Die Verminderung ist eine Rechenart, die lehrt, die Zahlen zu verkleinern, und zwar als Abziehen 
oder Teilen. Abziehen lehrt, eine Zahl von einer größeren wegzunehmen, so dass man das 
Übrigbleibende erhält. Setz die Zahl oben, von der du abziehen willst, und diejenige unten, welche du 
abziehen willst, gleiche Dezimalstellen und Bruchteile gerade untereinander, wie beim Summieren 
erklärt. Fange links bei den Ganzen oder beim größten Bruchteil an und nimm die untere Zahl von der 
oberen weg. Was übrig bleibt, setz gerade darüber und streiche die abgezogenen [den Minuenden] 
und die davon abgezogenen [den Subtrahenden] Zahlen durch. Wenn du eine Dezimalstelle oder einen 
Bruchteil von der oberen Zahl nicht abziehen kannst, weil sie zu groß ist, so wechsle eine Eins aus der 
linken Stelle in 10 dieser rechten Stelle, und wechsle eine Eins aus dem Unken Bruchteil in Sechzehn 
des rechten. Und von dieser geliehenen Zehn oder Sechzehn nimm die Dezimalstelle oder den 
Bruchteil, der vorhin zu groß war, weg und zum verbleibenden Rest gib die Dezimalstelle oder den 
Bruchteil, der zuvor zu klein war, dazu. Das sich daraus Ergebende schreibe darüber. Und so fahre 
fort bis zum Ende der Zahl, dann erscheint die übrig bleibende Zahl [die Differenz] oben 
unausgelöscht. “ 

’ Siehe Menso Folkerts, Die älteste latein. Schrift über das indische Rechnen nach al-Hwärizml, München 1997, S. 75 und 134. 
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Erstes Beispiel: 3 4 5 716 , 4/16
2 l2/16

3 - 2 2 0 4/16 
12/16

2 '7 3 

Cossisch: 

12 
245 
229 

16 '16 '16 — 125 4/16 
2/256 

345+8'+14"+12i" -220+41 + 12II
+12i" = 125+4'+2" 

II 
2 

44 
42 

III 
0 

12 
42 

Differenz 
Minuend 
Subtrahend 

Ganze 
345 

-220 

125 

14 
12 

'/ 3 

'16 

12 
12 

0 Differenz 

12, 14, 2 9, 3 _ ,s0 8, 6, 
'16 '16 '16 toV '16 '16 2 7/l6' — 167 4/16 8/256 2/4096 Zweites Beispiel: 456 

Cossisch: 456 + 12I+14II+9m - 289 +8I+61I+7m = 167+4,+8ll+2m 

16 
227 
426 
239 

42 
8 

44 
Differenz 
Minuend 
Subtrahend 

Ganze 
456 

■2 8 9 

241 
1 6 

7„ 
12 

’/ 2 

'16 

14 
6 

'/ 3 

'16 

Differenz 

Drittes Beispiel: 345 716 6/
l6

2 3/16
3 - 159 ,2/)6

14/16
2 716

3 = 185 716 72S6 
,2/. 

Cossisch: 
4096 

185 
296 
245 
459 42 

345 +4l+6II+3nl - 159+121+14II+7ln = 185+7l+7II+1211 

44 

12 Differenz 
Minuend 
Subtrahend 

Ganze 
345 

■159 

396 
1 8 5 

4 
12 

1/ 2 
'16 

6 
14 

1/ 3 
'16 

12 Differenz 

Viertes Beispiel: 248 - 209 l4/16 '716 
12, 2 10, = 38V16716

2 V 
Cossich: 

8 
39 

248 
299 44 

! 16 
248 - 209+141+ 1211+10111 = 38+l‘+3"+6 

42 49 

Differenz 
Minuend 
Subtrahend 

Ganze 
248 

-2 09 

49 
3 8 

0 
14 

/16 

0 
12 

'/ 3 
'16 

0 
10 

Differenz 

Kapitel 6: Vom Teilen 

Das erste, einfache Beispiel zum cossischen Dividieren lautet 13 10/i6 
l2/i6

2 : 6 4/16 . Wir würden 
aus unserem Wissen um die elementare Bruchrechnung heraus die Sechzehnerbrüche auf einen 
gemeinsamen Nenner bringen und die Aufgabe umformen zu 13 l72/16

2 : 6 4/16 = 3500/256 : l00/i6 und 
dann mit dem Kehrwert multiplizieren, also 3500/256 ' l6/ioo = 35A6 = 2 3/|6 . In cossischer Sprechweise, 
aber noch nicht in cossischer Schreibweise, rechnet man folgendermaßen, wie wir es beim 
schriftlichen Dividieren tun. Zuerst fragen wir, wie oft geht 13 durch 6? 2-mal. Multipliziere diese 2 
mit dem Divisor, 2 • 6 4/I6 = 12 s/16. Dieses Teilprodukt subtrahieren wir vom Dividenden: 
13 /16 /lg -12 /16 = 1 /16 /16 . Nun fragen wir, wie oft dieser Rest durch den Divisor zu teilen 
geht. Natürlich nicht mehr ganzzahlig, sondern ( 1 2/l6 —) 18/i6 : 6 — 3/16 . Auch dieser Teilquotient wird 
mit dem Divisor multipliziert und ergibt 18

/I6 
12/)6

2, so dass kein Rest bleibt, die Division geht auf, der 
Quotient ist 2 3/,6. Schreibt man nun cossisch die Stellenwerte und wie beim schriftlichen Dividieren, 
so lautet diese Aufgabe: 

Dies empfinde ich als eine schön einfache Form, außerdem 
kann jeder Stammbruch statt Vi6 verwendet werden. Bei Ursus 
erscheint lediglich der Quotient nicht am rechten Ende der 
Rechnung hinter dem Gleichheitszeichen, sondern in einer 
Tabelle zwischen Dividend und Divisor. Auch beim Dividieren 
sind die drei Beispielaufgaben wieder nach steigenden 

Schwierigkeiten geordnet. Das erste Beispiel zeigt noch keine solchen; beim zweiten Beispiel 
verwendet Ursus, dass bei der Aufgabe 814+101 : 24+141 zwar 814:24 gar 33-mal ginge, aber das 
Teilprodukt des Teilquotienten 33 mit dem Divisor 24+141 wäre größer als 814, also ist der erste 
Teilquotient nur 32, eine Schwierigkeit, die wir beim schriftlichen Dividieren kennen. 

13+10'+12" : 6+41 = 2 + 3' 
12+ 81 

1+ 21 (=18') 
181+12" 

0 
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„ Teilen lehrt, eine Zahl in etliche gleiche Teile zu zerlegen, damit man den Teil eines jeden erhält. 
Setz den ersten Bruchteil und die erste Dezimalstelle des Teilers [Divisor] unter den ersten Bruchteil 
und die erste Dezimalstelle der Zahl, die geteilt werden soll [Dividend]. Stelle fest, wie oft du den 
letzten Bruchteil des Teilers [Divisor] in den letzten Bruchteil der zu teilenden Zahl [Dividend] haben 
kannst, doch so, dass du die folgenden Bruchteile des Teilers in den folgenden Bruchteilen der zu 
teilenden Zahl auch so oft haben kannst50 (aber nicht mit 10, wie im gemeinen Rechnen, sondern mit 
16). Und die Zahl, wie oft der Teiler in die obere Zahl [den Dividenden] passt, setz zwischen die zwei 
durchgezogenen Linien und vervielfältige mit dieser gefundenen Zahl alle Bruchteile des Teilers. Das 
sich daraus Ergebende subtrahiere von der oberen Zahl, den Rest setz darüber und streiche die 
anderen [die verarbeiteten] durch, wie beim Abziehen gelehrt wurde. 

Nach diesem Abziehen rück den Teiler um einen Bruchteil nach rechts, stelle fest wie oft, 
vervielfältige und ziehe ab wie vorher. Und so fort bis zum Ende des Teilens. Letztlich erscheint das 
Teil [Quotient] zwischen den zwei durchgezogenen Linien. Und um wieviel das Zeichen [Stellenwert] 
des ersten Bruchteils des Teilers kleiner ist als das Zeichen des ersten Bruchteils der zu teilenden 
Zahl, um so viel ist der erste Bruchteil des gefundenen Teils [Quotient] kleiner als ein Ganzes, und 
jeder Bruchteil rechts davon wird ein Zeichen mehr haben. Wisse auch, dass aus der Teilung der 
Zahlen eine Länge entspringt, denn die Rechenarten sind gegensätzlich und zueinander invers: So 
etwa ist die Vermehrung zum Vermindern, das Summieren zum Abziehen, das Vervielfältigen zum 
Teilen invers. Im dritten Beispiel siehst du, dass der Teiler auch über 16-mal in den Ganzen [in den 
Dividenden] gehen kann, so oft man mag. “ 

Das erste Beispiel zum Dividieren, schrittweise erläutert: : 13 10/i6 ,2/256 • 6 4/i6 
Cossisch: 13+10I+1211 : 6+41 

Dividend 

Quotient 

Divisor 

»? 

= 2 3/16 

= 2+31 

Dividend 
Quotient 
Divisor 
Subtrahend 

13:6 ~ 2 (als Teilquotient), Teilprodukt ist 2- 6+41 = 12+81, 
subtrahiert vom Dividenden 13+101 bleibt Rest 1+21 (über 
dem Dividenden), verarbeitete Zahlen durchstreichen. 

2 ■ (6+41) = 12+81 

Dividend 

Quotient 

Divisor 

Subtrahend 

l+2‘+12" (s. vorige Tabelle) = 18'+12" : 6+41 = 31. 

Divisor um eine Stelle nach rechts rücken. 
31 • 6+41 = 18'+12" = 1+2I+12". Subtrahieren 
vom Dividendenrest ergibt 0, Division geht auf. 

" Hiermit ist die Schwierigkeit wie in Beispiel 2 gemeint, dass bei der Überschlagdivision die kleineren Stellenwerte ggf. 

berücksichtigt werden müssen. 
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Das erste Beispiel bedeutet also zusammengefasst und wie bei schriftlicher Division geschrieben 

13 
12 

- 1 

I 
10 

8 

11 
12 

12 
12 

0 

13+10'+12" : 6+41 = 2+3[ 

2-6+4'= 12+81 

3*-6+4'= 18'+12"= l+2'+12" 

Zweites Beispiel: 814 "V16 
8/256 : 24 14/16 = 32 12/)6 

Cossisch: 814+10'+8" : 24+141 =32+12' 

Dividend 
Quotient 
Divisor 

r 

» r 4 * & # 
  3 Z I Z 

 » # 
PV & jcr # 

r s r & 
Abb.: 5: Zweites Beispiel zur 

Division, Blatt C2v. 

Der erste Schritt lautet: 

Dividend 
Quotient 
Divisor 
Subtrahend 

814:24 » 32. 32 • (24+141) = 768+4481 = 796+01. 
796+01 (stehen unten) subtrahiert vom Dividenden 814+101, 
Rest 18 steht über dem Dividenden als '|8 ; 
die 4-2- ist Zwischenrechnung. 

32 • (24+141) = 768+4481 = 796+01. 

Der zweite Schritt lautet: 

Dividend 
Quotient 

Divisor 

Subtrahend 

18+101 (s. vorige Tabelle) = 2981 : 24 ~ 121. 

Divisor um eine Stelle nach rechts rücken. 

12* • 24+141 = 288'+168" = 18+10'+8". Rest 0. 

Das zweite Beispiel bedeutet also zusammengefasst: 

814 
796 

18 
- 18 

0 

10 
10 

24 
1 

14 32 
1 

12 814+10'+8" : 24+141 

32-24+14'= 796+0' 
32+12' 

12' -24+14' = 288'+168" = 
= 18+10'+8" 
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Das dritte Beispiel lautet: 478 
u!u,7As2 8/ifi

3 4/i 4 
16 

IV 

Der erste Schritt lautet: 

Dividend 

Quotient 
Divisor 
Subtrahend 

Dividend 
Quotient 

Divisor 

Dividend 
Quotient 

Divisor 

1 -> 14/ 2   10/ 14/ 2 13 /16 - 3o /16 /16 

13+14" = 36+10‘+14“ 

Druckfehler, es müsste 14 statt 4 heißen. 

Divisor um eine Stelle nach rechts; 
Divisor noch eine Stelle nach rechts. 

Druckfehler, es müsste 6 statt 8 heißen. 

478:13 = 36. Teilprodukt 36-13+1411 = 
468+504" = 468+31 '+811 = 469+15'+8n, 
subtrahieren vom Dividenden, verbleibt 
8+13'+15". 

36- 13+14" =469+15‘+8" 

8+131 (s. vorige Tabelle, =141 ’) : 13 ~ 101. 
10' • 13+14" = DO'+MO1" = 8+2l+8II+12l" 
subtrahieren vom Restdividenden, verbleibt 
ll,+6"+12'". 

101 • 13+14" = 130'+140"' = 8+21+8I'+12I" 

11 *+6" (s. vorige Tabelle, = 182") : 13 = 14". 
14"-13+14" = 182"+196IV = I I '+6u+12m+4IV 

subtrahieren vom Restdividenden ergibt 0; die 
Division geht auf. 

14"-13+14" = 182"+196IV = 11I+611+12I"+41V. 
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Auch für das Dividieren mag das folgende eigene Beispiel einen Eindruck geben von der einfachen 
Form dieses Rechnens: 

46 3' 10" 9111 1IV 8V : 3 8" 
45 7 8 46:3 = 15 

12 2 121 : 3 ~ 41 

12 2 0 
0 0 9 1 9m: 3 = 3m 

9 1 8 
0 0 0 

16-n n 
= 15 41 0" 3111 16 1 

32 2 
48 3 
64 4 
80 5 
96 6 

112 7 
128 8 
144 9 
160 10 

Kapitel 7: Von der Wurzel 

Ursus benennt die Potenzen bis zum Exponenten vier und weist daraufhin, dass es beliebig hohe 
Exponenten gibt. Er nennt die entsprechenden Wurzeln und beschränkt sich auf Quadrate (Flächen) 
und Kuben (Volumina) und deren Wurzeln, da für die Geodäsie nur diese von Bedeutung seien. Die 
Quadratzahl heißt bei ihm „gevierte Zahl“, die Kubikzahl „zweimal in sich selbst gevielfaltigte Zahl“, 
die Quadratwurzel und die Kubikwurzel heißen „gevierte Wurzel“ und „leibliche Wurzel“. Ich 
erwähne dies so ausführlich, weil Ursus, obwohl er Latein beherrscht, dieses Buch auf Deutsch 
(Frühneuhochdeutsch) schreibt und vor dem Problem steht, dass es keine feststehenden, allgemein 
gültigen Fachworte gibt. 

Bevor er zum eigentlichen Wurzelziehen kommt, gibt er ein Beispiel für das Quadrieren und dann 
für das Quadrieren der erhaltenen Quadratzahl. Seine Schreibweise ist pädagogisch geschickt und so, 
wie wir auch heute schriftliche Multiplikationen ausführen. Binomische Formeln zum Quadrieren 
benutzt er hier nicht, sondern das Standardmultiplizierverfahren. 

„Die Wurzel ist eine Zahl, die aus einer mit sich selbst multiplizierten Zahl erwächst. Sie ist zu 
unterscheiden nach der Art des Vervielfachens der Zahlen mit sich selbst. Denn eine Zahl ist die Qua- 
dratwurzel aus einer einmal mit sich selbst multiplizierten Zahl. Diese erzeugt eine Fläche, und hat 
Länge und Breite, diese der Länge gleich,51 in sich. 

Wird jedoch diese Quadratzahl52 wiederum mit der ursprünglichen Zahl multipliziert, so entsteht 
die Zahl einer Größe, die Länge, Breite und Dicke in sich hat, alle drei einander gleich. Die dritte 
Wurzel55 ist die Zahl, die aus einer zweimal mit sich selbst multiplizierten Zahl erwächst. 

Multipliziert man eine solche Kubikzahl noch einmal mit der ursprünglichen Zahl, so erwächst 
daraus eine Vierte Wurzel,54 eine Quadratwurzel aus einer Quadratwurzel, oder eine Fläche einer 
anderen Fläche.55 Und so fort ohne Ende. Für unser vorgefasstes Werk und zur Vollbringung dieser 
Wissenschaft [Geodaesie], die von Linien, Flächen und Körpern handelt, genügen die Quadratwurzel 
und die Dritte Wurzel. Darum werde ich hier auch nur diese zwei erklären und das Ziehen dieser zwei 
Wurzeln zeigen. Doch ehe wir dazu schreiten, haben wir für dich ein Beispiel [für das Quadrieren und 
die vierte Potenz] heiter für die Augen erstellt, wodurch du diese [Rechnungen] verinnerlichen und 
erlernen mögest. “ 

51 Länge und Breite haben dieselbe Dimension, dieselben Einheiten. 
52 „diese aus getaner Vervielfältigung einer Zahl mit sich selbst erwachsene Zahl“ 
53 „leibliche Wurzel“ 
54 Ursus nennt diese nur „eine andere Wurzel“. 
55 Es ist bemerkenswert, dass Ursus eine Größe vierter Dimension beschreibt. 
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Quadrieren: (124/,6)2
 = 150 Vi6 

Cossisch: (12+4')2 = 150+11 

000 
750 

150 

22518 

I 

150 
150 

I 
12 

24 
12 

150 

150 
II 
0 
1 
0 

II 
1 

12 

12 
48 

8 
4 

III 
0 
0 

I 
4 
I 
4 

16 

II 
0 
II 
0 

IV 
0 

Vierte Potenz (12 
4/l6)4

 = 22518 ,2/l6 '/2S6 

(12+4')
4
 = 22518+12

I
+1

11 

Zahl 12+4' 

Zahl 12+41 

Teilprodukte 

Quadratzahl 

Quadratzahl 

Teilprodukte 

Vierte Potenz 

41-(12+4') = 48'+16" 
2-(12+4')= 24+8' 

10-(12+4')= 120+40' 

144+96'+16"= 150+1' 

zum erneuten Quadrieren 

0" • ( 150+1 ‘+0") = 0"+0'"+0IV 

l' ■ ( 150+1 ') = 150'+1 " 
150-1' =150' 
150-50 = 7500 
150-100= 15000 

300‘ = (18Ü)+12‘ 

Kapitel 8: Von der Quadratwurzel 

Bevor Ursus das eigentliche Verfahren zum Ziehen der Quadratwurzel erläutert, greift er das letzte 
Beispiel aus dem Kapitel Vom Vervielfachen auf: 
(4'+8"+12lv)2 = l'+4"+4'"+6lv+12v+9v". Er bemerkt, dass die beiden Rechenarten Multiplizieren und 
Quadrieren und ihre Umkehrungen, das Dividieren und das Wurzelziehen, sehr viele 
Gemeinsamkeiten haben. Deshalb zeigt Ursus das Ziehen der Quadratwurzel aus 

1 It4II+4III+6lv+l 2V+9V" zuerst als Division, und erst danach das noch heute bekannte schriftliche 

Verfahren, das u.a. Gemma Frisius (1508-1555) in seiner Arithmetica Practica 1540 für dezimal 
geschriebene ganze Zahlen anschaulich und gut verständlich und wie auch heute noch üblich 
vorführte, für Quadrat- und Kubikwurzel.56 Schon vor ihm schildert dieses Verfahren u.a. Peter Apian 
(1495-1552) in seinem Rechenbuch 1527,57 Johannes Widmann von Eger (ca. 1462-nach 1498) in 
seinem Rechenbuch 1489,58 allerdings noch nicht so geformt, wie wir es heute kennen, und Leonardo 
von Pisa (1170/80-nach 1240) im Liber Abbaci 1201.59 Auch bei al-Hwärizrm (Kap. 14) findet sich 
dieses Verfahren, allerdings ebenfalls nicht in heutiger, verständlicher Form.60 Es geht wohl auf Theon 
von Alexandria (um 370 n.Chr.) zurück und beruht auf der binomischen Formel; man dividiert den 
Wurzelrest stets durch das Doppelte der bisherigen Näherung. Auch diese Beispiele zum Wurzel- 
ziehen stellt Ursus gut durchschaubar dar. Es ist müßig zu erwähnen, dass die Wurzeln stets aufgehen. 

,,Die Quadratwurzel ist diejenige Zahl in einer mit sich selbst multiplizierten Zahl [ ■\lä -Jä= a], die 
mit sich selbst multipliziert wurde, um die mit sich selbst multiplizierte Zahl zu erhalten. Das 
Wurzelziehen geschieht wie folgt: Setz die Bruchteile geordnet nacheinander. Suche unter den Ganzen 
oder den ersten Bruchteilen, die mit geraden Exponenten verzeichnet sind, eine Zahl, deren Quadrat 
ganz oder möglichst weitgehend abgezogen werden kann [also eine erste Näherung Xo , so dass Xo2< 
a]. Diese Zahl setz zwischen zwei unter die [zu wurzelnde] Zahl gezogenen Linien und quadriere sie. 
Das Quadrat nimm von der oberen Zahl weg, was bleibt, setz darüber und streiche die benutzten 
Zahlen durch. 

Danach verdopple die jetzt gefundene [Teil-] Wurzel, das Ergebnis heißt der Teiler. Diesen setz 
unter die nächstfolgenden mit ungeraden Zeichen bezeichneten Bruchteile stellengerecht 
untereinander. Suche, wie oft der Teiler in Zahlen der oberen Bruchteile passt [also (a-x0

2) : (2xo) = 
h0]. Diese Zahl setz zwischen die zwei untergezogenen Linien zu der zuerst gefundenen [Teil-] Wurzel, 
doch um einen geraden Bruchteil weiter rechts. Und das ist der zweite Bruchteil der neu gefundenen 

56 Ich danke Herrn Rudolf Haller für den Hinweis. Siehe Tropfke, Bd. II, 3. Aufl. 1933, S. 176. 
57 Siehe dazu Siegmund Günther, Peter und Philipp Apian, Prag 1882, Nachdruck Osnabrück 1985, S. 25f. 
58 Siehe Barbara Gärtner, Johannes Widmanns Behende und hübsche Rechenung, Tübingen 2000, S. 371 ff. 
59 Ich danke Herrn Ulrich Reich für seine Hinweise auf Apian und Leonardo. 
60 Menso Folkerts, Die älteste lateinische Schrift über das indische Rechnen, München 1997, S. 97ff und 147ff. 
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Wurzel. Diesen setz auch zum Teiler um einen Bruchteil nach rechts und multipliziere ihn mit sich 
selbst [h0

2] und auch mit dem vorangesetzten Teiler [2xo'ho]. Was da herauskommt [ho2+2x0-ho], zieh 
von den Bruchteilen der oberen Zahl ab [vom Dividendenrest]. Und so fahre fort bis zum Ende, dann 
erscheint letztlich die Wurzel der Zahl zwischen den zwei untergezogenen Linien. Halbiere den 
Exponenten des letzten geraden Bruchteils. Dieser halbe Teil des Exponenten zeigt dir von der 
gefundenen Wurzel den Exponenten des letzten Bruchteils, nach welchem die nachfolgenden 
Bruchteile leicht zu bezeichnen sind. 

Du kannst sie auch nach der Teilungslehre nehmen, denn diese zwei Rechenarten haben viel 
gemeinsam. Um diese Gemeinsamkeit der beiden Rechenarten wie auch derselben besondere 
Eigenschaft zu erkennen und zu unterscheiden, ist das letzte Beispiel der Multiplikation [siehe Kapitel 
4] auf beide Weisen gezeigt. Als Division sieht es folgendermaßen aus: “ 

14 4 6 12 9 4 8 12 4 8 12 

Wurzelziehen in Divisionsform a : Va = Va . 16 1 6: 163 1 64 1 6s 167 16162 164 16162 164 

Cossisch: lI + 4a + 4m+6lv+12v+9vtt : 41 + 8U + 12lv = 4[ + 81' + 12lv 

II 
2 
4 

III IV 
4 
é 

V 
é 

42 

VI VII VIII 

Dividend 

8 
IV 
12 Quotient = Wurzel 

T2 
0 
8 
4 

42 
0 
8 

42 
0 42 

Divisor 
Divisor um eine Stelle nach rechts geschoben 
Divisor um noch eine Stelle nach rechts 
Divisor um noch eine Stelle nach rechts 
1
I
+4

II
:4I = 4I;4I-4I+8II+12IV=11+2,,+3IV 

2II+4,n : 4' « 8"; 8n • 4'+8n+12IV = 2II+4I"+6V 

3IV+6V : 4* = 12IV; 12lv ■ 41+8"+12lv= 3lv+6v+9 
Auf eine Aufschlüsselung dieses Beispiels in einzelne Schritte habe ich verzichtet. Woher die Wurzel 
kommt, wird nicht erläutert. Wie man die Wurzel tatsächlich zieht, wird im nächsten Beispiel gezeigt. 

II 4 4 6 12 9 _ 4 8 12 

Wurzelziehen: "\| 16 1 62 1 63 16J 165 167 1616" 16J 

h IK vt ItX 
1 # * & X* * 9 * 

I u tu tut 
 » 0 r y 

» # 90 0 r » 
  9  

& # & r ? sr 9 0 

Abb. 6: Das Beispiel zum Wurzelziehen, Blatt Dlv. 
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1. Schritt: #74^-1' 

III 
4 Teilradikand l'+4" = 201' > (41)2 = 1611 = l' 

1. Näherung x0. Ihr Quadrat l1 subtrahieren vom Radikanden. 

2. Schritt: 
Radikandenrest (s. vorige Tabelle) 41I+4I" = 68m dividieren durch 
das Doppelte der Näherung x0, also durch 2xp = 81,  

II 
4 

III 
4 

IV 
6 

V 
12 

I 
4=xp 8=hn ergibt etwa 811 = h0 und damit xi= x0 + h0 = 4'+8n . 

II 
Dieses ho= 811 multiplizieren mit 2x0+ho = S'+S", 

“ W. ergibt 64“‘+64lv = 4il+4111. 
Subtrahenden 2x0h0 + h0

2 subtrahieren vom Radikandenrest. 
II 
4 

III 
4 

3. Schritt: 
Radikandenrest (s. vorige Tabelle) 6IV+12V = 108v 

dividieren durch 2xi = 8!+16n = 91 
II 
4 

IV 
6 

V 
12 

VI 
0 

ergibt 108v : 91 = 0nl = h| und damit 
X2 = X]+h] = 4I+8II+0I" . 

III 
0=hi 

II 
8 
9 

Diese hi=Om multiplizieren mit 2xi+hi ergibt 0. 
2-x. 

II 
4 

III 
4 

4. Schritt: 
Radikandenrest (s. vorige Tabelle) 61V+12' 
= 108v dividieren durch 2x2 — 9I+0M , 

II 
4 

IV 
6 

V 
12 

VI 
0 

VIII 
0 

ergibt 108v : 91 =T2IV = h2. III 
0 

IV 
12=h2 

II 
8 
9 0 0 42 

Diese 12 v multiplizieren mit 
2x,+h, = 9'+12IV, 
ergibt 108V+144vl" = 
6lv+12v+0v'+9vll+0vm 

III 
4 

IV 
é 

V 
42 

VI 
0 

VII 
9 

VIII 
0 

Die beiden letzten Schritte können auch gleich zusammengefasst werden. Das Beispiel zeigt auch, 
dass bei Zahlen, deren letzter Exponent ungerade ist, wie hier 9VÜ, ein gerader Exponent ergänzt 
werden muss, hier 0v,n. 

Als Dezimalzahl geschrieben, wäre dieses Beispiel: 
V 0,079.204.592.853.784.561.139.226.562.500 = 0,281.433.105.468.750, 
an dem bereits moderne Taschenrechner 
scheitern. Bei Ursus wird stets mit Sechzehner- 
Brüchen gerechnet. Man könnte jedoch den 
kleinsten Bruchstellenwert als Einer, den nächst 
größeren als Sechzehner, den nächsten als 256er 
usw. ansehen, also mit 16* erweitern, und so das 
Verfahren statt für Brüche interpretieren als für 
ganze Zahlen in einem Hexadezimalsystem 
gedacht, was Ursus allerdings nicht gemeint hat. 
Tut man dies und setzt VIII als Einer, VII als 
Sechzehner, VI als 256er usw., so lautete dieses 
Beispiel statt 

V 3 40 18 11 36 
- 1 *-  quadriert  

240 : 20 « 8   
-224 (20+8)-8 

1618: 360 = 4  
- 1456 (360+4)4 

16211 :3680 = 4  
- 14736 (3680+4)4 

147536:36880 = 4   
- 147536 (36880+4)4 

0 

1 8444 

y/l I A I' A "I WV 1 r,V nVIl + 4 +4 +6 +12 +9 41 + 8" +127’ 

in heutiger Schreibweise 

Vl • 167 + 4-166 + 4• 165 + 6• 164 +12-163 + 9• 161 + 0• 16° = -J340 181 136 = 18 444 = 4-163 + 8-162 +12 16° 
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Das Verfahren entspricht dem auch heute noch bekannten schriftlichen Wurzelziehverfahren. Es 
beruht auf einer Iteration und sieht wie folgt aus: 

V a x0 

- x0
2 <-<—<-<- J 

(a - x0
2) : 2x0 

-(2x0ho+h0
2) «-<-<-<— 

a - (xo+ho)2 

Xo+ho=x, 

1 

= hn I 

■<-*-h0 O ^ 

(a- Xi2) : 2x\ = h; 
-(2xihi+h|2) <- 

a-(xi+hi)2 = a-x2
2 

X|+hi=x2 

i 

1 
i 

I 
h|«— O «I 

usw. mit Xj, hj. 

Oder in anderer Form: V a ~ x0 

1. Verbesserung: V a = x0 + h0 = x, => a ~ x0
2 + 2x0h0 + h0

2 ~ x0
2 + 2x0h0 

Also ho ~ (a - Xo2) : 2xo 

2. Verbesserung: Va = xi+hi=x2 => a ~ X|2 + 2x^1 + h]2 ~ X]2 + 2xih| 

Also h| ~ (a- X]2) : 2xi USW. 

Kapitel 9: Von der dritten Wurzel 

„Die dritte Wurzel ist diejenige Zahl in einer zweimal mit sich seihst multiplizierten Zahl, [^a • lÿa • 3/a 
= a], die zweimal mit sich selbst multipliziert wurde, um die zweimal mit sich selbst multiplizierte Zahl 
selbst zu ergeben. Und das Ziehen der dritten Wurzel wird folgendermaßen vollbracht: Setz die 
Bruchteile geordnet nacheinander. Dann handle ebenso wie beim Ziehen der Quadratwurzel, nur dass 
du hier nicht auf einen geraden Exponenten der Bruchteile achtest, sondern auf einen durch drei 
teilbaren, also drei, sechs, neun oder dergleichen. Auch quadriere hier die Zahlen nicht, sondern 
multipliziere sie zweimal mit sich selbst. 

Danach musst du die jetzt gefundene erste Näherungswurzel nicht verdoppeln, sondern 
verdreifachen. Darüberhinaus multiplizierst du die dreifache Näherungswurzel mit der einfachen, so 
erhälts du den Teiler [3x0

2] zum neuen Bruchteil. Diesen Teiler multipliziere zuerst mit dem neuen 
Bruchteil [ho] der Wurzel; danach multipliziere diesen neuen Bruchteil der Wurzel mit sich selbst und 
mit der vorigen dreifachen Näherung [3XQ1V]. Schließlich multipliziere diesen neuen Bruchteil der 
Wurzel zweimal mit sich selbst [h0

3]. Diese drei sich so ergebenden Zahlen setze geordnet so unter die 
zu wurzelnde Zahl, dass der letzte Bruchteil der zuletzt gefundenen Zahl [hn'] gerade unter den 
nächstfolgenden durch drei teilbaren Stellenwert kommt, die anderen beiden Zahlen jede um einen 
Stellenwert nach links. Schließlich summiere diese drei Zahlen [3x0

2h0 + 3xoh0
2 + h0

3] und subtrahiere 
diese Summe vom Dividendenrest. Und dieses Verfahren setze fort bis zum Schluss. 

Teile den letzten durch drei teilbaren Exponenten durch drei, das sich ergebende Drittel ist der 
letzte Bruchteil der gefundenen Wurzel. Siehe folgendes Beispiel: “ 
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r 
? 

m 
* 

9 9 

9 9 9 * 
n 
& 

ix 
3- ** 

nt 

9 

r r 
6 

* * 
9 
9 

4 & 
x 4 * 

x 9 

jer 
3- 

x v r * 
& 

9 4 
9X9 

S3 
& 

4 3- X 3- 

Abb. 7: Das Beispiel für die dritte Wurzel, Blatt D2v. 

Zweiter Schritt: 
III 
? 
2 

IV 
9 

34 

V 
15 
3 

VI 
Radikandenrest 7ln+15IV (s. vorige Tabelle, =127lv) dividieren 
durch 3xp2 = 2711, 

I 
3~xu 

II 
4=h0 ergibt 127IV : 27“ = 4M =h0. X| = Xp+hp = 3 '+411 

34 
6 12 

9 

Drei Produkte bilden: 
3x0

2ho = 3-9"4"= 108IV = 
3x0h0

2 = 3-31-1111 = 9IV 

hp3 = (411)3 = 64Vl = 4V 

6m+12IV 

Die Summe dieser drei Produkte 7m+5lv+4'/ vom Radikandenrest 
7ln+15lv+3v subtrahieren. 
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Dritter Schritt: 

II 

4- 

2 

III 

7 

4 

IV 

9 

44 

V 

15 

4 

VI VII 

4 

VIII 

3 

IX 

13 

Radikandenrest 9IV+15V (=159v = 2544VI) 

dividieren durch 3xi2 = 507 ui 

III 

5=h[ ergibt 511 = h. 

44 44 

9 

9 

4 

14 7 

15 12 
7 13 

Drei Produkte bilden: 

3x|2h, = 3-(52")2-5MI =40560v" = 9IV+14V+7VI 

3x|h|2=3-52n-(5l")2=3900VIII=15vl+3VII+12VI11 

h|3 = (51")3 = 1251X = 7V111+13IX  
4 

15 
Die Summe dieser drei Produkte vom 

Radikandenrest subtrahieren ergibt 0. 

Als Dezimalzahl lautet dieses Beispiel "\/0>008.532.897.526... _ 0,204.345.703.125. 

Denkt man sich auch hier, wie beim Beispiel zur Quadratwurzel, die Ursus'sche Aufgabe 

\}2" + 2'" +15" + 3V + 6W + 4™ + 3™' +13“ =3' +4" + 5'" 

V 2 • 167 + 2 • 166 +15 • 165 + 3 • 164 + 6 • 16 ' + 4 • 162 + 3 -161 +13 • 16° 

mit 16y erweitert, so lautet sie stattdessen 

= V586.376.253 = 837= 3 • 162 + 4 -161 + 5 -16° 

^ 586 376 253 = 8 3 7 

-512 <-<-<- 512 = 83 *-<—^-<-^-^^-4 1 1 

74 376 : 3-802 (= 19200) = 3—>4 I 

- 59 787 3-802-3 + 3-80-32 + 33 = 59 787 1 

14 589 253 : 3-8302 (=2066700) = 7 ->-><-4 

- 14 5 89 2 53 3-8302-7 + 3-830-72 + 73 = 14 5 8 

Dieses Verfahren funktioniert auch, 

wenn die Wurzel nicht aufgeht. 

Ursus hat solche Beispiele nicht ver- 

wendet. Das Verfahren ist heute kaum 

noch bekannt, es basiert auf der bino- 

253 mischen Formel für die dritte Potenz 

0 (a+b)3 = a3 + 3a2b + 3ab2 + b3. 

Das Verfahren beruht auf folgender Iteration: 

$ a = x0 x0+h0 = xi 

-x0
3 <—*—*-I Î 

(a - Xo‘ ) : 3xo* = hu Î 

-(3x0
2ho+3x0ho2+ho3) 

a - (xo+ho)3 = (a-X|)3 : 3x,2 = h, 

-(Sx^hi+Sxjh^+h,3) 

a - (xi+h,)3 = 

Xi+hi = X2 

T 

r 
î 

î 

a-X2
3 usw. 

Oder in anderer Form: ^ a ~ x0 

1. Verbesserung: H a ~ x0 + h0 = x] => a = x0
3 +3 x0

2h0 + 3x0h0
2 + h0

3 = x0
3 + 3x0

2h,) 

Also h0 = (a - xo3) : 3x0
2 

2. Verbesserung: ^a = xi+hi = x2 => a = X|3 + 3xi2hi + 3xih!2+ h;3 = X]3 + 3xj2h 1 

Also h2 ~ (a-X)3) : 3xi2 usw. 

„ Was hier aber mehr von anderen Wurzeln zu sagen wäre, auch eine einfache und ganz leichte 
Regel vom Ausrechnen weiterer Wurzeln, wollen wir uns in unserer Rantzowischen Rechenkunst 
ersparen. Unterdessen genügen uns eben diese. Wir wollen demnach die Rechnung hiermit 
beschließen und zum Messen schreiten. 

Ende des ersten Buches. “ 

Damit hat Ursus „den ersten Flügel des menschlichen Gemütes“, die Arithmetik, bearbeitet. Er 

geht nun zum zweiten Flügel über, zur Geometrie. 
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Das zweite Buch: Vom Feldmessen 

Das zweite Buch behandelt das eigentliche Feldmessen. Ursus versucht zuerst, die elementaren 
geometrischen Grundfiguren, die er benötigt, sorgfältig zu definieren, gerade und gebogene Linien, 
die verschiedenen Winkel, Vierecke und Dreiecke, den Kreis und seine Teile. Dann folgen die 
Flächenberechnungen und das Messen unzugänglicher Strecken unter Verwendung des 
Strahlensatzes, die Dreiecksflächenberechnung mit der Heronformel, die Kreisfläche und das Messen 
gestückelter Flächen. Auch in diesem Kapitel legt Ursus neben den Definitionen Wert auf geschickte 
Darstellung, so etwa, wenn er das Dreieck als halbes Parallelogramm benennt, damit sich die 
Flächeninhalte als Länge mal Breite (Flöhe) bzw. dessen Hälfte ergeben. Oder er weist auf die 
Analogie der Kreisflächenberechnung zur Dreiecksflächenberechnung hin, weil die Kreissektorfläche 
die Hälfte von Radius mal Bogenlänge ist, ebenso wie die Dreiecksfläche die Hälfte von Länge mal 
Höhe ist. Die Bezeichnungen, die Ursus im Deutschen benutzt, stimmen häufig nicht mit unserem 
heutigen Sprachgebrauch überein, so bezeichnet er mit „ecken“, was wir heute Seiten nennen, er 
bezeichnet mit „seiten“, was wir heute parallele Strecken nennen. Ursus spricht von „zwei ecken 
machen einen ort“ und drückt damit aus, dass zwei in einer Ecke zusammenlaufende Seiten einen 
Winkel bilden. Hingegen ist bei Ursus der „winkel“ stets ein Rechter Winkel, und konsequenterweise 
bezeichnet er ein Rechteck als „ein winkelrecht“. Ich möchte hier die zum ersten Buch gemachte 
Aussage wiederholen, dass Ursus für die geometrischen Dinge Bezeichnungen im Deutschen zu 
prägen versucht, die ihm nur teilweise vorliegen. Eine Übersetzung des Euklid ins Deutsche hatte er 
noch nicht. Die Ausgabe von Xylander, Basel 1562, der ersten sechs Bücher, wird ihm nicht zur 
Verfügung gestanden haben. Und er hat keine universitäre Bildung genossen, sondern ist Autodidakt. 
Dies ermöglicht ihm jedoch, freier von gedanklichen Vorgaben zu arbeiten. Am Ende des Buches 
über die Geodäsie findet man eine Gegenüberstellung der von Ursus verwendeten Begriffe mit 
unseren heutigen. 

Kapitel 1 : Von der Fläche 

„Das Messen ist die Erkundung einer schnurgleichen ' Länge, was mit einer Messrute aus einer 
schnurgeraden Stange gemacht wird, die neben die ausgestreckte Schnur gelegt wird. Der 
Gegenstand des Messens ist eine Fläche. Fläche ist ein zwischen Linien eingeschlossener Raum, sie 
hat Länge und Breite, ihre Teile sind Seiten62 und Winkel.63 Eine Seite ist eine Linie, die eine Fläche 
begrenzt, und sie gibt es als Parallele Strecken64 oder als Nichtparallele Strecken.6S 

„Seiten“ sind gleichlaufende [parallele] „Ecken“ 
[Strecken, Linien], die überall gleich weit voneinander ^ ^ 
entfernt sind. Darüberhinaus ist eine Seite einzeln oder 
gestückelt. Einzeln oder schlicht ist eine Seite aus einer 
einzigen Linie, und ist gerade oder krumm. 
[Ursus bezeichnet also als „Seiten“ parallele Strecken, die eine Fläche begrenzen.] 

„Enden“ sind ungleich verlaufende Linien, die an einem 
Ende zusammen und am anderen auseinander laufen. 
[Ursus bezeichnet also als „Enden“ nicht-parallele 
Strecken, die eine Fläche begrenzen.] 

Ein „Rechteck“ ist eine gerade Linie. 

Ein „ Krummeck“ ist eine nicht-gerade Linie und ist 
gebogen oder gewunden. Gebogen bedeutet mit 
Krümmung gleichen Vorzeichens.66 

Gewunden bedeutet mit Krümmungen verschiedenen 
Vorzeichens.67 

Gestückelt ist eine aus vielerlei Linien zusammengesetzte 
Linie. 

61 Die „Schnur“ findet allgemein Anwendung zum Messen, zur Bestimmung gerader Richtung. Jacob und Wilhelm Grimm, 
Deutsches Wörterbuch, Reprint Leipzig 1899, Bd. 15. 
62 „ecken“ 
63 „ort“, „Örter“ 
64 „seiten“ 
65 „enden" 
66 „in eine Krümmung“ 
67 „in viele Krümmungen“ 
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Zwei Seiten ergeben einen Winkel. Ein Winkel ist der Zusammenstoß zweier Seiten,6* 
Rechter Winkel oder ein nicht-rechter Winkel66 

Ein Rechter Winkel70 ist also ein Ort, bei dem eine gerade Linie so 
auf eine gerade Linie gesetzt wird, dass die Winkel zu beiden Seiten 
gleich sind.1' [Mit „Winkel“ bezeichnet Ursus stets den rechten ^  
Winkel.] 

und ist ein 

4 • 

Eine „Schärfe“ ist ein Ort, bei dem eine Strecke auf eine Strecke 
gesetzt wird, die Winkel zu beiden Seiten aber ungleich sind, 
ist also eine „Stumpfe“ oder „Spitze“. 

Ein stumpfer Winkel72 ist ein Winkel größer als ein 
rechter Winkel. 

Ein spitzer Winkel73 ist ein Winkel kleiner als ein 
rechter Winkel. 

Die Winkel erzeugen eine Fläche. Die Fläche ist einzeln oder gestückelt. Einzeln ist eine schlichte 
Fläche, welche man einzeln direkt messen kann, und sie ist eckig oder rund. Eckig ist eine Fläche, die 
von geraden Linien eingefasst wird, und ist ein Viereck oder ein Dreieck. Ein Viereck ist eine Fläche, 
die von vier geraden Linien eingefasst wird, und davon wollen wir viererlei mit parallelen Strecken 
unterscheiden: 
Ein Rechteck74 hat 4 rechte Winkel. 

Ein Parallelogramm75 hat gegenüberliegend gleiche Seiten und 
Winkel. 

Ein Trapez16 hat ungleiche Parallelstrecken. 

Beim auslaufenden Parallelogramm11 liegen die Lote von 
den Eckpunkten außerhalb der gegenüberliegenden Seite. 

Vierecke ohne parallele Strecken werden beim Messen zu 
Dreiecken gemacht. Ein Dreieck ist eine Fläche, die von 
drei [geraden] Strecken begrenzt wird. Wir müssen dabei 
drei verschiedene unterscheiden: 
ein rechtwinkliges78 hat einen rechten Winkel, 

ein gleichseitiges79 hat gleich lange Seiten und 
gleich große Winkel, 

ein unregelmäßiges80 hat alle Seiten und Winkel unterschiedlich. 

Bei den durch [gerade] Strecken begrenzten Flächen gibt es also nur 
vier Vierecke und drei Dreiecke auszumessen; auf diese sieben 
müssen alle anderen Vielecke zurückgeführt werden.*' 

68 Vergl. Euklid 1. Buch: „Ein Winkel ist eine Neigung zweier Linien gegeneinander, wenn sie einander treffen.“ Übersetzung 
von Clemens Thaer, Leipzig 1933. 
1,9 „eine scherffe“ 
70 „winkel“ 
71 Vergl. Euklid 1. Buch: „Wenn eine gerade Linie auf eine gerade Linie gestellt einander gleiche Nebenwinkel bildet, dann ist 
jeder der beiden gleichen Winkel ein Rechter.“ 
72 „eine stumpfe“ 
73 „eine spitze“ 
74 „ein winkelrecht“ 
75 „ein rauteckig“ 
76 „ein ungleichseitig“ 
77 „auslauffig“ 
78 „winkeleckt“ 
79 „ortgleich“ 
80 „ungleich“ 
81 Die gepunkteten Linien in den Zeichnungen deuten auf die Flächenberechnung Mittellinie mal Höhe bzw. Grundlinie mal 
Höhe durch 2 hin. 
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Kapitel 2: Vom Kreis82 

Der Kreis ist eine Fläche mit einer gebogenen Linie, die 
überall gleich weit von Mittelpunkt entfernt ist. Und die den 
Kreis umgebende gebogene Linie heißt der Umkreis.*3 Die 
gerade Linie, die die Kreisfläche durch ihre Mitte teilt, heißt 
Durchmesser.** Jeder durch einen Durchmesser geteilte Teil der 
Kreisfläche ist ein Halbkreis. Die Linien, die die Kreisfläche 
teilen, heißen Sehnen. Das Stück der Kreisfläche, das durch eine 
Sehne abgeteilt wird, heißt Bogen. Die gekrümmte Linie des 
Bogens heißt Bogenlinie, die Höhe des Bogens [Kreisabschnitt] 
Bolzen.*5 Und es heißt größerer/kleinerer Bogen, welcher 
größer/kleiner ist als eine Halbkreisfläche. Das Stück der 
Kreisfläche aber, das durch vom Mittelpunkt zur Kreislinie 
gehende Linien abgeteilt wird, soll ein Kreisteil [Sektor] heißen. 
Damit wirst du dich im folgenden stark zu beschäftigen haben. 

Die Kreisfläche ist eben oder gebogen. Eine Kreisfläche ist eben, wenn der Mittelpunkt und der 
Umkreis miteinander eben sind. Eine Kreisfläche ist gebogen, wenn der Mittelpunkt und der Umkreis 
miteinander uneben sind. Sie ist aufwärts gebogen wie Berge oder niederwärts gebogen wie Täler. 
Ein Berg ist eine gebogene Fläche, deren Mitte aufwärts gebogen ist, und sie ist kegelig oder kugelig. 
Kegelig ist sie zugespitzt wie ein Kegel, und kugelig ist sie ausgedehnt wie eine Kugel. Ein Tal ist eine 
gebogene Fläche, deren Mitte niederwärts gebogen ist, sonst wie beim Berg gesagt. 

Eine gestückelte Fläche ist aus einzelnen Flächen zusammengesetzt, und zwar aus gleichen oder 
verschiedenen Seiten; bei gleichen Seiten aus geraden oder krummen Seiten. Bei geraden Seiten gibt 
es die Vierecke ohne parallele Seiten, auch die Fünfecke, die Sechsecke, die Siebenecke und weitere. 
Bei krummen Seiten kann die zusammengesetzte Fläche von ausgebogenen, von eingebogenen oder 
von beiden, aus- und eingebogenen, Linien begrenzt sein. “ 

An mehreren Stellen, so auch im folgenden Kapitel, weist Ursus darauf hin, dass man Länge und 
Breite rechtwinklig zueinander zu messen habe. Der Hinweis darauf ist ihm wichtig. Wie er in Buch 4 
über das Irrmessen belegt, scheint von Feldmessern häufiger hiergegen verstoßen worden zu sein, so 
auch von Jacob Köbel in seiner Geometrei, ein Werk, das Ursus offensichtlich kannte. Auch finden 
wir es heute befremdlich, wenn bei der Flächenberechnung von Dreiecken ausdrücklich erwähnt wird, 
dass die Division durch 2 nach der Produktberechnung oder vorher bei einem der Faktoren erfolgen 
könne. Unter Laien war das damals wohl nicht so selbstverständlich, wie es heutigen Schülern bereits 
erscheint. 

A 

Kapitel 3: Vom Messen von Vielecken86 

„ Und nun wollen wir endlich zum Messen selbst schreiten. Wie man alle vorgenannten 
unterschiedlichen Flächen richtig messen soll, wird hinfort gezeigt. Wenn du die bisher behandelten 
Dinge verstanden hast, sollst du, mein freundlicher lieber Leser, nun darauf achten. 

Alle Flächenmessung geschieht mit dem rechten Winkel durch Länge und Breite. Die Länge ist ein 
Maß der Fläche nach der Länge, und die Breite nach der Breite. Es müssen sich die Länge und Breite 
in der Mitte des Vierecks kreuzweise rechtwinklig schneiden und sich auf der Basisseite87 des 
Dreiecks hammerweise rechtwinklig berühren. 

Alsdann multipliziert man die Länge und Breite miteinander, so erhält man des gemessenen 
Vierecks einfache, aber des Dreiecks zweifache Größe. Darum erhält man den wahren Flächeninhalt 
des Dreiecks als Hälfte des Produktes, oder man nimmt beim Multiplizieren entweder von der Länge 
oder von der Breite die Hälfte. Denn ein Dreieck ist die Hälfte seines Vierecks, demnach ist auch der 
Flächeninhalt dessen Hälfte. 

Im Viereck ist aber zu beachten, dass man eine rechtwinklige Linie von einer der parallelen Seiten 
zu der anderen gegenüber ziehen können muss. Ist das aber mit einer Senkrechten nicht möglich, wie 
im auslauffenden Viereck, so muss man eine Parallelseile verlängern, bis man es tun kann. 

Man kann dann sowohl Vierecke wie auch Parallelogramme und alle anderen Vier-, Fünf-, Sechs- 
und Siebenecke und auch gestückelte geradlinige Flächen durch durchgezogene Linien in Dreiecke 
zerteilen. Und weil ein jedes Dreieck eine Fläche und drei Seiten hat und also zwei Seiten mehr als 

82 „von der runde“ 
83 Ich verwende statt des Begriffes Kreislinie die von Ursus benutzte Vokabel „Umkreis“. 
84 „durchmaß“ 
85 „der boltz“ 
86 „eckter flechen“ 
87 „auf der gelegsten Seite“ 
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Flächen, wird es bei der Teilung anderer geradlinig begrenzter Flächen in Dreiecke stets zwei 
Flächen weniger geben als das Eck Seiten hatte. 

Alsdann sind die Dreiecke jeweils einzeln auszumessen und deren 
Flächeninhalte zu summieren. Die Summe gibt dann den 
Flächeninhalt der gestückelten Fläche. Beim rechtwinkligen Dreieck 
ist auch zu bemerken, dass man dessen Länge und Breite auf seinen 
beiden kürzeren Seiten messen kann. Auch, dass man alle anderen 
nicht-rechtwinkligen Dreiecke in zwei rechtwinklige teilen und dann 
wie gesagt messen kann. Denn wenn man von einem seiner 
Eckpunkte eine Linie zur gegenüberliegenden Seite zieht, so dass 
diese Linie auf der Seite zwei rechte Winkel erzeugt, so ist dieses 
Dreieck in zwei andere rechtwinklige Dreiecke geteilt. “ 

Der Feldmesser muss im Gelände auch Strecken messen, die ihm nicht direkt zugänglich sind, z.B. 
weil er dazu einen Wasserlauf überqueren müsste oder weil das Abschreiten der Strecke durch andere 
Hindernisse erschwert wird. Außerdem ist es bequemer, aus zwei bekannten Strecken mit einem Gerät 
die dritte Strecke eines Dreiecks oder weitere Strecken zu berechnen, statt diese direkt durch Auslegen 
einer Messrute auszumessen. Ein solches Gerät hat Ursus benutzt. Er beschreibt es im folgenden 
Kapitel. Die Messung beruht auf der Anwendung des Strahlensatzes. Auf einer Messlatte mit 
Maßeinteilung, Ursus schlägt eine Länge von 16 Schuh vor, befinden sich Kimme und Korn, über die 
man von einem Endpunkt einer bekannten Strecke deren anderen Endpunkt anpeilt. Mit einer zweiten 
Messlatte mit gleicher Maßeinteilung peilt man von dem gleichen Endpunkt der beiden bekannten 
Strecken aus in Richtung des Endpunktes der zweiten bekannten Strecke. Die wirklichen Längen der 
bekannten Strecken, z.B. 12 Ruten und 10 Ruten, trägt man in irgendeinem Verkleinerungsverhältnis, 
z.B. 1:16 als Rute:Schuh, auf den entsprechenden Messlatten ab. Die Länge der direkten Verbindung 
der beiden Markierungen auf den beiden Messlatten wird bestimmt, hier z.B. 5 Schuh 7 Finger, 
natürlich abhängig von Winkel zwischen beiden Messlatten. Aus dem Verkleinerungsverhältnis, hier 
1:16, ergibt sich die dritte unbekannte Strecke zu 5 Ruten 7 Schuh. 

Weder das Messgerät noch die Anwendung des Strahlensatzes sind Erfindungen von Ursus. Er legt 
in seiner Geodaesia ja auch nur bekannte Tatsachen als Anwendung zum Landmessen dar. Dass dies 
notwendig war, ergibt sich aus dem vierten Buch, in dem er Landmesserkollegen auf grundsätzlich 
falsche Messungen oder Rechnungen hinweist. 

6 Seiten, 4 Dreiecke 

Kapitel 4: Vom Messen unzugänglicher und nicht einsichtbarer Strecken 

Eine Messlatte mit 
Peilloch (Kimme) und Korn 

Drehbarer Bolzen Peilspitze 
mit Peilloch (Kimme) (Korn) 

„ Unzugängliche Seiten und Flächen misst man so: Man nimmt dazu zwei gerade und 
schnurgleiche Stöcke, je länger desto besser und genauer, und teilt jeden mit einem Zirkel in gleich 
viele Teile. Am besten dazu sind zwei Messruten, welche jeweils in 16 Schuh und jeder Schuh 
wiederum in 16 Fingerbreiten geteilt sind, also wird jede Rute 256 gleiche Teile haben,88 Jeder Stock 
habe vorn eine aufgerichtete Spitze und hinten ein Löchlein, durch welches sie mit einem Bolzen, der 
oben ein Peilloch hat und den man darin hin- und herbewegen kann, zusammengeheftet werden 
können. Und so wird der Bolzen wie ein Zielloch für beide Stöcke oder Ruten sein. 

Hiermit mag man die eine unbekannte Seite eines Dreiecks durch die zwei anderen bekannten 
finden. Man stellt an dem der unbekannten Seite gegenüberliegenden Winkel den einen Stock in 
Richtung des zweiten, den anderen Stock in Richtung des dritten Winkels [Eckpunktes] des Dreiecks, 
so dass man jeden der zwei anderen Eckpunkte von diesem ersten Eckpunkt aus durch des Bolzens 
Zielloch über die aufgerichteten Zielspitzen schnurgerade sehen kann. Dann lässt man beide Stöcke 
unverrückt liegen. Danach misst man jede [der zwei zugänglichen Seiten] aus und teilt jede 

Jeder Stock, jede Messrute, wird also ca. 5 m lang sein (1 Rute = 4,74 m). 
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Seitenlange den Einheiten der Stöcke zu. Letztlich misst man neben einer gespannten Schnur die 
Länge von einem bezeichnten Teil des einen Stocks zum Teilpunkt des anderen Stocks, mit einem so 
weit wie jedes Teil an jedem Stock lang ist geöffneten Zirkel [d.i. mit der Einheit der beiden Stöcke]. 
Und so viele Teile wie denn zwischen den beiden bezeichnten Teilen [der Stöcke] sind, so lang ist die 
gegenüberliegende und unbekannte Seite des Dreiecks. Denn so wie sich die Verhältnisse89 dreier 
Dinge im kleinen verhalten, so verhalten sie sich auch im großen. Und aus dieser geometrischen 
Regelw der Dreiecke ergibt sich die ganze Proportionsregel in der Rechenkunst. Demnach kann man 
in den Fällen, in denen mehr Ruten in einer Seite als Teile am Stock vorhanden sind, ihre Länge 
durch diese Regel leicht finden. Denn so wie man auf dem einen Stock eine große Anzahl der 
Einheiten nimmt und setzt dieselbe anstatt der Seitenlange, so findet man durch die andere 
Seitenlange die Anzahl der Einheiten des anderen Stockes. Und aus diesen beiden gefundenen 
Maßzahlen für die Seitenlängen findet man die Länge der gemessenen zwei Seiten. “ 

Ein Beispiel zum Messen mit diesem Gerät: Gemessen werden die beiden Seiten in Peilrichtung zu 
z.B. 12 Ruten und 10 Ruten. Die Länge der Verbindung der Teilpunkte 12 und 10 auf den Schenkeln, 
hier z.B. 5 Schuh 7 Finger, liefert für die unbekannte dritte Seite damit 5 Ruten und 7 Schuh. 

9 

„ Und so mag man nun leicht eine vielseitige Fläche, ohne alles durchzumessen, in ihre Dreiecke 
teilen und jedes Dreiecks unbekannte Seite durch zwei andere bekannte Jinden. Denn sofern man die 
eine Seitenlange auf die erklärte Weise gefunden hat, und die Länge der anderen gemessen hat, die 
Stöcke wie erklärt wieder angelegt hat, zeigen sie die Länge der dritten nun unbekannten Seite und so 
fort. Wenn man nun alle Dreiecke und ihre Seitenlängen, die in einer Fläche vorhanden sind, 

gefunden hat, und man aber nun auf übliche Art durch 
rechtwinkliges Durchmessen der durch die Dreiecke gehenden 
Linien, die von einer Ecke des Dreiecks rechtwinklig hammerweise 
auf die der Ecke gegenüberliegende Seite gehen [die Höhen], nicht 
berechnen will und dennoch ohne deren Kenntnis des Dreiecks 
Flächeninhalt wissen will, so macht man es folgendermaßen: Von 
der halben Summe aller Seiten subtrahiert man jeweils die eine 
Seite, die drei Differenzen multipliziert man miteinander und auch 
mit der halben Summe der drei Seiten. Aus dem Ergebnis zieht man 
die Wurzel, das ist des Dreiecks Flächeninhalt. Uneinsichtbare 
Seiten erhält man durch Leitung des Sonnensegers91 oder durch 
Aufsetzen etlicher gerader Stöcke nacheinander, welche zu der 
verborgenen Seite als Ziel richtig hinweisen. Und wenn sie beim 
ersten Mal nicht genau darauf treffen, mag man sie nach 
Notwendigkeit verrücken, bis sie schnurgerade darauf zureichen. 
Und so viel vom Messen von Vielecken. “ 

6 messen 

8 messen 

7 berechnen. 

9 berechnen. 

89 „der proportz“ 
9,1 „Theoria“ 
91 Die Bedeutung bleibt mir unklar. Es könnte sich um „Sonnenzeiger“ handeln. 
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Hier wird die Benutzung der Heron-Formel für Dreiecke vorgeschlagen. „Von der halben Summe 
aller Dreiecksseiten subtrahiert man jeweils die eine Seite“ bedeutet: 

(a+b+c):2 - a = s-a 
(a+b+c):2 - b = s-b „Diese drei Differenzen miteinander und mit der halben 
(a+b+c):2 - c = s-c Summe multiplizieren“ und noch „die Wurzel ziehen“ 

F= TJS (S-a)-(s-b)-(s- c) ergibt die Heron-Formel, wobei (a+b+c):2 = s gesetzt wird. 

Kapitel 5: Vom Messen des Kreises 

Im folgenden Kapitel wendet sich Ursus dem Kreis und seinen Teilen zu. Wichtig ist ihm 
offensichtlich, die Analogie der Flächenformeln herauszustellen. 
Zur Berechnung der Kreisfläche nennt er A = r • U : 2, 
analog zur Dreiecksfläche A = g • h : 2, 
und analog für die Fläche des Kreissektors A = r • b : 2. 

Als Begründung für die Formeln zur Kreisfläche und 
Kreissektorfläche führt er die Überlegung zur 
näherungsweisen Berechnung an: Man teile den Kreis oder 
den Sektor in viele Dreiecke, deren Flächen ja Radius • Höhe 
: 2 betragen; die Höhen addieren sich bei hinreichend vielen 
Dreiecken zum Umfang oder zur Bogenlänge des Sektors. 
Zum Kreisabschnitt weist Ursus darauf hin, dass man die 
Fläche des am Sektor fehlenden oder überschüssigen 
Dreiecks von der Fläche des Sektors subtrahieren oder zu ihr 
addieren müsse. 

„Den Kreis und seine Teile misst man wie die Dreiecke: Man multipliziert die Länge des halben 
Durchmessers mit der Breite, das ist die Länge des halben 
Umkreises, und erhält so seine Fläche 92 Das ist eben nichts 
anderes, als wenn man eines Dreiecks Länge mit seiner 
halben Breite multiplizierte und als ob man den Kreis in 
viele Dreiecke teilte und bei jedem Dreieck die Länge93 mit 
seiner halben Breite94 multiplizierte. Ebenso misst man 
auch die Kreisabschnitte, aber man verkürzt oder 
verlängert die Höhe des Kreisabschnittes bis auf den halben 
Durchmesser des Kreises und multipliziert seinen halben 
Durchmesser mit seiner halben Bogenlinie, wie beim Kreissektor. Danach addiert man bei einem 
Kreisabschnitt größer als der Halbkreis zum Kreissektor die Dreiecksfläche, welche innerhalb des 
Sektors bis zum Mittelpunkt des Kreises fehlt, oder man subtrahiert bei einem Kreisabschnitt kleiner 
als der Halbkreis vom Kreissektor die Dreiecksfläche, welche außerhalb des Sektors bis zum 
Mittelpunkt des Kreises übrig ist. 

Berge und Täler [Kugelhauben] misst 
man wie Kreise, denn man multipliziert die 
Höhe vom Fuß bis zur Spitze (analog zum 
halben Durchmesser bei der Kreisfläche) mit 
dem halben Umkreis seiner Grundfläche.96 Ist 
jedoch die Höhe des Berges auf einer Hälfte 
länger als auf der anderen, so muss man die 
Höhen durch Mittelwertbildung ausgleichen, 
wie auch in Vierecken mit zwei verschiedenen 
Längen geschieht,97 Was hier von Bergen 

gesagt wird, soll auch beim Messen von Tälern gellen, denn es geben die gekrümmten Kreise 
gleichviel Oberfläche, egal ob sie aufwärts oder niederwärts gekrümmt sind. Darum ist auch ihre 
Oberfläche auf gleichem Wege zu suchen. Und die Oberfläche der Halbkugel ist zweimal ihre 
Kreisfläche,98 

92 (d:2)-(U:2) = rttr = n-r2 , bzw. beim Sektor (d:2)-(b:2) = r b:2. So auch bei Stifel in Die Coß Christoffs Rudolffs, Königsberg 
1553, fol. 355v/356r. Ursus hat Stifels Buch gekannt und benutzt. 
93 Das ist jeweils der Radius des Kreises. 
94 Die Summe der Höhen ergibt den halben Kreisumfang. 
95 „bogen“ 
96 Mantelfläche der Kugelhaube damit U h - 2jrrh. 
9 Vergleiche die Mittellinie beim Trapez. 
98 Oberfläche der Halbkugel = 2-jt-r2 (h=r in der Formel für die Haube). 
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Kapitel 6: Vom Messen gestückelter Flächen 

Nun hast du dich, mein freundlicher lieber Leser, freundlich zu erinnern, dass alles Messen in 
geradlinigen oder runden Flächen gemacht wird: in geradlinigen also in Vierecken oder Dreiecken, 
und in runden Flächen in ebenen oder gebogenen. Erkenne auch mit den vernünftigen Augen deiner 
Sinne, wie eines aus dem anderen hervorgeht: aus dem Viereck als dem wahren Grund aller Flächen 
die Dreiecke, aus dem Dreieck der Kreis, und aus dem Kreis die Berge und Täler. Und weil nun alles 
Messen in diesen Figuren liegt, und die Größe aller Flächen hieraus gefunden werden kann, so muss 
man alle gestückelten und aus diesen Figuren wie auch immer zusammengesetzten Flächen, gleich 
welcher Gestalt oder welchen Aussehens, in diese Flächen zerlegen, nach Vorteil und Gegebenheit, 
wie man es vorteilhaft und behende kann. Und von jeder einzelnen dieser Flächen sucht man wie 
erklärt die Größe. Und diese jeweils einzeln gefundenen Größen muss man zusammengeben, dann 
zeigt die Summe die gesamte Größe der gestückelten 
Fläche. 

Man muss aber beachten, dass alle eingebogenen 
Flächen um so viel geringer sind als der eingebogene 
Teil enthält, hingegen dass alle ausgebogenen 
Flächen um so viel größer sind als der ausgebogene 
Teil enthält. Darum zieht man von der Flauptfläche 
die Größe der eingebogenen Fläche ab und gibt zu 
ihr die Größe der ausgebogenen Fläche dazu. So 
erhält man die wahre Größe der Fläche. 

Hierauf ist besonders aufmerksam zu achten, dass 
man, wenn viele Flächen hinzuzugeben oder 
wegzunehmen sind, sich beim Hinzugeben und Wegnehmen nicht irrt. Denn der Teil der Außenfläche, 
welcher zum Teil der Hauptfläche hinzugehört, muss auch zur Hauptfläche hinzugegeben werden. Der 
Teil, der aber nicht dazugehört, sondern ganz ausgeschlossen ist, ist wegzunehmen. Dazu siehe die 
hierbei gegebene Figur, in welcher A abzunehmen und Z zuzugeben bedeutet. 

Ebenso muss man auch gestückelte Berge und Täler wie andere gestückelte Flächen in einzelne 
einfache oder ebene Flächen zerteilen und die Größe der einzelnen Flächen suchen, die dann alle 
zusammengetan die wahre Fläche des Berges oder Tales offenbaren. Und so viel vom Messen. “ 

Die Zeichnung ist so zu verstehen: Über den 
Seiten AD und BC und über den Diagonalen AC 
und BD des Parallelogramms ABCD sind 
Halbkreise errichtet. Gesucht ist die von den 
Halbkreisen begrenzte Fläche AD-DB-BC-CA. 
Dazu müssen von der Gesamtfigur halbes 
Parallelogramm ADC + Halbkreis über AC die 
Dreiecke DEC und CEB sowie die Haikreise 
über AD, über DB und über BC subtrahiert 
werden, deswegen steht dort das A für Abziehen, 
die beiden mit Z bezeichneten Flächen gehören 
dazu. Eine interessante Aufgabe zu den 
sogenannten „Möndchen des Hippokrates“! Der 
gesuchte Flächeninhalt ist A = % • (a2 - f2), 
wobei a ist Basis des Parallelogramms ist und f die 

Abb. 8: Geodaesia 1583, Blatt F2v. 

Diagonale BD. 

Kapitel 7: Von der Feldteilung 

„ Damit auch dem Titel und Namen dieses Buches genüge getan werde, will ich zum Schluss etwas 
von der Feldteilung sagen und aufzeigen, danach etwas von Morgenzahlen und Vergleich der 
ungleichen Acker miteinander. Feldteilung bedeutet, die Felder in etliche Teile zu teilen und sie 
geschieht durch die gewöhnliche Rechnung in gleiche Teile oder in ungleiche, je nach Unterschied 
der Flächen. Man teilt aber am besten die Vierecke durch Teilung beider paralleler Seiten, die 
Dreiecke durch Teilung der einer Ecke gegenüberliegenden Seite und den Kreis und seine Sektoren 
und Abschnitte durch Teilung des Kreisbogens zum Mittelpunkt hin. Man teilt die Fläche in gleiche 
Teile durch Teilen der Strecken oder Kreisbögen in gleiche Teile; man teilt die Fläche in ungleiche 

99 Man darf hierbei nicht an Geländeformen mit Bergen und Tälern denken, sondern an ebene Flächen, bei denen 
Einbuchtungen fehlen oder Ausbuchtungen hinzukommen. 



Das zweite Buch: Vom Feldmessen (Kap. 1-8) 39 

Teile aber nach der Regel der Gesellschaft100 und in ungleiche Längen. Man setzt die Größe der 
Fläche vorn, die Länge der parallelen Seiten, der Strecken oder Kreisbögen in die Mitte, und den 
Anteil der Flächengröße hinten und rechnet wie eine Gesellschaft. Danach verbindet man ihre 
Teilpunkte durch gerade Linien, dann erscheint jede Teilfläche mit dem ihr gebührenden Anteil 
zwischen zwei Linien. Und so ist das Feld durch die Zwischenlinien eingeteilt. “ 

Hierzu hat Ursus leider kein Beispiel gegeben. Ich will seine Aussage in vier Beispielen zu 
erläutern versuchen, einem Trapez, einem Dreieck, einem Kreissektor und einem Kreisabschnitt und 
die Flächen jeweils im Verhältnis 3:2:1 dreiteilen. 

Beim Trapez darf man 
natürlich nicht die schrägen 90 

Schenkel teilen, sondern die 
beiden Parallelseiten, beim 
Dreieck die Grundseite, 
beim Kreissektor und 
Kreisabschnitt den Bogen. 

Fläche Seite Anteile 

'TF^ri— / 6 16 16 

Geteilte Seiten Geteilte Flächen 

Trapez 4200 120/90 60/45 40/30 20/15 2100 1400 700 

~TÏ~T/—7“ '6 '6 ' 6 Dreieck 2400 120 60 40 20 1200 800 400 

Quadratruten Ruten Ruten Quadratruten 

Nach Proklos hat bereits 
Euklid ein Buch über Teilungen 
geschrieben, das in arabischer 
Übersetzung überliefert ist. 
Darin treten Aufgaben auf, ein 
Dreieck, ein Trapez, einen Kreis 
in einem vorgegebenen 
Verhältnis zu teilen.101 

„ Wenn man die Felder auf andere Art und Weise als geschildert teilen will, etwa die Vierecke 
[Trapeze] durch Teilen der nicht parallelen Seiten oder die Dreiecke der Länge nach oder quer102 

oder die Kreise und Kreisabschnitte gerade, ebenso alle gestückelten Fläche nach eines jeden Willen 
und Gefallen, sei es in gleiche oder ungleiche Teile, so muss man ein Stück von dem Feld, welches zu 
teilen ist, ungefähr und nach Gutdünken und so, dass man es fiir groß genug schätzt, abmessen und 
dessen Größe nach dem oben geschilderten Verfahren bestimmen. Die gefundene Größe muss man 
mit der zu erreichenden vergleichen. Und wenn es sich zufällig ergibt, dass die gefundene und die 
gewünschte Größe gleich sind, mag man sie so belassen. Wenn sie zu groß war, muss man die Linie 
auswärts oder zurück, oder falls sie zu klein war, einwärts oder voran legen (und zwar auf beiden 
Seiten gleich weit). Und nachdem die Linie zurück oder voran gelegt wurde, ermittelt man abermals 
die Größe der durch die Linie abgeteilten Fläche nach genanntem Verfahren. Und sofern diese nun 
erneut gefundene Größe dieser Fläche der begehrten Fläche abermals nicht entspricht, so muss man 
die Differenz dieser beiden Flächen teilen durch die Länge der zweiten miteinander verglichenen 
Linien. Dann zeigt der Quotient, wieweit dieselbe Linie zum dritten Mal und nun endgültig einwärts 
oder auswärts gelegen ist. Und damit ist der erste Teil der gesuchten Flächen gefunden. “ 

Ich will als Beispiel zur Erläuterung ein gleichseitiges Trapez wählen und der Einfachheit halber 
ein Drittel der Fläche abteilen. Als ersten Teilungsversuch auf den Schenkeln, jemand will ja 
unvernünftigerweise nicht die Parallelseiten teilen, wähle ich jeweils ein Drittel der Höhe; das ist 
identisch mit einem Drittel der Schenkel. Das Trapez ABCD hat die Fläche A = 105-60 = 6300 
Quadratruten. Abgeteilt werden sollen also 2100 Quadratruten. Der erste Drittelungsversuch mit dem 
Trapez ABEF liefert für A| = 115-20 = 2300 Quadratruten, einen erwartungsgemäß zu großen Wert. 
Man verlegt nun die erste Teilungslinie 0 nach unten um willkürlich 1 Rute. Damit ergibt sich t2 = 
110,5 Ruten, wie man leicht aus dem Strahlensatz errechnet, und damit der Flächeninhalt des 
Trapezes ABE'F' zu A2 = 115,25-19 = 2189,75 Quadratruten, immer noch zu groß. Man muss nun 
nicht durch ständiges Probieren irgendwann das Ziel erreichen, Ursus schildert folgenden Trick: Der 

100 Bei der Gesellschaftsrechnung geht es darum, eine bestimmte Summe Geldes proportional an die Teilhaber zu verteilen, für 
jeden Teilhaber mit der Dreisatzrechnung. 
101 Helmuth Gericke, Mathematik in Antike Orient und Abendland, 8. Aufl. Wiesbaden 2004, T.2, S. 15. Schon Heron in Metrica 
III und Jordanus Nemorarius haben das Teilen eines Dreiecks, Trapezes, Kreises in einem vorgegebenen Verhältnis behandelt. 
102 „zwerch“ 
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Unterschied zur Zielfläche 2100 Quadratruten ist 
noch 89,75 Ruten. Dies teilen durch t2 = 110,5 Ruten, 
liefert 0,812 Ruten, um diesen Wert muss t2 noch 
nach unten verlegt werden. Damit liegt t3 dann um 
1,812 Ruten unterhalb von tl? und t3 = 110,906 
Ruten. Damit ist A3 = 115,453• 18,188 = 2099,86 » 
2100 Quadratruten. Analog verführe man, wenn man 
die Restfläche des Trapezes auch noch unterteilen 
wollte. 

Eine allgemeine Herleitung findet man z.B., wenn 
man die Schenkel des Trapezes verlängert, bis sie ein 
Dreieck bilden. Die Höhe des Dreiecks wird dann 
240 Ruten. Der Strahlensatz im Dreieck liefert 
120:240 = m : (240-h/2), also m = 120 - h/4- Der 
gesuchte Flächeninhalt ist 2100 = m h = (120 - h/4)-h, 
dies liefert die quadratische Gleichung h2 - 480h + 
8400 = 0. Ihre Lösungen sind h|/2 = 240 ± 221,811. 
Hierbei entfällt hi, somit ist die Lösung h = 18,189 
und t = 1 10,905 mit m = 1 15,453 Ruten. 

„Danach suche 
man die anderen 
Teile ebenso. Zum 
Schluss wird das 
letzte Teil, wenn 
man richtig gear- 
beitet hat, übrig 
bleiben, denn wenn 
alle Teile von der 
Flächensumme richtig weggenommen wurden, muss notwendig der 
letzte übrig bleiben. Und hierbei sollte man beachten, dass man fiir 
den letzten Teil übrig lasse, was man wegen eines Winkels oder 
anderer Schwierigkeit nicht so leicht wie andere Teile finden kann. 
Es ist auch egal, wenn man eine Linie verrücken will, ob man sie an 
den beiden nicht-parallelen Seiten gleichweit einfach wie gewünscht 
oder nur an der einen Seite zweifach so viel wie an einer Seite allein 
verrückt. 

Kapitel 8: Vom Vergleich der Acker 

Ein Vergleich der Äcker [Scheffel] besagt, wie sich die ungleichen Äcker gegeneinander 
verhalten. Die Ungleichheit der Acker gibt es in ungleicher Zahl [von Ruten je Acker] oder in 
ungleichem Maß [einer Rute] oder in beiderlei Ungleichheit, in ungleicher Zahl und in ungleichem 
Maß. Dazu merke dir diese drei Regeln: 

1. Wenn die Länge der Ruten oder das Maß gleich sind, aber nicht die Äcker, wie bei uns in 
Dithmarschen die Marner oder die Wöhrdener Rute, so ist ein Vergleich der beiden Äcker 
miteinander ein Vergleich der Zahl seiner Ruten wie 4 zu 3 [40:30], 

2. Wenn die Zahlen der [Ruten in den] Äckern gleich, aber die Länge der Ruten ungleich, wie bei 
uns die Wöhrdener und die Lundener, so bedeutet ein Vergleich der Acker gegeneinander einen 
Vergleich der Zahl der Teile oder Schuh, die auf ein Maß oder eine Rute gehen, also wie 8 zu 9 
[16:18], 

3. Wenn aber beide, Maß und Acker, ungleich sind, wie in Dithmarschen Marner und Lundener, so 
bedeutet ein Vergleich der Acker gegeneinander die Multiplikation der Verhältniszahlen jeder Rute 
mit ihren Teilen oder Schuh mit der Größe wie 32 zu 27, denn die Schuh sind gleich. Und es ist eine 
Marner 1 [ 16) [ 40 ] [ 15 ) 
Wöhrdener }• Rute -{ 16 \ Schuh. Und der Acker \ 30 [ Ruten und -{ 20 \ Acker." 
Lundener J [ 18 J [ 30 J der Morgen [ 18 J 



Das zweite Buch: Vom Feldmessen (Kap. 1-8) 41 

Die zuerst genannte „Rute“ ist das Längenmaß, die hinten genannte Rute ist die Quadratrute als 
Flächenmaß. Der „Schuh“ ist der Fuß, in Süderdithmarschen etwa 29,6 cm, in Norderdithmarschen 
etwa 29,9 cm; insofern stimmt die Aussage, dass das Maß „Schuh“ stets gleich sei. Mit „acker“ ist 
hier nicht allgemein ein Stück Ackerland gemeint, sondern das sonst Scheffel genannte Landmaß, das 
die Größe des Ackerlandes ursprünglich nach der Kömereinsaat bestimmte. Die ersten beiden 
Angaben von Ursus kann ich im ersten Landregister von 1560 bestätigen. Dort wird zuerst für den 
Süderdrittenteil Dithmarschens, den „Süderstrand“, in dem u.a. das Kirchspiel Marne liegt, 
beschrieben, dass für Marschland gilt: „Eine Morgen landes heit XV schepelsat [Scheffel], Eine 
schepelsaet heit XL roeden [Quadrat-Ruten].“103 Und zum zweiten für Marschland im Kirchspiel 
Wesselburen, was auch für Wöhrden gilt: „Is Marskland und 1 Morgen is XX schepelsat und 1 
schepelsat XXX Rude.“104 Allerdings wird dort auch für das Kirchspiel Lunden angegeben: „XX 
schepelsat up einen Morgenlandes“1 5, wahrscheinlich die Neuregelung der Maße nach der Eroberung 
des Landes 1559. Die folgende Tabelle gibt eine Übersicht:106 

Marne (Süderdith.) 

1 Rute 
hat... 
Schuh 

16 

1 Acker 
(Scheffel) 
hat... QR. 

40 

1 Morgen 
hat... 
Acker 

15 

1 Morgen 
hat... Qua- 
dratruten 

600 

1 Qua- 
dratrute 
hat... m2 

22,46 

1 
Morgen 
hat... ha 

1,35 
Wöhrden/Wesselburen 16 30 20 600 22,87 1,37 
Lunden (Norderdith.) 30 18 540 28,87 1,56 

„Aus solch einem Vergleich der Acker [Scheffel] gegeneinander ist nun leicht zu finden, wie viel 
deiner Äcker einem anderen gleich sind. Denn man nimmt die kleinere Zahl von der größeren, durch 
diesen Rest teile man deines Ackers Größe, so erhält man, wieviel einer deiner Acker einen anderen 
auftrage, wenn deines Ackers Zahl kleiner gewesen ist; oder abtrage, wenn sie größer gewesen ist. 
Falls man die Größe einer Morgenzahl zu einer anderen Morgenzahl machen will, so multipliziert 
man seine Größe mit seinem Maß, das Ergebnis teilt man durch die Größe der anderen Morgenzahl, 
so erhält man daraus die Größe der anderen Morgenzahl. Man ersieht hieraus auch, welcher Morgen 
größer ist, auch um wieviel der eine größer ist als der andere. Was hier aber noch von anderen 
Dingen zu sagen ist, auch ihre wahre Größe und den Gegeneindervergleich aus unwiderlegbarer 
Begründung zu erkunden, wird zu gegebener Zeit in unserer Ranzowischen Messkunst gesagt werden, 
zu der ich meine Gedanken jetzt wende, und ich mache dem Feldmessen ein Ende. 

Ende des zweiten Buches. “ 

103 Michelsen, Urkundenbuch zur Geschichte des Landes Dithmarschen, Altona 1834, Ndr. Aalen 1969, Nr. CXV; S. 240f. 
104 ebenda S. 245. 
105 ebenda S. 241. 
Il"’ Siehe Lorenzen-Schmidt und Emil Waschinski/Franz Böttger, Alte schleswig-holsteinische Maße und Gewichte, Neumünster 
1952. 



42 Erstes Buch: Geodaesia 1583 

Das dritte Buch: Vom Messen 

In diesem dritten Buch beschäftigt sich Ursus mit einfachen Körpern und Volumenberechnungen. 
Er greift auf Euklid zurück mit den Vorstellungen von einer Linie als breitenloser Länge, einer Fläche, 
die aus Breitenverschiebung einer Linie entsteht, und entsprechend einem Körper als Höhen- 
verschiebung einer ebenen Fläche. Es folgen Bauanleitungen für Modelle der fünf regulären, 
platonischen Körper. Dazu erläutert er (Kapitel 2) die elementare Konstruktion für gleichseitige 
Dreiecke und für gleichseitige, von Kreisbögen begrenzte Bogendreiecke zum Bau einer Kugel. Der 
Bau des Kugelmodells gelingt überraschend einfach. 

Zur Konstruktion eines Quadrates beschreibt Ursus die bekannte Methode des Errichtens eines 
Lotes auf einer Geraden und daraus drei Varianten der Quadraterstellung. Man kann hieraus 
schließen, dass die angesprochene Leserschaft eben nicht die universitär gebildeten Gelehrten sind, 
sondern eher mathematische Laien, Feldmesser ohne ausführlichere Ausbildung. Den Gebrauch des 
Zirkels setzt Ursus voraus. 

Dann wird noch die Konstruktion des regelmäßigen Sechsecks durch „Abrollen“ des Kreisradius’ 
auf dem Kreis um fan g genannt, um daraus dann als Grundlage regelmäßige Vielecke beliebiger 
Eckenzahl zu zeichnen. Ursus löst hier natürlich nicht das Problem, den vorgegebenen 60°-Winkel in 
beliebigem Verhältnis mit Zirkel und Lineal zu teilen. Sein Ziel ist ein Verfahren zum Zeichnen 
regelmäßiger Vielecke mit beliebiger Eckenzahl. Dazu lässt er im Grunde den Zentriwinkel 60° mit 
einem Winkelmesser in gleiche Teile teilen. Das heute kaum mehr bekannte einfache Verfahren 
funktioniert überraschend einfach. 

Kapitel 1: Von den Körpern 

„Der Anfang der Messkunst ist es, sich einen Punkt im Geiste vorzustellen. Aus dem Punkt wird 
eine Linie, aus den Linien eine Fläche, aus den Flächen ein Körper. Ein Körper hat eine selbständige 
Größe, mit Flächen umgeben, und hat Länge, Breite und Dicke, und er ist vollkommen oder 
unvollkommen. Vollkommen ist ein mit einer gewissen Anzahl von gleichen Flächen abgeschlossener 
Körper. Und einer davon ist von sechs gleichen rechtwinkligen viereckigen Flächen eingeschlossen, 
der allervollkommenste unter allen Körpern, ein Sechsflächner107 genannt, der gleiche Länge, Breite 
und Dicke hat. Auf ihm beruht auch das Messen aller Körper, wie auf einem Quadrat/Rechteck das 
Messen aller Flächen beruht. Ein anderer Körper ist von 12 gleichen und regelmäßigen fünfeckigen 
Flächen eingeschlossen, ein Zwölfflächner genannt. Drei weitere Körper sind von gleichen und 
regelmäßigen Dreiecken eingefasst, ein Vierflächner, ein Achtflächner und ein Zwanzigflächner. Die 
Kugel wird auch unter die vollkommenen Körper gezählt. Sie wird auch aus acht Dreiecken wie der 
Achtflächner zusammengesetzt, aber die Linien der Dreiecke müssen ausgebogen und des Zirkels Fuß 
nachgezogen sein. Somit gibt es sechs vollkommene Körper, die anderen sind alle unvollkommen. “ 

Abb. 9: Zeichnungen aus der Geodaesia 
Blätter G2v/G3r: Netze zum Würfel, zum 
Zwölfflächner (Dodekaeder, 2 Hälften), zum 
Vierflächner (Tetraeder), zum 
Zwanzigflächner (Ikosaeder), zum 
Achtflächner (Oktaeder) und zur Kugel. 
Ähnliche Netze bringt auch Stifel in seiner 
Arithmetica Integra 1544, bei den Errata. 

107 „sechseck“ 
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Kapitel 2: Vom Herstellen vollkommener Körper 

Q 
Abb. 10: Geodaesia, Blatt G3v. 

„ Um diese oben geschilderten Körpern herzustellen, muss man ein ebenes Dreieck, beides mit 
gebogenen und mit geraden Seiten zeichnen können, 
ebenso auch ein Quadrat und ein Fünfeck. Dies 
wird im folgenden geschildert. 

Ein Dreieck mit gebogenen Seiten zeichne wie 
folgt: Setz den Zirkel mit einem Radius deines 
Gefallens in a und in b und zeichne von a aufwärts 
eine Linie [Kreisbogen] in Richtung c, danach auch 
von b aufwärts eine Linie in Richtung c. Benenne den 
Schnittpunkt der beiden Kreisbögen mit c und 
zeichne von c aus eine dritte Linie, die von a nach b 
verläuft. Damit hast du ein Dreieck mit gebogenen 
Linien, das zum Bau einer Kugel dienlich ist. Nun verbinde die drei Punkte a, b, c mit einem Lineal 
mit geraden Linien und du hast ein [gleichseitiges] Dreieck mit geraden Linien zum Vierflächner, zum 
Achtflächner und zum Zwanzigflächner. 

Ein Quadrat zeichne wie folgt: Ziehe eine gerade . 
Linie a, b nach deinem Belieben. Darauf wähle beliebig 
einen Punkt c. Nimm eine beliebige Zirkelspanne und 
markiere von c aus mit dieser Zirkelspanne auf a, b 
zwei Punkte d, e. Wähle nun als Zirkelspanne die 
Entfernung von d nach e und zeichne zwei Kreisbögen 
um d und e mit dieser Zirkelspanne. Deren Schnittpunkt 
nenne f. Zeichne mit einem Lineal c/.108 Damit hast du 
einen rechten Winkel fca links als auch fcb rechts. Nun 
zeichne die Streckenlänge von fc auf der Linie a,b von c 
aus nach links ab und nennen den Punkt g. Dann 
zeichne mit dem Zirkel mit derselben Zirkelspanne von 
f aus einen Kreisbogen hi und von g aus einen 
Kreisbogen kl, deren Schnittpunkt nenne m. Zeichne 
mit dem Lineal eine gerade Linie mf und eine solche gf. 
So hast du das Quadrat cfgm. 109 

Oder zeichne nach gefundenem Winkel fca mit 
beliebiger Zirkelspanne einen Kreisbogen gh um c. 
Dann zeichne mit derselben Zirkelspanne Kreisbögen 
ik um g und Im um h, den Schnittpunkt nenne n. 
Zeichne noch mit dem Lineal die geraden Linien hn 
und gn, so hast du ein Quadrat chgn.1111 Du kannst aber 
auch den Kreisbogen gh um c vom Punkt f aus zur 
Linie ca ziehen. 

Um ein Fünfeck und alle anderen zu zeichnen, musst du 
zuerst ein Sechseck zeichnen können, denn dasselbe ist die 
Grundlage aller anderen regelmäßigen Vieleckflächen. Und 
das mache so: Nimm einen Zirkel mit beliebiger 
Zirkelspanne und zeichne damit den Kreis. Teile seinen 
Umfang mit derselben Zirkelspanne in sechs Teile, denn der 
Kreis wird darin gerade aufgehen. Danach verbinde mit 
einem Lineal je zwei benachbarte Teilpunkte und du hast 
ein regelmäßiges Sechseck,111 woraus du nun eine andere 
regelmäßige Vieleckfläche nach Belieben machen kannst, 
auf folgende Weise: 

Alle Teile eines Ganzen zusammen genommen bilden ihr 
Ganzes. Wenn du nun aus einer regelmäßigen 
Sechseckfläche, als aus dem Fundament und Grunde aller 
anderen, eine andere regelmäßige Vieleckfläche machen 
willst, so musst du, sofern du eine andere Vieleckfläche mit 
weniger Seiten daraus machen willst, zu einer der Seiten 
des Sechsecks (nimm sie in den Zirkel) etwas zugeben, aber sofern du eine andere regelmäßige von 

108 Das ist das Zeichnen eines Lotes auf einer Geraden mit Zirkel und Lineal. 
109 Was wie „9“ aussieht, ist der Buchstabe d. Was wie „r“ aussieht, ist das e. 
110 „einen rechten Viereck“: recht bedeutet gerade, eck bedeutet parallele Seiten. 
111 „einen gerechten Sechseck“. 
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mehr gleichen Seiten eingeschlossene Vieleckfläche machen willst, so musst du von einer Seite des 
Sechsecks etwas wegnehmen. Denn je weniger Seiten sein sollen, desto länger muss jede werden, 
hingegen je mehr Seiten sein sollen, desto kürzer muss jede werden. Nun beachte, dass du den Seiten 
des Sechsecks einen solchen Teil zugeben oder abnehmen sollst, wie deine gewünschte Fläche gleiche 
Seiten haben soll, und dasselbige so oft, wie diese Fläche mehr oder weniger als sechs Seiten haben 
soll. Und wisse, dass diese Methode aus den gemeinen Brüchen erwächst. Wenn du nun ein Fünfeck 
zeichnen willst, dann teile eine Seite des Sechsecks auf des Zirkels Umkreis in fünf gleiche Teile. Und 
nimm eine Seite des Sechsecks und einen fünften Teil dieser Seite, so hast du die Länge einer Seite 
eines Fünfecks. Denn ein Sechstel und ein Fünftel eines Sechstels (das ist ein Dreißigstel) sind 
zusammen sechs Dreißigstel oder ein Fünftel. Dahingehend betrachte die nachfolgende Zeichnung: 
Also kannst du auch leicht und auf leichtere als oben gezeigte Weise aus dem Sechseck ein Dreieck 
oder Quadrat machen. “ 

Man beachte nach Ursus zuerst, dass die Seiten eines regelmäßigen Sieben-, Acht-, Neunecks usw. 
kürzer sind als die des Sechsecks, entsprechend die Seiten des Fünfecks länger. Man teilt den 
Kreisbogen des Sechsecks, und damit den Zentrumswinkel 60°, in 5, 7, 8, 9 usw. gleiche Teile, von 
denen man für das Fünfeck ein entsprechendes Bogenstück hinzugibt, für das Sieben-, Acht-, 
Neuneck ein, zwei, drei Bogenstücke wegnimmt. Die so erhaltene Sehne benutzt man für das Abrollen 
auf dem Kreis. Den Zentriwinkel des regelmäßigen Sechsecks, also 60°, teilt man durch die Eckenzahl 
des gewünschten Vielecks und gibt soviele dieser Teilwinkel, wie meine gewünschte Figur mehr oder 
weniger Ecken hat als das Sechseck weg oder hinzu zu den 60°. Aber Ursus berührt damit das 
Problem, den 60°-Winkel in beliebige Teile zu teilen, was mit Zirkel und Lineal nicht immer möglich 
ist. Er geht darauf auch gar nicht ein, sondern will nur eine Anleitung zum Zeichnen von 
regelmäßigen Vielecken geben, wobei er es dem Leser überlässt, mit einem Winkelmesser den 60°- 
Winkel zu teilen. Auf das Thema der Teilung eines Winkels in beliebige Teile kommt Ursus 1588 in 

Straßburg in seinem Flauptwerk Fundamentum 
Astronomicum, Blätter B4v-Clr zurück, wo er die 
Berechnung der halben Sehnen zu beliebigen Winkeln mit 
einem von Bürgi stammenden „Kunstweg“ schildert. Ursus 
Beitrag ist der einzige gedruckte Beleg für die von Bürgi 
angewandte Methode zur einfachen Berechnung seiner 
Sinustafeln.112 Hier teilt Ursus im Grunde nur den Vollwinkel 
360° durch die Eckenzahl, ausgehend vom Sechseck. 

Eck Zentriwinkel 
60° + 2U ' 60° 
60° + '/5 ■ 60°~ 

Vier- 90° 
Fünf- 72° 
Sechs- 60° 60° 

-75T7 Sieben- 60° - V7 • 60° 
Acht- 60° - z/s ■ 60° 45° 
Neun- 60° - 7, ■ 60° 40° 
Zehn- 60° - 7,o • 60° 36° 

Kapitel 3: Vom Zusammensetzen 

„ Wenn du nun auf oben gezeigte Weise ein regelmäßiges Dreieck, Viereck und Fünfeck und alle 
anderen machen kannst und einen regelmäßigen Körper daraus machen willst, so füge die 
geschnittenen Flächen nebeneinander zusammen, wie du oben siehst und falte sie zusammen wie 
benötigt und wie die Übung zeigen wird. Es ist aber zweierlei zu bemerken. Erstens: Die acht 
Dreiecke mit den ausgebogenen Seiten, woraus die Kugel zusammengesetzt werden soll, muss man 
derart biegen, dass sie mit ihren äußersten Rändern zusammenschließen, so dass sie eine kugelige 
Runde ergeben. Zweitens: Die sechs Fünfecke des Zwölfflächners zusammengefaltet, ergeben nur 
einen halben Zwölfflächner. Darum macht man noch sechs gleiche Fünfecke und stülpt sie zusammen. 
Und so viel von den regelmäßigen Körpern und insbesondere von deren Herstellung, obwohl dies 
wenig zur Rechnung dient, sondern vielmehr dem Nachdenken nützt. Deshalb wollen wir nun zur 
Messung der Körper schreiten. 

12 Siehe dazu Martha List/Volkcr Bialas, Die Coss von Jos! Bürgi: in: Nova Kepleriana, Neue Folge Heft 5. München 1973,. 
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Kapitel 4: Von der Unterteilung der Körper 

Ein Körper ist einfach oder gestückelt. Einfach ist ein solcher Körper, den man einzeln messen 
kann, und er ist eckig oder rund. Eckig ist ein aus ebenen Flächen eingeschlossener Körper, und ist 
stumpf oder spitz. Stumpf ist ein Körper mit zwei stumpf zulaufenden Seiten. Spitz ist ein Körper an 
einem Ende stumpf am anderen zugespitzt. Rund ist ein Körper, der von einer runden Fläche 
eingefasst wird, und ist kugelig oder sinnwel"3 Kugelig ist ein Körper mit überall gleicher Länge, 
Breite und Dicke. Sinnwel [zylindrisch] ist ein Körper, bei dem Länge, Breite und Dicke nicht alle 
drei gleich sind, und er ist auch stumpf oder spitzig, wie vom eben begrenzten Körper gesagt. Ein 
gestückelter Körper ist aus vielen einfachen zusammengesetzt, mit nur gleichen oder mit ungleichen 
Flächen. Bei gleichen Flächen, von ebenen oder runden, bei runden eingebogen oder ausgebogen. Bei 
ungleichen Flächen von ebenen und runden und eingebogenen und ausgebogenen. 

Kapitel 5: Vom Messen eben begrenzter Körper 

Es gibt drei Arten des Messens: Messen der Länge bei einer Linie, Messen von Länge und Breite 
bei einer Fläche und Messen von Länge, Breite und Dicke bei einem Körper. Von dieser letzten 
Messart wollen wir nun sprechen. 

Ebenso wie das Flächenmessen durch Multiplizieren der kreuzweise rechtwinkligen Länge mit der 
Breite geschieht, so geschieht das Körpermessen durch Multiplizieren der kreuzweise rechtwinkligen 
Länge mit der Breite und mit der Flöhe oder Dicke. Und gleich wie eines Dreiecks Fläche die Hälfte 
ihres Parallelogramms ist, also ist auch ein keilförmig114 zugespitzter Körper die Hälfte, ein kegelig 
zugespitzer Körper nur ein Drittel seines an beiden Enden platten oder stumpfen Körpers.115 Darum 
multipliziere man des Körpers Länge nach obiger Flächenlehre mit seiner Breite und diese Fläche mit 
des Körpers Höhe oder Dicke senkrecht aus der Fläche. Dann erhält man eines an beiden Enden 
platten oder stumpfen Körpers einfache Größe heraus, aber eines keilförmig zugespitzen Körpers 
doppelte Größe, und eines kegelig' 6 zugespitzten Körpers dreifache Größe. Und deshalb nimmt man 
für die Keilspitze die Hälfte, aber für die Kegelspitze nur den dritten Teil der gefundenen Größe eines 
stumpfen Körpers. Oder man multipliziert die Größe seiner Fläche mit der Hälfte der Keilhöhe, oder 
mit dem dritten Teil der Kegelhöhe. Oder die Hälfte der Keilfläche oder den dritten Teil der 
Kegelfläche mit seiner ganzen Höhe. Daraus ergibt sich des Körpers wahre Größe."1 

Und wie man auch einer Fläche ungleiche Breite miteinander durch Zusammengebung beider 
Breiten und der Summen Vermittlung ausgleicht,"* so gleicht man auch auf gleiche Weise eines 
Körpers ungleiche platten Enden miteinander aws119 und macht es wie jetzt hiernach gesagt. “ 

Ursus liebt Analogien. Die in Buch 2, Kapitel 5 angesprochene Analogie der Flächenmessung bei 
Dreieck, Kreis und Kreissektor (A = g • h : 2 = A = rU:2 = A = rb:2) und ihre Begründung 
wird hier aufgegriffen und übertragen auf Körper, ebenso wie, dass das Dreieck ein halbes 
Parallelogramm ist. Das liest sich dann wie folgt: So wie ein Dreieck ein halbes Parallelogramm ist, 
so ist ein keilförmiger Körper ein quasi diagonal halbierter Quader bzw. Prisma. Ein Pyramide ist 
dann ein Drittel des Prismas gleicher Grundfläche. Das gleiche gilt dann für Zylinder und Kegel, 
letzterer hat also ein Drittel des Volumens des Zylinders gleicher Grundfläche, und für Zylinder und 
Halbkugel, der die Hälfte des Volumens der Halbkugel gleicher Grundfläche hat. Beweise will Ursus 
hier nicht anführen. Somit erhält man die Volumina für Kegel, Halbkugel und Zylinder wie 1:2:3. 

Für das Volumen der Kugel wird wie schon bei der Kreisfläche (A = r • U : 2) die Zerlegung in 
viele kleine Kegel mit Spitze im Mittelpunkt der Kugel gedacht. Das Volumen der Kegelchen ist ja 
ein Drittel der Grundfläche • Höhe, die Grundflächen addieren sich zur Oberfläche der Kugel, die 
Höhen sind näherungsweise dem Radius gleich, also gilt analog zum Kreis V = r • O : 3. Zur 
Oberfläche der Kugel kann Ursus hier keine Angaben machen. 

113 Sinwel = rund und lang, hier Zylinder. Lat. teres, etis = abgerundet wie gedrechselt. Siehe Petrus Dasypodius, Dictionarium 
tatinogermanicum, Straßburg 1536, Ndr. Hildesheim 1995, S. 236 und S. 423. 
114 „keilecht“ 
115 Gemeint ist die bekannte Tatsache, dass ein Kegel nur ein Drittel des Volumens seines Zylinders gleicher Grundfläche und 
Höhe hat, ebenso wie ein Prisma, quasi diagonal zerschnitten, zwei Hälften ergibt. Archimedes (ca. 287 - 212 v.Chr.) schreibt 
diese Erkenntnis dem Eudoxos von Knidos (ca. 408 - 355 v.Chr.) zu: Cantor, Bd. I, S. 208. 
116 Druckfehler: „kugelig“ statt kegelig. 
117 Wie erfrischend, dass doch bereits unsere Grundschüler die Wirkung von Kommutativ- und Assoziativgesetz als ganz 
selbstverständlich betrachten. 
118 Mittellinie beim Trapez. 
119 „Ausgleichen“ = Mittelwertbildung. 
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Kapitel 6: Vom Messen runder Körper 

„Auch die Größe der zylindrischen/sinnwelen Körper findet man auf oben gezeigte Weise und wie 
bei eben begrenzten Körpern. Denn man findet nach der im vorigen Buch gegebenen Lehre die Größe 
der runden Fläche und multipliziert diese mit des zylindrischen Körpers Höhe wie im vorigen Kapitel 
erläutert. So erhält man seine wahre Größe. Um aber die Größe der Kugel zu erhalten, muss man 
beachten, dass wie oben gesagt [Kapitel 5], der Kegel ein Drittel seines an beiden Enden platten 
Körpers ist>2n. So ist er auch die Hälfte seiner halben Kugel, der er gänzlich genau eingeschlossen ist. 
Und ebenso verhalten und vergleichen sich auch der runde Kegel, seine halbe Kugel und sein zu 
beiden Enden stumpfes Sinnwel [Zylinder] wie eins zu zwei zu drei.121 Die ganze Kugel aber verhält 
sich zum umbeschriebenen Würfel122 wie 11 zu 21.123 Demnach verhalten sich die zwei einer Kugel 
einbeschriebenen runden Kegel [Doppelkegel] und die Kugel selbst und der der Kugel 

umbeschriebene Zylinder124 und der der Kugel und dem 
Zylinder umbeschriebene Würfel wie 11 : 22 : 33 : 42. 

Und so wie sich die Ganzen gegeneinander verhalten, so 
vergleichen sich auch ihre Teile. Wenn man also das Volumen 
einer Kugel finden will, so multipliziert man ihre Länge mit der 
Breite und mit der Höhe oder Dicke; das ist in sich der Würfel. 
Danach gibt die soeben genannte Zahlenproportion der Kugel 
wahre Größe gegenüber dem Würfel, oder gegen welchen der 
oben genannten Körper man will. Nach natürlichem Verstände 
und ohne die notwendige Wissenschaft dieser Zahlen- 
proportionen findet man das Volumen der Kugel auch 
folgendermaßen: Man multipliziert ihre Oberfläche mit einem 
Drittel ihres halben Durchmessers, oder mit einem Sechstel 
ihres ganzen Durchmessers, oder man multipliziert ein Drittel 
ihrer Oberfiäche mit dem halben Durchmesser, oder ein 
Sechstel ihrer Oberfläche mit dem ganzen Durchmesser.125 Das 
ergibt sich aus folgendem: Die Kugel zerlegen wir in viele 
Kegel mit der Spitze im Kugelmittelpunkt. Das Volumen eines 
dieser Kegel ist ein Drittel mal seine Grundfläche mal seine 
Höhe [Radius der Kugel]. Dies ebenso wie man die Kreisfläche 
fand, indem man den Kreis in viele Dreiecke teilte und ihren 
Radius mit der Länge des halben Kreisumfanges multiplizierte. 

Halbkugel oder einem auch bei einer 
Kugelsegment,126 
Ebenso 

sei dieses mehr oder weniger als eine 
Halbkugel. Aber ebenso wie man beim Kreissegment 
die Fläche des Dreieck zum Mittelpunkt, welches zu 
viel oder zu wenig war, subtrahieren oder addieren 
musste vom/zum Sektorenflächeninhalt, so muss man 
auch hier das Kegelvolumen bis zum Mittelpunkt der 
Kugel, das dem Kugelsegment fehlt oder zu viel ist, 
subtrahieren oder addieren. “ 

Kegel 
Halbkugel 
Zylinder 

Doppelkegel 
Kugel 
Zylinder 
Würfel 

'A-irr 

lytt-T 
Alytvr3 

2-7IT 

1 

1 1 

21 

11 
22 
33 
42 

Im letzten Kapitel greift Ursus die Anekdote auf, die der römische Architekt Marcus Vitruvius 
Pollio127 dem Archimedes zuschreibt. Archimedes habe viele wunderbare Entdeckungen gemacht, 
aber die folgende sei das Ergebnis grenzenlosen Scharfsinns. Hiero II., geb. ca. 306 v.Chr., König von 
Syrakus 265-215 v. Chr., soll den Verdacht gehegt haben, dass eine von ihm in Auftrag gegebene 
Krone weniger Gold enthielt, als er dem Goldschmied geliefert hatte und dass das Gold durch Silber 
ersetzt worden sei. Er beauftragte Archimedes mit der Lösung der Frage. Dieser soll, so die Anekdote, 
die Lösung gefunden haben, als er beim Baden bemerkte, dass um so mehr Wasser aus dem Bottich 
auslief, je mehr sein Körper eintauchte. 

Die Lösung des archimedischen Kronenproblems geschieht über Dichtevergleich von Gold und 
Silber, bzw. der Volumenvergrößerung, wenn man das schwerere Gold durch Silber ersetzt. 
Allerdings konnte dies zu Archimedes’ Zeiten nicht gemessen werden, die Geschichte bleibt 
Anekdote: Die Differenz der durch die Krone bzw. reines Gold bedingten Wasserstandsänderung wäre 

120 Also des umbeschriebenen Zylinders. 
121 Archimedes, Über Kugel und Zylinder, Buch I, 34-44. 
122 „gevierten sechseckten leibe“ = quadratischer Sechsflächner. 
123 Das Verhältnis von Kugelvolumen zum Volumen des umbeschriebenen Würfels ist ‘/yn r3 : (2r)3, also JI : 6= 11 : 21. Damit 
verwendet Ursus den bekannten Wert von 22/7 für jt. 
124 „das sinnwel leib“ 
125 V = '/, ■ O • r 
124 Zirkeltrumb. 
127 Vitruv, 1. Jh. n. Chr., De Architecture!, Buch IX, Praefatio 9-12. 
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weniger als 0,4 mm gewesen, wenn der Wasserbehälter auch nur 20 cm Durchmesser gehabt hätte. 
(http://leifi.physik.uni-muenchen.de/web_ph08/geschichte/15_archimedes-krone/crownintro.html) 

Ursus nun lässt das Volumen eines unregelmäßig geformten Körpers, den man nicht berechnen 
könne, auf diese Weise durch Eintauchen in Wasser und Bestimmen der Volumenerhöhung ermitteln. 

Kapitel 7: Vom Messen gestückelter Körper 

„ Ebenso wie man zur Ermittlung der Größe gestückelter Flächen diese in etliche einfache Flächen 
zerteilt, so muss man auch gestückelte Körper in etliche einfache Körper teilen und von jedem 
einfachen Körper das Volumen ermitteln. Schließlich addiert man alle diese Volumina und erhält das 
des gestückelten Körpers. 

Ist aber ein gestückelter Körper so seltsam beschaffen, dass man ihn nicht in einfache Körper 
teilen kann und deshalb auch sein Volumen nicht ermitteln kann, dann gibt es keinen anderen Weg 
oder Rat als den durch Erheben oder Absinken des Wassers in einer rechteckigen Truhe oder Kasten, 
einen Weg, den nach Vitruv der Fürst aller Feldmesser Archimedes erfunden und gebraucht hat, und 
der geht so: Man nimmt ein nach Größe und Form des Körpers geeignetes vierseitiges Fass und gießt 
so viel Wasser hinein, dass der Körper damit gänzlich bedeckt ist. Man merkt sich, wie hoch das 
Wasser im Fass steht, bevor der Körper hineingetan wird. Dann tut man den Körper ins Wasser und 
merkt sich, wie hoch das Wasser im Fass steigt. Diese Höhe multipliziert man mit des Fasses Länge 
und Breite, so ergibt sich des Körpers Volumen. Und das kann man mit einem rechtwinkligen Körper 
oder einem, dessen Größe bekannt ist, versuchen. So viel vom Messen der Körper. 

Was aber weiterhin von anderen Körpern zu sagen wäre, auch ihr und ihrer Durchmesser 
Vergleich gegeneinander, und dies alles aus sicherem und unwiderlegbarem Grunde, wird das künftig 
neu erstellte Werk unserer Ranzauischen Sphäre oder Kugel mit all dem, was von Zahlen, Maßen und 
Gewichten notwendig zu wissen ist, geben und lehren. “ 

Ein solches Buch über „Zahl, Maß und Gewicht“ hat Ursus nicht mehr veröffentlicht. Menso 
Folkerts, Eberhard Knobloch und Karin Reich haben für ihr 2001 in zweiter Auflage erschienenes 
Buch über eine Ausstellung in der Elerzog-August-Bibliothek Wolfenbüttel gerade diesen Titel 
gewählt. 

„Ende des dritten Buches. “ 
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Das vierte Buch: Vom Irrmessen 

Kapitel 1 : Einführung ins Irrmessen 

,,Es ist einem jeden vernünftigen Menschen klar, dass jedes Ding durch sein Gegenteil verstärkt 
erscheint. So scheint weiß noch weißer zu sein, als es selbst ist, wenn man schwarz dazu hält. So muss 
ein getreuer Theologe oder Prediger neben der reinen und unverfälschten göttlichen Lehre auch die 
Lehren von Sekten und Ketzern verstehen und kennen, damit er ihre auf Schrauben gesetzten 
Fundamente und Gründe mit unwiderlegbarer Wahrheit göttlichen Wortes zurückweisen kann. So 
muss auch ein Jurist oder Rechtsgelehrter nicht allein wissen und verstehen, was in sich selber Recht 
und jedem Menschen angeboren und bekannt ist, sondern er muss auch daneben lernen, das Recht zu 
beugen und zu krümmen, damit er bei einer bösen Sache zu helfen weiß; ansonsten wird er nicht viel 
Geld erwerben, sondern müsste mit leerem Säckel zum Markt gehen, und da würde er nicht viel 
verkaufen. So muss ein kluger Medikus oder Arzt die Krankheiten des menschlichen Körpers nicht nur 
durch sympathian,ns sondern auch durch antipathian zu kurieren und zu heilen wissen. Und so ist es 
in allen Fakultäten und Wissenschaften. So muss auch ein grundgelehrter Geometer oder Feldmesser 
nicht allein die grundfesten und unwiderleglichen Prinzipien der Wissenschaft verstehen und wissen, 
sondern auch alle Irrtümer und Fallstricke, damit er die fatschen Meinungen, mit welchen selbst 
erwachsene Feldmesser den Käufer oder Verkäufer weidlich betrügen, mit augenscheinlicher 
Demonstration und Beweisung der Wahrheit entkräften und widerlegen kann. Deshalb muss ich, 
durch erzwungene Not wegen der Lügen und Intrigen etlicher falscher Kläffer in Harnisch gejagt, für 
die edle Wahrheit auch die Labyrinthe und Irrgänge unserer hierzulande vermeintlichen Feldmesser 
öffentlich vor Augen führen und aufdecken. 

Und da ich nun in den vorigen drei Büchern gründlich und recht das Landrechnen und Feldmessen 
gelehrt habe, so will ich in diesem Buch nun auch die der vermeintlichen Feldmesser unrichtige Art zu 
Rechnen und Messen darlegen, damit sie nicht meinen, ich würde ihre Praktiken, Betrügereien und 
Beschisskunst nicht kennen, und damit jeder Liebhaber der unverfälschten Wahrheit und auch sie 
selbst ihre Fehler von mir begreiflich gemacht erkennen mögen. Ganz freundlich mit allem Ernst bitte 
ich einen jeden Vernünftigen und Verständigen, sie mögen pflichtbewusst aus dem Folgenden sehen, 
beherzigen und erkennen, welche Partei von uns, ich oder sie, Recht oder Unrecht hat. Und sie mögen 
auch dem Betrug keinen Raum geben, sondern der Wahrheit beipflichten und Beifall spenden. Die 
unvernünftigen und unverständigen groben Kerle aber, denen alles gut genug ist, lassen sich 
meinetwegen von ihnen betrügen und geben ihnen noch zwei- oder dreifachen Lohn dafür; solches 
muss und kann ich wohl leiden. 

Kapitel 2: Vom Falschrechnen 

Zum ersten wissen unsere vermeintlichen Feldmesser noch ja, ich weiß aber nicht woher, dass aus 
der Multiplikation von Fuß oder Schuh mit Fuß oder Schuh Quadratschuh129 erwachsen, gleichgültig 
ob das sechzehn oder achtzehn Teile einer Rute sind. Aber sie verstehen das Kara OTL Kat 5ta ÔTÎ,110 

die gründliche Ursache solches Erwachsens nicht, welche durch Addieren der Stellenwerte geschieht, 
wie beim Multiplizieren gelehrt. Deshalb wissen sie auch nicht, was aus einer Multiplikation von 
Finger-, Stroh- und Haarbreite miteinander, auch jeden Stellenwert mit einem anderen, entspringt, 
sondern sie lassen diese nur hinhauen und ihren Weg spazieren, glauben dass sie nicht viel dazu 
geben. Zudem messen sie bei Ellen, Quartern, Klaftern, Handbreiten und Tritten131 alles gleich, da sie 
die sich ergebenden Stellenwerte nicht kennen. Sie messen keineswegs der Wissenschaft gemäß, 
sondern ihr ganz und gar entgegen und zuwider. Auch können viele die deutschen oder lateinischen 
Zahlen nicht, wohl auch nicht einmal lesen oder schreiben, sie rechnen mit Speckbalken132 und 
Messleitern und meinen, dass sie es gar genau treffen. Aber diese Irrtümer im Rechnen (derer sie 
unzählig viele haben, aber von mir nicht alle erzählt werden) sind gar klein und gering zu schätzen 
gegen die, welche in ihrem Messen geschehen. “ 

128 Die sympathische (von gr. angitcrélelv mitempfmden) Medizin ist eine magische Heilmethode, die auf die urtümliche 
Vorstellung zurückgeht, dass die ganze Welt von Kräften erfüllt sei, die alle Dinge, Menschen, Tiere, Pflanzen und das 
Mineralreich durch Sympathie in enge Beziehung setzen. So glaubte man, Krankheiten vom Menschen auf Tiere und Pflanzen 
übertragen oder in der Erde vergraben zu können und diese dadurch vom Menschen zu entfernen. Laut Gesundheitsbrockhaus 
stellt die sympathische Medizin als medizinischer Aberglaube eine nicht zu unterschätzende Gefahr dar. Siehe auch Jacob 
Grimm, Deutsche Mythologie, 1875-78, Ndr. Wiesbaden 1968, S. 978ff. 
129 „Creutzschuch“. Auch dieser Begriff ist zeittypisch, ihn verwendet auch Jacob Köbel. 
130 Das Warum und das Wodurch. 
131 Elle = 57,2-57,7 cm. Quarter = 'A Elle. Klafter = Faden = 3 Ellen = 6 Fuß. Tritt = Schritt 
132 Kehlbalken im Bauernhaus, verbindet je zwei gegenständige Sparren miteinander. Er wird Speckbalken genannt, weil an ihm 
die Speckseiten aufgehängt wurden. Vergl. Hahnbalken, ebenfalls Kehlbalken unterhalb des Firstes, auf den sich die Hühner 
setzten. 
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Der Inhalt der ersten beiden Kapitel spricht für sich! Offensichtlich hat Ursus mit Feldmessern zu 
tun gehabt, die keine mathematische Grandlagenbildung hatten und die bei Flächenberechnungen 
schon scheiterten, wenn Länge und Breite unterschiedliche Einheiten besaßen. Ursus scheint sich mit 
diesen auch angelegt zu haben, streitsüchtig war er wohl schon, und in seiner Wortwahl verletzend 
oder herabwürdigend. Wer möchte sich schon, auch wenn er unfähig für diesen Beruf ist, was wohl 
tatsächlich der Fall war, als „falschen Kläffer“ bezeichnen lassen, seine Arbeit als „Beschisskunst“, 
die man mit groben „Speckbalken“ ausübe. 

Ursus gibt mit dem Vorwurf, seine Feldmesserkollegen könnten das Multiplizieren von Längen 
mit unterschiedlichen Bruchteilen der Rute, mit Schuh und Fingerbreite usw., schon nicht mehr richtig 
ausführen, eine Begründung für die Notwendigkeit seines 1. Buches über das Rechnen in seinem 
Stellenwertsystem zur Basis Vi6. Die Schwierigkeiten der Feldmesserkollegen basieren vielleicht auf 
dem Rechenbuch von Jacob Köbel,133 das 1514 und später in weiteren Auflagen erschienen war und 
viele grobe Fehler enthält, und das seit 1535 als Geometrei, vom künstlichen Feldmessen134 in vielen 
Auflagen fast unverändert weit verbreitet war. Ursus hat eine der Ausgaben gekannt. Flierin schildert 
Köbel, dass eine Quadratrute, er nennt sie wie Ursus später auch Kreuzrate, 16-16 also 256 
Quadratschuh (Kreuzschuh) enthalte,135 eine halbe Kreuzrate folgerichtig 128 Kreuzschuh. Dann aber 
folgt bei Köbel die verwirrende Festlegung, dass ein Kreuzviertel nicht ein Viertel einer Kreuzrute sei 
(64 Kreuzschuh), sondern nur 16 Kreuzschuh enthalten soll. Köbel legt dies so fest, damit er das 
Produkt einer Rute mit einem Schuh mit dem Namen Krcuzviertel (=16 Kreuzschuh) benennen kann: 
„Wenn du Ruten mit Schuh multiplizierst, so wird dies Kreuzviertel.“136 Der Vollständigkeit halber 
sei erwähnt, dass ein Morgen 128 Kreuzraten enthält. Bei Köbel wird dadurch die Multiplikation von 
(6 Ruten + 2 Schuh) mit (9 Ruten + 4 Schuh) korrekt ausgeführt als 54 Kreuzraten + 42 Kreuzviertel 
+ 8 Kreuzschuh, wobei noch die 42 Kreuzviertel zu 2 Kreuzruten + 10 Kreuzviertel zusammengefasst 
werden. Aber gerade diese Inkonsistenz, dass nicht 4 Kreuzviertel die nächst größere Einheit 
Kreuzrute ergeben, sondern erst 16 davon, führte wohl bei vielen mathematisch weniger gebildeten 
Landmesser zu Verwirrungen, so auch bei den Kollegen von Ursus, wie er es ja erwähnt. Außerdem 
gehen bei Köbel die Begriffe Rute und Kreuzrute oft durcheinander.137 Lustig ist hingegen die 
Normierung einer Rute bei Köbel: 16 Mann unterschiedlicher Größe stellen je einen Schuh 
aneinander, das ergibt 1 Rute.138 

Im dritten Kapitel belegt Ursus seine Kritik weiter: Statt Länge und Breite bei Parallelogrammen 
wie bei Rechtecken stets senkrecht zueinander zu messen, scheinen diese von ihm so gescholtenen 
Feldmesser doch wirklich die Seitenlängen eines Parallélogrammes multipliziert zu haben, um den 
Flächeninhalt zu ermitteln. Dies ist allerdings ein grober Fehler. Wer jedoch der Mann „in hohem 
Amt“ war, der solche Falschmessung öffentlich gutgeheißen haben soll, bleibt unbekannt, Ursus nennt 
ihn — leider - nicht. Dafür belegt er ihn mit dem Sprach: „Weise Hühner legen auch in die Nesseln.“ 

Kapitel 3: Vom Irrmessen der Vierecke 

Der nächste grobe Fehler werde bei der Flächenberechnung von Vierecken mit vier verschiedenen 
Seitenlängen gemacht. Von den je zwei gegenüberliegenden Seiten werde das arithmetische Mittel 
gebildet, und diese Durchschnitte quasi als Länge und Breite multipliziert. Dieser Fehler ist sehr alt. 
Schon bei Heron treten die unhaltbaren Formeln [(ai+a2):2]-b:2 und [(a!+a2):2] • [(bi+b2):2] zur 
Berechnung der Flächeninhalte eines Dreiecks oder Vierecks auf. Sie sind ägyptischen Ursprungs und 
waren ursprünglich in der Form a-b:2 und a • [(bi+b2):2j für gleichschenklige Dreiecke und 
gleichschenklige Trapeze gedacht;139 sie sind als Näherungen brauchbar für nahezu rechtwinklige 
Formen. Die Formel für das Viereck kommt auf einer „Schenkungsurkunde“ am Horas-Tempel zu 
Edfu um 200 v.Chr. vor.140 Der Möch Alkuin von York (8. Jh.), Verfasser der Aufgabensammlung 
Propositiones ad acuendos iuvenes, verbreitet diesen Fehler weiter.141 

Eberhard Knobloch beschreibt in Menso Folkerts’ Mass, Zahl und Gewicht,'42 dem 
Ausstellungskatalog der Herzog-August-Bibliothek Wolfenbüttel, dass Köbels Regeln zur 
Berechnung geradlinig begrenzter Äcker vorwiegend falsch seien und dass er die Fläche eines 
Trapezes mit den Seiten 14, 4, 12, 6, wobei die kleinste auf den beiden längsten senkrecht stehe, 

133 Vom Ursprung, der Theilung, Maß und Messung des Ertrichs, Ecker und anderer Felder 1514. 
134 Ich verwende hier die Ausgabe 1570, Frankfurt a.M. 
135 Köbel 1570, Blatt Blr/v. 
136 Köbel 1570, Blatt B3v. 
137 Z.B. Blatt B3r: „Ein Feld hat in der Breite 6 Kreuzruten und 2 Schuh, und in der Länge 9 Kreuzruten und 4 Kreuzschuh.“ 
Als Längenmaße sind stets Rute und Schuh gemeint. 
138 Köbel 1570, Blatt A4v. 
139 Siehe dazu Moritz Cantor, Bd.l, Leipzig 1880, S. 61 u. 333. 
140 Tropfke, Geschichte der Elementarmathematik, Bd. IV, 3. Aufl. 1940, S. 175. 
141 Helmuth Gericke, S. 62-65. 
143 Menso Folkerts, Maß Zahl und Gewicht, Wiesbaden 2. Aufl. 2001, S. 131. Vergl. auch A.G.Kästner, Geschichte der 
Mathematik, Bd. I, Göttingen 1796, Ndr. Hildesheim 1970, S. 655-658. 
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berechnet als (14+12):2 • (4+6):2 = 65 statt (14+12):2 • 4 = 52. Das Exemplar von Nicolaus Reimers’ 
Geodaesia Ranzoviana aus Wolfenbüttel wurde in dieser Ausstellung gezeigt. 

Bei dem Ursus'schen Beispiel am Ende von Kap. 3 ergibt sich somit nach der Köbelschen 
Methode 147-71 = 10437 statt des richtigen Wertes 9360 Quadratruten. Auch die beiden folgenden 
Beispiele bei Dreiecken (Kap. 4) zeigen den gleichen Fehler einer unzulässigen Durchschnittsbildung. 
Wahrscheinlich ist auch hier wieder Kobels Buch Geometrei die Ursache für die Verbreitung dieser 
irrigen Rechnung. Bei ihm heißt es zur Berechnung ungleichseitiger Vierecke:143 „Die Ruten, die du 
vorhin in der ersten Länge gefunden hast, die tu zu der zweiten Länge, und die Summe halbier. In 
gleicher Weise miss auch die zwei ungleichen Breiten und halbiere auch deren Summe. Danach 
multipliziere die beiden Zahlen.“ Die Zeichnung, die er zur Erläuterung dazu gibt, zeigt ein 
rechtwinkliges Trapez, obwohl die vier Seitenlängen 12, 4, 14, 6 ein solches nicht ergeben. 

„Es ist unseren Feldmessern beim Messen der 
Breite eben gleichgültig, ob sie die Messruten 
kreuzweise rechtwinklig über die Länge legen 
oder nicht, sondern sie legen sie nach Gutdünken 

A . 13. B attKlr. oder entlang der Seite hin und bemerken nicht, 

dass eine Fläche aus vier gleichlangen Seiten, die 
rauteckig stehen, nicht so viel Flächeninhalt hat wie eine Fläche aus vier gleich langen Seiten, die 
rechtwinklig stehen, wie es hier der Augenschein zeigt. 

Es hat einmal ein weltkluger Mann in einem trefflichen hohen Regiment und Amt sitzend mir 
öffentlich bereden wollen, es sei gleichgültig, ob man rechtwinklig oder schräg die Breite messe, und 
es käme gleich viel heraus. Maximus in minimis saepissimè enim latet error:144 Weise Hühner legen 
auch in die Nesseln!145 Und die großen Narren sind die besten. 

Wenn sie ein ungleichseitiges Viereck messen 
und dessen Größe wissen wollen, teilen sie 
dieses nicht, wie sie sollten, in zwei Dreiecke, 
sondern messen die beiden Längen und die 
beiden Breiten auf den Seiten und werfen die 
zwei gefundenen Längen und die Breiten jeweils 
in einen Topf, summieren und vergleichen146 es 
und nehmen die aus dieser Vergleichung sich 
ergebende Länge und Breite für die richtige 
Länge und Breite. Aber wie richtig sie die Größe 
des Landes oder Feldes dadurch finden, will ich 
durch folgendes Beispiel augenscheinlich dartun 
und erweisen. 

Wenn man die Längen zweier zueinander senkrechter Linien quadriert und die Quadrate addiert, 
so ergibt die Quadratwurzel dieser Summe die Länge der dritten Seite, die die beiden freien 
Eckpunkte der Seiten verbindet.'41 Wenn man jedoch die Länge der einen senkrecht aufeinander 
stehenden Seite durch die zwei anderen bekannten 
errechnen will, so quadriert man die zwei bekannten Seiten 
und subtrahiert: die Quadratwurzel aus der Differenz ist die 
gesuchte Länge der Seite. Wenn ich nun auf meine und die 
richtige Weise die Größe dieses Vierecks ermitteln will, so 
teile ich es durch eine durchgezogene Linie in zwei Dreiecke 
und ermittle jedes Dreiecks Größe nach gegebener Lehre. 
Die Größen der beiden Dreiecke zusammen ergeben 9360 
Ruten,'4* das ist die wahre Größe des Vierecks. Nun will ich 
auf ihre gewöhnliche Art die Größe desselben ermitteln. Das 
geschieht so: Ich vergleiche die beiden Längen und auch die 
beiden Breiten miteinander und multipliziere die so 
erfundene Länge mit der Breite, daraus ergibt sich 11694 
Ruten.'44 Dann sind 2334 Ruten mehr als vorhin und zu viel. 
Um so viel wird der Käufer vom Verkäufer betrogen. 

Wenn sie nun die Größe eines Ackers finden wollen, der 

143 Kübel 1570, Blatt Clr. Zu Kübel siehe Richard Hergenhahn, Jakob Köbet 1460-1533, in: Rechenmeister und Cossisten der 
frühen Neuzeit, Adam-Ries-Bund Bd. 7, Annaberg-Buchholz 1996, S. 63-82. 
144 Der größte Fehler versteckt sich am häufigsten in Kleinigkeiten. 
145 „Wiese Hühner leggt ok in de Nettein.“ 
146 „vergleichen“ bedeutet die Mittelwertbildung. 
141 Das ist die Aussage des Satzes von Pythagoras. 
143 Hier sind die Quadratruten gemeint. 
149 Fehler: (138+156):2 = 147; (90+52):2 = 71; 147-71 = 10437 Ruten. Ursus nennt hier irrtümlich das Ergebnis der falschen 
Berechnung über Dreiecke von Blatt K3r/K3v. 
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drei oder mehr ungleiche Breiten hat, so tun sie es auf diese Weise: Sie werfen alle Breiten zusammen 
in einen Hafen [=Topf], summieren und teilen diese Summe durch die Anzahl der unterschiedlichen 
Breiten.150 Und diese Zahl nehmen sie für die richtige Breite. Dazu siehe folgende Zeichnung. Ich 
jedoch teile jede Fläche in zwei Teile und mittele die Mittellinie mit jeder Endlinie einzeln und 
benutze diese Ergebnisse als Breite für jede Teilfläche. Danach addiere ich beide Teile und so ergibt 
sich die wahre Größe der Fläche. Nun mach es bei beiden Beispielen auf meine und auf ihre Art. Bei 
dem ersten Beispiel ergibt sich 3124151 Ruten, beim zweiten 3160,s2 Ruten auf meine Art. Beim ersten 
Beispiel ergibt sich 32502/} Ruten,153 beim zweiten 3040 Ruten154 auf ihre Art und Weise. Nun sage 
mir, welcher Recht hat! “ 

Kapitel 4: Vom Irrmessen der Dreiecke 

Auch bei der Flächenmessung von Dreiecken werde, so Ursus, der gleiche Fehler gemacht. Statt 
ein Lot auf die Grundseite zu ermitteln, werde einfach von den zwei längsten Seiten der Mittelwert 
gebildet und dieser quasi als Höhe mit der dritten kürzesten Seite multipliziert und dann durch 2 
dividiert. Das ist eben der Fehler, der schon bei Heron steht. Ursus nennt aber als mögliche Ursache 
Jakob Köbel, der in seinem Buch Geometrei über Flächenmessung diesen Fehler der Mittelwert- 
bildung als richtiges Messen vorstellt. Ursus verwendet als Wortspiel „köbelisch“, „pöfelisch“, 
„tölpisch“. Köbel lässt nämlich den Flächeninhalt gleichseitiger Dreiecke der Seitenlänge a berechnen 
als „Seite mal halbe Seite“, also A = V2-a

2, statt A = V4-A/3-a2 ~ 0,43-a2.155 Köbel lässt den 
Flächeninhalt ungleichseitiger Dreiecke berechnen nach der Regel: „Addiere die zwei längsten Seiten, 
halbier die Summe, und multiplizier mit der Hälfte der kürzesten Seite“, also A = V2'(b+c)-a/2 , wenn a 
die kürzeste Seite ist. Als Zeichnung fügt Köbel hier sogar ein rechtwinkliges Dreieck an, obwohl sein 
Zahlenbeispiel 4, 7, 9 Ruten kein rechtwinkliges Dreieck ergibt.156 Der Satz des Pythagoras scheint 
ihm auch nicht geläufig zu sein. Beim nächsten Beispiel157 vergisst Köbel die Division durch 2, was 
Ursus auch seinen Landmesserkollegen vorwirft. Die falschen Regeln für Dreiecke und Vierecke 
gehen auf die römischen Agrimensoren zurück und besonders auf Julius Frontinus (bei Widmann von 
Eger)158 und auf die Boetius (ca. 480- ca. 525) zugeschriebene Geometrie.159 

Die falschen Regeln zur Flächenberechnung haben auch andere Gelehrte bemerkt. Ludolph van 
Ceulen etwa, den Friedrich Kätscher zu Recht als „genialen Autodidakten in mathematischen 
Fragen“160 bezeichnet, bemerkt zu Jacob Köbels Rechenbuch, „worin ich viele falsche Regeln 
gefunden habe“. Und Adam Ries schreibt in seiner Coß 1524 dazu:161 „In welchen ganz und gar kein 
Grund nach Unterrichtung gesetzt ist.“ 

Als erstes gedrucktes, weit verbreitetes und gutes Rechenbuch kann man wohl zu Recht Johannes 
Widmanns (von Eger) Behende und hübsche Rechenung aujf allen kauffmanschafft aus dem Jahre 
1489 bezeichnen.162 Dieses Buch hat als Zielgruppe keineswegs nur Kaufleute, wie man aus dem Titel 
vermuten könnte, es vermittelt eher einen Überblick über das mathematische Wissen überhaupt. 
Deshalb enthält es auch Kapitel über Proportionen und über Geometrie mit Landmessen. Widmann 
zeigt darin profundes mathematisches Wissen, er liefert eine umfang- und abwechslungreiche 
Aufgabensammlung. Dennoch treten auch bei ihm die falschen Formeln auf! Bei der Berechnung der 
Höhe in einem gleichseitigen Dreieck verwendet Widmann korrekt die Formel h = V(V4-a2),163 den 
Flächeninhalt eines gleichseitigen Dreiecks lässt er allerdings berechnen mit A = a-a/2 = '/Va2.164 Sein 
Text lautet dazu: „Multipliziere eine Seite mit der Hälfte der zweiten.“ Und das Viereck mit vier 

150 Auch hier Mittelwertbildung bei drei oder mehr Summanden. 
15' (40+30):2-44= 1540 Ruten. (30+36):2 • 48 = 1584 Ruten. 1540+1584 = 3124 Ruten. 
152 (20+36):2 • 45 = 1260 Ruten. (36+40):2 • 50 = 1900 Ruten. 1260+1900 = 3160 Ruten. 
153 (40+30+36):3 ■ 92 = 35V3 • 92 = 32 5 02A Ruten. Ursus benutzt diese heute gebräuchliche Schreibweise für gemischte Brüche 
mit horizontalem Bruchstrich. Er könnte sie aus dem Buch des Johann Junge aus Schweidnitz (geh. ca 1552), Rechenmeister zu 
Lübeck, Rechenbuch aujf den Ziffern und Linien, Lübeck 1578, entnommen haben, in dem diese Schreibweise verwendet wird. 
Dieses Buch hat ihm Vorgelegen, denn er erwähnt in seiner posthum 1601 gedruckten Schrift Arithmeüca Anatytica, Blatt Elr- 
E2v, die „Erfindung des Johann Junge“ zur Lösung von Gleichungen beliebigen Grades, bei dem es sich i.w. um die 
Polynomdivision handelt. Junge erklärt dies auf Blatt Llr-L2r mit dem gleichen Beispiel einer Gleichung 28. Grades. 
Gemischte Brüche gibt es jedoch bereits im 1. Rechenbuch von Adam Ries ca. 1518 und im weit verbreiteten 2. Rechenbuch 
1522. 
154 (20+36+40):3 ■ 95 = 32 • 95 = 3040 Ruten. 
155 Köbel 1570, Blatt C2r, vierte Regel. 
156 Köbel 1570, Blatt C3r/v, er rechnet A = '/2-(7+9)4/2 = 16 , korrekt ist A = 13,4 Kreuzruten. 
157 Köbel 1570, Blatt C4r. 
158 Wolfgang Kaunzner, Johannes Widmann, in: Rechenmeister und Cossisten der frühen Neuzeit, Adam-Ries-Bund Bd. 7, 
Annaberg-Buchholz 1996, S. 37-51. 
159 Zu Boetius siehe Menso Folkerts, Boethius’ Geometrie II, Wiesbaden 1970, S. 101-103. 
160 Friedrich Kätscher, Christoffer Dybvad und Ludotph van Ceulen, Österreichische Akademie der Wissenschaften, Mathem.- 
Naturwiss. Klasse, Denkschriften Bd. 116, 7. Abhandlung, Wien 1979, S. 103. 
161 Rainer Gebhardt, Einblicke in die Coß von Adam Ries, Stuttgart 1994, S. 17f. 
162 Barbara Gärtner, Johannes Widmanns Behende und hübsche Rechenung, Tübingen 2000. 
163 Siehe Gärtner, S. 496. 
164 Siehe Gärtner, S. 501. 
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unterschiedlichen Seitenlängen lässt er ebenfalls mit der falschen Formel [(ai+a2):2] ■ [(bi+b2):2] 
berechnen: „Addiere die zwei Seiten und halbiere. Danach addiere die anderen zwei Seiten und 
halbiere. Nun multipliziere.“165 

Für die falsche Dreiecksflächenberechnung seiner Landmesserkollegen gibt Ursus zwei Beispiele. 
Beim ersten sei der Fehler noch „erträglich“, 7560 statt 7020 
Ruten. Das Dreieck ist rechtwinklig, wie der Satz des 
Pythagoras zeigt. Beim zweiten Beispiel, geschickt besonders 
wenig rechtwinklig gewählt, ergeben sich jedoch 4134 statt 
2340 Ruten! 

Er verweist nun auf die zwei Feldmesser, seine „zwei 
Meister“ aus Holstein bzw. aus Friesland, von denen er 
handschriftlich Aufzeichnungen mit eben diesem Fehler habe. 
Darüberhinaus habe einer der zwei auch noch die Division 
durch zwei vergessen! Offensichtlich sind sie ihm auch 
vorgesetzt, denn sie sollen ihn „meistern und nachmessen“. 

Verständlich, dass er da in Rage gerät, er, der Autodidakt, der ihnen die Fähigkeit zum Feldmessen 
schlichtweg abspricht. 

,,Sie messen und erkunden die Größe der Dreiecke auf eine gar subtile köbelische,166 ja 
pöfelische'61 und tölpische Art, nämlich so: Sie vergleichen168 die zwei längsten Seiten des Dreiecks 
miteinander, das Ergebnis benutzen sie als Länge und nehmen die Hälfte der dritten kürzesten Seite 
als Breite. Dann multiplizieren sie Länge und Breite miteinander. 

Machst du es beim ersten Beispiel auf meine gezeigte und richtige Art, so ergeben sich 7020 
Ruten. Machst du es auf ihre gewöhnliche und falsche Art, so ergeben sich 7560 Ruten. Und dies wäre 
noch erträglich, abgesehen davon, dass es Unrecht und der rechten Wissenschaft zuwider ist. 
Machst du es beim zweiten Beispiel auf beide Arten, so ergeben sich auf meine Weise 2340 Ruten, auf 
ihre Art aber 4134 Ruten. Das sind ja nur 1794 Ruten zu viel, also beinahe 3 Morgen auf 4 Morgen 
verrechnet. Und wenn jemand vielleicht nicht glauben möchte, dass sie so grob spinnen, so will ich 
ihnen solches mit ihrer eigenen Handschrift beweisen. Denn meine zwei Meister, die mir etliche 
Mehlbeutel meiner Landsleute (oder quasi) als Meister gesetzt,169 deren einer in Holstein, der andere 
in Friesland wohnen, haben es so wie hier dargestellt gerechnet. Darüberhinaus hat der eine auch 
noch bei der Rechnung das Halbieren vergessen und demnach zweimal so viel daraus gemacht, 
nämlich 8268 Ruten, laut ihrer eigenen in meinem Besitz befindlichen Handschrift. Das nenne ich 
wahrlich fehlgemessen! Und solche Leute sollen mich noch meistern und nachmessen. 

Abb. 16: Blätter K3r/v. 

Kapitel 5: Vom Irrmessen des Kreises 

Sie messen den Kreisdurchmesser und die Breite170 senkrecht zueinander'11 und multiplizieren dies 
miteinander. So erhalten sie nach ihrer Meinung die 
zweifache Halbkreisfläche. Und so sollten sie doch auch 
die Dreiecke messen! Aber sie zäumen das Ross hinten auf 
da sie es richtiger aufschwänzen sollten. Wie richtig sie es 
aber machen, zeigt folgendes Beispiel: 
Wenn sie nun die Länge 70 mit der Breite 35 multiplizieren 
und die Hälfte der sich ergebenden Zahl die Fläche des 
Halbkreises sein lassen, finden sie nur 1225 Ruten '12 

Deshalb bleiben die zwei äußeren kleinen Kreisabschnitte 
unberechnet; eben diese verschenken sie, und zwar auf 
1225 Ruten 700 Ruten, das sind auf jede 7 Ruten 4 Ruten. 

Das ist nun wiederum gut für den Käufer, wie vorher bei den Dreiecken für den Verkäufer. Nun 
rechne auch auf meine Weise und multipliziere die Hälfte von 70 mit der Hälfte von 110, also den 
halben Durchmesser mit der halben Umkreislänge.173 So ergeben sich 1925 Ruten, die wahre Größe 
des Halbkreises. Und deshalb haben etliche große Leute im Nachbarland mich als ihren Feldmesser 

Abb. 17: Blatt K4r. 

165 Siehe Gärtner, S. 503. 
166 Jakob Köbel, geb. um 1462 in Heidelberg, gestorben 1533 in Oppenheim. Er war Verleger, Drucker, Schriftsteller, 
Stadtschreiber zu Oppenheim, Mathematiker. Siehe dazu Menso Folkerts, Hrsg., Majt, Zahl und Gewicht, Wiesbaden 2001, S. 
134-136. 
167 Der Pöfel = das gemeine Volk, die Menge, lt. vulgus. 
168 Mittelwertbildung. 
187 „Denn meine zwey Meister, weichere mir etzliche große Hansen meiner Landsleute (vel quasi) fur meisters gesetzt,..." 
170 Kreisradius. 
171 „Überzwerg“ 
172 Hier wird also fälschlich 2r ■ r ■ 0,5 = r2 als Halbkreisfläche angenommen. Das ist aber nur die Dreiecksfläche. 
173 A = r • U : 2 = it ■ r2. Offensichtlich kennt Ursus die Umfangsformel, für den Halbkreis U= tt ■ r = 22/7 • 35 = 110 Ruten, wie 
angegeben. 
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bestellt. Aber als sie mittlerweile einen großen runden Acker zu ihrer Verteilung bekommen, erscheint 
es ihnen falsch zu sein, mich zu nehmen. Sie überzeugten daraufhin gemein die Einfältigen, ich wäre 
zu teuer, sie müssten mir zu viel bezahlen und sie wollten wohl einen Landmesser Jur geringeren Lohn 
bekommen. Sie nahmen daraufhin den einen der zwei im vorherigen Kapitel genannten Meister, 
versprechen ihnen sechs Taler zu geben, dafür sollte er fünf Feldmarken einzeln messen und rechnen. 
Das schien den Bauern gut zu sein; sie sparten dabei etwa zehn Taler, aber sie verhüteten das Ei und 
ließen die Flennen entfliehen und haben gegen die ersparten zehn Taler an die hundert Taler 
wiederum verloren. So wird der Handel auf dieser Erde getrieben! Darum ist es recht und wahr 
gesprochen: Wenn es keine dummen Leute gäbe, wovon sollten dann die weisen reich werden? Dieser 
mein erster Meister hat, urkundlich seiner eigenen Hand, noch nicht einmal vier Morgen auf beinahe 
vierzehn gerechnet. 

Kapitel 6: Vom Irrmessen gestückelter Flächen 

Wie oder auf welche Weise sie die gestückelten Flächen in einzelne aufteilen, messen und rechnen, 
weiß ich zwar nicht. Aber was ich nicht weiß, will ich mich nicht schämen zu bekennen. Es ist mir 

auch wenig daran gelegen, ob ich es weiß oder 
nicht. Und wer kann ihre subtile Kunst ganz 
wissen oder lernen, einer kann ja nicht alles 
wissen. Sie müssen auch etwas für sich behalten, 
ich mag mit meiner Art beraten wie ich kann. 
Aber dennoch weiß ich zum Teil wohl, wie richtig 
sie den Flächeninhalt finden können. Solches will 
ich durch folgendes Beispiel aufdecken. Im Jahre 
1582 ist dem ehrbaren und hochgelehrten Herrn 
Christian Boetius,174 damals Landvogt in 
Dithmarschen, jetzt Fürstlicher Holsteinischer 
Rat, ein Feld oder Stück Landes von der 
Bauernschaft Darenwurth175 im Kirchspiel Marne 
zugehandelt worden, welches ich ihnen zuteilen 
sollte. Dasselbe war in Gestalt einer Harfe und 
mit Maßen, wie hier gezeigt. Ich habe es mit drei 
Dreiecken versehen und mir jedes Dreiecks Länge 
und Breite von meinen bestellten Messern 
ein bringen lassen. Daraus kann jeder Vernünftige 
leicht berechnen, wie viel Land es ausmacht. 

Danach kriegen die Bauern meinen anderen Meister, der misst und rechnet das Feld auf 7400 
Ruten. Das glaubten die Bauern wie ein reines Evangelium und wollten dem Herrn Doktor das übrige 
Land wiederum nehmen, und sie klagen und schreien über mich und sagen, mein Messen sei unrecht 
und falsch erfunden. Aber die guten groben Leute verstehen es nicht, darum vergeh es ihnen Gott. Die 
verständigen aber werden mich hierin wohl zu entschuldigen wissen, denen will ich 's befohlen und 
zwischen uns zu urteilen heimgestellt haben. Inzwischen mögen die Frösche ruhig etwas hinquaken, 
aber meine Wissenschaft sollen und müssen sie wohl recht bleiben lassen. Und dieser mein anderer 
Meister hat urkundlich seiner eigenen Hand die noch nicht ganz vier Morgen auf neun Morgen und 
darüber gerechnet. Das mögen mir Meister sein, sie wären recht unter die sieben weisen Meister176 zu 
zählen, und somit haben wir nun der weisen Meister an Anzahl neun. Nichtsdestoweniger ist der 
Bauer so dumm und töricht, dass er nach ihrem Messen pachtet und kaufft, ô pectora caeca? “177 

Ich kann diese Aufgabe nicht auflösen. Von den genannten drei Dreiecken kann ich nur das untere 
berechnen; bei den beiden oberen erscheinen mir die Seitenbezeichnungen nicht korrekt zu sein. Man 
kann ja davon ausgehen, dass Ursus diese Aufgabe wie üblich von der vorgegebenen Lösung her 
aufgebaut hat. Anders als wir es heute täten, nämlich die Aufgabe allgemein zu lösen versuchen, um 
dann die speziellen Zahlen einzusetzen, ist es daher sinnvoll zu schauen, welche einfachen 
ganzzahligen Lösungen Ursus gedacht haben könnte. Das untere Dreieck mit Hypotenuse 88 und 
Kathete 76 hat dann als zweite Kathete 44 (nach dem Satz des Pythagoras 44,36), weil die beiden 

174 Christian Boie (fl591), 1582 Landvogt der Gerichte zu Heide und Lunden. Herzog Friedrich II. von Gottorf wurde in 
Lunden am 21. Feb. 1587 gehuldigt. Als Huldigungsgabe seitens der Landschaft Norderdithmarschen sollte durch den 
Landvogt Christian Boie dem Herzog ein goldener Becher überbracht werden. Der junge Herzog starb aber bereits am 15. Juni 
1587, so dass es dazu nicht kam. Der goldene Becher wurde später im Nachlass des Landvogtes gefunden und deshalb 1592 
aus dem Erbgut 16000 Reichstaler für den Herzog entnommen. 
175 Im Original „Darnewürdt“. 
176 Zu den Sieben Weisen, griechische Staatsmänner und Philosophen des 7. und 6. Jh. v.Chr. zählen Thales, Pittakos, Bias, 
Solon, Kleobulos, Myson und Chilon. 
177 O, verblendete Gemüter! 
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Winkel wohl 60° und 30° sein sollen! Die soeben berechnete Seite 44 ergänzt sich dann mit 48 zu den 
angegebenen 92 (alles in Ruten). 

Der Kreisabschnitt unterhalb der 88er Seite soll zu einem Kreissektor eines regelmäßigen Fünf- 
ecks gehören! Bei einem Zentriwinkel 12° und Basiswinkeln von je 54° beträgt der Kreisradius 75 
und die Höhe 607/n, damit die Dicke des Abschnittes 75 - 607/u = 144/n, wie angegeben. Ein 
Hinweis kann die Verwendung von 23/n = 25/n für A/5 sein in der Formel für ein dem Kreis ein- 
beschriebenes regelmäßiges Fünfeck: s5 = A/( 10 - 2A/5) ■ V2 = A/( 10—50/11 ) • 7% = V(60/11 ) • 75/2 = 
254/5 • 75/2 = 8721/22 = 88. Der Flächeninhalt des Kreisabschnitts wird dann mit tz /7 zu Aggi^or 

Aoreieck = 3535% - 2668 = 867% = 868. 
Damit ist aber Schluss. Für die beiden oberen Dreiecke 

und die zugehörigen Kreisabschnitte habe ich keine Lösung. 
Die Seite mit der Länge 64 kann nicht die Seite des ganzen 
Dreiecks mit den Katheten 76 und 48 sein, da sie als 
Hypotenuse länger als 76 sein müsste. Das Dreieck mit Basis 
64 und Höhe 36 kann kein rechtwinkliges sein. Die Strecke 64 
endet ohne erkennbare Bedeutung. Die beiden oberen 
Kreisabschnitte sollten wohl, da Maßangaben fehlen, gleich 
groß sein, damit sich ihre Flächeninhalte aufheben. Die 
Streckenlänge 64 könnte so entstanden sein, dass sie mit 76 
gerade den Mittelwert aus 88 und 64 ergibt. Sollte die mit 64 
bezeichnete Strecke und auch die oben unmotiviert endende 
Strecke bis zur Spitze links oben gehen sollen und sollte das 
Maß 64 falsch angegeben sein, so würde es 90 betragen 
müssen; dann könnten die beiden oberen Kreisabschnitte 
gleich groß sein und sich aufheben, und der Flächeninhalt 
wäre Z2 • (92-76 + 90-36) = 5116, zuzüglich dem Inhalt des Kreisabschnitts, zusammen 5984. Ursus 
fährt dann zum Schluss fort: 

„ Wenn unsere genannten Meister ein krummes Stück Feld messen sollen, so messen sie dessen 
Länge des Bogenstücks durch die Mitte hindurch, und sie meinen noch, dass sie es recht treffen. Aber 
wie richtig sie es auf solche Weise machen, zeigt dieses Beispiel: 

Ursus beschreibt eine ebene, von zwei 
Kreisbögen begrenzte Fläche, deren Inhalt einfach 
gleich der Rechtecksfläche 40 ■ 168 = 6720 
Quadratruten ist. Somit wird r = 119 Ruten 
(118,8), der Zentrumswinkel ist 90°. Falsch 
gemessen mit den Bögen als Länge ergäbe sich 40 
•187 = 7480 Quadratruten. Es handelt sich hier um 
den inneren Mondbogen der folgenden 
„Prüfungsaufgabe“, das sollte als Hinweis gesehen 
und dort verwendet werden! 

O 

* 

Ende des vierten Buches “ 
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Schluss 

Gestrenger Herr königlicher Statthalter! Ich habe nun die ganze Messkunst gründlich beschrieben 
und zwar nicht aus kanonischen Regeln, wie es andere vorgeben, sondern aus richtigen natürlichen 
Fundamenten und eigener Erfindung. Daneben habe ich aufgezeigt, worin unsere Feldmesser bisher 
sehr geirrt haben, damit Euer Gestrengen sowohl hier als auch an anderen Orten solches wissen und 
sich vor ihrem Betrug hüten könne. Also bitte ich ganz dienstlich, Euer Gestrengen möge bei der 
königlichen Majestät zu Dänemark, Norwegen etc. und dem Herzog Adolf /• fürstlich] Gfottorfschen] 
zu Schleswig, Holstein etc., meinem gnädigsten und meinem gnädigen Herrn, aufs untertänigste und 
untertänige erwirken, dass keiner in deren Königreich, Land und Fürstentümern sich eines 
Landmessers bedienen oder gebrauchen möge, bis dieser vorher das nachfolgende Beispiel aus 
rechter geometrischer Wissenschaft gelöst und erklärt hat. Denn erst wenn sie solches zu Wege 
bringen, haben sie für diese Wissenschaft die rechte Grundlage. Und dies ist das Beispiel: 

Es ist ein Feld in Form eines Neuen Mondes, dessen äußere Seite [Kreisbogen] 9152 lang ist, die 
innere Seite [Kreisbogen] 8415, in seiner breitesten Mitte 609 breit. Zwischen seinen beiden Hörnern 
ist die Länge 7560 Ruten. Wieviel [Quadrat]i?nren hat das Feld? 

Si potes, hoc solvas et eris mihi summus Apollo, summus Arithmeticus, quem sibi Cimber habet.178 

Ich erbiete mich, Euer Gestrengen, wann es Ihr gelegen und gefällig ist, dieses aus rechter 
geometrischer Wissenschaft aus den Kreisen, Quadraten und Dreiecken und anderen Figuren 
verständlich, deutlich und überhaupt zu demonstrieren und aufzuzeigen. Ich wünsche, dass Euer 
Gestrengen und den Euren hiermit der göttliche Schutz in allem glücklichen Wohlstände lange 
erhalten bleibe und befehle mich neben diesem Werklein demselben dienstlichen Fleiß. Gegeben auf 
Euer Gestrengen Hofe zu Hattstedt in Dithmarschen, den 14. September anno 1583. 

Euer Gestrengen gutwilliger Diener Nicolaus Reimers, Landmesser. “ 

178 Wenn du kannst, löse dies, dann wirst du für mich der größte Apoll, der größte Arithmetiker sein, den Kimbrien hat. 
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M. D, LXXXIII. 

Abb. 20: Letzte Seite L4r der Geodaesia Ranzoviana, Leipzig 1583, bei Georg Defner. 
Forschungsbibliothek Gotha, 4° 44/8 (4). 

Die Geodaesia Ranzoviana, das Landrechnen und Feldmessen, wurde mit Widmung vom 14. 
September 1583 abgeschlossen und ist auf Kosten von Fleinrich Rantzau, dem Förderer, Mäzen und 
Arbeitgeber von Ursus, gedruckt worden. Dieser hat den Druck im Quartformat (ca. 16x19 cm) von 
Georg Defner in Leipzig bewerkstelligen lassen, wie aus der letzten Seite, nach dem Schlusswort, 
hervorgeht. Georg Defner, auch Deffner, Däfener, Teffner oder Tefner, stammt aus Weilheim in 
Bayern, er heiratete 1580 die Witwe des Druckers Rambau und erhielt am 6. Juni 1580 Bürgerrecht zu 
Leipzig. Er wurde am 11. Januar 1587 beerdigt, arbeitete also von 1580-1587 als Drucker. In den 
Messkatalogen sind von ihm 29 Drucke verzeichnet. 

Auch die Geodaesia Ranzoviana 1583 wird im Katalog der Frankfurter Fastenmesse 1584 
angezeigt unter der Rubrik „Mancherley Bücher in allerley Künsten“. 

äfoncfrrfci) '£iiff>cr tu rtlRrlcijÄtlnflcu. 

P EodxfiaRanxouiana.JanbrctfjncnvnbftcftmcflVn/fampftwf' ifs$. 
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vnhcMn&ie neutre are/Äuntflicl» / $riïnblt<t> vnt> txwltcfc kf&ritbcn/ 
bnrtfr 0>ifo(4um Oîcÿmcrtf von -Ocnfîcfre tu tcfmarftfccn. 4. , 
trueff ut 

Abb. 21 : Katalog der Frankfurter Fastenmesse 1584. 
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Diese letzte „Prüfungsaufgabe für angehende 
Landmesser“ im Schlusswort übersteigt meines 
Erachtens deren Fähigkeiten und nach heutiger 
Auffassung der Aufgabe auch die von Ursus 
selbst. Zwei Kreisbögen a = 9152 und i = 8415 
mit unterschiedlichen Radien schneiden sich über 
derselben Sehne s = 7560. Aus Sehne und 
Bogenlänge können bereits alle übrigen Stücke 
ermittelt werden, allerdings führt das auf das 
Lösen der Gleichung 

sina : a = 0,014417 für den halben Zen- 
trumswinkel a des äußeren Bogens, und auf 

sim : i = 0,015680 für den halben Zentrums- 
winkel i des inneren Bogens. Dies ist mit den 
mathematischen Mitteln, die Ursus zur Verfügung 
standen, nicht möglich. 

Aber hierbei gingen wir an die Aufgabe heran, 
wie wir es heute täten: wir versuchten, sie 
allgemein zu lösen mit Hilfe der Algebra, wie wir 
sie heute haben. Ursus wird wie folgt 
vorgegangen sein und wohl auch so seine Lösung 
vorgetragen haben: 
Er wählte, wie die Ergebnisse zeigen, als Winkel 

a = 60° und i = 45°. Damit wird ha = ra : 2 (cosa=0,5) und wegen a = Ua : 3 = 2/yn-ra folgt ra = 4368 
mit 7i = 12li und ha = 2184, da = ra - ha = 2184. Der Flächeninhalt des äußeren Kreisabschnitts ist dann 
11.732.448 Quadratruten, die Zahlen gehen alle glatt auf! 
Ebenso ergeben sich mit i = 45° für den inneren Kreisabschnitt h; = s:2 = 3780, wegen i = Uj : 4 = ' ly 
7tTj ergibt sich für rf = 5355, ebenfalls mit 7t = 22/7 und di = rj — h; = 1575, womit b = da - dj = 609 
ist, wie von Ursus vorgegeben. Es wird der Flächeninhalt des inneren Kreisabschnittes 8.242.762,5 
Ruten und damit der gesuchte Mondsichelflächeninhalt 3.489.685,5 Ruten. Der Kern der Lösung liegt 
in der Überlegung, dass der Innenbogen i = 8415 ein Viertelkreis ist, womit sich rj finden lässt, und 
dass der Außenbogen a = 9152 ein Drittelkreis ist. Den Zahlen müssten man ansehen, dass a = 9152 = 
22h -2912 ist und i = 8415 =22/7 ■ 2677,5. 

Ursus hat jedoch mit der Aufgabe in seinem Schlusswort einen deutlichen Hinweis auf eine 
einfachere Lösung der „Prüfungsaufgabe“ gegeben. Dort ist ein Kreisabschnitt mit der Sehne 168 und 
dem Bogen 187 gegeben, der Radius ergibt sich zu 119, es handelt sich um einen Viertelkreis. 
Multipliziert man diese Werte jeweils mit 45, so ergeben sich die Zahlen der „Prüfungsaufgabe“ für 
den inneren Kreisabschnitt, die Sehne s = 168 • 45 = 7560, der Bogen i = 187 • 45 = 8415, der Radius 
r, = 119 ■ 45 = 5355. Ursus hat also das Pferd von hinten aufgezäumt, wie es bei den Rechenmeistern 
üblich war. Ursus gibt den Wert von b zusätzlich an und macht damit die Aufgabe sehr viel einfacher! 
Nachdem man erkannt hat, dass i ein Viertelkreis ist, hat man damit leicht p und hj und dj. Mit dj + b 
erhält man da, und mit da + ha = ra erhält man ra, weil ha = /j • ra ist, denn a = 60°. Damit ist die 
„Prüfungsaufgabe“ einfach und elegant gelöst, im Ursusschen Sinne. 

Eine allgemeine Lösung der Aufgabe könnte folgendermaßen verlaufen: 
Es ist ja ra • since = s:2 und für den Kreisbogen gilt a = Vigo -2ara, zusammen sina : a = (TT S) : 
(a-180°) = 0,014417 (mit den gegebenen Zahlen für a und s). Damit muss für die Gleichung sina : a = 
0,014417 eine Lösung gefunden werden, was jedoch elementar nicht möglich ist. 

Schon in der Vorrede zur Geodaesia verwendet Ursus bildhafte Vergleiche. Die Arithmetik und 
die Geometrie seien dem menschlichen Gemüt angeborene Flügel, mit denen der Astronom gen 
Himmel fliege und der Geometer hernieder zur Erde steige, weil die himmlische Astronomie und die 
irdische Geodäsie die vornehmsten zwei Töchter der Arithmetik und der Geometrie seien. In der 
Einleitung zum vierten Buch setzt Ursus solche Vergleiche fort. 

- Jedes Ding werde durch sein Gegenteil verstärkt. Weiß werde noch weißer, wenn man schwarz 
dazu hält. 

- Ein Theologe müsse neben der reinen göttlichen Lehre auch die von Ketzern kennen. 
- Ein Jurist müsse nicht nur das Recht kennen, sondern auch wissen, wie man Recht beugt. 
- Ein Arzt müsse mit Medikamenten behandeln (antipathisch), aber auch mit „sympathischer 

Medizin“ kurieren können. 
- Und ein Geometer oder Feldmesser müsse nicht nur die Prinzipien der Wissenschaft verstehen, 

sondern auch die Irrtümer und Fallstricke. 
In den ersten drei Büchern „Vom Landrechnen“, „Vom Feldmessen“ und „Vom Messen“ schreibt 
Ursus noch sehr sachlich. Im vierten Buch jedoch „Vom Irrmessen“ verschafft er seiner Verärgerung 
über die unfähigen Feldmesserkollegen Luft durch viele markige Sprüche. 
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- Sie werfen alles zusammen in einen Hafen (Topf): Buch IV, Kap. 3 
- Weise Hühner legen auch in die Nesseln: Buch IV, Kap. 3 
- Die großen Narren sind die besten: Buch IV, Kap. 3 
- Sie spinnen grob (= derb sein, auch rauhes Garn spinnen): Buch IV, Kap. 4 
- Sie zäumen das Ross hinten auf: Buch IV, Kap. 5 
- Sie verhüten das Ei und lassen die Hennen entfliehen: Buch IV, Kap. 5 
- Wenn es keine dummen Leute gäbe, wovon sollten dann die weisen reich werden? Buch IV, 5 
- Das glauben sie wie ein reines Evangelium: Buch IV, Kap. 6 
- Die Frösche mögen ruhig etwas hinquaken: Buch IV, Kap. 6 
- Ô pectora caeca179 - O, verblendete Gemüter: Buch IV, Kap. 6. 

Ursus’ Bücher sind generell sehr selten erhalten geblieben. Ich habe die in der Forschungs- und 
Landesbibliothek Gotha auf Schloss Friedenstein und in der Herzog-August-Bibliothek Wolfenbüttel 
aufbewahrten Exemplare verwendet. Bekannt sind mir folgende Exemplare in 

Berlin, Staatsbibliothek (4° Of 3116) 
Breitenburg, Bibliothek der Grafen Rantzau, D (Ranzoviana) Nr. 43 
Jena, Thüringische Universitäts- und Landesbibliothek (4 Bud. Var. 703) 
München, Bayerische Staatsbibliothek (Hbks R 30 dn) 
New York, Columbia University (A-L4) 
Paris, Nationalbibliothek (V. 7125) 
Weimar, Herzogin Anna Amalia Bibliothek (40,4:151) - Verlust beim Brand 2004? 
Wien, Österreichische Nationalbibliothek (72.J.29) 
Wolfenbüttel, Herzog-August-Bibliothek (Nb 555) 
Zürich, ETH. 

Das Wolfenbütteler Exemplar der Geodaesia enthält auf der Rückseite der letzten Druckseite 
einen handschriftlichen Eintrag aus dem Jahre 1598, ohne Namen. Die Schrift ist nach meiner 
Einschätzung nicht die von Ursus selbst, nach Vergleich seiner Handschrift im Brief an Rudolph II. 
und in den Tractatiuncula, beide aus dem Jahr 1597. Dieser Eintrag kann jedoch eine Beziehung des 
Schreibers und damit wohl des Besitzers dieses Exemplars zu Ursus oder zu Heinrich Rantzau 
aufzeigen, denn es bezieht sich auf Dänemark, auf den sagenhaften König Dan und den derzeitigen 
König Christian IV. Ursus war nämlich bei dem Statthalter des dänischen Königs in Dithmarschen als 
Feldmesser in Stellung. Der handschriftliche Eintrag lautet: 

„DANIA nomen est à primo suo Rege DAN,180 welcher gewesen nach Erschaffung der Welt 2898, 
vor der Geburt Christi 1073,181 tempore Regis Davidis.182 Wie nachfolgende Rythmi uff dem großen 
Saal des Schlosses Cronenburg183 uff einer langen Taffel geschrieben bezeugen. 

DAN 
Von königlichem Stand und Reich 
hernach die edle Tugent schon 
Das auch von mir das gantze Land 
weil Ich heiß Dan und war der Erst 
Welchs ist geschehen ohngefahr 

Christiani IIII. des itzo regierenden und an der Za 
REGNA FIRMAT PIETAS.184 

Gottfurchtigkeit erhelt allzeit 
Anno 1598.“ 

wusst anfangs nicht zu sagen ich 
erhub mich zu dem Reich und Cron. 
benambt und Dennemarck genannt 
der als ein König darinn herscht. 
zur Zeit als David König war. 

hundersten Königes in Dennemarcken Symbolem: 

im Lande Fried und Einigkeit. 

179 Lucretius (ca. 98-55 v.Chr.), De rerum natura, II 14: „O miseras hominum mentes, O pectora caeca.“ 
180 Nach Saxo Grammaticus, Buch 1 Kap.l, sagenhafter erster Fürst Dänemarks. Die Brüder Dan und Angel waren demnach 
Gründer der Königsdynastien Dänemarks und Englands: „Von Dan und Angul, Humbles’ Söhnen, leitet sich der Ursprung der 
Dänen her; sie waren die Stammväter unseres Volkes und dessen erste Anführer.“ In Buch 4 Kap. 6-8 erzählt Saxo 
Grammaticus dann die Geschichte von Dan II. und Dan III. mit Krieg gegen die Sachsen. Peter Sax (1597-1662), Chronist 
Nordfrieslands, schreibt in seiner Dithmarsia 1640, Blatt 154r: „Anno 278 ungefehr, ante Christum natum, ist Thietmarus mit 
seiner Colonie in Dithmarschen, als Dan in Dania, Angulus in Anglia,.... das Regiment heften, angekommen.“ 
181 Danach wäre die Welt 3971 v.Chr. erschaffen worden. 
182 Danach hätte David um 1073 v.Chr. regiert. Ursus gibt in seinem Chronotheairum dafür den Zeitraum 1062-1022 v.Chr. an. 
Nach heutiger Einschätzung regierte König David über Israel-Juda etwa 1000-970 v.Chr. 
183 Schloss Kronborg in Helsingor auf Seeland, erbaut 1574-1585 von Kg. Friedrich II. 
184 Frömmigkeit festigt die Königreiche. 
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Exemplar der Geodaesia Ranzoviana auf Schloss Breitenburg 

Heinrich Rantzau, Statthalter des dänischen Königs im königlichen Anteil Schleswig-Holsteins 
und Förderer und Mäzen von Nicolaus Reimers (Raimarus) Ursus, ließ auf seine Kosten die beiden 
Frühwerke von Ursus, die Grammatica Ranzoviana 1580 und die Geodaesia Ranzoviana 1583, 
drucken und nahm sie in seine berühmte Bibliothek auf Schloss Breitenburg auf. 

Diese Bibliothek Heinrich Rantzaus wurde im Dreißigjährigen Krieg nach der Eroberung von 
Schloss Breitenburg 1627 durch Truppen Wallensteins geplündert. Ihre Bücher sind in alle Welt 
zerstreut worden, der größte Teil wurde von Wallenstein nach Böhmen gebracht. M. Posselt 
versucht185 nachzuweisen, dass die Bibliothek damals vollständig unterging und dass nach Aussage 
des Breitenburger Inspektors Detlev Marcus Trüs 1690 sich kein einziges Buch dieser älteren 
Bibliothek mehr auf Breitenburg befinde. Es gibt jedoch in der Breitenburger Bibliothek noch heute 
einige Bände, insbesondere Bibeln, die Prägungen auf dem Einband haben, die zu Heinrich Rantzau 
gehören. 

Im 17. bis 19. Jh. bauten die Grafen Rantzau durch Kauf gerade auch älterer Bücher wieder eine 
ansehnliche Bibliothek auf. Graf Conrad Rantzau hat um das Jahr 1841 einen Katalog der in der 
damaligen Bibliothek befindlichen Bücher anfertigen lassen, der sich heute im Landesarchiv 
Schleswig befindet.186 In diesem Katalog ist die Geodaesia Ranzoviana unter „D: Ranzoviana und 
Geschichte adel. Geschlechter, Nr. 43“ aufgeführt. Dieses Exemplar existiert auch heute noch in der 
Rantzauschen Bibliothek auf Schloss Breitenburg bei Itzehoe, in einem Band zusammengebunden mit 
11 Büchern, Heinrich Rantzau betreffend. Es sind dies Epitaphia und Elegien.187 Der Band hat 
Quartformat, ca 14x18 cm, einen neueren rotbraunen Pappeinband, keine Prägungen auf dem 
Einband, keine Exlibris. Das letzte Einbandblatt hat ein zur Hälfte erkennbares Wasserzeichen, bei 
dem nur eine VII zu sehen ist, was auf Christian VII. von Dänemark (1766-1808)188 hinweisen könnte. 
Der Band ist jedenfalls nicht in dem Stil gebunden, wie man es für die Bücherei von Heinrich Rantzau 
kennt. Obwohl die in diesem Band zusammengebundenen Bücher alle im Zeitraum 1582-1595 
gedruckt worden sind, mit einer Ausnahme 1567, kann davon ausgegangen werden, dass die 
Geodaesia Ranzoviana nicht das ursprüngliche Exemplar ist, das Heinrich Rantzau in seine Bibliothek 
aufnahm. Es wird wie die meisten Bücher der heutigen Rantzauschen Bibliothek durch Kauf im 17.- 
19. Jh. hierher gekommen sein, und es ist wohl seines Titels wegen unter „Ranzoviana“ eingeordnet 
worden, obwohl sein Inhalt sich mit Arithmetik, Geometrie und Geodaesie beschäftigt. Es gibt in 
diesem Exemplar der Geodaesia nur einige wenige Unterstreichungen, so auf Blatt B3r/v und C4v im 
Kapitel über das Rechnen im 16-er-System, eine Korrektur auf Blatt Clr, und einen Zusatz auf Blatt 
Glr bei „Schuch und der Acker“, der „Schepel Land heit“ lautet. 

Ludolph van Ceulen und die „Prüfungsaufgabe“ von Ursus 

Ludolph van Ceulen189 gab 1596 sein Hauptwerk Van den Circkel heraus. Darin, im 19. Kapitel 
„Gebrauch der Tafeln“, beschreibt er die „Prüfungsaufgabe“ von Nicolaus Reimers Ursus aus dessen 
Geodaesia und setzt sich ausführlich mit ihr auseinander. Er habe diese Aufgabe 1587 in Bremen 
gesehen, in dem 1583 in Leipzig gedruckten Buch von „Niclaes Reymers“. Van Ceulen schildert dann 
auch die Geschichte, dass Ursus seinem Dienstherrn Heinrich Rantzau anträgt, Landmesser nur noch 
nach Lösen dieser seiner „Prüfungsaufgabe“ anzustellen. Van Ceulen berechnet insbesondere den 
Flächeninhalt des Ursus-Möndchens mit seinem Wert für n = 3,141.592.653 anstelle des von Ursus 
verwendeten 3V7. Außerdem benutzt van Ceulen seine Sinustafeln, die er in Van den Circkel auf fol. 
26v-48v abgedruckt hat. Van Ceulen geht an die Ursus'sche „Prüfungsaufgabe“ schrittweise heran. 

Im ersten Beispiel dieses 19. Kapitels beschreibt van Ceulen zuerst seinen Weg, den Flächeninhalt 
eines Kreisabschnitts mit der Sehne BD = 960 Ruten und der Höhe 240 Ruten zu berechnen. Dazu 
benutzt er nach der 35. Proportion des 3. Buches Euklids die Formel für den Durchmesser d = (s/2)

2 : h 
+ h.190 Dann verwendet van Ceulen für den halben Zentriwinkel sin “/2 = s : 2r und, anders als Ursus, 

185 M. Posselt, Die Bibliothek Heinrich Rantzaus; in: Zeitschrift d. Ges. für SHL-Geschichte, Bd. 11, Kiel 1881, S. 71-124. 
186 Abt. 400.1, Nr. 68 
187 Epitaphia aliquot in Annae Walstorpiae, Leipzig 1582; G.L.Frohen, Elegia in eclipsin lunae, Hamburg 1592; Heinrich 
Rantzau, De Gemmis, Leipzig 1585; Elegia de festo Paschalis, Wittenberg 1587; Epitaphia Catharinae, Henrici Ranzoviifiliae, 
Hamburg 1587; Christoph Silvius, Elegia in Silvas Ranzovianas, Hamburg 1588; Heinrich Rantzau, Inscriptiones 
monumentorum, Hamburg 1588; Johannes de Elvervelt, Calliope, Schleswig 1591; Martin Marstaller, Problema Ethicum, 1591; 
Albert Lomeier, Ranzovii Incliti antiqui natalis ac haereditarii Ranzoviorum praedii, 1595; Christoph Kellinghausen, De 
praecipuis rebus gestis illustris viri ... carmen panegyricum; Frankfurt 1567; Epistola consolatoria Davidis Chytraei ad 
Henricum Ranzovium, Hamburg 1591 ; Ursus, Geodaesia Ranzoviana, Leipzig 1583. 
188 Oder auf Friedrich VIL ( 1848-1863). 
189 Niederländischer Mathematiker (van Collen), *1540 in Hildesheim, t 1610 in Leiden. Bekannt durch seine Berechnung von 
7t auf 35 Nachkommastellen. 
190 Diese 35. Proposition Buch 111 besagt für zwei Sehnen, die sich im Innern des Kreises schneiden, dass das Produkt der 
Abschnitte der einen Sehne gleich dem Produkt der Abschnitte auf der anderen ist. Daraus ergibt sich die oben benutzte Formel. 
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seine Sinustafel. Damit hat van Ceulen den 
Flächeninhalt des Kreissektors und durch 
Subtraktion des Flächeninhalts des Dreiecks 
auch den des Kreisabschnitts. Die 
vollständige Rechnung, aus dem 
Flolländischen in heutiges Deutsch 
übertragen, lautet: 

„Das erste Beispiel behandelt ein Stück 
Land, das von einer krummen und einer 
geraden Linie begrenzt ist. Die Strecke BD 
ist 960 Ruten lang, die Höhe CE ist 240 
Ruten. Frage: Wie groß ist das Stück 
BCDE? Antwort: 161.025,6296 Quadrat- 
ruten. Um dieses zu finden, multipliziere BE 
mit ED, jedes 480, ergibt 230.400 [= (s/2)

2]. 
Dies dividiere durch EC = 240. Hierzu addiere EC, so erhält man den ganzen Durchmesser des 
Kreises, von dem die Figur ein Stück ist, zu 1200 Ruten, nach der 35. Proposition im 3. Buch Euklids. 
Der halbe Durchmesser ist daher 600 Ruten. Hiervon 240 subtrahiert, ergibt EA = 360 Ruten. 
Berechne nun das Verhältnis von ED zu den 600 Ruten des halben Durchmessers (in 10.000.000 
Einheiten), das ist der Sinus von 53° 7' 48" ,191 so lang ist der Bogen CD, etwas mehr. Das sind 

53l3/ioo Grad. Multipliziert man den Durchmesser 1200 mit 3.1415926,'91 so erhält man den ganzen 
Umfang des Kreises zu 3769,91112. Dessen 360°geben 3769,91112 Ruten, und damit die 53,13 Grad 
für den Bogen CD = 556,3760495. Multipliziert mit dem halben Durchmesser 600 Ruten, erhält man 
für den Kreissektor ABCD 333.825,6296'9i Davon das Dreieck ABD subtrahiert, das 172.800 groß 
ist, ergibt als Rest 161.025,6296 Quadratruten. Und würde hier fiir den Umfang des Kreises das iV7- 
fache des Durchmessers genommen werden, so ergäben sich 134 Quadratruten mehr als der richtige 
Werte194 

Abb. 23: Ludolph van Ceulen, Van den Circkel 
1596, fol. 54r 

In den Beispielen 8 und 9 dieses 19. Kapitels195 errechnet van Ceulen Flächeninhalte von 
„Möndchen“. Im Beispiel 8 sind gegeben die beiden Höhen der Kreisabschnitte und die gemeinsame 
Sehne. Die Aufgabe läuft somit auf zweimaliges Anwenden des eben geschilderten Beispiels 1 hinaus. 
In Aufgabe 9 sind gegeben die gemeinsame Sehne, die Dicke des Möndchens und die Länge des einen 
Bogens, was ebenfalls auf die Methode des Beispiels 1 hinausläuft. Nun passt die „Prüfungsaufgabe“ 
von Ursus aus dessen Geodaesia hinzu. Van Ceulen zitiert sie in Beispiel 12 und setzt sich mit ihr 
ausführlich auseinander:196 

191 Also 480:600 = 8.000.000 : 10.000.000 (= 0,8.000.000). Die Tafel von van Ceulen auf fol. 39v liefert dafür den Winkel 53° 
7' und durch Interpolation zu 53° 8' folgen 48“. 
192 Van Ceulen verwendet keine Dezimalbrüche, sondern echte Brüche, hier also l4l5926/iooooooo- 
1,3 Fehler bei van Ceulen: dort steht fälschlich 161.025,6296, der Wert für den Kreisabschnitt. 
194 Genauer 134,370301 Quadratruten. 
195 fol. 56r. 
196 fol. 56v - 58r. 
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,/1/s letztes in seinem Buch ist von dem Autor, dem wohlerfahrenen Geometer Nie las Reymers aus 
Henstede in Ditmarsen, folgende Frage gestellt worden: Es ist ein Feld gelegen in der Form eines 
Neuen Mondes mit äußerem Bogen 9152 lang und mit innerem Bogen 8415. In seiner breitesten Mitte 
ist er 609 breit. Man weiß auch die Länge zwischen den beiden Hörnern zu 7560 Ruten. Wieviel 
Fläche hat das Feld? Diese Worte verstehe ich so: Ein Stück Land liegt in Form des nebenan 
gezeichneten Mondes CYDH vor. Der äußere Bogen CYD ist 9152 lang, der innere [CHD] 8415, die 
Dicke YH ist 609 Ruten. Frage wie oben. Diese Aufgabe habe ich Anno 87 zu Bremen in einem 1583 
in Leipzig gedruckten Buch gefunden. Darinnen berichtet derselbe Niclaes von Landmessern, die eine 
falsche Rege! verwenden und von denen der eine zu viel und der andere zu wenig messen. Er begehrt 
deshalb vom königlichen Statthalter von Dänemark Rantzau, dass dieser bei der Majestät von 
Dänemark und dem Herzog von Holstein zu Wege bringen solle, dass niemand in seinem Königreich, 
Herzogtum oder Land zu messen sich unternehme, wenn er nicht vorher das vorstehende Beispiel 
gelöst habe, welches Niclaes zu allen Zeiten bereit ist, zu demonstrieren und probieren mit dem Kreis, 
Quadrat und Dreieck. “ 

Ursus hat seine „Prüfungsaufgabe“ ja rückwärts aufgebaut. Er erwartet, dass man vermutet bzw. 
erkennt, dass die Zentriwinkel der Kreisabschnitte 90° bzw. 120° sind. Danach soll man die Aufgabe 
mit elementargeometrischen Mitteln bearbeiten. Er will diese Winkel nicht berechnen lassen, schon 
gar nicht mit Sinustafeln, die er hier ja auch nicht verwendet, sondern er will die Aufgabe „mit dem 
Kreis, Quadrat und Dreieck“ lösen. Van Ceulen erkennt, dass die Zentriwinkel von Ursus zu 90° und 
120° gewählt worden sind, und auch, dass Ursus die Dicke des Möndchens nicht hätte anzugeben 
brauchen, oder ersatzweise die Länge eines Bogens. Van Ceulen gibt zuerst die etwas abweichenden 
Werte für die Kreisbögen an, wenn man die Sehne 7560 als eine Seite des gleichseitigen Dreiecks 
bzw. des Quadrates ansieht. Van Ceulens Text hierzu lautet: 

,JHieraus dünkt mich zu 
wissen, dass er die Seite [Sehne] 
CD als Seite eines in einen Kreis 
einbeschriebenen Quadrats 
genommen hat und den Bogen 
CHD auf dessen Umfang: ebenso 
den Bogen CYD als ein Drittel 
eines anderen Kreises. Dann muss 
die Sehne CD die Seite eines in 
einen Kreis einbeschriebenen gleichseitigen 
Dreiecks sein. Ist dies seine Absicht, so sollte nach 
der Proportion des Archimedes197 der Bogen nicht 
8415, sondern 8400'/2 Ruten lang sein.198 Und es 
wäre die Länge des äußeren Bogens nicht 9152, 
sondern wenig mehr als 9J45lf Ruten.199 Und in 
ihrer Mitte sollten 617 Ruten sein.200 Und der 
Inhalt des Mondes sollte 11.793.600 - 
sl68.052.791.520.000 sein, das ist wenig mehr als 
3.544.188

2
/S Quadratruten. 

Dieses und dergleichen ist leichter zu finden 
durch das Verhältnis von Bogen und Sehne. Wenn 
also seine Absicht wie vorstehend beschrieben ist, 
dann ist der Mond gleich geformt wie der Mond G 
im 7. Beispiel,20' bei dem die Länge von der einen 
Ecke zur anderen f32 ist.202 Dessen Quadrat 32 
ist, gegen den Inhalt des Mondes G 1,98431246 
Ruten, (wegen 1 zu 31 /j). Es ist 57.153.600, das 
Quadrat in Teilen von CD, gegen den Mond diese 
Beispiels (Grund siehe oben). Fazit: Auf dieselbe 
Art kommt man durch den bekannten Bogen zum Ergebnis. Durch die Suche nach der richtigen 
Lösung (Verhältnis des Durchmessers gegen seinen Umfang) kommt 3.545.192,174 ungefähr. 

Niclaes Reymers will, dass der untere Bogen 8415 lang sei und des Mondes Dicke in der Mitte 609 
Ruten. Dies ist ein Prüfstück, er hätte die Länge des äußeren Bogens CYD verschweigen können, die 

Ursus Van Ceulen 

Ri = BP 5355 5346 rV2 • 37801 
Bogen CHD 8415 8400,5 [271-5346:4] 

Ra = GD 4368 4365 [3780 : sin60°] 
a = Bogen CYD 9152 9145 [271-4365:3] 
Dicke Möndchen YH 609 617 
Fläche Möndchen 3.489.686 3.544.188 

197 Also mit 7t = 3V7 gerechnet. 
1,8 r = ■ 3780 = 5345,77 mit V2 = 1,414225 gerechnet; damit b = “/j- 5345,77 = 8400,5. 
199

 3780 : sin60° = 3780 : 0,8660254 = 4364,76; damit b = “V 4364,76 = 9145,21. 
200 d = h - ha = 2182,38 - 1565,77 = 616,61. 
201 Van Ceulen, Van den Circkel, Delft 1596, fol. 55v. Hier nicht beschrieben. 
202 Dort Seitenlange des gleichseitigen Dreiecks. 
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nämlich gefunden wird durch die Länge YH und durch das Verhältnis des Bogens CHD zur Sehne CD 
wie folgt: “ 

Van Ceulen bearbeitet nun die „Prüfungsaufgabe“ von Ursus wie folgt, zuerst mit tt = 3 V7. Für den 
Umfang des ganzen Kreises nimmt er rr d = 3 V7 -20.000.000 = 62.857.143 Teile; der Kreisradius wird 
also zu 10.000.000 Teilen gewählt. Damit hat der Bogen des Achtelkreises (45°) 7.857.143 Teile. Das 
Verhältnis von Bogen CHD zu Sehne CD ist ja gegeben durch 8415:7560, also zu 
11.130.952:10.000.000, was auch dem Verhältnis von halbem Bogen HD zur halben Sehne ED gleich 
ist. Nun kann van Ceulen jeweils Verhältnisse von (halben) Bögen zum zugehörigen Sinus berechnen. 
So findet er das Verhältnis von 45°-Bogen zu sin45° als 11.111.677 und das Verhältnis von 46°- 
Bogen zu sin46° als 11.165.441, jeweils als Teile von 10.000.000. Das 45°-Verhältnis ist 19.275 Teile 
zu klein, das 46°-Verhältnis 34.489 Teile zu groß gegenüber dem richtigen Verhältnis 11.130.952. 
Durch Interpolation ergibt sich somit der Winkel als 45° 21,5'. Allerdings muss van Ceulen die Sinus- 
Werte aus seiner Tafel entnehmen!203 Ursus löste seine Aufgabe ohne Sinustafel. 

Für die beiden unterschiedlichen Kreise mit verschiedenen Radien werden jeweils 10.000.000 
Teile für den Radius gewählt. Dadurch sind dann natürlich die Teile für die gemeinsame Sehne CD 
verschieden. 

203 Auf fol. 37v für 45° und unten auch für 46°. 
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Abb. 25: Ludolph van Ceulen, Van den Circkel, fol. 37v. Sinustafel für 44° und 45 
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„ Zuerst bemerke ich, dass die Länge der Sehne CD = 7560 ein Verhältnis zum Bogen CHD = 
8415 hat wie 168 zu 187,204 oder wie 10.000.000 zu 11.130.952, Dieses Verhältnis haben auch deren 
Hälften, nämlich ED als Sinus des Bogens HD zur Länge HD. Darum haben die Teile des Sinus ED 
(der Durchmesser des Kreises nach Gefallen 
geteilt in 20.000.000 Teile) das gleiche Verhältnis 
zu den Teilen des Bogens HD (nach der 15. Prop, 
des 5. Buches Euklids). Da der Bogen HD nun 45° 
groß ist, so ergeben sich für denselben 7.857.143, 
das ist ein Achtel von 62.857.143 (das ist 31 f mal 
20.000.000), welches der Umfang ist. Dividiere 
[den Bogen zu 45°] 7.857.143 durch den sinus von 
45°, was 7.071.068 derselben Teile ist, ergibt 11. 
111.6 7 7,205 das sind 19.275 Teile zu wenig206. 
Darum suche ich, wieviele Teile der Bogen zu 46° 
hat. 360° ergeben 62.857.143 Teile, auf 46° 
kommen dann 8.031.746, und der sinus von 46° hat 
7.193.398 Teile; hierdurch dividiert die 8.031.746 
Teile ergibt [für Bogen(46°) : sin 46° =] 
11165441,207 das sind 34.489 Teile zu viel. Durch 
diese zwei Differenzen finde ich, dass das wahre 
Verhältnis zwischen 45°2I ' und 45°22 ' liegt.208 

Dadurch finde ich die richtige Länge der 
Strecke ED zu 7.115.584 Teilen, was der sinus von 
mehr oder weniger 45° 21' 422/f ist.209 Diese 
Grade, Minuten, Sekunden verwandelt in Teile ergeben 7.920.323 für den Bogen HD.2'9 Hierdurch 
hat man das gesuchte Verhältnis zwischen den Teilen des richtigen ED und den Teilen des Bogens 
HD. Subtrahiere die gefundenen Grade, Minuten, Sekunden des Bogens HD von 90°, der 
Komplementbogen ist 44° 38' 17l/f. Vom Sinus in der Tafel ergibt sich 7.026.269,211 so viele Teile 
hat BE. Diese von BH genommen mit 10.000.000 Teilen [das ist der Radius BD], bleibt EH 2.973.731. 
In Ruten verändert: 7.115.584 Teile geben 3780 Ruten. 2.973.731 Teile ergeben dann EH = 
1579,73023 Ruten. Mit der Breite der Figur 609 Ruten ergibt sich für EY = 2188,73023 Ruten. Nun 
kannst du leicht durch die 35. Proposition des dritten und die 47. Prop, des ersten Buches Euklids 
finden für den Durchmesser des äußeren Bogens 2-GD = 8716,89884 Ruten in 20.000.000 Teilen. 
3780 Ruten ergeben dann 8.672.809. In der Sinustafel findet man diesen Wert unter 60° 8'3 93/4o" 212 

Multiplizier den gefundenen Durchmesser mit 3'/7, folgt 27395,96778 Ruten für den ganzen Umfang 
mit 360°, dann hat der Bogen YD (60° 8'39J/4o'') 4576,967 Ruten. Für den ganzen Bogen CYD folgt 
9/53,934 

Durch das Vorhergehende wird nun für den halben Durchmesser BD = 5312,283 gefunden2'2 

Subtrahiert vom halben Durchmeser GY = GD so viel oben gefunden für EY, wird der Rest EG = 
2169,7192,214 Ebenso von dem halben Durchmesser BH [=BD] subtrahiert HE, bleibt für BE = 
3732,555.215 Multipliziert man diese beiden Senkrechten jeweils mit 3780,216 so ergibt sich für das 
Dreieck CBD 14.109.050,34 und für CGD 8.201.538,576. Das subtrahiert voneinander, bleibt Rest 
5.907.511,76, so groß ist das Stück BCGD. Multipliziere den halben Durchmesser mit dem 
gefundenen Bogen HD, so kommt für den Kreissektor BCHD 22.351.430,07\2'1 Davon subtrahiert das 
Stück BCGD, bleibt für GCHD 16.443.919. 218 Multipliziere den Bogen YD mit dem halben 
Durchmesser GD, kommt für [den Kreissektor] GCYD 19.948.4761'9 Hiervon GCHD, bleibt für den 

204 Eben dieses Kürzen von 7560:8415 durch 45 zu 168:187 sollte man lt. Ursus erkennen, um die Verwandtschaft zu seiner 
vorgeschalteten Aufgabe zum Kreisabschnitt auf Blatt L2v der Geodaesia zu sehen. 
205 Gemeint ist 1,1111677. 
206 Gegenüber dem Zielwert Sehne CD : Bogen CHD = 10.000.000 : 11.130.952. 
207 Gemeint ist 1,1165441. 
208 (Lineare) Interpolation: 19.275:53.764 = 0,3585° = 21,5'. 
209 Nach van Ceulens Sinustabelle auf fol. 37v ist sin 45° 21 ' = 7.114.131 Teile, sin 45° 22' = 7.116.175, Differenz 2044 Teile. 
Durch Interpolation auf 422/3 "folgen 7.115.584,5 Teile. 
210 a = 45,36185185°; U = 62.857.143 Teile; b = a • U : 360° = 7.920.323 Teile. 
211 fol. 37v. 
212 fol. 41 v. 
213 EH 2.973.731 Teile = 1579,73023 Ruten. Also BD = 10.000.000 Teile = 5312,2835 Ruten. 
214 GD (GY) - EY = 4358,4494 - 2188,7302 = 2169,7192 Ruten = EG. 
215 BH (BD) - HE = 5312,283 - 1579,730 = 3732,553 Ruten = BE. 
216 Fläche des Dreiecks BCD = BE ■ ED = 3732,553 • 3780 = 14.109.050,34 Quadratruten. Fläche des Dreiecks GCD = GE ■ 

ED = 2169,7192 ■ 3780 = 8.201.538,576 Quadratruten. 
217 rinnen ■ b : 2 = BD • CHD : 2 = 5312,283 ■ 8415:2 = 22.351.430,72 = Sektor BCHD. Im Druck steht 22.351.430 7/l00 statt 72/|00. 
218 BCHD - BCGD = 22.351.430,07 - 5.907.511,76 = 16.443.918,31 Teile = GCHD. 
219 YD-GD = 4576,967 ■ 4358,449 = 19.948.477 Quadratruten. 
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Mond CYDH 3.504.557 [Quadrat-] Ruten,™ wobei für den Umfang 3/7 mal Durchmesser genommen 
wird, welche Art in kleinen Kreisen wenig Unterschied macht.™ Aber in großen Kreisen und Figuren 
ist vonnöten, einen vollkommeneren Wert zu gebrauchen als oben. Das scheint, es sei denn bei den 
Brüchen, gar nicht schwer. Der Unterschied ist ganz klein, es gehört sich, in solchen Sachen keine 
Arbeit zu sparen, auch nicht ein bisschen. Vollkommene und wahre Antwort gibt jeder Liebhaber, 
wenn er gefragt wird, dass er annimmt, beim Lösen müssen die Landmesser ihre Ehre und Eide beim 
Messen und Rechnen berücksichtigen. “ 

Van Ceulen erkennt zu Recht, dass sich aus Kreisbogen 
und zugehöriger Sehne alle restlichen Stücke der Figur 
berechnen lassen. Allerdings führt das auf die Gleichung sinct 
= 0,014417-a für den äußeren größeren Abschnitt und auf 
sinß = 0,015680-ß für den inneren kleineren Abschnitt (a, ß 
sind hier die halben Zentriwinkel). Beide Gleichungen sind 
elementar nicht lösbar sondern nur durch systematisches 
Probieren. Die Lösungen für a, ß sind auch nicht exakt 45° 
bzw. 60°, sondern ungefähr 2a = 120,2244° = 120° 13' 28" 
bzw. 2ß = 90,72366° = 90° 43’ 25". Deshalb sind auch van 
Ceulens Ansätze eines gleichseitigen Dreiecks bzw. Quadrates 
nicht exakt richtig. Entscheidend ist, was man als gegeben 
annimmt. Hierbei verfahrt van Ceulen richtig, indem er Sehne 
und Bogen als gegeben voraussetzt und die Winkel seiner 
Sinustafel entnimmt. Van Ceulen fährt im Text fort: 

„Nun folgt die Rechnung nach meiner Art und Weise,222 wodurch diese Frage so sicher gemacht 
werden kann, dass sicher kein Unterschied bis zum Quadratfuß ist. Zuerst multipliziere ich 
20.000. 000 mit 3,141592653. 

Damit ergibt sich der Umfang eines Kreises mit 20.000.000 Teilen im Durchmesser zu 62.831.853 
bis 62.831.854 Teilen.223 Hier suche ich wie oben 1 /% von 62.831.853 zu 7.853.9815/g 224 durch den 
sinus von 45°. Ich finde 23.746 zu wenig 225 und der Bogen von 46° hat einen 29.996 Teile zu großen 
Sinus226 Durch diese Differenz finde ich, dass der richtige Winkel zwischen 45° 26' und 45° 27' ist221 

Hier sollte man finden, dass die Teile des Bogens von 45° 26' durch den sinus desselben Winkels sich 
zu 111.303.055 gegen 100.000.000 ergeben,™ und müsste sein 111.309.523™ Darum ist der Bogen 
zu klein und der Unterschied ist hier 6.468 Teile. 

Der sinus von 45° 27' ist ebenso 7.126.385,230 und sein Bogen 7.932.521,4412,231 das Verhältnis 
100.000. 000 gegen 111.311.996232 ist 2473 Teile zu groß. Hierdurch finde ich, dass der Bogen HD 
45° 26' 432/;" groß ist,233 die geben 7.931.716 Teile,234 und der sinus [dieses Winkels] ist 
7.125.820 235 Nun kannst du wie vorn finden den halben Durchmesser BH = 5304,6526575,236 also für 
den ganzen Durchmesser 10.609,305315 Ruten, und Jur BE 3721,684892. Subtrahiert vom halben 
Durchmesser, bleibt für HE 1582,967765. Dazu die Breite des Mondes zu 609, ergibt für YE 
2191,967765. Ebenso für den halben Durchmesser GY 4355,24714 und für den ganzen Durchmesser 
des kleinen Kreises 8710,49428 Ruten. Nun ist noch gesucht der Bogen YD, der wird so gefunden: 
Multiplizier den gefundenen Durchmesser mit 3,141592653, so ergibt der Umfang des Kreises 

Abb. 26: Ludolph van Ceulen 

220 GCYD - GCHD = 19.948.476 - 16.443.918 = 3.504.558 Quadratruten. 
2:1 „wenig gibt oder nimmt“. 
222 Das ist keine andere Methode, es wird nur statt 3’/7 für n der Wert 3,141592653 verwendet. 
223 Ziel ist der Wert für den Bogen(90°) : Sehne CD = 8415:7560 = 11.130.952:10.000.000. 
224 Es wird mit 7.853.981 Teilen für den 45°-Bogen gerechnet. 
225 b(45°) : sin45° = 7.853.981 : 7.071.068 = 11.107.206 zu 10.000.000 Teile. Das sind 23.746 Teile zu wenig gegenüber dem 
Zielwert 11.130.952. 
226 b(46°) : sin46° = 8.028.513:7.193.398 = 11.160.946 zu 10.000.000 Teile. Das sind 29.994 Teile zu viel gegenüber dem 
Zielwert 1 1.130.952. 
227 Durch Interpolation 23.746 : (23.746+29994) = 0,44187° = 26,51 = 26' 31". 
228 Hier wird mit einer Stelle mehr gerechnet: Bogen 45° 26' : sin(45° 26') = 7.929.612,5 : 7124.344 = 1 11.303.055 zu 
100.000.000 Teilen. 
229 Das ist der Zielwert b(90°) : Sehne CD = 8415 : 7560 = 1 11.309.523 zu 100.000.000, also um eine Stelle mehr gerechnet. 
230 Wie in van Ceulens Sinustafel auf fol. 39v angegeben. 
231 Hier wird der Bogen 45° mit dem genauer angegebenen Wert von 7.853.981V8 gerechnet, somit der Bogen 27' zu 
78.539,8162 Teile, also der Bogen 45° 27'zu 7.932.521, 4412 Teile. 
232 Bogen(45° 27') :sin(45° 27') = 7.932.521,4412 : 7.126.385 = 111.311.996 zu 100.000.000 
Das ist 2473 Teile zu groß gegenüber dem Zielwert 111.3111.996. 
233 Jeweils Bogemsinus in Teilen: Zu 45° 26'folgt 1 1 1.303.055, zu 45° 27'folgt 111.311.996. Der letzte Wert ist um 2473 zu 
groß gegenüber dem Zielwert 111.309.523. Interpolation 2473:8941 = 0,2766' zu groß = 16,6”= 163/5”. 45°27'- 163/5 = 45° 
26' 432

/S". 
234 45° 26' 432/5' ' : 360° ■ 62.831.852 = 7.931.716 Teile. 
_ji Laut Sinustafel auf fol. 39v: sin 45° 26' = 7.124.344; sin 45° 27' = 7.126.385. Interpoliert auf 43,4” ergibt sich 43,4:60-2041 
= 1476 Teile. Diese addiert zu 7.124.344 ergibt 7.125.820. 
236 */2 : sin(V2) = 3780 : 0,7125820 = 5304,6526575 Ruten. 
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27.364,8248. Die 4355,24714 geben 10.000.000 Teile, für 3780 ergeben sich somit 8.679.186; das ist 
der Sinus des Bogens YD. Damit der Winkel 60° 13'3,57",237 Das sind in Ruten 4577,24908 für YD. 
und für den ganzen Bogen CYD 9.154,49816. Noch YE von YG subtrahiert, bleibt EG 2163,27938 
Ruten. Nun sind alle Linien bekannt, wodurch der Mond CYDH gefunden werden kann, wie hier 
unten: 

BD = 5304,652657 der halbe Durchmesser des großen [unteren] Kreises = BH 
HD = 4207,5 die Hälfte des Bogens CHD 
GD = 4355,24714 der halbe Durchmesser des kleinen [oberen] Kreises = GY 
YD = 4577,24904 die Hälfte des Bogens CYD [hier letzte Ziffer 4 statt 8] 
EB = 3721,684892 
EG = 2163,27938 
ED = 3780. 
Daraus findest du wie oben für das Feld oder den Mond 3.506.933 Quadratruten. Das ist 2376 

Ruten mehr als nach dem Wert fiir n = J V7 gerechnet. 

Van Ceulens Rechnungen sind natürlich richtig. Er lässt aber die Absicht von Ursus außer Acht, 
die Lösung mit elementaren euklidischen Mitteln ohne Sinustafel zu bearbeiten. Außerdem ist die 
Aufgabe bei Ursus überbestimmt in dem Sinne, dass allein aus Bogen und Sehne alle restlichen 
Stücke bestimmt werden könnten. Das zusätzliche Verwenden der zu erkennenden Zentriwinkel von 
90° bzw. 120° macht die Aufgabe überbestimmt, ist aber nötig, um sie ohne Sinustafel bearbeiten zu 
können. Die Winkel sind, wie van Ceulen zeigt, auch nicht exakt 90° bzw. 120°. Zusätzlich gibt Ursus 
die Dicke des Möndchens an, was die Lösung nur wesentlich vereinfachen kann. 

237 Laut van Ceulens Sinustafel auf fol. 41v ist sin 60° 13'= 8.679.100 Teile, sin 60° 14'= 8.680.544 Teile, Unterschied 1444 
Teile. Interpolation zu 8.679.186 Teilen ergibt 86:1444 = 0,059557'= 3,57''. 
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Von Ursus benutzte deutsche Bezeichnung 

Wirkung 
Zeichen 
Statt, stette 
Stand, stende 
Unterscheid, der brüchen unterscheid 
Zeichen der unterscheide 
Schuh, schuch, fuß 
Creutzschuch 
Vermehrung 
Verminderung 
Summe, summieren 
Vervielfachen 
Zweifältigen 
Abziehen 
Teilen 
Gevierte Zahl 
Zweimal in sich selbst gevielfältigte Zahl 
Gevierte Wurzel 
Leibliche Wurzel 
Gevierte Wurzel einer gevierten Wurzel 
Leib 
Ecken 
Örter 
Seiten 
Enden 
Recht, rechteck 
Winkel 
Schärfe 
Stumpfe 
Spitze 
Rechte ecke, rechteck 
Krummeck 
Winkelrecht 
Überzwerg 
Rauteckig 
Ungleichseitig 
Winkeleckt 
Ortgleiches Dreieck 
Runde 
Teil der runde 
Umkreis 
Durchmaß 
Sehne 
Bogen 
Bogenlinie 
Boltz 
Heldung 
Leib 
Sechseck 
Zwölfeck 
Achteck 
Zwanzigeck 
Sechseckte fläche 
Gleicheckte fläche 
Kugelechter Leib 
Zirkeltrumb 

für 

Rechenart, -operation 
Ziffern 
(Dezimal-)Stelle 
(Dreier-)Block bei Dezimalzahlen 
Bruchteil, Bruchstellenwert 
Hochgestellte röm. Zahlen als Stellenwert 
Fuß 
Quadratfuß 
Addition oder Multiplikation 
Subtraktion oder Division 
Summe, Addition 
Multiplikation 
Verdoppeln 
Subtrahieren 
Dividieren 
Quadratzahl 
Kubikzahl 
Quadratwurzel 
Kubikwurzel, dritte Wurzel 
Vierte Wurzel 
Körper 
Seiten, Strecken 
Winkel (Winkelfelder), Eckpunkte 
Parallele Strecken 
Nicht-parallele Strecken 
Gerade, gerade Linie 
Rechter Winkel 
Nicht-rechter Winkel 
Stumpfer Winkel 
Spitzer Winkel 
Gerade Linie, Strecke 
Nicht-gerade Linie 
Rechteck, rechtwinklig 
Rechtwinklig 
Parallelogramm 
Trapez 
Rechtwinkliges Dreieck 
Gleichwinkliges (gleichseitiges) Dreieck 
Kreis 
Kreissektor 
Kreislinie, Peripherie 
Durchmesser 
Sehne 
Kreisabschnitt 
Kreisbogen 
Höhe des Kreisabschnitts 
Höhe einer Kugelkappe 
Körper 
Sechsflächner, Würfel 
Zwölfflächner, Dodekaeder 
Achtflächner, Oktaeder 
Zwanzigflächner, Ikosaeder 
Regelmäßiges Sechseck 
Gleichseitige regelmäßige Fläche 
Kugel 
Kugelsegment, -kappe 
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Teil 1: Tractatiuncula 
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Abb. 27: Titelblatt der Handschrift Tractatiuncula 1597, Blatt lr. 
Österreichische Nationalbibliothek Wien, Codex Series nova 10943. 
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TRACTATIUNCULA 1597 

Einleitung 

Mit Datum vom 16. Oktober 1597 (siehe Abb. 30) übergab Nicolaus Reimers (Raimarus) Ursus 
dem Kaiser Rudolph II. ein Manuskript in schöner Handschrift, eine Abhandlung über die Coss, über 
die Algebra also. Die Handschrift ist in der Österreichischen Nationalbibliothek Wien unter Cod. 
Series nova 10943 erhalten und gebunden. Die Vorblätter Ir,v, IIr,v und IIIr,v sind leer, auch ohne 
Textspiegel. Der Text beginnt auf Vorblatt IVr = Blatt lr. Die Blätter im Papierformat 20 cm x 30 cm 
sind nummeriert lr, lv, 2r, 2v, 3r ... und enthalten einen (von Ursus) mit Bleistift als Rechteck 
gezeichneten Textspiegel mit den Maßen 13 cm x 21,5 cm. Die Handschrift enthält nach der 
Widmung an den Kaiser (Blatt 2r-5v) auf je einer Seite ein kurzes Zitat aus Hieronymus Cardanus, 
mit Nennungen von Scipio Ferreus und Nicolaus Tartaglia (Blatt 6r), und aus Michael Stifel (Blatt 
6v). Die Blätter 7r,v sind leer. Dann folgen die 7 Kapitel (Blatt 8r-31r) zur Coss bzw. Algebra. Am 
Ende sind die Blätter 31v und 32r,v leer, aber mit gezeichnetem Textspiegel, und die Blätter 33r-35v 
sind leer ohne Textspiegel. Der alte Einband steckt in einer modernen Schutzhülle, deren Vorder- und 
Rückseite unbeschriftet sind. 

Die Handschrift Tractatiuncula selbst ist nur der erste Teil von Ursus’ Algebradarstellung, der 
letzte Satz „Finis partis Algebrae prioris“ deutet auf eine Fortsetzung hin, auf einen zweiten Teil, der 
dann auch in der als Arithmetica Analytica 1601 gedruckten Fassung vorliegt, „Von der Aequation“, 
also eine Gleichungslehre. Widmung und Kapitel 1 der Tractatiuncula (Blatt 8r-llv), das eine 
Darstellung der Geschichte der Coss bringt, sind nicht in der Arithmetica Analytica abgedruckt, also 
nur in der Handschrift erhalten. 

Ich möchte den ausgesprochen hilfsbereiten Mitarbeitern der Österreichischen Nationalbibliothek, 
der Wiener Universitätsbibliothek und der verschiedenen Archive danken, und Herrn Friedrich 
Kätscher in Wien, der mich an die verschiedenen Orte der Bibliotheken und Archive führte und dabei 
noch einen Überblick über die Geschichte Wiens lieferte. 
Kursiv gedruckt ist der Ursus'sche Text, in heutiges Deutsch übertragen. Das Titelblatt lautet: 

„NICOLAUS RAIMARUS URSUS, 

Mathematiker der hochheiligen römischen kaiserlichen Majestät. 
Tractatiuncula 

von der allerkunstreiches ten und Sinnreichesten Rege! Cossa oder Algebra, in welcher die ganze 
Kunst gefasst und auf das allerklarste und leichteste an den Tag gebracht worden ist. 

An die Römische Kaiserliche, auch Ungarische und Böhmische Königliche Majestät, 
und auf derselben allergnädigstes Gesinnen und Begehren 

alleruntertänigst geschrieben. 
Von Epicharm: 

Das Leben braucht fur die Menschen durchaus Berechnung und Zahl. 
Wir leben von Zahl und Berechnung, denn dieses erhält die Sterblichen. “ 

Auf Blatt lv folgen zwei lateinische Epigramme von Ursus, das erste auf die Algebra selbst, das 
zweite auf seinen Dienstherrn, Kaiser Rudolph II. Die Anfangsbuchstaben des ersten Epigramms 
ergeben im lateinischen Original das Wort ALGEBRA, die Anfangs- und Endbuchstaben des zweiten 
Epigramms ergeben die Worte RUDOLPHUS SECUNDUS. Hier eine deutsche Übersetzung: 

„Ein Epigramm des Autors auf die göttliche Kunst Algebra: 
Von Jupiter und vom Gehirn Jupiters und Platos der Ursprung. 
Die Regel der Algebra steigt in die göttlichen Lüfte des Lichts. 
Kostbarer als die Erde, ein Schatz und jeder Wert. 
Entstanden aus dem verborgenen Inneren Jupiters und der Götter. 
Reize, Ambrosia und Nektar und Liebestrank der Götter. 
Die Regel des Arabers Geber, nach dem die Algebra benannt wird, 
Auch Almucabala1 2 wie eine große Weisheit3 

1
 Georg Kaibel, Comicontm Graecorum Fragmenta, Epicharms [um 480 v.Chr.] Dramen, Berlin 1899, Fragment Nr. 255 aus 
dem Drama „Der Staat des Chrysogonos des Guten": Toö 'Emxäppou: 'O ßiot; OtvOplÜTTOu; Xoytcrgoö KÖtptGpoö 
öelTcu TTOCVU. Ztüpev 6 <xpi9ptüi Kai XoytouüH TaüTa yap crun^ei ßpoTouq. 
2 Die Worte Algebra und Almucabala sind aus einem Teil des arabischen Buchtitels von al-Hwärizmls Gleichungslehre „al-gabr 
wa-l-muqäbala“ entstanden. Siehe Wolfgang Kaunzner, Zusammenhänge zwischen mathematischen Texten, in: Menso Folkerts 
(Hrsg.), Mathematische Probleme im Mittelalter, Wiesbaden 1996, S. 435. 
3 Epigramma autoris in divinam artem Algebra: 
A love principium Jovis e cerebro atque Platonis Luminis in dias Algebrae Regula it auras. 
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Ein anderes Epigramm zum Lob des Kaisers: 
König der Könige, Herr der Herren und Gebieter des Erdkreises, 
Gebrauche, göttlicher Rudolph der Zweite, die göttlichen, 
ich wiederhole, gebrauche die göttlichen Geschenke zweimal, bis 
ich einm al noch weitere, dir zu wissen sehr angenehme hinzugefiigt haben werde. 
Und damit dein Ruhm und dein unzerstörbarer Name bleibt, 
will ich deswegen schreiben, wenn ich etwas schreiben könnte. 
Gebrauche diese göttlichen, schon lange erfundenen [Erkenntnisse] Platos, 
die sehr angenehm zu wissen sind, göttlicher Rudolph. 
Mögest du ein stabiles, dauerhaftes und einträchtiges Reich haben!* 

Das Widmungsschreiben an Rudolph II. 

Im nun folgenden Widmungsschreiben an 
Rudolph II., der wohl mehr an den schönen 
Künsten und an der Astrologie interessiert 
war, versucht Ursus das Interesse des Kaisers 
für die Mathematik zu gewinnen, indem er 
einen trickreichen, dem Kaiser schmeicheln- 
den Vergleich mit Plato heranzieht. Plato, der 
eigentliche Erfinder der ganzen Mathematik 
und aller freien Künste, sei in seiner Jugend 
zuerst ein guter Poet gewesen, später aber 
habe die jugendliche Begeisterung für die 
Dichtkunst aufgehört und er habe diese nicht 
mehr betrieben, nachdem er sich der Logik 
und der Mathematik zugewandt hatte. Und 
ähnliches sei auch beim Kaiser mit seinem 
hohen Verstand zu erwarten; denn da er sich 
vorher mit den „mechanischen Künsten“ wie 
Malen, Schnitzen, Theaterspiel und Instru- 
mentenbau zum Höchsten ergötzt habe, 
bestehe kein Zweifel, dass er sich wie Plato 
auch zu den höheren Künsten, insbesondere 
zur Mathematik, aufschwingen werde. Denn 
nur Schuster blieben bei ihren Leisten. 

Ob der Kaiser die Handschrift daraufhin 
gelesen hat, bleibt dahingestellt. Es gibt 
jedoch zwei Textstellen, die gerade dies 
erwarten lassen. Zum einen heißt es auf dem 
Titelblatt, dass das Werk auf des Kaisers 
„Gesinnen und Begehren geschrieben“ 
worden sei, zum anderen sagt Ursus im Widmungsschreiben, dass der kaiserliche Vizekanzler und 
geheime Rat Rudolph Coraducius, der Nachfolger seines Förderers Jacob Curtius, ihm im Namen des 
Kaisers das Anfertigen dieser Arbeit befohlen habe. Bei einem solchen Interesse an diesem Werk 
wird es der Kaiser wohl auch zur Kenntnis genommen haben. 

Der Druck der Tractatiuncula, die dann um einen zweiten Teil vermehrt, jedoch ohne Widmung 
und ohne das Kapitel 1 über die Geschichte der Coss, Arithmetica Analytica genannt wurde, erfolgte 
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Abb. 28: Handschrift Tractatiuncula Blatt lv: 
Epigramme. 

C 
V 
N 

D 

V 
5 

Gaja et Thesauro, et pretio pretiosior omni, Ex Iovis et Divum abstrusis penetralibus orta, 
Blanditiae, Ambrosia et Nectar philtrumque Deorum. Regula Gebri Arabis, quo auctore Algebra vocatur, 
Almucabala etiam veluti sapientia magna. 
4 Aliud in laudem Caesaris: 
Rex regutn Domine et Dominorum atque arbiter orbi S 
Utere divinis divine Rudolphe Secund E 
Divinis, inquam donis bis utere, done C 
Olim alia addidero, tibi iucundissima seit U 
Lausque tua, ut maneat atque indelebile nome N 
Propterea scribam si possem scribere quiequi D 
Hisce diu inventis, quae iucundissima seit U 
Utere divinis, divine Rudolphe Platoni S 
Sit tibi et Imperium stabile et durabile conco RS 

Das letzte RS steht erneut für Rudolphus Secundus. 
Ich danke Herrn Gerhard Weng (t) für die Übersetzung aus dem Lateinischen. 
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erst posthum 1601 in Frankfurt/Oder bei Johann Hartmann. Aber bereits im März 1599 erhält Ursus 
für die Widmung seines Chronotheatron 1597 an den Kaiser und für den Druck der Algebra 100 
Taler. In den Hoffinanzindizes5 heißt es: „Nicolai Raimari Ursi Mathematici suppliciren [bitten] umb 
Verordnung einhundert Thaler wegen dero dedication ihro Majestät seines Chronotheatri, so woll für 
edition Algebrae, ligt da expedirt. 31. Martius 1599.“ Dieser Eintrag und die Zahlung bedeuten auch, 
dass Ursus am Hofe und bei Rudolph II. noch im Frühjahr 1599 in Ansehen stand, trotz seines 
Streites mit Tycho Brahe und trotz des Druckes seiner Hypothesibus Astronomicis 1597, die er ja 
ohne Druckprivileg und ohne Druckerlaubnis herausgebracht hatte.6 Diese Hoffinanzindizes 
enthalten noch ein weiteres interessantes Detail, nämlich den Namen von Ursus’ Ehefrau. List/Bialas7 

haben zwar den Sachverhalt genannt, dass „der Witwe von Ursus für die weggenommenen Bücher 
300 fl“ gezahlt werden sollen, nennen aber nicht den Namen „Ursula“, was ich hier nachhole.8 Das 
Widmungsschreiben an den Kaiser, in heutiges Deutsch übertragen, lautet nun wie folgt: 

„Dem allerdurchlauchtesten großmächtig- 
sten und unüberwindlichsten Fürsten und 
Herrn, Herrn Rudolph II., von Gottes Gnaden 
erwählten römischen Kaiser, zu allen Zeiten 
Mehrer des Reiches, auch zu Ungarn, Böhmen, 
Dalmatien, Kroatien und Slavonien König, 
Erzherzog zu Österreich, Herzog zu Burgund, 
zu Steier, Kärnten, Krain und Württemberg 
etc., Graf zu Tirol, meinem allergnädigsten 
Herrn und Mäzen. 

Allerdurchlauchtester großmächtigster und 
unüberwindlichster römischer Kaiser und 
König, allergnädigster Herr und Mäzen. 
Nachdem der göttliche und hocherlauchte 
Philosoph Plato, der erste Erfinder 
nachfolgender allersinnreichsten und 
geschwindesten Kunst der ganzen Mathematik 
und aller freien Künste, in seiner Jugend ein 
vortrefflicher Poet gewesen und beispielhaft gute Gedichte oder Verse geschrieben hatte, konnte er 
danach, als er sich zu viel höherer philosophischer Kunst begeben hatte, nämlich zur Logik und 
Mathematik, keinen guten Vers mehr schreiben und machen, weil er zu solch niederen und im 
Vergleich zu diesen anderen viel geringeren Studien keine besondere Lust mehr hatte, und dadurch 
die poetische Ader und die jugendliche Begeisterung für die Dichtkunst, ich sage nicht Verzückung, 
ganz aufgehört hatte, erloschen und abgegangen war. Gleiches, allergnädigster Herr und Mäzen, ist 
von Euer kaiserlichen und königlichen Majestät und Eurem hochsinnreichen und in allen 
vornehmsten Künsten geschulten hohen Verstand zu erwarten. Denn weil derselbe sich in den 
vornehmsten mechanischen Künsten wie Malen, Bildschnitzen, Theaterspielen, Instrument- und 
Uhrmachen aufs Höchste erfreut, ergötzt und belustigt, besteht kein Zweifel daran, wenn derselbe 
einen besonders vortrefflichen Diskurs der höheren sinnreichen freien Künste, die die mechanischen 
weit übertreffen, erlangen möchte, dass derselbe nicht weniger als Plato sein hochsinnreiches und 
vortreffliches Gemüt und seinen hochadeligen Verstand von den genannten mechanischen Künstlern 
zu den philosophischen und besonders mathematischen Künsten erheben und aufschwingen würde. 
Und schließlich ende ich mit dem Poeten Horaz: 
Handwerker sollen sich mit Handarbeiten beschäftigen,9 

Denn ebensosehr wie das göttliche und ewig währende menschliche Gemüt den 
mottenzerfressenen und wurmstichigen Leichnam übersteigt und übertrifft, ebensoweit übertreffen 
und übersteigen auch die freien Künste die mechanischen, was diejenigen wissen und empfinden, 
welche sich in beiden geübt und befleißigt haben. Nun ist aber unter allen freien philosophischen 
Künsten keine sicherere und anmutigere Wissenschaft als die Mathematik, das ist die Arithmetik und 
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Abb. 29: Handschrift Tractatiuncula 1597, 

Blatt 2r: Beginn der Widmung. 

5 Haus-, Hof- und Staatsarchiv Wien, Hoffmanzindizes, Gedenkbuch 1599 (Bd. 522), Blatt 112v/l 13r. Ich darf den Mitarbeitern 
des Archivs meinen ganz besonderen Dank aussprechen. 
6 Siehe dazu: Jardine/Launert/Segonds/Mosley/Tybjerg, Tycho versus Ursus, in: Journal for the History of Astronomy, 
Cambridge, XXXVI 2005, S. 92-95. 
7 Die Coss von Jost Bürgi, in: Nova Kepleriana, Neue Folge Heft 5, München 1973, S. 108f. 
* Hoffmanzindizes, Gedenkbuch 1600 (Bd. 531), Blatt 275v für Okt. 1600: „Ursula, Niclas Ursy wittiben supplizieren sambt 
Hansten Haydens, kayserlichen Cammerdieners bericht per Bezahlung des Ursi hinterlassenen Bücher ist dem Herrn Hoff- 
zalmeister zuegestält, der soll des Ursi wittib wegen der Bücher, so Ir Majestät nehmen lassen, dreyhundert Gulden Rheinisch 
aus dem jezigen Galli Termins Piergefellen in abschlag des Cammerdeputats bezallen. Ex. Cam. Aulica 20. Oktober. P.“ 
9 Horaz, epist. 11,1, 114ff: „Tractant fabrilia fabri“. Ursus schreibt „Tractent fabrilia fabri“ = Schuster, bleib bei deinen Leisten. 
Die Emblemata von Henkel/Schöne, Stuttgart 1996, bringen in Spalte 1078/79 diesen Spruch mit einem Emblem mit dem 
Subskript: „Die Dichtung ist unser Werk; wir betreiben es wie die Handwerker das ihre. Jeder verwendet seine Zeit auf seine 
erlernte Kunst.“ 
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die Geometrie, oder die Rechen- und die Messkunst. (Ich will hier nicht die mechanische und 
instrumentische Mathematik oder Messkunst, die ganz unsicher, läppisch und handwerklich ist, 
meinen.) Diese ist der ganzen Mathematik Mark und Kern, die allersinnreichste und schnellste Regel 
Coss oder Algebra, nach ihrem Bearbeiter, dem Araber Geber, genannt. In einem einzigen Beispiel 
dieser hochsinnreichen Regel ist mehr Lust und Ergötzung als in allen mechanischen Künsten oder in 
allen Karten-, Würfel-, Schach- oder Brettspielen. 

Denn wahrlich, wer jenes versteht, wird dieses alles am wenigsten achten. Es ist wohl auch eine 
große Lust und Kurzweil in dem «Fundamentum Astronomicum, doctrina sinuum et triangulorum»10 

zu finden. Aber die Algebra übertrifft dies bei weitem. Und es gibt in summa in der Welt keine so 
geschwinde, gründliche und sinnvolle Kunst der Wissenschaft wie die Algebra zu finden. Weil Eure 
kaiserliche und königliche Majestät durch den wohlgeborenen und hochgelehrten Herrn Rudolph 
Coraducius1', den derzeitigen Vizekanzler des Römischen Imperiums, meinem gnädigen Herrn und 
vornehmen Mäzen, allergnädigst mir befohlen haben, diese allerkunstreichste und fast den 
menschlichen Verstand übertreffende und überschreitende Regel [Coss, Algebra] zu beschreiben, zu 
umreißen und zu entwerfen, habe ich dieses begierig und mit höchster Freude empfangene 
kaiserliche Mandat nicht nur alleruntertänigst ausführen, verfolgen, dem Mandate nachkommen und 
ihm mit meinem kleinen und schwachen Vermögen Folge tun wollen. Sondern ich habe mich auch 
von Herzen darüber gefreut, dass Eure kaiserliche und königliche Majestät einen solchen 
kaiserlichen und mir höchst erwünschten Auftrag gnädigst an mich gelangen ließ. Ich habe auch aus 
einem solchen gänzlich philosophischen und für mich erwünschten Auftrag ein solches Hoffen und 
Vertrauen geschöpft, dass soweit Eure kaiserliche und königliche Majestät hochverständige und 
sinnreiche und in solchen Künsten erfahrene Leute um sich haben möge, für dieselbige [d.i. die k. u. 
k. Majestät] mit ihrem auch in anderen Künsten hohen Verstand ein vortreffliches Ergebnis 
herauskommen möchte. 

Auf welche Weise und durch welche 
Mittel diese hohe Kunst Algebra zu 
ihrer endgültigen Vollkommenheit 
kommen und fortgesetzt werden könne, 
wird in dem folgenden ersten Kapitel 
gleichsam durch ein Schaufenster 
gezeigt. Ich bitte Euere kaiserliche und 
königliche Majestät alleruntertänigst, 
sich dieser nicht geringen Sache, an 
der der ganzen gelehrten Welt viel 
gelegen ist, anzunehmen und sie sich 
angelegen sein lassen zu wollen. Mit 
der alleruntertänigsten Befolgung [des 
Auftrages] unter Göttlicher Allmacht 
wünsche ich allergnädigsten Schutz zu 
langer glückseliger Regierung und 
Nutzen der hochgeängstigten und 
betrübten Christenheit. Gegeben in 
Euer kaiserlichen und königlichen 
Majestät Hof zu Prag in Böhmen, den 
16. Oktober Anno Christi 1597. 

Euer Römischen Kaiserlichen und Königlichen Majestät alleruntertänigster Mathematiker und 
Diener Nicolaus Raimarus Ursus Dithmarsus. “ 

Die folgenden Blätter 6r und 6v nennen mit Cardanus und Stifel nicht nur zwei Mathematiker, die 
sich um die Entwicklung der Coss verdient gemacht haben, sondern auch Vorbilder, aus denen Ursus 
schöpfte. Der erste Beitrag über Cardanus ist auf Latein geschrieben. Ursus zitiert Cardanus: Dieser 
habe über die Lösung der kubischen Gleichung ax3+bx=c durch Ferreus berichtet und auch, dass 
Tartaglia dieselbe Lösung gefunden habe, als er sich auf einen Wettstreit mit Floridus eingelassen 
hatte; und schließlich, dass Cardanus die Lösung nach vielen Bitten von Tartaglia genannt bekam. 
Die kubische Gleichung ax3+bx=c wird im Text wie bei Cardanus mit Worten beschrieben als 
„Capitulum cubi et rerum numéro aequalium“.12 Dabei steht „cubus“ für x3 oder ax3; „res“ steht für 
die Unbekannte, die Variable, also für x oder b-x; „numéro“ steht für die Konstante c; „+“ und „=“ 
werden als Worte „et“ und „aequales“ geschrieben. Die „Lösung“ eines Gleichungstyps, die Regel 
zur Lösung desselben oder einfach den Gleichungstyp bezeichneten die italienischen Mathematiker 
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Abb. 30: Handschrift Blatt 5v: Widmung letzte Seite, 
mit der eigenhändigen Unterschrift von Ursus. 

10 Ursus zitiert hier den Titel seines 1588 in Straßburg erschienenen Buches. 
11 Ursus schreibt „Careducius“. Der Vizekanzler war (seit 1519/1559) ständiger und tatsächlicher Leiter der Reichshofkanzlei, 
vom Kaiser ernannt. 
12 Bzw.: „De cubo et rebus aequalibus numéro“. Kästner, Geschichte der Mathematik Bd.I, Göttingen 1796, S. 156. 
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des 15./16. Jh. als „capitulum“.13 Der Text, den Ursus aus Cardanus zitiert, ist teilweise auch von 
Michael Stifel in Die Coß Christoffs Rudolffs 1553 abgedruckt, dort heißt es auf fol. 482r allerdings 
nur: „Invenit Scipio Ferreus rem sane pulchram et admirabilem superantem omnem humanam 
subtilitatem, omnisque ingenii mortalis claritatem. Donum profecto est hoc coeleste et experimentum 
virtutis animorum, atque adeo illustre ut qui hec attigerit, nihil non intelligere posse se credat.“ 

Der Text zu Cardano lautet bei Ursus in deutscher Übersetzung: 
,f)er Italiener Hieronymus Cardanus,14 höchster Philosoph, hat über die kubische Algebra oder 

die kubische Coss folgenden Text hinterlassen: 
In unserer Zeit hat Scipio Ferreus15 aus 

Bologna mit der Lösung der kubischen 
Gleichung ax3+bx=c etwas wirklich 
Vortreffliches und Bewundernswertes 
gefunden, weil diese Wissenschaft allen 
menschlichen Scharfsinn und die Klarheit 
jedes sterblichen Geistes übertrifft, sicherlich 
ein Geschenk, aber ein himmlischer Beweis 
der geistigen Fähigkeit, und so einleuchtend, 
dass, wer sich damit befasst, glaubt, er könne 
alles begreifen. Im Wetteifer mit ihm [also mit 
Scipio Ferreus] hat unser Freund Nicolaus 
Tartaglia** aus Brescia, als er sich in einen 
Wettstreit mit dessen Schüler Antonius Maria 
Floridas11 eingelassen hatte, dieselbe Lösung 
gefunden, um nicht übertroffen zu werden. 
Eben dieses hat er mir [dem Cardano also], 
durch viele Bitten erweicht, übergeben. Und 
an die Stelle der Worte des Cardanus hat 
Michael Stifel Folgendes gesetzt: “l8 

Den Text über Stifel auf Blatt 6v zitiert 
Ursus aus Stifels Die Coß Christoffs Rudolffs 
1553. Er deutet den Sachverhalt an, dass man 
nun nicht mehr nur nach der Lösung 
quadratischer und kubischer Gleichungen 
sucht, sondern dass auch Gleichungen vierten, 
fünften und noch höheren Grades behandelt 
werden. Allerdings werde der Umfang immer 
größer. Der Text bei Ursus, aus Stifel zitiert, 
lautet:19 
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Abb. 31: Handschrift Tractatiuncula, Blatt 6r. 
Zitat aus Cardanos Ars Magna 1545. 

13 Siehe Friedrich Kätscher, Die kubischen Gleichungen bei Nicolo Tartagtia, Wien 2001, S. 8f. 
14 Girolamo (Hieronymus, Geronimo) Cardano, 1501-1576. Hauptwerk Ars magna, Nürnberg 1545. Siehe H. Gericke, 
Mathematik in Antike Orient und Abendland, Wiesbaden 8. Aufl. 2004, 2. Teil S. 228-236. 
15 Scipio del Ferro, 1465-1526, lehrte von 1496 bis 1526 an der Universität Bologna. Cardano berichtet hierüber in seiner Ars 
magna von 1545 in Kapitel XI „De cubo et rebus aequalibus numéro“, Blatt 29v -Hl v. Siehe Moritz Cantor, Vorlesungen über 
Geschichte der Mathematik, Bd. II, Leipzig 1892. S. 443 und Helmuth Gericke. 
16 Nicolo Tartaglia (Fontana), 1500-1557. 
17 Antoniomaria Fior. 
18 Ursus’ lateinischer Text lautet: „Hieronymus Cardanus Italus, Summus Philosophus, de divina Algebra cubica seu cubica 
cossa, ita scriptum reliquit. Temporibus nostris Scipio Ferreus Bononiensis capitulum cubi et rerum numéro aequalium invenit, 
rem sane pulchram et admirabilem, cum omnem humanam subtilitatem, omnis ingenii mortalis claritatem, ars haec superet 
donum profecto, caeleste experimentum autem virtutis animorum atque adeo illustre ut qui haec attigerit nihil non intellegere 
posse se credat. Huius aemulatione Nicolaus Tartalea Brixellensis, amicus noster, cum in certamen cum illius discipulo 
Antonio Maria Florido venisset, capitulum idem ne vinceretur invenit, qui mihi ipsum multis precibus exoratus tradidit. Atque 
in haec Cardani verba Michael Stifelius subdit haec sequentia:“. Der kursive Teil ist auf Blatt A3r aus Cardanos 1. Kapitel der 
Ars Magna zitiert, in dem Cardano eine Geschichte der Algebra beschreibt. 
19 Folio 482 r,v im II. Teil. Dort heißt es nämlich: „Dise wort Cardani neme ich also ahn, das sie nicht schlechtlich von diser 
sach alleyn gsagt seyen, sondern es sey von ihm bedacht, wie dise sach sey ein anfang der Cubiccoß, welche darnach weyter 
weise auff andere nachvolgende Coßen, die kein sterblicher Mensch nimmer mehr kan ergreyffen. Denn gleych wie die 
Binomia quadrata zurlegt werden in 4 teyl und die Cubica in 8 teyl, also werden die Binomia zenzizensica zurlegt in 16 teyl und 
die sursolida in 32 teyl, und so furt ahn nach der progreß dupla, wie ichs leychtlich weyß zu zeygen und zu beweysen, ohn das 
ich auff diß mal nicht raum haben kan sollichs hie zu handeln. Hieraufs ist auch zu mercken, wie so gar weytleufffig sey ein 
yede Coß gegen yhrer vorgehnden Coß in allerley stucken, so in den Cossen gehandelt werden.“ 
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,,Ich nehme also an, dass diese Worte des 
Cardanus nicht allein von dieser Sache handeln, 
sondern er hat bedacht, dass die Cubiccoss nur 
ein Anfang sei, der danach weiterweist auf 
andere nachfolgende Cossen, die kein 
sterblicher Mensch mehr begreifen kann. Denn 
gleich wie die Binomia Quadrata20 in vier Teile 
zerlegt werden und die Cubica21 in acht, so 
werden die Binomia Zensizensica22 zerlegt in 16 
Teile und die Sursolida23 in 32 Teile, und so fort 
nach der Folge der Zweierpotenzen 24 Hieraus 
ist auch zu ersehen, um wieviel umfangreicher 
eine jede Coss gegenüber ihrer vorhergehenden 
in allen Stücken sei, die in den Cossen behandelt 
werden. Haec Ule. “ 

Zu dem Streit zwischen Cardano und 
Tartaglia kann man viele Darstellungen zitieren. 
Ich nenne Moritz Cantor in seinen Vorlesungen 
über Geschichte der Mathematik Band II, 
Kästners vierbändige Geschichte der 
Mathematik, Friedrich Kätschers Kubische 
Gleichungen bei Nicolo Tartaglia 2001, 
Folkerts/Wußing u.a. in 4000 Jahre Algebra 
2003, Helmuth Gerickes Mathematik in Antike 
Orient und Abendland 2004. Und als Quellen Cardanos eigene Lebensbeschreibung von Hermann 
Hefele übersetzt 1914, und Cardanos Ars Magna 1545 in englischer Übersetzung 1968 von Richard 
Witmer. 
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Abb. 32: Flandschrift Blatt 6v: Zitat aus Stifel. 

Kapitel 1 : Geschichte der Coss 

Die Blätter 8r bis 1 lv der Tractdtiuncula enthalten nun als Kapitel 1 eine geraffte Geschichte der 
Coss. Ursus beginnt in der Antike mit Plato und Euklid, welche er quasi als Urväter der Algebra 
bezeichnet. Plato wird das Beispiel zur Lösung der linearen Gleichung (x:4)-2-8=4 unterstellt, er habe 
die Idee entwickelt, dass man die Rechenarten umgekehrt als Gegenrechenarten verwenden müsse. 
Ob Plato tatsächlich solch eine oder gar diese Aufgabe gelöst hat und die Struktur der Lösung benannt 
hat, ist hier unwichtig, eigentlich mathematische Schriften hat Plato jedenfalls nicht hinterlassen. 
Moritz Cantor dazu:25 „Platon wird die Erfindung der analytischen Methode zugeschrieben. Wir 
haben darüber eine ganz kurze Notiz bei Diogenes Laertius und eine ausführlichere bei Proklus.“ 
Wussing26 beurteilt Platos Haltung zur Mathematik dahingehend, dass er wohl „eine mathematische 
Ausbildung als Grundlage der eigentlichen philosophischen Schulung“ ansah, „obwohl er kaum 
eigene Beiträge zur Mathematik beisteuerte“. Aber er sei auch verantwortlich für die „Trennung von 
Theorie und Praxis“, wodurch er der griechischen Mathematik Grenzen gesetzt habe.27 Bei Viëta28 

heißt es dazu ausführlicher: „Es gibt in der Mathematik einen Weg zum Auffmden der Wahrheit, den 
Plato als erster gefunden haben soll und der von Theon Analysis genannt worden ist. Durch die 
Analysis29 wird aus der aufgestellten Gleichung oder Proportion die gesuchte Größe selbst ermittelt. 
Und so mag die analytische Kunst definiert werden als die Lehre des geschickten Findens.“ 

Es ist zeit- und ursustypisch, dass Plato als Autorität genannt wird. Und es ist typisch für Ursus, 
eine solch einfache Aufgabe an den Anfang zu stellen. Er wendet sich mit seinen Tractatiuncula nicht 
an gelehrte Kollegen, sondern an Kaiser Rudolph IL, der ihn ja beauftragt hatte, diese Arbeit zu 
verfassen. 

20 Es ist gemeint, dass die binomische Formel (a+b)2 = a2 + ab + ba + b2 vier Glieder ergibt. Eigentlich fur (a + Vb)2 oder (Va + 
Vb)2 gebraucht. 
21 Ebenso ergibt (a+b)3 = a3 + 3- a2-b + 3- a b2 + b3 acht Glieder, wenn man jedes der Mischglieder einzeln zählt. Eigentlich für 
(Va + b)3 gebraucht. 
22 (a+b)4. 
23 (a+b)5. 
24 „Progress dupla“. 
25 Ausführlicher siehe Vorlesungen über Geschichte der Mathematik, Bd I., Leipzig 1880, S.188-191. 
25 Hans Wussing, Mathematik in der Antike, Leipzig 1962, S. 95. 
27 Hans Wussing, Mathematik in der Antike, Leipzig 1962, S. 97. 
28 Isagoge Kap.l. Siehe dazu Folkerts/Wußing u.a., 4000 Jahre Algebra, Berlin 2003, S. 271. 
29 Genauer: durch den von Viëta „Exegetik“ genannten Teil. 
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Als zweite Autorität nennt Ursus Euklid und speziell dessen 8. Proposition im 9. Buch. Diese 
befasst sich mit der geometrischen Folge, wie sie Ursus zu Beginn seines 3. Kapitels zitiert. In der 
Übersetzung von Clemens Thaer30 lautet sie: „Bilden beliebig viele Zahlen von der Einheit aus eine 
Geometrische Reihe, so muss die dritte von der Einheit aus eine Quadratzahl sein, ebenso die 
folgenden, wenn man immer eine überspringt; ferner die vierte eine Kubikzahl, ebenso alle folgenden, 
wenn man immer zwei überspringt; und die siebente zugleich Kubikzahl und Quadratzahl, ebenso die 
folgenden, wenn man immer fünf überspringt.“ Gemeint ist, dass in der geometrischen Folge 1 ; a; a'; 
a3; a4; a5; a6; a7; a8; a9; ... jede 3., 5., 7., usw. Zahl eine Quadratzahl ist, ebenso jede 4., 7., 10., usw 
eine Kubikzahl ist. 

Als dritten Mathematiker in der Antike nennt Ursus Diophant, „Diophantus Pythagoricus“, der 
möglicherweise babylonischer Abstammung31 war und der in seinem Werk Arithmetica die Algebra 
und die Arithmetik von der Geometrie ablöste; sie gilt als Hauptwerk der Antike zur Algebra. In 
seinem 1. Buch werden Gleichungen behandelt, die auf den Typ a x=b zurückgefuhrt werden 
können. Die anderen Bücher enthalten hauptsächlich unbestimmte lineare Gleichungen, für die sich 
der Begriff „Diophantische Gleichungen“ eingebürgert hat. Häufig treten auch Quadrate auf, einmal 
sogar eine kubische Gleichung.32 1463 entdeckt Regiomontan eine Diophant-Handschrift; 1575 
erscheint eine lateinische Übersetzung von W. Holtzmann (Xylander) in Basel, deutsche Übersetzung 
von Arithmetik und Polygonalzahlen 1952. Folkerts/Wussing u.a. geben an, dass bis ins 20. Jh. nur 
die Bücher I bis III und XI bis XIII bekannt gewesen seien und dass die Bücher IV bis VII erst in den 
70er Jahren des 20. Jh. als arabische Fassung im Iran aufgefunden wurden.33 Ursus nennt 1597 in den 
Tractatiuncula für Diophant jedoch 13 Bücher! Das bedeutet nicht, dass zu seiner Zeit alle 13 Bücher 
aufgefunden worden und bekannt waren. In der Widmung an Dionysios, vermutlich den von 247-264 
in Alexandria wirkenden Bischof Dionysios den Großen, kündigt Diophant an, den Stoff in 13 
Büchern zu behandeln.34 

Als letztes wird Hypatia (ca. 370 - 415) genannt, die gelehrte Tochter von Theon von Alexandria. 
Sie war Philosophin und Mathematikerin in Alexandria und schrieb Kommentare zu Diophant, 
Apollonius und Ptolemäus, die alle verloren sind. Sie wurde als Heidin von einer aufgebrachten 
Christenmeute im Jahre 415 auf offener Straße überfallen und auf grausame Weise in einer 
christlichen Kirche umgebracht.35 Ursus’ Text: 

„Die Regula Algebra. 
Tractatiuncula. 

Ein Tractätlein von der Regel Coss. 
Kap. 1: Historia von der Erfindung und den Erfindern der Regula Coss. 

Plato, der göttliche und hocherleuchtete Philosoph, welcher vor ungefähr 2000 Jahren, ungefähr 
400 Jahre vor der Geburt Christi,36 gelebt hat, hat wie Theon von Alexandria meldet eine 
wundervolle Sache erfunden, einer Frage Lösung durch die Analytische Methode zu finden. Das 
wurde vollbracht durch rückwärtige Operation oder durch rückwärtiges Anwenden des Algorithmus. 
Zum Beispiel: Eine Zahl soll durch 4 dividiert, der Quotient mit 2 multipliziert, vom Produkt 8 
subtrahiert werden, verbleiben 4. Welches ist die Zahl? Zu den verbleibenden 4 addiere 8, ergibt 12, 
das dividier durch 2, ergibt 6, die multiplizier mit 4, ergibt 24, die Lösung, alles umgekehrt wie in der 
Aufgabe,37 Diese kunstreiche Erfindung Platos, welche der erste Keim der edlen und sinnvollen Regel 
Coss oder Algebra gewesen ist, hat Euklid38 aus Megara, Platos Schüler, in seinem neunten, 
arithmetisch dritten und letzten Buch, und besonders in dessen achter Proposition, weiter fortgejührt 
und vermehrt und verbessert. Und unlängst hat Diophant19 13 Bücher über die genannte Erfindung 
Platos geschrieben, über welche die hocherleuchtete und sinnreiche Frau Hypathia, eine Griechin zu 
Alexandria in Ägypten, herrliche und gelehrte Kommentare oder Auslegungen geschrieben hat. Diese 
Frau ist um das Jahr 415 von vielen Pfaffenknechten ohne Grund jämmerlich und erbärmlich 
ermordet, erschlagen und in Stücke zerrissen worden, wie es von Sokrates40 in der Kirchengeschichte 
im 15. Kapitel des 7. Buches und wie es in der Tripartita Kap. 12, Buch 11 beschrieben ist. “ 

30 Clemens Thaer, Euklid, Die Elemente, Ostwalds Klassiker Leipzig 1935, Bd. 3, S. 52f. 
31 Hans Wussing, Mathematik in der Antike, S. 196. 
32 Wussing, S. 196ff. 
33 4000 Jahre Algebra, S. 97. 
34 Wussing, S. 198. 
35 Wussing, S. 211. 
36 Plato lebte von 427-348/347 vor Christi Geburt. 
37 (x:4)-2-8 = 4 « x = [(4+8):2]-4 = 24. 
38 Die arithmetischen, zahlentheoretischen Bücher sind die Bücher VII bis IX. Euklids 9. Buch handelt u.a. von geometrischen 
Folgen. Zu Euklids Elementen siehe Scriba/Schreiber, 5000 Jahre Geometrie, Berlin 2003, S. 49-65. 
39 um 250 n.Chr. 
40 Sokrates Scholasticus, ca. 380 - nach 439 n.Chr., Jurist in Konstantinopel, verfasste eine Kirchengeschichte von Diokletian 
(305) bis zu Theodosius II. (439). Übersetzung ins Syrische, Armenische und Lateinische (Historia Tripartita des Theodorus 
Lector und Cassiodor). 
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Nach den Leistungen der Antike behandelt Ursus die Geschichte der Algebra regional. Von den 
Arabern weiß er verständlicherweise noch wenig Genaues zu berichten. Er weiß von der 
Übersetzungstätigkeit derselben, besonders in Alexandria und Corduba; er nennt ausdrücklich die 
Übersetzung von Diophant ins Arabische. Bei der nun folgenden Beschreibung der Leistungen der 
Araber durch Ursus liegen in seinen Quellen Unklarheiten vor! Er beginnt mit „Almansor“. Al- 
Mansür ist der Thronname mehrerer islamischer Herrscher. Wegen der genannten zeitlichen Nähe zu 
Karl dem Großen kann nur der Kalif al-Mansür in Bagdad gemeint sein, zweiter Kalif 754-775 der 
neuen Abassiden-Dynastie, der Kunst und Wissenschaft förderte. Ursus schreibt nicht, dass Almansor 
in Cordoba lebte, sondern nur, dass er „in der spanischen Stadt Cordoba um das Jahr 750“ berühmt 
gewesen sei. Den seit 978 faktischen Alleinherrscher im Kalifat Cordoba, Muhammad ibn Abi Amlr 
al-Mansür 939-1002 kann er nicht meinen, denn dieser ist nur durch 52 Kriege und Plünderungen 
Nordspaniens bekannt. 

Weiter geht es mit „Mahomet filius Moysis“. Hier zitiert Ursus wohl aus Cardanos Ars Magna 
1545.41 Das ist der Mathematiker, Astronom und Historiker (Abü Abdallah) Muhammad ibn Müsä al- 
HwärizmT (um 780-850), der zur Zeit des Kalifen (813-833) al-Ma’mün lebte. Filius ist arabisch ibn 
und Moysis ist Moses = Müsä. Auch al-Hwärizml wirkte nicht in Spanien, sondern in Bagdad. Eine 
lateinische Übersetzung seines Werkes beginnt mit „quem edidit Mahomet, filius Moysi 
Algaurizin“,42 eine englische Übersetzung „written by Mohammed ben Musa of Khowarezm“43 

Algaurizin ist also das verfälschte al-Hwärizml.44 

Nun setzt Ursus den Zusatz „genannt Geber“ nach Mahomet filius Moysis, von dem die Worte 
Algebra und auch Almucabala abgeleitet seien. Diese Herleitung der Namen Algebra und Almucabala 
von Geber ist sagenhaft. Sie leiten sich von einem Teil des arabischen Buchtitels von al-Hwärizmls 
Gleichungslehre „al-gabr wa-l-muqäbala“ her (Ergänzen eines negativen Terms und anschließend 
Ausgleichen), worin er u.a. die Klassifikation der Gleichungen auf 6 Fälle reduzierte. Allerdings 
werden mit Geber zumeist zwei andere Gelehrte gemeint, zum einen der Alchimist (Buch der Gifte) 

des 8. Jh., Gäbir ibn Haiyän, der Kommentare zu Euklid und zum Almagest verfasste; zum anderen 
der westarabische Gelehrte in Andalusien Abü Muhammad Gäbir ibn Afläh im 12. Jh., der 9 Bücher 
über Astronomie schrieb. Sein Werk Isläh al-Magistl ist eine Kritik am Almagest, die von Gerhard 
von Cremona ins Lateinische übersetzt und die von Peter Apian in Nürnberg 1534 herausgegeben 
wurde mit dem Titel Gebri filii Affla Hispalensis de astronomia. Dieser Geber fand die Formel cosa 
= cos a • sin ß der sphärischen Trigonometrie. Regiomontanus schöpfte später in De triangulis aus 
dem Werk Gebers.45 Aber Regiomontan, dem auch das Werk al-HwärizmTs bekannt war, schreibt an 
Bianchini über diesen: „... aut ex primo Gebri Hispalensis clara trahuntur“.46 Wahrscheinlich liegen 
hier bereits in den von Ursus benutzten Quellen Verwechslungen vor, weil die Übersetzungen al- 
HwärizmTs aus Spanien nach Frankreich und Deutschland kamen, oder wie es Kaunzner treffend 
ausdrückt: „Spanien war im 12. Jahrhundert für den Wissensstrom von Bagdad ins Abendland der 
größte Umschlagplatz; ... auch al-Hwärizmls Rechenbuch erhielt dort sein lateinisches Gewand.“47 

Die Erzählung, der Name Algebra stamme von dem arabischen Mathematiker Geber, geht nach 
Tropfke48 wahrscheinlich auf Rafaele Canacci aus Florenz (14. Jh.) zurück. Aber auch Cardano und 
Stifel, beides Quellen für Ursus, verwenden diesen falschen Geber. Cardano49 beginnt sein 1. Kapitel 
der „Ars magna, quam vulgo Cossam vocant“, mit „Haec ars olim à Mahomete, Mosis Arabis filio 
initium sumpsit“; wahrscheinlich hat Ursus diese Wendung übernommen. Auch Michael Stifel spricht 
von „Gebri regulam“, wenn er Gleichungen auf Normal form reduziert, von „Cossa seu régula 
AlGebri“, von „Cossa seu ars Gebri“ und von „Algebram â Gebro Astronomo“, später dann allerdings 
zumeist von „Regula Algebrae“.50 

„Diese hohe Kunst der Algebra, auf griechisch Analysis genannt (wovon das verstümmelte 
arabische Wort Alysa in Gebrauch geblieben ist), ist in den genannten Büchern des Diophant und der 
Hypatia verwahrt und erhalten worden bis zum Sarazeneneinfall in das griechische oder 
orientalische Kaiserreich.5I Mit diesem Einfall ist die griechische Sprache eine geraume Zeit, 

41 Kap. I, Blatt A3r: „Haec ars olim à Mahomete, Mosis Arabis filio initium sumpsit.“ 
42 Kodex Dresden C 80, f. 340r. Siehe Kaunzner, in: Folkerts (Hrsg.), Mathematische Probleme im Mittelalter, Wiesbaden 
1996, S. 438. 
43 Frederic Rosen, The Algebra of Mohammed ben Musa, London 1831, S. 68. 
44 Siehe dazu: Wolfgang Kaunzner, Über einige Zusammenhänge zwischen lat. und dt. mathem. Texten, in: Folkerts (Hrsg.), 
Mathem. Probleme im Mittelalter, Wiesbaden 1996, S. 438f. 
45 Siehe Sezgin, Bd. 5, S. 53, S. 219-225, S. 228-241, und Bd. 6, S. 93. 
46 Siehe Kaunzner, Über das Eindringen algebr. Kenntnisse nach Deutschland, in: Rechenpfennige, München 1968, S. 107. 
47 Wolfgang Kaunzner, Lateinische Bearbeitung der Algebra al-Khwarizmis, in: Archive for History of Exact Sciences, Vol. 32, 
Nr 1, 1985, S. 1. 
48 Tropfke, Bd. II, Berlin 3. Aufl. 1933, S. 67. Siehe Kaunzner, Lateinische Bearbeitung..., S. Ilf. 
44 Ars Magna, Kap. I, Blatt A3r. 
50 Stifel, Arithmetica Integra 1544, Blatt 30r, 94r, 226v-23 lv. 
51 Ab 632 dringen die Araber nach Kleinasien vor, 636 Sieg über die Byzantiner am Jarmuk, ab 639 Eroberung Ägyptens, ab 
711 iberische Halbinsel. Belagerung Konstantinopels 673-678 und 717/718. 1453 wird Konstantinopel von den Türken erobert. 
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nämlich etwa 700 Jahre von 700 bis 1400 n.Chr. (zu welcher Zeit sie von Manuele Chrysolora51 

wieder in Schwung gekommen und auf die Bahn gebracht worden ist) verloschen. Mittlerweile ist das 
Werk des Diophant von der Algebra durch die Araber, die besondere Liebhaber und Förderer der 
Mathematik gewesen sind, aus dem Griechischen in ihre Sprache übersetzt worden. Ihre Auslegung 
und Übersetzung der Kunst ist bei den Arabern in Ägypten, Afrika und Spanien, besonders zu 
Alexandria und Corduba, geblieben. In dieser spanischen Stadt Corduba ist um das Jahr 750, kurz 
vor der Regierung Karls des Großen unter der Regierung des sarazenischen Königs Miramolinus55 

besonders berühmt gewesen der hochgelehrte Araber Almansor. Danach kam Mahomet füius 
Moysis,54 sonst Geber genannt, von dem diese Kunst [Algebra] dermaßen vermehrt und verbessert 
worden ist, dass sie ganz nach ihm benannt wurde und den Namen Algebra gleichwie von Geber 
bekommen hat, was vorher bei den Arabern Almucabala, gleichsam große Weisheit und Kunst, 
geheißen hat. “ 

Dann berichtet Ursus von dem Philosophen und Mathematiker in Frankreich Johannes Campanus 
von Novara, der etwa von 1200/1210 bis 1296 lebte und Kaplan der Päpste Urban IV. bis Bonafatius 
VIII. war. Campanus lieferte etwa 1255/59 eine für Jahrhunderte maßgebende neu bearbeitete und 
kommentierte lateinische Fassung der Elemente des Euklid, die 1482 in Venedig und dann sehr oft 
gedruckt wurde. Ursus hat sehr wahrscheinlich eine Campanus-Ausgabe der Elemente benutzen 
können: In der berühmten Bibliothek Heinrich Rantzaus, seines früheren Mäzens und Förderers, 
standen die Werke von Campanus, etwa 1500 gedruckt. Das Buch ist nach der Eroberung 
Breitenburgs im 30-jährigen Krieg schließlich im Professhaus der Jesuiten in Prag gelandet und dort 
im Katalog 1773 erwähnt. Als zweiten in Frankreich nennt Ursus Jordanus Nemorarius, Jordanus de 
Nemore, Mathematiker in der ersten Hälfte des 13. Jh., t 1237. Sein Werk Elementa arithmetica 
wurde 1496 in Paris gedmckt, Elementa de ponderibus begründet die spätmittelalterliche Statik, De 
numeris datis ist ein erster Versuch von hohem Niveau einer wissenschaftlichen Darstellung der 
Buchstabenalgebra, Liber de triangulis und De Plana Sphera sind geometrische Schriften. 
Höchstwahrscheinlich ist er nicht mit dem Ordensgeneral der Dominikaner Jordanus Saxo identisch. 
Ursus hat eine Handschrift von Nemorarius besessen, in der die 24 Gleichungen der Algebra 
beschrieben werden; es wird sich um De Numeris datis gehandelt haben. In der Dresdener 
Handschrift C 80 werden u.a. Sätze aus diesem Werk zitiert; auch Adam Ries hat es gekannt und 
benutzt. 

,, Schließlich ist die Kunst Algebra von den Arabern aus Spanien über das Pyrenäengebirge nach 
Gallien [Frankreich] gekommen, zu Campanus Gallus,55 der den Euklid als Erster aus dem 
Arabischen in die lateinische Sprache transferiert hat. Die Übersetzung ist auch heute noch 
vorhanden 5h Dann auch zu Jordanus Nemorarius 51 der die Kunst in 24 Gleichungen oder Regeln 
ganz in lateinischer Sprache beschrieben hat; diese Beschreibung ist bei mir vorhanden, aber sie ist 
meines Wissens niemals gedruckt worden. “ 

Nun wendet er sich der Entwicklung der Coss in Italien zu. Leonardo Fibonacci von Pisa,59 ca. 
1170/1180 - nach 1240, gilt als der größte Arithmetiker des westlichen Mittelalters.60 Im Liber 
abbaci 1202 werden das Rechnen mit den indischen Ziffern, viele Aufgaben aus dem kaufmännischen 
Leben behandelt, aber auch Arithmetik und Algebra der linearen und quadratischen Gleichungen; er 
benutzt die Begriffe res bzw. radix, census, cubus und dragma.61 Sie resultieren aus den möglichst 
wortgetreuen Übersetzungen der arabischen Mathematiker, die wiederum ihre Bezeichnungen den bei 
Diophant vorkommenden anpassten.62 In der Practica geometriae 1220 wird neben geometrischen 
Grundbegriffen das Feldmessen und das Wurzelziehen behandelt, im Liber quadratorum 1225 
quadratische Gleichungen. 

52 Emanuel Chrysoloras, ca. 1350-1415, Edelmann und Diplomat aus Konstantinopel. Ließ sich 1397 in Venedig nieder, lehrte 
dort die in Vergessenheit geratene griechische Sprache und bemühte sich um die Verbesserung der Lateinkenntnisse in Italien. 
Ging mit gleichem Anliegen dann nach Florenz, Mailand und Pavia. Er brachte griechische Handschriften in den Westen mit. 
53 Miramolinus = Abu Abd Allah Muhammad al-Nasir, Emir von Marokko, 12./13. Jh. (?) 
54 (Abu Abdullah) Muhammad ibn Müsä al-Hwârizmî. 
55 Johannes Campanus von Novara. 
56 Nach Isak Collijn, Rester af Heinrich Rantzaus bibliotekpä Breitenburg, in: Nordisk Tidskrift för Bok- och Biblioteksväsen 
Uppsala Bd. 26, 1939, standen die Werke von Campanus in Heinrich Rantzaus Bibliothek, wo sie Ursus benutzt haben könnte. 
57 Siehe Menso Folkerts in: Centaurus 27, S. 175-177 und Busard in: Mathem. Probleme im Mittelalter, hrsg. von Menso 
Folkerts, Wiesbaden 1996, S. 139ff. 
58 Ursus hat also eine Handschrift von Nemorarius besessen, wahrscheinlich De Numeris datis. Siehe: Folkerts/Wußing u.a., 
4000 Jahre Algebra, Berlin 2003, S. 213f. 
59 Siehe Gericke II, S. 97ff. und Folkerts/Wußing u.a., 4000 Jahre Algebra, S. 206ff. 
60 Folkerts/Wußing, 4000 Jahre Algebra, Berlin 2003, S.206. 
61 Vorher schon in Texten, die Gerhard von Cremona, um 1114-1187, übersetzte. Siehe Tropfke Bd. II, S. 136f. 
62 Tropfke, Bd. II, S. 134f. 
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Dann folgen in der Beschreibung Luca Pacioli63 (ca. 1445-1517) und Stephan de la Roche (1470- 
1530) aus Lyon. Spätestens mit dem Erscheinen von Paciolis Summa de Arithmetica, Geometria, 
Proportioni Venedig 1494, die eine umfassende Darstellung des Wissens der Zeit ist, mag man die 
Zeit der Coss beginnen lassen, vielleicht schon um 1450; hier treten die Zeichen p (piu) für Plus und 
m (meno) für Minus sowie R für die Wurzel auf. 
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Abb. 33: De La Roche, Larismetique, 2. Aufl. 1538, S. 29v (Auszug). Potenzschreibweise. 
Exemplar der British Library, 1605/26 

Stephan de la Roche nennt Wolfgang Kaunzner64 mit einer L'Arismetique nouvellement 1520. 
Jöchers Gelehrtenlexikon 1750 und Zedlers Universallexikon6^ 1746 nennen Stephan de la Roche = 
de Rupe, aus Lyon im 16. Jh.; er schrieb eine L'Arismetique et Geometrie 1520 (2. Aufl. 1538) und 
machte darin ausgiebig von Chuquets Aufzeichnungen Gebrauch. De La Roche wird schließlich 
mehrfach bei Tropfke66 erwähnt, als Schüler des Nicolas Chuquet (fl488 in Lyon). Stephan de la 
Roche nennt in seinem Werk67 „Maistre Nicolas Chuquet et son Triparty“.68 Er spricht von „algebra 
et almucabala“, wie Ursus später auch. Er nennt die Coss „regle de la chose et de la quantité“. Die 
erste Potenz der Variablen nennt er „nombre linear“ oder „chose“ oder „nombre premier“ und 
schreibt sie 121 für 12x; die zweite Potenz „quarre“ oder „nombre second" wird 1211 oder 12c für 12-x2 

geschrieben; die dritte Potenz „nombre tier“ oder „nombre cubic“ 12m oder 12G für 12-x3; für die 
vierte Potenz „nombre quart“ oder „quarres de quarres“ 12IV oder 12cc für 12-x4, usw.69 Plus- und 
Minuszeichen werden noch nicht verwendet, dafür stehen Abkürzungen p und m. Im folgenden Text 
verwendet de la Roche diese Potenzschreibweise jedoch nicht, sondern er nimmt 12P für 12x, 12c für 
12-x2, 12D für 12-x3, 12cc für 12-x4, usw. Das Uniformen von Gleichungen läuft bei de la Roche 
schon perfekt. So etwa wird die gemischte Wurzelgleichung V(12x x2) + 1 = V(36-x2) korrekt durch 
zweimaliges Quadrieren vereinfacht zu 888x = 1225 + 148x2. Vielleicht haben ja die deutschen 
Cossisten, mehr als bisher bekannt, über de la Roche gewusst. 

Schließlich folgen noch Scipio del Ferro (1465-1526), in Bologna Mathematikprofessor, der 
Lösungen von kubischen Gleichungen des Typs x3 + bx = c fand, und Nicolaus Tartaglia (ca. 1500- 
1557), der wie Ursus Autodidakt war und 1535 das Lösungsverfahren für kubische Gleichungen fand, 
das er Cardano 1539 mitteilte. 

„ Von den Franzosen [Gallis] ist schließlich diese Kunst Algebra zu den Italienern gekommen, und 
zwar um den Anfang des Reviviscentis Saeculi70 zwischen 1400 und 1500 n.Chr. Um diese Zeit lebte 
Leonardus von Pisa, der erste Italiener, der von dieser Kunst gewusst hat, der aber nach Aussage des 
Cardano nur die ersten vier einfachsten Gleichungen beherrschte.1' Dann folgten der Italiener Lucas 
Pacciolus und Stephanus à Rupe72 aus Lyon in Frankreich, die diese Kunst jeweils in ihrer Sprache 
beschrieben, verbessert und auch durch Hinzufugen von vier weiteren Gleichungen vermehrt haben. 
Bis schließlich um 1520 n.Chr. Scipio Ferreus und Nicolaus Tartaleus, die den Anfang der Kubik- 
Algebra oder der Kubikcoss mit ihren 13 Gleichungen aus der Zerlegung des Kubus in seine Teile 
erfunden und ausgedacht haben. “ 

63 Siehe Folkerts/Wußing u.a., 4000 Jahre Algebra, Berlin 2003, S. 218ff. Helmuth Gericke, S. 196f. 
44 Über Johannes Widmann von Eger, München 1968, Forschungsinstitut des Deutschen Museums Reihe C 7, S. 59. 
“„Stephan de la Roche, sonst Villafranca genannt, von Lion, lebte im 16. Seculo, und schrieb eine Arithmetik und Geometrie.“ 
66 Tropfke, Geschichte der Elementarmathematik, 4. Auflage Bd 1, Berlin 1980. 
67 Estienne de la Roche, Larismetique et Geometrie de maistre Estienne de ta Roche diet Ville Franche, Lyon 2. Aufl. 1538. 
Exemplar der British Library 1605/26. 
68 Triparty en la science des nombres 1484. Erst im 19. Jh. gedruckt. 
69 fol. 29v. 
70 Von lat. revivisco = Wiederaufleben. Ursus bezeichnet das 15. Jh. also als Renaissance. 
71 Nach Folkerts/Wußing, 4000 Jahre Algebra, S. 208, behandelt Leonardo von Pisa im Liber abbaci u.a. die quadratischen 
Gleichungen ax2=bx, ax2=b, ax2+bx=c, ax+c=bx2, ax2+c=bx; aber auch Gleichungen höheren Grades. 
72 Estienne de la Roche aus Lyon. 
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Zum Schluss wendet er sich Deutschland zu. Von den bekannten Algebraikern nennt er vier; 
Adam Ries ist nicht darunter, da dessen Coss zu Lebzeiten nicht gedruckt worden war. Ursus nennt 
zuerst Johannes Regiomontanus aus Franken, 1436-1476, der ein vorzüglicher Kenner der 
griechischen Sprache war und beabsichtigte, mit seiner 1471 in Nürnberg eigens dafür eingerichteten 
Druckerei alle damals bekannten antiken Autoren der Mathematik und Astronomie ins Lateinische zu 
übersetzen und textkritisch überarbeitet herauszugeben und der 1463 in Venedig eine griechische 
Handschrift mit der Algebra des Diophant entdeckt hatte.73 Regiomontan benutzte bereits in seiner 
Aufgabensammlung 1456 eine algebraische Symbolik, die vor ihm nicht nachweisbar ist.74 Zum 
zweiten wird Christoff Rudolff genannt, um 1500 - vor 1543, dessen Coss 1525 in Straßburg erschien 
und 1553 mit Erläuterungen und Ergänzungen durch Michael Stifel neu herausgebracht wurde.75 Und 
drittens Michael Stifel selbst, der schon vom bei der Widmung an den Kaiser erwähnt worden war. 
Dessen Coss hat Ursus, wie er selbst angibt, aus der kaiserlichen Bibliothek in Wien Vorgelegen, und 
er hat diese als Vorlage für seine Tractaüuncula bzw. die Arithmetica Analytica benutzen können. 

Zum Schluss folgt, für uns 
überraschend, ein Zeitgenosse von 
Ursus, ein heute unbekannter Johannes 
Junge, geb. ca. 1552 in Schweidnitz, 50 
km südwestlich von Breslau. 1567 ist er 
in der Lehre bei Caspar Frantz, 
Rechenmeister und Bürgermeister zu 
Schweidnitz; 1568 in der Lehre bei 
Caspar Schleupner, Rechenmeister zu 
Breslau und Schüler von Johann 
Neudorffer; 1570 bei Stefan Brechtei, 
Mathematiker zu Nürnberg und bei 
Andreas Gundelfmger, Rechenmeister 
zu Nürnberg und bei Johann 
Neudorffer, Rechenmeister und 
Ratsverwandter zu Nürnberg. Hier lernt 
Johannes Junge außer Rechnen und 
Schönschrift auch Buchhaltung und die Coss von Rudolff kennen. Michael Stifel76 schreibt, dass 
Johann Neudorffer „Rudolffs demonstrationes mit seyner eygnen hand geschriben“ an ihn (Stifel) 
schickte, weil dieser meinte, Rudolff „hette von diser sach nichts gewußt“.77 Johann Neudorffer hat 
offensichtlich mit Stifel in Kontakt gestanden und die Coss von Rudolff gekannt. Junge wird bei 
Neudorffer auch Rudolfs Coss kennengelernt haben. Er erhält von Neudorffer eine Urkunde, die ihn 
berechtigt, andere zu unterweisen (Meisterbrief). In Lübeck, wohin Junge danach als Rechenmeister 
geht, eröffnet er eine Rechen- und Schreibschule. Er bezeichnet sich dort „als einen zur Zeit noch 
jungen Rechenmeister“. Diese autobiographischen Angaben findet man in seinem „Rechenbuch auff 
den Ziffern und Linien“, Lübeck 1578. Dieser habe, so Ursus, „einen unbezahlbaren Schatz“ in der 
Algebra hinterlassen. Damit meint Ursus das „Lösungsverfahren“ für Gleichungen beliebigen Grades, 
bei Junge als Beispiel eine Gleichung 28. Grades. Das Verfahren beruht auf einer Polynomdivision. 
Allerdings muss die „Lösung“ der Aufgabe bei Johannes Junge durch Raten bei mehreren Versuchen 
gefunden werden. Ursus verbessert das Verfahren, indem er zum Probieren nur die (ganzzahligen) 
Teiler der absoluten Zahl verwendet, ln der Arithmetica Analytica stellt Ursus das Verfahren vor. 

„ Durch diese sinnreiche Erfindung ist diese Kunst schließlich zum höchsten und zu ihrer ganzen 
Perfektion aufgestiegen. Mittlerweile aber hat Johannes Regiomontanus aus Franken die so lange 
Zeit verlorenen Bücher des Diophant über Algebra wiederentdeckt, die auch 1575 in Basel lateinisch 
gedruckt wurden. Mittlerweile haben es sich auch andere Nationen, vornehmlich Deutsche, 
Franzosen und Italiener, sehr um die Algebra angelegen sein lassen. Unter den Deutschen ist der 
erste und wichtigste gewesen Christoff Rudolff von Jauer aus Schlesien gebürtig, welcher die 8 
Gleichungen der gewöhnlichen Quadratcoss im Jahre 1524 beschrieben und herausgebracht hat. 
Diese Coss oder Algebra ist uns aus der kaiserlichen Bibliothek zu Wien in Österreich vor wenigen 
Jahren dargereicht worden, in der Michael Stifel von Esslingen im Württemberger Land gelegen 
gelehrte Kommentare geschrieben hat. Zum Schluss aber hat ein anderer junger Schlesier, Johannes 
Junge aus Schweidnitz, die Kunst Algebra zu ihrer ganzen Perfektion gebracht. Er ist leider vor 
wenigen Jahren zu Schweidnitz zum großen Nachteil für diese Kunst zu früh gestorben und hat einen 
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Abb. 34: Michael Stifel, Rudolffs Coß 1553, fol. 172r. 

73 Siehe dazu Menso Folkerts, in: Rechenmeister und Cossisten der frühen Neuzeit, Adam-Ries-Bund Nr. 7, Annaberg- 
Buchholz 1996, S. 19-28. 

4 M. Folkerts, Zur Entwicklung der Algebra, in: Dt. Akademie der Naturforscher Leopoldina, Jahrbuch 1991 Reihe 3, Halle 
1992. S. 205. 
75 Siehe W. Kaunzner, Über Christoff Rudolff und seine Coss, Forsch. Inst. d. Dt. Museums München, 1970 Reihe A, Nr. 67. 
76 Die Coß Christoffs Rudolffs, Königsberg 1553, fol. 172r und 178v. 
77 fol. 171 v. 
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unbezahlbaren Schatz in dieser Kunst hinterlassen. Wollte Gott Ihre kaiserliche Majestät erleuchten 
und Ihr eingeben, dass sie sich solches hinterlassenen Schatzes zu Nutz und Frommen der 
Nachfahren und mit wenig Kosten allergnädigst annehmen und angelegen sein lassen wolle. Und so 
viel von der Erfindung und den Erfindern der Algebra. “ 

Kapitel 2: Was die Algebra ist 

Die nun folgenden Kapitel 2 bis 7 behandeln das cossische Rechnen, vom Zählen (Kap. 3), 
Addieren und Subtrahieren (Kap. 4), Multiplizieren und Dividieren (Kap. 5), Wurzelziehen (Kap. 6) 
und cossische Brüche (Kap. 7). Die Handschrift endet dann. Es wird jedoch ein zweiter Teil über 
Gleichungen angekündigt, der als Handschrift nicht vorliegt, der jedoch mit dem ersten Teil 
zusammen (Kap. 2 bis 7) als Arithmetica Analytica 1601 gedruckt wurde. Die gedruckte Fassung ist 
gegenüber der Handschrift nur leicht verändert. Manchmal fehlen einzelne Wörter oder es sind solche 
hinzugefügt, gelegentlich sind Satzteile umgestellt oder ergänzt worden. Die Beispiele sind 
weitgehend identisch. Es ist anzunehmen, dass die leichten Änderungen Ursus selbst für den Druck 
vorgenommen hat. Da er ja vom Kaiser Geld für den Druck erhalten hatte, wird er dem Drucker eine 
Vorlage geliefert haben, insbesondere auch für den zweiten Teil mit der Gleichungslehre. Allerdings 
ist der Druck erst posthum 1601 erfolgt. Dass die Tractatiuncula und die Arithmetica Analytica aus 
einem Guss sind, beweist die ausführliche Erwähnung von Johannes Junge hier in den Tractatiuncula 
und die Beschreibung seines Verfahrens erst in der Arithmetica Analytica. 

Kapitel 2 der Handschrift, das nun behandelt werden soll, heißt, was Algebra oder Coss sei. Es ist, 
wie Hans Wußing sagt,78 die Coss als „Zwischenstufe zwischen bloßer Rechenkunst und vollzogener 
Algebraisierung zu bezeichnen, bei der bereits erste mathematische Symbole und Kunstwörter 
verwendet werden“. Es kommen bereits Variable und deren Potenzen vor, jedoch vor Viëta noch 
nicht in der uns geläufigen Form. Gerade die Schaffung der Potenzlehre und der neuartigen 
Zeichensprache ist das große Verdienst der Cossisten, sie legten damit das Fundament der heutigen 
Algebra.79 In Johann Widmanns von Eger Behende und hübsche Rechenung 1489 treten zum ersten 
Mal gedruckt die Zeichen + (plus) und - (minus) auf, nachdem er diese bereits in seiner 
Algebravorlesung 1486 an der Universität Leipzig verwendet hatte. Das Pluszeichen entstand dabei 
wohl als Rest aus dem Buchstaben t des Wortes et.80 Das Minuszeichen hat sich durch immer 
flüchtigere Schreibweise aus dem ersten Buchstaben m von minus oder minder entwickelt. Das 
Gleichheitszeichen = wurde von Robert Recorde 1557 vorgeschlagen. 

Das Wort Coss leitet sich vom italienischen cosa her, lateinisch res, was „das Ding“, „die Sache“ 
bedeutet, die gesuchte Größe, die zu bestimmen war. Die Coss war also die Rechnung mit der 
gesuchten Zahl in einer Gleichung. Das absolute Glied wurde „dragma“ bezeichnet (bei Ursus 
Drachma). Es leitet sich von der altgriechisch/persischen Münzbezeichnung Drachme her (arab. 
Dirham). Erst Stifel 1553 in Rudolffs Coss schreibt als Symbol für Dragma ij, wie auch Ursus. 
Rudolff schreibt 1525 noch ein (p, wie es auch in der Dresdener Handschrift C 80 (vor 1486) 
verwendet wird.81 Mit res oder radix wird die Wurzel gesucht, aus der alle Potenzen erwachsen; also 
sucht man mit der Variablen x die Lösung der Gleichung. Die Symbole für res (R, r), zensus (3) und 
cubus (c) sind bei Ursus die auch bei Rudolff und Stifel üblichen. 

Doch nun zum Text des Kapitels 2 aus den Tractatiuncula. In spitze Klammern <druck> setze ich 
Textteile, die nur im Druck, nicht in der Handschrift stehen. 

„Kap. 2: Was Algebra sei. 
Algebra oder Coss ist eine elegante und zeitsparende Rechnung oder Regel der <Arithmetik oder 

Rechenkunst> mit Termen?1 die aus einer Geometrischen Folge, anfangend mit 1, entstehen. 
Hierdurch werden die unbekannten Ausdrücke in der Aufgabe durch Setzung einer Einheit83 und 
durch Rechnung84 nach der Regula Proportionum oder Detri85 gefunden. Die Coss ist deshalb eine 
Dienerin der Regel Detri. Durch sie findet die Detri ihr verborgene und gleichsam als Rätsel 
aufgegebene Ausdrücke86 und gelangt so zur Perfektion und Vollkommenheit. Ebenso wie in der 
Regel Detri drei Ausdrücke existieren, die alle drei bekannt sind, so hat man in der Coss auch drei 

78 Wußing, Vorlesungen zur Geschichte der Mathematik, Berlin, 2. Aufl. 1989, S. 126. 
79 Tropfke Bd. II, S. 140. 
80 Ulrich Reich, Vom Pluszeichen zum Gleichheitszeichen, in: Mathematik im Fluss der Zeit, Algorismus 44, 2004, S. 71-83. 
81 Troplke Bd. II, S. 134 und 141. 
82 „Figürliche Zahlen“. 
83 „Unität“. 
84 „Process“. 
85 „Regula Proportionum“ = „Regel Detri“ = „Regel de tri“: Aus drei Gliedern einer geometrischen Proprtion a:b = c:d kann 
das vierte Glied berechnet werden: Der Dreisatz. 
86 „Terminos“. 
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Ausdrücke, aber nur einer ist bekannt. Darum müssen die anderen zwei unbekannten mit Hilfe der 
Coss gefunden werden. So ist also die Coss eine elegante Regel Detri, deren bekannter und letzter 
Ausdruck das Ergebnis der Gleichung ist, der mittlere eine Einheit und der erste eine Zahl, die aus 
dem Lösungsvorgang der Aufgabe entsprungen ist. Zum Beispiel: Es wird eine Zahl gesucht, deren 
Zweieinhalbfaches 30 ergibt. Man setze eine Einheit 7; ihr Doppeltes ist 2; ihre Hälfte V2; zusammen 
2/2. Dann steht also in der Regel Detri: 

2/2  7   30 zu ganzen Zahlen reduziert Probe: 12 

5   7   60 ergibt die Zahl 12. 12 

30 
Also sind hier mit Hilfe der Coss die zwei unbekannten Ausdrücke der Detri gefunden. “ 

Kapitel 3: Von der Art, in der Algebra zu zählen 

Das Kap. 3 behandelt die Geometrischen Progressionen und definiert die üblichen cossischen 
Symbole für die Potenzen der Variablen. Spätestens seit Rudolff und Stifel sind diese in Deutschland 
in Bezeichnung und Aussehen recht einheitlich. Auch Ursus benutzt sie in der Form wie bei Stifel. 
Die handschriftliche Ausprägung sieht man am besten auf Blatt 15r, das unten abgedruckt ist. Ursus 
verwendet die üblichen Begriffe wie Drachma für die Konstante, Radix für die Variable x bzw. x1, 
Zensus die zweite Potenz x2 und Cubus für die dritte Potenz x3, er nennt sie Quantitäten. Die höheren 
Potenzen der Variablen werden durch die bekannten Kombinationen von Zensus und Cubus gebildet, 
die Potenzen mit primzahligen Exponenten heißen Surden. Das Wort Exponent ist ihm bekannt.87 Um 
bei einer größeren Zahl die cossische Bezeichnung zu finden, wird eine Primfaktorzerlegung des 
Exponenten durchgeführt. Die Rechenzeichen + und - sind bekannt, Ursus verwendet aber parallel 
das Wort plus und das Rechenzeichen +, ebenso wie das Wort minus und das Rechenzeichen . Das 
Pluszeichen erscheint im Druck als „—|—“ und das Minuszeichen in Druck und Handschrift als ,U“. 
Malpunkt oder Divisionszeichen werden nicht verwendet, sie kommen erst im 17. Jh. in Gebrauch,88 

stattdessen werden Worte benutzt. Wohl aber wird der Bruchstrich benutzt, der sich seit dem 15. Jh. 
allgemein durchgesetzt hatte.89 Das Gleichheitszeichen wird, wie auch bei Stifel, noch nicht 
verwendet, stattdessen steht ein „ fC “ ein f mit Abkürzungssymbol für „facit“, oder „rest“ bei 
Subtraktionsaufgaben, oder es werden Worte verwendet wie „der Quotient wird“. Das 
Gleichheitszeichen erscheint auf dem europäischen Festland erst 1659 bei Johann Heinrich Rahn.90 

Gegen Ende des Kapitels führt Ursus eine Schreibweise ein, die die römischen Zahlen als 
Exponenten der Variablen benutzt, wie bei seinem Stellenwertsystem in der Geodaesia 1583. Als 
Beispiel gibt Ursus 4m, gesprochen 4 Cubi, bedeutet 4-x3. Die römische Zahl, hier III, ist in der 
Handschrift entweder direkt über die 4 geschrieben oder auch dahinter, je nach Platz. So lassen sich 
Aufgaben übersichtlich schreiben, etwa 811 : 2m = 8:2' für 8x2 : 2x3 = 8 : 2x (Blatt 22v). Eine 
ähnliche Symbolik hatte auch Bombelli,91 der Zahlen über Halbkreisbögen als Exponenten verwendet. 
Es ist aber unwahrscheinlich, dass Ursus Bombellis Buch kannte. Nicolas Chuquet92 schrieb 12", 121, 
122, 123, ... (mit kleinen Exponenten rechts oberhalb der Koeffizienten) für 12, 12x, 12x2, 12x3,... und 
nähert sich damit sehr an unsere heutige Schreibweise an. Allerdings ist sein Werk erst im 19. Jh. 
gedruckt worden. Sein Schüler jedoch, Stephan de La Roche, veröffentlichte Chuquets Erkenntnisse 
aus dessen Manuskript Triparty. 

Da Ursus diesen de La Roche im Abschnitt über die Geschichte der Coss nennt, kann er die 
Schreibweise dort gesehen haben. Der Gedanke zu den hochgestellten Exponenten stammt meines 
Erachtens aber eher von Ursus selbst, denn de la Roche verwendet sie außer auf fol. 29v gar nicht. 
Ursus lehnt sich wohl eher an die Schreibweise bei sexagesimalen Winkelangaben an, denn er 
vergleicht das Multiplizieren und Dividieren von cossischen Zahlen im Kap. 5 mit dem „logistischen, 
astronomischen oder geodätischen Multiplizieren und Dividieren“ und in Kap. 6 das Wurzelziehen 
„wie in Logistica Astronomica oder Geodaetica“. Dabei kann insbesondere das dritte Wort als 
Argument gelten, weil Ursus bereits in seiner Geodaesia 1583 beim Stellenwertsystem diese 
Exponentenschreibweise einführte. Besonders deutlich wird die Verwendung des Exponenten „ 1 “ als 
eigenständiges Symbol für xl im Kapitel 3 der Arithmetica Analytica, wo Ursus als Beispiel für das 
Kürzen durch eine Variable (Reduktion 6) schreibt: „Es stehe 1II= 31. Nun kürze man beiderseits ein 
1 , es bleibt l' = 3°“ 

87 „Exponent“ tritt zuerst bei Stifel in tier Arithmetica Integra, Blatt 235v auf. Siehe Tropfke, Bd. II, S. 151. 
88 Siehe Ulrich Reich, Vom Pluszeichen bis zum Gleichheitszeichen, in: Algorismus 44, 2004, S. 76f. Die Einführung des 
Multiplikationspunktes wird Leibniz 1698 zugeschrieben, das Divisionszeichen -s-1659 Johann Heinrich Rahn. 
89 Ulrich Reich, in: Algorismus 44, S. 78. 
90 Ulrich Reich, in: Algorismus 44, S. 82. 
91 Raffael Bombelli, Bologna 1526-1572/73, L'algebra, 1572 und 1579. Siehe Tropfke, Bd. II, S. 152. 
92 Manuskript: Le triparty en la science des nombres 1484. Siehe Juschkewitsch, Geschichte der Mathematik im Mittelalter, 
Leipzig 1964, S. 432. 
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Es irrt jedenfalls Treutlein, der die Erfindung dieser Schreibweise mit hochgestellten römischen 
Zahlen Justus Bürgi zuschreibt, und glaubt, Ursus habe sie von Bürgi erfahren, weil Ursus manches 
andere von Bürgi lernte und diesen auch als seinen Lehrer bezeichnet.93 Denn Ursus hat diese 
Schreibweise mit nach Kassel gebracht, er hat sie schon 1583 in seiner Geodaesia verwendet. Bürgi 
erklärt in seiner Coss,94 dass er in Analogie zu der in der Astronomie üblichen 60er-Unterteilung des 
Grades in Minuten und Sekunden und der dort üblichen Schreibweise „nach logistischer Art“ die 
Quantitäten als prima, secunda, tertia usw. bezeichnen wolle. Zum Beispiel bedeute „l" ein 
secundam“.95 Diese bekannte arabische Schreibart für Sexagesimalbrüche mit kleinen hochgestellten 
Symbolen, z.B. bei al-BattänT und al-BTrünT, gibt es in den Alfonsinischen Tabellen, dann bei 
Orontius Finaeus96 mit m, 2, 3 für Minuten, Sekunden, Tertien, dann bei Gemma Frisius. 

Entweder haben Bürgi und Ursus durch Rückgriff auf die Schreibweise in der Astronomie 
unabhängig voneinander die hochgestellten römischen Zahlen verwendet, oder Bürgi hat sie von 
Ursus übernommen. In Keplers Flandschrift „Bürgis Coss“ wird Ursus’ Buch Fundamentum 
Astronomicwn 1588 erwähnt, Ludolph van Ceulens Van den Circkel 1596, und Valentin Othos Opus 
Palatinum de triangulis 1596, so dass die Schrift erst 1596 entstanden sein kann, was jedoch nichts 
über den Zeitpunkt von Bürgis Aufzeichnungen sagt, nach denen Keplers Handschrift entstand. 

Ursus beschreibt die cossischen Symbole zu recht als „verwickelte Benennung“, auf deren 
Benutzung man „wohl verzichten“ könne, wenn man stattdessen die Exponenten schriebe. 
Konsequenterweise benutzt Ursus in den folgenden Kapiteln die cossischen Symbole auch gar nicht 
mehr, sondern die von ihm vorgeschlagene Exponentenschreibweise. 

Charakter Zeichen 

Quadratum oder Quadrum, arab. Zensus q 
mal Cubum 
mit Quadriquadrum, Quadratiquadratum, Zensizensus ¥ 16 
sich Surditm A th 32 
selbst Quadricubum, Quadraticubum, Zensicubus ¥ 64 
multi- Surdum B ß 128 
pliziert Quadraquadriquadrum, Zensizensizensus iii 256 
gibt Cubicubum cc 512 

10 ein Quadrisurdum A, Zensisurdum A iß 1024 
11 Surditm C ß 2048 
12 Quadriquadricubum, Zensizensicubum i¥ 4096 
13 Surditm D ß 8192 

Der Eingangstext zu Kap. 3 benutzt Euklid, Buch IX, Satz 8.97 

„Kap. 3: Von der Art, in der Algebra zu zählen. 
Die Art und Weise, in der Algebra oder Coss zu zählen, geht aus der achten Proposition des 

neunten Buches von Euklid hervor, welche in Deutsch folgendermaßen lautet: In einer geometrischen 
Folge, die mit einer Einheit beginnt, ist 1 und danach jede zweite eine Quadratzahl. Aber 1 und 
danach jede dritte ist eine Kubikzahl. Danach 1 und jede sechste zugleich Quadrat- und Kubikzahl. 
<Die in der Ordnung an zweiter Stelle stehende Zahl ist die Radix oder die Wurzel einer jeden ihr 
nachfolgenden Zahl, von der dritten ist sie die Quadratwurzel,98 von der vierten die Kubikwurzel,99 

von der fünften die vierte Wurzel,100 von der sechsten die fünfte Wurzel,101 usw.> Die anderen Zahlen 
aber, an unteilbaren Stellen der Zahlenordnung, werden Surdi genannt. Und um diese besser 
unterscheiden zu können, werden sie nach dem Alphabet bezeichnet, die erste an Stelle fünf Surda A, 
die zweite an Stelle sieben Surda B, die dritte an Stelle elf Surda C, und so fort nach dem Alphabet. 

93 P. Treutlein, Die Deutsche Coß, in: Zeitschrift für Mathematik und Physik, Suppl, zur hist.-lit. Abt., Jg. XXIV Leipzig 1879, 
S. 1-124; hier S. 36. 
94 Manuskript „Arithmetica Bürgii“, das Kepler Ende des 16. Jh. nach Aufzeichnungen Bürgis konzipierte, im 5. Band der 
Pulkowoer Kepler-Manuskripte. Siehe List/Bialas, Vorwort. 
95 List/Bialas, S. 10. 
96 Arithmetica practica, Paris 1535. 
97 Siehe z.B. die Übersetzung von Thaer, III. Teil, Leipzig 1935, S. 52f. 
98 „der dritten Quadrata“ 
99 „der vierden Cubica“ 
100 „der fiinfften Zensizensica“ 
1111 „der sechsten Surda" 



Kap. 3: Von der Art, in der Algebra zu zählen 85 

Zwei aufeinander folgenden Surden stehen so zueinander, dass eine, drei oder höchsten fünf Stellen 
dazwischen stehen.1,12 

Die Zahl, die der Einheit folgt, also die zweite Zahl, wird Radix oder Latus, eine Wurzel oder Seite 
genannt. Denn diese Zahl ist eine 
Wurzel aller folgenden Zahlen. Es 
werden die Namen oder Benennungen 
der durch die Radix festgelegten Zahlen 
genannt. 
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Abb. 36: Handschrift Tractatiuncula 1597, Blatt 15r. 
Cossische Bezeichnungen, Beispiel der Zweierfolge. 

Die Einheit (Unität) aber wird allgemein Drachma genannt und erhält das Zeichen f. Die Radix 
wird mit r bezeichnet. Ist die Radix zum Beispiel 2, so ist diese Radix die Quadratwurzel von 4, die 
Kubikwurzel von 8, die vierte Wurzel von 16, die fünfte Wurzel von 32, die sechste Wurzel von 64, die 
siebente Wurzel von 128, die achte Wurzel von 256, die neunte Wurzel von 512 und so weiter nach 
obigen Bezeichnungen.,03 Wie die Radix 2 die geometrische Zweierfolge festlegt, so legt die 3 die 
Dreierfolge, die 4 die Viererfolge und die 5 die Fünferfolge fest. Denn wie sich die Radix zu der 
Einheit oder dem Drachma verhält, so verhält sich in allen geometrischen Folgen jede nachfolgende 
zu ihrer vorhergehenden Zahl.104 Weiterhin werden alle Zahlen in einer geometrischen Folge (außer 
der Einheit oder Drachma) Algebraische Quantitäten oder Cossische Quantitäten genannt: Radix ist 
die erste, Quadrata die zweite, Cubica die dritte, Quadriquadrata die vierte, Surda A die fünfte 
U sw.1(15 Sie werden wie folgt mit den gewöhnlichen oder römischen Zahlen bezeichnet, die 
„ Characteristici “ oder Exponenten106 genannt werden. 

So kann man die Zahlen der geometrischen Folgen, die Zweier-, Dreier-, Vierer-, Fünfer-, oder 
beliebiger Folge samt ihrer cossischen Bezeichnungen beliebig fortsetzen. Die hier genannten 
genügen uns aber. Danach werden alle Quantitäten und auch ihre Exponenten Komponenten107 

genannt, ausgenommen die Radix oder der 
Exponent 1, weil diese beim Multiplizieren 
und Dividieren den Zahlenunterschied nicht 
verändern oder componieren. Denn 
folgendermaßen werden durch diese die 
Charaktere der Quantitäten aller bis ins 
Unendliche nachfolgenden Zahlen 
gefunden: Die Zahl, deren Charakter oder 
Cossische Note man wissen will, zerlegt 
man durch Teilung zuerst durch 2, dann 
durch 3, durch 5, durch 7 und durch die 
nachfolgenden unteilbaren surdischen 
Zahlen, wobei immer mit der kleinsten 
unteilbaren Zahl anzufangen ist. Man teilt 
also die zu untersuchende Zahl, deren 
cossische Note gesucht wird, in ihre 

102 Das ist richtig, solange man sich wie Ursus nur für die Primzahlen bis 90 interessiert; zwischen den Primzahlen 89 und 97 
gibt es zum ersten Mal 7 nicht-prime Zahlen. Dieses Beispiel nennt Ursus auch in diesem Kapitel auf Blatt 17r. Stifel nennt in 
der Arithmetica Integra 1544, fol 236r, die Primzahlen bis 107, in Rudolffs Coß 1553, fol. 60v, nur bis 47. 
103 Wie schon oben gesagt, verwendet Ursus für die Wurzeln die Namen „die Quadrata“, „die Cubica“, „die Quadriquadrata“, 
„die Surda A“, die „Quadricubica“ und „die Surda B“. 
104 Der Quotient zweier aufeinanderfolgenden Zahlen ergibt die Radix. 
105 Die Einheit wird an die nullte Stelle gesetzt, x°. Die Null wird auch als Zahl verwendet. 

Von Exponenten spricht auch schon Stifel in seiner Arithmeüca integra 1544 auf S. 236v: „Exponentes signorum in 
multiplicatione adde, in divisione subtrahe.“ 
107 „componentes“ 
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Blatt 16v. Primfaktorzerlegung von 1000. 

(In der letzten Zeile fehlt das dritte ßa.) 
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Komponenten, aus denen sie zusammengesetzt ist. Zum Beispiel: Ich möchte gern wissen, welche 
cossische Notierung der hundertsten Quantität zukommt <oder gegeben wird>. Ich teile die 100 durch 
2, bleiben 50; dieses wiederum durch 2, bleiben 25; dieses durch 5, bleiben 5; dieses wiederum durch 
5 ergibt die Einheit. Also sind die Teiler 2; 2; 5; 5, welche aus der Quantitätentafel die Cossische 
Note j j flii ßa ergeben. Diese zeigen nun den Charakter oder die Noten der hundertsten Quantität. 
Durch diese Zahlen 2; 2; 5; 5 wird die Zahl 100 durch das Gegenteil108 zur Division, der 
Multiplikation, componiert oder zusammengesetzt. Ebenso findet man mit der gleichen 
Divisionsmethode die Cossischen Noten der Zahl 1000 als j j j ßa (hl fia oder q q q ßa ßa ßa. Auch 
hier kann man wieder leicht sehen, dass durch die Umkehrung der Division, mit der Multiplikation, 
dieser in ihre einfachen Charaktere aufgelösten cossischen Noten, die cossische Quantität einer Zahl 
leicht aus der Quantitätentafel bestimmt werden kann: 

5 J ß« ßa 5 5 5 ßa ßa ßa 
22 5 5 222 5 5 5 

4 20 100 4 8 40 200 1000 

Bei den unteilbaren Zahlen aber und 
deren cossischen Noten zeigt das 
gebräuchliche Alphabet, welche 
Surdischen Noten zu einer surdischen 
Quantität gehören. Hier die Surdon 
bis 100: 

ln der Praxis wird aber selten 
über die Zahl 100 hinausgegangen, 
und man kann auf die verwickelte Benennung der cossischen Quantitäten durch die Benutzung von 
Exponenten wohl verzichten. Ich habe das dennoch gleichsam nebenbei vermelden wollen, damit man 
die Bücher und Schriften der cossischen Autoren mit dem althergebrachten Gebrauch verstehen kann. 

Weiter sei vermerkt, dass jede Zahl, die eine solche Quantität zählt, als der Zähler der Zahl 
bezeichnet wird, die angegebene Quantität, die Positionszahl in der geometrischen Folge aber ihr 
Nenner.109 Dieser [der Nenner] gibt an, welche Quantität die Zahl besitzt, jener [der Zähler] aber, 
wieviele von dieser Quantität vorliegen. So wird 4111 als 4 Cubi ausgesprochen, und das entgegen der 
gewöhnlichen Schreibweise der gemeinen Brüche, in welchem der Zähler oben steht und der Nenner 
unten. Hier aber steht der Nenner oben, der Zähler unten. Und so viel von der Art, in der Coss oder 
Algebra zu zählen. “ 
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Abb. 38: Handschrift Tractatiuncula 1597, Blatt 17r. 
Primzahlen in cossischer Quantität bis 100. 

Kapitel 4: Vom cossischen Addieren und Subtrahieren 

Die cossischen Symbole verwendet Ursus folgerichtig in den folgenden Kapiteln 4 bis 7 gar nicht, 
sondern erst im zweiten Teil, in der Gleichungslehre. Sie sind ja zugegebenermaßen unübersichtlich, 
Ursus benutzt hier stattdessen die von ihm eingeführte Schreibweise mit den hochgestellten 
römischen Zahlen zur Angabe der Exponenten, eine Vorstufe unserer heutigen Potenzschreibweise. 
Es fehlt lediglich das Variablensymbol x dazwischen. Für Addition und Subtraktion wird dann der 
Umgang mit dieser Schreibweise erläutert, die aus unserer voll algebraisierten und mit Symbolen 
gefüllten Betrachtungsweise leicht einleuchtet. Sieht man in der Schreibweise 2m sogleich den Term 
2-x3, so sind die Regeln leicht nachzuvollziehen: Bei gleichem Exponenten werden die Faktoren 
addiert oder subtrahiert, Terme mit ungleichen Potenzen kann man nicht zusammenfassen. Es treten 
dann eben Terme wie 3m - 51 auf, also 3x3 - 5x. Mit einem lustigen Vergleich aus dem Geldwesen 
erläutert Ursus dies: 3 Gulden + 5 Groschen seien ja auch nicht 8, oder 3 Groschen von 5 Gulden 
weggenommen seien nicht 2. Ebenso sei es in der Coss. 

Wissenschaftsgeschichtlich interessant ist die Frage, wie Ursus mit negativen Zahlen umgeht: es 
sind ihm negative Zahlen bekannt, sie werden auch als solche akzeptiert und manchmal auch benutzt, 
aber zur Vorsicht solle man statt -2x3 doch lieber 0 - 2x3 schreiben. Genauso wie Ursus die 
Verwendung der unübersichtlichen cossischen Symbole schon vermeidet, so schlägt er vor, die 
unnötigen Rechensymbole für + und für - beim Schreiben „wegen anmutiger und angenehmer 
Kürze“ wegzulassen: Es sei doch einfacher und kürzer, 3m 51 für 3x3 + 5x zu schreiben und auf das 
Pluszeichen zu verzichten. Eigentlich eine gute Idee; wir verzichten heute ja auch häufig auf den 
Malpunkt! Für 3x3 5x schlägt Ursus vor, die 5 selbst durchzustreichen und dadurch auf das 
Minussymbol zu verzichten, also 3In #■' zu schreiben. Gesprochen werden die Rechenzeichen immer. 
Seine Schreibweisevorschläge haben jedoch keine Nachahmer gefunden. 

08 „contraria“ 
109 Es ist durchaus sinnvoll, die Quantität, also den Exponenten der Variablen, als „Nenner“ zu bezeichnen. Die „Zähler“, also 
die Faktoren vor den Potenzen, werden dann einfach addiert, wie bei gewöhnlichen Brüchen, wenn die Nenner gleich sind. 
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Ursus muss nun noch das Addieren und Subtrahieren der Potenzen erklären, wenn die Faktoren 
gleiche oder ungleiche Vorzeichen haben. Zum ersten Fall gleicher Vorzeichen: 
(12x+7) + (8x+4) wird ebenso wie ( 12x—7) + (8x-4) einfach addiert zu 20x+l I bzw. 20x-l 1. Ebenso 
einfach beim Subtrahieren bei gleichen Vorzeichen: (20x+ll) - (12x+7) bzw. (20x-ll) - (12x-7) 
werden einfach subtrahiert zu 8x+4 bzw. 8x-4. Und wenn, dem Betrage nach, der Subtrahend kleiner 
ist als der Minuend, dann wird umgekehrt subtrahiert und das Vorzeichen umgedreht, wie bei (24x+7) 
- (12x+ll) oder (24x-7) - ( 12x—11) zu 12x-4 bzw 12x+4. Diese Regeln lernen heute unsere 
Schüler in der sechsten Klasse. Bei ungleichen Vorzeichen wird zum einen addiert statt subtrahiert 
und subtrahiert statt addiert. Beim Addieren erhält das Ergebnis (die Differenz) das Vorzeichen der 
größeren Zahl, beim Subtrahieren das Vorzeichen der oberen Zahl. Im Grunde zieht sich Ursus mit 
diesen sehr einfachen Beispielen zurück auf elementares Rechnen mit negativen Zahlen. 

„Kap. 4: Vom cossischen Addieren und Subtrahieren. 
Die Algebra oder Coss hat zwei unterschiedliche Teile, nämlich Algorithmus und 

Gleichungslehre.llü Unter Algorithmus versteht man die vier Grundrechenarten,'" nämlich Addition 
und Subtraktion sowie Multiplikation und Division, und das Wurzelziehen aus einer Potenzzahl, und 
dies alles auf besondere cossische Art und Weise. Denn die einfache Art, dies zu tun, gehört in die 
Vulgar- oder einfache Arithmetik oder Rechenkunst. 

Zunächst zum Addieren und Subtrahieren mit einfachen und zusammengesetzten cossischen 
Zahlen. Bei einfachen Zahlen werden gleiche oder ungleiche Nenner oder Quantitäten addiert oder 
subtrahiert, und zwar bei gleichen Nennern einfach so: 31 und 51 ergibt addiert 81. Subtrahiert man 
aber die kleinere von der größeren, nämlich 31 von 51, so bleiben 21 übrig."1 Ebenso ergibt 6m zu 12,u 

addiert I8,u, voneinander subtrahiert bleiben 6111. Dies also genau wie gemeinhin im täglichen 
Gebrauch beim Addieren und Subtrahieren gleicher Sorten bei Münz, Maß und Gewicht. 

Ebenso und nicht anders geschieht auch das Addieren und Subtrahieren bei ungleichen Nennern 
oder Quantitäten. Genauso wie man beim Addieren und Subtrahieren ungleicher Werte der Münz, 
Maß und Gewicht nicht so verfährt, dass 3 Gulden und 5 Groschen 8 ergeben, oder 3 Groschen von 5 
Gulden weggenommen 2 übrig bleiben, was man sonst das Hundert ins Tausend werfen nennt,"3 

ebenso verfährt man bei der Addition einfach so: 3 Gulden und 5 gr; beim Subtrahieren 5 Gulden 
minus 3 gr. Oder man verwendet die besonderen Zeichen für das Addieren + und das Subtrahieren +, 
also 3 fl +5gr bzw. 5 fl - 3gr.114 

Ebenso geht man beim Addieren und Subtrahieren ungleicher cossischer Quantitäten oder Nenner 
vor. Denn man addiert sie mit Hilfe dieses Zeichens +, man subtrahiert sie durch dieses Zeichen -h 
Zum Beispiel 3IU + 51 bedeutet drei Cubi und fünf Radices; 3m ^ 5! bedeutet drei Cubi minus fünf 
Radices. 

Im folgenden wollen wir jedoch die unnötigen Additions- und Subtraktionszeichen bei ungleichen 
cossischen Quantitäten weglassen und einfach so addieren: 3nl 51, und mit Hilfe des Durchstreichens 
des Subtrahenden so subtrahieren: 3m S1.115 Und soviel vom Addieren und Subtrahieren einfacher 
cossischer Zahlen. 

In zusammengesetzten Zahlen aber müssen beim Addieren und Subtrahieren die Cauteln116 des 
Algorithmus beachtet werden. Zunächst sei bemerkt, dass wir die Plus- und Minuszeichen in der 
Sprechweise beibehalten wollen, obwohl wir der anmutigen und angenehmen Kürze wegen diese 
Zeichen nicht schreiben. Dem Minuszeichen soll dann immer eine positive Zahl vorausgehen, oder 
sofern das nicht der Fall ist, zumindest eine positiv aufzufassende Null, z.B. 0- 4 oder 0.4 bedeutet 
vier weniger als nichts. 

Regel vom Addieren und Subtrahieren cossischer Zahlen: 

110 „Aequation“ 
111 „operation in Zahlen“ 
112 ln heutiger Schreibweise 3x + 5x = 8x bzw. 5x - 3x = 2x. 
113 Verwechseln von Hundertern und Tausendem, Nichtberücksichtigung der Stellenwerte. 
"Afl= Florin = (florentiner) Gulden; gr. = Groschen. 
115 Das Durchstreichen geschieht in der Handschrift schräg. 
116 Rudolff stellt vier Cautelen auf, durch welche die Rückführung von Gleichungen auf eine gewünschte Form ermöglicht wird 
(Treutlein, S. 76). Kästner, Bd I, S. 171: „Cautelen sind: was man mit der Gleichung, wie man sie bekommt, vornehmen soll, 
sie in die Gestalt bringen, die in den vorgegebenen Regeln vorausgesetzt werden.“ Cautelen sind also Umformungsvorschriften 
für Gleichungen, um sie in eine gewünschte Form zu bringen. Stifel in Rudolffs Coss 1553, fol. 148r-l51 r, dazu: „Cauteln 
nennet er aber das reduciren einer vergleychung in eine andere vergleychung.“ 
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Die Beispiele zum Addieren und Subtrahieren in heutiger Schreibweise 

12x + 7 
+ 8x + 4 

20x+ 11 

12x - 7 
+ 8x- 4 

20x - 11 

20x 
-Ü2x- 

11 

ja 
8x+ 4 

20x - 11 
-( 8x - 4) 

12x - 7 

24x + 7 
-Ü2x+ 11) 

12x- 4 

15x + 0 
-( 8x+ 14) 

7x - 14 

12x +7 
t- 8x -4 
20x + 3 

12x+ 11 
+ 12x-4 
24x + 7 

7x + 
-8x- 

4 
12 

15x - 

20x + 3 
-( 8x - 4) 

12x + 7 

24x + 7 
-( 12x — 4) 

12x + 11 

15x - 8 
-(7x + 4) 

8x - 12 

Bei gleichem Vorzeichen halte man sich an die gewöhnlichen Additions- und Subtraktionsregeln der 
Vulgar-Arithmetik, nämlich: addier gleiche Sorten der Quantitäten, subtrahier unten die kleinere 
Zahl von der oben stehenden größeren. 
Sollte aber die positive oder negative 
Zahl,117 die von der oberen abgezogen 
werden soll, zu groß oder größer als 
die obere Zahl sein und deshalb nicht 
abgezogen werden können, dann 
subtrahiere gegensinnig die obere 
kleinere von der unteren größeren und 
kehre das Vorzeichen um. 

Bei ungleichen Vorzeichen aber 
verhalte dich nach diesen Versen: 
Permutes species addendo 
adimendoque. Signum addendo maius, 
superumque adimendo notando.118 Statt 
zu Addieren wird subtrahiert und 
umgekehrt wird aus Subtraktion eine 
Addition. Beim Ergebnis der Addition 
setzt man das Vorzeichen der größeren, 
bei der Subtraktion das Vorzeichen der 
oberen Zahl. Ist aber an einer Stelle 
keine mit plus <oder minus> bezeichnete 
Zahl, von der man subtrahieren soll, so 
setze man an deren Stelle <mit 
widersinnigem Zeichen> eine Null und subtrahiere dann wie oben angegeben. Folgende Beispiele 
sollen dies erläutern: “ 

Beispiele mit 

gleichen Vorzeichen II ungleichen Vorzeichen 

Abb. 39: Handschrift Tractatiuncula 1597, Blatt 2 lr. 
Öster. Nationalbibliothek, Cod. Ser. n. 10943. 

Kapitel 5: Vom Multiplizieren und Dividieren mit cossischen Zahlen 

Im fünften Kapitel folgt das Multiplizieren und Dividieren cossischer Zahlen, also von Termen, 
wobei nur die uns heute geläufigen Exponentenregeln hinzukommen, also das Addieren bzw. 
Subtrahieren der Exponenten und das Multiplizieren bzw. Dividieren der Koeffizienten. Ursus 
vergleicht sehr lang und ausführlich das Multiplizieren und Dividieren bei den normalen ganzen 
Zahlen mit den cossischen Zahlen, immer zugleich ein Multiplikationsbeispiel zusammen mit der 
Umkehrung als Division. Dabei treten auch einfache cossische Brüche auf. 

„Beim Multiplizieren und Dividieren ist nun ganz allgemein die Regel vom entstehenden 
Exponenten zu berücksichtigen: diese besagt nämlich, wie beim Multiplizieren oder Dividieren 
gleicher oder ungleicher Quantitäten die Exponenten entstehen. Denn wie beim Multiplizieren und 

117 dem Betrage nach. 
118 Verändere die Zeichen beim Hinzufugen und Wegnehmen. Beim Hinzuftigen schreibe das größere Zeichen und beim 
Wegnehmen das obere Zeichen. Im Druck steht „Signum maius addendo“ statt „Signum addendo maius“. 
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Dividieren in der Vulgar- oder gewöhnlichen Arithmetik der Zahlen119 wieder Zahlen entstehen, so 
entstehen beim Multiplizieren und Dividieren der Artikularzahlen120 miteinander auch wieder 
Artikularzahlen. Zum Beispiel wird bei 3 multipliziert mit 4 das Produkt 12, hingegen wird bei 12 
dividiert durch 4 der Quotient 3. Ebenso in cossischen Zahlen: Bei 3n multipliziert mit 4° wird das 
Produkt 12 , umgekehrt wird bei 1211 dividiert durch 4° der Quotient 3°.121 Und ebenso wird bei 3 
multipliziert mit 40 das Produkt 120, und bei 120 dividiert durch 4 wird der Quotient 30. Auch in der 
Coss: Bei 3° multipliziert mit 41 wird das Produkt I21, und bei 121 dividiert durch 4° wird der 
Quotient 31. Denn genauso wie die Einheit beim gewöhnlichen Multiplizieren <und Dividieren> nichts 
verändert, so verändert auch das Drachma, das die cossische Einheit ist, nichts beim cossischen 
Multiplizieren und Dividieren. Aber wie oben vermerkt erwachsen aus dem Multiplizieren und 
Dividieren der Artikularzahlen miteinander ungleiche Artikularzahlen. 10 multipliziert mit 10 wird 
100, 100 multipliziert mit 1000 wird 100 000. Umgekehrt wird 100 dividiert durch 10 gleich 10, und 
auch 1000 dividiert durch 100 wird 10. Aber 100 dividiert durch 1000 gibt einen gemeinen Bruch, es 
wird der Quotient wn/iooo oder "'/wo oder '//o ,122 

Ebenso wird l‘ multipliziert mit l' gleich l", und l" multipliziert mit l"1 wird l1 , hingegen wird 
l" dividiert durch I1 gleich l1, und ebenso lm dividiert durch l" auch gleich l1 . Aber ln dividiert 
durch l'" ergibt einen cossischen Bruch, in cossischer Schreibweise also l" / l'" oder l' / l" oder 1/ 
l'. Ebenso wird 8n /2IU gleich 81 /2n oder auch 8 / 21. Wie bei den gemeinen Brüchen können Zähler 
und Nenner gegenseitig gekürzt werden, was den Bruch und seine Schreibweise verkleinert. Hieraus 
erwächst nun folgende Regel: 

Beim Multiplizieren und Dividieren cossischer Quantitäten miteinander verhält man sich wie bei 
den Artikularzahlen. Das heißt, dass man beim Multiplizieren cossischer Quantitäten miteinander die 
Zähler [Koeffizienten] miteinander multipliziert und die Nenner oder Exponenten addiert. Beim 
Dividieren der größeren Quantität durch die kleinere dividiert man die Zähler der Quantitäten und 
subtrahiert ihre Exponenten oder Nenner. Beim Dividieren einer kleineren Quantität durch eine 
größere aber wird der Quotient ein Bruch, dessen Nenner der Divisor und dessen Zähler die zu 
teilende Zahl [Dividend] bildet, ganz wie beim Dividieren bei den Artikularzahlen in gewöhnlicher 
Rechnung oder Vulgar-Arithmetik. Besonders aber beim Multiplizieren und Dividieren 
zusammengesetzter oder vielfach unterschiedlicher Quantitäten ist die Regel vom EMERGENTE SIGNO, 

also vom entstehenden Vorzeichen zu beachten: 
Signa eadem signum plus. Sed diversa minus dant.ni 

Das heißt, beim Multiplizieren und Dividieren geben zwei 
gleiche Zeichen plus: (++) oder (++) geben +. 
ungleiche Zeichen minus: (+ +) oder H +) geben 

Ansonsten handelt man beim cossischen Multiplizieren und Dividieren bei einfachen und 
zusammengesetzten Zahlen genauso wie beim logistischen, astronomischen124 oder geometrischen125 

Multiplizieren und Dividieren, wie folgende Beispiele erklären können. 
Multiplikationsbeispiel:126 

6' 8n
 • 2140° 
444180° [Teilprodukt mit-10] 

12" 44' [Teilprodukt mit 21] 
12" 74' 80° 

618n • 2l 4-9° 
12" 4-é' [Teilprodukt mit 21] 

44)'80° [Teilprodukt mit -10] 
12" 74' 80° 

Divisionsbeispiel:127 

12" 74' 80° : 2l 44° [ = (61 8®)] 
 ö' 8n  [Quotient] 
2' 444° [Divisor] 

2' 444° __ [Divisor] 

oder anders: 
12" 74' 80° : 6' 8° [ = 21 -W°] 

21444° 
6' 8° 

6' 8° 

119 hier „Digitalzahlen“ genannt. 
120 Zehnerpotenzen. 
121 3° = 3'X° usw. 
122 In der Handschrift sind die Bruchstriche alle horizontal. Im Druck stehen aus Platzgründen manchmal Zähler und Nenner 
übereinander ohne Bruchstrich. 
123 Gleiche Vorzeichen ergeben plus, unterschiedliche ergeben minus. 
124 Dies ist ein Hinweis darauf, dass Ursus seine Schreibweise mit den hochgestellten römischen Zahlen von der sexagesimalen 
Schreibweise bei Winkeln abgeleitet hat. 
125 im Druck korrigiert zu „geodaetischen“. 
126 Also (6x-8) (2x-10) = 12X

2
-76X+80. 

127 Also (12X
2
-76X+80) : (2x - 10) = 6x - 8, bzw. (12x2-76x+80) : (6x - 8) = 2x - 10. 
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Kapitel 6: Vom Wurzelziehen aus cossischen Zahlen 

Die Erklärungen für das Wurzelziehen beschränken sich auf Sachverhalte, die nicht aus dem 
elementaren Wurzelziehverfahren bei natürlichen Zahlen bekannt sind. Ursus verweist dazu dann auf 
die „Vulgar-Arithmetik“. Wurzeln werden unterschieden nach einfachen und zusammengesetzten. 
Einfache Wurzeln sind die Wurzeln mit Primzahlindex, also Quadrat-, Kubik-, fünfte, siebente, elfte 
Wurzel usw. Aus ihnen lassen sich alle anderen Wurzeln kombinieren, so etwa wird die achte Wurzel 
durch dreifaches Ziehen der Quadratwurzel gefunden, und etwa die zehnte Wurzel durch Ziehen 
sowohl der Quadrat- als auch der fünften Wurzel. Es werden hier jedoch nur Quadrat- und 
Kubikwurzeln verwendet. Es wird noch erwähnt, dass die Exponenten der Quadrat-, Kubik-, vierten, 
fünften Wurzeln jeweils die Hälfte, der dritte, vierte, fünfte Teil der entsprechenden Exponenten der 
Radikanden sind, und dass man deshalb die Radikanden in Zweier-, Dreier-, Vierer- oder 
Fünferkolonnen einteilen muss. Die beiden Beispiele für eine Quadrat- und eine Kubikwurzel aus 
einem cossischen Term beschränken sich dann allerdings auf einfache Anwendung einer binomischen 
Formel. 

„Beim Wurzelziehen aus einer Zahl ist zunächst zu bemerken, dass es unzählig viele Arten von 
Wurzeln gibt, nämlich genau so viele verschiedene Arten wie es cossische Quantitäten gibt, und dies 
sind unendlich viele. Wie die Quantitäten teilt man sie in einfache Wurzeln128 und in 
zusammengesetzte Wurzeln.129 Bei Zahlen mit unteilbaren Quantitäten, aus denen man einfache 
Wurzeln ziehen kann, gibt es drei Sorten, nämlich Quadrat-, Kubik- und surdische Wurzeln. Von den 
letzten gibt es ebenso unendlich viele, wie es unendlich viele Surden gibt, nämlich Surden-A- Wurzeln, 
Surden-B-Wurzeln, Surden-C- Wurzeln, Surden-D- Wurzeln usw. 

Zusammengesetzte Wurzeln sind solche, die aus den einfachen entstehen und mit deren Hilfe 
gezogen werden können, bzw. die aus teilbaren Quantitäten entstehen. Auch hiervon gibt es unendlich 
viele, wie es auch unendlich viele teilbare cossische Quantitäten gibt. Zum Beispiel Quadriquadrata 
[vierte Wurzel], Quadricubica [sechste Wurzel], Quadriquadriquadrata [achte Wurzel], Cubicubica 
[neunte Wurzel], Quadrisurda [zehnte Wurzel] und so unendlich weiter. Nun werden aber die 
zusammengesetzten Wurzeln, wie oben gesagt, mit Hilfe der einfachen Wurzeln nach einer 
Primfaktorzerlegung der Exponenten130 sukzessive gezogen. So wird zum Beispiel die vierte oder die 
achte Wurzel mit Hilfe der einfachen Quadratwurzel gezogen, die neunte Wurzel mit Hilfe der 
einfachen dritten Wurzel, die sechste Wurzel mit Hilfe der einfachen Quadrat- und der Kubikwurzel, 
die zehnte Wurzel mit Hilfe der einfachen Quadrat- und Surden-A-Wurzel. Daher kann man auch 
etliche zusammengesetzte Wurzeln ziehen, wenn man nur die dreierlei einfachen Wurzeln beherrscht. 
Es soll im folgenden das Ziehen der beiden wichtigsten einfachen Wurzeln, der Quadrat- und der 
Kubikwurzel aus cossischen Zahlen gelehrt werden, denn das Ziehen der surdischen Wurzeln wird 
üblicherweise nicht gebraucht. Wie man die Wurzeln aus gewöhnlichen Zahlen zieht, gehört in die 
Vulgar-Arithmetik. 

Aus dem bisher über die geometrischen Folgen Gesagten wissen wir, dass viele Quantitäten aus 
ihren Wurzeln entstehen, die ein- oder mehrfach mit sich selber multipliziert worden sind und dass 
durch solche Multiplikation einer Quantität mit sich selbst die Exponenten verdoppelt werden. 
Multipliziert man nämlich die Quantitäten miteinander, so werden ja die Exponenten oder Nenner 
oder Noten addiert. Daher entstehen aus der Multiplikation von Absolutzahlen wieder Absolutzahlen 
mit einem Drachma oder derselben Note wie die Koeffizienten. Daher kann man aus Absolut- oder 
einfachen Zahlen alle Wurzeln ziehen ohne Schwierigkeiten. 

Dies gilt aber nicht so Jur cossische Quantitäten oder Zahlen mit cossischen Noten oder 
Exponenten. Sofern die kleinste Quantität mit einer Note oder einem Exponenten versehen ist, der 

zwei/drei/vier/fi'mf zum Teiler hat, kann man eventuell aus dieser cossischen Zahl die 
zweite/dritte/vierte/fünfte Wurzel ziehen. Hat man nun eine Wurzel gezogen, so entsteht die 

Note der kleinsten Quantität aus der Regel der Division: denn der größten oder kleinsten Quantität, 
aus der die Wurzel gezogen wurde, 

halber/dritter/vierter/fünfter Teil zeigt an die Noten der größten oder kleinsten Quantität der 
gefundenen Quadrat-/Kubik-/vierten fünften Wurzel. 

Ebenso werden auch die Wurzeln aus einfachen oder zusammengesetzten cossischen Zahlen 
gezogen. Bei einfachen Zahlen benötigt man keine große Rechenkunst, keinen Unterricht und keinen 
Unterweisenden: denn es geschieht nicht anders als in der Vulgar-Arithmetik und beim Ziehen 
einfacher Wurzeln aus einfachen Zahlen. Bei zusammengesetzten Zahlen aber geschieht dies wie in 
der Logistica Astronomica131 oder Geodaetica, mit allen Regeln132 und mit Plus- und Minuszeichen 
entsprechend der Regel der Division. Durch das Setzen der Punkte kennzeichnet man, von rechts 

,2# „radices primitivas“. 
129 „radices ortivas“. 
1311 „exponenten resolution“. 
131 wie im Hexadezimalsystem in der Astronomie. 
132 „Cautelen“ 
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anfangend, anstelle der gewöhnlichen Ziffern, aus welchen Quantitäten die Quantitäten der Wurzel 
bestimmt werden. Dies soll durch folgende Beispiele deutlich gezeigt werden. Beispiel für das Ziehen 
einer Quadratwurzel/Kubikwurzel: 

IV III II 

16 48 36 

II III 

36 48 

IV 

]6 -J16.V4
 + 48,ï’ + 36T = 4x2 + 6x 

. 133 

II I 
4 6 

duplum 8 6 
48 36 

I 
j6_ 

6 
36 

II bzw. 
J_134 

g -J.36.V" + 48A'
1 + 16x'4 = 6x+ 4.v" 

48 

VI 

64 

V 
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III 

216 

II 
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4 
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6 

72 
6 

I 
6 

216 

288 432 216 

^64/ + 288A-
5
 + 43 2r4 + 216JC

3
 = 4A:

2
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Kap. 7: Von Brüchen oder gebrochenen cossischen Zahlen 

Das letzte Kapitel der Handschrift behandelt kurz cossische Brüche, solche mit einfachen Zahlen 
wie 3/4H für 3:4x2 oder mit zusammengesetzten Zahlen wie 3I+5/4 für (3x+5):4. Die Rechenregeln 
unterscheiden sich nicht von denen in der Vulgar-Arithmetik, trotz der unterschiedlichen 
Bezeichnungsweise. Beim Addieren und Multiplizieren wird ausdrücklich das „kreuzweise 
Multiplizieren“ genannt, das Dividieren wird durch Multiplizieren mit dem Kehrwert durchgeführt. 
Es folgen dann Beispiele zum Addieren und Subtrahieren, wobei in der gedruckten Fassung nur die 
ersten 5 Beispiele übernommen wurden. Die Beispiele zum Multiplizieren und Dividieren in der 
Handschrift Tractatiuncula 1597 und in der gedruckten Fassung 1601 sind nicht identisch, Ursus hat 
andere gewählt und das Prinzip der Umkehrrechenarten in den Vordergrund gestellt. Zum 
Wurzelziehen sind in der gedruckten Fassung gar keine Beispiele mehr, sie sind in der Handschrift 
auch sehr elementar. 

„Die Coss oder Algebra kennt außer den gewöhnlichen in der Vulgar-Arithmetik gebräuchlichen 
und in Rechnungen üblichen Brüchen noch andere und besondere Brüche oder eine gebrochene 
Zahlenart, mit Benennung der Quantitäten durch Noten oder Nenner. Und diese Brüche können mit 
einfachen oder zusammengesetzten Zahlen gebildet werden. Mit einfachen Zahlen können solche 
Brüche gebildet werden wie % 11 [Vrx2] oder in/4 [3x2 : 4], das wird gesprochen als drei Viertel eines 
Quadrates, was zu verstehen ist, als dass drei Quadrata geteilt werden durch 4. Und auch all solche 
Brüche wie 3/4u [3:(4x2)], die aus der Division erwachsen, ebenso auch solche mit zwei Noten wie 
31 /4ui [(3x) : (4x3)], die aber durch Reduzierung gleich dem soeben genannten Bruch 3/4u sind. Denn es 
werden die Noten gegeneinander aufgehoben, bis die obere Zahl oder der Zähler des Bruches zu 
einer absoluten oder einfachen Zahl wird, genau wie bei den gemeinen Artikularzahlen die Nullen 
gegeneinander aufgehoben werden. 

Mit zusammengesetzten Zahlen begegnen uns solche Brüche wie (3'+5):4, gesprochen drei 
Radizes plus fünf, geteilt durch 4. Obwohl sich diese cossischen Brüche in der Bezeichnungsweise von 
der Bezeichnungsweise der gemeinen Brüche in der Vulgar-Arithmetik unterscheiden, wird der 
Algorithmus beim Addieren, Subtrahieren, Multiplizieren, Dividieren und beim Wurzelziehen auf 
ganz gleiche Weise vollbracht. Denn beim Addieren und Subtrahieren werden die ungleichen Nenner, 
nach eventuell vorherigem Kürzen, miteinander multipliziert, woraus der neue Nenner entsteht; die 
Zähler, die durch kreuzweises Multiplizieren entstehen, werden dann addiert oder voneinander 
subtrahiert, der kleinere vom größeren. 

133 In der Handschrift im Druck sie zeigen für die Quadratwurzel die geraden Exponenten, für die Kubikwurzel die 
durch 3 teilbaren Exponenten. 
134 In der Handschrift fälschlich 8, im Druck korrigiert zu 4. 
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Additions- und Subtraktionsbeispiele in der Handschrift 1597, Blatt 29v. 
Statt des Gleichheitszeichens steht ft für facit, oder rest bei der Subtraktion. 

Beispiele 6, 7 nur in der Handschrift, nicht im Druck. 
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Beim Multiplizieren und Dividieren aber, da es sich doch um Umkehroperationen handelt,135 beim 
Dividieren mit gestürztem Divisor, werden die oberen Zahlen mit den oberen und die unteren mit den 
unteren multipliziert. Die Wurzeln zieht man sowohl aus den Zählern als auch aus den Nennern, alles 
wie bei gewöhnlichen Brüchen. Dies sollen die folgenden Beispiele verdeutlichen, und so ist auch in 
allen Rechenarten bei zusammengesetzten [cossischen] Brüchen zu verfahren. 

Multiplikations- und Divisionsbeispiele in der Handschrift 1597, Blatt 30r. 
Statt des Gleichheitszeichens steht ft für facit. Statt steht „in“. 
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„contraria species“ 



Kap. 7: Von gebrochenen cossischen Zahlen 93 

Multiplikations- und Divisionsbeispiele im Druck, Blatt C3v. 
Statt des Gleichheitszeichens steht ft für facit. Statt steht „durch“. 

2 10 , 2 
 rroder —- 
1 5x" 3*2 

I2x , 12 
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25*2
 25* 

  .   6*‘ l*2 
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12 2 

x+4 2x + 8* 
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4.V- 4 12*2 + 4x- 16 
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12x2 + 4*- 16 3*+4 4*-4 

5*2 + 4 25*4 + 20*2 - 10x3 - 8* 25*4 + 20x2 -10x3 - 8* ' 5*2 - 2* 5x2 + 4 

Quadratwurzelbeispiele in der Handschrift, Blatt 30v. Wurzeln treten nicht als Haken auf, 
an der Stelle des Gleichheitszeichens steht „radix“ bzw. „radix cubica“. 
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Abb. 40: Handschrift Tractatiuncula 1597. Die letzten drei Beispiele: 
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Allgemeiner Anhang: Von der Probe. 
Sowohl bei den cossischen Brüchen wie auch bei den ganzen Zahlen werden die erhaltenen 
Ergebnisse durch die jeweiligen Gegenoperationen aufs genaueste überprüft, beim Addieren durch 
Subtrahieren, beim Multiplizieren durch Dividieren, beim Wurzelziehen durch Multiplikation mit sich 
selbst. Auch die gewöhnliche cossische Probe, indem man einen Wert für Radix oder Ix einsetzt <oder 
sie als Münz-, Maß- oder Gewichtseinheit interpretiert), ist nicht zu verwerfen, obwohl sie nur bei den 
Beispielen des Algorithmus gilt und nicht bei den Beispielen der jetzt folgenden Gleichungslehre. 
Soviel vom Algorithmus, dem ersten Teil der Coss oder Algebra. Es folgt nun der zweite und 
anspruchsvollere Teil, nämlich die Gleichungslehre. 

Ende des ersten Algebrateiles. “ 
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Schluss 

Es ist interessant zu erwähnen, dass die cossische Schreibweise und ihre Symbole für die 
Potenzen der Variablen auch nach Viëta nicht außer Gebrauch kamen. Rechenmeister behielten sie 
bis mindestens ins 18. Jh. bei. Paul Halcke, Mitglied der Mathematischen Gesellschaft in Hamburg 
und Schreib- und Rechenmeister in Buxtehude verwendet sie in seinem Sinnenkonfekt 1719 noch 
durchgängig. Dieses Buch, „gleich wie das Confect eine Délicatesse des Mundes soll es eine 
Ergetzung des Gemüths und Belustigung der Sinnen seyn“, ist kein Rechenbuch mehr, wie es die 
Rechenmeister des 16. Jh. schrieben. Es dient lediglich der Erbauung für Interessierte und nicht mehr 
einer praktischen Anwendung, sondern „es giebet eine sonderbare Freude und Vergnügung, wenn 
man ein künstlich Problema solviret“.136 Paul Halcke beschreibt darin, unter Verwendung der 
cossischen Symbole für Radix, Zensus, Cubus, Zens de Zens, Sursolidus, Zensicubus usw., „die 
Regeln von der Quadrat- und Cubic-Coss ... damit man die Bücher der vorigen Zeiten desto besser 
verstehen könne“. Für Addition und Subtraktion werden die üblichen Zeichen + und + verwendet, für 
die Multiplikation *, für die Division eine Klammer „ ( “ oder der bekannte Bruchstrich, als 
Gleichheitszeichen = . In diesem Buch gibt Paul Halcke auch einige Reimaufgaben, die sein Lehrer 
Hinrich to Aspern verfasst hat.137 Eine dieser Reimaufgaben behandelt die zweite vergebliche 
Belagerung von Wien durch die Türken 1683 und verwendet eine Gleichung mit cossischen 
Symbolen zur Lösung der Frage, wie viele Türken vor Wien gefallen sind. Die letzten 9 Zeilen des 
Gedichtes (insgesamt 43 Zeilen) lauten:138 

„Die aber so vorhin für Wien geblieben waren, 
Hat man durch eine Schrift des Groß-Veziers erfahren 
Aus seiner Cantzeley, daß deren Zahl, verdeckt 
Gerad acht tausend, und noch zwey und neuntzig Eckt, 
Und steht in gleichem Werth mit diesen Quantitäten: 

1 $c + 2(7 + 13 jj + 42 c + 4025 j + 4004 r + 32. 
Drum rechne nun, wie viel für Wien sind abgetreten 
Vom Fecht-Platz in den Todt, durch deutsche Waffen-Macht,139 

Und da, nach Hundes Art, in Tellus140 Klufft gebracht? 
Facit 48544 Türken.“ 

Die Aufgabe verwendet also den Term x6 + 2x5 - 13x4 - 42x3 + 4025x2 - 4004x + 32 und setzt 
ihn gleich „der vierten 8092eck-Zahl“, die man als (x:2) [2 + (x-l)-8090] berechnet.141 Die Gleichung 
lässt sich dann reduzieren zu (x 4) • (x5 + 6x4 + 1 lx3 + 2x2 - 12x - 8) = 0, und hat die Lösung x = 4 . 
Die vierte 8092eck-Zahl ist somit 2-[2 + 3-8090] = 48544. Mit dieser vierten 8092eck-Zahl meint to 
Aspern die vierte sogenannte Pyramidenzahl; sie ist die Summe der ersten vier 8092eck-Zahlen, der 
Polygonalzahlen. Die Polygonalzahlen entstehen aus der Reihe der natürlichen Zahlen, indem man 
nicht jeweils die folgende addiert, sondern immer 8090 Zahlen auslässt: 

1 + 8090 + 2-8090 + 3-8090 + 4-8090 + ... .also 1; 8091; 16181; 24271;... 
Die Pyramidenzahlen sind dann 1; 8092; 24273; 48544; ... , nämlich die Summe der 
Polygonalzahlen.142 

Allgemein: Man bildet zuerst die p-Eckszahlen: 1 ; 1 + (p-2); 1 + 2 (p—2); 1 + 3 (p-2); ... 
dann die Polygonalzahlen als deren Summe: 
I ; 2 + (p-2); 3 + 3 (p—2); 4 + 6(p-2); ... ; x + x-(x -1 ):2-(p—2);... 
Hier war für x=4 und p=8092 die Zahl 4+6-8090 = 48544 gesucht. Der Term für die x-te 
Pyramidenzahl ist x • [1 + (x-1 ):2-(p 2)] = (x:2) • [2 + (x-l) (p-2)], wie bei Paul Halcke angegeben. 

136 Paul Halcke, Sinnen-Confect, Hamburg 1719, Vorwort Seite 3. 
137 S. 225. Siehe auch Rießen, Ein ungedrucktes Rechenbuch aus dem Jahre 1676, Glückstadt 1894, 
138 Ich danke Herrn Jürgen Kühl in Tremsbüttel-Sattenfelde für den Hinweis auf Halckcs Sinnen-Confect und speziell auf dieses 
Gedicht. 
139 Der Gedichtautor Hinrich to Aspern verschweigt, dass es wesentlich die Truppen des polnischen Königs Johann III. Sobieski 
waren, die die Türken vertrieben. 
140 Tellus, das Erdreich, als Göttin eng mit Gaia und Ceres verbunden. 
141 Siehe Rießen, S. 23. 
142 Siehe Tropfke Bd. 1, Berlin 4. Aufl. 1980, S. 346f. 
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*£> m 
Abb. 41 : Titelblatt der Arithmetica Analytica 1601. 

Studienbibliothek Dillingen, XVI 1394. 
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Teil 2: Arithmetica Analytica 

Einleitung 

Dieser zweite Teil der Coss oder Algebra beinhaltet die Gleichungslehre und ist nicht als 
Handschrift erhalten; die Tractatiuncula enden nämlich mit dem ersten Teil, dem Algorithmus. In der 
gedruckten Fassung, dann Arithmetica Analytica genannt, die posthum 1601 bei Johann Hartmann in 
Frankfurt/Oder erscheint, werden gegenüber der Handschrift Tractatiuncula 1597 nur wenige 
Änderungen vorgenommen, wahrscheinlich von Ursus selbst. Diese Arithmetica Analytica enthält als 
ersten Teil den „Algorithmus“, der oben beschrieben wurde, jedoch ohne Widmungsschreiben und 
ohne das Kapitel über die Geschichte der Coss, und als zweiten Teil die Gleichungslehre in fünf 
Kapiteln. Das Folgende wird aus dieser Arithmetica Analytica zitiert.143 

Der Buchdrucker und Verleger Johann Hartmann, geboren am 3. März 1537, stammt aus Mehlis 
bei Zella-St.Blasien, erlernte in Meiningen das Buchbinderhandwerk. In der Matrikel der Universität 
Frankfurt/Oder tritt er im Wintersemester 1559/60 auf, was aber nicht heißt, dass er dort studierte, 
sondern dass er sich als „civis academicus“ in die Jurisdiktion der Universität begab und dadurch 
Privilegien erhielt. 1563 erwarb er hier als Buchbinder den Meisterbrief, heiratete im gleichen Jahr 
die Tochter des Buchhändlers Sebastian Johann von Ingolstadt, gliederte seinem Unternehmen 1588 
einen Verlag und 1594 eine Druckoffizin an. Er starb am 21. Mai 1607 in Frankfurt/Oder. Sein Sohn 
Friedrich, etwa 1565 geboren, im Sommer 1579 in der Matrikel der Universität verzeichnet, seit 1588 
selbst Buchbindermeister und Mitverleger, seit 1594 auch Drucker, leitete seit dem Tode seines 
Vaters den Betrieb bis 1631 weiter, als durch die Erstürmung der Stadt durch die Schweden im April 
1631 die Offizin zum Erlöschen kam.144 Im Verlagsverzeichnis der Hartmanns, dem Verzeichnis der 
Bücher welche von Hansen und Friderichen Hartmann anno 1606 angeboten werden, ist auch das 
Buch von Ursus aufgeführt: „Arithmetica 
oder CoßRechenbuch Nicolai Raimari“.145 

Der Druck ist nicht sehr gut. 
Abgesehen vom undeutlichen Druckbild 
treten, anders als bei Ursus sonst üblich, 
viele Druckfehler auf, es fehlen 
gelegentlich Zahlen bei den Beispielen, 
oder sie sind nicht wie nötig 
durchgestrichen, es ist + statt der 
römischen X gedruckt, insbesondere 
fehlen des öfteren cossische Symbole 
oder der Drucker liest statt Q fälschlich 
die Zahlen 18 oder 13. Solche einfachen 
Druckfehler habe ich stillschweigend 
korrigiert, ohne im Einzelnen darauf 
hinzuweisen. Ein Korrekturlesen des 
Andruckes durch einen Mathematiker hat 
sicherlich nicht stattgefunden, Ursus war 
bereits verstorben. Über die schlechte 
Qualität der Drucke bei Johann und 
Friedrich Hartmann urteilt Ernst 
Consentais146 zu Recht: „ist bei viel 
zusammengedrängterem Satze mit weit 
geringerer Sorgfalt und mit weniger 
Geschmack gesetzt und gedruckt“ als von 
seinem Konkurrenten Andreas Eichhorn. 
Auch Heinrich Grimm147 bemängelt die 
geringe Druckqualität bei Hartmann: „Die 
Verlegertätigkeit der Hartmann war von 
hohem kulturellen Wert. Dieses günstige 
Urteil kann jedoch nicht auf Ausstattung 

143 Studienbibliothek Dillingen, Signatur XVI 1394. 
144 Heinrich Grimm, Die Matrikel der Universität Frankfurt/Oder aus den Jahren 1506 bis 1648, in: Börsenblatt für den 
Deutschen Buchhandel, Frankf. Ausgabe, 16. Jahrgang, Nr. 50a, 27. Juni 1960, S. 1076-1078. Heinrich Grimm, Der Verlag und 
die Druckoffizin der Buchbinder Hansen und Friderichen Hartmann, in: Gutenberg-Jahrbuch Bd. 35, 1960, S. 237-254. 
145 Emst Consentius, Von Druckkosten Taxen und Privilegien, in: Forschungen zur Brandenburgischen und Preußischen 
Geschichte, Bd. 34, 1922, S. 215-221. 
146 Von Druckkosten, Taxen und Privilegien, siehe vorige Fußnote. 
147 Der Verlag und die Druckoffizin Hartmann, in: Gutenberg-Jahrbuch, Bd. 35, 1960, S. 253. 
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und Druck der Hartmannschen Buchwerke ausgedehnt werden, die gegenüber den einschlägig guten 
Leistungen von Johan Eichhorn abfielen.“ Ich kann diesem Urteil beipflichten. Als Beleg mag die 
erste Seite des zweiten Teiles dienen. 

Kapitel I: Was sind Gleichungen, welche und wie viele Arten gibt es? 

Im ersten Kapitel dieses zweiten Teiles unterscheidet Ursus drei Ordnungen von Gleichungen. In 
der ersten Ordnung fasst er alle Gleichungen zusammen, in der eine cossische Quantität, also eine 
Potenz der Variablen, direkt gleichgesetzt ist mit dem Drachma, mit einer absoluten Zahl. Es sind dies 
also Gleichungen der Form a-x" = b (a,b positiv, n natürlich), die von ihm als „einfache Gleichungen“ 
benannt werden. Die zweite Ordnung umfasst „zusammengesetzte Gleichungen“, die aus mehreren 
cossischen Quantitäten zusammengesetzt sind, wobei auch einige Potenzen fehlen dürfen; 
Gleichungen sind immer nach der höchsten Potenz aufgelöst. In der dritten Ordnung fasst Ursus 
Spezialfälle zusammen, nämlich solche Gleichungen, bei denen durch Substitution einer 
Variablenpotenz einfachere Gleichungen entstehen; das sind also biquadratische und bikubische 
Gleichungen etc (a-x4 = ±b-x2 ± d; a-x6 = ±bx3 ± d; a-x8 = ±b-x4 ± d). Die verschiedenen Gleichungen 
gehören dann, nach dem höchsten Exponenten sortiert, zur Radixcoss (a-x = d), zur Zensicoss (a-x" = 
d; a-x2 = b-x ± d; a-x2 = d - b-x), zur Cubicoss (a-x3 = d; a-x3 = ±b-x2 ± c-x ± d in den möglichen 
Vorzeichenkombinationen), und entsprechend zur Zensizensicoss für Exponent 4. Noch höhere 
Potenzen seien zwar möglich, werden aber hier nicht betrachtet. 

Während Ursus im ersten Teil, in den Tractatiuncula, die cossischen Symbole zwar vorstellt, bei 
seinen Beispielen aber eine 
Verwendung zu Gunsten der 
Potenzschreibweise vermeidet, so 
verwendet er die cossischen Symbole 
im zweiten Teil der Arithmetica 
Analytica durchgängig. Ursache kann 
sein, dass er wegen seines Todes 
diesen zweiten Teil nicht mehr 
überarbeitete, oder dass er bewusst 
hier die cossischen Symbole 
benutzen wollte. 

Ordnung I Ordnung II Ordnung III 

ax = d (ax = d) ax4 = ± bx2 ± d 
ax6 = ± bx3 ± d ax" = d 

—t—j" 
ax = d 

ax = ±bx ± d 
ax8 = ± bx4 ± d 

ax4 = d 
ax = ±bx ± cx ± d 
 a ;—3 r~,—;  ax = ±bx ± cx ± dx ± e 

Gleichungen mit nur negativen Vorzeichen rechts des 
Gleichheitszeichen treten nicht auf. 

Ordo I 
v =ü 

LZÄ 
= ü 

33 = l 

Ordo II 

= ü 

3 = r. 4 

< = 3- v- 4 

33 = c- 3- r- l 

Ordo III 

13 = 3- I 

3< 

333 = fl» 4 

Statt des Gleichheitszeichens steht gr. 
Der Drucker hat wohl für die Abkürzung 
gl. für gleich ein gr. gesetzt. 

„Die Gleichungslehre ist der zweite Teil der 
Algebra oder Coss, bei der eine größere cossische 
Quantität mit einer absoluten Zahl, dem Drachma, 
allein oder mit anderen dazwischen stehenden 
cossischen Quantitäten in Gleichheitsbeziehung gesetzt 
wird. Aus dieser Beschreibung ergeben sich sofort zwei 
verschiedene Arten von Gleichungen: die erste 
Ordnung, bei der eine größere cossische Quantität nur 
mit einer Zahl gleichgesetzt wird, nennt man einfache 
Gleichung'^ ; sofern auch andere Quantitäten 
auftreten, nennt man sie zusammengesetzte 
Gleichung.149 Dies soll mit folgender Tafel erläutert werden: 

In dieser Tafel erscheinen drei verschiedene Gleichungsordnungen, die zwei eben genannten und 
darüber hinaus eine dritte, bei der die Glieder gleich weit voneinander entfernt sind und deshalb 
herauswachsende Gleichungen150 genannt werden. In diesen findet man nur Quantitäten, die sich so 
unterscheiden, wie die hintereinander stehenden Glieder einer geometrischen Folge, auch wenn 
dabei einige Zwischenglieder fehlen. Soviel in Kürze zu den drei Gleichungsordnungen, die 
einfachen, die zusammengesetzten und die herauswachsenden Gleichungen. 

Weiterhin ist aus dieser Übersicht zu ersehen, dass es in jeder der Ordnungen unzählig viele 
verschiedene Gleichungen gibt und wie diese Schritt für Schritt erzeugt werden können. In den ersten 
beiden Ordnungen wird die erste Gleichung oder Regula die Radixcoss genannt, die zweite die 
Zensicoss, die dritte die Cubicoss, und die vierte die Zensizensicoss. Dabei wollen wir es bewenden 
lassen, obwohl es, wie gesagt, unendlich viele davon gibt. “ 

148 Aequatio simplex. 
149 Aequatio composita. 
150 Exortae. 
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Kapitel II: Über die vielerlei Formen der zusammengesetzten Gleichungsart 

In diesem Kapitel zählt Ursus die Zahl der Möglichkeiten von verschiedenen Gleichungstypen 
und nennt diese. Die Gleichungen sind immer aufgelöst nach der höchsten Potenz. Ursus verwendet 
nun, dass die Zahl der Vertauschungen von n Dingen gleich n! (Fakultät) ist, ohne dieses Symbol oder 
Wort zu nennen; wenn etwa auf der rechten Seite der Gleichung drei verschiedene cossische 
Quantitäten auftreten können (x3 = ax2 ± bx ± c), so ist die Zahl ihrer Anordnungen halt 3 ! =6. Die 
Zahl von Gleichungen verdoppelt sich nun für jede Möglichkeit des Vorzeichentausches, weil Ursus 
Gleichungen wie x —ax+b und x-ax-b unterscheidet; bei 3 cossischen Quantitäten auf der rechten 
Seite muss dann die Zahl der Möglichkeiten vervierfacht werden, alle drei dürfen kein negatives 
Zeichen tragen, Gleichungen mit nur negativen Zeichen wie x2 = -ax-b oder wie x3 = -ax2 werden 
nicht akzeptiert. Dann muss Ursus einzeln die doppelt gezählten Gleichungen herausfiltem und 
subtrahieren. Dieses Verfahren geschieht nun getrennt für die Zensicoss und die Cubicoss; allerdings 
nennt Ursus die Endergebnisse nicht deutlich mit/ohne die Gleichungen niedrigeren Grades, was das 
Verständnis seines Textes erschwert. 

Für lineare Gleichungen, die Radixcoss, gibt es nur die eine Form x=d. 
Für quadratische Gleichungen, die Zensicoss, gibt es die 5 Formen x2=d; x2=ax; x2=ax+d; x2=ax- 

d; x2= d-ax. Ursus argumentiert wie folgt: Bei zusammengesetzten Gleichungen der Zensicoss lassen 
sich die zwei Terme d und ax der rechten Seite auf zwei Arten anordnen, die unterschiedlichen 
Vorzeichen ergeben doppelt so viele, also 4 Formen, von denen eine (x2 = ax+d und x2 = d+ax) 
doppelt gezählt wurde. Bleiben 3 Gleichungsformen für die gemischte Zensicoss, zuzüglich 2 
Formen, wo rechts nur eine Potenz steht, also 5 Formen insgesamt. 

Für die Cubicoss lautet die Gedankenkette so: Die drei Terme der rechten Seite d, ax, bx2 lassen 
sich auf 6 Arten anordnen, die unterschiedlichen Vorzeichen an zwei der drei Stellen vervierfachen 
diese Anzahl, also gibt es 24 Formen; Ursus nennt sie alle. Davon wurden allerdings 17 doppelt 
gezählt, so dass nur 7 bleiben, in seiner Tabelle die Nummern 7 bis 13. Gleichungen, bei denen eine 
Potenz fehlt, werden extra gezählt. Wenn eine oder zwei Quantitäten fehlen, hat man die gleiche 
Anzahl wie bei der Zensicoss, also 1+5 Formen; es gibt jedoch drei Möglichkeiten, dass eine 
Quantität fehlt, wovon eine soeben gezählt wurde; die anderen beiden ergeben auch je 6 
Möglichkeiten. Somit hat man 7+6+6 = 19 Möglichkeiten in der Cubicoss; zusätzlich die 5 der 
Zensicoss und die eine der linearen Gleichung, sind es 25 insgesamt. 

Analog errechnet Ursus die Zahl der möglichen Gleichungsformen für die Zensizensicoss zu 272 
Formen, ohne die doppelt gezählten abzuziehen. Es sei noch erwähnt, dass Sortierung und Anzahl der 
Gleichungsformen bei Ursus nicht die gleichen sind, wie die 24 Gleichungsformen, die seit Jordanus 
Nemorarius und die z.B. in der Dresdner Sammelhandschrift C80 genannt werden, da diese auch 
Wurzelgleichungen und Gleichungen vierten Grades enthalten. Al-HwärizmT hatte nur 6 Formen 
unterschieden.1,1 

,,In jeder zusammengesetzten Gleichungsform können durch Veränderung der Stellungen der 
Quantitäten oder durch Tausch der Operationszeichen plus und minus verschiedene Gleichungs- 
formen entstehen. Um zu verstehen, wie oft man eine Gleichung verändern und in welcher Weise man 
dies tun kann, merke folgende Regel: 

Unterschiedliche Zahlen und Dinge können so oft in verschiedene Formen umgesetzt werden, wie 
das Produkt aller natürlichen Zahlen bis zu ihrer Anzahl [Fakultät] ergibt. Bei 2 Zahlen gibt es zwei 
Möglichkeiten der Anordnung, bei 3 Zahlen sechs, bei 4 Zahlen 24. 

In der zusammengesetzten Zensicoss wird ja die größte Quantität mit j bezeichnet und mit den 
zwei kleineren Quantitäten V und $ gleichgesetzt. Also gibt es zwei verschiedene Möglichkeiten, r und 
ß in der Gleichung zu setzen: und wegen der unterschiedlichen Rechenzeichen + plus und + minus 
also insgesamt vier geschriebene Gleichungsformen, nämlich: 

3 = r + 4 Wegen r + J! = Jj + r, setzt man die beiden Gleichungen als identisch, 
3 = V - 4 was man auch mit den beiden anderen r - $ und ß - V täte, wenn es nicht 

3=4 + 1' als ein besonderer Fall angesehen werden soll. Bleiben also in der 
3=4-1' gemischten Zensicoss 3 Fälle. 

Ebenso gilt für die zusammengesetzte Cubicoss, bei der die drei kleineren cossischen Quantitäten j, r, 
Jj der größten C gleichgesetzt werden, dass es 6 [= 31] Möglichkeiten geben müsste. Aber wegen der 
zwei unterschiedlichen Zeichen + und +, die an zwei [minus nicht auch an der dritten] verschiedenen 

Siehe Folkerts, Die älteste lateinische Schrift über das indische Rechnen, S. 14. 
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Stellen auftreten können, wird sich die Zahl der Möglichkeiten vervierfachen. Deshalb treten hier vier 
mal sechs, also 24 Möglichkeiten auf:15 

+ + + - - + 

7. $ + r+ 4 
r + J+S 
$ + $ + r 
Jl+ r + 3 
3 + J + r 
r+4 + J 

11. i-r-J 
r-J-S 

13. Jl - t - v 

J-r-S 
3 ~ & - r 

12. r-i-J 

9. 
10. 

i + r- & 
r + M - } 

3 + J> - r 
r+ 3- J 

8. j - r + Jl 
r- Jl +3 
Jl ~3 + r 
J ~r + 3 
3 - J + r 
r~3 + J 

Wenn man nun noch den Cubus c vergleicht mit zwei der drei cossischen Quantitäten, wenn also 
eines der beiden 3 oder r mit Unterbrechung der Ordnung fehlt,153 entstehen noch acht weitere 
Gleichungsmöglichkeiten: 

c = 3 + fl c = 3/ + 3 c = r + Jl c — f + v 

( = 3 - Jl c = Jl - 3 c = r - Jl c = AS - r 
Aber so wie in der Zensicoss 3 = f + Jl und 3 = Jj + r als eine Gleichung aufgefasst wurden, 

werden auch hier C = 3 + J! und C = Jl + 3 sowie c = r + Jl und c = Jl + r als jeweils eine 
Gleichung aufgefasst. Deshalb bleiben hiervon also 6 Formen. Demnach gibt es in der Cubicoss, in 
der C mit kleineren Quantitäten verglichen wird, 19 Formen. Die 6 von oben dazugerechnet, ergibt 
die Anzahl von 25 Gleichungsformen. “ 

Ursus sortiert 
Radixcoss: 

Zensicoss: 

seine Gleichungsformen also wie folgt: 
x = d 

x2 = d x2 = ax + d 
x2 = ax x“ = ax - d 

x2 = d - ax 

Cubicoss: x3 = d 
x3 = bx 
x3 = ax2 

x3 = ax2 + bx 
x3 = ax2 - bx 
x3 = bx - ax2 

x3 = d + bx 7. x3 = ax2 + bx + d 
x3 = d - bx 9. x3 = ax2 + bx - d 
x3 = bx-d 8. x3 = ax2-bx + d 
x3 = d + ax2 11. x3 = ax2 - bx - d 
x3 = d-ax2 10. x3 = bx-ax2 + d 
x3 = ax2 - d 12. x3 = bx - ax2 - d 

13. x3 = d - bx - ax2 

1 Gleichung 

5 Gleichungen 

19 Gleichungen 

,,In der Zensizensicoss [Gleichungen vierten Grades], in der 33 in einer Gleichung mit vier 
kleineren Quantitäten in Beziehung gesetzt wird, wenn keine ausgelassen wird, gibt es wegen der 4 
Quantitäten zunächst 24 Gleichungsmöglichkeiten, wegen der 24 Anordnungsmöglichkeiten der 
Quantitäten. Danach entstehen wegen der beiden Möglichkeiten der Rechenzeichen bei drei der vier 
Quantitäten 8 mal 24, also 192 verschiedene Gleichungsformen. Und das nur für Gleichungen, bei 
denen alle Quantitäten wirklich auftreten. Wenn aber Quantitäten ausgelassen werden, dann 
entstehen zusätzlich bei der Auslassung einer einzigen Quantität, nämlich der 

c1 f 5- r. ü 
3 [ bleiben übrig ] c. r. i] 
r] KM 

Diese erzeugen wie in der Cubicoss je 24, also drei mal 24, sprich 72 Möglichkeiten. Lässt man aber 
gleich zwei Quantitäten aus, nämlich 

Ml \ 4 
c. r [ dann bleiben \ 5. 

5. v J [ c. ü 

Aus jeder dieser drei Kombinationen entstehen wie in der Zensicoss vier Gleichungsformen, also aus 
allen dreien drei mal vier, sprich 12 Möglichkeiten. Aber die Möglichkeiten, bei denen nur 3 und Jl 
übrigbleiben, gehören zu den Gleichungen der Ordnung 111, bleiben noch acht. Addiert man alle diese 
Möglichkeiten, entstehen 272 Möglichkeiten, wobei alle die aber gleich sind, bei denen nur 
Pluszeichen auftreten, wie das bei anderen Quantitäten auch war. “ 

152 Vor den Termen der rechten Seite fehlt in der Tabelle stets noch „c =“. Die ohne Nummer genannten Gleichungen sind 
doppelt gezählt, fallen also weg. Die Gleichungen Nr. 1-6 werden wie bei der Zensicoss gezählt, es sind dies c = ü; c = r; e = 5; 
c = J + r;c = j-r;c = r-s. 
153 Dass auf der rechten Seite 4 fehlt, wurde bereits gezählt als Nr. 1 -6; vorige Fußnote. 
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Kapitel III: Wie man Gleichungen vereinfacht 

Im 3. Kapitel geht es um das Vereinfachen von Gleichungen, die ja stets auf die Form 
xn = ±axn'' ± bxn i ± ... gebracht werden sollen. Dazu stellt Ursus drei Prinzipien auf, die teilweise auf 
Euklid zurückgehen. Es sind dies zum einen die einfache Tatsache, dass man auf beiden Seiten einer 
Gleichung denselben Term addieren oder subtrahieren darf,154 zum anderen, dass man ebenso mit 
derselben Zahl multiplizieren oder dividieren darf,155 zum dritten, dass man beide Seiten der 
Gleichung potenzieren oder wurzeln darf. Probleme mit negativen Zahlen treten nicht auf. Aus diesen 
drei Prinzipien entwickelt Ursus Regeln, wie nun konkret die Gleichungen zu einfacheren umgeformt 
werden sollen. Die aus dem ersten Prinzip erwachsenden drei Regeln sind im folgenden Ursus-Text 
leicht verständlich. Die sich aus dem zweiten Prinzip ergebenden drei Regeln sind die für das 
kreuzweise Multiplizieren von Bruchtermen, das Kürzen der ganzen Gleichung durch einen 
gemeinsamen Koeffizienten der Potenzen, und das Kürzen durch Potenzen, wenn die kleinste Potenz 
nicht den Exponenten Null hat. Aus dem dritten Prinzip leitet Ursus ab, dass man Gleichungen mit 
Wurzeln beidseitig quadrieren soll, oder bei x" = d direkt wurzeln kann, oder das Verfahren der 
Substitution einer Potenz anwenden kann. Die neun Regeln, Reduktionen genannt, sind folgende: 

Red. 1: ± b Addieren oder Subtrahieren einer absoluten Zahl, also 

ax ± b = c -=* a-x = c + b 

Red. 2: 

Red. 3: 

Red. 4: 

Red. 5: 

Red. 6: 

Red. 7: 

Red. 8: 

Red. 9: 

±ax ± b Addieren oder Subtrahieren eines (linearen) Terms, also 

ax ± b = cx ± d =°- e x = f 

Auflösen nach dem größten Exponenten, also etwa x2 = a-x ± b 

•a Nenner beseitigen durch Multiplizieren, kreuzweises Multiplizieren 

:a Kürzen durch Faktoren 

:x Kürzen durch Variable, also 

Potenzieren ax = Vx 
a-x =H -> 

= ax 

a2-x2 

a'-x3 

Wurzeln x = Va 
x = ^a 

x = a 

Substituieren von x2 oder x4 durch eine neue Variable x 

Red. 10: Johannes-Junge-Verfahren 

„Die Vereinfachung ist eine Eigenschaft der Algebra oder Coss, durch die die Gleichung aus 
einer zur Lösung unbequemeren in eine bequemere umgewandelt wird, ohne dass die 
Gleichheitsverhältnisse verändert werden. Grund und Ursache einer Vereinfachung geht auf 
nachfolgende drei Prinzipien zurück: 

I. Wird Gleiches zu Gleichem gegeben oder davon weggenommen, dann werden die Summe oder 
der Rest gleich. (Das ist das 2. und 3. Axiom Euklids.) 

II. Wird Gleiches mit Gleichem multipliziert oder dividiert, dann werden die Produkte oder 
Quotienten gleich. (Aus Proposition 17 und 18 des 7. Buches Euklids.) 

III. Aus gleichen Wurzeln entstehen gleiche Figuren, und umgekehrt aus gleichen Figuren auch 
gleiche Wurzeln.156 

Aus Prinzip I ergeben sich folgende drei Vereinfachungsregeln, die man mit folgendem Satz 
zusammenfassen kann: «Bei gleichen [Rechen-]Zeichen nehme man weg von der Zahl, bei 
verschiedenen aber füge man hinzu,»157 

Reduktion 1 : Wird eine absolute Zahl oder die Null gleichgesetzt mit einer Quantität, die durch + 
oder mit einer anderen absoluten Zahl verbunden ist, so addiere oder subtrahiere auf beiden Seiten 
letztere Zahl, damit die Quantität und die absolute Zahl jeweils einzeln stehen, z.B. 

2r+4 = 8 =s> 2r = 4 Ebenso: 2r-4 = 8 -*■ 2r= 12. 

8r- 4 = 0 8r=4 Ebenso: 8r+4 = 0 8r=0-4. 

Reduktion 2: Werden zwei durch + und zusammengesetzte cossische Zahlen gleichgesetzt, so 
vereinfache sie nach Regel 1, durch Umwandlung der Rechenzeichen, zu einfachen Zahlen. 

IM Ursus nennt Euklid, Axiom 2 „Wenn Gleichem Gleiches hinzugefugt wird, sind die Ganzen gleich“ und Axiom 3 „Wenn 
von Gleichem Gleiches weggenommen wird, sind die Reste gleich“. 
155 Ursus nennt Euklid, Buch 7, Prop. 17 „Wenn irgendwelche Zahlen entstehen, indem eine Zahl zwei Zahlen vervielfältigt, 
dann müssen die Ergebnisse dasselbe Verhältnis haben wie die Zahlen, die vervielfältigt werden“ und Prop. 18 analog. 
156 Mit „Figuren“ sind Quadrate, Kuben etc. gemeint. 
177 Signa eadem demunt Numero, diversa sed addunt. 
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8r + 4 = 5r+ 22 

5r-4 = 12 -3r 

3r- 4 = Sr- 10 

6r + 5 = 8r- 9 

5r- 6 = 3r 

-* 8r= 5r+ 18 

=*> 5r=16-3r 

-*> 3r+ 6 = 5r 

-*• 6r+ 14 = 8r 

— 3r+6 = 5r 

3r= 18 

Sr= 16 

2r= 6 

2r= 14 

2r = 6 

Reduktion 3: In allen zusammengesetzten Gleichungen vereinfache man diese so durch die nun 
folgenden Regeln, dass die größte Quantität auf der einen Gleichungsseite isoliert wird. In der 
Zensicoss entstehen aus diesem Vorgehen diese drei Gleichungen: 

\ zwei kleinere } f größten wie /'/ ß = j ] 
Es werden 

gleich -{ zwei größere 
gesetzt 

[ zwei äußere 

I Quantitäten 

\ mit der \ kleinsten wießr-ß }• =*■ j = ß±r oder r±J?158 

I allein 
J stehenden [ mittleren wie ß Jj = 1' J 

Aus Prinzip II erwachsen diese drei Vereinfachungen. Als erstes aus der Multiplikation: 

Reduktion 4: Werden zwei Quantitäten oder Zahlen mit Hilfe von Brüchen gleich gesetzt, so 
vereinfache man diese Gleichung gemäß der Vulgar-Arithmetik, wie man sie zur Vereinfachung von 
Brüchen benutzt, indem man zuerst jeden gemischten Bruch in einen unechten Bruch umwandelt und 
danach durch kreuzweises Multiplizieren von Zähler und Nenner die neuen Zähler erzeugt. Der neue 
Nenner, das Produkt der beiden Nenner, kann dann auf beiden Seiten weggelassen werden. So z.B.: 

!3 _ 896 

5~ 4&Y- \X2 

8 _ 896 

5 48A - 1A
2 

4480= 384A- 8A
2 

(Der neue und beidseitig wegzulassende Nenner ist 240x - 5A
2
 .) 

Für die Division ergeben sich diese zwei Regeln zur Vereinfachung: 

Reduktion 5: Wenn Quantitäten oder Zahlen so gleichgesetzt werden, dass dabei größere gemeinsame 
Koeffizienten auftreten, so teile man diese durch den größten gemeinsamen Teiler}59 

3j = 9r + 12 Gemeinsame Division durch 3 ergibt 1$= 3r + 4. 

Ebenso 2 'f f= 30 Nach der vierten Reduktion 5 t = 60.1 r = 12. 

Und hieraus kann man ersehen, dass die gebräuchliche Division zur Vereinfachung in der Regula 
Coss genutzt werden kann. Dies gilt aber ebenso für quadratische und kubische Gleichungen sowie 
für Gleichungen vierten Grades. 

Reduktion 6: Wenn Quantitäten gleich gesetzt werden, bei der die kleinste eine größere Quantität hat 
als das Drachma (das ist eine absolute Zahl'60), so vereinfache die Gleichung dadurch, dass du die 
Exponenten soweit gegeneinander kürzt, bis die kleinste Drachma-Quantität hat, also zur einfachen 
Zahl geworden ist. Dies geschieht in gleicher Weise, wie man Nullen bei Dezimalzahlen161 streicht, 
z.B. 1) = 3r, vereinfacht zu lr = 3. In logistischer Schreibweise ln = 31 wird durch Kürzen von einem 
1 zu ll = 3°. Und diese Vereinfachung geschieht durch Subtraktion der Exponenten.162 

Aus Prinzip III entstehen folgende drei Vereinfachungsregeln: 

Reduktion 7: Wird eine absolute [oder cossische] Zahl mit der Wurzel einer Zahl gleich gesetzt, so 
muss zuerst die Wurzel durch Auslöschen ihres Namens und dann die absolute Zahl so oft mit sich 
selbst multipliziert werden, wie dies für die Wurzel notwendig ist, damit diese als Figuralzahl163 

erscheint: 

3r = V/r -*■ 9j = lr [3x = Vx -=» 9x2=lx] 

Ebenso: 2r=f50r —*> 8c=50r.'M [2x = ^/50x 8x3 = 50x] 

Reduktion 8: Wird eine Figuralquantität größer als r gleich gesetzt mit einer absoluten Zahl, so 
werden auf beiden Seiten der Gleichung die entsprechenden Wurzeln gezogen : 

lj = 9 -*• lr=3'bS Ebenso: lc=8 — lr=2. 

158 Hier gibt es im Druck viele Fehler mit den + und -t- Zeichen. 
159 „communem divisorem“ 
160 „absolut oder leddige zall“ 
161 „Artikular zahlen“ 
162 „Fitque haec Reductio potius per notarum Subtractionem.“ 
163 Cossische Zahl, mit „Figuren“, d.h. mit Potenzen. Die Figuren sind die Exponenten. 
IM Wurzelzeichen werden nicht verwendet, statt dessen steht „Radici quadratae aus“ bzw. „Radici cubicae aus“. 
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Durch diese Vereinfachung werden alle einfachen cossischen Gleichungen zu einer einzigen gemacht. 

Reduktion 9: Setzt man eine größere Quantität in eine Gleichung mit einer Folge von Quantitäten, die 
als geometrische Folge mit gleich großen Lücken aufgefasst werden kann, so vereinfache man die 
Gleichung dadurch, dass man die passenden Quantitäten gleicher Ordnung auf beiden Seiten streicht, 
z.B.: 

IV II 0 

ä = ilJ 

VIII IV 0 

m=s$; $ 

VIII IV 0 

Stt = 3$ : j 

II I 0 

i=r; J 

IV II 0 

S3 = S: J 

II I 0 

3 = r;Jl 

Reduzierung auf die Hälfte der Exponenten. 

[x4 = ±ax2 ± d x2 = ±ax ± d] 

Ebenso. 

[x8 = ±ax4 ± d x4 = ±ax2 ± d] 

Reduzierung auf ein Viertel der Exponenten. 

[x8 = ±ax4 ± d x = ±ax ± d] 

XVI VIII 0 

M = M-' A 

IV II 0 

ä=s;J1°6 [x16 = ±ax8 ± d x4 = ±ax2 ± d] 

Durch diese Vereinfachung wird die dritte Ordnung der anfangs genannten cossischen 
Gleichungen oder die eben genannte 8. Reduktion zu anderen Gleichungstypen vereinfacht. Es bleibt 
nur noch, die Wurzel zu ziehen, wobei man aus der aus 1 r gefundenen Zahl noch die entsprechende 
Wurzel ziehen muss. “I67 

Kapitel IV: Johann Junges Erfindung 

Schon im ersten Kapitel der Handschrift Tractatiuncula 1597, in dem Ursus den Abriss der 
Geschichte der Coss gibt, nennt er den für uns heute unbekannten Mathematiker Johannes Junge aus 
Schlesien mit seinem Rechenbuch auff den Ziffern und Linien 1578. Dieser habe mit seiner 
„Erfindung einen unbezahlbaren Schatz“ in der Algebra hinterlassen. Dieser Schatz ist ein 
Algorithmus, bei einer (ganzrationalen) Gleichung 
n-ten Grades zu prüfen, ob eine gedachte Zahl 
Lösung der Gleichung ist. Die Zahl selbst, die 
Lösung, wird hierdurch nicht gefunden, das 
einfache Verfahren dient der Bestätigung. Man 
kann nun aber durch Probieren mehrerer 
Lösungskandidaten u.U. die Lösung finden. Im 16. 
Jh. war es bei den Rechenmeister ja üblich, dass 
die Gleichungslösungen ganze Zahlen waren. Der 
Algorithmus von Johannes Junge ist eine 
Polynomdivision des Gleichungsterms durch einen 
seiner Linearfaktoren, der beim Aufgehen der 
Division die Lösung ergibt. Die Darstellung des 
Rechenverfahrens, das in Tabellenform einfach 
und übersichtlich ist, erfolgt hier. 

Johann Junges Rechenbuch wird Ursus in 
seiner Zeit bei Heinrich Rantzau in Dithmarschen 
kennengelemt haben, da das Buch 1578 in Lübeck 
gedruckt worden war; zwischen Lübeck und 
Dithmarschen bestanden gute politische 
Beziehungen. 

Über diesen Johannes Junge168 aus Schweidnitz wurde oben schon einiges aus seinen 
autobiographischen Angaben im Widmungsbrief an Johann Neudörffer zitiert. Sein Rechenbuch 
scheint außerordentlich selten erhalten zu sein. Mir ist trotz Intemetrecherche nur das eine Exemplar 
des Germanischen Nationalmuseums Nürnberg169 bekannt. Ich will deshalb Junges allgemeine 
Erläuterung seines Verfahrens hier, in heutiges Deutsch übertragen, wiedergeben. Vorausgesetzt wird, 
dass die Gleichung nach der höchsten Potenz aufgelöst ist. deren Koeffizient auch 1 sein soll, also 
z.B. 

REGVL^f. 
9?im& für bitfj hie (fDigtiv fcffkftf 

tndbiefoIgmbe.Ouantifftljdbfttft/ m anc 
f°!ch< 2>uubirfic / Jfacfunale tx> 
fafx ob £>er£)uotient-f- ifl/fb $trf*jhn< mit & 
(Fofjiltfjrrtorife »on btt folgenden£luant£ 
tet/ ifi er ater -+■ fo 2töbir jfuv im fall t>it Ub i* 
gm auff ci^cr feiten «Heine flehen/muf«i jmt» 
c&trwm £iuofKnf/t>K folgfnDcn,Oii<tntüit* 
ten natfypei ftmg/Dfr Dafür fleftertDftl gnefjt» 
entmcDer 2fbbirn ober ©ubtrafnm/ älfo thtt 
Dei) allen £lnamifttm/t>wi Der meDerflen an* 
fahenDe bijj auff ihr hdgffa fleigenöe / tco atew 
Denn Dit le^tc tfjfrfung glncf) auffgtfyt/ je 
fchleuflu / Dae Du Den rechten rç. gcftm&er* 

Abb. 43: Johann Junge, Rechenbuch 1578, 
Blatt Llr. German. Nationalmuseum 

Nürnberg. 8° H 2673. 

165 Negative Lösungen der Gleichung lx2 = 9 werden nicht beachtet. 
166 Die hochgestellten römischen Zahlen geben wieder die Exponenten der Variablen an. 
167 Ursus schildert hier das Verfahren zur Substitution t = x". 
168 Auf dem Titelblatt nennt er sich Johann Junge, am Ende des Widmungsschreibens Johannes Junge. 
169 Signatur 8°, H. 2673. 
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x28 = 65 5 3 2x12 + 18x'°-30x6- 18x3 + 12x-8. Probe mit 2: 

i $$} $ $K 4- *3 $ 
££ 4- «8 -b 12 ^ s- 

Abb. 44: Johann Junge, Rechenbuch 1578, Blatt Llv. 

„Nimm die absolute Zahl. Sieh wieviel die folgende Quantität höher ist, potenziere die Radix mit 
diesem Unterschied. Dividiere die absolute Zahl durch diese Potenz. Sieh ob dieser Quotient + oder - 
ist, und addier/subtrahier das letzte Ergebnis zu/von dem Koeffizienten der nächst höheren Quantität. 
So mach es bei allen Quantitäten, bei der kleinsten anfangend bis zur höchsten. Wenn die letzte 
Division glatt aufgeht, so hattest du die richtige Radix gefunden.“170 

Das Beispiel lässt sich wie folgt erläutern: 
o Der Exponentenunterschied zwischen -8 und 12x ist 1, also wird -8 dividiert durch 21, ergibt -4; 
dann wird von 12(x) subtrahiert 4(x), bleiben 8(x). Dies wird nun wiederholt. 
o Der Exponentenunterschied von 8x zur nächsten Quantität 18xJ beträgt 2, also wird 8 dividiert 
durch 22, ergibt +2; dann wird zu -18(x3) addiert +2(x3), bleiben -16(x3). 
o Der Quantitätsunterschiedvon -16x3 zu -30x6 ist 3, also wird -16 dividiert durch 23, ergibt -2; 
dann wird von -30(x6) subtrahiert 2(x6), bleiben -32(x6). 
o Die folgende Quantität 18x10 ist um 4 höher als -32x6, also wird -32 dividiert durch 24, ergibt -2; 
dann wird von 18(x10) subtrahiert 2(x10), bleiben 16(xl(1). 
o Die nächste Quantität 65532x12 ist um 2 höher als 16x10, also wird 16 dividiert durch 22, ergibt 
4; dann wird zu 65532(X'Q addiert 4(x12), bleiben 65536(x12). 
o Die nächste Quantität ist um 16 höher, also wird 65536 dividiert durch 216 = 65536, ergibt 1. Die 
Rechnung „geht auf1, x=2 ist (tatsächlich) Lösung der Gleichung. 

Das Verfahren verwendet Johann Junge auch vorher bei einfacheren Aufgaben, wie z.B. bei x3 = -6x2 

- 42x + 931 für die Lösung x=7. Dividiere 931:7 = 133, -42 + 133 = 91 ; 91:7 = 13,-6 + 13 = 7; 7:7 
= 1. Woher jedoch die Lösung kommt, kann Junge nicht angeben. Wie bei Rechenmeistern üblich, 
werden die Aufgaben ja rückwärts entwickelt, von der vorgegebenen Lösung ausgehend erarbeitet er 
sich die Aufgabe, so dass der Aufgabensteller die Lösung hat. Ursus zitiert nun dieses Verfahren,171 

wählt das gleiche Beispiel der Gleichung 28. Grades und erläutert es ausführlich mit Text; außerdem 
„verbessert“ er es. Während Junge noch jede Zahl zum Probieren zuließ, verwendet Ursus, er sucht ja 
nur ganzzahlige Lösungen von Gleichungen mit ganzzahligen Koeffizienten, nur die Teiler der 
absoluten Zahl. Dies zu Recht; wenn die Lösungen ganzzahlig sind, dann sind diese unter den Teilern 
der absoluten Zahl zu finden. Der Text bei Ursus lautet nun wie folgt: 

,, Um das Jahr 1577 hat Johannes Junge aus Schweidnitz in Schlesien ein leichtes und zugleich für 
alle zusammen gesetzten cossischen Gleichungen geeignetes Lösungsverfahren erfunden und 
ausgesonnen. Weil dieses aber durch bisweilen auch viele Versuche und gleichsam durch Raten 
verrichtet wird, habe ich solchem Vermuten dadurch abgeholfen, dass es jetzt begrenzt ist und nicht 
mehr so unendlich viele Probiermöglichkeiten lässt, und zwar durch Verwendung der Teiler der 
vorgegebenen [absoluten] Zahl. So viele Versuche sind nötig, wie die Zahl Teiler hat. Das Finden der 
Teiler aber ist leicht bekannt aus der Arithmetik, wie z.B. aus dem 7. Kapitel des 1. Buches der 
«Arithmetice Rami». Die allgemeine Lösung nach Johannes Junge lautet also: 

«Teile die absolute oder ledige Zahl durch die Potenz [des Teilers, der vermuteten Lösung], um 
wieviel die nach ihr stehende Quantität höher ist. Ist der Quotient positiv, so addiere ihn zu, ist der 
Quotient negativ, so subtrahiere ihn von [dem Koeffizienten] der folgenden Quantität. So mache es 
bei allen Quantitäten, von der kleinsten angefangen bis zur größten. Wenn die letzte Division 
aufgeht,172 so hast du zu Anfang die richtige Radix angenommen und getroffen. 
Beispiel: x28 = 65 5 3 2x12 + 18x10 - 30xf’ - 18x3+ 12x-8 
o Die nach der absoluten Zahl 8 folgende Quantität ist r und also um eine Quantität höher als $ 
oder absolute Zahl. Darum teile die 8 durch eine einfache Radixzahl, also versuchsweise durch 2. Die 
2 ist in 8 viermal enthalten. Da nun der gefundene Quotient 4 negativ ist,173 muss man ihn von dem 
Koeffizienten 12 der nachfolgenden Quantität r abziehen, verbleiben 8 Rest. 
o Die danach folgende Quantität c ist um zwei Quantitäten höher als r. Deshalb teile die 8 durch 
das Quadrat der zu Anfang angenommenen Radix 2, also durch 4: ergibt 2. Die addiere, weil positiv, 
zu den 18c, ergibt-16.174 

170
 Blatt L lr. 

171 Blatt Elr-E2v. 
172 Den Wert 1 ergibt. 
173 -8:2 = -4. 
174 -18 + 2 = -16. 
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o Danach folgen je, die um drei Quantitäten höher ist als die vorhergehende Quantität c . Darum 
teile die -16 durch die Kubikzahl der anfänglich angenommenen Radix 2, also durch 8; ergibt 2. Die 
subtrahiere wegen des Minuszeichens von den 30$C [-30x6], Rest -32. 
o Die folgende Quantität $ [x10] ist um vier Quantitäten höher als die vorige Quantität jC . Darum 
teile die -32175 durch die vierte Potenz176 der Radix 2, also durch 16; ergibt 2. Die subtrahier wegen 
des Minuszeichens von 18jfi, Rest 16. 
o Die danach folgende Quantität fäC [x12] ist um zwei Quantitäten höher als die vorhergehende 
Quantität 0 . Darum teile die 16 durch das Quadrat des angenommenen Teilers oder der Radix 2, 
also durch 4; ergibt 4. Diese 4 addiere nach Befehl des Pluszeichens zu den 65532jjc, ergibt 65536. 
o Und weil endlich die größte allein stehende Quantität, nämlich lßftb um 16 Quantitäten höher 
ist als die jetzt geteilte ßc, so teile die 65536 durch die sechzehnte Potenz'11 der anfänglich 
angenommenen Radix oder des Teilers 2, welche ist 256 mal 256, und geht auf. Also ist der Wert 
einer Radix gefunden, nämlich 2. 

Und in dem Falle, wo die zwei letzten oder größten Quantitäten um nur eine und nicht um mehr 
Quantitäten unterscheiden, dann müsste aus der letzten Teilung die zu Anfang angenommene Radix 
oder der Teiler 2 selbst herausgekommen sein. Weil sie sich aber um sechzehn Quantitäten oder um 
ßjj unterscheiden, musste aus der Endteilung die sechzehnte Potenz herauskommen. 

Zusammengefasst: Teile die kleinere Quantität178 durch die Potenz des anfänglich angenommenen 
Teilers oder der Radix 2, um wie viele Quantitäten die folgende Quantität größer ist als die 
vorhergehende, angefangen von der kleinsten bis zur größten. Den Quotienten addiere oder 
subtrahiere, je nach Vorzeichen, zur folgenden Quantität. Die Summe oder Differenz teile wieder wie 
zuvor, mit der ersten Potenz in Gleichungen ohne Unterbrechung, oder in Gleichungen mit 
Unterbrechung mit entsprechender Potenz, die der Differenz der Exponenten entspricht; addier oder 
subtrahier auch gleichermaßen wie zuvor. Und wiederhole dies bis zur größten gegebenen Quantität. 
Alsdann ergibt sich aus der letzten Teilung der gesuchte Wert der Radix, wenn diese dem am Anfang 
genommenen Teiler gleich ist. Denn sofern in Gleichungen ohne Unterbrechung zwischen den zwei 
größten Quantitäten keine andere Quantität als lr vorhanden ist, dann muss aus der letzten Teilung 
der anfänglich genommene Teiler entspringen. Aber in Gleichungen mit Unterbrechung muss aus 
dieser letzten Teilung die Potenz des anfänglich genommenen Teilers entspringen, die dem 
Unterschied der Exponenten der letzten beiden Quantitäten entspricht. Zum Beispiel: Ist eine 
Quantität ausgelassen, dann muss die letzte Summe oder Differenz das Quadrat des am Anfang 
genommenen Teilers sein; bei zwei ausgelassenen Quantitäten die 3. Potenz, bei drei die 4. Potenz 
etc. Dies zeigt die Subtraktion der Exponenten, mit welchen die in ihrer Ordnung stehenden und 
nacheinander folgenden cossischen Quantitäten bezeichnet sind. “ 

Ursus hat diese Aufgabe nicht in eine Tabellenform gebracht. Dies wäre hier jedoch angebracht 
gewesen und zeigte die Einfachheit des Verfahrens. 

Das Johannes-Junge-Verfahren, das Ursus hier beschreibt, beruht auf dem Polynomdivisions- 
Algorithmus. Die Aufgabe in heutiger Form 
(x2S - 65532x12 - 18x10 + 30x6 + 18x3 - 12x + 8) : (x-2) hat als Divisionsergebnis 
<x27 + 2x26 + 4x25 + 8x24 + 16x23 + 32x22 + 64x21 + 128x20 + 256x19 + 512x18 + 1024x17 + 2048x16 + 
4096x15 + 8192x14 + 16384x13 + 32768x12> <+ 4x" + 8x'°> <- 2x9 - 4xs - 8x7 -16xS <- 2x5 - 4x4 - 
8x3> <+2X

2
 + 4X> <—4>. 

Die spitzen Klammern haben keine Bedeutung, sie grenzen nur die Blöcke ab, die sich durch die 
fehlenden Exponenten ergeben. Ursus hat dieses Ergebnis nicht angegeben, es ist auch nicht das Ziel 
seiner Rechnung, die ja nur zeigen soll, wie man einfach x=2 als eine Lösung der gegebenen 
Gleichung 28. Grades erkennen kann. Bereits beim Lesen dieses Quotienten sieht man, dass für jeden 
in der Aufgabe fehlenden Exponenten ein Faktor 2 im Block hinzukommt; dasselbe erkennt man 
auch, wenn man die Polynomdivision schrittweise durchführt. Das soll jetzt geschehen. 

175 Hier ist tatsächlich ^32 gedruckt, es wird also eine negative Zahl verwendet. 
176 Zensizensizahl. 
177 „««-Zahl“ 
178 Gemeint sind immer die Koeffizienten. 
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Man kann jedoch den Divisions-Algorithmus wesentlich verkürzen, indem man die Zeilen für die in 
der Aufgabe fehlenden Exponenten wegläßt. Außerdem beginnt Ursus die Polynomdivision beim 
niedrigsten Exponenten, hier bei der absoluten Zahl. Deshalb soll die Aufgabe nun so geschrieben 
werden, auch wenn dies ungewöhnlich ist. Es wird also stets begonnen, die niedrigste Potenz des 
Terms durch - 2+x zu dividieren; die höheren Potenzen sind dann immer die Reste, die noch 
verarbeitet werden müssen. Es ergibt sich folgendes Bild: 

(8- 12x + 18 x3 + 30x6 - 18x10 - 65 5 3 2x12 + x28) : (-2 + x) = 

-(8- 4x) © 
-8x + 18x3 

- (-8x + 2x3) © 
16x3 + 30x6 

- ( 16x3 - 2\6) ® 
32x6 - 18x'° 

- t32x6 - 2x10) © 
-16x'°-65532x'2 

-M6x"' + 4x12) © 
-65536x12 + x28 

- (65536x12 + x28) © 
0 

© (8— 12x) : (-2+x) » denn -4-(-2+x) = 8-4x 

© (-8x+18x3) : (-2+x) ~ 4x+2x2: denn (4x+2x2)-(-2+x) = -8x+4x2-4x2+2x3, so dass die 
Zwischenglieder 4x2 wegfallen, die ja in der Aufgabe nicht auftreten. 

® (16X
3
+30X

6
) : (-2+x) = -8x3-4x4-2x5: denn (-8x3-4x4-2x5)-(-2+x) = 16x3-8x4+8x4-4x5+4x5-2x6, 

so dass die Zwischenglieder wegfallen. 

© (32X
6
-18X'°) : (-2+x) = -16x6-8x7-4x8-2x9: denn (-16x6-8x7-4x8-2x9)-(-2+x) = 

32X
6
-16X

7
+16X

7
-8X

8
+8X

8
-4X

9
+4X

9
-2X

10
, so dass die Zwischenglieder wegfallen. 

© (-16xl0-65532x12) : (-2+x) = 8x'0+4xn: denn (8x10+4x")-(-2+x) = -16x1"+8xll-8xu+4x12, so dass 
die Zwischenglieder wegfallen. 

© (-65636x'z+x28) : (-2+x) = 32768x'2+16384x13+8192x'4+ ... +2x26+x27: denn 
(32768X

i2+163 84X
13

+8 1 92X
14

+ ... +2x26+x27) • (-2+x) = -65536x,2+32768xl3-32768xl3+ 
16384X

I4
-16384X

i4± ... +4x26-4x26+2x27-2x27+x28, so dass die Zwischenglieder wegfallen. 
Die doppelt unterstrichenen Terme sind die Teile des Quotienten. 

Kap. V: Beispiele zur Coss oder Algebra 

Es folgt schließlich noch das erholsame letzte Kapitel mit den Beispielaufgaben. Diese sind 
sortiert nach dem Schema, das Ursus im ersten Kapitel vorstellte. Zuerst kommen die einfachen 
Gleichungen der Ordnung I, also solche, bei denen ein Potenz gleich einer Zahl gesetzt wird; dann die 
zusammen gesetzten Gleichungen der Ordnung II, wo für quadratische Gleichungen und Gleichungen 
dritten und vierten Grades Beispiele gebracht werden; und schließlich die Ordnung III, in der 
Substitutionen die Gleichungen vereinfachen. Da die Nomenklatur einfach ist, lasse ich die cossischen 
Symbole r für x, $ für x2, C für x3 und für x4 stehen. 

„Aus allem bisher Gesagten geht hervor, dass die Algebra oder Coss zwei unterschiedliche Teile 
hat: Aequationis per algorithmum inventio und Inventae aequationis reductio, also das Lösen der 
Gleichung durch den Algorithmus und die Vereinfachung der Gleichung. Daraus ergibt sich die Regel 
Coss. Setz eine gemäß der Aufgabe bequeme oder geschickte cossische Quantität, gewöhnlich Ir. 
Verfahre damit gemäß der Aufgabe wie im vorgegebenen Beispiel, dann wirst du auf eine Gleichung 
zweier ungleich bezeichneten, aber gleich viel geltenden Zahlen kommen. Diese zwei Zahlen oder 
Terme179 der gefundenen Gleichung vereinfache durch die genannten Regeln der Reduktion so weit, 
bis die zu Anfang gesetzte r der anderen im Beispiel gegebenen absoluten oder ledigen Zahl gleich 
gesetzt ist. Dann siehst du den Wert des gesetzten r oder den Wert der anfänglich gesetzten Quantität. 
Es folgen Beispiele. 

179 „terminos“. 
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Beispiele I. Ordnung 

Lineare Gleichung (Radix-Coss). 
1. ) Eine Zahl verdoppelt, dazu ihren halben 
Teil, ergibt 30. Welche Zahl ist das? 
Lösung: 12 

12 
_6 
30 

2. ) Ein armer Wandergesell hat nur 
wenige Heller. Der Wirt schenkt ihm 
die Zeche und so viele Heller dazu, 
wie er besitzt. Er gibt der Köchin 
12 Heller Trinkgeld. Dasselbe 
geschieht beim zweiten und beim 
dritten Wirt, so dass er nichts mehr 
behält. Wieviele Heller hatte er 
anfänglich? 
Lösung: 10'A. 

Setz 1 r 
noch 1r 
dazu 'Ar 
Summe 2'Ar = 30 (Red. 4, also) [-2] 

5r = 60 (Red. 5, also) [:5] 
Ir= 12 

lr 
2t- 12 
4r-24 - 12 
8r-48-24- 12 = 0. also 
8r = 84 durch Addition, also (Red. 5) [:8] 
lr = 10'A 
Probe: 10'A 

WA 
21 - 12 ist 9 

+9 
18- 12 ist 6 

+6 
12 - 12 ist 0. “ 

Eine ähnliche Aufgabe wie diese zweite bringt auch Stifel in Die Coss Christoffs Rudolffs 1553 
auf fol. 291r als Beispiel 165. Dort lautet der Text: „Einer hat etliche kreutzer. Der kompt in drey 
heuser nacheinander zu spilen. Gewint im ersten hauß so vil als er hinein bringt und verzeret da 5 
kreutzer. Geht in das ander haus; gewint so vil als er hineyn bringt, verzeret da 4 kreutzer. Geht in das 
dritt hauß; gewint so viel als er hineyn bringt, verzeret da 3 kreutzer. Darnach zelet er seyn gelt, das er 
noch hat, findet dass er 11 kreutzer mehr hatt denn er erstlich hatte. Wie vil hat er erstlich gehabt? 
Fach 6 kreutzer.“ Die Aufgabe ist genauso aufgebaut wie bei Ursus, nur dass zum Schluss nicht 0 
Kreuzer bleiben, sondern „11 kreutzer mehr“ als zu Anfang. 

„ 3.) Drei haben eine Summe Geldes. 
Es begehrt A von B die Hälfte, B von 
C ein Drittel, C von A ein Viertel 
seines Geldes, so dass jeder 100 
Gulden hätte. Wieviel hat jeder? 
Lösung: A=64, B=72, C=84 Gulden. 
Probe: Des A=64 und die Hälfte von B 
oder 36 sind 100 Gulden. Des B=72 
und ein Drittel von C oder 28 sind 100 
Gulden. Des C=84 und ein Viertel von 
A oder 16,S0 sind 100 Gulden. 

A: lr Gulden 
B: 1A 
C: 1B  

A: lr + 'AA = 100 (Red. 4) [-2] 
1A = 200 - 2r 

B: (200 - 2r) + ‘AB = 100. 
 1B = 6r- 300. 
C:(6r-300) + 'AA = 100 
6'Ar-300 = 100 (Red. 4) [-4] 
25r- 1200 = 400 (Red. 5) [:25] 
lr-48 = 16 (Red. 2 und3) [+48] 
lr= 64 des A Geld. (per additionem) “ 

An diesem Beispiel sieht man, dass die Variablenverwendung am Ende des 16. Jh. noch nicht 
perfekt war. Das Verständnis der Schreibweise und damit der Aufgabe wird dadurch erschwert, dass 
der Buchstabe A aus heutiger Algebrasicht in zwei verschiedenen Bedeutungen verwendet wird, 
einmal als Name der ersten Person A, und das andere Mal als neue Variable für das Geld der Person 
B, wofür wir heute z.B. y verwendeten. Ebenso bedeutet B zuerst den Namen der zweiten Person B, 
und dann die neue Variable für das Geld der dritten Person, wofür wir etwa z wählten. Wir würden die 
Lösung der Aufgabe vielleicht wie folgt darstellen: 

A hat x Gulden 
B hat y Gulden 
C hat z Gulden 

A: x + ‘Ay = 100 y = 200 - 2x 

B: (200 - 2x) + 'Az = 100 — z = 6x - 300 

C: (6x - 300) + !4x = 100 — 6'Ax - 300 = 100 -<> x = 64 Gulden. 

180 Druckfehler 32 statt 16. 
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Auch diese dritte Aufgabe steht ähnlich, jedoch nicht gleich, bei Stifel, fol. 261r als Beispiel 123: 
„Drei haben ein haus kaufft für 100 fl. Begert der erst vom andern lA seyns gelts, so hette er das haus 
alleyn zu bezalen. Der ander begert vom dritten 'A seynes gelts, dass er das haus alleyn könte bezalen. 
Der dritt begehrt vom ersten !4 seyns gelts, dass er möchte das haus alleyn bezalen. Wie vil hat jeder 
gelt gehabt?“ Stifel verwendet bei vielen Aufgaben die gleiche Bezeichnungsweise wie es Ursus hier 
tut, nämlich die Buchstaben A, B, C, ... als Namen für die Personen in der Aufgabe, und dann als 
Bezeichnungen für die neuen Variablen, die er während der Berechnung für die anderen Personen 
benötigt. Hier wird deutlich, dass Ursus aus dem Buch Stifels Die Coß Christoffs Rudolffs gelernt hat! 

Auch Ursus’ Aufgabe Nr. 4 auf die Radixcoss findet sich bei Stifel auf fol. 199v/200r als Beispiel 
Nr. 38. Sie wird mit Hilfe des Satzes von Pythagoras gelöst. Es heißt bei Stifel: „Es ist ein triangel 
abc. Ist die seyten ab 13 Ein lang und die seyten bc 15 Ein lang und die seyten ac 14 Ein lang. 
Dieweyl nu bd also ist in den triangel gezogen, das unden auff beyden orthen bey dem d ist ein 
rechtmessiger Angulus. Ist jetzt die frag, wie vil gebe da und wie vil cd gebe. Auch wie vil bd gebe.“ 
Stifel und Ursus verwenden beide kleine Buchstaben a,b,c,d zur Bezeichnung der Punkte. 

„4.) Bei einem Dreieck ABC ist die Seite 
AB = 13, BC = 15, CA = 14 Ruten lang. 
Wie lang ist das Lot™' BD? Wie lang 
sind die Basisstiicke AD und CD? 
Lösung: BD = 12, AD = 5, CD = 9 Ruten. 
Beweis durch die vorletzte Proposition 
des 1. und 3. Buches und durch die 6. und 
12. Proposition des 11. Buches Euklids.™7’ 

li Cue i£«mpltim 

f£» i(i lin triait gd «bc, ifi bit b 

feyten ab / u ffil» lang vub - 
bu feyten b </ I r t£ln lang. / 
rns bii frytett c a/14 l£ln / 
lang. Cie weyl nu b 6 
alfoifîin Sen triangel 
0»5ogc/bae vnben auff 
beybe orthen bey turn 
b/tflctit wcbtmcffi 
get2lngulua.3)î x £ 

ytçt btt frag/witZ  
■H 

vtl ein gebt b a • vit WK vil c b g.&e. 3u<h tot« 
til b b gebt. Kürzlich 

0jç btm tty! b a 1 a. fo fompt bsm teyl c b 
yu fegen 14 — i2a(bteweyl c a ifi 14) 

@0 ich mtbasqitabrataufs b a (bas ifi t *) 
fiibtrahir vom quabrat aufs a b ( bas ifi voit 
1 <* 9 ) fo tempt 1 b 9—11. vttb fo wl macht bas 
quabrat aufs btr Knien b b.iDasmetrt. 

©0 macht bas quabrat aufs bem teyl c b . 
’ 9 4 -+• 1 $ — i » ia. £ias fubttah« «h nom quabrat 
ba feyten b c. Hemlicb von n 9 ( biewtyl s« 
ftlbig« feyten an yfer lenpe hat 1 <t t&ln,) fo föpt 
nom fubtrahittn frtfs Kefi r 9 -t-18 ea — 1 » . v>tt 
fo vil macht bas quabrat bsr Unten b b, Hu iff 
oben gtfunben bas eben bie lelbige Uni auch mach* 
aufs yhtc quabrat 1 <s 9 — 1 Brumb ift bife 5a!/ 
gteych/bifer $ol. 19 ■+• * * » — 1 j . @0 fubtta# 
hir ich nu auff yeber feyten » 9 — 1 j . @0 wer* 
b«t ' 4.0 gleyeh 1 » M . 60 btuibir ich auff yeber 
feyten burch *» *fo wert 1» gleyeh .vOrumb 
machet bifer teyl b a. r. vnb c b mach« 9. Dnb 
6 b machet ' f 9—>i öas tfi fern quabrat vnb 
*ß'44> £>rumb ift b b an yhrfelbs n ici# 
lang - 

Abb. 45: Stifels Beispiel 38 in Rudolffs 
Coß 1553, fol. 199v/200r. 

AD: Ir. Quadriert 1$. Von 169, dem Quadrat 
der Seite AB, subtrahiert, bleibt 
169-1j = Quadrat der Seite BD. 

CD: Ir - 14.182 Quadrieren. 
1$- 28r +196 von 225 subtrahiert, das ist 
das Quadrat von BC, bleibt das Quadrat 
von BD, also 29 + 28 r— 1$ = BD2. 
Außerdem BD2 = 169 - 1$, also bleiben 

28r= 140, also Ir = 5 = AD. 
Damit wird CD = 9 durch Subtraktion, und 
BD =sl(169- lf)= ^144 = 12. 

Subtractio vero negata in talibus exemplis, 
exigit subtractionem Quadrati casus positi, 
a Quadrato cruris oppositi. 1 

181 „die perpendicular Unie bd“. 
182 Es müsste eigentlich heißen: CD = 14 - lr. Wegen des Quadrierens jedoch ohne Belang, wie Ursus im Schlusssatz sagt. 
183 Die vorletzte Proposition (§47) des 1. Buches ist der Satz des Pythagoras. Die vorletzte Proposition (§36) des 3. Buches ist 
der Sekantensatz AD ■ DC = DB2. 
184 Im Schlusssatz zeigt Ursus, dass ihm bewusst ist, dass er beim Satz des Pythagoras mit den Vorzeichen mogelt: „Die 
weggelassene Subtraktion in solchen Beispielen erfordert eine Subtraktion eines ins Quadrat gesetzten Falles (Terms) vom 
Quadrat des gegenüberliegenden Schenkels.“ 
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Quadratische Gleichungen (Zensicoss) der I. Ordnung 185 

5.) Eine Fläche hat 147 Quadratruten, 
ist dreimal so lang wie breit. 
Wie lang und breit ist sie? 
Lösung: Breit 7, lang 21 Ruten. 
Probe: 7 mal 21 ist 147. 

Breit: 
Lans: 

lr 
3r 

Fläche: 3$ = 

13 = 

lr = 

147, also per Red. 5 [:3] 
49, also per Red. 8 [Wurzel] 

7 ist die Breite, also 
21 die Länge. 

6.) Die Summe der Quadrate dreier 
Zahlen, deren Verhältn is jeweils 2 
ist,1*6 ist 189. 
Welche Zahlen sind es? 
Lösung: 3, 6, 12. 
Probe: 9 + 36 + 144 = 189. 

lr 
2r 
4r 

13 
43 

IM 
21$= 189, also per Red. 5 [:21] 

13=9, also per Red. 8 [Wurzel] 
lr= 3 die erste Zahl. “ 

Auch diese Aufgabe gibt es bei Stifel, fol. 352r als Beispiel 8. Der Text lautet dort: „Ich hab drey 
zalen in proportione dupla, multiplicir jede in sonderheyt in sich selbs, machen ihre quadrat zusamen 
189.“ 

,, Einfache kubische Gleichungen (Cubicoss). 
7.) Eine Mauer misst 486 Kubikellen,'*1 

ist halb so breit wie lang und 
dreimal so breit wie dick. 
Wie dick, breit und lang ist sie? 
Lösung: dick 3, breit 9, lang 18. 
Probe: 3 ■ 9 ■ 18 = 486. 

Dick 
Breit 
Lans 

lr 
3r 
6r 

Volumen 18c = 486, also per Red. 5 [: 18] 
lc = 27, also per Red. 8 
Ir = 3 = Dicke, also 

Breite = 9, Länge = 18. “ 

Eine ähnliche Aufgabe, mit anderen Zahlen, findet sich als Beispiel 11 bei Stifel, fol. 369r. Dort lautet 
sie: „Es wird gemacht ein grub, ist 2 mal breyter denn tief und 2 mal lenger denn breyt, und die 
soliditas, die wir imaginiren, hat 144 gewurffelte ein. Wie vil ein hat jede dimensio?“ Die bei Ursus 
nun folgenden Aufgaben habe ich bei Stifel nicht entdeckt. 

„ 8.) Die Summe der Kuben dreier 
Zahlen, deren Verhältnis jeweils 3 
ist,'** ist 6056. 
Welche Zahlen sind es? 
Lösung: 2, 6, 18. 
Probe: 8 + 216 + 5832 = 6056. 

lr 
3r 
9r 

I3 
93 

Mi- 

le 
27 c 
729c 

757 C = 6056, also per Red. 5 [:757] 
lc = 8, also per Red. 8 
lr = 2 die erste Zahl. 

Einfache Gleichung 4. Grades (Zensizensicoss). 
9.) Ein Teich oder ein Graben ist halb 
so tief wie breit und zweieinhalb189 

mal so lang wie breit. Das Ausheben 
eines kubischen Klafters kostet halb 
so viele Gulden als die Tiefe ausmacht. 
Der Lohn für das Graben beläuft sich 
in Summe auf 1280 Gulden. 
Wie tief, lang und breit ist er? 
Lösung: Tief 4, breit 8, lang 20 
und Inhalt 640 Klafter. 
Die Probe ist leicht nach der 
Aufgabe zu machen. 

Tief 
Breit 
Lang 

lr 
2r 
5r 

Inhalt 
Aushub 

10c 
'Ar Gulden. 

5j$ = 1280, also per Red. 5 
1 $$= 256, also per Red. 8 
I$= 16, also per Red. 8 
lr = 4 die Tiefe, also 

8 die Breite, also 
20 die Länge und 

640 der Inhalt. 

[:5] 
[Wurzel] 
[Wurzel] 

185 Die Nummerierung der folgenden Aufgaben habe ich geändert. Ursus fängt hier wieder bei 1.) an, ich zähle die Aufgaben 
durchgehend. 
186 „Drey zahlen in ratione dupla Quadratum zusammen, machen 189.“ 
187 „gevierte eilen“ 
188 „in ratione tripla cubic addiret“ 
189 „dritthalb“ 
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Beispiele II. Ordnung 

Zusammengesetzte quadratische Gleichungen (Zensicoss), denn hier gibt es keine Radixcoss, wie 
aus der Tafel der Gleichungsordnungen hervorgeht. 
IO.) Eine Fläche hat 91 Quadratruten 
und ist 6 Ruten länger als breit. 
Wie viele Ruten ist sie lang und breit? 
Lösung: Lang 13 Ruten, breit 7 Ruten. 
Probe: 7-13 = 91 und 
13 ist 6 mehr als 7. 

Breit 
bang 
Fläche 

Oder auch so: Lang 
Breit 

lr 
lr- 
1)+ 6r = 91, das ist per Red. 2 [-6r] 
1$= 91 - 6r, also per Red. 10 [J.J.] 
lj = 100, also per Red. 8 [Wurzel] 

lr= 10. Addiere 3, Länge 13, 
subtrahiere 3, Breite 7. 

lr 
Ir-6  

Fläche 1J - 6r = 91, das ist per Red. 2 
lj = 91 + 6r, also per Red. 10 
1) = 100, also per Red. 8 
lr= 10. Addiere 3, Länge 13, 

subtrahiere 3, Breite 7. “ 

Bei der Lösung der quadratischen Gleichung wird das Prinzip der quadratischen Ergänzung 
verwendet. Aus x2 ± 6x = 91 wird (x ± 3)2 = 100, und damit x ± 3 = 10. Man kann auch nach 
Johannes Junge folgendermaßen verfahren (siehe auch bei den folgenden Aufgaben): 
Ein Teiler von 91 ist 7. +91:7 = +13; -6(r)+13 = +7; +7:7 =1, r = 7 ist Lösung ( 1. Weg). 
Ein Teiler von 91 ist 13. +91:13 =+7; +6(r)+7 = +13; +13:13 = 1, r = 13 ist Lösung (2. Weg). 

,,11.) Eine Fläche misst 91 Quadratruten. 
Ihre Länge und Breite zusammen 
machen 20 Ruten. 
Wie viele Ruten ist ihre Länge und Breite? 
Lösung: Länge 13, Breite 7 Ruten.   
Probe: 13+7 = 20 
13 -7 = 91. 

1 r die eine Dimension 
20 - lr die andere Dimension  
Fläche 20r 1j = 91, also per Red. 2 

20r = 91 + 1 ), also durch dieselbe 
 D -20r - 91, also lr eieich 13 oder 7. 
Oder nach der Regel des Geber: 10 (Hälfte von 20), 
quadriert 100, -91 (wenn + addieren), Rest 9, deren 
Wurzel ist 3. Add. zu/subtr. von 10, macht 13 oder 7. “ 

Was hier mit Regel des Geber bezeichnet wird, ist wieder das Verfahren der quadratischen 
Ergänzung, das auch bei den folgenden Aufgaben verwendet wird. Bei Aufgabe 11 wird aus x2 = 20x 
- 91 zunächst (x - 10)2 = 100-91 =9, und damit x = 10 ± 3. Ebenso wird bei der folgenden 
Aufgabe 12 aus x2 = 195 + 2x zunächst (x ± l)2 = 1 + 195 = 196, damit ist die Lösung x = 14 ± 1. 

„ 12.) Die Summe der Quadrate 
zweier Zahlen, bei denen die eine 
um 2 größer ist als die andere, 
ist 394. 
Welche Zahlen sind es? 
Lösung: 13 und 15. 
Probe: 169 + 225 = 394. 

lr. 
Ir+2 

H 
H + 4r 

Summe 2$ + 4r + 4 = 394, also per Red. 1 
2) + 4r = 390, also per Red. 5 
I j + 2r = 195, also per Red. 2 
1) = 195 - 2r, also per Red. 10 
lj = 196, also per Red. 8 
lr= 14. Addiere 1, die grössere 15, 

subtrahiere 1, die kleinere 13. 

Oder auch so: lr. 

lr-2 
H 
h- 4r + 4 

Summe 2$ — 4r + 4 = 394, also per Red. 1 
2$ - 4r = 390, also per Red. 5 
1 j— 2r = 195, also per Red. 2 
1) = 195 + 2r, also per Red. 10 
1j = 196, also per Red. 8 
lr= 14. Addiere 1, die grössere 15, 

subtrahiere 1, die kleinere 13. 
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13.) Teile eine Zahl in zwei ungleiche Zahlen, so dass sich der kleinere Teil zum größeren verhält wie 
der größere Teil zur ganzen zerteilten Zahl. Oder dass die Zahl des größeren Teils die mittlere 
Proportionale ist zwischen der ganzen zerteilten Zahl und der Zahl des kleineren Teils. Antwort: Es 
ist mit rationalen Zahlen190 nicht möglich zu tun. Versuchs, wer da Lust hat. “ 

Hier spricht Ursus das Problem der „mittleren 
Proportionalen“ m zweier Zahlen a, b (a < b) an, für die 
gilt: 
b : m = m : a, also a ■ b = m2, d.h. m = Vab ist das 
geometrische Mittel aus a und b. Dieses ist irrational, 
sofern a-b keine Quadratzahl ist. Hier gilt jedoch speziell 
b=a+m, woraus sich ergibt, dass m2 = a-(a+m) 

—=> m2-a-m-a2 = 0, und somit m = a/2 ± a/2-V5. Und das ist 
stets eine irrationale Zahl (sofern a^O). Euklid löst das 
Problem m2=a b geometrisch mit Hilfe des Höhensatzes 
h2 = pq.191 Auf das Problem des Goldenen Schnittes 
übertragen: Eine Strecke b = AB soll durch den Punkt M 
in zwei Teile m = AM und a = MB geteilt werden, so dass 

Mittlere Proportionale m (a<m) 
Goldener Schnitt M 

b = m+a 

m 

m : a= b : m 

W" 
.B 

* m2 = a • b 

• m2 - a m - a2 = 0 

m : a = b : m (a<m). 

Zusammengesetzte kubische Gleichungen (Cubicoss). 
14.) Eine Mauer hat 486 Kubik-Ellen, Dick 
ist 9 Ellen länger als breit Breit 
und 6 Ellen breiter als dick. Lans 
Wie dick, breit und lang ist sie? Inhalt 
Lösung: dick 3, breit 9, lang 18. 
Probe: 3-9-18 = 486. 

Ir 
lr + 6 
lr+ 15  
lc + 21J+ 90r = 486, per Red. 2 
lc = 486 - 213 - 90i\ oder per dieselbe 
lc = 486 - 90r- 21 j 
durch 3 (162 (24  

rest 72 rest 3 = die Dicke 
also 9 = die Breite 

 und 18 = die Lanze 
Oder setz durchs Zeichen + so: lang l r 

breit Ir — 9 
dick Ir- 15. “ 

Si =x° r = x c = x 
486 -90 

:3 +162 +24 
-162 +72(:3) +3(:3) x=3 

Die Lösung der kubischen Gleichung x3 = 486-90x-21x2 

geschieht hier nach dem oben beschriebenen Johannes-Junge- 
Verfahren. Ein Teiler der absoluten Zahl 486 ist 3, den man als 
Lösung vermutet. 486:3=+162, -90+162=+72; 72:3=24, 
-21 +24=+3; 3:3=1, also ist x=3 Lösung. 

„ 15.) Die Summe der Kuben zweier 
Zahlen, deren Differenz 2 ist, ergibt 
468. Welche Zahlen sind es? 
Lösung: 5 und 7. 
Probe: 125 + 343 = 468. 
Diese zwei Beispiele verhalten sich 
nach der Art des ersten und dritten 
Beispiels der zusammengesetzten 
Zensicoss [Nr. 10 und 12]. 
Dem zweiten Beispiel dort [Nr. 11] entspricht 
aber hier keines, weil man hier die drei 
Körperdimensionen, die miteinander zu 
multiplizieren sind, nicht erkennen kann. 

Ir lc 
lr+2 lc + 6i + 12r + 8  

Summe 2 c + 65 + 12r + 8 = 468, und per 1 
2c+63+12r =460, also per 5 
1 c+3j+ 6r =230, also per 2 
lc = 230 — 6r - 33, also per 10 
lc=216, also per 8 
lv= 6. Addiere 1, die grössere 7. 

Subtrahiere 1, die kleinere 5. 

4 =x° r = x 
$ 

= x
~ 

C = X 

230 -6 -3 
:5 +46 +8 + 1 

+46 +40(:5) +5(:5) x=5 

190 „in (rational)zahlen“. 
191 Buch VI, Prop. 13. 
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Zusammengesetzte Gleichung vierten Grades (Zensizensicoss). 

Mult. 

16.) Einen Graben oder Teich auszuheben, 
kostet 1280 Gulden. Er ist 12 Klafter länger 
als breit, 4 Klafter breiter als tief, und die 
Tiefe ist 2 Klafter mehr als das Ausheben 
eines Kubikklafters kostet. Wie tief, breit, 
lang und groß ist der Graben und was 
kostet der Aushub eines Kubikklafters? 
Lösung: Tief 4, breit 8, lang 20 Klafter, 
Volumen 640 Klafter; 2 Gulden kostet der 
Aushub eines Kubikklafters. 
Probier es selbst laut der Aufgabe. 
Oder setz bei Aushub/tief/breit/lang mit dem -t- Zeichen an. 

Aushub lx Gulden 
Tief Ir+2 
Breit 1 r + 6 
Lane lr+18 

lß + 26c + 156$ + 216x = 1280, per 2 
lß = 1280- 216r- 156$-26c 

durch 2 (640 (212 (28 
rest 424 rest 56 rest 2fl. 

4 tief. 
8 weit. 

20 lane. 
640 groß. 

x = 1280-216x 156x2 - 26x3 

ü=x° 
1280 

:2 
+640 

r = x 
-216 
+640 

+424(:2) 

3 = x 

-156 
+212 

+56(:2) 

c = x' 
-26 
+28 

+2(:2) 

+ 1 
x=2 

Aus diesen Beispielen, die deshalb mit besonderem Fleiß geordnet und gestellt wurden, zeigt sich, 
warum wir in diesem Schreiben die Zensizensicoss oder die körperliche Größe mitsamt ihrem zu 
suchenden Wert nicht überschritten haben,192 weil nämlich die nachfolgenden und größeren 
Quantitäten zu üblichem und menschlichem Gebrauch nicht gar so sehr nötig sind. Außerdem 
erheischen und erfordern sie auch eine besonders schwierige Ausziehung von Wurzeln, andere als in 
der Geometrie gebräuchliche Wurzeln wie Quadrat- und Kubikwurzeln. 

Beispiele III. Ordnung 

reduzieren. 
Der erste lx 1$ 
Der zweite 2x 4$ 
Der dritte 4x 16t 

[erstes Produkt] 
[zweites Produkt] 
[drittes Produkt] 

Auf quadratische Gleichungen (Zensicoss) zu 
17.) Drei haben etliche Gulden, der 
erste halb so viele wie der zweite, und 
der zweite halb so viele wie der dritte. 
Wenn ich jede Zahl ihrer Gulden 
zuerst quadriere, danach das erste 
Produkt mit dem zweiten multipliziere 
und das dritte Produkt dazu addiere, 
so ergibt sich 468. 
Wie viele Gulden hat jeder? 
Lösung: Der erste 3, der zweite 6, 
der dritte 12 Gulden. 
Probier es selbst nach der Aufgabe. 

4ß + 16$ = 468, Red. 9 [Substitution] 
4$ + 16x= 468, Red. 2 
4$ = 468 - 16x, Red. 5 
1$ = 117 - 4x, Red. 10 
Sit 1$ = 121, Red. 8 
lx= 11 

Ziehe 2 ab, Rest 9, wurzeln 
3 Gulden des ersten 
6 Gulden des zweiten 
12 Gulden des dritten 

Oder so, ohne Reduktion auf die Zensicoss: 
4ß + 16$ = 468, also per Red. 2 
4$$ = 468 - 16$, also per Red. 5 
lß = 117 - 4$, also per Erfindung Junges 

durch 9(13  
Rest 9, also wurzeln 3 = des ersten. 

x4 = 117 - 4x2 

ü=x° 
! 17 -4 
Pr -13 + 1 
-13 +9Q3-) x=3 

192 Gemeint sind die drei Dimensionen für das Volumen und eine vierte für den Preis einer Volumeneinheit. 
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Auf Gleichung vierten Grades (Zensizensicoss) zu reduzieren. 

18.) Drei haben etliche Gulden, der 
erste halb so viele wie der zweite und 
der zweite halb so viele wie der dritte. 
Wenn ich jede Zahl ihrer Gulden 
zuerst quadriere und diese Quadrate 
wiederum quadriere, danach das erste 
Produkt mit dem zweiten multipliziere, 
endlich das dritte Produkt samt seiner 
Quadratwurzel dazu addiere, so 
erhalte ich 125 856. 
Wie viele Gulden hat jeder? 
Lösung: Der erste 3, der zweite 6, 
der dritte 12 Gulden. 
Probier es nach der Aufgabe, wie 
gegenwärtig gezeigt. 

x8 = 7866 - x2 - 16x4 

Erster lr 1$ 1$$ [erstes Produkt] 
Zweiter 2r 4$ 16ß [zweites Produkt] 
Dritter 4r 16t 256{t [drittes Produkt! 

16$$$ + 256$$ + 16$ = 125 856, das ist 
16$$$ = 125 658 - 16$ - 256$$, oder 
ljjj = 7866- 1$ - 16$$ 

durch 9 (874 (97 
Rest 873; rest 81 

Probe: Erster 
Zweiter 
Dritter 
1296 ■ 81 

9 ist der Lösung Quadrat 
die Wurzel 3 = des ersten Gulden 

6 = des zweiten Gulden 
12 = des dritten Gulden. 

3 9 81 
6 36 1296 

12 144 20736 
= 104 976 
+ 20 736 
+ 144 

125 856“ 

Ende 
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