VERÖFFENTLICHUNGEN DER UNIVERSITÄT INNSBRUCK

122

Alpin-Biologische Studien

geleitet von Heinz Janetschek

XII

Die Regenwürmer (Lumbricidae) des Landes Salzburg

von

Friedrich Seewald

Herausgeber Universität Innsbruck Universität Innsbruck, Alpine Forschungsstelle Obergurgi: download http://doi.org/10.1000/10.0000/

VERÖFFENTLICHUNGEN DER UNIVERSITÄT INNSBRUCK

122

1285/122

ALPIN-BIOLOGISCHE STUDIEN geleitet von Heinz Janetschek XII

Die Regenwürmer (Lumbricidae) des Landes Salzburg

von

Friedrich Seewald

1979

Im Kommissionsverlag der Österreichischen Kommissionsbuchhandlung Paul Sundt Universitätsbuchhandlung, Innsbruck

Gedruckt mit Unterstützung der Salzburger Landesregierung

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten

© 1979, Universität Innsbruck Herstellung: Kleinoffsetdruck H. Kowatsch, Innsbruck

Inhalt

	Secretary and the secretary an	7
_	Summary	
1	Vorbemerkungen	9
2	Das Untersuchungsgebiet	10
3	Material und Methodik	11
4	Verzeichnis der im Untersuchungsgebiet nachgewiesenen	
	Lumbricidenarten	12
5	Individuenzahlen und Fundorte	14
6	Zusammenhänge zwischen Arten und Individuenzahlen	16
7	Korrelationen zwischen Lebensraumtypen und Lumbriciden-	
	arten	18
7.1	Die Beziehungen zum geologischen Untergrund	18
7.2	Die Beziehungen zu den Vegetationsstufen	25
7.3	Lebensformen	30
7.4	Die Beziehungen zu verschiedenen Vegetationsformen	
	und Bodentypen	31
8	Der Übereinstimmungsgrad im Artbestand einzelner	
	Faunationen	36
9	Die Höhenverbreitung	43
10	Zur Tiergeographie	45
11	Zur Verbreitung einiger, in Salzburg selten vorkommen-	
	der oder für Salzburg erstmals nachgewiesener Lumbri-	
	cidenarten	47
12	Zusammenfassung und Ausblick	51
13	Literatur	67

Summary

This is the first complete presentation of the fauna of earthworms (Lumbricidae) for the federal province of Salzburg, Austria. During this investigations on 263 sites 3562 specimens (belonging to 27 species) were collected. No unknown species were found.

New for the fauna of Salzburg were 8 species:
Allolobophora georgii MICH., Allolobophora limicola
MICH., Allolobophora longa UDE, Dendrobaena veneta
(ROSA), Eisenia foetida (SAV.), Eiseniella tetraedra
intermedia CERNOSV., Lumbricus castaneus (SAV.) and
Lumbricus terrestris L.

New for Austria as a whole was Allolobophora limicola. This gives a total of 33 species of Lumbricidae for the province of Salzburg including the species mentioned in literature - by far more than expected at the beginning of this study.

Highly dominant in the area are: Lumbricus rubellus, Octolasium lacteum, Allolobophora caliginosa, A. rosea, Dendrobaena rubida, Eisenia lucens and Octolasium argoviense. Lumbricus rubellus is the most common earthworm in the area.

Among the rare species are: Dendrobaena vejdovskyi, Eiseniella tetraedra intermedia, Eisenia foetida, Allolobophora longa, A. georgii and Dendrobaena veneta.

Examinations of the relations of Lumbricids with various environmental types (as given by geology, vegetation, types of soil) have shown that the ecologic demands of most of the species are not differentiated in such a manner that clear ordinations were possible.

A few species however, show clear signs of bands to certain habitats (e.g. Eisenia foetida, Eisenia lucens and Allolobophora smaragdina). These results have been verified with the SØRENSEN-quotient.

Among the species advancing to higher sea levels in the mountains of the area are especially Lumbrious rubellus $(2350\ m)$, Octolasium argoviense $(2350\ m)$ and Octolasium lacteum $(1900\ m)$.

Preview

In spite of the fact that the Lumbricids are among the best known soil animals, there still remains a vast field of further research, particulary in Austria.

A future aspect, not referred to this study, could be the following: Lumbricids could, according to recent research, serve as bio-indicators for pollution of soils, particularly concerning pollution by heavy metals of arable land and pasturages e.g. along highways and in industrial areas (ATLAVINYTE et al. 1976 and WIESER 1979).

ÜBER REGENWÜRMER (LUMBRICIDAE) DES LANDES SALZBURG.

1 Vorbemerkungen

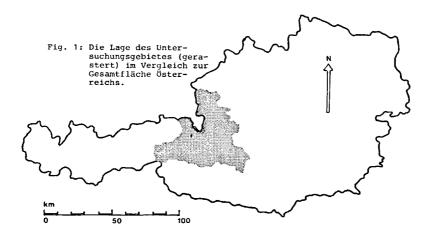
Erste Ergebnisse über Lumbriciden in Salzburg lieferte WESSELY (1905, 1920 a, 1920 b), Kustos des Linzer Landes-museums, der auf seinen Urlaubsfahrten nach Salzburg hier gesammelt hatte. Er wies 14 Arten für das Bundesland nach. Die gesamte Lumbricidensammlung Wesselys wurde gemeinsam mit dem Material von Franz aus den Hohen Tauern von POP (1947) revidiert. Er stellte dabei drei neue Arten bzw. Varietäten auf.

Infolge versehiedener Änderungen in der Lumbricidensystematik sah sich ZICSI (1965), der in Ost- und Süd- österreich viel gesammelt hatte, gezwungen, eine neuerliche Revision durchzuführen. Dabei wurden einige Arten eingezogen, andere nomenklatorisch verändert (Artenzahl: 20).

Nach Beendigung meiner Untersuchungen (SEEWALD 1974), bei denen erstmals das gesamte Land Salzburg systematisch und vollständig erfaßt wurde, ergibt sich eine Zahl von 27 sicher nachgewiesenen Arten. Unter Miteinbeziehung unsicherer Literaturangaben ist eine Zahl von 33 Lumbricidenarten für das Bundesland Salzburg zu nennen (Gesamtösterreich: 54).

Vorliegende Arbeit ist eine aufs äußerste gedrängte Zusammenfassung der Dissertation "Die Lumbriciden des Landes Salzburg - eine ökologisch-faunistische Untersuchung" (Naturwiss. Fakultät Univ. Innsbruck 1974), die auf einen Untersuchungszeitraum von etwa vier Jahren zurückgeht (1969 - 1973).

Sie enthält eine ausführliche Autökologie der Lumbricidenarten Salzburgs, eine genaue Beschreibung der Untersuchungslokalitäten und eine detaillierte Darlegung des Primärmaterials, geordnet nach Fundorten und nach Arten vor.


Ich möchte Prof. Dr. H. Janetschek (Innsbruck), Prof. Dr. A. Zicsi (Budapest), Doz. Dr. K. Thaler (Innsbruck), Dr. B. Hauser (Genf) und Prof. Dr. H. Werner (Salzburg) für ihre unermüdliche Unterstützung meinen aufrichtigen Dank aussprechen.

2 Das Untersuchungsgebiet

Das Bundesland Salzburg ist mit 7154 qkm das sechstgrößte Bundesland Österreichs (Gesamtfläche Österreichs: 83849 qkm). Es erstreckt sich nördlich des Alpenhauptkammes, durchzogen von den Hauptflüssen Salzach, Saalach, Enns und Mur und wird in N-S-Richtung von einer Vielfalt geologischer Zonen (im N von Sedimentgesteinen, im S vorwiegend von metamorphen Serien) durchzogen.

Klima und Niederschlag werden im wesentlichen durch Lage und Höhe der Gebirge bestimmt. Die Gebiete nördlich der Nördlichen Kalkalpen sind mild und niederschlagsreich, die Gebiete südlich davon deutlich kontinentaler.

Geologische und klimatologische Verhältnisse bedingen auch die Bodentypen und die Vegetation. Salzburg gehört dem baltischen und alpinen Florengebiet en, wobei infolge der großen Höhenlagen die verschiedenen Vegetationsstufen für die Verbreitung der Lumbriciden eine große Rolle spielen.

3 Material und Methodik

Es wurde vorwiegend nach der "Aufschüttungsmethode mit Formalin" ("Formaldehyd method" nach RAW 1959 und SATCHELL 1969, verfeinert durch ZICSI mdl.) gearbeitet. Diese Methode eignet sich besonders für quantitative Fänge auf abgegrenzten Flächen großräumiger Standorte (Felder, Waldböden usw.). In den meisten Fällen wurde auf eine Probefläche von 0,5 m² aufgeschüttet. Die Auswertung dieser Fänge erfolgte quantitativ. Dennoch liegt der Schwerpunkt der Arbeit in der Faunistik. Andere, von Lumbriciden besiedelte Biotope, wie Baumstrünke, Moospolster, flachgründige Gebirgsböden und feuchte Lebensräume (Bachufer, Auböden) wurden von Hand aus mit großer Pinzette abgesucht.

Nach Abtöten in 30 %-igem Alkohol erfolgte die Konservierung und Aufbewahrung in 5 %-igem Formalin; dabei wird die für etwaige Präparierungszwecke notwendige Härtung erreicht. Auch nach längerer Konservierungsdauer tritt kein wesentlicher Farbverlust ein.

Bei der <u>Determination</u> hielt ich mich an die von ZICSI (1965 d) angegebenen Merkmale. Alle Anfangsdeterminationen

und fraglichen Ergebnisse wurden Prof. Dr. A. Zicsi (Budapest) zur Revision übergeben und bestätigt, wofür ihm der herzlichste Dank auszusprechen ist.

Die Untersuchungen, die vorliegender Arbeit zugrunde liegen, stützen sich auf 3562 Exemplare aus 263 Lokalitäten, wobei nur adulte Tiere berücksichtigt wurden.

4 Verzeichnis der im Untersuchungsgebiet nachgewiesenen Lumbricidenarten:

- + Neufund
- ? unsichere Angabe aus der Literatur
- o Literaturangabe; von mir nicht nachgewiesen Sichere Funde sind durchnumeriert.

Gattung Allolobophora

- 1 Allolobophora caliginosa (SAVIGNY 1826)
- + 2 Allolobophora georgii MICHAELSEN 1890
 - 3 Allolobophora handlirschi ROSA 1897
- + 4 Allolobophora limicola MICHAELSEN 1890 neu auch für Österreich
- + 5 Allolobophora longa UDE 1885
 - 6 Allolobophora rosea (SAVIGNY 1826), f. typica = Allolobophora rosea var. bimastoides COGNETTI 1901
 - 7 Allolobophora smaragdina ROSA 1892

Gattung Dendrobaena

- ? Dendrobaena alpina (ROSA 1884) f. typica; Lit. POP 1947, FRANZ 1954
- 8 Dendrobaena attemsi (MICHAELSEN 1902)
- 9 Dendrobaena octaedra (SAVIGNY 1826)
- ? Dendrobaena platyura (FITZINGER 1833) f. typica; Lit. POP 1947, FRANZ 1954

- 10 Dendrobaena platyura (FITZINGER 1833) var. depressa (ROSA) 1893
- 11 Dendrobaena rubida (SAVIGNY 1826) f. typica =
 Dendrobaena rubida var. tenuis (EISEN 1874) =
 Dendrobaena rubida var. subrubicunda (EISEN
 1874)
- 12 Dendrobaena vejdovskyi (CERNOSVITOV 1935) =
 Dendrobaena octaedra var. filiformis POP 1947
- + 13 Dendrobaena veneta (ROSA 1886)

Gattung Eisenia

- o 14 Eisenia eiseni (LEVINSEN 1884); Lit.ZICSI 1965 d
- + 15 Eisenia foetida (SAVIGNY 1826)
 - 16 Eisenia lucens (WAGA 1857)
 - ? Eisenia submontana (VEJDOVSKY 1875); Lit. POP 1947

Gattung Eiseniella

- 17 Eiseniella tetraedra tetraedra (SAVIGNY 1926) = Eiseniella tetraedra (SAVIGNY 1926) f. typica
- + 18 Eiseniella tetraedra var. intermedia CERNOSVITOV
 1934

Gattung Lumbricus

- ? Lumbricus baicalensis MICHAELSEN 1900 =
 Lumbricus pusillus WESSELY 1905; Lit.POP 1947,
 ZICSI 1965 d
- + 19 Lumbricus castaneus (SAVIGNY 1826)
 - 20 Lumbricus meliboeus ROSA 1884
 - 21 Lumbricus polyphemus (FITZINGER 1833)
 - 22 Lumbricus rubellus HOFFMEISTER 1843
- + 23 Lumbricus terrestris LINNÉ 1758

Gattung Octolasium

- Octolasium bretscheri ZICSI 1969 =
 Octolasium croaticum var.nivalis (BRETSCHER
 1899)
- 25 Octolasium argoviense (BRETSCHER 1899) =
 Octolasium croaticum (ROSA) var.argiviense
 (BRETSCHER 1899) =
 Octolasium croaticum (BRETSCHER 1899)
- 26 Octolasium lacteum (ÖRLEY 1880)
 - ? Octolasium lissaense MICHAELSEN 1891; Lit. POP 1947, FRANZ 1954
 - ? Octolasium montanum WESSELY 1905; Lit.FRANZ 1954
- 27 Octolasium pseudotranspadanum (COGNETTI 1901) = Octolasium hemiandrum COGNETTI 1901
- 28 Octolasium transpadanum (ROSA 1884)

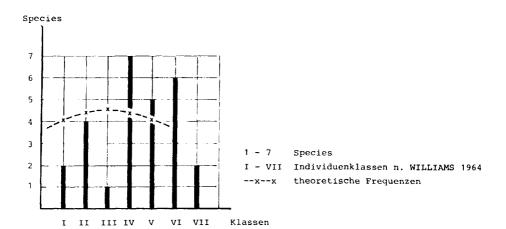
Nomenklatur nach ZICSI (1965 a, d, 1968, 1970, 1971).

5 <u>Individuenzahlen und Fundorte (siehe Tab. 1):</u>

- GD = Gesamtdominanz: Individuenprozent einer Art bezogen auf die gesamte Individuenzahl aller Fänge (= 100 %)
- GK = Gesamtkonstanz: Prozentsätze der Fundorte, auf denen die betreffende Art vorkommt. Gesamtzahl der Fundorte = 100 %.
- DP = Durchschnittliche Präsenz: durchschnittliche
 Individuenzahl einer Art pro Fundort (bezogen
 auf alle Fundorte der entsprechenden Art).

TABELLE 1: Arten - I	ndivi	duenzahl	en -	Fundorte	
Arten	l	d. Expl.		d. Fundorte	DP
	absol		abso.		
	2560	GD 100	263	GK 100	
	3562		203		
Lumbricus rubellus	954	26,78	185	70,34	5 , 15
Octolasium lacteum	583	16,31	166	63,11	3,51
Allolobophora caliginosa	282	7,91	57	21,67	4,94
Allolobophora rosea	279	7,83	96	36,50	2,90
Dendrobaena rubida	271	7,61	78	29,65	3,47
Eisenia lucens	235	6,59	39	14,82	6,02
Octolasium argoviense	206	5,78	47	17,87	4,38
Eiseniella tetraedra tetraedra	158	4,43	38	14,44	4,15
Dendrobaena platyura depressa	114	3,20	34	12,92	3,38
Lumbricus castaneus	97	2,72	18	6,84	5,38
Dendrobaena octaedra	90	2,52	42	15,96	2,14
Lumbricus polyphemus	56	1,57	30	11,40	1,86
Allolobophora smaragdina	52	1,46	16	6,08	3,25
Octolasium pseudotranspadanum	34	0,95	18	6,84	1,88
Lumbricus meliboeus	29	0,81	13	4,94	2,23
Lumbricus terrestris	25	0,70	14	1,52	6,25
Dendrobaena attemsi	24	0,67	8	3,04	3,00
Allolobophora limicola	17	0,47	1	0,38	17,00
Allolobophora handlirschi	16	0,45	4	1,52	4,00
Octolasium transpadanum	14	0,39	7	2,66	2,00
Octolasium bretscheri	11	0,31	4	1,52	2,75
Dendrobaena vejdovskyi	4	0,11	3	1,14	1,33
Eiseniella tetraedra intermedia	3	0,08	2	0,76	1,50
Eisenia foetida	3	0,08	1	0,38	3,00
Allolobophora longa	3	0,08	1	0,38	3,00
Allolobophora georgii	1	0,02	1	0,38	1,00
Dendrobaena veneta	1	0,02	1	0,38	1,00

Die Reihung in dieser Tabelle erfolgte nach der Anzahl der gesammelten Individuen.


Sie umfaßt die Individuenzahlen der von mir nachgewiesenen 27 Arten (bzw. Varietäten, jetzt Unterarten) sowie die auf das Gesamtmaterial (N = 3562 Individuen, 263 Fundarte = Lokalitäten) bezogenen Dominanz- und Konstanzwerte.

Es ist ersichtlich, daß Lumbricus rubellus bezüglich der Individuenzahl und seines Vorkommens an den meisten Fundorten weit an der Spitze steht und daher als der gemeinste Regenwurm des Gebietes gelten kann. Er wird erst mit Abstand von Octolasium lacteum gefolgt. Weitere wichtige Arten des Landes sind: Allolobophora caliginosa, Allolobophora rubida, Eisenia lucens und Octolasium argoviense.

6 Zusammenhänge zwischen Arten und Individuenzahlen

Über (rechnerisch ermittelte) Zusammenhänge zwischen Arten- und Individuenzahlen unterrichtet Fig. 2.

Fig. 2: Zusammenhänge zwischen Arten und Individuenzahlen

Die Abszisse verzeichnet die Individuenklassen nach WILLIAMS' (1964) Vorschlag mit geometrisch (mal 3) ansteigender Klassenbreite. In diesem Fall scheint diese Beziehung einer logarithmischen Gesetzmäßigkeit zu folgen.

Die Diversität meines Materials beträgt nach WILLIAMS' Normogramm $\alpha = 4$, die theoretischen Frequenzen sind in der Figur eingetragen (Kreuzchen x). Die tatsächlichen Artenzahlen scheinen davon nicht signifikant abzuweichen. (Die Anwendung des Prüfverfahrens ist jedoch wegen der niederen Felderzahlen bedenklich). Geprüft wurde für die Klasse I - V, 4 FG (= Freiheitsgrade); $x^2 = 3.41$; 0.5 > p > 0.3; DOWDESWELL 1967: 122).

Ausgangsgrößen für den Rechengang:

$$\alpha \sim 4$$
 $n_1 = N\alpha / (N + \alpha) = 4,00$
 $S = 27$ $x = N / (N + \alpha) = 0,9990$
 $N = 3562$

Auf die detaillierte Ausführung des Rechenganges wird hier verzichtet.

Zusammenfassung und Ergebnisse (s. Fig. 2):

	6	8,33	5,36	11,29	9,13	40,11
theoretische Frequenzen	4	4,326	4,356	4,289	4,128	21,11
Species	2	4	1	7	5	19
Klassen	I	II	III	IV	v	

$$x^{2}$$
: 0.47
0.001
1.77
0.97
0.20 Summe: 3.41 (0.5 > p > 0.3)

Somit ist - zusammenfassend gesagt - der rechnerische Nachweis erbracht, daß bei jeder Probenentnahme alle wichtigen Lumbriciden entnommen, also seltene Arten nicht bevorzugt und häufige nicht vernachlässigt wurden.

7 Korrelationen zwischen Lebensraumtypen und Lumbricidenarten

7.1 Die Beziehungen zum geologischen Untergrund

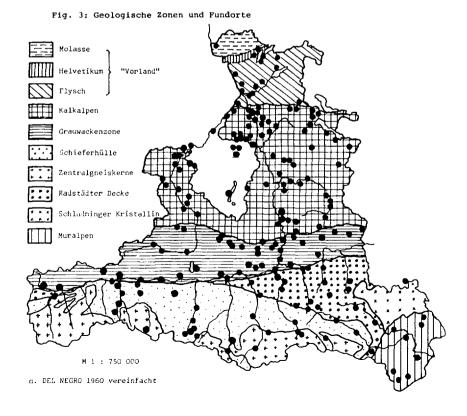


Tabelle 2: Verteilung der Fundorte und Individuen auf die geologischen Zonen:

Geologische Zone	Fundo 263 :	orte = 100 %	Indiv: 3562 :	iduen = 100 %	Arte 27 :	en = 100 %
Vorland (VL) Kalkalpen (KA)	28 117	10,64 44,49	461 1340	12,94 37,62	20 22	74 , 07
Werfener Schiefer (WS)	11	4,18	88	2,47	12	44,45
Grauwackenzone (GZ)	43	16,35	668	18,75	13	48,15
Hohe Tauern (HT)	32	12,16	498	13,98	12	44,45
Radstädter Tauern (RT)	20	7,60	317	8,90	11	40,74
Lungauer Kristallin (LK)	12	4,56	189	5,30	9	33,34

Nach der Bevorzugung bestimmter geologischer Zonen können die Lumbriciden des Untersuchungsgebietes vier Gruppen zugeordnet werden:

- ☐ Gruppe I: indifferente Arten, an keine bestimmte geologische Zone gebunden: Lumbricus rubellus, Octolasium
 lacteum, Allolobophora rosea, Dendrobaena rubida,
 Eiseniella tetraedra tetraedra, Octolasium argoviense,
 Eisenia lucens. Gleichzeitig handelt es sich bei diesen
 Arten (Ausnahme Allolobophora caliginosa) um solche,
 die im Land Salzburg am häufigsten vorkommen.
- ☐ Gruppe II: hier fehlen in einer der Zonen Funde, sei es, daß sie beim Aufsammeln entgangen sind, sei es, daß sie diese Zone(n) nicht besiedeln. Da sie jedoch sowohl auf Kalk wie auf Kristallin vorkommer, können sie zu den indifferenten Arten mit beschränkter Verbreitung gezählt werden: Lumbricus polyphemus, Dendrobaena octaedra, Allolobophora caliginosa, Dendrobaena platyura, Allolobophora smaragdina, Dendrobaena attemsi, Lumbricus castaneus.

- ☐ Gruppe III: Typische Kalkbodenbewohner; Funde außerhalb der Kalkzonen müssen auf Verschleppung zurückgeführt werden: Octolasium transpadanum, Lumbricus meliboeus, Allolobophora handlirschi, Octolasium pseudotranspadanum, Octolasium bretscheri, Lumbricus terrestris.
- ☐ Gruppe IV: Arten, von denen so wenige Fundorte vorliegen,
 daß es problematisch ist, sie bestimmten Zonen zuzuordnen. Weitere Untersuchungen müssen darüber erst
 eine Klärung erbringen: Allolobophora limicola, Dendrobaena vejdovskyi, Eiseniella tetraedra intermedia, Allolobophora longa, Allolobophora georgii, Dendrobaena
 veneta. Eisenia foetida.

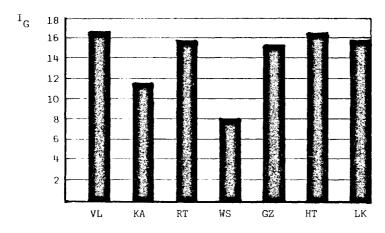
Folgende Zusammenstellung (Tab. 3) zeigt, welche Zonen von den einzelnen Arten besiedelt werden.

VL = Vorland (Molassezone, Flysch und Helvetikum), KA = Kalkalpen, RT = Radstädter Tauern, WS = Werfener Schiefer, GZ = Grauwackenzone, HT = Hohe Tauern, LK = Lungauer Kristallin.

Tabelle 3:

Gruppe I	VL	KA	RT	ws	GZ	нт	LK
Lumbricus rubellus	+	+	+	+	+	+	+
Octolasium lacteum	+	+	+	+	+	+	+
Allolobophora rosea	+	+	+	+	+	+	+
Dendrobaena rubida	+	+	+	+	+	+	+
Eiseniella tetraedra tetraedra	+	+	+	+	+	+	+
Octolasium argoviense	+	+	+	+	+	+	+
Eisenia lucens	+	+	+	+	+	+	+

Gruppe II	VL	KA	RT	WS	GZ	нт	LK
Lumbricus polyphemus	+	+	+	+	+	+	
Dendrobaena octaedra]	+	+	+	+	+	. +
Allolobophora caliginosa	+	+		+	+	+	
Dendrobaena platyura	+	+		+	+		
Allolobophora smaragdina		+	+	+		+	
Dendrobaena attemsi		+	+				+
Lumbricus castaneus	+	+			+		


Gruppe III				
Octolasium transpadanum	+	+	(+)	
Lumbricus meliboeus	+	+		(+)
Allolobophora handlirschi	+	+		
Octolasium pseudotranspadanum	+	+		
Octolasium bretscheri	+	+		
Lumbricus terrestris	+	+		
	I			

+
+
ia +
+
+
+
+
i. ē

Aus der Tabelle ist ersichtlich, daß kalkmeidende Formen nicht auftreten.

Das (+) bedeutet: Art möglicherweise verschleppt.

Fig. 4: Relative Individuenzahlen pro Geologischer Zone, dargestellt durch Index I_G :

Geol. Zone (Abk. s.S.20)

Σ Individ.	461	1340	317	88	668	498	189
Σ Fundorte	28	117	20	11	43	32	12
Index ^I G	16,5	11,5	15,8	8,0	15,5	16,2	15,7

 $I_G = \frac{\Sigma \text{ Individuen pro Geolog. Zone}}{\Sigma \text{ Fundorte}}$ pro Geolog. Zone

Der Index-G (Index für eine geologische Zone) stellt eine relative Größe dar, die sich aus dem Quotienten der Summe der Individuen einer geologischen Zone und der Summe der Fundorte in dieser Zone ergibt. Auf diese Weise wird die relative Individuendichte ersichtlich. So kann man z. B. feststellen, daß bei nahezu gleicher Fundortezahl die Zahl der Individuen im Lungauer Kristallin wesentlich höher ist als vergleichsweise im Werfener Schiefer.

Über die genauen Zahlenverhältnisse (Konstanz-, Präsenz- und Dominanz-Prozente in bezug auf die geologischen Zonen) gibt folgende Zusammenstellung (Tab. 4) Auskunft.

Tab. 4: Konstanz-, Präsenz- und Dominanz-Prozente in bezug auf geologische Zonen

							_	
		954 ≈ 100 %	583 = 100 %	279 = 100 %	271 = 100 %	235 = 100 %	206 = 100 %	158 = 100 %
r.k	1000	66,67 4,82 24,34	33,33 3,26 10,05	33,33 3,58 5,29	33,33 10,33 14,81	16,66 9,36 11,64	16,66 2,42 2,64	33,33 20,88 17,46
13	12 = 189 =	e	4.6	45	28	22	74 1 0	4 W
H.	001	78,12 23,79 45,58	46,87 1,95 11,64	28,12 9,67 5,42	34,37 19,19	1,37 18,24 8,63	21,47	18,75 13,29 4,21
	# 32 4 38	25	15 58	27	11 52	E #	782	21
25	1 u 100 100	81,39 23,48 33,53	51,16 10,12 8,83	41,86 16,84 7,03	39,53 24,72 10,03	25,58 27,23 9,58	9,30 10,19 3,14	13,95 29,11 6,88
	43	35	22 59	18	17	11 64	4.2	46
SM	100	54,55 2,62 28,41	45,46 2,40 15,91	18,18 1,43 4,54	36,36 1,47 4,54	18,18 2,55 6,82	27,27 1,45 3,75	18,18 1,26 2,27
Ĺ	88 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	14	N 4	44	0.10	е e	77
E E	100 %	85,00 13,31 40,06	75,00	45,00 12,54 11,04	20,00 8,12 6,94	20,00 13,19 9,78	40,00 7,28 4,73	20,00 13,29 6,62
	317	127	15	35	22	31	15	21
\$	117 = 100 % 1340 = 100 %	58,12 25,15 17,91	58,97 43,91 18,68	38,46 46,59 9,70	30,77 33,95 6,86	11,11 20,00 3,50	17,09 49,02 7,53	10,25 20,88 2,46
	117	240	256	130	86 92	13	101	33
VL	= 100 % = 100 %	67,85	71,43 22,64 28,63	32,14 9,32 5,64	7,14 2,21 1,30	14,28 9,36 4,77	7,14	3,57 1,26 0,43
	28 =	19 65	132	9 26	80	22	33	- 2
		- 01 m	- 46	ra 1 3	126	-0m	1 2 3	- C) E
Gruppe I	I Fundorte I Individuen	Lumbricus rubellus	Octolasium lacteum	Allolobophora rosea	Dendrobaena rubida	Eisenia lucens	Octolasium argoviense	Eiseniella tetraedra tetraedra

1 = Zahl der Fundorte und Konstanz (%)

2 = Zahl der Individuen und Präsenz (%)
 (ergibt horizontal 100 %)

3 = Dominanz (%) (Individuendominanz)
 (ergibt vertikal 100 %

Abkürzungen VL - LK siehe S. 20

Tab. 4: Fortsetzung

Tab. 4: Forts	etz	zung -																	
Gruppe II								_											
Lumbricus polyphemus	1 2 3	2 7	7,14 12,50 1,51	9 14	7,69 25,00 1,04	3	15,00 5,35 9,46	2 7	18,18 12,50 7,95	8 17	18,60 30,35 2,54	5 8	15,62 14,28 1,60			56	=	10	0 %
Dendrobaena octaedra	1 2 3			9 14	7,69 15,55 1,04	8 14	40,00 15,55 4,41		18,18 6,67 6,81	9 18	20,93 20,00 2,69	8 15	25,00 16,67 3,01	7 23	58,33 25,56 12,17	90	=	10	0 %
Allolobophora caliginosa	1 2 3	12 86	42,85 30,50 18,65	31 117	26,49 60,28 8,73			1	9,09 0,35 0,14		25,58 8,15 3,44	2	6,25 0,71 0,40			282	=	10	O %
Dendrobaena platyura depressa	1 2 3	10 43	35,71 37,72 9,32	20 57	17,09 50,00 4,25			1 9	9,09 7,89 10,22	2 6	4,65 5,26 0,89					114	=	10	<i>6</i> O
Allolobophora smaragdina	1 2 3			10 28	8,54 53,85 2,08	1 2	5,00 3,85 0,63		18,18 11,54 6,81			2 16	6,25 30,77 3,21			52	=	10	ю %
Dendrobaena attemsi	1 2 3			5 18	4,27 75,00 1,34	1 3	5,00 12,50 9,46							2	16,65 12,50 1,58	24	=	10	ю %
Lumbricus castaneus	1 2 3	3 7	10,71 7,21 1,51	6 17	5,12 17,52 0,51					6 73	13,95 75,25 10,92		'			97	=	10	ю \$
Gruppe III																			
Octolasium transpadanum	1 2 3	1 3	3,57 21,43 0,65	5 10	4,27 71,43 0,74	1	7,14									14	. =	10	9O %
Lumbricus miliboeus	1 2 3	1 4	3,57 13,49 0,86	11 24	9,40 82,76 1,79	1	3,45									29	-	10	ю %
Octolasium pseudotrans- padanum	1 2 3	7 12	25,00 35,29 2,60	12 22	10,25 64,71 1,64											34	- ۱	10	ю \$
Allolobophora handlirschi	1 2 3	1 3	3,57 18,75 0,65	3 13	2,56 81,25 0,97											16	5 =	: 10	ж
Octolasium bretscheri	1 2 3	1 3	3,57 27,27 0,65	3 8	2,56 72,72 0,59											19) =	= 10	oo %
Lumbricus terrestris	1 2 3			4 25	3,41 100,00 1,86											25	; =	10)O 8

7.2 Die Beziehungen zu den Vegetationsstufen

Die nachfolgende Tab. 5 zeigt die Verteilung und Anzahl der Fundorte, Individuen (= Ex.) und Arten (= spp.), wie sie sich für die einzelnen Höhenstufen der Vegetation ergeben.

Tab. 5: HÖHENSTU DER VEGE HÖhe in m		Symbol der Höhenstufe	Anzahl der Fundorte	<pre>% der Ge- samtfund- orteanzahl</pre>	Anzal	ıl d spp.	% der Gesamt- Ex.	
über 2000- 2300 m	Grasheide auf Kris auf Kalk	tallin	L K	4 2	1,52 0,76	23 17	2	0,60 0,47
2000- 2300 m	Zwergstrauch- heide, Lärchen Zirben auf Krist Krummholz auf Kalk	tallin	H G F	10 7	3,80 2,66	183 54	8 11	5,12 1,51
1500 m	bodensaure Fichtenwälde Schiefer- und Zentrala		Е	68	25,85	1016	17	28,51
	Fichtenmisch- wald ab 800 - 1000 m	Buchen ufe	D	35	13,13	393	19	11,03
	(Fichten-) stufe der Kalk- und Voralpen	Obere Bu stufe	С	83	31,97	908	20	25,48
600 m	Untere Buchenstufe Grünland		В	38	14,06	786	20	22,06
	Eichen- Hainbuchenstufe	9	A	16	6,46	232	13	6,51

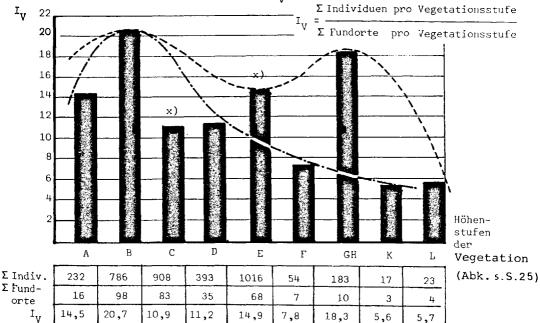
Über Konstanz-, Präsenz- und Dominanz-Prozente in Bezug auf die Vegetationsstufen unterrichtet die Tabelle 6.

Tab. 6: Konstanz-, Präsenz- und Dominanz-Prozente in bezug auf die Vegetationsstufen: $(A-L,\ s.s.\ 25,\ 1-3\ s.\ Tab.\ 4)$

	1		<u> </u>	1	1									
		75,00 2,30 95,65	25,00 0,48 4,35											
T	23	22											<u> </u>	
		66,60 0,52 29,41	33,33 4,85 58,82	33,33										
× :	17	2 5	- 5	- ~										
		80,00 6,29 32,78	20,00	50,00 3,60 11,47	30,00 12,17 18,03	40,00 13,92 12,02	50,00 6,45 9,83	50,00 22,23 10,93	20,00 1,70 2,18					
HB	01.83	8 Q	9.0	212	333	22	2.8	2°2	V 4					,
		71,42	42,85 8,73 33,33	28,57 0,34 3,70	14,28	14,28 1,90 5,55		14,28		14,28	14,28 3,44 1,85	28,53 17,64 5,55	14,28 5,77 5,55	14,28 31,25 9,25
fu.	54	20 €	აფ	77	- 4	← m				- m		2.0	- m	- ω
		79,41 38,78 36,41	26,47	55,88 20,07 11,51	35,29 33,21 8,85	17,64 39,24 6,10	32,35 25,44 6,98	30,88 50,00 4,42	23,52 51,49 11,91	5,88	1,47 3,44 0,09	1,47	8,82 55,77 2,85	
ы	68 1016	370	18	117	24 90	12 62	71	45	121	4. N			29	
Q		71,42 12,05 29,26	11,42	68,57 12,52 18,57	42,85 11,44 7,88	8,57 1,90 0,76	51,42 12,18 8,65	8,57 4,45 1,01		17,14 7,44 5,34	14,28 48,27 3,56	2,85 5,88 0,25	20,00 32,69 4,32	2,85 43,75 1,78
	35	115	27	73	31	mm	34	m 44		21	2.4		7.	
U		65,06 20,75 21,80	16,86 30,09 6,82	54,21 29,33 18,83	27,71 28,41 8,48	12,04 31,64 5,50	43,37 28,67 8,81	7,23 12,23 1,21	14,45 25,10 6,49	27,71 27,30 8,48	3,61 24,10 0,77	3,61	2,41 5,77 0,33	25,00
	83	198	14	171	23	5 %	36 80	11	12 59	23	۲.	w.r	2 m	24
m		60,52 17,08 20,73	7,89 17,96 4,70	68,42 28,13 20,86	18,42 18,08 6,23	10,52 12,02 2,41	31,58 12,18 4,32	13,15 13,34 1,52	23,68 24,68 7,37	42,10 43,61 15,65	7,89 20,69 0,76	2,63 29,41 0,63		
	38	103	33	26 164	49	19.4	12 34	2.5	983	123	mvo	- ∞		
æ		50,00 1,78 7,32		68,75 8,57 21,55	6,25 0,37 0,29	6,25 1,26 0,86	25,00 15,05 18,10			43,75 18,79 22,84				
~	16 232	17		11 50		- 7	42			53				
	_	- 0 0	- 40	-26	4-26	327	a 1	- 46	- NE	4 1 2 2 2	128	- 76	4 C1 C1	- 21 E
	Σ Fundorte Σ Individuen	Lumbricus rubellus	Octolasium argoviense	Octolasium lacteum	Dendrobaena rubida	Eiseniella tetraedra tetraedra	Allolobophor rosea	Dendrobaena octaedra	Eisenia lucens	Allolobophora caliginosa	Lumbricus meliboeus	Octolasium transpadanum	Allolobophora smaragdina	Allolobophora handlirschi

TAB. 6: Fortsetzung										
Lumbricus castaneus	3	18,75 3,09 1,29	6 43	15,78 44,33 5,47	4 8	4,81 8,24 O,88	2 9	5,71 9,27	1 33	1,47 34,02
Dendrobaena platyura	6 21	37,50 18,42 9,05	9 28	23,68 24,56 3,56	13 55	15,66 48,24 6,05	2 4	5,71 2,78 1,01	1 5	1,47 4,38 0,49
Lumbricus polyphemus	3 5	18,75 8,92 2,15	2 6	5,26 10,71 0,76	9 20	10,84 35,71 2,20	6	17,14 10,71 1,52	9 18	13,23 32,14 1,77
Dendrobaena attemsi					1 2	1,20 8,34 0,22	4 17	11,42 70,84 4,32	2 5	2,94 20,83 0,49
Dendrobaena veneta								-	1	
Octolasium pseudotranspadanum	6 16	37,50 47,06 6,89	5 5	13,15 14,70 0,63	6 12	7,23 35,29 1,32	2 2	5,71 5,88 0,50		
Dendrobaena vejdovskyi	_						1 1			
Octolasium bretscheri					2 4	2,40 36,37 0,44	2 7	5,71 63,64 1,78		
Lumbricus terrestris	1		2 23	5,26 92,00 2,92	1	1,20 4,00 0,11			•	
Eiseniella t. intermedia	1		1 2				•			
Eisenia foetida			1 3							
Allolobophora longa			1 3							
Allolobophora georgii			1							
Allolobophora limicola	1 17				•					

Tab. 7: Das Vorkommen der Arten in den einzelnen Vegetationsstufen (A - L: siehe Tab. 5, S.25)


	Α	В	С	D	Е	F	GH	К	L
Lumbricus rubellus	+	+	+	+	+	+	+	+	+
Octolasium argoviense		+	+	+	+	+	+	+	+
Octolasium lacteum	+	+	+	+	+	+	+	+	·
Dendrobaena rubida	+	+	+	+	+	+	+		
Eiseniella tetraedra									
tetraedra	+	+	+	+	+	+	+		
Allolobophora rosea	+	+	+	+	+		+		
Dendrobaena octaedra		+	+	+	+	+	+		
Eisenia lucens		+	+		+		+		
Allolobophora	1								
caliginosa	+	+	+	+	+	+			
Lumbricus meliboeus		+	+	+	+	+			
Octolasium transpadanum	1	+	+	+	+	+			
Allolobophora smaragdina			+	+	+	+			
Allolobophora	ŀ								
handlirschi			+	+		+			
Denrobaena attemsi			+	+	+				
Lumbricus castaneus	+	+	+	+	+				
Dendrobaena platyura	+	+	+	+	+				
Lumbricus polyphemus	+	+	+	+	+				
Dendrobaena veneta	ŀ				+				
Octolasium	ļ								
pseudotranspadanum	+	+	+	+					
Dendrobaena									
vejdovskyi	ŀ	+		+					
Octolasium bretscheri			+	+					
Lumbricus terrestris	+	+	+						
Eiseniella tetraedra									
intermedia	+	+							
Eisenia foetida	ļ	+							
Allolobophora longa		+							l
Allolobophora	1								
georgii		+							
Allolobophera									
limicola	+								

Die Mengenverteilung der Individuen in bezug auf die Höhenstufen der Vegetation (s. Tab. 5) ist nicht so, daß in den tiefsten Lagen die meisten Lumbriciden auftreten, um dann mit steigender Höhe abzunehmen. Da die tiefsten Vegetationsstufen im Land Salzburg flächenmäßig stark zurücktreten,

stammen die meisten Lumbriciden aus der Buchen-Tannen-Stufe der Kalk- und Voralpen und aus den bodensauren Fichtenwäldern der Schiefer- und Zentralalpen.

Zu den einzelnen Arten ergeben sich folgende Beobachtungen: Dendrobaena attemsi und Allolobophora smaragdina beschränken sich in ihrer Verbreitung im wesentlichen auf die Fichtenstufe, Dendrobaena platyura depressa, Dendrobaena vejdovskyi, Lumbricus terrestris und Octolasium bretscheri bevorzugen dagegen die Buchenstufe. "Durchläufer" aller Zonen sind erwartungsgemäß Allolobophora rosea, Lumbricus rnbellus und Octolasium lacteum, ferner auch Dendrobaena octaedra und Octolasium argoviense.

Fig. 5: Relative Individuenzahlen in den Vegetationsstufen, dargestellt durch Index I_{ν}

---- Verbreitung auf Kristallin ---- Verbreitung auf Kalk x) bodenbedingtes Dekrement (bodensaure Fichtenwälder!) (weitere Erläuterungen vgl. Fig. 4)

7.3 Lebensformen

Da deutliche Zusammenhänge zwischen der Lebens- bzw. Ernährungsweise und Pigmentierung bestehen, wurden danach die Regenwürmer in zwei ökologische Gruppen eingeteilt (HÜBNER 1952: Hemiedaphische und Euedaphische Lumbricidenunion).

ZICSI (1958) unterscheidet in Anlehnung an WILCKE (1953) zunächst die rotpigmentierten Laubstreubewohner (Humusbewohner): es sind dies Bewohner "oberer" Bodenschichten mit keinem oder nur lockerem Kontakt zum "Mineralboden" und fehlenden periodischen Ruhestadien. Sie ernähren sich ausschließlich aus der Laubstreu. Ferner unterscheidet er die verschieden – jedoch nie rot – pigmentierten Mineralbodenbewohner, die in tiefen Bodenschichten leben, sich dort ernähren und nur bei ungünstigen Bedingungen Ruhestadien durchmachen.

Auf dieser Grundlage baut die Gattungsdiagnose im System nach POP (1941) auf, die heute allgemein anerkannt ist. Die Salzburger Arten verteilen sich auf die beiden Lebensformen wie Tab. 8 zeigt:

Tab. 8: Die Verteilung der Salzburger Arten auf die beiden Lebensformen

Laubstreubewohner	Mineralbodenbewohner							
Lumbricus rubellus Dendrobaena rubida Eisenia lucens Octolasium argoviense Eiseniella t. tetraedra Eiseniella t. intermedia Dendrobaena platyura depr. Dendrobaena octaedra Lumbricus castaneus Lumbricus polyphemus Allolobophora smaragdina Lumbricus meliboeus Lumbricus terrestris Dendrobaena attemsi Eisenia foetida Dendrobaena vejdovskyi Dendrobaena veneta	Octolasium lacteum Allolobophora caliginosa Allolobophora rosea Octolasium pseudotranspadanum Allolobophora handlirschi Octolasium bretscheri Allolobophora limicola Allolobophora longa Allolobophora georgii							

7.4 Die Beziehungen zu den verschiedenen Vegetationsformen und Bodentypen (Tab. 9 und Fig. 6)

In der Tabelle 9 ist eine deutliche Konzentration der Lumbriciden in den Waldbiotopen ersichtlich. Besonders deutlich fällt dies bei den <u>Laubstreubewohnern</u> auf (Allolobophora smaragdina, Dendrobaena octaedra, Dendrobaena platyura depressa, Dendrobaena rubida, Dendrobaena vejdovskyi, Eiseniella tetr. tetraedra, Eisenia lucens, Lumbricus meliboeus und Octolasium argoviense). Übereinstimmend mit ZICSI (1968) läßt sich bei diesen Arten i.a. eine Gebundenheit an bestimmte Bodentypen (Tab. 10) nicht feststellen.

Die Laubstreubewohner Lumbricus castaneus und Lumbricus polyphemus kommen an den versehiedensten Standorten vor, fehlen jedoch im Gebirge und im Holz.

Folgende Arten, die nach WILCKE (1953) und ZICSI (1968) ihren Ursprung ebenfalls in der Laubstreu der Wälder genommen haben, zeichnen sich secundär durch bestimmte Anpassungserscheinungen aus: Eisenia lucens besiedelt ganz auffallend feuchtes, morsches Holz und wie Eiseniella tetr. tetraedra auch den Spülsaum der Gewässer. Eisenia foetida wurde ausschließlich in Komposthaufen (nicht im Mist) gefunden. Lumbricus terrestris konnte nur auf Kulturböden (in Gärten und Parks der Stadt) angetroffen werden.

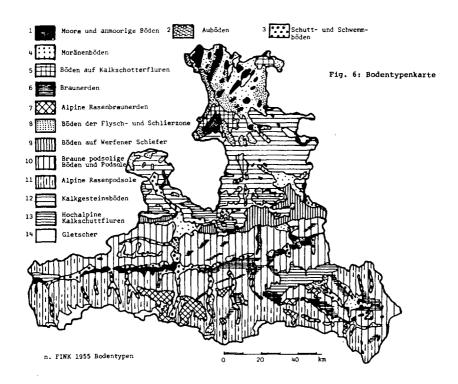
Das Vorkommen von Dendrobaena platyura depressa und Lumbricus polyphemus deckt sich bei ZICSI (1968) genau mit den geschlossenen Eichen-Buchenregionen bzw. den Kulturböden dieser Zone, was er durch die Vegetationsverhältnisse früherer Epochen erklärt. Die große Individuendichte in den Auwäldern läßt dort auf eine Verbreitung durch das Wasser schließen. Auch im Untersuchungsgebiet folgen die Fundorte der beiden Arten (insbes. von L. polyphemus) den Flußläufen und überlagern sich dort zuweilen mit dem Vorkommen der Buche. Es ist jedoch angesichts einiger etwas exponierter Fundorte (im Oberpinzgau

und im Lungau) gewagt, einen direkten Zusammenhang zwischen der Verbreitung der Buche und dem Vorkommen von Lumbricus polyphemus zu suchen (vgl. FRANZ 1954).

Bemerkenswert erscheint mir auch die durch eine verhältnismäßig große Artenzahl gekennzeichnete Besiedlung modernder Baumstrünke. Unter den häufigsten Besiedlern derartiger Ökotope sind Allolobophora smaragdina, Dendrobaena rubida und Lumbricus rubellus zu nennen.

Die große Besiedlungsdichte der Komposthaufen trifft sich mit den Angaben anderer Autoren. Aufgrund der Beschaffenheit dieses Lebensraumes schien dies zunächst einleuchtend, rief jedoch angesichts der hohen Temperaturen dampfender Gras-Kompostlagen (mehr als 40° C) immer wieder Erstaunen hervor. Die untersuchten Misthaufen aus reinem Kuhmist zeigten in keinem Fall ein Auftreten irgendwelcher Lumbricidenarten.

Nach den gemachten Erfahrungen muß also zur Verbreitung der hemiedaphischen Lumbricidenarten gesagt werden, daß sie infolge ihrer Lebensweise eher von der Beschaffenheit des Biotops als von einem bestimmten Boden- oder Vegetationstyp abhängig sind (vgl. auch ZICSI 1968).


Unter den <u>Mineralbodenbewohnern</u>, die naturgemäß eine größere Bodenabhängigkeit zeigen, gehören zu den unabhängigsten Formen (also solchen mit der größten ökologischen Valenz) folgende Arten: Allolobophora caliginosa, Allolobophora rosea, Octolasium lacteum. Die beträchtlichen Größenunterschiede der beiden Arten A. caliginosa und O. lacteum weisen jedoch zumindest auf eine Abhängigkeit von bestimmten Bodenqualitäten hin. So wird Octolasium lacteum besonders groß (bis 15 cm) in feuchten, bindigen und leicht kalkhaltigen Böden.

Octolasium bretscheri wurde nur im Wald, Octolasium pseudotranspadanum im Wald, auf Äckern und in Gärten gefunden. Diese ökologischen Angaben entsprechen auch den aus Ungarn gemeldeten Ergebnissen (ZICSI 1968).

Octolasium transpadanum ist dagegen nicht so stark verbreitet und anspruchslos wie im Osten. Er bevorzugt in Salzburg feuchte Standorte des Waldes und Gebirges.

Zu denjenigen Arten, die nur vereinzelt und an wenigen Stellen des Landes gefunden wurden (wie z.B. Allolobophora georgii, Allolobophora limicola, Allolobophora longa, Dendrobaena veneta) können keine lokalen Angaben gemacht werden.

Ein Vergleich zwischen der Verteilung der Lumbricidenarten auf die Vegetationsformen und auf die Bodentypen zeigt eine Reihe von Parallelitäten. Übereinstimmend mit ZICSI (1968) läßt sich bei Eisenia lucens, Octolasium argoviense, Dendrobaena octaedra, Dendrobaena platyura depressa und Dendrobaena rubida keine Gebundenheit an bestimmte Vegetationsformen und Bodentypen feststellen.

Tab. 9: Lumbriciden und Vegetationsformen

		auerwiese	a e	Garten Park Kulturboden	Jberschwem- nungsgebiet Bachufer	ochgebirge		Wa.	ld				
	li.	Prwj	Almwiese Autweide	arten ark ulturk	rsch Jsge Jufe)gek		-q;	1-].,	ompost	(uhmist
	Acker	Jaue	Almv Hutv	Sart Park Kult	Jber nunc 3ack	10ct	-qne	Aisch	Nadel	-n-	1012	Comp	ուսիո
LAUBSTREUBEWOHNER													
Lumbricus rubellus	+	+	+	+	+	+	+	+	+	+	+	+	+
Dendrobaena rubida	-	+	+	+	+	+	+	+	+	+	+	+	+
Dendrobaena octaedra	\vdash	+	+		+	+	+	+	+	+		+	
Lumbricus castaneus	+	+	+	+	+	Γ	+	+		+		+	
Lumbricus polyphemus	+	+	+	+	+			+	+	 			
Octolasium argoviense		+	+	•	+	+	+	+	+				
Dendrobaena platyura depressa	+	+		+			+	+	+	+	+		
Eiseniella tetraedra tetraedra		+	+		+	+	+	+	+	+			
Eisenia lucens		<u> </u>			+	+	+	+	+	T	+	-	
Lumbricus meliboeus					+	+	+	+	+				
Dendrobaena attemsi			+		+			+		T	+		
Allolobophora sma- ragdina						+	+	+	+				
Eiseniella tetraedra intermedia					+					+		_	
Lumbricus terrestris		+		+		-				-			
Dendrobaena vejdovskyi						-		+					
Dendrobaena veneta			+					_	-				
Eisenia foetida										T		+	
	MI	NER	ALBO	DENBEW	OHNER		L.		<u> </u>			! ——	
Octolasium lacteum		+	+	+	+	+	+	+	+	+	+	+	+
Allolobophora caliginosa	+	+	+	+	+		+	+	+	+	+		
Allolobophora rosea		+	+	+	+	+	+	+	+	+	+		
Octolasium pseudo- transpadanum	+			+				+	+	+			
Octolasium transpadanum		-	+		+	+	\Box	+	-				
Allolobophora handlirschi		+	+					+					
Octolasium bretscheri							+	+	+				
Allolobophora limicola				+									
Allolobophora georgii							+						
Allolobophora longa							+						

Tab. 10: Lumbriciden und Bodentypen

Tab. 10: Lumbriciden und Bodentypen													
	Moore und an- moorige Böden	Auböden	Schutt- und Schwemmböden	Moränen- böden	Böden auf Kalkschotter- fluren	Braunerden	Alpine Rasen- braunerden Böd. d. Flysch-		fener Schiefer	Braune podsol. Böd. u. Podsole	Alpine Rasen- podsole	Kalkgesteinsböd	Hochalpine Kalk schuttfluren
LAUBSTREUBEWOHNER													
Lumbricus rubellus	+	+	+	+	+	+	1	+	+	+	+	+	+
Dendrobaena rubida	+	+	+	+	+	+	1	+	+	+	+	+	+
Dendrobaena octaedra		+	+	+	+	+		+	+	+	+	+	+
Eiseniella tetraedra tetraedra		+	+	+	+	+	-	+	+	+	+	+	+
Eisenia lucens	+		+	+	+	+		+]	+	+	+	+	
Lumbricus polyphemus	+	+	+	+	+	+	$\Box T$		+	+		+	
Octolasium argoviense	+		+	+	+	+			+	+		+	
Lumbricus castaneus		+	+	+	+	+				+		+	
Dendrobaena platyura depressa	+	+		+	+			+	+	+		+	
Allolobophora smaragdina	+			+					+	+		+	
Dendrobaena attemsi				+			П			+		+	
Lumbricus meliboeus							1	+)		+		+	
Eiseniella tetraedra intermedia		+			+								
Dendrobaena vejdovskyi											Γ	+	
Dendrobaena veneta				+							Γ		
Eisenia foetida		+						1					
Lumbricus terrestris					+			7					
	MI	NE	RALBO	DDENBE	WOHNER	·	——————————————————————————————————————			·			
Allolobophora rosea	+	+	+	+	+	+	\prod	+	+	+	+	+	
Octolasium lacteum	+	+	+	+	+	+		+	+	+	+	+	
Allolobophora caliginosa	+	+	+	+	+	+		+	+	+		+	
Octolasium pseudo- transpadanum		+	+	+	+			+				+	
Octolasium transpadanum	1	+	+	†		1	11			T	1	+	
Octolasium bretscheri	T				1		\prod	+				+	
Allolobophora georgii	1	Г					17	+					
Allolobophora handlirschi								+					
Allolobophora limicola					+								
Allolobophora longa		+		1			\sqcap				Γ		

8 Der Übereinstimmungsgrad im Artbestand einzelner Faunationen

Die von SØRENSEN (1948) erarbeitete Methode zur prozentuellen Berechnung des Übereinstimmungsgrades des Artbestandes der untersuchten Biotope ("SØRENSEN-Quotient")läßt sich auch ohne quantitative Ermittlungen (z.B. der Abundanz- und Dominanz-verhältnisse) anwenden. Auf diese Weise ergeben sich zusätzliche Aussagemöglichkeiten zur Faunistik (z.B. über Größe des gemeinsamen Artbestandes einzelner Biotope oder Ökotope, sodaß Rüdkschlüsse auf Wanderungen, Neubesiedlung oder Rückzug von Arten möglich sind).

Anwendungsbereiche, wie sie z.B. von LEISING (1977) für Hochgebirgszikaden angedeutet werden (Auswirkungen von Umweltveränderungen, Einfluß der Touristik u.ä.), scheinen sich nach den rechnerischen Ergebnissen wegen der Euryökie vieler Lumbricidenarten bei diesen nicht abzuzeichnen.

Die Tabellen 11 - 14 enthalten neben der Biotopbezeichnung in Klammer die Gesamtzahl der in diesem Biotop festgestellten Arten. Rechts neben der Diagonale ist die jeweils zwei Biotopen gemeinsame Artenanzahl und links der Diagonale der SØRENSEN-Quotient angeführt. Daraus ist der Grad der Ähnlichkeit (Übereinstimmungsgrad) in der Lumbricidenfauna zweier Biotope ersichtlich. Dieser Ähnlichkeitsgrad wird berechnet als Prozentsatz der gemeinsamen Arten vom arithmetischen Mittel aus der Summe der Artenzahlen der zu vergleichenden Biotope nach der Formel

$$x = \frac{2 c}{a + b} . 100$$

(Dabei ist a = Gesamtzahl der im Biotop A, b = Gesamtzahl der im Biotop B nachgewiesenen Arten, c = Anzahl der A und B gemeinsamen Arten; LEISING 1977, 24).

Tab. 11: Übereinstimmungen im Artbestand der geologischen Zonen

Geologische Zonen	O Vorland	Kalk- Calpen	Werfen.	Grau- (C) wacke	Hohe Tauern	Radst.	6 Lung. Krist.
Vorland (20)		17	10	11	9	8	7
Kalkalpen(22)	80,9		12	12	11	11	9
Werfener Schiefer (12)	62,5	70,6		11	11	10	8
Grauwacke(13)	66,7	68,5	88		10	9	8
Hohe Tau.(12)	56,2	64,7	91,7	80		10	8
Radstädt. Tauern (11)	51,6	66,7	86,9	75	86,9		9
Lungauer Kristall. (9)	48,2	58	76,2	76,2	76,2	90	

Anzahl der übereinstimmen-

Übereinstimmungsgrad

Die Prozentzahlen zeigen wie erwartet und deutlich die großen Übereinstimmungen innerhalb der geologischen Zonen mit verwandten Gesteinsformationen. Die größten Ähnlichkeiten liegen innerhalb der Zonen der Sedimentgesteine einerseits (Vorland, Kalkalpen) und der Zonen der metamorphen Gesteine andererseits (alle übrigen). Bemerkenswert ist die Tatsache, daß die Übergangszone der Werfener Schiefer große Beziehungen sowohl zu den nördlichen Sedimenten als auch zu den südlichen Metamorphiten aufweist, woraus geschlossen werden könnte, daß Lumbriciden von beiden Gebieten zugewandert sind.

Tab. 12: Übereinstimmungen im Artbestand der Vegetationsstufen (A - L siehe S.25)

Höhenstu- fen der Vegeta- tion	L (2)	K (3)	GH (8)	F (11)	E (17)	D (19)	C (20)	B (20)	A (13)	
L (2)		2	2	2	2	2	2	2	1	en-
K (3)	80		3	3	3	3	3	3	2	übereinstimmen
GH (8)	40	54,6		6	8	7	8	8	5	nst
F (11)	30,7	42,8	63,1		10	11	11	9	5	rei
E (17)	21	30	64	71,4		15	16	14	9	übe
D (19)	19	27,3	51,2	73,4	83,4		18	15	10	der
C (20)	18,2	26	57,1	71	86,5	92,3		16	11	ı
B (20)	18,2	26	57,1	58	75,6	76,9	0.8		12	zahl
A (13)	13,4	25	25	41,7	60	31,2	66,7	72,8		An

Übereinstimmungsgrad

Die stärksten Übereinstimmungen zeigen die Waldbiotope (C, D, E einerseits bzw. A, B andererseits). Die Überraschend hohe Ähnlichkeit zwischen L und K (Grasheiden auf Kalk bzw. Kristallin - also geologisch gänzlich unterschiedliche Zonen) scheint den Ergebnissen der vorigen
Tabelle zuwiderzulaufen. Sie ist wohl daraus zu verstehen,
daß bei diesen Extremstandorten die Untergrundverhältnisse hier nur eine untergeordnete Bedeutung aufweisen. Derartige Lebensräume werden nur mehr von wenigen, die besonderen klimatischen Bedingungen ertragenden Lumbricidenarten besiedelt (Lumbricus rubellus, Octolasium argoviense, Octolasium lacteum).

Tab. 13: Übereinstimmungen im Artbestand der Vegetationsformen

Vegeta- tions- formen	(9) Acker	(8 Wiese	Alm- wiese	C Kultur-	Bach- ufer 12)	Hoch- gebirge	Mald (22)	8) Holz	9 Kompost	(S) Kuthist
Acker (6)		5	4	6	4	4	6	3	2	1
Dauer- wiese (13)	52,6		11	9	10	7	12	6	5	3
Almwiese (14)	40	81,5		7	12	8	13	6	5	3
Kultur- (11)	70,5	75	56		7	4	9	6	4	3
Bachufer (15)	38	71,4	82,7	53,8		10	14	7	5	3
Hoch- (11)	47	58,4	64	36,4	76,9		11	6	4	3
Wald (22)	42,8	68,5	72,3	54,5	75,6	66,7		6	5	3
Holz (8)	42,8	77,1	54,5	63,1	58,4	63,1	40		3	3
Kompost (6)	33,4	52,6	50	47	47,6	47	35,7	42,8		3
Kuhmist (3)	22,3	37,5	35,3	42,8	5,5	42,8	24	54,5	66,7	

Übereinstimmungsgrad

Folgende signifikante Punkte seien herausgehoben: Übereinstimmungen der verschiedenen Wiesenstandorte mit dem Wald, was eine Besiedlung dieser Gebiete vom Wald aus (nach oben und nach unten zu) wahrscheinlich erscheinen läßt; Übereinstimmungen Kulturland - Acker - Dauerwiese (anthropogen bedingte Standorte ähnlicher Lebensbedingungen!); Übereinstimmungen Hochgebirge - Bachufer (Extremstandorte!).

Anzahl der übereinstimmensen Arten

Tab. 14: Übereinstimmungen im Artbestand der Bodentypen

Boden- typen	(10)	415)	Schutt- Schwemm- boden	(9) Moränen	(91) Kalk-	(11) Braun- erden	sehbraun- erden	Elysch- Eboden) Werfener Schiefer	(15)	Alp. Ra-	(6 boden	Hochalp. Kalkschutt-
Moore (10)		7	8	10	9	8	0	7	10	10	5	10	2
Auen (15)	56	-	11	11	12	9	0	9	9	10	6	12	4
Schutt- schwemm-(13) böden	69,5	78,5		12	12	11	0	10	10	11	7	13	4
Moränen (16)	76,9	70,9	82,7		13	11	0	10	12	14	7	15	4
Kalk- schotter (16)	69,2	77,4	82,7	81,2		11	0	10	11	12	7	13	4
Braun- (11)	76	69,2	91,7	81,4	81,4		0	· 8	10	11	7	11	4
Alp. Ra- senbraun- erden	0	0	0	0	0	0		0	0	0	0	0	0
Flysch- (13)	60,9	64,3	76,9	68,9	68,9	66,7	0		9	9	7	11	4
Werfener (12) Schiefer	90,9	66,7	80	85,7	78,5	86,9	0	72		12	7	12	4
Podsole (15)	80	66,7	78,5	90,3	77,4	84,6	0	64,2	88,9		7	15	4
Alp. Ra- (7) senpodsole7)	58,8	54,5	70	60,8	60,8	77,8	0	70	73,6	63,6		7	4
Kalk- (19)	68,9	70,6	81,2	85,7	74,2	73,4	0	68,7	77,4	88,2	53,8		4
Hochalp. Kalkschutt(4) fluren	28,5	42,1	47	40	40	53,4	0	47	50	42,1	72,7	34	

Übereinstimmungsgrad

Anzahl der übereinstimmenden Arten

Hier ergeben sich erwartungsgemäß Parallelitäten zu den geologischen Zonen (Tab. 11).

Schutt- und Schotterböden sowie Braunerden, ferner Moorböden und Böden auf Werfener Schiefer (sauer!) weisen Ähnlichkeiten auf.

Im übrigen zeigen die beiden letzten Tabellen (13 und 14) keine weiteren bemerkenswerten Ergebnisse im vergleichbaren Artbestand der Lumbriciden.

Offensichtlich sind also die ökologischen Ansprüche der meisten Lumbricidenarten nicht so stark ausgeprägt, als daß sich eindeutige Unterschiede in der Artenverteilung kleinerer Lebensbereiche (wie Bodenarten oder Vegetationsformen) ergeben. Vielmehr kommen klare Zuordnungsmöglichkeiten erst im Bereiche größerer Kategorien, wie es am Beispiel der Geologischen Zonen deutlich wird, zum Ausdruck.

Einige Ausnahmen mit deutlichen Anpassungen seien besonders hervorgehoben: Eisenia foetida wurde ausschließlich im Kompost, Eisenia lucens immer an durchtränkten Stellen und im modrigen Holz, Allolobophora smaragdina im modrigen Holz und in fetter Gebirgsrendzina vorgefunden.

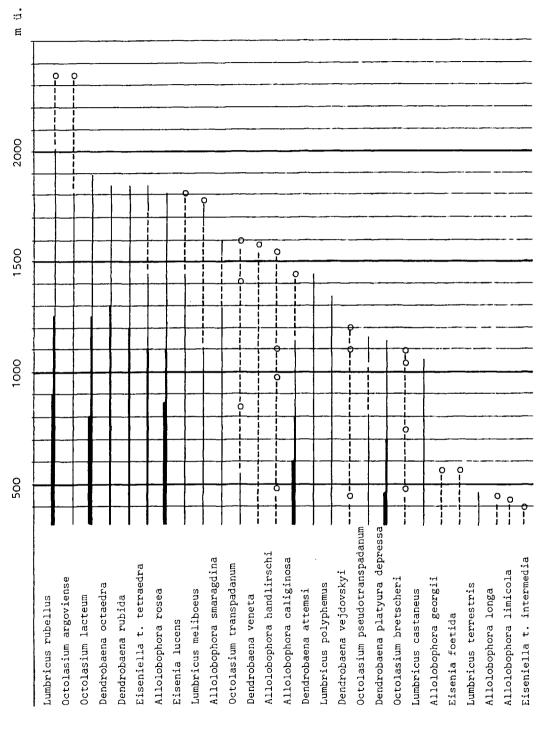


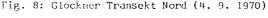
Fig. 7: Höhenverbreitung

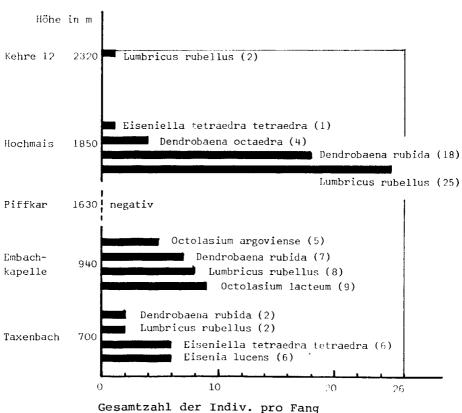
Σ

---- = Fundlücken

o = Einzelfunde

9 Die Höhenverbreitung der Lumbriciden (Fig. 7)


Bei der Wahl der Fundorte wurde nicht ausschließlich auf die Problematik der Höhenverbreitung Bedacht genommen. Lediglich an zwei Stellen der Hohen Tauern (Großglockner HA-Straße und Weißsee-Gebiet) wurde versucht, ein Vertikalprofil zu legen. Um jedech endgültige Werte zu geben, müßten zu verschiedenen Zeiten eine große Zahl von Probenserien entnommen werden.


Da die Höhenverbreitung der Lumbriciden wesentlich von der Geländebeschaffenheit, der Bodenfeuchtigkeit und der Dauer und Tiefe des Bodenfrostes abhängig ist (HÜBNER 1952), können die Werte innerhalb geographisch ähnlicher Gebiete außerordentlich schwanken. Die höchsten "Vorposten" der Lumbriciden fanden JANETSCHEK (1949) und HÜBNER (1952) in Höhen bis 2600 m nördlich des Alpenhauptkammes und CHRISTANDL-PESKOLLER und JANETSCHEK (1976) sogar bis in Höhen von 2900 m südlich des Alpenhauptkammes (höchstes bekanntes Vorkommen in den Ostalpen).

Die ausgedehnteste Vertikalverbreitung zeigen im Untersuchungsgebiet - wie zu erwarten war - die Kosmopoliten Allolobophora rosea, Dendrobaena octaedra, Dendrobaena rubida, Lumbricus rubellus, Octolasium argoviense und Octolasium lacteum. Eine überraschende Ausnahme stellt Allolobophora smaragdina dar, die völlig unerwartet auf 1600 m Höhe gefunden werden konnte. Die beiden höchststeigenden Arten in Salzburg sind Lumbricus rubellus und Octolasium argoviense (beide 2340 m). Bemerkenswert ist noch das hohe Vorkommen ven Allolobophara handlirsohi (1540 m), Eisenia lucens (1800 m), Octolasium transpadanum (1600 m) und das isolierte Vorkommen von Dendrobaena veneta auf 1580 m. Die durchschnittliche Hauptverbreitung aller Lumbricidenarten liegt zwischen 400 und ca. 1100 m Seehöhe.

Als ausgesprochene "Talbewohner" erwiesen sich:
Allolobophora georgii, Allolobophora longa, Allolobophora
limicola, Eisenia foetida und Lumbricus terrestris, die
in keinem Fall über 650 m Seehöhe zu finden waren.
Als Bevorzuger höherer Lagen ("Gebirgsregenwürmer") sind
am ehesten Allolobophora smaragdina und Octolasium argoviense zu nennen.

Die Darstellung "Glockner Transekt Nord" (Fig. 8) geht auf eine einzige Befahrung der Großglockner Hochalpenstraße zurück und kann daher nicht als sehr repräsentativ und vollständig angesehen werden:

10 Zur Tiergeographie

Die 27 einheimischen Arten gehören folgenden Verbreitungsgruppen WILCKEs (1955) an:

Megaporeute Arten:

(weitgewandert; Kosmo-

politen)

Oligoporeute Arten:

(wenig gewandert; z. B. rein

europäische Formen)

Lumbricus rubellus

Octolasium

lacteum Allolobophora caliginosa

Allolobophora rosea

Dendrobaena rubida

Eiseniella t. tetraedra

Lumbricus castaneus

Dendrobaena octaedra

Lumbricus terrestris

Eisenia foetida

Allolobophora longa Eisenia lucens

Dendrobaena platyura depressa

Lumbricus polyphemus

Octolasium pseudotranspadanum

Allolobophora limicola

Allolobophora handlirschi

Octolasium transpadanum

Eiseniella t. intermedia

Allolobophora georgii

Dendrobaena veneta

Lumbricus meliboeus

Octolasium argoviense

Allolobophora smaragdina

Dendrobaena attemsi

Dendrobaena vejdovskyi

Octolasium bretscheri

Endemische Arten:

keine

Das Verhältnis megaporeut : oligoporeut : endemisch beträgt demnach 11 : 16 : O.

Bei der geringen Kenntnis der allgemeinen Verbreitung der Arten muß man jedoch nachträgliche Verschiebungen dieser Verhältnisse in Kauf nehmen. (Vgl. auch ZICSI 1968).

Für Ungarn ergibt sich vergleichsweise (ZICSI 1968) bei 54 Arten folgendes Verhältnis: 15:28:11. Der Grund für die große Anzahl der Endemiten dort liegt darin, daß dieses Land zum Großteil außerhalb der diluvialen Vereisungsgrenze gelegen war.

Zur Erklärung des Fehlens von Endemiten im Land Salzburg sei erwähnt, daß von vornherein im Sinne WILCKES (1955) keine endemischen Arten zu erwarten waren, da das gesamte Gebiet von pleistozänen Eismassen bedeckt war. Die wenigen, eisfrei gebliebenen Gebiete waren wohl zu klein und in ihrer absoluten Höhe zu hoch gelegen, als daß sie für Lumbriciden geeignete Refugien hätten abgeben können.

Es ist für Salzburg zunächst also keine Überdauerung des Pleistozäns durch Lumbriciden nachweisbar. Alle Regenwurmarten stellen demnach weitverbreitet Arten dar und sind postglazial wieder eingewandert.

Ein wertvoller Beitrag zur Tiergeographie ist der Nachweis von Dendrobaena vejdovskyi in Salzburg. ZICSI hat diese Art im Jahre 1968 für Ungarn als endemisch angesehen. Es hat sich nun herausgestellt, daß sie eine weit größere Verbreitung hat. Das Vorkommen im pleistozän vergletscherten Alpengebiet weist sie als eine oligoporeute Art aus.

11 Zur Verbreitung einiger, in Salzburg selten vorkommender oder für Salzburg erstmals nachgewiesener Lumbriciden- arten (Fig. 9 - 12)

Allolobophora georgii MICHAELSEN 1890

Ein einziges Exemplar am Heuberg, Buchenwald. Erstmeldung für Salzburg. (Fig. 9).

Allolobophora handlirschi ROSA 1897

4 Fundstellen, 16 Exemplare im Bereich der Kalkalpen und Flyschzone bis in eine Höhe von 1540 m. (Fig. 10).

Allolobophora limicola MICHAELSEN 1890

1 Fundstelle, 17 Exemplare in einem Garten in der Stadt Salzburg. Neufund für Österreich. (Fig. 10).

Allolobophora longa UDE 1885

1 Fundstelle, 3 Exemplare an der Saalach im Auwald. Erstfund für Salzburg. (Fig. 10).

Allolobophora smaragdina ROSA 1892

16 Fundorte, 52 Exemplare, über das ganze Bundesland verstreut, bis in eine Höhe von 1600 m (Tennengebirge) vorkommend. In charakteristischen Biotopen wie im modrigen Holz, unter Moospolstern, in fetter Gebirgsrendzina. (Fig. 11).

Dendrobaena vejdovskyi CERNOSVITOV 1935

3 Fundstellen, 4 Exemplare, in Waldbiotopen der Kalkalpen. (Fig. 12).

Dendrobaena veneta ROSA 1886

1 Exemplar aus dem Raurisertal (1580 m). Interessanter Fund, da alle Angaben aus der Literatur den gegebenen Verhältnissen in Salzburg widersprechen. Weitere Angaben lassen sich erst mit Hilfe zusätzlicher Funde machen. (Fig. 10). Neu für Salzburg.

Eisenia foetida SAVIGNY 1826

1 Fundort, 3 Exemplare, St. Johann/Pg. in einem Komposthaufen. Nach den Literaturangaben soll sich dieser Lumbricide massenhaft in Misthäufen finden (Name). Dies kann für Salzburg in keinem Fall bestätigt werden. Erstnachweis für Salzburg. (Fig. 12).

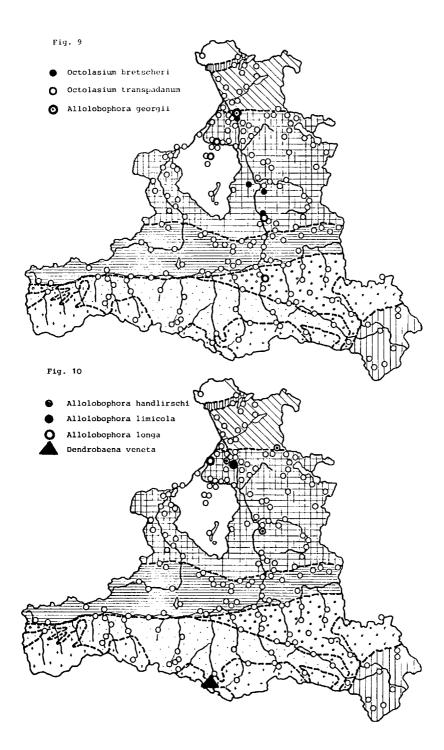
Eiseniella tetraedra intermedia CERNOSVITOV 1934

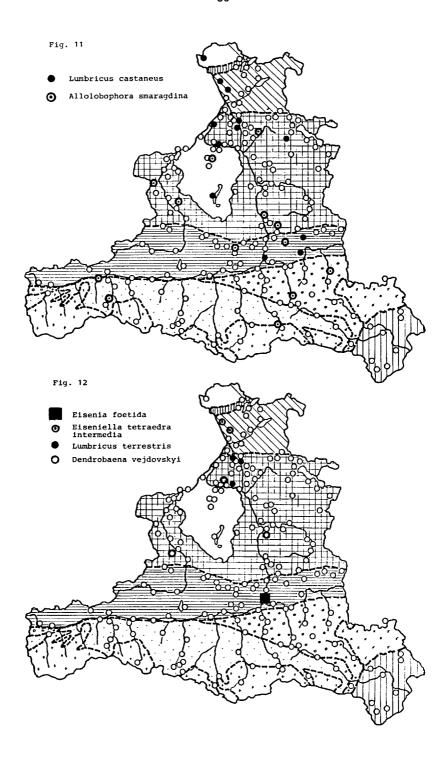
2 Fundorte, 3 Exemplare, Auböden: Antheringer Au. Erstnachweis für Salzburg. (Fig. 12).

Lumbricus terrestris.LINNE 1758

4 Fundstellen, 25 Exemplare, nur im Bereich der Stadt Salzburg gefunden; wegen seiner 2 - 3 m tiefen Wohnröhren selten anzutreffen, kommt nur nach langen Regenfällen an die Oberfläche. Erstmeldung für Salzburg. (Fig. 12).

Lumbricus castaneus SAVIGNY 1826


18 Fundstellen, 97 Exemplare; nur in ansgesprochen feuchter, schattiger Laubstreu, an Gewässern, im Kompost. Erstnachweis für Salzburg mit Verbreitungsschwerpunkt im Vorland. (Fig. 11).


Octolasium bretscheri ZICSI 1969

4 Fundorte, 11 Exemplare ausschließlich im Bereich der Kalkalpen. Die Angaben bei FRANZ (1954: "zahlreich auch im Urgebirge") konnten nicht bestätigt werden. (Fig. 9).

Octolasium transpadanum ROSA 1884

5 Fundstellen, 14 Exemplare ausschließlich im Bereich kalkhaltiger Böden; 2 Fundstellen in den Berchtesgadener Alpen (Erstnachweis für Deutschland). Die Angaben bei ZICSI (1968) (eurytope Art: besiedelt alle Böden) können mit den Salzburger Funden nicht in Einklang gebracht werden. (Fig. 9).

12 Zusammenfassung und Ausblick

Es handelt sich um die erste geschlossene Darstellung der Regenwurmfauna (Lumbricidae) für das Bundesland Salzburg. Aus 263 Untersuchungslokalitäten wurden 3562 Exemplare gesammelt, die sich auf 27 Arten verteilten. Neue Taxone waren nicht darunter.

Folgende 8 Spezies sind für die Fauna Salzburgs neu:

Allolobophora georgii MICH., Allolobophora limicola MICH., Allolobophora longa UDE, Dendrobaena veneta (ROSA), Eisenia foetida (SAV.), Eiseniella tetraedra intermedia CERNOSV., Lumbricus castaneus (SAV.) und Lumbricus terrestris L.

Allolobophora limicola ist für Österreich neu.

Damit sind unter Einbeziehung der Literatur für das Land Salzburg 33 Lumbricidenarten nachgewiesen - weit mehr, als vor Beginn dieser Untersuchung erwartet.

Arten mit der höchsten Dominanz im Untersuchungsgebiet sind: Lumbricus rubellus, Octolasium lacteum, Allolobophora caliginosa, A. rosea, Dendrobaena rubida, Eisenia lucens und Octolasium argoviense. Lumbricus rubellus ist der gemeinste Lumbricide des Gebietes.

Selten sind: Dendrobaena vejdovskyi, Eiseniella tetraedra intermedia, Eisenia foetida, Allolobophora longa, A. georgii und Dendrobaena veneta.

Die Prüfung der Beziehungen der Lumbriciden zu den einzelnen Lebensbereichen (Geologie, Vegetation, Bodentypen) ergab, daß die ökologischen Ansprüche der meisten Arten nicht so differenziert sind, daß sich klare Zuordnungen durchführen lassen. Einige wenige Arten zeigen jedoch deutliche Bindungen an bestimmte Habitate (z.B. Eisenia foetida, Eisenia lucens, Allolobophora smaragdina). Die Ergebnisse konnten mit Hilfe des SØRENSEN-Quotienten bestätigt werden.

Auch in höhere Gebirgslagen dringen vor allem Lumbricus rubellus (2350 m), Octolasium argoviense (2350 m) und Octolasium lacteum (1900 m) vor.

Ausblick

Obwohl die Lumbriciden sonst zu den am besten untersuchten Bodentieren gehören, bleibt für weitere Untersuchungen – gerade in Österreich – noch ein großes Betätigungsfeld.

Ein in dieser Arbeit nicht angesprochener Aspekt könnte gerade für die zukünftige Forschung von größerer Bedeutung werden: die Heranziehung von Lumbriciden als Bioindikatoren bei Bodenverunreinigungen, insbesondere bei Belastung von Äcker- und Weideböden durch Schwermetalle z. B. in der Nähe von Autobahnen und Industriegebieten (vgl. Untersuchungen von ATLAVINYTE u.a.1977 und WIESER 1979).

13 Literatur

- ATLAVINYTE, O., DACIULUTE, J. u. LUGAUSKAS, A. 1977:
 The effect of Lumbricidae on plant humification
 and soil organism biocenosis under application of
 pesticids. In: Soil Organisms as Components of
 Ecosystems. Ecol. Bull. (Stockholm) 25: 222-228.
- BALOGH, J. (1958): Lebensgemeinschaften der Landtiere. Ihre Erforschung unter besonderer Berücksichtigung der zoozönologischen Arbeitsmethoden. 560 pp. Budapest-Berlin.
- BALTZER, R. (1956): Die Regenwürmer Westfalens. Eine tiergeographische, ökologische und sinnesphysiologische Untersuchung. Zool Jb. (Syst.) <u>84</u> (4/5): 355 414. Jena.
- BÖSENER, R. (1964): Die Lumbriciden des Tharandter Waldes. Beitrag zur faunistischen Erforschung eines Waldgebietes. - Zool. Abh. Staat. Mus. Tierkd. Dresden. <u>27</u> (9): 194 - 263.
- CHRISTANDL PESKOLLER, H. und JANETSCHEK, H. (1976):
 Zur Faunistik und Zoozönotik der südlichen Zillertaler
 Hochalpen. Alpin-Biolog. Studien. VII. Univ. Innsbruck.
- DEL NEGRO, W. (1950): Geologie von Salzburg. Univ. Verl. Wagner. Innsbruck.
 - (1960): Salzburg. Geologie der Österr. Bundesländer in kurzgefaßten Einzeldarstellungen. Verh. Geol. Bundesanst. Wien.
- DOEKSEN, J. (1950): An electrical method of sampling soil for earthworms. Fourth Int. Congr. Soil Sci. Amsterdam 2: 129 131
- DOWDESWELL, W. H. (1967): Practical Animal Ecology. 320 pp. Methuen Educational LTD. London.

- FINK, J. (1955): Bodentypen. In: LENDL (Hrsg.): Salzburg Atlas: 27 29.
 - (1958): Die Böden Österreichs. Mitt. Geogr. Ges. Wien. 100 (3): 92 134.
- FIRBAS, F. (1949 und 1952): Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen.

 2 Bde. 480 bzw. 256 pp.
- FRANZ, H. (1954): Die Nordostalpen im Spiegel ihrer Landtierwelt 1: 200 207 (Fam. Lumbricidae: H. Franz und P. Gunhold). Wagner Innsbruck.
- FÜLLER, H. (1954): Die Regenwürmer. Die Neue Brehm Bücherei. 140. A. Ziemsen. Wittenberg Lutherstadt.
- GANSSEN, R. und HÄDRICH, F. (1965): Atlas zur Bodenkunde. BI. Hochschulatlanten. 301 a 301 e. BI. Mannheim.
- GANSSEN, R. (1965): Grundsätze der Bodenbildung. Ein Beitrag zur theoretischen Bodenkunde. - Hochschultaschenb. 327. BI. Mannheim.
- GERARD, B. M. (1964): A Synopsis of the British Lumbricidae. With Keys and Descriptions. The Linnean Soc. of London. Syn. Brit. Fauna 6: Lumbricidae (Annelida).
- GRAFF, O. (1953): Die Regenwürmer Deutschlands. Schaper. Hannover.
- HÜBNER, L. (1952): Die Lumbrioiden des Exkursionsgebietes von Innsbruck unter besonderer Berücksichtigung der hochalpinen Grasheidestufe. - Unveröff. Diss. Phil. Fak. Univ. Innsbruck.
- JANETSCHEK, H. (1949): Tierische Successionen auf hochalpinem Neuland. Schlern Schriften. 67. Wagner. Innsbruck.
 - (1956): Das Problem der inneralpinen Eiszeitüber-dauerung durch Tiere. Ein Beitrag zur Geschichte der Nivalfauna. Österr. Zool. Z. 6 (3/4): 421 506.

- (1973): Hochgebirge. Grzimeks Tierleben Ergänzungsbd. Ökologie. Kindler. Zürich: 184 - 200.
- KLEBELSBERG, R. v. (1935): Geologie von Tirol. Berlin.
- KOLLMANNSPERGER, F. (1934): Die Oligochaeten des Bellinchengebietes, eine ökologische, ethologische und tiergeographische Untersuchung. Diss. phil. Druckerei May. Köln.
- KRAUSSE (1928): Schema der Lebensformen. Int. Ent. Ztschr. 22: 111 112.
- KUBIENA, W. L. (1948): Entwicklungslehre des Bodens. Springer. Wien. 315 pp.
- (1953): Bestimmungsbuch und Systematik der Böden Europas. Enke. Stuttgart. 392 pp.
- LEISING, S. (1977): Über Zikaden des zentralalpinen Hochgebirges (Obergurgl, Tirol). Alpin-Biol. Studien.
 IX. Univ. Innsbruck.
- LENDL, E. (Hrsg.) (1955): Salzburg Atlas. 2 Teile. Otto Müller. Salzburg.
- MICHAELSEN, K. (1900): Oligochaeta. Das Tierreich 10: 575 pp.
 - (1903): Die geographische Verbreitung der Oligochaeten. Berlin.
- MÜLLER, S. (1969): Böden unserer Heimat. Ein Leitfaden zur Bodenbeurteilung im Gelände für Praktiker, Planer, Natur- und Gartenfreunde. Kosmos Naturführer. Stuttgart. 174 pp.
- ÖRLEY, L. (1880): A magyarooszági Oligochaeták faunája. I. Terricola. - Math. Term. Tud. Közlem <u>16</u>: 561 - 611.
 - (1885): A palaearktikus övben élő Terricoláknak reviziója és elterjedése. Ertek. Term. tud. Kör. 15: 1 34.
- PALISSA, A. (1964): Bodenzoologie in Wissenschaft, Naturhaushalt und Wirtschaft. - Wiss. TB 17. Akademie. Berlin.

- POP, V. (1941): Zur Phylogenie und Systematik der Lumbriciden. Zool. Jb. (Syst.) 74: 487 522.
 - (1947): Die Lumbriciden der Ostalpen. An. Acad. Rom. 22: 1 49.
- RAW, F. (1959): Estimating earthworm populations by using formalin. Nature 184: 1661 1662. London.
- SATCHELL, J. (1955): An electrical method of sampling earthworm populations. Soil Zool.: 356 364.
- SATCHELL, J. (1969): Methods of sampling earthworm populations. Pedobiol. 9: 20 25.
- SEEWALD, F. (1974): Die Lumbriciden des Landes Salzburg. Diss. Naturwiss. Fak. Innsbruck. Unveröff. 156 pp. 20 Tab. 14 Kart. 28 Verbreitungskart.
- SØRENSEN, T. (1948): A method of establishing groups of equal amplitude in plant sociology based on the similarity of species content and its application to analyses of the vegetation on Danish commons. Danske Vidensk. Selsk. Biol. Skrift 5, 1 34.
- STEINER, W. (1955): Die Fauna des Entwässerungsgebietes Straß-Schlitters, Zillertal, Tirol. Mitt. Bd. Versuchsinst. Kulturtechn. u. Techn. Bodenkunde 13: 36 37. Petzenkirchen.
- STÖP-BOWITZ, C. (1969 a): A Contribution to Our Knowledge of the Systematics and Zoogeography of Norwegian Earthworms. Nytt. Mag. Zool. Oslo 17 (2): 169 280.
 - (1969 b): Did Lumbricids survive the quaternary glaciations in Norway? Pedobiol. 9: 81 84.
- STÜBER, E. (1967): Salzburger Naturführer. MM Verl. Salzburg.
- SVENDSEN, J. (1955): Earthworm-population Studies.

 A comparison of sampling methods. Nature 175: 864.
- TOLLNER, H. (1967): Über das Klima. In: STÜBER (1967): 101 106.

- TROLLDENIER, G. (1971): Bodenbiologie. Die Bodenorganismen im Haushalt der Natur. Kosmos Studienbücher. Stutt- gart.
- UDE, H. (1929): Oligochaeta. In: DAHL: Die Tierwelt Deutschlands 15 (1). Jena.
- WAGNER, H. (1955): Natürliche Vegetation. In: LENDL (1955): 29 30.
- WAGNER, H. (1970): Natürliche Wachstumsbedingungen. Strukturanalyse des Österr. Bundesgebietes 1. Öst. Ges. f. Raumforsch. u. Raumplanung. Wien.
- WALTER, H. und LIETH, H. (1960, 1. Lieferung): Klimadiagramm Weltatlas. Fischer. Jena.
- WESSELY, K. (1905): Die Lumbriciden Oberösterreichs. Jahresb. Ver. Nat. Linz. 34: 1 19.
 - (1920 a): Die Lumbriciden der Sammlung des oberösterreichischen Landesmuseums. - Jahresber. Mus. Ver. Linz 78: 17 - 18.
 - (1920 b): Beschreibung von für Oberösterreich neuen Regenwürmern nach den oberösterr. Fundstücken. -Jahresber. Mus. Ver. Linz. 78: 19.
- WIESER, W.: 1979: Schwermetalle im Blickpunkt ökologischer Forschung. In: Biol. in uns. Zeit. 9. 3: 80-90.
- WILCKE, D. E. (1949): Bestimmungstabelle für einheimische Lumbriciden. - Senck. biol 30: 171 - 181.
 - (1953): Über die vertikale Verteilung der Lumbriciden im Boden. Z. Morph. Ökol. Tiere 41: 372 385.
 - (1955): Bemerkungen über Allolobophora ribaucourti BRETSCHER 1900 und die geographische Einteilung der Lumbricidenfauna nach Michaelsen. Zool. Anz. 154: 312 318.
- WILLIAMS, C. B. (1964): Patterns in the balance of nature. Theoretical and experimental biology. Vol. 3. Acad. Press, London, N.Y., 324 pp.

- ZICSI, A. (1959 a): Faunistisch-systematische und ökologische Studien über die Regenwürmer Ungarns I. Acta Zool. Hung. 5 (1-2): 165 189.
 - (1959 b): Faunistisch-systematische und ökologische Studien über die Regenwürmer Ungarns II. Acta Zool. Hung. $\underline{5}$ (3-4): 401 447.
 - (1962): Über die Dominanzverhältnisse einheimischer Lumbriciden auf Ackerböden. Opusc. Zool. Budapest $\underline{4}$ (2-4): 157 161.
 - (1965 a): Beiträge zur Kenntnis der Lumbricidenfauna Österreichs. - Opusc. Zool. Budapest $\underline{5}$ (2): 247 - 265.
 - (1965 b): Beiträge zur Kenntnis der ungarischen Lumbricidenfauna III. Ann. Univ. Sci. Budapest. Sec. Biolog. 8.
 - (1965 c): Bearbeitung der Lumbricidensammlung des Naturhistorischen Museums von Wien. - Opusc. Zool. Budapest 5 (2): 267 - 272.
 - (1965 d): Die Lumbrieiden Oberösterreichs und Österreichs unter Zugrundelegung der Sammlung Karl Wesselys mit besonderer Berücksichtigung des Linzer Raumes. - Naturkundl. Lb. Stadt Linz.
 - (1968 a): Ein zusammenfassendes Verbreitungsbild der Regenwürmer auf Grund der Boden- und Vegetationsverhältnisse Ungarns. Opusc. Zool. Budapest $\underline{8}$ (1): 99 164.
 - (1968 b): Über die Auswirkung der Nachfrucht und Bodenbearbeitung auf die Aktivität der Regenwürmer. Pedobiol. $\underline{9}$: 141 145.
 - (1969 a): Beitrag zur Revision der Regenwurmsammlung Karl Wesselys im oberösterreichischen Landesmuseum zu Linz. - Naturkdl. Jb. Stadt. Linz.

- (1969 b): Neue Regenwurmarten (Lumbricidae) aus den österreichischen Karawanken. Opusc. Zool. Budapest $\underline{9}$ (2): 279 384.
- (1970): Bemerkungen zum Problem von Octolasium (Octodrilus) croaticum ROSA 1895, nebst Beschreibung von zwei neuen Arten der Untergattung Octodrilus (Oligochaeta: Lumbricidae). Opusc. Zool. Budapest 10 (1): 165 174.
- (1970 b): Revision der Bretscherischen Regenwurmsammlung aus Zürich. Rev. Suisse Zool. 77 (1): 237-246.
- (1971): Regenwürmer aus dem Tessin sowie Bemerkungen über die meroandrischen Formen der Untergattung Octodrilus (Oligochaeta: Lumbricidae). - Acta Zool. Hung. 17 (1-2): 219 - 231.

Anschrift des Verfassers:

Mag. Dr. Friedrich Seewald, Hans-Pfitzner-Str. 9,
A - 5020 Salzburg, Österreich.

Bereits erschienen

- I Lang, Adolf
 KOLEOPTERENFAUNA UND-FAUNATION IN DER ALPINEN STUFE DER
 STUBAIER ALPEN (KÜHTAI)
 1975, 81 S., 12 Fig., div. Tab., brosch.
- II Jochimsen, Maren
 DIE VEGETATIONSENTWICKLUNG AUF MORÄNENBÖDEN IN ABHÄNGIGKEIT VON EINIGEN UMWELTFAKTOREN
 1970, 22 S., 2 Mehrfarbenkarten, Tab., brosch.
- III Heiss, Ernst
 ZUR HETEROPTERENFAUNA NORDTIROLS 1: WASSERWANZEN (CORIXIDAE HYDROMETRIDAE).
 1969, 28 S., 1 Karte, brosch.
- IV Heiss, Ernst NACHTRAG ZUR KÄFERFAUNA NORDTIROLS 1971, 180 S., 1 Kunstdruckbeilage, brosch.
- V Olert, Jürgen CYTOLOGISCH - MORPHOLOGISCHE UNTERSUCHUNGEN AN DER WALDSPITZ-MAUS (Sorex araneus LINNÉ 1758) UND DER SCHABRACKENSPITZMAUS (Sorex gemellus OTT 1968). (Mammalia-Insectivora) 1973, 76 S., brosch.
- VI Janetschek, Heinz AKTUELLE PROBLEME DER HOCHGEBIRGSENTOMOLOGIE 1974, 23 S., brosch.
- VII Christandl-Peskoller, Hildegard und Janetschek, Heinz.
 ZUR FAUNISTIK UND ZOOZÖNOTIK DER SÜDLICHEN ZILLERTALER HOCHALPEN
 1976, 134 S., 5 Tab., 7 Textfiguren und 3 Ausschlagtafeln, brosch.
- VIII S c h e d l, Wolfgang
 UNTERSUCHUNGEN AN PFLANZENWESPEN (HYMENOPTERA: SYMPHYTA) IN DER
 SUBALPINEN BIS ALPINEN STUFE DER ZENTRALEN ÖTZTALER ALPEN (TIROL,
 ÖSTERREICH)
 1976, 88 S., 16 Abb., Tab., brosch.
- IX Leising, Susanne ÜBER ZIKADEN DES ZENTRALALPINEN HOCHGEBIRGES (OBERGUROL, TIROL) 1977, 70 S., 6 Tab., 2 Fig., brosch.
- X Janetschek, Heinz (Hrsg.)
 ÖKOLOGISCHE UNTERSUCHUNGEN AN WIRBELLOSEN DES ZENTRALALPINEN
 HOCHGEBIRGES (OBERGURGL, TIROL)
 Janetschek, Heinz, I. EINFÜHRUNG
 Schatz, Heinrich, II. PHÄNOLOGIE UND ZÖNOTIK VON ORIBATIDEN (ACARI)
 1979, 121 S., 2 Farbbilder, 14 Tab., 27 Abb., brosch.
- XI Janetschek, Heinz (Hrsg.)
 ÖKOLOGISCHE UNTERSUCHUNGEN AN WIRBELLOSEN DES ZENTRALALPINEN
 HOCHGEBIRGES (OBERGURGL, TIROL)
 De Zordo, Irene, III. LEBENSZYKLEN UND ZÖNOTIK VON COLEOPTEREN
 1979, 132 S., 2 Farbbilder, 24 Tabellen, 37 Abb., brosch.
- XII S e e w a l d , Friedrich
 DIE REGENWÜRMER (LUMBRICIDAE) DES LANDES SALZBURG
 1979, 60 S., 14 Tab., 12 Fig., brosch.

