Uiber die

Curven Cⁿ von n^{ter} Ordnung

und dem

Geschlecht p>1, auf welchen die einfachsten Specialschaaren $g_2^{(1)}$, $g_3^{(1)}$

vorkommen.

Von

Prof. KARL KÜPPER.

(Abhandlungen der k. böhm. Gesellschaft der Wissenschaften. — VII. Folge, 3. Band.)

(Mathematisch-naturwissenschaftliche Classe Nr. 4.)

PRAG.

Verlag der königl. böhm. Gesellschaft der Wissenschaften. — Druck von Dr. Ed. Grégr. 1889.

Neuere Untersuchungen der Curven, welchen eine $g_2^{(1)}$ zukommt, der sogenannten hyperelliptischen Curven haben zu überraschenden Resultaten geführt, und es besteht kein Zweifel darüber, dass das Studium der Specialschaaren, zu welchem Herr M. Nöther die erste nachhaltige Auregung gegeben hat, von fundamentaler Wichtigkeit für die Theorie der algebraischen Curven ist. Da die werthvollen Arbeiten des genannten Mathematikers in unserem Lande noch wenig bekannt sind, so erscheint es geboten, meiner eigentlichen Untersuchung die Erörterung einiger wesentlichen Momente voranzuschicken.

1. Unter $g_Q^{(q)}$ auf C_p^n ist eine lineare ∞^q Schaar von Q-punctigen Gruppen zu verstehen.*) Wenn Q-q < p, so heisst die $g_Q^{(q)}$ Specialschaar; durch irgend eine Gruppe lässt sich alsdann eine ad jungirte Curve n-3^{ter} Ordnung C^{n-3} legen, und umgekehrt, wenn dies für eine beliebige Gruppe möglich ist, muss Q-q < p, also eine Specialschaar vorliegen. Die supponirte C^{n-3} — die Bezeichnung C^{n-3} soll ausschliesslich für adjungirte Curven gebraucht werden - wird abgesehen von den Q Puncten, durch welche sie gelegt wurde, noch einen Rest von R = 2p - 2 - Q Puncten mit C_p^n gemein haben. Nach einem Theorem, welches man Restsatz genannt hat, kann die vorliegende $g_{_Q}^{(q)}$ stets durch solcha C^{n-3} aus C_p^n geschnitten werden, die jenen Rest R enthalten: Wenn hiezu sämmtliche durch R möglichen C^{n-3} erforderlich sind, so heisst $g_{\alpha}^{(q)}$ Vollschaar. Für eine solche gilt als Haupttheorem der Riemann-Rochsche Satz, welcher aussagt, dass für die durch eine Gruppe G gehenden C^{n-3} die Q Puncte der Gruppe genau Q-q Bedingungen ausmachen. Da es gerade p linear unabhängige Curven C^{n-3} gibt, oder überhaupt ∞^{p-1} C^{n-3} existiren, so ist p-1-(Q-q) die Mannigfaltigkeit der durch die G möglichen C^{n-3} . Diese schneiden jetzt eine Restschaar $g_{_{R}}^{(r)}$ aus, auf welche man auch den Riemann-Rochschen Satz anwenden kann, und findet:

"Hat man auf C_p^n Q Puncte, welche den durch sie gehenden C^{n-3} Q-q Bedingungen auferlegen, so gehören sie als Gruppe zu einer $g_Q^{(q)}$." Es ist zu-

^{*)} Cf. Math. Annalen B. 7. Brill u. Nöther.

nächst gar nicht abzusehen, wie man zu Q Puncten gelangt, wie sie in diesem Ausspruche unterstellt werden; aber es folgt leicht, dass man von solchen Q höchstens Q-q willkührlich auf C_p^n wählen kann: Denn die Q Puncte als gefunden angenommen, gestatten, dass man durch sie $\infty^{p-1-(Q-q)}C^{n-3}$ legt. Wären daher x unter den Q willkührlich, so könnte man durch x+p-1-(Q-q) beliebige Puncte der C_p^n eine C^{n-3} legen. Da aber höchstens p-1 Puncte einer C^{n-3} willkührlich sind, so muss $x \equiv Q-q$ sein. Wir knüpfen hieran die Folgerung, dass bei jeder $g_Q^{(q)}: q \equiv \frac{Q}{2}$; denn da bei gegebener Schaar noch immer q Puncte von einer Gruppe willkührlich sind, muss $q \equiv Q-q$.

Es dürfte hier nicht überflssig sein, Gewicht darauf zu legen, dass die Maximalzahl p-1 von wählbaren Puncten der C^{n-3} nicht durch Constantenzählung erhalten werden kann, obwohl diese, wie sie gewöhnlich durchgeführt wird, das richtige Resultat liefert. Das übliche Verfahren, die in den vielfachen Puncten der C_p^n befindlichen Puncte der C^{n-3} in Rechnung zu stellen, ist eben nicht stichhaltig. Man kann z. B. δ Puncte D angeben, welche für die hindurchgehenden Curven n-3^{ter} Ordnung weniger als δ Bedingungen darstellen. Würde eine irreductibele Curve C^n existiren, welche die D zu Doppelpuncten hat, so wären von einer adjungirten C^{n-3} offenbar mehr als p-1 Puncte noch willkührlich. Wenn man also sicher ist, dass letzteres nnmöglich, so folgt, dass die gedachte C^n nicht bestehen kann. Man ersieht hieraus, wie nothwendig die von Constantenzählung unabhängige strenge Ableitung des Maximums p-1 war.

2. Lehrsatz. Sind von einer Gruppe G einer Specialschaar $g_Q^{(q)}$ genau Q-g Puncte willkührlich, so ist C_p^n hyperelliptisch, falls Q-q < p-1.

Beweis. Nachdem man die Q-q Puncte α beliebig angenommen hat, werden sie zu Gruppen G, G_1 ... gewisser Schaaren gehören. Fügt man zu jenen Q-q noch p-1-(Q-q) ebenfalls willkührliche Puncte b der C_p^n , so lässt sich zufolge des Riemann-Roch'schen Satzes durch jede G, G_1 und b eine C^{n-3} legen. Aber diese C^{n-3} ist bestimmt, weil sie die Q-q und die b enthält, d. h. p-1 willkührlich liegende Puncte. Es folgt, dass die G nur in endlicher Anzahl vorkommen können, und das jede durch die Q-q angenommenen Puncte mögliche C^{n-3} alle G aufnehmen wird. Hiernach besitzt C_p^n die Eigenschaft, dass die durch d=Q-q < p-1 beliebige Puncte gehenden C^{n-3} immer noch andere, durch die gewählten d Puncte d0 mitbestimmte Puncte d1 mit einen einzelnen d2 gelegte d3 noch einen zweiten, der Lage nach von d3 abhängigen Punct d3 der d5 aufnehmen muss:

a) $\Delta < p-2$. Auf C_p^n seien p-1 willkührliche Puncte $\alpha_1, \alpha_2 \ldots$ angenommen. Legt man durch je Δ derselben die möglichen C^{n-3} , so erhält man $(p-1)_{\Delta}$ Gruppen mitbestimmter α . Weil der Zahlenwerth des Binomialcoefficienten $(p-1)_{\Delta}$ mehr als p-1 beträgt, so können die hier auftretenden Gruppen nicht aus lauter verschiedenen α bestehen,

sie müssten ja sämmtlich auf der durch alle angenommenen α möglichen C^{n-3} sein, welche nur p-1+p-1 Puncte mit C_p^n gemein hat. Mithin müssen auch schon durch $\Delta_1 < \Delta$ Puncte α gewisse α mithestimmt sein, nämlich durch die zweien der $(p-1)_{\Delta}$ Combinationen, gemeinsamen Δ_1 Elemente. Hierbei kommen zwei Combinationen, die kein α gemein haben, deshalb nicht in Betracht, weil, wenn in den ihnen entsprechenden Gruppen das nämliche α_i einginge, wegen der willkührlichen Lage der α offenbar alle $\infty^{p-1} C^{n-3}$ dieses α_i enthalten müssten, was der oben gezogenen Folgerung widerspricht, dass die Mannigfaltigkeit nie die halbe Gruppenzahl übersteigt. Indem man jetzt mit der Anzahl Δ_1 ebenso verfahren denkt wie mit Δ , gelangt man zu dem Schlusse, dass durch ein einziges α schon gewisse α sich bestimmen müssen, durch ein zweites α sodann von jenen verschiedene α . Dass endlich jedesmal nur ein α auftreten kann, folgt wie eben daraus, dass aus p-1 Punkten α nie mehr als p-1 α hervorgehen dürfen.

- b) $\Delta = p-2$. Hier ist $(p-1)_{\Delta} = p-1$; daher wird eine einzige Hypothese möglich, durch welche die Verminderung des Δ in der vorigen Weise ausgeschlossen erscheint, nämlich die, dass durch je p-2 der α genau ein α , und immer ein neues α hervorginge. Es bietet sich aber folgende Argumentation dar: Durch $a_1, a_2 \ldots a_{p-2}$ sei α_i bestimmt, dann bildet α_i mit je p-3 der ganzen Gruppe $a_1 \ldots a_{p-1}$ eine Gruppe von p-2 Puncten, die unabhängig von einander bezüglich der durch sie gehenden C^{n-3} sind anderenfalls wäre α_i schon durch weniger als p-2 Puncte α bestimmt, und man befände sich unter α). Der eben aufgestellten Gruppen gibt es $(p-1)_{p-3}$; durch jede derselben würde ein Punct (β) mitbestimmt sein. Nun können diese β nicht alle verschieden ausfallen, solange p>3, da dann stets $(p-1)_{p-3} \geq p-1$, und die durch $a_1, a_2 \ldots a_{p-1}$, also auch durch a_i gehende C^{n-3} noch wenigstens p-1 Puncte β der C_p^n enthielte, was nichtmöglich ist. Coincidiren aber zwei β , so sagt dies aus, dass durch α_i und weniger als p-3 Puncte α , d. h. durch weniger als p-2 unabhängig liegende Puncte der C_p^n ein β mitbestimmt ist, und so ist man wieder im Falle α).
- c) Ist schliesslich p=3, so wird $(p-1)_2 < p-1$, und unser Raisonnement unbrauchbar; da aber p-2=1, so decken sich Voraussetzung und Behauptung.

Dass endlich C_p^n eine $g_2^{(1)}$ besitzt, oder hyperelliptisch ist, folgt sofort: $\alpha_1 \ldots \alpha_{p-1}$ seien willkührlich angenommen, und durch sie die C^{n-3} gelegt, diese schneidet C_p^n noch in p-1 Puncten α , welche den α einzeln entsprechen. Durch $\alpha_2, \ldots \alpha_{p-1}$ und die entsprechenden $\alpha_2 \ldots \alpha_{p-1}$ gehen ∞^+ Curven C^{n-3} , welche aus C_p^n eine $g_2^{(1)}$ schneiden werden. Diese $g_2^{(1)}$ umfasst alle auf C_p^m denkbaren Paare $\alpha \alpha$, und somit existirt keine zweite solche Schaar.

d) Wenn auf einer hyperelliptischen C_p^n eine Specialschaar $g_Q^{(q)}$ von Q beweglichen Puncten vorliegt, so besteht ersichtlich jede Gruppe aus $\frac{Q}{2}$ Paaren. Der zu einer Gruppe gehörende Rest enthält $p-1-\frac{Q}{2}$ Paare; die hindurchgehenden C^{n-3} haben wenigstens die

Mannigfaltigkeit $\frac{Q}{2}$, und da $q \equiv \frac{Q}{2}$, so folgt $q = \frac{Q}{2}$. Von einer $g_q^{(q)}$ können folglich immer Q - q Puncte willkührlich angenommen werden, sodann erhält die Schaar als Mannigfaltigkeit q' die Zahl Q - q selbst.

3. Nach dem vorstehenden Satze könnte man auf einer nicht hyperelliptischen C_p^n , von Q Puncten, die einer Specialschaar $g_Q^{(q)}$ als Gruppe angehören sollen, nur dann Q-q Puncte beliebig wählen, wenn Q-q=p-1. In der That findet dies statt: Die Puncte $a_1,\ldots a_{p-1}$ mögen eine C^{n-3} bestimmen, welche noch die Gruppe $b_1,\ldots b_{p-1}$ aus C_p^n schneide; die a wähle man als Q-q, und aus der Gruppe der b entnehme man willkührliche q Puncte. Alle durch die R übrig bleibenden b möglicher C^{n-3} schneiden dann die verlangte $g_Q^{(q)}$ aus. Insofern durch die von uns gewählten Q nur eine C^{z-3} geht, müssen dem Riemann-Roch'schen Satze zufolge den durch die R gehenden C^{n-3} ebensoviele Bedingungen auferlegt sein, als dieser Rest Puncte hat; d. h. durch diese R gehen ∞^q Curven C^{n-3} .

Es ist von Nutzen, diese weitere Folgerung zu beachten:

"Wenn von einer linearen Schaar $\mathfrak{g}_Q^{(q)}$ auf C_p^n bekannt ist, dass von einer Gruppe \mathfrak{G} mehr als Q-q Puncte beliebig gewählt werden können, so ist $\mathfrak{g}_Q^{(q)}$ nicht Specialschaar, und es kann Q-q nicht unter den Werth p herabsinken; d. h. es muss:

$$p \equiv Q - q.$$
"

Auch bietet die Construction einer derartigen Schaar keinerlei Schwierigkeit: Nehmen wir etva an Q-q=p; daher Q>p-1. Auf C_p^n kann man immer Q Puncte angeben, durch welche eine C^{n-3} nicht möglich ist; sie mögen die Gruppe $\mathfrak B$ heissen. Durch $\mathfrak B$ lege man eine adjungirte C^z von beliebig hoher Ordnung, und nenne $\mathfrak R$ den Restschnitt von C^x , C_p^n Da von den gemeinschaftlichen Puncten der C_p^n und einer adjungirten C^z höchstens p=Q-q durch die übrigen bestimmt sind, so gehen duch $\mathfrak R$ wenigstens $\infty^q C^z$. Diese liefern eine lineare Schaar, von welcher $\mathfrak B$ eine Gruppe ist, und nach dem Restsatze ist durch keine Gruppe eine C_p^{n-3} möglich, d. h. in jeder Gruppe sind genau Q-q=p Puncte durch die übrigen bestimmt; folglich schneiden die C^z , welche $\mathfrak R$ enthalten, die verlangte $\mathfrak g_Q^{(q)}$ aus. —

Als besonderen Fall verdient erwähnt zu werden: Kommt auf C_p^n eine $\mathfrak{G}_Q^{(1)}$ vor, von welcher eine ganze Gruppe nach Willkühr genommen werden kann, so muss

$$p < Q$$
.

Z. B. Sind von $g_2^{(1)}$ beide Puncte einer Gruppe wählbar, so kann C^n nur entweder das Geschlecht 1, oder 0 haben, und offenbar ist beides möglich. Nur ist auf C_0^n bekanntlich von jeder $g_Q^{(1)}$ nicht blos eine, sondern stets noch eine Gruppe der Willkühr überlassen. Wenn man daher sicher ist, dass nur eine Gruppe willkührlich, nach deren Wahl aber die $g_2^{(1)}$

bestimmt ist; so muss p=1. Hiermit ist ein Fehler berichtigt, den Herr Em. Weyr bei der Charakterisirung des elliptischen Falls begangen hat.*)

Eine bemerkungswerthe lineare Schaar von n Puncten und der Mannigfaltigkeit 2 wird von den Geraden der Ebene aus C_p^n geschnitten. Die nothwendige und hinreichende Bedingung, dass dieselbe Specialschaar $g_m^{(2)}$ sei, ist die Existenz einer adjungirten C^{n-4} , sie ist es unbedingt, wenn p > n-2. Wir haben in einer früheren Abhandlung**) bewiesen, dass diese $g_n^{(2)}$ Vollschaar wird, wenn p über einen gewissen, von n abhängigen Grenzwerth wächst. Wir bemerken, dass hierdurch nicht ausgeschlossen ist, dass mehr als eine Vollschaar $g_n^{(2)}$ besteht; z. B. auf C_7^6 mit drei nicht in gerader Linie liegenden Doppelpuncten D bestimmen die durch D gehenden Kegelschnitte eine $g_m^{(2)}$, die Geraden der Ebene eine zweite. Fallen die D in eine Gerade, so gibt es nur eine solche Schaar — die von den Geraden ausgeschnittene — dasselbe tritt, wie leicht zu sehen, ein, wenn C^6 weniger als 3 Doppelpuncte hat. Ueberhaupt lässt sich für p ein Grenzwerth π auffinden, den es nicht überschreiten kann, ohne dass die Möglichkeit zweier $g_n^{(2)}$ aufhört. Wenn alsdann für $p > \pi$ die C_p^n eine eindeutige Transformation in sich selbst zulässt, so muss durch diese die einzige $g_n^{(2)}$ in sich übergeführt werden, das heisst diese Transformation ist noth wen dig erweise Collineation.

- 4. Wir wenden uns wieder den Specialschaaren zu:
- a) Lehrsatz. In einer beliebigen Gruppe G der Vollschaar $g_Q^{(9)}$ kann man stets Q-q Puncte angeben, welche für die durch sie gehenden C^{n-3} genau Q-q unabhängige Bedingungen darstellen.

Beweis. Gesetzt, man habe in G $Q-q-\nu$ ($\nu \ge 1$) Puncte α ausgewählt, die den hindurchgehenden C^{n-3} ebenso viele Bedingungen auferlegen. Dies ist möglich, weil ν beliebig gross sein kann. Nun können diese C^{m-3} nicht alle übrigen $q+\nu$ Puncte der G enthalten, da dies dem Riemann-Roch'schen Satze widerspräche. b sei einer der Puncte, den die gedachten C^{n-3} nicht aufzunehmen brauchen; fügen wir diesen den G zu, so gewinnen wir eine Gruppe von G auf Puncten ($V_1 = V - 1$), die in derselben Weise von einander unabhängig sind, wie die G es waren. Solange G kann man so fortfahren, und gelangt daher nothwendig zu einer Gruppe von G Puncten G be durch die G be durch die G be der G aufnehmen: Denn wäre etwa G hiervon ausgenommen, so betrüge die Mannigfaltigkeit der durch G be die G gewiss weniger, als G be die Mannigfaltigkeit der durch G be die Canch dem eben citirten Satze nicht zulässig ist.

^{*)} Sitzungsber. der k. Acad. der Wissenschaften.

^{**)} Sitzungsberichte, Jahrg. 1887.

b) Gibt es auf C_p^n eine $g_Q^{(1)}$ von Q beweglichen Puncten, so muss jede C^{n-3} , die von irgend einer Gruppe G der Schaar Q-1 Puncte aufnimmt, auch den fehlenden x enthalten.

Wenn nämlich eine solche C^{n-3} nicht durch a ginge, so ziehe man eine Gerade A beliebig durch a, und nenne r ihre ferneren n-1 Schnittpuncte mit C_p^n . Die gedachte C^{n-3} habe ausser den Q-1 Puncten aus G noch r' mit C_p^n gemein. Nach dem Restsatze muss aber die $g_Q^{(1)}$ durch adjungirte C^{n-2} ausschneidbar sein, welche die r und r' enthalten. Da diese offenbar die Gerade A als Bestandtheil hätten, so wäre a ein fester Punct der Schaar, was gegen die Voraussetzung ist.

c) Die hyperelliptische C_{n-2}^n vom grösstmöglichen Geschlecht.

Aus b) ersieht man, dass einer hyperelliptischen Curve C_p^n die Eigenschaft zukommt, dass alle durch einen beliebigen Punct a der Curve denkbaren C^{n-3} die C_p^n in einem zweiten Puncte α treffen müssen. Die so erscheinenden Paare $a\alpha$ constituiren eben die $g_2^{(1)}$, welche der Definition der C_p^n zu Grunde liegt. Die Geraden, welche die Paare $a\alpha$ tragen, umhüllen eine rationale Curve E^x , die der C_p^n associirte Euveloppe. Die $g_n^{(2)}$, welche die Geraden der Ebene bestimmen (3.), kann nicht Specialschaar sein, denn sonst wäre eine adjungirte C^{n-4} vorhanden; und es bildete jede beliebige Gerade mit dieser C^{n-4} zusammengenommen eine C^{n-3} ; mithin würden nicht alle durch a gelegten C^{n-3} denselben Punct α enthalten. Weil endlich $g_n^{(2)}$ Specialschaar wäre, wofern p > n-2 (3.), so kann p nie über n-2 steigen.

Setzen wir p = n - 2, so lässt sich die Natur der hyperelliptischen C_{n-2}^n leicht erschliessen.

Erstens. Hat C_p^n einen n-2-fachen Punct, sonst keinen vielfachen Punct, so wird p=n-2, und offenbar C_{n-2}^n hyperelliptisch, und ihre $g_2^{(1)}$ wird von den durch den n-2-fachen Punct gehenden Geraden ausgeschnitten.

Zweitens. Nimmt man an, C_p^n hätte keinen n-2-fachen Punct, jedoch das Geschlecht p=n-2, so müssen wenigstens 2 vielfache Puncte auftreten, z. B. V_1 , V_2 , deren Vielfachkeit k_1 , k_2 jede mehr als 1 beträgt. Verbindet man einen auf C_p^n beliebig gewählten Punct a mit V_1 durch die Gerade G_1 , so behaupte ich, dass G_1 Bestandtheil einer gewissen C^{n-3} sein muss: Nämlich die Mannigfaltigkeit der C^{n-3} ist hier n-2-1=n-3; also kann man irgend n-3 Puncte von G_1 als zu einer C^{n-3} gehörig betrachten. V_1 selbst gehört wenigstens als einfacher Punct ebenfalls zu dieser Curve, so dass G_1 n -2 Puncte mit ihr gemein hat, folglich ein Theil derselben sein muss. Es ist hiernach klar, dass für unendlich viele Lagen von a der mit a gepaarte a auf V_1a fallen muss. Für die Geraden V_2a folgt aber ein Gleiches, und weil dies unmöglich ist, so können auf C_{n-2}^n nicht 2 verschiedene viel-

fache Puncte vorkommen. Wenn aber nur ein einziger vielfacher Punct existiren kann, so muss dieser n-2-fach sein, damit das Geschlecht n-2 sich ergibt.

d) Die Klasse der Enveloppe E^x . Die Bestimmung des x geschieht dadurch, dass man die Paare $a\alpha$ aus einem beliebigen Puncte o der Ebene projizirt, und in den so erhaltenen Strahlenpaaren oa, $o\alpha$ die Coincidenzen ermittelt. Im Ganzen sind deren 2n, von denen 2x auf die von o an E^x möglichen Tangenten zu rechnen sind. Ferner sind auf C_n^p coincidirende Paare, und zwar gibt es deren 2p+2, die als einfache unter den 2n zählen; woraus 2x+2p+2=2n, x=n-p-1.

Um sich eine C_p^n , für welche p < n-2 zu verschaffen, kann man als solche eine C^n nehmen, die einen n-2-fachen Punct, und ausserdem noch Doppelpuncte hat. Eine solche Curve kann man sodann durch ein Netz adjungirter C^{n-2} in andere transformiren.

Eine zweite Methode beruht auf der Thatsache, dass man, wegen p < n-2 die gesuchte ebene Curve als Projection einer Raumcurve R_p^n betrachten darf.*) Da wir in der Folge veranlasst werden, näher hierauf einzugehen, so werden zwei Beispiele genügen, um das allgemeine Verfahren zu illustriren:

 F^2 sei eine Regelfläche 2^{ten} Grads: Man lege durch 3 windschiefe Gerade der F^2 eine Fläche 5^{ter} Ordnung F^5 , so schneidet diese aus F^2 eine Raumcurve R^7 , welche die beiden Geradenschaaren der F^2 beziehlich zu 2-, und 5-punctigen Secanten hat. Projizirt man R^7 aus einem Puncte f der Fläche F^2 auf eine Ebene E, so bekommt man in E eine C^7 mit einem 5-fachen, einem Doppelpunct, also auch mit einer $g_2^{(1)}$. Projizirt man alsdann R^7 aus einem nicht auf F^2 liegenden Puncte o, so entsteht in E eine \mathfrak{C}^7 , welche der C^7 eindeutig punctweise entspricht, folglich eine $g_2^{(1)}$ haben wird. Wie für C^7 , so ist auch für $\mathfrak{C}^7:p=n-3=4$, und \mathfrak{C}^7 hat im Allgemeinen 11 Doppelpuncte. In diesen Abhandlungen (VII. Folge, I. B.) habe ich diese Curve bei der Untersuchung eines Netzes C^4 gefunden, und zuerst auf die bemerkenswerthe Eigenschaft hingewiesen, dass jede adjungirte C^4 , welche irgend 3 Paare der \mathfrak{C}^7 enthält, stets die Schnittpuncte der Geraden enthalten muss, auf welchen jene Paare liegen.**)

Es ist klar, dass die der \mathbb{C}^7 associirte Enveloppe ein Kegelschnitt ist. Wollte man eine C^7 haben, deren p=3, deren Enveloppe gleichfalls dritter Klasse ist, so nehme man eine Regelfläche 3^{ten} Grads F_0^3 , schneide sie mit einer durch ihre Doppelpunctsgerade gelegten F^3 in R^7 , und projizire diese in analoger Weise wie vorher.

5. Die Specialschaar $g_3^{(1)}$ auf C_p^n (p>4).

Wird für's Erste p nur > 1 gedacht, damit überhaupt von einer Specialschaar auf C_p^n die Rede sein könne, so muss schon p > 2 sein, damit die etwa vorhandene $g_3^{(1)}$ Specialschaar sei. Ausdrücklich wird Beweglichkeit aller drei Puncte einer Gruppe unterstellt, wodurch

^{*)} Cf. Nöther, Preisschrift über alg. Raumcurven, §. 3.

^{**)} Die Generalisation dieser Eigenschaft gab Herr Bobek (math. Annalen, B. 29.).

der hyperelliptische Fall ausgeschlossen erscheint, und bedingt wird, dass jede Gruppe ganz auf einer C^{n-3} liegt, welche nur 2 Puncte der Gruppe enthält.

Jeder Punct a der C_p^n wird nun zu einer Gruppe gehören, wobei es möglich bleibt, dass mehr als eine $g_3^{(1)}$ existirt. Wir stellen uns zuerst die Frage, ob eine $g_3^{(1)}$ vorkommen kann, welche in einer ihrer Gruppen zwei auf C_p^n willkührlich gewählte Puncte a_1 , a_2 hat? Die Antwort wurde unter 3. gegeben: Als nothwendige Bedingung stellte sich heraus:

$$p-1=3-1$$
, d. i. $p=3$.

Umgekehrt, ist p=3, so gibt es auf C_3^n immer eine $g_3^{(1)}$, so dass die beliebigen Puncte a_1 , a_2 in einer Gruppe auftreten: Denn eine durch a_1 , a_2 gelegte C^{n-3} schneidet C_3^n noch in zwei Puncten, wovon einer a_3 , der andere b heissen mag. Durch b gehen nun ∞^1 Curven C^{n-3} , und diese schneiden die fragliche Schaar aus.

Setzen wir daher p > 3, so ist von einer Gruppe der auf C_p^m etwa möglichen $g_a^{(1)}$ nur mehr ein Punct wählbar. Unentschieden ist, ob vielleicht mehr als eine Schaar vorhanden sein kann? Wir werden zeigen, dass für p = 4 in der That mehr als eine Schaar existirt, dass hingegen, wenn p > 4 höchstens eine $g_a^{(1)}$ bestehen kann:

Erstens. Wir transformiren C_4^n durch das Netz der C^{m-3} , welche irgend einen auf C_4^n fixirten Punct b enthalten in C_4^5 . Diese C_4^5 erhält alsdann 2 Doppelpuncte D, und wird von den Geraden, die man durch einen D ziehen kann, in einer $g_4^{(1)}$ geschnitten. Daher muss C_4^n ebenfalls zwei Schaaren $g_4^{(1)}$ besitzen.

Zweitens. Wird vorausgesetzt C_p^n habe zwei Schaaren $g_3^{(1)}$, so seien $a_1 a_2 a_3$; $b_1 b_2 b_3$ zwei Gruppen von je einer Schaar. Wir transformiren C_p^n durch das Netz der C^{n-3} , welche irgend welche p-3 fixe Puncte der C_p^n enthalten in C_p^{p+1} . Mit Anwendung von 4. b) erkennt man im Transformationsuetze zwei Curven, wovon die eine durch $a_1 a_2 a_3$, die andere durch $b_1 b_2 b_3$ geht, und so findet man zwei Büschel im Netze, die je eine der supponirten Schaaren ausschneiden. Aus diesem Grunde erhält C_p^{p+1} zwei p-2-fache Puncte, und es kann p nicht grösser sein, als:

$$\frac{p(p-1)}{2}$$
 - $(p-2)(p-3)$ oder $\frac{9p-p^2-12}{2}$.

Dieser Ausdruck ist aber stets dann < 4, wenn p > 4; folglich ist nur für $p \ge 4$ die Möglichkeit der Existenz zweier $g_{,}^{(1)}$ vorhanden.

Wenn wir daher in der Folge p>4 annehmen, so kaun auf C_p^n nicht mehr als eine $g_3^{(1)}$ sein.

6. Lehrsatz. Die auf C_p^n supponirte $g_s^{(1)}$ ist durch die Tangenten einer

rationalen Curve E^x der x^{ten} Klasse ausschneidbar, wenn mindestens eine C^{n-4} existirt.*)

Denn die C^{n-4} , zusammengenommen mit der Geraden, welche 2 Puncte einer Gruppe verbindet, liefert eine C^{n-3} . Wenn daher alle 3 Puncte beweglich sein sollen, so muss die gedachte Gerade den dritten Punct enthalten $(4.\ b)$. Dass die Enveloppe der Geraden, welche alle Gruppen tragen, rational ist, folgt daraus, dass diese Geraden eindeutig den Curven eines die Schaar ausschneidenden Büschels entsprechen. E^x nennen wir die associirte En veloppe der C_p^n .

Wenn die C^{n-4} ausserhalb der vielfachen Puncte noch irgend einen Punct a von C_p^n enthält, so muss sie auch die Gruppe aa_1a_2 aufnehmen, zu welcher a gehört: Man lege durch a_1 eine Gerade, die nicht durch a_2 geht, so hat man eine C^{n-3} , durch a, a_1 gehend; diese muss a_2 enthalten, folglich muss a_2 auf den Bestandtheil C^{n-4} der C^{n-3} fallen, und ebenso a_1 . Es folgt nun sofort:

a) Jede durch a mögliche C^{n-4} enthält a_1 , a_2 . b) Die $g_3^{(1)}$ wird durch einen Büschel C^{n-4} ausgeschnitten.

Wir beschränken unsere Untersuchung weiter dadurch, dass wir nur solche C_p^n in Betracht ziehen, die eine durch Curven C^{n-4} ausschneidbare $g_3^{(1)}$ besitzen, und legen diesen C_p^n den Namen Trigonalcurven bei. Weil eine C^{n-4} mit C_p^n noch 2p-2-n einfache Puncte a gemein hat, so ist für eine Trigonalcurve immer:

$$2p-2-n>0$$
, oder $p>\frac{n+2}{2}$.

Wenn zugleich n > 6 gesetzt wird, so ist dann von selbst die ursprüngliche Forderung p > 4 erfüllt.

Die Bedingung $p > \frac{n+2}{2}$ ist für die Existenz der Trigonalcurve eine nothwendige; aber keineswegs reicht sie hin. Vor allem ist es fraglich, ob denn eine C^{n-4} vorhanden sein muss, falls $p > \frac{n+2}{2}$. Wohl ist es leicht, eine untere Grenze für die Mannigfaltigkeit μ der möglichen C^{n-4} anzugeben, nicht aber das Maximum von μ zu finden. Wenn es nämlich eine C^{n-4} gibt, so ist die von den Geraden auf C_p^n bestimmte $g_n^{(2)}$ Specialschaar, und es sind nur 2 Fälle denkbar: Entweder $g_m^{(2)}$ ist Vollschaar, oder Theil einer solchen von höherer Mannigfaltigkeit $2+\Delta$. $(\Delta>0)$. In beiden Fällen ergibt der Riemann-Roch'sche Satz die Maunigfaltigkeit μ der durch eine Gruppe möglichen C^{n-3} , das ist das μ der C^{n-4} :

$$\mu = p - 1 - (n - 2 - \Delta) = p - n + 1 + \Delta.$$

^{*)} Die kurze Bezeichnung: C^{n-3} , C^{n-4} etc., gebrauchen wir ausschliesslich für Curven, welche der C^n adjungirt sind.

Für $\Delta = 0$ hat man jenes Minimum: $\mu_0 = p - n + 1$, die normale Mannigfaltigkeit der C^{n-4} ; über die Grösse des μ hingegen, der faktischen Mannigfaltigkeit lässt sich im voraus nichts feststellen.

Soviel aber ist gewiss: Wenn p > n-1, so gibt es wenigstens ∞^1 Curven C^{n-1} , und die etwa vorhandene $g_2^{(1)}$ wird von einem Büschel der C^{n-4} ausgeschnitten.

Zur genauern Characterisirung einer Trigonalcurve C_n^n dient der Satz:

Ihr Geschlecht p kann nicht grösser, als 2n-5 sein:

Die Definition einer Trigonalcurve findet ihren Ausdruck darin, dass die von den Geraden der Ebene stammende $g_n^{(2)}$ Specialschaar ist; dahingegen kann die von den ∞^5 Kegelschnitten bestimmte $g_{2n}^{(5)}$ nicht Specialschaar sein. Denn wäre sie es, so existirte eine C^{n-5} und es bildete diese mit einer beliebigen Geraden eine C^{n-4} ; weshalb offenbar die unter a) hervorgehobene Eigenschaft der C_p^n nicht bestehen kann. Würde aber p > 2n-5 sein, so wäre die $g_{2n}^{(5)}$ Specialschaar.

7. Lehrsatz: Die Trigonalcurve C_p^n , für welche p den Maximalwerth p = 2n - 5 annimmt, hat nothwendig einen n - 3-fachen Punct V.

Es ist klar, dass C^n mit einem n-3-fachen Puncte V sowohl das Geschlecht 2n-5, als die $g_a^{(1)}$ besitzt.

Hätte aber C^n einen k_1 -fachen Punct V_1 , $(k_1 < n-3)$, so müsste sie noch einen > 1

 k_2 -fachen Punct V_2 haben, $(k_2 > 1)$; damit p = 2n - 5 sein könne. Bei dieser Annahme werde ich nachweisen, dass nicht alle C^{n-4} die einen beliebigen Punct a von C^n enthalten, noch durch zwei mitbestimmte Puncte a_1 , a_2 der C^n gehen, dass demnach die $g_3^{(1)}$ unmöglich ist $(6.\ a)$: Die normale Mannigfaltigkeit der C^{n-4} ist $\mu_0 = p - n + 1 = n - 4$. Man kann deshalb eine C^{n-4} herstellen, welche eine beliebig durch V_1 (oder auch durch V_2) gezogene Gerade G_1 (bezw. G_2) zum Bestandtheil hat; man braucht nur $n-4+1-(k_1-1)$ Puncte der C^{n-4} auf G_1 zu verlegen, was wegen $k_1 > 1$ zulässig ist. Denkt man jetzt a variabel auf C^n , und fasst die Verbindungslinie V_1 a als G_1 auf, so muss es sich unendlich oft ereignen, dass die beiden Puncte a_1 , a_2 , die mit a eine Gruppe ausmachen, in die hetreffende G_1 fallen. Ein Gleiches müsste auch für die Gerade V_2 a als G_2 betrachtet gelten; dies ist offenbar unmöglich. Ist hiermit dargethan, dass C^n_{2n-5} , wofern auf ihr $g_3^{(1)}$ sein soll, höchstens einen vielfachen Punct haben darf, etwa einen k-fachen, so muss:

$$\frac{(n-1)\,(n-2)}{2} - \frac{k\,(k-1}{2} = 2n-5, \quad \text{oder} \quad \{k-(n-3)\}\,\{k-(4-n)\} = 0\,;$$
 d. i. $k=n-3$ sein.

Für eine C^n vom Geschlechte 2n-5 gelt nach unserer Argumentation der Satz:

"Wenn der C^n_{2n-5} die Eigenschaft zukommt, dass alle durch einen willkührlichen Punct a der Curve gehenden C^{n-4} noch 2 durch a mitbe-

stimmte Puncte derselben enthalten, so muss C_{2n-5}^n einen n-3-fachen Punct V haben; sie ist Trigonalcurve, indem die Schaar $g_3^{(1)}$ von dem Strahlenbüschel (V) ausgeschnitten wird."

8. Die Trigonalcurven, deren Geschlecht p < 2n - 5.

Nach 6. a) muss die Gesammtzahl $2p-2-n=\sigma$ der einfachen Puncte, die C_p^n mit einer C^{n-4} gemein hat, durch 3 theilbar sein. Hieraus folgt, dass, wenn man p durch 2n-5-x (x>o) darstellt, x den Factor 3 enthalten wird; also setzen wir

I
$$p = 2n - 5 - 3\Delta(\Delta > 0)$$

somit:

II
$$\sigma = 3 (n - 4 - 2\Delta),$$

III $\mu_0 = n - 4 - 3\Delta.$

Die Gleichung II zeigt, dass die faktische Mannigfaltigkeit μ der C^{n-4} höchstens $n-4-2\Delta$ sein kann. Man erkennt aber bald, dass μ unter diesen Werth nicht sinken darf. Denn gesetzt, $\mu=n-4-2\Delta-i$ (i>0); so würde eine durch μ willkührliche Puncte a der C^n gelegte C^{n-4} ausser den mitbestimmten 2μ Puncten a noch i Gruppen der $g_3^{(1)}$ enthalten, und es gingen durch die a und $i-1\geqq 0$ dieser Gruppen immer noch ∞ 1 Curven C^{n-4} , was der Voraussetzung, μ sei die faktische Mannigfaltigkeit der C^{n-4} , widerspricht. Somit: $IV\mu=\mu_0+\Delta$. Vergleichen wir dieses Resultat mit dem in No. 6 Vorgebrachten, so zeigt sich, dass die dort mit Δ bezeichnete, sich auf die $g_n^{(2)}$ beziehende Grösse mit der jetzt ebenso bezeichneten Zahl, welche die Abweichung des p von seinem Maximalwerthe ausdrückt, übereinstimmt.

Die Klasse der associirten Enveloppe E.

x bestimmt sich mittels einer einfachen Coincidenzrechnung. In der Schaar $g_3^{(1)}$ befinden sich, wie bekannt: $2+2+2p=4n-6-6\Delta$ Coincidenzen von zwei der nämlichen Gruppe angehörenden Puncten. Durch einen Punct 0 der Ebene ziehe man eine Gerade G, und nenne a irgend einen den n-Puncte, die G und G_p^n gemein haben. Zu jedem a gehören zwei andere a_1 , a_2 , die mit 0 verbunden zwei Gerade G' liefern. Die Beziehung G, G' ist nun eine involutorische, 1, 2n-deutige und führt im Ganzen zu 4n Coincidenzen einer G mit einer G'. Jede der x von 0 an E^x möglichen Tangenten consumirt 6 Coincidenzen dieser Art; überdies kommen die Verbindungslinien von 0 mit den obigen $4n-6-6\Delta$ Coincidenzen puncten der $G_3^{(1)}$ als einfache Coincidenzen GG' hinzu; folglich:

$$6x + 4n - 6 - 6\Delta = 4n$$
; oder $x = \frac{2n - p - 2}{3} = \Delta + 1$.

9. Die Trigonalcurven C^n vom Geschlechte 2n-8.

Auf die C^n_{2n-8} führt die zunächstliegende Annahme $\varDelta=1$; die faktische Mannigfaltigkeit der C^{n-4} ist um 1 grösser, als die normale, die Klasse der associirten Enveloppe

wird 2. Die von den Geraden der Ebene bestimmte $g_n^{(2)}$ ist Theil einer ∞ 3 Schaar; demzufolge lassen sich unsere Curven als eindeutige Transformationen gewisser Raumcurven R^n ansehen (vergl. die citirte Preisschrift Herrn Nöther's). Jede C^{n-4} schneidet (Gl. II, vor. Nummer) n-6 Gruppen der vorausgesetzten $g_3^{(1)}$ aus, und es gehen durch n-7 Gruppen ∞ 1 Curven C^{n-4} , welche eben die Schaar liefern. Selbstverständlich ist $n \equiv 7$, wodurch p > 4 bedingt wird.

a) Lehrsatz. Jede C^{n-4} , welche zwei willkührliche Gruppen τ_1 , τ_2 enthält, muss auch den Schnittpunct 0 der Geraden T_1 , T_2 aufnehmen, auf welchem τ_1 , τ_2 sich befinden.

Beweis. Zu τ_1 , τ_2 fügen wir n-7 willkührlich gewählte Gruppen τ_i , so dass durch diese letztere und τ_1 die Curve C_1^{n-4} , durch τ_i , τ_2 die C_2^{n-4} bestimmt sei. Die hier totaliter vorliegenden n-5 Gruppen sind für die hindurchgehenden C^{n-3} genau 2n-10 Bedingungen [6,a), und weil 2n-10=p-2, so bilden die C^{n-3} einen Büschel, in welchem die in C_1^{n-4} , T_2 , als die in C_2^{n-4} , T_1 zerfallende C^{n-3} vorkommt; deshalb wird 0 ein Grundpunct dieses Büschels sein. Nun liefert eine Gerade T_i , die eine der ausgewählten Gruppen τ_i trägt, und daher 0 nicht zu enthalten braucht, mit der durch die sämmtlichen n-6 anderen Gruppen möglichen C_i^{n-4} gleichfalls eine Curve des in Rede stehenden Büschels, und folglich muss C_i^{n-4} durch 0 gehen. Weil aber die n-8 Gruppen τ_i , durch welche die τ_1 , τ_2 enthaltende C_i^{n-4} gelegt wurde, ganz willkührliche darstellen, so ergibt sich die Behauptung.

b) Die Grundpuncte des durch n— 7 beliebige Gruppen der $g_3^{(1)}$ bestimmten Büschels: $\left(C^{n-4}\right)_1$.

Dieser Büschel hat zufolge des Lehrsatzes ausser den auf C^n angenommenen 3(n-7) Puncten noch die $\frac{(n-7)(n-8)}{2}$ Schnittpuncte der n-7 Geraden T, auf welchen jene Gruppen sind, zu Grundpuncten, und überdies keine anderen.

Beweis. Eine der angenommenen Gruppen sei τ_1 , ihre Gerade T_1 , die übrigen n-8 mögen mit τ_i bezeichnet werden, ihre Geraden mit T_i . Fügt man den τ_i eine beliebige neue, auf T_2 befindliche Gruppe τ_2 zu, so dienen die τ_i nebst τ_2 einem Büschel $(C^{n-4})_2$ zur Grundlage. Indem man jetzt aus C^n eine variabele Gruppe τ — auf T liegend — gleichzeitig durch je eine Curve beider Büschel ausschneidet, werden diese projectivisch auf einander bezogen sein, und eine C^{2n-8} erzeugen, von welcher C^n ein Bestandtheil ist, und vermöge unseres Lehrsatzes die n-8 Geraden T_i zusammengefasst, den anderen Theil darstellen. Von den Grundpuncten des $(C^{n-4})_1$ liegen auf jeder T_i n-8+3, während jede dieser C^{n-4} die betreffende T_i noch in einem variabelen Puncte schneidet, durch den die Gerade T geht, sowie die homologe Curve des Büschels $(C^{n-4})_2$. Da nun auf dem Totalerzeugnisse, nämlich weder auf C^n , noch auf einer T_i ein Punct anzutreffen ist, der für alle

 $(C^{n-4})_1$ fest wäre, mit alleiniger Ausnahme der n-5 so eben aufgeführten, so erschöpfen diese letzteren wirklich sämmtliche Grundpuncte des Büschels.

Hierbei wird zu gleicher Zeit deutlich, dass die variabele T einen Kegelschnitt E^2 umhüllt, da sie ja irgend zwei der festen T_i in projectivischen Gebilden trifft.

Hätte C_p^n nur Doppelpuncte D, somit deren

$$\frac{(n-3)(n-4)}{2} + 3 - \text{wegen } p = 2n-8$$

so ergibt sich als Summe aller Grundpuncte des (C^{n-4}) :

$$\frac{(n-3)(n-4)}{2} + 3 + \frac{(n-7)(n-8)}{2} + 3(n-7); \text{ d. i. } (n-4)^2.$$

Dass es solche Trigonalcurven C^n_{2n-8} gibt, werden wir zeigen. Es knüpft sich hieran sodann die Folgerung: Denkt man einzelne dieser D durch aequivalente höhere vielfache Puncte V ersetzt, so liegen nothwendig in den gesammten vielfachen Puncten mehr, als $3 + \frac{(n-3)(n-4)}{2}$ Schnittpuncte zweier C^{n-4} vor; indess der fehlende Theil der obigen Summe nicht alterirt wird; also müssen die C^{n-4} dann immer zerfallen.

c) Das Netz der durch n-8 Gruppen τ_i gehenden C^{n-4} .

Je zwei Curven C, C' dieses Netzes haben ausser den 3(n-8) Puncten der τ_i den $\frac{(n-8)(n-9)}{2}$ Schnittpuncten ihren Geraden noch n-5 in gerader Linie liegende Puncte, und sonst keine, gemein.

Beweis. C schneidet aus C^n zwei von den τ_i verschiedene Gruppen τ_1 , τ_2 — auf den in o sich treffenden Geraden T_1 , T_2 liegend —, und ebenso bestimmt C' zwei neue Gruppen τ_1' , τ_2' , auf den in o' sich treffenden T_1' , T_2' . Von den τ_i sonderen wir eine Gruppe τ ab; dann geht durch die übrigbleibenden n— 9, nebst τ_1 , τ_2 ein Büschel von C^{n-4} , in welchem C die Gruppe τ aus C^n schneidet. Analag bestimmen die nämlichen n— 9 Gruppen mit τ_1' , τ_2' einen zweiten Büschel, in welchem C' ebenfalls die Gruppe τ enthält. Wenn somit diese τ die C^n beschreibt, so wird:

$$(C') \subset (C)$$
.

Das Erzeugniss (C^{2n-8}) dieser projectivischen Büschel besteht aus C^n , ferner den n-9 Geraden T_i , welche die den Bücheln gemeinschaftlichen 3(n-9) Grundpuncte tragen; mithin muss nebstdem eine Gerade erzeugt werden, welche keine andere sein kann, als die Verbindungslinie OO! C, C' treffen daher oo' in denselben n-5 Puncten, und man bemerkt, dass sie im Ganzen:

$$n-5+3$$
 $(n-8)+\frac{(n-8)(n-9)}{2}=\frac{(n-7)(n-8)}{2}+3$ $(n-7)$ Puncte gemein haben.

Zur Construction des Netzes kann man also vorgehen. Man fixire eine C^{n-4} des Netzes, und denke sie von allen fehlenden geschnitten in einer $g^{(1)}$. Nach dem Restsatze

tritt auf C^{n-4} ein fester n-5 Punct f auf, dessen Strahlen die durch jede andere Curve aus C^{n-4} geschnittener n-5 Puncte enthalten, und man erlangt auf diese Weise ∞ ¹ Büschel des Netzes.

10. Nunmehr wollen wir beispielweise den Fall n=9 ausführlich behandeln, die Trigonalcurve C^9_{10} construiren, indem wir festsetzen, dass sie ausschliesslich Doppelpuncte D, also 18 D haben soll, und beweisen, dass bei gegebenen 18 D nur eine C^9 , und zwar als Trigonalcurve existirt.

Zunächst dürfen die 18 D für die hindurchgehenden C^5 nur 17 unabhängige Bedingungen darstellen, und sie dürfen auf keiner C^4 liegen. Hiernach erschliesst man die Disposition der D folgendermassen:

 C_0^5 sei eine beliebige der ∞ durch sie möglichen C_0^5 , C_0^5 wird von den übrigen in einer $g_{\bar{i}}^{(2)}$ geschnitten, und da ihr Geschlecht 6 > 7 - 2, so ist $g_{\bar{i}}^{(2)}$ Specialschaar, und muss durch ∞ ² Kegelschnitte ausschneidbar sein, die 3 auf C_0^5 liegende unveränderliche Puncte x_0 , y_0 , z_0 , die Restpuncte der $g_i^{(2)}$ enthalten. Es ist nun nothwendig und hinreichend, dass die Restpuncte nicht in gerader Liuie liegen; denn wären sie in einer Geraden L, so bestände $q^{(2)}$ aus 2 festen Puncten auf L und je 5 in gerader Linie liegenden Puncten der C_0^5 . Alsdann müsste, wie man sieht, eine C^4 durch die D gehen; würde man umgekehrt dies voraussetzen, so hätten C^4 , C^5 ausser den D noch 2 Puncte gemein, deren Verbindungslinie L aus C_n^5 die Restpuncte der jetzt erscheinenden $g_1^{(2)}$ schnitte. Nimmt man deshalb auf einer C_0^5 die Ecken eines Dreiecks x_0 , y_0 , z_0 an, legt durch sie eine C^2 und durch die 7 ferneren gemeinsamen Puncte der C_0^5 C^2 eine zweite C^5 , so schneiden sich C_0^5 , C^5 in 18 Puncten D, die der an sie zu stellenden Forderung Genüge leisten. Man ist nun gewiss, dass von den 7 beweglichen Puncten der $g_i^{(2)}$ niemals 5, in einer Geraden sein können. Jede Gruppe der $g_i^{(2)}$ liefert mit den D die 25 Grundpuncte eines Büschels (C^5) , und jede C⁵ ist in einem dieser ∞ ² Büschel enthalten. Vor allem fassen wir diejenigen Gruppen ins Auge, von welchen drei Puncte in einer Geraden G sind. Der ausschneidende C2 muss G zum Bestandtheil haben, hierbei sind zwei Fälle denkbar: Entweder enthält G einen einzigen der Restpuncte, z. B. z_0 ; oder aber zwei dieselben, etwa x_0 , y_0 : Wenn ersteres stattfindet, so ist die Gruppe, zu welcher die gedachten drei Puncte gehören, vollkommen bestimmt und sie enthält auch die drei Puncte 73, welche die Verbindungslinie $x_0 y_0 = T_3$ noch mit C_0^5 gemein hat; doch durch jene gedachten Puncte gehen nur ∞ Curven C^5 . Im zweiten Falle ist hingegen Gruppe nicht bestimmt, indem die τ_3 mit irgend 4 mit z_0 in geraden Linie liegenden Puncten eine Gruppe liefern, mit anderen Worten durch die Gruppe τ_3 lassen sich noch ∞ 2 C^5 legen, oder jede C^5 , die einen der τ_3 enthält muss auch die beiden anderen aufnehmen. So erscheinen auf jeder Seite τ_1 , τ_2 , τ_3 des Dreiecks x_0 y_0 z_0 je eine ebenso charakterisirte Gruppe von drei Puncten T_1 , T_2 , T_3 ; und ausser diesen existirt auf C_{\bullet}^{5} keine zweite solche Gruppe.

Offenbar kann jede der ∞ ³ C^5 die Rolle der C_0^5 übertragen werden, so dass in der Ebene unendlich viele dieser Gruppen τ auftreten. Durch je zwei τ gehen, noch ∞ ¹ C^5 , durch je drei τ eine einzige C^5 , und diese muss durch die Schnittpuncte der drei Geraden T gehen, welche die angenommenen τ tragen. Hieraus ergibt sich leicht, dass alle denkbaren

T einen Kegelschnitt E^2 umhüllen und dass auf jeder Tangente dieser E^2 eine Gruppe τ liegt: τ_2 , τ_1 seien 2 beliebige auf den Geraden $z_0 \, x_0 \equiv T_2$, $z_0 \, y_2 \equiv T_1$ befindliche τ ; sie bestimmen einen Büschel (C^5), dessen Curven sämmtlich auch durch z_0 gehen. Eine dieser C^5 schneide T_2 in x, T_1 in y, dann fällt die Gruppe τ , welche C^5 neben τ_1 , τ_2 besitzt, auf die Gerade $xy \equiv T$. Variirt hiebei x, y, so wird $(x) \subset (y)$ sein, und T umhüllt einen Kegelschnitt E^2 , der auch T_1 , T_2 berührt. Da jede überhaupt mögliche τ mit τ_1 , τ_2 auf einer C^5 liegt, so sind alle τ auf den Tangenten des E^2 . Auf x_0 y_0 befinde sich τ_3 ; die veränderliche Gruppe τ liegt zugleich auf einer Curve des durch τ_2 , τ_3 gehenden Büschels $(C^5)_1$ und zwar geht die betreffende C^5 durch den festen Punct x_0 und den variabelen x: Mithin sind die Büschel (C5), (C5), projectivisch auf einander bezogen, und erzeugen eine C^{10} mit den Doppelpuncten D. Diese C^{10} zerfällt aber in die Gerade T_2 , die von x beschrieben wird und eine Trigonalcurve C_{10}^{9} ; diese ist der geometrische Ort für sämmtliche τ . Gäbe es überhaupt eine Trigonalcurve C^9 mit den Doppelpuncten D, so müssten auf ihr die Gruppen z liegen, sie müsste mit der construirten identisch sein. Es kann aber auch keine andere Curve 9^{ter} Ordnung C^9 mit den Doppelpuncten D bestehen: Denn da noch ∞ 3 C durch die D möglich sind, wäre \mathfrak{C}^9 Projection einer Raumcurve R^9 (Nöther, l. c.). Die Schaar $g_{i,s}^{(s)}$, welche die Kegelschnitte der Ebene aus $\mathfrak{C}^{\mathfrak{g}}$ schneiden, ist nicht Specialschaar wegen der Nichtexistenz einer adjungirten C^4 ; also ist auch die von der Quadridflächen auf R^9 bestimmte $g_{18}^{(9)}$ nicht Specialschaar, und weil 10 das Geschlecht der R^9 ist, so ist 8, nicht 9 die Mannigfaltigkeit dieser Schaar. Daraus folgt, dass R^9 auf einer Quadridfläche F² liegen muss. Soll dann ihr Geschlecht 10 sein, so müssen die Geraden der einen Schaar von F^2 dreipunctige, die der anderen Schaar 6punctige Secanten der R^9 sein. Demnach besitzt die Projection \mathfrak{C}^9 die $g_3^{(1)}$, und kann von der construirten C_{10}^9 nicht verschieden sein. Durch Constantenzählung, indem man einen D für 3 Bestimmungsstücke rechnet, käme man zum selben Schluss, aber bei Berücksichtigung der Lage der D ist die Zulässigkeit dieser Rechnung nicht begründet.

11. Die Trigonalcurven C_{2n-11}^n und die Construction der von uns betrachteten Curven dieser Art.

Die Annahme $\Delta=2$ führt zu diesen Curven vom Geschlecht 2n-11. Eine C^{n-4} schneidet in 2(2n-11)-n-2=3(n-8) Puncten, in n-8 Gruppen τ . Durch n-9 Gruppen gehen ∞^1 Curven C^{n-4} , welche die Schaar $g_3^{(1)}$ ausschneiden. Es ist deshalb $n\geq 9$ su setzen. Die associirte hat die Klasse $\Delta+1=3$.

Durch einen beliebigen Punct o gehen drei Tangenten T_1 . T_2 , T_3 der E^3 , auf denen die Gruppen τ_1 , τ_2 , τ_3 sein mögen.

Unter τ_i seien n-10 willkührliche Gruppen verstanden, so gehen durch dieselben und τ_2 , τ_3 , bezw. τ_1 , τ_2 ; τ_1 , τ_3 drei bestimmte Curven C_1^{n-4} , C_2^{n-4} , C_3^{n-4} . Durch die n-7 Gruppen τ_i , τ_1 , τ_2 , τ_3 lassen sich genau ∞ ² adjungirte C^{n-3} legen, da 2(n-7)=2n-11-3 In diesem Netze kommen die drei linear unabhängigen Curven: $C_1^{n-4}+T_1$, $C_2^{n-4}+T_2$, $C_3^{n-4}+T_3$ vor; und weil diese den Punct σ enthalten, müssen alle σ ² σ des Netzes durch σ gehen. Nun bildet eine Gerade σ welche irgend eine der Gruppen σ etwa σ trägt,

mit der durch alle übrigen n-8 Gruppen bestimmten C^{n-4} eine C^{n-3} des vorliegenden Netzes; folglich geht diese C^{n-4} durch o. Da aber die τ_i ganz willkührlich sind, so sieht man, dass alle C^{n-4} , welche die 3 Gruppen τ_1 , τ_2 , τ_3 enthalten, den Punct o aufnehmen müssen. Natürlicherweise kommt dieser Satz nur zur Geltung, wenn n > 10.

Soll C_{2n-8}^n ausschliesslich Doppelpuncte D haben, so folgt wie in der vorigen Nummer, dass sie Projection einer Raumcurve R_{2n-8}^n sein muss, die auf einer Quadrifläche F^2 liegt und die eine Geradenschaar dieser Fläche zu 3punctigen Secanten hat. Um eine solche R^n zu bekommen, braucht man nur F^2 mit einer F^{n-3} zu schneiden, die n-6 windschiefe Gerade von F^2 enthält. Legt man z. B. durch drei windschiefe Gerade der F^2 eine F^6 , so schneidet diese R_{10}^9 aus, deren Projection die C_{10}^9 der vorigen Nummer ist.

Was die Existenz der C^n_{2n-11} mit ausschliesslich Doppelpuncten betrifft, so folgt wie vorher, dass eine solche Projection einer R^n_{2n-11} sein muss. Da nun zwei beliebige Centralprojectionen von R^n_{2n-11} wieder zwei Triagonalcurven C^n_{2n-11} sein müssen, so hat R^n_{2n-11} nothwendig ∞ dreipunctige Secanten, deren Ort eine Regelfläche F^z sein wird. Nun werden die Projectionen dieser Secanten aus irgend einem Puncte des Raumes auf eine Ebene stets eine Curve dritter Klasse einhüllen, daher hat man x=3. Es bedarf keiner Andeutung, wie man aus einer Regelfläche 3ten Grads Raumcurven R^n ausschneiden kann, welche die Geraden der Fläche zu 3punctigen Secanten haben. Solchen R^n kommt, wie man leicht sieht, das Geschlecht 2n-11 zu, falls sie nur scheinbare Doppelpuncte besitzen.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Abhandlungen der mathematisch-naturwissenschaftlichen Classe der königl.- böhmischen Gesellschaft der Wissenschaften

Jahr/Year: 1890

Band/Volume: 7 3

Autor(en)/Author(s): Küpper C.

Artikel/Article: Über die Curven Cnp von nter Ordnung und dem Geschlecht p>1, auf welchen die einfachsten Specialschaaren g(1)2, g(1)3 vorkommen. 1-18