Permafrost und Blockgletscher in den östlichen österreichischen Alpen

von Gerhard Karl LIEB, Graz

mit 58 Abbildungen, 25 Tabellen im Text und einer Tafel als Beilage

Zusammenfassung

Die Arbeit illustriert den gegenwärtigen Kenntnisstand über Hochgebirgspermafrost in Österreich hauptsächlich auf Grund eigener Untersuchungen. Kap.1 ist eine allgemeine Einführung in die Thematik, während Kap.2 die zur Permafrostprospektion geeigneten Methoden speziell vorstellt: Messungen von Quelltemperaturen und Basistemperaturen der winterlichen Schneedecke (BTS) wurden reichlich zur Kartierung der Permafrostverbreitung im großen Maßstab verwendet. Für die Arbeit in kleineren Maßstabsebenen haben die Kartierung der Vegetation und sommerlichen Schneeflecken aus Infrarot-Orthophotos sowie insbesondere der intakten Blockgletscher gute Ergebnisse erbracht. Eigenschaften des Permafrostes wurden mit geophysikalischen Methoden in einem Testgebiet der Hohen Tauern erhoben.

In diesem Testgebiet (Dösener Tal bei Mallnitz, Kärnten, Lage siehe Abb.1 und 13) wurde ein interdisziplinäres Forschungsprojekt über Hochgebirgspermafrost durchgeführt, in dessen Rahmen zwischen 1993 und 1995 folgende Aktivitäten gesetzt wurden: Geomorphologische Kartierung, Boden- und Quelltemperatur- sowie BTS-Messungen, Refraktionsseismik, elektromagnetische und Bodenradarmessungen. Auf diese Weise wurde die Permafrostverbreitung recht exakt erfaßt (Abb.30), und zwar werden 26 % des Testgebietes von Permafrost unterlagert, dessen Untergrenze in schattseitigen Lagen nahe 2400 m und in sonnseitigen nahe 2700 m liegt. Eine realistische Abschätzung der Permafrostmächtigkeit des "Dösener Blockgletschers" (30-40 m) und seines Volumens (15.10⁶m³) wurde durch die geophysikalischen Meßergebnisse ermöglicht.

Das Blockgletscherinventar umfaßt das gesamte Untersuchungsgebiet und beinhaltet Informationen über 1451 Blockgletscher, von denen 1169 fossil (reliktisch) und 282 intakt (aktiv/inaktiv) sind. Kap.4 präsentiert Daten über die Größe der Formen und ihre horizontale und vertikale Verbreitung, wobei Häufigkeitsverteilungen in Bezug auf Expositionen und Höhenstufen im Mittelpunkt stehen. Die Untergrenze des diskontinuierlichen Permafrostes, wie sie von der mittleren Untergrenze der intakten Blockgletscher angezeigt wird, steigt von rund 2300 m nahe dem Alpenrand auf über 2500 m in den Zentralalpen an.

Kap.5 setzt das Permafrostphänomen zuerst mit dem Klima und der Gesamtheit der Periglazialerscheinungen in Beziehung und illustriert dann die Grundzüge der Permafrostverbreitung, insbesondere anhand von Profilen und einer Trendflächenanalyse (Abb.46-49). Der Beschreibung der einzelnen Gebirgsgruppen folgen in Kap.6 schließlich Hinweise auf die Praxisrelevanz von Permafrost und auf zukünftige Forschungsaufgaben.

Summary: Permafrost and rock glaciers in the Eastern Austrian Alps

The work shows the actual status of knowledge on high mountain permafrost in the Eastern Austrian Alps which is mainly based on the discussion of the results of own investigations. Chapter 1 is an introduction to the subject matter. Chapter 2 presents methods of prospecting high mountain permafrost: Temperature measurement of springs as well as of the basic temperature of the winter snow cover (BTS) have widely been used for mapping the local distribution of permafrost. Mapping of rock glaciers, vegetation and snow pattern out of infrared air photographs are demonstrated to be good instruments for prediction of permafrost in a small scale. Geophysical techniques were used to elaborate some characteristics of permafrost in a test area of the Hohe Tauern range.

In chapter 3 results of the multidisciplinary research project on high mountain permafrost which has been carried out in this test area (Dösen Valley near Mallnitz, Carinthia, location see Fig.1 and 13) are presented. The following activities have been done from 1993 to 1995: Geomorphological mapping,

measurement of ground and spring temperatures, BTS-measurement, refraction seismic and electromagnetic transects, georadar soundings. In this way the area of permafrost could be delimited quite well: It covers 26 % of the test area (Fig.30) with a lower limit of about 2400 m in N and 2700 m in S-expositions. With the help of the geophysical methods a realistic estimation of the permafrost thickness (30-40 m) and the volume of the active "Dösen rock glacier" was possible (15.10^6m^3).

The rock glacier inventory covers the whole investigated area comprising information about 1451 rock glaciers, 1169 of which are fossile (relict) and 282 are intact (active/inactive). In chapter 4 data on the size, the vertical and horizontal distribution are discussed with special regard of frequencies according to aspect and elevation. The lower limit of discontinuous permafrost as indicated by the lower limit of intact rock glaciers is situated at 2300 m near the margin of the Alps and rises to over 2500 m in the Central Alps.

Chapter 5 first deals with the permafrost phenomenon in the context of climate and periglacial landforms. Then the main characteristics of permafrost distribution are pointed out, especially by the means of trend surface analysis and transects through the Alps (fig.46-49). Furthermore a description of the permafrost situation for the single mountain groups is given. Finally chapter 6 summarizes the practical importance of permafrost and some aspects of future work.

Vorwort

Permafrost war in Österreich lange Zeit hindurch ein nicht zur Kenntnis genommenes Phänomen, dem im wesentlichen erst seit den 80er-Jahren des 20. Jahrhunderts verstärkt Aufmerksamkeit entgegen gebracht wird. Seit damals hat es zwar einige Forschungsinitiativen gegeben, eine zusammenfassende Darstellung fehlte jedoch bislang. Eine solche wird in Form dieser Arbeit vorgelegt, die zwar nicht den Anspruch erheben kann, alle Facetten des Permafrosts in Österreich abzudecken, aber doch für einen Großteil der österreichischen Alpen konkrete Angaben zur Permafrostverbreitung beinhaltet und eine solide Basis für die zukünftige Beobachtung der mit Permafrost in Zusammenhang stehenden Erscheinungen als Indikatoren für Klimaänderungen bereitstellt. Die Anregung, diese Studie zu verfassen, erwuchs aus meiner langjährigen Beschäftigung mit dem Hochgebirge, wobei ich ursprünglich stärker die Gletscher und ihre Wirkungen im Blickfeld hatte (und noch habe), im Laufe der Zeit aber durch das Bemühen, Gebirgslandschaften umfassender zu begreifen, eben auf den Permafrost gestoßen bin. So hoffe ich, mit meiner Arbeit den Hochgebirgspermafrost stärker in das Bewußtsein aller mit dem Hochgebirge befaßten Menschen (Bewohner, Planer, Naturliebhaber, Wissenschafter) rücken und ein wenig von der Faszination der Beschäftigung mit diesem Phänomen weitergeben zu können. In diesem Sinne widme ich diese Arbeit all jenen, die mit mir die Sorge um die Erhaltung des ökologischen Gleichgewichtes im Hochgebirge - und in unserer gesamten natürlichen Mitwelt - teilen.

Es liegt in der Natur der Sache, daß am Zustandekommen einer Arbeit im vorliegenden Umfang viele Personen und Institutionen beteiligt sind, denen zu danken ich nicht als traditionelle Verpflichtung auffasse, sondern als inneres Bedürfnis. Alle mir entgegengebrachten Hilfestellungen aufzuzählen ist aber weder möglich noch sinnvoll, weshalb ich mir erlaube, eine einfache alphabetische Auflistung der Personen zu geben (weitere und die Institutionen sind im Text genannt) - die Palette der Aktivitäten reichte von fachlichen Diskussionen über Gerätereparatur bis zu Zeichenarbeiten: D. BARSCH (Heidelberg), A. BAYERL (Graz), R. BÖHM (Wien), F. BRUNNER (Graz), E. EHM (Innsbruck), W. FISCHER (Graz), R. FRUHWIRTH (Leoben), P. GERNGROB, J. GSPURNING (Graz), W. HAEBERLI (Zürich), K. HINTENAUS (Graz), G. HOHENWARTER (Villach), V. KAUFMANN (Graz), H. KERSCHNER (Innsbruck), H. LANG (Villach), R. LAZAR (Graz), O. MOTSCHKA (Wien), G. PATZELT (Innsbruck), A. PILZ, A. PODESSER (Graz), H. RESCH (Wien), S. SCHMID (Graz), R. SCHMÖLLER (Leoben), A. SCHOPPER (Graz), H. SLUPETZKY (Salzburg), H. STINGL (Bayreuth), W. SULZER, T. UNTERSWEG (Graz), H. VEIT (Bayreuth) und H. WAKONIGG (Graz). Ein Herzstück der Arbeit bildeten die Untersuchungen im Testgebiet Dösener Tal (Ankogelgruppe), die vom Fonds zur Förderung der wissenschaftlichen Forschung, Wien, in dankenswerter Weise finanziert und von der Gemeinde Mallnitz (W. ANGERMANN) unterstützt wurden. Die Mitarbeiter an diesem Projekt waren nicht nur fachlich, sondern in besonderem Maße auch körperlich gefordert, wofür mein Dank den folgenden Personen gilt: J. ATZMÜLLER, A. BAYERL, D. FLECK, R. FRUHWIRTH, P. GERNGROB, K. HINTENAUS, D. ÖTTL, A. PODESSER, A. SCHMID, R. SCHMÖLLER, A. SCHOPPER, G. SODL, G. WELZ, G. ZÜCKERT SOWIE H. UNTERWEGER und seinem Team am Schmidhaus. Zuletzt, was natürlich keine Wertigkeitsreihung bedeutet, sage ich auch meiner Familie aufrichtigen Dank - nicht nur für ihr reichliches Verständnis, sondern auch für die wiederholte Mitwirkung im Hochgebirge allein um den Lohn eines landschaftlich schönen "Arbeitsplatzes".

Inhaltsverzeichnis

Abbildungs- und Tabellenverzeichnis	12
1. Einleitung und Problemstellung	13
2. Methoden der Permafrostforschung im Hochgebirge und ihre Anwendung in Österreich	
2.1 Allgemeines zur Methodik	16
2.2 Großmaßstählige Erfassung von Permafrost	18
2.2.1. Giobrial stable Litassung von Fernandst	
2.2.1. Direkte Deobachtung in Autochussen	20
2.2.2. Quelle und Dodemeinperaturen	
2.2.3. Dasistemperaturen der winternonen Schneedecke	
2.2.4. Geophysikaische Venamen	
2.3. Kleinmabstabige Enassung von Permairost	
2.3.1. Biockgietscherkanterung	
2.3.2. Ruckscniusse aus der vegetations- und Schneeverteilung	
2.4. Veranderungen des Permatrostmilieus	
2.4.1. Rückschlüsse aus der Aktivität von Blockgletschern	43
2.4.2. Mittel- und Langfristbeobachtungen an aktiven Blockgletschern	44
3. Permafrostforschung im Testgebiet Dösener Tal (Ankogelgruppe, Hohe Tauern, Kärnten)	46
3.1. Lage und physiogeographisches Umfeld	46
3.2. Das Forschungsprojekt	50
3.2.1. Projektkonzeption und -ablauf	50
3.2.2. Angewandte Methodik	52
3.3. Ergebnisse	61
3.3.1. Blockgletscher und verwandte Schuttformen	61
3.3.2. Die horizontale und vertikale Verbreitung des Permafrostes	66
3.3.3. Permafrosteigenschaften und -mächtigkeit	68
4 Das Blockgletscherinventar der östlichen österreichischen Alpen	
4.1 Pilotstudie Nationalpark Hobe Tauern	
4.2 Enveitering auf andere Gebiete	72
4.3. Statistische Kenngrößen der Blockgletscher	74
4.4 Die horizontale und vertikale Verbreitung der Blockgletscher und ihre Litsachen	80
4.4.1 Die Lage ingerhalb der Alben	80
1.1. Der Einfluß der Exposition	
4.4.2. Der Einfulg der Exposition	
4.4.3. Der Eininds der Gestellisweit	
4.5. Ansatze zur Rekonstruktion der Biockgletschergeschichte	
5. Die Verbreitung von Permafrost und Blockgletschern in den östlichen österreichischen Alpen	92
5.1. Allgemeine Einführung	92
5.2. Grundzüge der horizontalen und vertikalen Verbreitung	96
5.3. Regionale Darstellung	101
5.3.1. Die Randalpen	101
5.3.2. Die Zentralalpen	103
6. Zusammenschau und Ausblick	114
6.1. Versuch einer Bewertung der Ergebnisse	114
6.2. Die Praxisrelevanz von Permafrost und Blockgletschern in Österreich	116
6.3. Zukünftige Tendenzen und Forschungsaufgaben	117
Literatur	118
Anhang	124

Verzeichnis der Abbildungen

Abb.1: Die wichtigsten Stellen zur Erforschung des Permafrostes in Österreich und die Lage des	
Untersuchungsgebietes	17
Abb.2: Lage der Quelltemperatur-Meßgebiete von Tab.2	21
Abb.3: Ergebnisse der Quelltemperaturmessungen nach Meßgebieten (Tab.2) und Seehöhe	22
Abb.4: BTS-Messung im Koppenkar (Dachstein, Nördl. Kalkalpen)	25
Abb.5: Lage der BTS-Meßgebiete von Tab.3	27
Abb.6: Ergebnisse der BTS-Messungen nach Meßgebieten (Tab.3) und Seehöhe	28
Abb.7: BTS-Messungen im inneren Stubachtal, Hohe Tauern, 1991 (zu Tab.4)	29
Abb.8: Tiefblick vom Lasofling (3098 m) nach E auf den intakten Blockgletscher is 152, Deteregger Alpen Abb.9: Tiefblick vom Himmelfeldeck (2443 m) nach E auf den fossilen Blockgletscher der Gartleralm	33
(mu 144), sudi. Schladminger Tauern	33
Abb. 10: Bilck vom Anstieg zum Sibereck (ca. 2700 m) nach SW zum Hamer (Bildmitte), Ankögeigruppe Abb.11: Tiefblick vom Rauchkofel (2460 m) nach SSE auf den blockgletscherartigen Schuttkörper an der Schutthedeunter den Nerdwänden der Heben Wiete, Kornische Alben	30 27
Abb 12: Blick vom Silbereck (2810 m) nach S über die Altenbergscharte (Bildmitte) binweg in den	07
Talschluß des Pöllatales mit dem Malteiner Sonnblick (3030 m. Bildmitte oben, Ankogelgruppe)	39
Abb. 13: Übersichtskarte der Ankogelgruppe. Hohe Tauern, mit potentieller Permafrostverbreitung	40
Abb. 14: Potentielle Permafrostverbreitung in der zentralen Ankogelgruppe	41
Abb. 15: Längsprofil des Dösener Tales und seines nördlichen Begrenzungskammes	47
Abb.16: Blick von W auf den Dösener See (mit A.v.Schmidhaus) und den Karraum des innersten Dösener Tales	. 48
Abb.17: Blick vom Dösener Spitz (2897 m) nach WNW auf das innerste Dösener Tal mit dem Dösener See	48
Abb.18: Jahresgänge von Temperatur und Niederschlag (1961-90) an verschiedenen Stationen im	
Umkreis der Ankogelgruppe	49
Abb.19: Oberflächentypen und Schuttformen im inneren Dösener Tal	53
Abb.20: Der Dösener Blockgletscher und die Mallnitzer Scharte von W	54
Abb.21: Lage der Quell- und Bodentemperaturmeßstellen im inneren Dösener Tal	56
Abb.22: Ergebnisse von Bodentemperaturmessungen in verschiedenen Tiefen (2225.7.1995) im	
inneren Dösener 1al	57
Abb.23: Lage der BTS-Meßstellen im inneren Dosener Tal	58
Abb.24: Retraktionsseismische Messung auf dem Dosener Biockgletscher	59
Abb 26: Blick vom Dulleten Neck (2656 m) nach ENE auf den Dögener Plackdetenher	00
Abb.20: Dick vom Duilaten Nock (2030 m) hach ENE auf den Dösener Blockgletscher	01
Abb 28: Permafrostrelevante Erscheinungen und Physiognomie des Dösener Blockgletschers	64
Abb.29: Nördlicher Rand des Dösener Blockgletschers	65
Abb.30: Die Verbreitung des Permafrostes im inneren Dösener Tal	67
Abb.31: Längsprofil des Dösener Blockgletschers	71
Abb.32: Die Teilgebiete des Untersuchungsraumes und die Lage der Pilotstudie Nationalpark Hohe Tauern	75
Abb.33: Häufigkeitsverteilung der Längen (a) und der Breiten der Blockgletscher (b) nach 100 m-Klassen	76
Abb.34: Häufigkeitsverteilung der Uberhöhungen der Blockgletscher	80
Abb.35: Verteilung der intakten und fossilen Blockgletscher nach Teilgebieten	81
Abb.36: Mittlere Untergrenzen der intakten und fossilen Blockgletscher nach Teilgebieten	83
Abb.37: Hypsometrische Verteilung der Blockgletscher-Untergrenzen nach 100 m-Hohenstufen und Teilgebieten	84
Abb.38: Expositionsverteilung der Intakten Blockgletscher in den Teilgebieten	80
Abb.39. Expositionsveneilung der lossilen Blockgleischer in den Teilgebleten	00
nach Expositionen	87
Abb 41. Verteilung der Untergrenzen der intakten und fossilen Blockgletscher nach Expositionsbereichen	07
und 100 m-Höhenstufen	88
Abb.42: Geologische Übersicht der Hohen Tauern (THIELE 1980) und Lage der Blockgletscher	90
Abb.43: Häufigkeitsverteilung der Depressionen der Untergrenzen fossiler Blockgletscher der Hohen Tauern nach 50 m-Stufen	92
Abb.44: Jahresgang der Temperatur nach der Seehöhe in den österreichischen Alpen und Höhenlage ausgewählter Jahresisothermen	94
Abb.45: Flächenanteile sporadischen und diskontiunierlichen Permafrostes nach Höhenstufen in der	
zentralen Ankogelgruppe	95
Abb.46: Die horizontale Verbreitung potentiellen Permafrostes in den östlichen österreichischen Alpen	97
Abb.47: Permafrostprofile durch die östlichen österreichischen Alpen	99
Abb.48: Quadratische Trendflächen der Untergrenze der intakten Blockgletscher und der Schneegrenze in den Hohen Tauern	. 100
Abb.49: Schematischer Verlauf der Permafrost-Untergrenze und anderer Höhengrenzen im Querprofil	
der östlichen österreichischen Alpen	. 101
Abb.50: Fur die Permatrosttorschung wichtige Stellen in den westlichen Hohen Tauern	105
ADD.51: Aus menreren Loben zusammengesetzter aktiver Blockgletscher in der N-Flanke der	100
Tourigrade (ur ou, Dereregger Alpen)	100
ADD.52. DICK VOITI ARStieg zum Bosen Weibi (ca. 3000 m) nach SE ins Tramerkar (Schobergruppe)	. 107

Abb.53: Intakte Blockgletscher und andere für die Permafrostforschung wichtige Stellen in der zentralen Goldberggruppe (Hohe Tauern)	108
Abb.54: Intakter Blockgletscher en 124 im Weitkar südöstl. der Deichselspitze (Schladminger Tauern)	111
Abb.55: Hinweise auf die Existenz von Permafrost in den zentralen Schladminger Tauern	112
Abb.56: Fossile Blockgletscher mu 222 und 223 von Osten gesehen (Anstieg zum Gaaler Eck, ca. 2000 m. Seckauer Tauern)	113
Abb.57: Die fossilen Blockgletscher in den zentralen Seckauer Tauern (Niedere Tauern)	114
Abb.58: Blick aus der Westflanke des Mühlbacher Nocks nach SW auf den Königstuhl (2336 m), Gurktaler Alpen	115

Tafel 1: Indexkarte der Blockgletscher in den östlichen österreichischen Alpen (als Beilage)

Verzeichnis der Tabellen

Tab.1: Übersicht über die verwendeten Prospektionsmethoden für Hochgebirgspermafrost	. 16
Tab.2: Die wichtigsten eigenen Quelltemperaturmessungen in Permafrostgebieten	. 22
Tab.3: Übersicht über die eigenen BTS-Messungen von 1990 bis 1995	. 26
Tab.4: Ergebnisse von BTS-Messungen im inneren Stubachtal nach ausgewählten Teilgebieten	. 29
Tab.5: Typische seismische Geschwindigkeiten in dauernd gefrorenen Schuttkörpern	. 30
Tab.6: Mittlere Untergrenzen aktiver und inaktiver Blockgletscher in der Schobergruppe, Hohe Tauern	. 34
Tab.7: Flächenanteile des Permafrostes in der zentralen Ankogelgruppe (Abb.14) nach Höhenstufen und	
Expositionsbereichen	. 42
Tab.8: Ergebnisse der Quelltemperaturmessungen im inneren Dösener Tal	. 55
Tab.9: Kenndaten der BTS nach den Teilgebieten des inneren Dösener Tales in Abb.23	. 58
Tab.10: Kenndaten der geophysikalischen Meßprofile im inneren Dösener Tal	. 59
Tab.11: Flächen des Dösener Blockgletschers nach Höhenstufen	. 62
Tab.12: Die Permafrostverbreitung im inneren Dösener Tal nach Höhenstufen und Expositionsbereichen	. 68
Tab.13: Die Teilgebiete des Untersuchungsraumes und die Zahl der Blockgletscher darin	. 74
Tab.14: Mittlere und maximale Längen und Breiten der Blockgletscher nach Teilgebieten	. 77
Tab.15: Mittlere und maximale Längen und Breiten der Blockgletscher nach Expositionsbereichen	. 78
Tab.16: Mittel- und Extremwerte der höchsten Punkte der Umrahmungen der Blockgletscher nach	
Expositionsbereichen	78
Tab.17: Mittlere und extreme Überhöhungen der Blockgletscher nach Expositionsbereichen	79
Tab.18: Korrelationsmatrix zwischen den im Blockgletscherinventar erhobenen statistischen Kenngrößen	80
Tab.19: Daten zu den Untergrenzen der intakten und fossilen Blockgletscher nach Teilgebieten	82
Tab.20: Zahl der Untergrenzen der intakten und fossilen Blockgletscher nach 100 m-Höhenstufen	84
Tab.21: Zahl der intakten und fossilen Blockgletscher nach Expositionen	85
Tab.22: Mittel- und Extremwerte der Untergrenzen der intakten und fossilen Blockgletscher nach Expositionen	87
Tab.23: Mittlere Untergrenzen der intakten und fossilen Blockgletscher nach Expositionsbereichen und Teilgebieten	. 88
Tab.24: Zahl der Blockgletscher in den geologisch-tektonischen Einheiten der Hohen Tauern	90
Tab.25: Angaben zur Verbreitung von Permafrost nach Teilgebieten	98

Gesamtinventar der Blockgletscher in den östlichen österreichischen Alpen ("Blockgletscherinventar") im Anhang 124

1. Einleitung und Problemstellung

Aus dem Titel der Arbeit ergeben sich als Gegenstand der Ausführungen zwei Themen, die in engem Konnex miteinander behandelt werden müssen, nämlich zum einen der Permafrost in seiner Gesamtheit und zum anderen die Blockgletscher, die ein spezielles Phänomen des Permafrosts darstellen. Somit ist Permafrost das Hauptthema, wovon die Blockgletscher nur einen Teilaspekt zeigen, dem aber besonderes Augenmerk geschenkt wird, weil aus dem Blockgletscherphänomen ein sehr großer Teil der zur Diskussion gestellten Ergebnisse abgeleitet wird. Hierbei erscheint es sinnvoll, den weiteren Überlegungen zwei gängige Definitionen voranzustellen.

<u>Permafrost</u> (Dauerfrostboden, engl. permafrost, franz. pergelisol) ist Lithosphärenmaterial, das während der Dauer von mindestens einem Jahr Temperaturen unter 0°C aufweist (HAEBERLI & KING 1987, 269).

<u>Blockgletscher</u> (engl. rock glaciers, franz. glaciers rocheux) sind gefrorene Schuttmassen bzw. Schutt-Eis-Gemische, die sich aufgrund plastischer Deformation ihres Eisgehaltes der Schwerkraft folgend langsam hang- oder talwärts bewegen (BARSCH 1983, 133), oder kürzer: Blockgletscher sind dauernd gefrorene Schuttmassen, die langsam Berghänge hinunterkriechen (HAEBERLI 1985, 123). Für eine detaillierte Diskussion der Begriffe wird auf BARSCH 1992, 176 f., verwiesen.

Einer langen Forschungstradition und entsprechend umfassenden Kenntnis des Permafrosts arktischer Räume steht ein erst spät entwickeltes Bewußtsein über das Vorhandensein von *Permafrost* in außerarktischen Hochgebirgen und ein spätes Einsetzen entsprechender Forschungsaktivitäten gegenüber (chronologischer Literaturüberblick in HAEBERLI 1975, 7 f.). Dies ist auf der einen Seite verwunderlich, mußte doch in Analogie zu anderen physisch-geographischen Phänomenen die Existenz eines Höhenstufen-Äquivalents zur (sub)arktischen Permafrostzone in den Gebirgen erwartet werden. Auf der anderen Seite erscheint dies aber insoferne verständlich, als sich der Hochgebirgspermafrost weithin direkter Beobachtung entzieht und in den Gebirgen mittlerer und niederer Breiten in so großer Höhe auftritt, daß er als Nutzungshemmnis in großem Stil ursprünglich kaum in Betracht kam. Die entscheidende Wende brachte hierbei erst die Zunahme der Nutzungsansprüche in der zweiten Hälfte des 20.Jahrhunderts sowohl in der arktischen als auch in der hochalpinen Anökumene - im ersten Fall vor allem zum Zweck der Ausbeutung von Bodenschätzen (kompakte Zusammenstellung mit Folgeliteratur bei STÄBLEIN 1985), im zweiten vor allem 'im Gefolge des Ausbaus massentouristischer Einrichtungen (HAEBERLI 1992).

In jüngerer Zeit jedoch hat sich die Erforschung des Permafrosts gerade auch im Hochgebirge zu einem anerkannten Fachgebiet entwickelt, das sich durch sehr hohe Interdisziplinarität und gut strukturierte internationale Kooperation im Rahmen der "International Permafrost Association" (IPA) auszeichnet. So stehen der Wissenschaft heute ein weit gefächertes Methodeninstrumentarium zur Erfassung des Permafrosts zur Verfügung, und dement-sprechend liegen auch umfangreiche Kenntnisse über Rahmenbedingungen, Verbreitung und Eigenschaften des Hochgebirgspermafrostes vor (knappe Übersicht bei HAEBERLI 1993). In diesem Zusammenhang muß auch der Untersuchungsgegenstand der vorliegenden Arbeit, die sich als Beitrag zur physischen Geographie des Hochgebirges versteht, dahingehend eingeschränkt werden, daß ausschließlich der Permafrost in der *Periglazialstufe* des Hochgebirges, die in den Alpen geoökologisch im wesentlichen der subnivalen Höhenstufe entspricht, behandelt wird. Nach dem Ausmaß der Flächendeckung des Permafrostes ist zwischen den folgenden Kategorien zu unterscheiden:

- □ fleckenhafter Permafrost (engl. island permafrost), 0-10 % der Fläche
- □ sporadischer Permafrost (engl. sporadic permafrost), 10-50 % der Fläche
- □ diskontinuierlicher Permafrost (engl. discontinuous permafrost), 50-90 % der Fläche
- L kontinuierlicher Permafrost (engl. continuous permafrost), über 90 % der Fläche.

Die angegebenen Flächendeckungsraten gelten nicht für fest definierte Bezugsflächen, sondern nur innerhalb einer kurzen Horizontalentfernung ("in a short horizontal distance", KING & AKERMAN 1993, 1022). Als grobe, in den Alpen gültige Untergrenzen dieser Verbreitungstypen gelten nach denselben Autoren 3000-3500 m für kontinuierlichen, 2500 m für diskontinuierlichen und 2000 m für sporadischen Permafrost, während fleckenhafter noch viel tiefer herabreichen kann, dabei aber immer an ganz besondere Geländegegebenheiten gebunden ist, beispielsweise extreme Lawinenkessel und Eishöhlen (soferne diese als Permafrost im Sinne der vorhin gegebenen Definition gelten können). Diese Erscheinungen kleinräumiger, isolierter Permafrostvorkommen bleiben in dieser Arbeit ausgeklammert, doch beschäftigt sich der Beitrag von WAKONIGG 1996 (in diesem Band) mit dem verwandten Phänomen der unterkühlten Schutthalden.

Gegenüber dem Permafrost an sich ist die Kenntnis vom Vorhandensein der *Blockgletscher* in den Hochgebirgen wesentlich älter, doch wurden diese Phänomene lange Zeit hindurch falsch gedeutet, wobei sich die Hypothese einer glazialen Entstehung besonders hartnäckig hielt. Der Durchbruch hierbei wird wohl durch die klassischen Arbeiten von WAHRHAFTIG & COX 1959 und - für die Alpen entscheidend - von BARSCH 1969 markiert, und spätestens seit der Mitte der 70er-Jahre des 20.Jahrhunderts kann die Frage nach dem Wesen der Blockgletscher im Sinne der vorhin gegebenen Definition als ausdiskutiert gelten. Zu dieser an sich interessanten und lehrreichen Diskussion verweise ich auf HÖLLERMANN 1983, für die Kritik an jenen Autoren, die

noch in jüngerer Zeit Blockgletscher nicht als Permafrostkörper auffaßten, an die sehr scharfen Formulierungen bei HAEBERLI & PATZELT 1983, 129 und besonders bei HAEBERLI 1989, 294 sowie BARSCH 1992, 176. Unabhängig von der tatsächlich ungünstigen, aber unauslöschbar eingebürgerten Bezeichnung Block"gletscher" gehe ich in der vorliegenden Arbeit in Übereinstimmung mit den derzeit maßgebenden Autoren davon aus, daß es Permafrost in den Alpen in weiter Verbreitung gibt und daß die Blockgletscher eine mit diesem untrennbar verbundene Leitform darstellen. Ich bezwecke also nicht, diese beiden prinzipiellen Sachverhalte zu beweisen - wenn auch die Ausführungen in diese Richtung interpretiert werden können -, sondern die angesprochenen Phänomene einer umfassenden Untersuchung zu unterziehen.

Als *Arbeitsgebiet* wurde der östliche Teil der österreichischen Alpen gewählt (Begrenzung in Abb.1), wofür hauptsächlich logistische Gründe ausschlaggebend waren, insbesondere die Erreichbarkeit von Graz und meine persönlichen Gebietskenntnisse. An eine Ausweitung auf ganz Österreich oder einen anderen Teilraum der Ostalpen war wegen des damit wesentlich vergrößerten Arbeitsaufwandes nicht zu denken. Auch hätte dies zwar eine Erweiterung der lokalen Kenntnisse, nicht aber des Verbreitungsgefüges des Permafrostes in seiner Gesamtheit erbracht, zumal ohnehin ein breiter Querschnitt durch die Ostalpen unter Einbeziehung von Teilen der Randalpen erfaßt werden konnte. Herzstück und Schwerpunkt der Untersuchungen bilden die *Hohen Tauern*, in denen die topographischen, geologischen und klimatischen Rahmenbedingungen für ein reiches Vorkommen von Permafrost in den verschiedenen Höhenlagen und ein sehr häufiges Auftreten von Blockgletschern in gleicher Weise günstig zusammenwirken.

Das Hauptaugenmerk liegt dabei auf der Klärung der Frage nach der Verbreitung von rezentem Permafrost, worüber in Österreich bislang nur Studien in kleinen Gebieten (meist einzelne Täler oder Teile von Gebirgsgruppen) vorliegen, sieht man von meiner eigenen Arbeit über die Hohen Tauern ab (LIEB 1991). Darüberhinaus wurde in einem kleinen Testgebiet durch ein interdisziplinäres, vom Fonds zur Förderung der wissenschaftlichen Forschung in dankenswerter Weise finanziertes Projekt versucht, auch Informationen über die Eigenschaften des Permafrostes, besonders die Mächtigkeit und den Charakter der gefrorenen Sedimente, zu erhalten. Bei allen Aktivitäten war die Anwendung eines möglichst breiten Methodenspektrums zentrales Anliegen, wobei es gelang, fast alle (eine Ausnahme bildeten etwa Bohrlochuntersuchungen) bei KING et al. 1992 vorgestellten Verfahren zu testen und einige davon auch zu routinisieren. Eine grundlegend neue Methode mußte nicht entwickelt werden, weil sich die bestehenden, wie dies ja zu erwarten war, durchaus bewährten. Neben der Erfassung von Verbreitung und Charakter rezenten Hochgebirgspermafrostes zielt eine weitere Aufgabe der Arbeit auf die Gewinnung von Vorstellungen über die Dynamik des Permafrostes. Aus diesem Grund wurden auch fossile Blockgletscher als Erscheinungen vorzeitlichen Permafrostes umfassend erhoben, und wenigstens in Ansätzen sollen eine Chronologie der Entwicklung des Permafrostes seit dem Spätglazial und auch die jüngsten Veränderungen im gegenwärtigen Permafrost diskutiert werden (abschmelzender Permafrost - degrading permafrost, sich aufbauender Permafrost - aggrading permafrost). Die Arbeitshypothese war es also, daß die in den weiter westlich gelegenen Teilen der Alpen, besonders in der Schweiz als traditionellem Hauptgebiet der Permafrostforschung, erarbeiteten Kenntnisse über den Permafrost auch auf Österreich zu übertragen sind.

Die Arbeit zeigt zuerst die angesprochenen Methoden, getrennt nach Maßstabsebenen, wobei auf die Probleme der praktischen Arbeit besonderes Augenmerk gelegt wird (Kap.2). Die schon erwähnte Schwerpunktstudie in einem Testgebiet der Hohen Tauern bildet den Inhalt von Kap.3. Dem zweiten Schwerpunktthema, den Blockgletschern, ist das Kap.4 gewidmet: Eine großräumige Blockgletscherkartierung hat sich als gute Möglichkeit der Perma-frostkartierung in kleinem Maßstab erwiesen, weshalb diesem Thema breiter Raum - auch mit Ausblicken auf die Morphometrie der Formen und mit Hinweisen auf Paläopermafrost - zuerkannt wird. Die Grundzüge der regionalen Verbreitung von Permafrost und Blockgletschern sind in Kap.5 zusammengefaßt, das auch als Nachschlageteil für gebietspezifische Fragen und als ortsbezogene, annotierte Bibliographie konzipiert ist. Im Schlußteil (Kap.6) werden die Ergebnisse in das Umfeld der Permafrostforschung eingeordnet und hinsichtlich der Praxisrelevanz und zukünftiger Forschungsaufgaben bewertet.

2. Methoden der Permafrostforschung im Hochgebirge und ihre Anwendung in Österreich

2.1. Allgemeines zur Methodik

In Kap.1 wurde schon festgestellt, daß als Resultat des fächerübergreifenden Charakters der Permafrostforschung eine große Zahl an verschiedenen Methoden zur Verfügung steht und daß getrachtet wurde, möglichst viele davon auch für die vorliegende Arbeit zu nutzen. Ausgangspunkt ist die schon erwähnte Tatsache, daß Hochgebirgspermafrost meist der direk-

Tab.1: Übersicht über die verwendeten Prospektionsmethoden für Hochgebirgspermafrost **Tab.1:** Survey of the methods used for prospecting of high mountain permafrost

Methode	Aussage	techni- scher Aufwand	organisa- torischer Aufwand	finanzieller Aufwand
Direkte Beobachtung	Unmittelbarer Nachweis von Permafrost	gering	gering	gering
Quelltemperatur- Messung	Indirekte Aussage nur über das Vorhandensein von Permafrost	gering	gering	gering
Messung der Basistemperatur der winterlichen Schneedecke	Gute Aussagen über Permafrostverbreitung, nur bedingt über Eigenschaften des Permafrostes	mäßig	mäßig	gering
Seismik	Substratcharakter (Unterscheidung von gefrorenem und ungefrorenem Material) und Schichtaufbau erkennbar	hoch	hoch	hoch
Elektromagnetik	Substratcharakter und Schichtaufbau erkennbar	hoch	hoch	hoch
Bodenradar	Schichtaufbau des Untergrundes	hoch	hoch	hoch
Blockgletscher- Kartierung	Mindestverbreitung von Permafrost	sehr gering	gering	mäßig
Vegetations- und Schneeflecken- Verteilung	Grobe Anhaltspunkte für potentielle Existenz von Permafrost	sehr gering	gering	mäßig
Geodäsie, Kartographie	Raum-zeitliche Veränderungen an Blockgletschern	hoch	hoch	hoch

Anmerkungen: Der Aufwand bei der direkten Beobachtung ist nur unter der Voraussetzung gering, daß natürliche Aufschlüsse vorhanden sind. Der mäßige finanzielle Aufwand bei Blockgletscher- und Vegetationskartierung ergibt sich aus der Notwendigkeit zur Anschaffung entsprechenden Luftbildmaterials.

ten Beobachtung nicht zugänglich ist, weil der gefrorene Horizont im Sommer von einer zumindest mehrere Dezimeter, meist jedoch mehrere Meter mächtigen ungefrorenen Auftauschicht (engl. active layer) überlagert wird. Stattdessen muß man sich bestimmte geophysikalische Eigenschaften des in Frage kommenden Substrates zunutze machen, um mit mehr oder weniger aufwendigen Messungen gleichsam verschlüsselte Informationen zu erhalten, aus denen wiederum mit unterschiedlicher Trennschärfe auf das Vorhandensein von Permafrost bzw. seine Eigenschaften rückgeschlossen werden kann. Es gibt verschiedene Möglichkeiten, das Gesamtkollektiv der Methoden in Gruppen zu unterteilen, etwa nach dem Wesen der Untersuchungsmethode und der daraus gewinnbaren Aussage in direkte (z.B. Grabung), halbdirekte (z.B. Seismik) und indirekte Methoden (z.B. Quelltemperaturmessung), wie dies etwa HAEBERLI 1975 vorgeschlagen hat. Für die folgenden Ausführungen erschien eine Gliederung nach Maßstabsebenen sinnvoll, wobei die Methodik für Detailuntersuchungen in kleinen Gebieten in Kap.2.2 und die für großräumige Fragestellungen in Kap.2.3 näher besprochen wird. Die Tab.1 gibt hierzu eine Übersicht, aus der die für die praktische Arbeit letztlich entscheidende Relation zwischen Aufwand und zu erwartendem Nutzen ersichtlich ist. Dabei ist unter technischem Aufwand der Einsatz spezieller Meßgeräte und unter organisatorischem Aufwand im wesentlichen der Bedarf an geschultem Personal zu verstehen. Beim Aufwand bedeutet "hoch", daß die betreffende Methode nur im Rahmen groß angelegter Projekte angewandt werden kann, "gering" heißt, daß die betreffenden Arbeiten ohne Spezialgeräte auch von nicht spezifisch ausgebildeten Personen durchgeführt werden können (wobei im wesentlichen nur Fahrtspesen anfallen, weil Einschulung der Mitarbeiter und Auswertearbeiten wegen ihres geringen zeitlichen Umfanges nicht ins Gewicht fallen). Es ist zu erkennen, daß sich der Aufwand für die Feststellung der Existenz und die Kartierung der Verbreitung von Permafrost in Grenzen hält - weshalb ja auch diese Arbeit in der vorliegenden

- Abb.1: Die wichtigsten Stellen zur Erforschung des Permafrostes in Österreich und die Lage des Untersuchungsgebietes (Erläuterungen im Text)
- Fig.1: The most important sites of permafrost research in Austria and the position of the investigated area

Form verwirklicht werden konnte -, während ein genauerer Einblick in die Permafrostcharakteristik, etwa im Sinne einer Bestimmung von Auftautiefe, Eisgehalt und Lage der Permafrostbasis, von vornherein nur in wenigen Gebieten zu exemplarischer Anwendung in Frage kommt. Auf theoretische Ableitungen der einzelnen Methoden konnte weithin verzichtet werden, weil diese ohnehin in publizierter Form vorliegen; stattdessen wurde das Hauptaugenmerk auf die praktische Durchführbarkeit der Arbeiten und die Probleme bei der Interpretation der jeweiligen Ergebnisse gelegt. Bei den Ausführungen in Kap.2 greife ich bewußt über das eigentliche Arbeitsgebiet hinaus und beziehe alle mir bekannten, in ganz Österreich bislang gesetzten Aktivitäten mit ein. Die Untersuchungsgebiete sind in Abb.1 verzeichnet und werden bei den einzelnen Abschnitten von Kap.2 (für das eigentliche Untersuchungsgebiet detaillierter auch in Kap.5.3) erläutert, wobei sich auch die entsprechenden Quellenangaben finden. Hiermit sollen vor allem die noch bestehenden regionalen Defizite in der Kenntnis des Permafrostes aufgezeigt und deren Reduzierung angeregt werden. Die Abbildung führt klar vor Augen, daß neben dem durch diese Arbeit abgedeckten Gebiet nur in den Ötztaler Alpen (Tirol) noch ein Schwerpunktgebiet der Permafrostforschung liegt, während in den meisten übrigen Regionen die Permafrostverbreitung nur anhand von Faustregeln (rules of thumb) basierend auf Höhe, Exposition und Neigung abgeschätzt werden kann (VAN TATENHOVE & DIKAU 1990). Aus diesen Faustregeln wurde an der ETH Zürich ein empirisches Modell der Permafrostverbreitung entwickelt (dargestellt in KELLER 1992, 135, und 1994, 28) und seit Anfang der 90er-Jahre des 20. Jahrhunderts über ein Geographisches Informationssystem automatisiert, wodurch heute bei Vorhandensein digitaler Höhenmodelle für jedes beliebige Gebiet eine quantitative Abschätzung der Permafrostverbreitung möglich ist (KELLER 1992, VONDER MÜHLL et al. 1994). Eine Anwendung dieses Programmes auf das Testgebiet Dösener Tal (Kap.3), wo eine gute Vergleichsmöglichkeit mit der vorliegenden Permafrostkartierung (Abb.30) besteht, ist in Vorbereitung.

2.2. Großmaßstäbige Erfassung von Permafrost 2.2.1. Direkte Beobachtung in Aufschlüssen

Die theoretisch beste Möglichkeit der Erkundung von Permafrost ist natürlich dessen Freilegung durch Beseitigung der Auftauschicht. Hierzu stehen grundsätzlich zwei Möglichkeiten zur Verfügung, nämlich das Vorhandensein natürlicher Aufschlüsse und die Schaffung künstlicher, wobei wiederum zwischen speziell zu diesem Zweck geschaffenen und zufällig bei anderen Maßnahmen entstandenen zu unterscheiden ist. Natürliche Aufschlüsse sind immer sehr selten und am ehesten in Bacheinschnitten, bei Einbruchskesseln im abschmelzenden Permafrost (Thermo- oder Kryokarst, vgl. auch Kap.2.3.1) und in Senken und Spalten auf Blockgletschern anzutreffen, wobei ich selbst im Untersuchungsgebiet bisher ausschließlich die letztgenannten, und auch diese nur eher vereinzelt, bei den zahlreichen Blockgletscherbegehungen sah. Die Schaffung von Aufschlüssen wurde mehrfach durch einfaches Abheben von Steinen versucht, doch ist dies auf den in der Regel sehr grobblockigen Oberflächen von Permafrostkörpern meist ein erfolgloses und wegen der Labilität des Blockwerks in der Auftauschicht nicht ungefährliches Unterfangen (das auch von HAEBERLI & PATZELT 1983, 131, "auf einen lebensmüden Augenblick zurückgestellt" wurde). Eine Grabung im eigentlichen Sinne ist nur in sandigem bis kiesigem Substrat möglich, wo auch an Sondierungen mit einfachen, in der Bodenkunde üblichen Handbohrgeräten zu denken wäre (Beispiele für beide Möglichkeiten bei ROLSHOVEN 1982, 57). Ähnliches gilt für Rammsondierungen (vgl. etwa KING 1984), die aber freilich keinen unmittelbaren Einblick in den Permafrost erlauben. Innerhalb des Arbeitsgebietes, in welchem grobblockige Substrate bei weitem überwiegen, konnte Permafrost jedenfalls nur an wenigen Einzelstellen, in etwas größerem Ausmaß allein am Dachstein (LIEB & SCHOPPER 1991) und in den Karnischen Alpen (HOHENWARTER 1995, schriftl. Mitt., vgl. Kap.5.3.1) freigelegt werden. Die günstigsten Bedingungen sind hierfür im Frühsommer anzutreffen, wenn die Permafrostoberfläche noch nahe der Geländeoberkante liegt, doch ist dann natürlich noch nicht erwiesen, daß diese Bodengefrornis den Sommer überdauert. Die Schaffung von Aufschlüssen in größerem Stil durch Baumaschinen kommt für die "normale" Permafrostforschung aus finanziellen Gründen und - für mich persönlich das entscheidende Argument - aus Gründen des Naturschutzes nicht in Frage. Somit bleiben als weitaus wichtigste Informationsquellen die bei großtechnischen Bauvorhaben im Hochgebirge zufällig geschaffenen Aufschlüsse. Ich habe versucht, hierüber möglichst viele Informationen zu bekommen, doch ist es dabei auf jeden Fall unmöglich (für die Sache aber auch nicht unbedingt notwendig), Vollständigkeit zu erreichen (Abb.1).

Mit Bauvorhaben im Hochgebirge assoziiert man wohl zu recht in erster Linie die Errichtung touristischer Anlagen. In historischer Sicht drangen hierbei Schutzhüttenbauten als erste in die Höhenstufe potentiellen Permafrostes vor, wobei nach Auskunft des für Schutzhütten zuständigen Referenten beim Österreichischen Alpenverein in Innsbruck, E. EHM (1995, mündl. Mitt.), über 2800 m in ganz Österreich grundsätzlich mit entsprechenden bautechnischen Problemen zu rechnen sei. Dennoch war gerade das Schutzhüttenwesen in seiner Pionierphase, d.h. beim Bau der ursprünglichen, mit geringer Größe und einfacher Ausstattung konzipierten Objekte, tendenziell wenig auf Permafrost sensibel, denn als Standorte wurden meist ohnehin Geländeteile gewählt, auf denen die Gebäude in anstehendem Fels gegründet werden konnten. Erst im Zuge der modernen Erweiterungen der Hütten und insbesondere beim Ausbau der Ver- und Entsorgungseinrichtungen traten verstärkt bautechnische Probleme mit Permafrost zutage. In viel größerem Stil sind solche jedoch bei im eigentlichen Wortsinn massentouristischen Einrichtungen vorgekommen, im speziellen beim Ausbau der Gletscherschigebiete in Nordtirol (Eintragungen in Abb.1 nach mündl. Mitt. von KERSCHNER 1990), wo sowohl bei den Zubringerstraßen als auch bei den Anlagen und Gebäuden Probleme insbesondere mit Fundamentierungen, aber auch massive Schäden aufgetreten sind, die in wenigstens zwei Fällen auch Neuerrichtungen der betreffenden Objekte erforderten.

In ähnliche Richtung gehen die Arbeiten für verschiedene Einzelanlagen ziviler und militärischer Überwachungs- und Kommunikationstechnik, aber auch von Forschungseinrichtungen, bei deren Bau bzw. Erweiterung wiederholt Permafrost angetroffen wurde. Hierbei recht bekannt wurden die Bauarbeiten auf dem Glungezer, 2677 m (Tuxer Alpen, Tirol), welche in 2640 m Permafrost in großer Mächtigkeit aufschlossen (PATZELT 1983, 41). Die auftretenden bautechnischen Schwierigkeiten sollen am Beispiel des Observatoriums auf dem Hohen Sonnblick, 3106 m (Goldberggruppe, Hohe Tauern) kurz charakterisiert werden, wobei ich mich auf Informationen von O. MOTSCHKA, Wien (1990, mündl. Mitt.) stütze: Der anstehende Fels wird auf dem Sonnblick von einer sehr mächtigen Schicht Verwitterungsmaterials bedeckt, die ab einer Tiefe von etwa 30 cm ganzjährig gefroren bleibt und einen Eisanteil von bis zu 70 % aufweisen soll. Schwierigkeiten ergaben sich aufgrund dieser Gegebenheiten konkret bei der Schrämmung (sofortiges Wiederfestfrieren gelockerter Steine), beim Bau der Fundamente (ein Gleichgewicht zwischen dem Wärmestrom von oben und dem unterlagernden Permafrost stellt sich erst nach 2 bis 3 Jahren ein), weiters durch das Auffrieren von Tropfwasser am Permafrostkörper und schließlich ganz allgemein durch Hebungs- und Setzungserscheinungen. Dem Bauteam gelang es, diese Probleme durch Improvisationsvermögen zu lösen, wobei die Einbringung einer 30 bis 40 cm mächtigen Isolationsschicht unter die Bauwerke die besten Erfolge brachte.

Auch bei der Errichtung von *Kraftwerken* erfolgen häufig Baumaßnahmen im hochalpinen Raum. Dabei liegt aber bei den meisten Anlagen Österreichs das Fassungsniveau selbst der Beileitungen in die höchstgelegenen Speicherseen zu tief (meist nahe oder unter 2000 m; z.B. Maltatal, Glockner-Kaprun, Zillertal), als daß bei deren Errichtung Permafrost hätte angetroffen werden können. Bei den höher gelegenen Anlagen hingegen kam es sehr wohl zu technischen Problemen mit Permafrost, wobei offenbar vor allem Materialentnahmen aus Schuttkörpern durch darin eingelagerte gefrorene Partien behindert oder sogar unmöglich gemacht wurden. Genauere Informationen hierzu liegen dank der bereitwilligen Auskünfte von Seiten der Kärntner Elektrizitäts-A.G. (Kelag) aus der Kraftwerksgruppe Fragant (Goldberggruppe, Hohe Tauern) vor, wo an wenigstens drei Stellen in Höhen zwischen 2275 und 2490 m gefrorener Schutt angefahren wurde (Details hierzu in Kap. 5.3.2. und Abb.53).

Die wichtigsten Belegstellen für Permafrost, der bei Baumaßnahmen aufgeschlossen wurde, sind in Abb.1 eingetragen und die im Untersuchungsgebiet gelegenen darüberhinaus in

Kap.5.3 beschrieben. Zu bedenken ist dabei jedoch, daß die erhältlichen Informationen grundsätzlich recht spärlich sind, weil zum einen kein Interesse am freigelegten Permafrost an sich besteht und zum anderen die mit den Problemen konfrontierten Grundbesitzer oder Unternehmen wenig Interesse an deren Bekanntwerden haben. Weiters wird kaum über Permafrost im Fels berichtet, weil dieser bautechnisch offenbar zu geringe Unterschiede gegenüber ungefrorenem Gestein besitzt. Hinzu kommt noch, daß seit etwa 1980 mit der wachsenden Kenntnis über die Existenz von Permafrost die potentiellen Schwierigkeiten damit schon im vorhinein erkannt und durch entsprechende Planungs- bzw. Vorkehrungsmaßnahmen umgangen werden konnten (EMBLETON-HAMANN o.J.). Somit geben die hier gebotenen Informationen bestenfalls einen groben Eindruck von der Vielzahl an Permafrostaufschlüssen und haben für die angestrebten großräumigen Aussagen über die Permafrostverbreitung nur den Stellenwert ergänzender Angaben.

2.2.2. Quell- und Bodentemperaturen

Die Messung der *Wassertemperatur an Quellaustritten* ist eine sehr einfache und im Gelände denkbar wenig aufwendige Methode, die aus diesem Grund in der vorliegenden Arbeit auch in großem Umfang angewandt wurde. Die zur Feststellung des Vorhandenseins von Permafrost gebräuchlichen Temperatur-Schwellenwerte gehen im wesentlichen auf HAEBERLI 1975 zurück: Wassertemperaturen unter 1°C machen die Existenz von Permafrost wahrscheinlich, solche zwischen 1 und 2°C lassen Permafrost möglich erscheinen, und höhere Werte schließen Permafrost mit einiger Sicherheit aus. Manche Autoren erachten die Existenz von Permafrost bereits ab einer Temperatur von 1°C als unwahrscheinlich, was aber aus den vorliegenden Ergebnissen keine Bestätigung findet, weshalb der oben genannte Unsicherheitsbereich zwischen 1 und 2°C beibehalten wird. Die Quelltemperaturen werden von vielen, in ihrer Bedeutung aber kaum quantifizierbaren Faktoren beeinflußt, etwa von der Menge und Temperatur der Niederschläge, den Bodentemperaturverhältnissen, der Lage und Strecke der Wasserwege, der Exposition des Einzugsbebietes, von der Seehöhe oder auch von der Schüttung (EcKEL 1960 b, 295).

Für die praktische Arbeit im Gelände muß man folgende Punkte beachten, um eine möglichst sichere Aussage über die Existenz von Permafrost zu erhalten.

- a) Die Messungen sollten im *Hochsommer* erfolgen, um möglichst das Temperaturmaximum im Jahresgang zu erfassen. Der Hinweis bei ECKEL 1960, 297, wonach das Maximum auch erst später im Jahr erreicht werden könne, bleibt für die gegenständlichen Höhenlagen wegen der dann zu erwartenden Schneebedeckung weithin ohne Belang.
- b) Auf eine genügend große Distanz zu Schneefeldern ist zu achten, wobei HAEBERLI 1975, 102, einen "Sicherheitsabstand" von 100 m empfiehlt. Das Problem wiegt bei perennierenden Schneefeldern gar nicht so schwer, weil diese ohnehin Permafrost anzeigen (Kap.2.3.2), sondern ist stärker bei Restschnee von sommerlichen Wetterstürzen zu beachten, wo dann tatsächlich auch in sicher permafrostfreiem Gebiet Temperaturen nahe 0°C auftreten können.
- c) Die Messung sollte unmittelbar am Quellaustritt erfolgen, weil sich die Gerinne schon nach kurzer Laufstrecke kräftig erwärmen, wie die von STINY 1940 mitgeteilten Werte zeigen: So hatte das sommerliche Schmelzwassergerinne eines Schneeflecks auf der Trögeralm (Glocknergruppe, Hohe Tauern) an der Quelle 0,05°C, nach 6 m Lauf schon 2,95°C und nach nur 12 m bereits 5,05°C. Diese an sich selbstverständliche Forderung ist im Gelände aber oft schwer einzuhalten, weil die Gerinne nahe ihrem Ursprung sehr häufig unter Blockwerk der Messung nicht zugänglich sind, aber doch so seicht unter der Oberfläche fließen, daß eine Beeinflussung der Temperatur von der umgebenden Luft her wahrscheinlich ist.
- d) Kompakte Quellen mit hoher Schüttung sind grundsätzlich bessere Indikatoren als kleine, diffuse Wasseraustritte, die aber in den Permafrostverbreitungsgebieten sehr häufig sind. Große Quellen treten häufig ohnehin aus intakten Blockgletschern aus, wodurch in diesen Fällen die Existenz von Permafrost gleich durch zwei Kriterien abgesichert werden kann.

Unter Beachtung dieser Aspekte konnten durch eine große Zahl von Einzelmessungen, oft auch nicht Permafrostkartierung sporadisch bei speziell auf ausgerichteten Geländebegehungen, zahlreiche Hinweise auf lokale Existenz von Permafrost gewonnen werden, auf die im Regionalteil (Kap.5.3) eingegangen wird. In einigen Gebieten wurden Quelltemperaturmessungen zur Permafrostkartierung in größerem Stil durchgeführt, worüber Tab.2 sowie Abb.2 und 3 Auskunft geben. Im besonderen war dies in Teilgebieten der Ankogelgruppe (Hohe Tauern)der Fall, wo im Testgebiet Dösener Tal (Kap.3) sogar eine fast flächendeckende Quellkartierung erfolgte. Für die Niederen Tauern wurden auch zur Erhebung Trinkwasserreserven durchgeführte Quellaufnahmen der Forschungsgesellschaft von Joanneum Research, Graz, durchgesehen, doch konnten dabei nur bescheidene Hinweise auf fleckenhaften Permafrost gewonnen werden. Von Bedeutung ist, daß bei den in verschiedenen Jahren wiederholt gemessenen Quellen eine auffallende Temperaturkonstanz festzustellen ist, die die Eignung dieser Methode für die Permafrostkartierung (auch wenn nur Einzelmessungen vorliegen) durchaus unterstreicht. Dieser Umstand, auf den schon HAEBERLI & PATZELT 1983, 132, hinwiesen, wird in Kap. 3.2.2 noch genauer aufgezeigt und diskutiert. In der Literatur finden sich nur vereinzelt Hinweise auf Quelltemperaturen in Permafrostgebieten, etwa in der Studie von ROLSHOVEN 1982 über die Lasörlinggruppe (Deferegger Alpen).

Abb.2: Lage der Quelltemperaturmeßgebiete von Tab.2

Fig.2: Position of the areas of temperature measurement of springs in tab.2

Nr.	Meßgebiet	Termin	Ζ	W	Р	Höhe	Bemerkungen
1	Hollersbachtal	16.8.90	4	0,2°/	1	2360-	intakter Blockgletscher, LIEB &
	(Venedigergr.)			4,2°C		2450 m	SLUPETZKY 1993
2	östliche	4./5.9.84,	12	0,0°/	6	2420-	versch. Geländeformen, z.T. in
	Schobergruppe	6.9.94		5,0°C	-	2705 m	LIEB 1987 a beschrieben
3	Kreuzeckgruppe	7./8.9.94	11	0,9°/	3	2220-	versch. Geländeformen, z.T.
				6,7°C		2415 m	Blockschuttwülste
4	Testgebiet	versch.	27	0,4°/	9	2275-	ausführliche Beschreibung in
	Dösener Tal	Termine	2	5,9°C		2675 m	Kap.3.2.2, z.T. Wieder-
	(Ankogelgr.)	(Tab.7)					holungsmessungen
5	Reißeckgruppe	5.8., 11./	15	0,3°/	4	2330-	versch. Geländeformen, meist
	(Ankogelgr.)	12.9.94		5,9°C		2610 m	Blockschutt
6	übrige Ankogel-	versch.	17	0,6°/	1	1975-	versch. Geländeformen, z.T.
	gr.(außerhalb	Termine		7,6°C		2580 m	Wiederholungsmessungen
	von 4 und 5)	(1993-95)					1
7	südl. Schlad-	13	16	0,9°/	1	1850-	versch. Geländeformen, z.T.
	minger Tauern	16.9.94		6,4°C		2350 m	Blockschuttwülste
8	Koppenkar	8.9.88	4	0,0°/	4	2400-	blockgletscherartige Schutt-
	(Dachstein)			0,1°C		2420 m	form, SCHOPPER 1989

Tab.2: Die wichtigsten eigenen Quelltemperaturmessungen in Permafrostgebieten **Tab.2:** The most important own temperature measurements of springs in permafrost areas

Anmerkungen: Lage der Meßgebiete siehe Abb.2; Z = Zahl der Messungen, W = aufgetretene Wertespanne, P = Zahl der permafrosttypischen Werte, die Höhe gibt den jeweils tiefsten und höchsten Meßpunkt an. Bei Wiederholungsmessungen, d.h. mehrfachen Messungen an derselben Quelle, wurden die einzelnen Meßwerte gemittelt (beim Testgebiet Dösener Tal ergibt sich bei einer Quelle durch diese Methode eine Diskrepanz zu Tab.7).

Abb.3: Ergebnisse der Quelltemperaturmessungen nach Meßgebieten (Tab.2) und Seehöhe **Fig.3:** Results of temperature measurement of springs according to the areas of tab.2 and

elevation

In Tab.2 und Abb.3 sind nur die Werte aus den gezielten Meßkampagnen und nicht solche sporadischer Einzelmessungen berücksichtigt, wobei jene Meßgebiete, in denen gar keine permafrosttypischen Werte auftraten, überhaupt unberücksichtigt blieben. Bei den in dieser Weise ausgewerteten Daten von insgesamt 106 Quellen (an 29 von diesen machen die gemessenen Temperaturen die Existenz von Permafrost wahrscheinlich) erkennt man eine gewisse, wenn auch nur sehr lose Abhängigkeit der Quelltemperaturen von der Seehöhe. Eine solche ergibt sich auch aus den von ECKEL 1960 b, Tab.170, mitgeteilten Durchschnittswerten der Quelltemperatur für bestimmte Seehöhen, die sogar die Errechnung von Gradienten der Quelltemperatur gestatten: Diese betragen 0,4 bis 0,5 K/100 m und erlauben mittels Extrapolation die rechnerische Ermittlung jener Höhe, in welcher der für Permafrost typische Schwellenwert von 1,0°C erreicht wird. Diese Höhe beträgt in den "Tiroler Zentralalpen" rund 2600 m, in schattseitigen Lagen des "steirischen Murgebietes" rund 2350 m, jeweils Werte, die durchaus den realen Untergrenzen potentieller Permafrostverbreitung entsprechen (Kap.5). Betrachtet man die Abb.3 jedoch im Detail, so treten doch einige Schwierigkeiten bei deren Interpretation auf, weil die einzelnen Meßgebiete in vielfacher Hinsicht zu heterogen sind (weshalb auch auf eine genauere statistische Analyse verzichtet wird): Zum einen handelt es sich teilweise um ganz kleine Areale (z.B. 1 oder 8), teilweise jedoch um Räume von der Größenordnung ganzer Gebirgsgruppen (z.B. 3 oder 7). Zum anderen sind weder Substrateigenschaften noch Expositionen berücksichtigt, welche beide von sehr großer Bedeutung sind. Immerhin ist zu erkennen, daß ab einer Höhe von etwa 2350 m mit gewisser Regelhaftigkeit in allen Meßgebieten permafrosttypische Werte auftreten und solche in Lagen unter 2300 m nur mehr in seltenen Ausnahmen vorkommen. Ab rund 2500 m deuten wenigstens 50 % aller Werte mit großer Wahrscheinlichkeit auf die Existenz von Permafrost. Diese Tatsache spiegelt zwar nicht unmittelbar Flächenanteile des Permafrostes wider, deutet aber doch an, daß mit zunehmender Höhe der Permafrost natürlich immer größere Flächen einnimmt. Mit der Höhe werden weiters auch die Quellaustritte immer seltener, weshalb diese Methode jeweils nicht bis ins Gipfelniveau der jeweiligen Untersuchungsgebiete angewandt werden kann. Die mehrfach aufgetretenen Wassertemperaturen von 0.0°C deuten auf unmittelbaren Eiskontakt, der in einigen, nicht aber in allen Fällen visuell bestätigt werden konnte.

Eine weitere Möglichkeit zur Feststellung von Permafrost über Temperaturverhältnisse sind Bodentemperaturmessungen. Solche liegen aus vielen Gebieten Österreichs vor, worüber die monographische Studie von ECKEL 1960 a, auf die auch für allgemeine Zusammenhänge verwiesen wird, die beste Übersicht gibt. Bislang wurden Permafrostgebiete davon jedoch kaum erfaßt, oder die betreffenden Arbeiten waren nicht auf die Feststellung von Permafrost ausgerichtet (z.B. MAHRINGER 1966). Als Ausnahme können die Arbeiten von VORNDRAN 1972 und von RENNERT 1991 gelten: In der ersten wurden an einem kleinen Meßfeld an der österreichisch-schweizerischen Grenze in der Silvrettagruppe, in der zweiten an mehreren Meßpunkten in der südlichen Glocknergruppe (Gebiet II in Abb.50, Kap.5.3.2) Bodentemperaturverhältnisse auch in ihrer Beziehung zum unterlagernden Permafrost analysiert. Zu unterscheiden ist prinzipiell zwischen Temperaturen an der Bodenoberfläche und in tieferen Bodenschichten. Die erstgenannten eignen sich unter der Voraussetzung des Vorhandenseins einer genügend mächtigen Winterschneedecke gut zum Erkennen von Permafrost, doch handelt es sich dabei um eine speziell zu besprechenden Methode (Kap. 2.2.3). Im aperen Gelände sind aus Oberflächentemperaturen jedoch keine Rückschlüsse auf eventuellen Permafrost im Untergrund zu gewinnen. Entsprechend ist auch eine Kartierung von Permafrost mit Verfahren flächendeckender Oberflächentemperatur-Registrierung, etwa durch Thermalscanner-Flugaufnahmen, nicht möglich.

Im Sommer ist somit die Erfassung der Temperatur in tieferen Bodenschichten von Bedeutung, was jedoch in der Praxis gelände- und substratbedingt mit Problemen behaftet ist. In der Regel ist es nämlich nicht möglich, den Permafrost direkt durch Messung zu erfassen (Bodentemperaturen von 0°C oder darunter), sondern nur die Temperaturen in der Auftauschicht. Bei zumindest zwei Messungen in verschiedenen Tiefen lassen sich Temperaturgradienten bestimmen, die über Permafrost von der Oberfläche weg durchwegs negativ sind und mit gewissen Einschränkungen die Extrapolation der Temperatur nach unten und somit die Festellung von Permafrost bzw. sogar eine grobe Abschätzung der Lage des Permafrostspiegels erlauben (HAEBERLI 1975, 52 ff., GARLEFF & STINGL 1986), wobei jedoch KING 1984, 26, auf Grund seines umfangreichen Beobachtungsmaterials vor linearer Extrapolation der Temperatur in die Tiefe warnt. Die Problematik ergibt sich im wesentlichen der Grobblockigkeit des Substrats in den meisten Permafrostarealen aus des Untersuchungsgebietes, die das Graben und Einbringen von Temperaturfühlern generell erschwert, nur bis in wenige Dezimeter Tiefe erlaubt oder überhaupt unmöglich macht. Im extrem grobblockigen Substrat (Blockdurchmesser in der Größenordnung von einem oder mehreren Metern), wie es gerade für die Oberflächen von Blockgletschern so charakteristisch ist, wurden auch Versuche mit Sondierungen (Temperaturfühler an der Spitze von Metallstangen) gemacht, doch ist in solchen Fällen oft kein ausreichender Kontakt zwischen Gesteinsoberfläche und Temperaturfühler herzustellen, sodaß verfälschte Werte auftreten können. Für die vorliegende Arbeit konnten Bodentemperaturmessungen an verschiedenen Stellen, besonders jedoch in der Ankogelgruppe (Testgebiet Dösener Tal, Kap.3.2.2) durchgeführt werden. Dabei erbrachten die mittels Einstechfühler und digitalem Anzeigegerät gewonnenen Daten von kleinen Grabungen in sandig-grusigem Substrat die besten Ergebnisse (horizontales Einbringen des Fühlers in unterschiedlichen Bodentiefen direkt an der vertikalen Grabungsfläche). Die Methode erscheint zur raschen Kartierung der Permafrostverbreitung wenig geeignet, bietet aber doch wichtige zusätzliche Informationen, etwa dadurch, daß sie eine Abschätzung der Auftautiefe erlaubt. Wünschenswert wäre hierbei die Installation einer Anlage zur Dauerregistrierung der Bodentemperatur in verschiedenen Tiefen an einer dafür geeigneten Stelle im Permafrost (vgl. KING 1990).

Interessant in diesem Zusammenhang ist auch die Frage nach den Temperaturen innerhalb der Permafrostkörper. Diese sind jedoch nur über Bohrlochuntersuchungen zu gewinnen, die nichts mehr mit einfachen Temperaturmessungen, wie sie hier zur Diskussion stehen, zu tun haben, sondern höchst aufwendige und komplizierte geophysikalische Verfahren darstellen. In Österreich war die Schaffung einer Bohrloch-Untersuchungsstelle im Permafrost bislang noch nicht möglich, doch gibt es solche in der Schweiz, von denen wiederum das Bohrloch am Blockgletscher Murtel am wichtigsten ist (Piz Corvatsch, Berninagruppe, Engadin; HAEBERLI et al. 1988, VONDER MÜHLL & HAEBERLI 1990, VONDER MÜHLL & HOLUB 1992, VONDER MÜHLL et al. 1995 b). Die dort gewonnene lange Temperaturreihe ließ beispielsweise von 1987 bis 1994 ein kontinuierliches Ansteigen der Permafrosttemperatur in 10 m Tiefe um 0,9 K von -2,3°C auf -1,4°C erkennen (VONDER MÜHLL et al. 1995 a).

2.2.3. Basistemperaturmessungen der winterlichen Schneedecke

Dieses sehr einfache und hocheffiziente, in der Folge abgekürzt als BTS-Methode bezeichnete Verfahren der Permafrostkartierung wurde erstmals von HAEBERLI 1973 vorgestellt und ist seither von den meisten Permafrostbearbeitern speziell im hochalpinen Raum, aber nicht nur dort, erfolgreich eingesetzt worden. Die ausführlichste Erläuterung des zugrunde liegenden Prinzips findet sich, ergänzt durch sehr anschauliche Graphiken, bei HAEBERLI & PATZELT 1983, worauf sich auch die folgenden knappen Hinweise stützen.

Unter einer winterlichen Schneedecke, die so mächtig ist, daß sich die Temperaturverhältnisse an deren Oberfläche nicht mehr auf den Untergrund auswirken können (was in der Regel ab einer Schneehöhe von rund 1 m der Fall ist), herrschen im permafrostfreien Milieu Temperaturen nahe 0°C, weil durch den Bodenwärmestrom aus dem Untergrund der im Frühwinter eingedrungene Frost abgebaut wird. Über Permafrost dringt zwar ebenfalls im Herbst und Frühwinter der Frost von oben her in den Untergrund ein und baut allmählich die sommerliche Auftauschicht ab, doch vermag hier der Bodenwärmestrom die Kontaktfläche Schnee-Untergrund nicht zu beeinflussen, weil er ja hierzu erst den Permafrostkörper abbauen müßte. So bleibt der Boden im Permafrost von der Oberfläche der Schneedecke bis in große

Tiefen durchfroren, was bedeutet, daß in Verbindung mit den sich dadurch ergebenden geringen Temperaturgradienten der Wäremfluß gegenüber permafrostfreiem Gelände stark herabgesetzt ist. Das Ansteigen der BTS im Frühjahr bzw. das Auftauen der Auftauschicht erfolgen ausschließlich von oben her, wobei die 0°C-Isotherme mit vollständiger Durchtränkung der Schneedecke die Bodenoberfläche erreicht und nach Abbau der Schneedecke im Frühsommer in den Untergrund absinkt. Diese Abläufe und weitere Informationen zum Temperaturgeschehen in der Schneedecke der Hochlagen sind sehr anschaulich bei MAHRINGER 1973 zusammengestellt. Bei der Interpretation der BTS-Messungen gelten Werte von -3°C und darunter als recht sichere Permafrostzeiger ("Permafrost wahrscheinlich"), Werte, signalisieren permafrostfreien Untergrund ("Permafrost höher als -2°C sind, die unwahrscheinlich"), dazwischen liegt ein Unsicherheitsbereich ("Permafrost möglich").

- Abb.4: BTS-Messung im Koppenkar (Dachstein, Nördl. Kalkalpen), Blickrichtung NNW gegen den Gr. Koppenkarstein, 2863 m (Foto: LIEB, 18.3.1990)
- Fig.4: BTS-measuring in the cirque "Koppenkar" (Dachstein, Northern Limestone Alps)

Aus diesen Überlegungen ist bei der praktischen Arbeit zu beachten, daß die Messungen im Hochwinter stattfinden (normalerweise Februar und März, in sehr hohen Lagen je nach den Witterungsverhältnissen auch später) und Meßpunkte mit ausreichender Schneehöhe gewählt werden. Die Erfüllung der ersten Forderung bringt Probleme bei der Zugänglichkeit der in Frage kommenden Hochgebirgsräume mit sich (Lawinengefährdung), die zweite Forderung bereitet meist keine Schwierigkeiten. Weiters ist für die klaglose Abwicklung der praktischen Arbeit im Gelände, wie sie im vorliegenden Rahmen in großem Umfang durchgeführt wurde, die Art der Meßgeräte entscheidend. An unserem Institut wurden im Jahre 1989 unter Berücksichtigung der Anregungen von H. KERSCHNER, Innsbruck, Sonden entworfen und in Zusammenarbeit mit der Fa. KRONEIS, Wien, konstruiert. Es handelt sich um verschraubbare Leichtmetallrohre von je 1 m Länge, die zu je einer 3 m langen Sonde zusammengesetzt werden können. Ihre Spitze besteht aus einem in Kunststoff gefaßten Temperaturfühler, von dem ein Kabel durch die Rohre zu einem digitalen Anzeigegerät führt. Insgesamt besitzt das Institut (Stand 1996) 4 solcher Geräte, mit denen routinemäßig gearbeitet werden kann, wobei ein vierköpfiges Team mit 2 Geräten etwa 30-50 BTS-Messungen pro Tag bei guten äußeren Bedingungen bewältigen kann (Abb.4). Die Methode erlaubt bei einem genügend dichten Netz an

Meßpunkten die Konstruktion von Verbreitungskarten des Permafrostes für bestimmte Teilräume, so wie dies beispielhaft Abb.30 zeigt (Kap.3.3.2).

Aus Österreich sind mir publizierte Ergebnisse von BTS-Messungen bislang nur von zwei Gebieten bekannt, und zwar vom Hochebenkar, Ötztaler Alpen (HAEBERLI & PATZELT 1983) und vom Koppenkar, Dachstein (LIEB & SCHOPPER 1991). Unpublizierte Ergebnisse liegen weiters aus Teilen Tirols (Tuxer und Ötztaler Alpen, PATZELT 1994, mündl. Mitt.) und aus einem Untersuchungsgebiet in der südl. Glocknergruppe (Hohe Tauern, RENNERT 1991; vgl. auch Abb.50) vor. Für die vorliegende Arbeit konnten in Summe 261 eigene BTS-Messungen, darunter auch einige Wiederholungsmessungen an gleichen Standorten, durchgeführt und ausgewertet werden. Die Meßkampagnen erfaßten die Verhältnisse in 8 verschiedenen Teilräumen des Untersuchungsgebietes (Abb.5) im Höhenbereich zwischen 1710 und 3020 m, wobei sich 4 der Gebiete (erwartungsgemäß) als frei von Permafrost erwiesen. Abb.6 gibt einen Überblick über alle dabei registrierten Werte, die eine Temperaturspanne von -10°C bis +2°C umfassen. Die Abbildung zeigt ähnlich wie die gleichartige über die Quelltemperaturen (Abb.3) eine lose Abhängigkeit der BTS von der Seehöhe in dem Sinne, daß unterhalb von 2290 m kein Wert mehr die Existenz von Permafrost nahelegt. Bei aller Heterogenität der aus topo- und petrographisch sehr verschiedenartig strukturierten Untersuchungsgebieten gewonnen Daten, die auch eine genauere statistische Analyse des Gesamtkollektivs als nicht sinnvoll erscheinen ließ, gibt die Höhe von rund 2300 m doch eine erste Vorstellung über die Untergrenze der von Permafrost geprägten Höhenstufe in den östlichen Ostalpen. Im Detail sind einige weitere Beobachtungen von Interesse: So wie unter der genannten Höhe keine permafrosttypischen Werte registriert wurden, so gab es auch über 2860 m keinen Wert mehr, der nicht zumindest in den Unsicherheitsbereich fiel, über 2900 m schließlich lagen alle BTS-Werte (bei einer mit n=9 allerdings nur kleinen Stichprobe) unter -3°C. Es erscheint nicht angebracht, hierin schon die Untergrenze des kontinuierlichen Permafrostes zu sehen, doch wird auf jeden Fall deren Nähe signalisiert. Auffallend sind auch die im Meßgebiet "Hundsfeldmoor" registrierten hohen Werte. Dabei zeigte sich, daß die über 1°C temperierten

Nr.	Meßgebiet	Termin	Z	W	Р	Höhe	Bemerkungen
1	Stubachtal	18	68	+0,5°/	33	2260-2945	großer, vielgestaltiger
	(Granatspitzgr.)	20.2.91		-9,3°C		m	Raum, Gletschernähe
2	Dösener Tal	28	76-	+1,1°/	37	2270-3020	großer, vielgestaltiger
	(Ankogelgr.)	30.3.94 u.		-6,3°C		m	Raum, Blockgletscher
		5.4.95					(Kap.3)
3	Reißeck	11.3.94	20	+0,3°/	7	2450-2630	Karmulde, Blockgletscher
	(Reißeckgr.)		1	-6,4°C		m	
4	Hundsfeldmoor	20.2.95	23	+1,9°/	-	1820-1850	Moor auf waldgrenznaher
	(Schladm. Tau.)			+0,5°C		m	Verflachung
5	Hundskogel	20.2.95	6	+0,8°/	-	2150-2190	Altfläche mit Kuppen
	(Schladm. Tau.)			+0,4°C		m	
6	Rosaninalm	19.2.95	4	0,0°/	-	2020-2055	fossiler Blockgletscher
	(Gurktaler Alp.)			-1,5°C		m	
7	Koppenkar	18.3.90	60	+0,4°/	24	2390-2490	Kar mit Gletscherrest,
	(Dachsteingr.)			-6,0°		m	Blockschuttwülste
8	Schüttkogel	5.3.94	4	+0,6°/	-	1710-2049	waldgrenznahes Kar und
	(Wölzer Tau.)			0,0°C		m	Umrahmung

Tab.3: Übersicht über die eigenen BTS-Messungen von 1990 bis 1995**Tab.3:** Outlines of own BTS-measurements between 1990 and 1995

Anmerkungen: Lage der Meßgebiete siehe Abb.5; Z = Zahl der Meßpunkte, W = aufgetretene Wertespanne, P = Zahl der Werte in der Kategorie "Permafrost wahrscheinlich", die Höhe gibt die jeweils höchsten und tiefsten Meßpunkte an.

Stellen in einem Moor lagen, dessen Kontaktfläche mit der Schneedecke im Untergrund auch bei zwei Grabungen nicht gefroren war (bei einer von diesen wurde auch ein Gerinne freigelegt, das eine Temperatur von 1.1°C besaß). Weiters tendieren in den permafrostfreien Gebieten offenbar grobblockige Standorte zu tieferen Werten (0°C bis -1,5°C) als feinmaterialreiche Substrate (0°C bis 0,5°C), was besonders die Daten der höhenmäßig vergleichbaren Meßgebiete "Rosaninalm" (oberkarbones Konglomerat der Gurktaler Alpen, grobblockig) und "Hundskogel" (zentralalpine Trias der westl. Schladminger Tauern, feinmaterialreich) zeigen.

Wie HAEBERLI & PATZELT 1983, 142 f., zeigen konnten, hängt die vom Wärmefluß aus dem Untergrund bestimmte BTS in erster Linie von der Mächtigkeit der Auftauschicht ab, während Größen wie die absolute Höhe, die Schneehöhe oder geophysikalische Parameter keine statistisch signifikante Beziehung zur BTS zeigen. Für die vorliegenden Arbeit lagen keine zu einer Prüfung dieser Aussagen ausreichenden Angaben über Auftautiefen vor (Kap.3.3), dennoch wurden die Daten aus den Untersuchungsgebieten Koppenkar, Stubachtal und Dösener Tal genauer untersucht. So ergab sich im Koppenkar eine Abhängigkeit der BTS (und somit auch der Auftautiefe) von der Distanz der Meßpunkte (bzw. der mittleren Distanz der Meßprofile) vom südl. des Meßgebietes sich erhebenden Gratzug im Sinne einer mit zunehmender Beschattung abnehmenden BTS (LIEB & SCHOPPER 1991, 158 f.). Diese Beobachtung war der Grund dafür, bei allen folgenden BTS-Meßkampagnen auch das Maß der Horizontüberhöhung nach S hin (als wohl am einfachsten zu ermittelnde, die Beschattung repräsentierende Größe) für alle Meßpunkte zu erheben. Eine statistisch signifikante Beziehung konnte hierbei jedoch nicht gefunden werden, allein bei bestimmten Profilabschnitten oder Einzelpunkten war die Heranziehung dieser Größe zur Erklärung lokaler Unterschiede der BTS geeignet.

Die angesprochene Beziehung zwischen Seehöhe und BTS ist bei einfacher linearer Korrelation aller Einzelwerte tatsächlich sehr schwach, doch scheint eine Interpretation von Mittelwerten für bestimmte zusammenhängende Geländeteile doch nicht ohne Berücksichtigung der Höhenlage möglich zu sein. Dies soll am Beispiel der Werte aus dem Meßgebiet Stubachtal illustriert werden (Abb.7, Tab.4, zur Lage des Meßgebietes siehe Abb.50): Hier ergibt sich für die 26 Meßpunkte mit einer Schneehöhe von mindestens 150 cm im schattseitigen Expositionsbereich NW bis NE eine Beziehung in der Form BTS = 24,9733 0,0112.h (h = Seehöhe in m) mit einem Korrelationskoeffizienten von r = 0,6437 und einem

Abb.5: Lage der BTS-Meßgebiete von Tab.3 **Fig.5:** Position of areas of BTS-measurement (tab.3)

Bestimmtheitsmaß von 0,4143. Rechnet man trotz der geringen Qualität der Beziehung mit der Regressionsgleichung die potentielle Permafrost-Untergrenze (BTS = -3°C), so ergibt sich mit 2497 m ein den realen Gegebenheiten in den schattseitigen Lagen des Gebietes gut entsprechender Wert. In Tab.4 wurde der Versuch unternommen, für ausgewählte, in Abb.7 verzeichnete, topographisch relativ homogene Teilgebiete Mittelwerte zu berechnen (vgl. dazu auch KING 1984, 58 f.). Bei deren Betrachtung zeigt sich in den Teilgebieten A bis C eine Abnahme der BTS mit der Höhe, wobei das Gebiet mit der geringsten mittleren Höhe der Meßpunkte (B) eine mittlere BTS besitzt, die in den Unsicherheitsbereich ("Permafrost möglich") gehört. Zu beachten ist auch, daß sich das Gebiet C mit vorherrschender S- und neutraler Exposition (Lage auf hoch gelegener Altfläche) von den anderen topographisch stark unterscheidet. Das Gebiet D fällt weiters mit einer auffallend tiefen mittleren BTS etwas aus dem Rahmen, was wohl mit dem dort besonders permafrostgünstigen Gelände (schattseitige Hang- und Muldenlage) erklärt werden kann. Weitere Überlegungen hierzu anhand des noch besser untersuchten Testgebietes Dösener Tal finden sich in Kap.3.2.2.

 Tab.4: Ergebnisse von BTS-Messungen im inneren Stubachtal nach ausgewählten

 Teilgebieten

Teilgebiet	Zahl d.	mittlere	Standard-	maximale	minimale	mittlere	Standard-
(Abb.7)	Messg.	BTS	abweichg.	BTS	BTS	Seehöhe	abweichg.
A	16	-3,75°C	1,70K	-1,0°C	-7,3°C	2578 m	12,0 m
В	12	-2,02°C	0,90K	-1,2°C	-3,7°C	2478 m	21,7 m
С	11,	-4,14°C	2,43K	-1,3°C	-8,6°C	2891 m	49,4 m
D	9	-5,69°C	2,03K	-2,7°C	-9,3°C	2569 m	37,4 m

Tab.4: Results of BTS-measurements in selected areas of the inner Stubach Valley

Anmerkungen: Die Standardabweichungen beziehen sich auf die jeweils in der Spalte links von ihnen befindlichen Mittelwerte. Die mittleren Höhen sind aus den Höhen der einzelnen Meßpunkte gerechnet.

Abb.7: BTS-Messungen im inneren Stubachtal, Hohe Tauern, 1991 (zu Tab.4) **Fig.7:** BTS-measurements in the inner Stubach Valley, Hohe Tauern range, 1991(see tab.4)

2.2.4. Geophysikalische Verfahren

Geophysikalische Untersuchungen erlauben, wie in Kap.2.1 schon bemerkt wurde, keine direkte Feststellung von Permafrost und auch keine unmittelbare Information über dessen Eigenschaften. Vielmehr werden mit geophysikalischen Meßergebnissen nur bestimmte physikalische Eigenschaften des Untergrundes (wie z.B. die seismische Geschwindigkeit) quantifizierbar, deren Interpretation in Hinblick auf den Permafrost den Bearbeiter mitunter vor erhebliche Probleme stellen kann. Diese liegen teilweise in den Methoden selbst begründet (siehe unten), teilweise ist trotz der inzwischen schon sehr umfangreichen Literatur zu diesen Fragen (wohl beste Übersicht bei VONDER MÜHLL 1993) die Zuordnung bestimmter Meßwerte zu bestimmten Substrateigenschaften eben nicht immer eindeutig möglich. Auf Grund dieser Vorbehalte habe ich es für die vorliegende Arbeit unterlassen, mich selbst in solche geophysikalischen Methoden speziell einzuarbeiten, und stattdessen wurde im Rahmen des Forschungsprojektes im Testgebiet Dösener Tal (Kap.3) eine Kooperation mit zwei einschlägig spezialisierten Institutionen aufgebaut (Institut für Geophysik der Montanuniversität Leoben, Institut für Angewandte Geophysik der Forschungsgesellschaft Joanneum Research, Leoben; vgl. den Beitrag von SCHMÖLLER & FRUHWIRTH 1996, in diesem Band).

Die in der Permafrostforschung wohl meistverwendete geophysikalische Methode ist die Refraktionsseismik, die in den meisten Fällen in Form von Hammerschlagseismik (zahlreiche Beispiele seit BARSCH 1973 und KING 1976), seltener wie in dieser Arbeit als Sprengseismik (Kap.3.2.2) durchgeführt wurde. Grundsätzlich erlaubt es diese Methode, Schichten des Untergrundes mit unterschiedlichen seismischen Geschwindigkeiten (Ausbreitungsgeschwindigkeiten seismischer Wellen) auseinanderzuhalten und nach entsprechender rechnerischer Bearbeitung der Daten in ihrer vertikalen Position zueinander abzugrenzen. Ein eindrückliches Beispiel für die dabei möglichen methodenimmanenten Probleme in Form zweier sehr gegensätzlichen Möglichkeiten der Interpretation derselben Meßwerte geben KING et al. 1992, 76. Diese Autoren weisen auch darauf hin, daß die Refaktionsseismik nur jeweils seismisch schnellere unter seismisch langsameren Schichten zu erkennen erlaubt, während schnelleren zwischengelagerte langsamere Schichten unentdeckt bleiben, was natürlich eine mögliche Quelle von Fehlinterpretationen sein kann. In Tab.5 sind für das Permafrostmilieu aus der einschlägigen Literatur entnommene typische seismische Geschwindigkeiten, geordnet nach einem schematischen Zweischichtmodell des Aufbaus von Permafrostkörpern (drei Schichten mit Untergrund), aufgelistet.

Schicht	seism. Geschw.	Substratcharakter	Literatur
Auftauschicht	300-700 m/s	trockener Blockschutt	
	500-1100 m/s	Schutt mit Feinmaterial	KING 1977 und 1984
	1100-2000 m/s	wassergesättigter Schutt	
Permafrostkörper	1800-3000 m/s	Permafrostschutt nahe 0°C	KING 1984
	2700-4300 m/s	Permafrostschutt unter -1°C	HAEBERLI 1985
Felsuntergrund	3000-5400 m/s	Karbonatgestein	JACOBS & MEYER 1992
	4000-6000 m/s	kristalline Gesteine, Granit	RENNERT 1991

Tab.5: Typische seismische Geschwindigkeiten in dauernd gefrorenen Schuttkörpern**Tab.5:** Typical seismic velocities in perennially frozen debris masses

Anmerkungen: Die seismischen Geschwindigkeiten in Permafrostkörpern umfassen eine sehr große Bandbreite, wobei neben der Temperatur auch der Charakter des Substrates (Korngröße, Eisgehalt) von Bedeutung ist. Für Gletschereis ist ein viel engerer Bereich seismischer Geschwindigkeiten (3350-3800 m/s) typisch (HAEBERLI 1985, 49 ff.).

Eine weitere, in der Permafrostforschung sehr häufig angewandte Methode ist die *Gleichstrom-Geoelektrik*, die jedoch im Testgebiet Dösener Tal wegen der außerordentlich grobblockigen Oberfläche des dortigen Untersuchungsgebietes (Blockgletscher) und der daraus zu erwartenden meßtechnischen Schwierigkeiten vorläufig noch nicht zum Einsatz kam. Beispiele für frühe geoelektrische Untersuchungen im Permafrost sind die Arbeiten von FISCH

et al. 1978 und KING 1982, ausführliche Darstellungen der Methodik und der Problematik der Ergebnisinterpretation geben weiters KING 1984, HAEBERLI 1985 sowie KING et al. 1987. Mit diesem Verfahren, das zusammen mit Refraktionsseismik und BTS-Messung zu den "klassischen" Untersuchungsmethoden im Permafrost zählt, konnte etwa gezeigt werden, daß unter Schutt begrabenes Gletschereis im Aufbau von Blockgletschern keine oder nur eine sehr untergeordnete Rolle spielt (KING et al. 1992, 77).

Aus dem Bereich der Geoelektrik im weiteren Sinne (einen leicht verständlichen Überblick zu allen Methoden bieten etwa JACOBS & MEYER 1992) kamen für die vorliegende Untersuchung jedoch elektromagnetische Messungen in Form des Slingram-Verfahrens sowie Georadar (Ground Penetrating Radar) zum Einsatz. Über beide Methoden liegen bislang nur wenige Erfahrungen aus dem Hochgebirgspermafrost vor (KING et al. 1987, VONDER MÜHLL 1993), weshalb auch die in Kap.3.3.2 und besonders im Beitrag von SCHMÖLLER & FRUHWIRTH 1996 (in diesem Band) mitgeteilten Meßergebnisse in Hinblick auf ihre Permafrostaussage erst provisorisch interpretiert werden können, wenn sich auch eine gute Übereinstimmung mit den seismischen Ergebnissen zeigt. Mithilfe der Elektromagnetik können über unterschiedliche elektromagnetische Leitfähigkeiten im Untergrund Rückschlüsse auf dessen Beschaffenheit gezogen werden, wobei ein magnetischer Dipol (Spule) als Sender fungiert und mit dessen Distanz zum Empfangsgerät auch die Eindringtiefe variiert werden kann (im vorliegenden Fall bis ca. 50 m). Beim Geo- oder Bodenradar werden von einer langsam über das Meßprofil bewegten Sendeantenne elektromagnetische Impulse in den Untergrund geschickt und von einem Empfänger die reflektierten Signale aufgenommen, wobei auch in diesem Fall die Eindringtiefe mit 30 bis 50 m recht groß ist.

Von den erwähnten geophysikalischen Methoden wurden nach meinem Wissen im Permafrost der österreichischen Alpen bislang erst Hammerschlagseismik und Gleichstrom-Geoelektrik eingesetzt. Die Untersuchungsgebiete waren der Hochebenkar-Blockgletscher in den Ötztaler Alpen (Seismik, HAEBERLI & PATZELT 1983), die westliche Schobergruppe (Seismik, BUCHENAUER 1990) und ein Teilgebiet der südlichen Glocknergruppe (Seismik und Geoelektrik, RENNERT 1991). Das in dieser Arbeit vorgestellte geophysikalische Permafrost-Untersuchungsprogramm im Dösener Tal stellt somit das bisher umfangreichste in den österreichischen Alpen dar.

2.3. Kleinmaßstäbige Erfassung von Permafrost 2.3.1. Blockgletscherkartierung

Wie schon im Kap.1 angedeutet, sind intakte Blockgletscher die einzige zweifelsfreie geomorphologische Manifestation von rezentem Hochgebirgspermafrost. Andere Leitformen des Permafrosts wie Eiskeile, Pingos und Palsas, die für subarktische und arktische Räume so charakteristisch sind, scheinen in den Hochgebirgen der Erde aus topographischen Gründen (KING & AKERMAN 1993, 1024) weithin und in den Alpen vollständig zu fehlen. Wiederholt wurden zwar Formen des "Thermo-" oder "Kryokarstes" (zu diesen Begriffen KARTE 1979, 83 ff.), das sind meist kesselartige Hohlformen im abschmelzenden Permafrost, beschrieben (z.B. in den italienischen Seealpen von EVIN 1993, mehrfach aus den Schweizer Alpen, etwa von HAEBERLI 1985, oder von NAGL 1971 aus einem Teil des Untersuchungsgebietes, der Hafnergruppe), doch treten auch diese offenbar nur im Blockgletscher-Permafrost auf. Wenn auch hierzu sicherlich noch weitere Forschungen notwendig erscheinen, so bleiben die Blockgletscher im Hochgebirge doch die einzigen Permafrosterscheinungen, die visuell sicher erkannt werden können und die so zahlreich vorkommen, daß man sich durch sie über große Flächen einen guten Eindruck von der Verbreitung des aktuellen Permafrosts verschaffen kann. Grundlage für eine großflächige Kartierung von Blockgletschern ist das Vorhandensein von guten Luftbildern und guten topographischen Karten, wobei für beide Maßstäbe von 1:50.000 oder größer zu fordern sind. Dies bedeutet, daß für die gesamten Alpen eine solche Erhebung theoretisch problemlos durchführbar wäre. Der Arbeitsaufwand hierfür ist aber doch sehr

bedeutend, weshalb solche Kartierungen meines Wissens erst für 2 große geschlossene Teilräume vorliegen: Es sind dies die Schweizer Alpen, wobei zwar zahlreiche davon abgeleitete Ergebnisse, nicht aber die zugrunde liegende Blockgletscherdatei (mit insgesamt 994 aktiven Blockgletschern; BARSCH 1977 b, 156) veröffentlicht wurden, und das in dieser Arbeit vorgestellte Inventar der Blockgletscher in den östlichen österreichischen Alpen.

Erkennbarkeit von Blockgletschern im Luftbild ergibt sich Die gute aus deren physiognomischen Eigenheiten, und zwar der grobblockigen Oberfläche, die in der Regel als Ergebnis der blockgletschereigenen Bewegungsdynamik von Längs- und Querwülsten reich gegliedert ist, und der markanten, im Stirnbereich steinschlägigen Randböschung, die den Blockgletscher meist scharf gegen seine Umgebung begrenzt (für Details der allgemeinen Charakteristik von Blockgletschern wird auf die Grundlagenarbeiten von BARSCH 1983, HÖLLERMANN 1983, HAEBERLI 1985 und BARSCH 1992 sowie auf die lehrbuchartige Monographie von BARSCH 1996 verwiesen). Von den Schwierigkeiten, die in der Praxis auftreten können und die im Kap.4 noch genauer besprochen werden, ist die Feststellung der Blockgletscheraktivität die gravierendste (vgl. auch BUCHENAUER 1990, 11). Dabei werden üblicherweise die drei Typen aktiv, inaktiv und fossil (reliktisch) unterschieden (etwa BARSCH 1983, 134): Aktive Blockgletscher enthalten Permafrost und unterliegen einer Bewegungsdynamik (Abb.8); inaktive enthalten zwar ebenfalls Permafrost, doch besitzt dieser eine größere Auftautiefe und erlaubt dem Schuttkörper deshalb keine Bewegung durch Deformation des Eisgehaltes; in fossilen Blockgletschern schließlich ist der Permafrost ausgeschmolzen, die Oberfläche eingesunken ("Kollapsstrukturen") und die Schuttmasse mehr oder weniger stark von Vegetation bedeckt (Abb.9). Von diesen Typen sind streng genommen nur die aktiven als mit dem klimatischen Umfeld im Gleichgewicht stehende Permafrostzeiger zu werten, wobei ihre Untergrenze die Mindestreichweite des Permafrostes angibt. Fossile Blockgletscher sind demgegenüber durch einen erwärmungsbedingten Anstieg der Permafrost-Untergrenze in eine permafrostfreie Höhenlage geraten, während inaktive Blockgletscher sich in einer Rand- bzw. Übergangsposition befinden, die am besten folgendermaßen interpretiert wird. Zur Bildung des Blockgletschers war ursprünglich eine etwas tiefere Permafrost-Untergrenze notwendig (aktiver Blockgletscher), die aber durch Erwärmung der Atmosphäre so weit anstieg, daß zwar die Bewegung gestoppt, der Permafrost aber nicht vollständig ausgeschmolzen werden konnte (soferne die Inaktivierung nicht dynamisch bedingt ist, BARSCH 1992, 177). Solche inaktiven Blockgletscher entwickeln sich bei fortschreitender Erwärmung zu fossilen, können aber bei Abkühlung vermutlich recht rasch wieder zu aktiven werden. In jedem Fall sind sie jedoch als Permafrosterscheinungen zu werten und können aus diesem Grund auch mit den aktiven als "intakte" Blockgletscher zusammengefaßt werden (HAEBERLI 1985, 11).

Beim Vergleich der für diese Arbeit durchgeführten Kartierung der Blockgletscher aus Luftbildern mit Erhebungen im Gelände, wie ich sie in vielen Gebieten der Hohen Tauern durchführen konnte, hat sich gezeigt, daß die Unterscheidung von aktiven und inaktiven Blockgletschern selbst aus Infrarotluftbildern häufig nicht mit ausreichender Schärfe möglich war. Beispielsweise konnte für den - nicht zuletzt wegen seiner geradezu perfekten Physiognomie - ursprünglich als aktiv klassifizierten Tauernfleck-Blockgletscher in der Venedigergruppe (sa 100 im Blockgletscherinventar, Kap.4) bei einer Untersuchung vor Ort eine Zuordnung zum inaktiven Typ wahrscheinlich gemacht werden (LIEB & SLUPETZKY 1993, mit zwei hierzu informativen Fotos). Dies war die Ursache dafür, im vorliegenden Blockgletscherinventar der östlichen österreichischen Alpen nur nach intakt und fossil zu unterscheiden, wobei fossile Blockgletscher in der Regel problemlos erkennbar sind. **Abb.8:** Tiefblick vom Lasörling (3098 m) nach E auf den intakten Blockgletscher is 152, Deferegger Alpen. Gut zu sehen ist die Gliederung in Quer- und vor allem Längswälle sowie die Nachbarschaft von perennierenden Schneeflecken, während die Randböschung aus dieser Perspektive wenig zur Geltung kommt (Foto: LIEB, 9.9.1989).

Fig.8:

View in eastern direction from Lasörling (3098m) onto the intact rock glacier is 152, Deferegger Alps.

- Abb.9: Tiefblick vom Himmelfeldeck (2443 m) nach E auf den fossilen Blockgletscher der Gartleralm (mu 144), südl. Schladminger Tauern. Der fluidale Habitus der Oberfläche ist trotz der Vegetationsbedeckung gut erhalten, ja durch das erfolgte Ausschmelzen des Eises gegenüber der intakten Blockgletschern noch betont (Foto: LIEB, 1.1.1987).
- Fig.9: View in eastern direction from Himmelfeldeck (2443 m) onto the fossile rock glacier of Gartleralm (mu 144), southern Schladminger Tauern.

Damit entspricht zwar rein formal eine ermittelte Untergrenze intakter Blockgletscher nicht mehr genau der Mindestreichweite des Permafrosts, doch handelt es sich dabei nur um einen geringen Fehlbetrag. Die Differenz der Untergrenzen zwischen aktiven und inaktiven Blockgletschern beträgt zwar im Mittel 50 bis 100 m (BARSCH 1994, 19) - entsprechende genauere Daten finden sich für ein gut untersuchtes Beispielgebiet in Tab.6 -, doch ist zu berücksichtigen, daß aktive Blockgletscher ja nicht bis zur realen Permafrost-Untergrenze reichen müssen und sie alleine daher eher zu hohe Werte der Permafrost-Untergrenze ergeben. Nach den Erfahrungen aus den Hohen Tauern, insbesondere dem detailliert untersuchten Dösener Tal (Kap.3), scheint somit eine in obigem Sinne ermittelte Untergrenze der intakten Blockgletscher die Höhe der Permafrost-Untergrenze ausreichend exakt widerzuspiegeln.

- **Tab.6:** Mittlere Untergrenzen aktiver und inaktiver Blockgletscher in der Schobergruppe, Hohe
Tauern (Quelle: BUCHENAUER 1990, LIEB 1987 a)
- Tab.6:
 Mean lower limits of active and inactive rock glaciers in the Schober group, Hohe Tauern range

Exposition	mittl. Ugr. d.	Zahl d. aktiven	mittl. Ugr. d.	Zahl d.	Diff. d. Ugr. aktiv-
	aktiven Blgl.	Blgl.	inaktiven Blgl.	inaktiven Blgl.	inaktiv
N	2470 m	7	2440 m	12	30 m
NE	2578 m	5	2433 m	3	145 m
E	2575 m	3	2495 m	2	80 m
SE	2750 m	7	2597 m	7	146 m
S	2730 m	4	2645 m	2	85 m
SW	2733 m	7	2666 m	5	67 m
W	2585 m	4	2483 m	9	102 m
NW	2535 m	9	2456 m	7	79 m
alle	2619 m	44	2527 m	47	92 m

Anmerkungen: mittl. Ugr. = mittlere Untergrenze, Blgl. = Blockgletscher, Diff. = Differenz.

Die Methode versagt natürlich in jenen Gebirgsregionen, in denen Blockgletscher nicht entwickelt sind, obwohl Permafrost existiert. Hierzu gehören zum einen Gebiete, die vorherrschend aus feinstückig verwitterenden Gesteinen aufgebaut sind (vgl. dazu Kap.4.4.3) oder in denen extremes Steilrelief die Anhäufung der zur Blockgletscherbildung notwendigen Schuttmassen verhindert. Zum anderen kommt in den peripheren Gebirgszügen der Alpen mit stark ozeanischer Klimatönung für die Entwicklung von Blockgletschern nur eine sehr schmale Höhenstufe in Frage, weil die im Niederschlagsreichtum begründete tiefe Position der Schneegrenze die potentiellen Blockgletscherlagen durch Gletscher bedeckt sein läßt. Dieser grundlegende klimaökologische Zusammenhang wird am besten durch die längst klassische Darstellung von HAEBERLI 1982, Abb.1 (etwas verfeinert in HAEBERLI 1990, Fig.2), veranschaulicht. In den Ostalpen wird dieser klimatische Ausschließungsgrund in den Randalpen noch verstärkt durch wenig blockgletscherfreundliches Karbonatgestein und Steilrelief, wodurch weite Teile sowohl der Nördlichen als auch der Südlichen Kalkalpen frei von Blockgletschern sind.

Dennoch fehlen auch in den Randalpen den Blockgletschern verwandte Formen nicht. Unter diesen sind an erster Stelle die *Blockschuttwülste* (engl. protalus ramparts) zu nennen, deren Wesen in der Literatur vielfach kontroversiell diskutiert wurde (z.B. LEHMKUHL et al. 1992 oder BALLANTYNE & BENN 1994), die in der vorliegenden Arbeit jedoch ausschließlich im Sinne von BARSCH 1993 als Permafrosterscheinungen in Form von "embryonalen Blockgletschern" aufgefaßt werden. Diese Formen treten als aktive, inaktive und fossile vergesellschaftet mit Blockgletschern oder - wie etwa in den Randalpen - isoliert von diesen auf, wobei der Unterschied eigentlich nur in der Dimension (protalus ramparts können um eine Größenordnung kleiner als Blockgletscher sein) und im Fehlen einer reich gegliederten Oberfläche (protalus ramparts entwickeln in der Regel nur *einen* mächtigen Schuttwulst) besteht (Abb.10).

Damit sind sie aber im Luftbild oft nicht mehr ganz so eindeutig erkennbar und wurden auch in der vorliegenden Arbeit nicht flächendeckend erhoben, wobei aber freilich der Übergang zwischen Blockgletschern und Blockschuttwülsten, wie es der identischen Genese entspricht, fließend ist.

Andere den Blockgletschern verwandte Permafrosterscheinungen sind Stauchmoränen (engl. push moraines), die vor allem für kontinuierliche Permafrostgebiete der Arktis und Subarktis typisch sind, in den Alpen jedoch weithin, wenn auch nicht vollständig zu fehlen scheinen (ein Beispiel aus den Walliser Alpen beschreibt HAEBERLI 1979). Im spätglazialen Permafrost dürften solche Formen jedoch häufiger gewesen sein, wie die sehr reiche Gliederung entsprechender Ablagerungen vermuten läßt (z.B. KERSCHNER & BERKTOLD 1982, 130, oder KERSCHNER 1993, 49). Im Untersuchungsgebiet konnte ich jedoch keine eindeutig als Stauchmoräne in rezentem Permafrost identifizierbare Form feststellen. Statt einer Aufstauchung des gefrorenen Untergrundes war hingegen in vielen Fällen zu beobachten, daß Gletscher bei ihren postglazial-neuzeitlichen Hochständen sich auf vorgelagerte Blockgletscher schoben, ohne diese in ihrer Gestalt entscheidend zu beeinträchtigen, wie dies schon mehrfach, etwa von HAEBERLI & PATZELT 1983, 129, oder von KERSCHNER 1982, 25, beschrieben wurde. Eine Belebung der Blockgletscheraktivität durch Gletschervorstöße, wie sie HEUBERGER 1974, 12, in Diskussion gebracht hat, erscheint zwar gut vorstellbar, war aber an keiner Stelle des Untersuchungsgebietes unmittelbar zu belegen. In diesem Zusammenhang muß auch die Frage nach dem Charakter von Moränen mit Eiskern (engl. ice-cored moraines) angesprochen werden, die von manchen Autoren (z.B. BARSCH 1977 a, 128) für Blockgletscher und somit für Permafrosterscheinungen und von HÖLLERMANN 1983, 38, zumindest für Übergangsformen zu Blockgletschern gehalten werden. Ich habe hierzu keine systematischen Untersuchungen durchgeführt, doch fanden sich mehrfach blockgletscherartig ausgeflossene End- und Ufermoränen. Solche beschrieb etwa BUCHENAUER 1990 aus der Schobergruppe, es gibt sie aber auch an zahlreichen weiteren Stellen im Untersuchungsraum, so beispielsweise am Wildgerloskees (Reichenspitzgruppe, Zillertaler Alpen, nach einem Hinweis von H. SLUPETZKY) oder am Lassacher Winkelkees unter der Hochalmspitze (Ankogelgruppe), wo blockgletscherartige Schuttloben dem postglazial-neuzeitlichen insgesamt drei aus Moränenkomplex hervortreten. Meist sind diese Formen recht klein (Durchmesser meist nur wenige Zehner Meter) und deshalb nicht im Blockgletscherinventar enthalten (Kap.4.2), sie sind aber doch untrügliche Zeichen von Permafrostbedingungen im Bereich von Gletschervorfeldern bzw. der diese begrenzenden Moränen. Diese Erscheinungen stimmen auch gut mit der Beobachtung aus Abb.13 und 14 (Kap.2.3.2) überein, wonach die Gletschervorfelder zum größten Teil im Höhenbereich potentieller Permafrostverbreitung liegen (ausgenommen sind nur die Vorfelder der großen Gletscher, die bei ihren postglazial-neuzeitlichen Hochständen bis in die alpine oder subalpine Stufe herabreichten).

Bei einer Reihe von morphologischen Erscheinungen ist deren Beziehung zum Permafrost unklar oder zumindest nicht eindeutig. Hierzu gehören Formen der Solifluktion, namentlich Solifluktionsloben und -decken, deren postglaziale Entwicklung etwa in der Umgebung des Bergertörls (südl. Glocknergruppe) von VEIT 1988, 113 ff., in engem Zusammenhang mit Permafrostphasen gedeutet wurde (vgl. auch Kap.5.1). In ähnlicher Weise brachte beispielsweise STRUNK 1986 durch "Mantelkriechen" entstandene Lockermaterialwülste im Gsieser Tal (Südtiroler Seite der Deferegger Alpen) mit der spätglazialen Permafrostverbreitung in Zusammenhang. Ich selbst bin diesen Fragen nicht gezielt nachgegangen, doch scheint die Mehrzahl der Beobachtungen für Solifluktions- und Kryoturbationserscheinungen nicht die Existenz von Permafrost vorauszusetzen. Einige weitere Hinweise zu diesem Fragenbereich finden sich in Kap.5.1, für Einzelheiten muß jedoch auf die Monographie von KARTE 1979 verwiesen werden.

Vielmehr gibt es meinen Geländeerfahrungen zufolge durchaus Formen, die keiner der besprochenen klar zugeordnet werden können, aber doch aufgrund ihrer geoökologischen

- Abb.10: Blick vom Anstieg zum Silbereck (ca. 2700 m) nach SW zum Hafner (Bildmitte), Ankogelgruppe. Im Vordergrund der an seiner Oberfläche nur schwach gegliederte, intakte Blockschuttwulst mu 58, der aufgrund seiner Dimension und gut ausgebildeten Stirnböschung ins Blockgletscherinventar aufgenommen wurde (Foto: LIEB, 28.8.1994).
- **Fig.10:** View from the way to Silbereck (appr. 2700 m) in southwestern direction towards Hafner, Ankogel group; in the foreground the intact protalus rampart mu 58.

Rahmenbedingungen (Höhenlage, Exposition, Vegetationsfreiheit) an Permafrost gebunden zu sein scheinen. Ein Beispiel hierfür sind leicht konvex emporgewölbte, unregelmäßig kupierte Teile von Schutthalden aus Karbonatgestein, von denen ein Beispiel in Abb.11 zu sehen ist (Lage in den blockgletscherarmen Karnischen Alpen, genau 46°36'45"N, 12°53'30"E; weitere Informationen in Kap.5.3.1). Dieses Areal bedeckt rund 1 ha und erhebt sich nur etwa 5 m über die umgebende Schutthalde; gleichartige Formen sind mir aus den Dolomiten, den Leoganger Steinbergen, den Berchtesgadener Alpen und der Dachsteingruppe bekannt, wo auch auf einem solchen Areal BTS-Messungen durchgeführt wurden und Permafrost wahrscheinlich gemacht werden konnte (LIEB & SCHOPPER 1991, Abb.5). Bis zu einer systematischen Untersuchung dieser Phänomene behilft man sich am besten mit unverfänglichen Formulierungen wie etwa "blockgletscherartige Überformung" oder "blockgletscherähnliche Schuttformen" in Anlehnung an HAEBERLI 1985, 15 ("rock glacier-like creep phenomena"). Diese zuletzt angesprochenen Unsicherheiten haben mich bewogen, einer großräumigen Erfassung der Permafrostverbreitung tatsächlich nur die Blockgletscher im strengen Sinn vielleicht da und dort auch größere und klar erkennbare Blockschuttwülste (protalus ramparts) zugrunde zu legen. Nähere Angaben zur Methodik und zu den dabei auftauchenden Problemen finden sich in den Kap.4.1 und 4.2.

Zum Abschluß sei noch auf eine weitere Methode hingewiesen, die auf Blockgletschern schon mehrfach zum Einsatz kam, und zwar die Lichenometrie (z.B. NAGL 1971, HEUBERGER 1974, am instruktivsten und ausführlichsten HAEBERLI et al. 1979). Diese Methode ist jedoch zur Feststellung von Permafrost nicht geeignet, sondern liefert nur Hinweise auf die ökologische Standortdifferenzierung auf Blockgletscheroberflächen. Dabei ist es nur bedingt, vielfach auch gar nicht möglich, chronologische Hinweise, etwa in Hinblick auf die Frage nach dem Alter der Blockgletscher als ganzes, zu erhalten. Für die vorliegende Arbeit wurde eine lichenometrische

37

- Abb.11: Tiefblick vom Rauchkofel (2460 m) nach SSE auf den blockgletscherartigen Schuttkörper an der Schutthalde unter den Nordwänden der Hohen Warte, Karnische Alpen. Er tritt deutlich aus dem Schuttareal hervor und enthält nach dem Befund von Grabungen Permafrost (Untergrenze nur ca. 1940 m in extremer Schattlage; Foto: LIEB, 6.9.1991).
- **Fig.11:** View from Rauchkofel (2460 m) in SSE-direction onto the rock glacier like mass within the talus cone beneath the northern face of Hohe Warte, Southern Alps.

Aufnahme der Blockschuttakkumulationen im inneren Dösener Tal (Ankogelgruppe) in Aussicht genommen, nach einer überblicksmäßigen Sichtung der Verhältnisse 1993 jedoch vorläufig zurückgestellt, weil der Bewuchs mit Rhizocarpon geographicum offensichtlich nur die Zeitdauer der Schneebedeckung (Hohlformen oft flechtenfrei) und nicht spezielle Aspekte der Permafrost- bzw. Blockgletscherdynamik widerzuspiegeln scheint.

2.3.2. Rückschlüsse aus der Vegetations- und Schneeverteilung

Der Hochgebirgspermafrost der Alpen ist generell ein Phänomen der subnivalen Höhenstufe (BARSCH 1977 a, 121 f.), die sich geoökologisch durch das *Fehlen einer geschlossenen Vegetationsdecke* auszeichnet. In den Arbeiten von HAEBERLI 1975 und ROLSHOVEN 1982 wurden die Beziehungen von Permafrostverbreitung und Vegetationsbedeckung genau untersucht, wobei das übereinstimmende Ergebnis lautet, daß eine geschlossene Vegetationsdecke die Existenz von Permafrost im Untergrund ausschließt, d.h. die alpine Stufe (Grasheidestufe) und die unterhalb davon gelegenen Höhenstufen sind generell frei von Permafrost. Diese Aussage, die von meinen Untersuchungen grundsätzlich bestätigt wird, bedarf jedoch einiger einschränkender und erklärender Zusatzhinweise. Zum einen gilt sie für

die Alpen (und wohl auch für viele andere Gebirgslandschaften), nicht jedoch global, denn sowohl der zonale, subarktische Permafrost als auch der Permafrost extrem kontinentaler Hochgebirge kommt durchaus auch unter geschlossener Vegetation, ja in großen Arealen bekanntermaßen sogar unter Wäldern vor (ausführlicher hierzu IVES 1974, 173 ff., speziell für das Hochgebirge GORBUNOV 1978 und HÖLLERMANN 1983, bes. Fig.16). Zum anderen sind auch in den Alpen fleckenhafte Permafrostvorkommen tieferer Lagen unter einer Vegetationsdecke vorstellbar, unter Umständen sogar durch deren isolierende Wirkung begünstigt (vgl. dazu BARSCH 1977 a, 129, und den Beitrag von WAKONIGG 1996, in diesem Band), für sporadischen und diskontinuierlichen Permafrost scheint die Bindung an fast vegetationsfreie Areale hingegen sehr streng zu sein. Die Formulierung "fast vegetationsfrei" schließt dabei keinesfalls das Vorhandensein typischer Pionierpflanzen der subnivalen Stufe (im Untersuchungssgebiet sind als besonders häufige Vertreter beispielsweise Cerastium uniflorum, Geum reptans, Linaria alpina, Oxyria digyna, Ranunculus glacialis und Saxifraga sp. zu nennen) und schon gar nicht von Flechten, sondern nur eine geschlossene Vegetationsdecke, wie sie in der alpinen Stufe und darunter herrscht, aus. HAEBERLI 1975, 167 f., erklärt diese Gegebenheiten damit, daß für Permafrost günstige topoklimatische Verhältnisse in gleicher Weise für den Pflanzenwuchs ungünstig sind, wobei als Faktoren u.a. das Strahlungsdefizit in schattseitigen Hanglagen, mechanische Schädigung der Pflanzen durch Schnee oder Wind und die edaphische Trockenheit wegen der über Permafrost bis weit in den Frühsommer hinein andauernden Bodengefrornis genannt werden.

Zum Erscheinungsbild der subnivalen Stufe der Alpen gehören darüberhinaus auch perennierende Schneefelder, welche ebenfalls als Permafrostzeiger verwendet werden können. Ob ein Schneefeld perennierend ist oder nicht, kann außer bei einem Besuch knapp vor Wintereinbruch daran erkannt werden, daß es mit einer charakteristischen Eisschicht zur Bodenoberfläche hin begrenzt wird (HAEBERLI 1975, 111; ROLSHOVEN 1982, 58). Wenn nach warmen Sommern die Schneefelder mitunter ganz verschwinden, fließt das Schmelzwasser oberflächennah auf dieser Eisschicht, die als Oberkante des unterlagernden Permafrostkörpers aufgefaßt werden kann. Dies konnte im Zuge meiner Untersuchungen - ebenso wie der hochsommerliche Kontakt zwischen Schnee und gefrorenem Schutt am Unterrand solcher Schneefelder bei Grabungen - vielfach beobachtet werden, im Testgebiet Dösener Tal (Kap.3) sogar regelmäßig bei den spätsommerlichen Begehungen. Wenn somit wohl kein Zweifel am Charakter perennierender Schneefelder als Indikatoren für Permafrost angebracht scheint (BARSCH 1977 a, 131, HAEBERLI & PATZELT 1983, 131, KELLER 1994, 38 f.), so ist doch die schon von HAEBERLI 1975, 110, aufgeworfene Frage, ob die Schneefelder nur kleine, punktuelle Permafrostvorkommen anzeigen oder ob aus ihnen auf eine weitere Verbreitung des Permafrosts auch in der Umgebung geschlossen werden darf, nach wie vor nur schwierig zu beantworten. In den durch andere Kriterien gesicherten Vorkommen diskontinuierlichen Hochgebirgspermafrostes treten perennierende Firnfelder stets vergesellschaftet in meist großer Zahl auf, woraus ersichtlich ist, daß sie innerhalb eines weiter verbreiteten Permafrostmilieus nur Abschnitte besonders geringer Auftautiefe anzeigen. Demgegenüber gibt es aber auch Vorkommen von perennierendem Schnee, die - an besondere Gunstlagen gebunden - weniger landschaftsprägend sind und offensichtlich nicht als Zeugen diskontinuierlichen, sondern wenn überhaupt so wohl nur fleckenhaften Permafrostes angesehen werden dürfen. Solche Gunstlagen sind in Karstgebieten häufig Dolinen, wofür das Plateau des Hochschwabs (2277 m, Nördl. Kalkalpen, Steiermark) als Beispiel genannt sei: Auf diesem gibt es in Höhen von 1800 m aufwärts zahlreiche Nivationsdolinen, in denen Schnee auch außerordentlich warme Sommer (wie etwa 1992 oder 1994) überdauert (ZÜCKERT 1996, dort auch nähere Informationen zu den physisch-geographischen Rahmenbedingungen). Ob es sich hierbei um fleckenhaften Permafrost innerhalb der alpinen Stufe handelt bzw. in welcher Wechselbeziehung dieser zur in den Nivationsdolinen durch Schmelzwasser offenbar verstärkten Korrosion steht, ist nach meinem Wissen noch nicht erforscht.

Lieb

- Abb.12: Blick vom Silbereck (2810 m) nach S über die Altenbergscharte (Bildmitte) hinweg in den Talschluß des Pöllatales mit dem Malteiner Sonnblick (3030 m, Bildmitte oben, Ankogelgruppe). Typisches Landschaftsbild der subnivalen Stufe der Zentralalpen, worin Permafrost durch lückige oder fehlende Vegetation, Blockgletscher und ähnliche Schuttformen sowie perennierende Schneefelder angezeigt wird (Foto: LIEB, 28.8.1994).
- **Fig.12:** View from Silbereck (2810 m) in southern direction to Malteiner Sonnblick (3030 m, Ankogel group, Hohe Tauern range); typical landscape of the subnival zone with permafrost in the Central Alps.

Aus den obigen Überlegungen, nach denen in der vegetationsarmen und von perennierenden Schneeflecken durchsetzten subnivalen Höhenstufe der Alpen prinzipiell Permafrost erwartet werden kann (Abb.12), ergibt sich nun die Möglichkeit, die potentielle Verbreitung des Permafrosts aus diesen Erscheinungen abzuleiten. Dies inkludiert theoretisch die Möglichkeit einer großflächig lückenlosen Kartierung, weil geringe bis fehlende Vegetationsbedeckung und Schneefelder ja sowohl im Gelände als auch in terrestrischen Fotos, Luftbildern und Satellitenaufnahmen leicht erkennbar sind. Daß dabei im Detail Probleme auftreten können, versteht sich dennoch von selbst. So etwa sind nur bei bestimmten bildlichen Quellen die Vegetationsverhältnisse mit ausreichender Genauigkeit zu beurteilen, und die Interpretation der Schneeverhältnisse kann insbesondere bei starker frühsommerlicher Schneebedeckung zu Fehleinschätzungen führen.

Im Rahmen der vorliegenden Untersuchung bewährten sich zu diesem Zweck Infrarotluftbilder weitaus am besten: Solche lagen in Form von Orthophotos für große Teile der Hohen Tauern vor (Luftbildkarte Nationalpark Hohe Tauern 1:10.000) und wurden auch für die Erstellung des Blockgletscherinventars genutzt (Kap.4.1). Um nun den Versuch einer Kartierung der potentiellen Permafrostverbreitung für eine ganze Gebirgsgruppe unternehmen zu können, wurde die von diesem Kartenwerk abgeleitete, von M. SEGER, Klagenfurt, hergestellte und diesem Band beiliegende "Luftbildkarte des östlichen Tauernmassivs" 1:40000, die das Herzstück der Ankogelgruppe beinhaltet, verwendet (zu Karten dieses Typs vgl. den Beitrag von SEGER 1996, in diesem Band, und die ältere Arbeit von SEGER 1989). Diese Karte gab gegenüber den zu Grunde liegenden Orthophotos schon eine gewisse, im kleineren Maßstab und in der Drucktechnik begründete Generalisierung vor, die sich bei der Bearbeitung eines

knapp 560 km² großen Gebietes durchaus als Vorteil erwies. Für dieses Gebiet, das auch den Bereich der Schwerpunktuntersuchung im Dösener Tal beinhaltet, lagen reichlich Geländeerfahrungen vor, um den Karteninhalt auf seine Aussage über die Permafrostverhältnisse hin zu "eichen". Abb.13 zeigt das von der genannten Luftbildkarte erfaßte Gebiet im Überblick, und Abb. 14 beinhaltet für einen Ausschnitt daraus die von mir gemeinsam mit K. HINTENAUS erstellte Kartierung potentieller Permafrostflächen, deren statistische Auswertung schließlich in Tab.7 zu sehen ist.

- Abb.13: Übersichtskarte der Ankogelgruppe, Hohe Tauern, mit potentieller Permafrostverbreitung (Erläuterungen im Text)
- Fig.13: Map of the Ankogel group, Hohe Tauern range, including potential permafrost distribution

Abb.13 veranschaulicht stark generalisiert die Ausdehnung der subnivalen und nivalen Stufe und somit jenes Areals, in welchem diskontinuierlicher Permafrost vorkommen kann. In der genaueren Darstellung (Abb.14) wurde auch der Versuch unternommen, zwischen potentiellem diskontinuierlichem und sporadischem Permafrost zu unterscheiden (zur Problematik dieser Zuordnung vgl. besonders Kap.5.1). Die erstgenannte Kategorie umfaßt jene Bereiche, in denen in der beiliegenden Infrarot-Luftbildkarte keine Vegetation (Fehlen von Rottönen) und besonders zahlreiche Schneefelder zu sehen sind, welchen aber wegen des hochsommerlichen Aufnahmetermins der Karte nur ergänzende Aussagekraft zuerkannt wurde. In die zweite Kategorie wurden jene Gebiete klassifiziert, in denen kleinste Vegetationsansätze in Schuttoder Felsgelände (rote Punkte innerhalb vorherrschender Blau-Grün-Töne) erkennbar sind. Da in einem ersten Arbeitsschritt die Übertragung der potentiellen Permafrostareale aus der Infrarot-Luftbildkarte in die Österreichische Karte 1:50000 erfolgte, konnten offensichtlich zu tief gelegene vegetationsfreie Geländeteile (wie Blockhalden und Felsstürze, welche in den dominierenden, grobblockig zerfallenden Orthogneisen des Gebietes recht häufig sind) ausgeschieden werden, wenn auch in ihnen mit punktuellen Permafrostvorkommen gerechnet werden könnte. Die Kartierung wurde im nachhinein mit den im Blockgletscherinventar erfaßten intakten Blockgletschern kontrolliert und, da diese alle innerhalb der Kategorie potentiellen diskontinuierlichen Permafrostes zu liegen kamen, als brauchbar für weitere Auswertungen angesehen.

- Abb.14: Potentielle Permafrostverbreitung in der zentralen Ankogelgruppe (vgl. Tab.7, Erläuterungen im Text)
- Fig.14: Potential permafrost distribution in the central Ankogel group, Hohe Tauern range

- Tab.7:Flächenanteile des Permafrostes in der zentralen Ankogelgruppe (Abb.14) nach
Höhenstufen und Expositionsbereichen
- **Tab.7:** Areas of permafrost in the central Ankogel group, Hohe Tauern range (Fig.14), according to elevational intervals and expositions

Höhe (m)	<2200	2200-2400	2400-2600	2600-2800	2800-3000	>3000	gesamt
N-PF	1225,9	106,8	1,9	-	-	-	1334,6
N-SP	140,6	117,1	52,9	3,8	0,4	-	314,8
N-DP	94,4	393,2	494,8	333,0	93,2	42,8	1451,4
N-ges.	1460,9	617,1	549,6	336,8	93,6	42,8	3100,8
S-PF	1477,2	555,1	106,8	0,0	-	-	2139,1
S-SP	19,8	274,2	438,5	67,5	1,1	-	801,1
S-DP	1,6	38,1	393,6	495,0	109,6	42,5	1080,4
S-ges.	1498,6	867,4	938,9	. 562,5	110,7	42,5	4020,6
EW-PF	347,4	74,3	9,9	-	-	-	431,6
EW-SP	56,0	91,8	77,4	8,7	0,4	-	234,3
EW-DP	24,8	109,1	213,6	174,5	53,9	24,6	600,5
EW-ges.	428,2	275,2	300,9	183,2	54,3	24,6	1266,4
alle-PF	3050,5	736,2	118,6	0,0	-	-	3905,3
alle-SP	216,4	483,1	568,8	80,0	1,9	-	1350,2
alle-DP	120,8	540,4	1102,0	1002,5	256,7	109,9	3132,3
alle-ges.	3387,7	1759,7	1789,4	1082,5	258,6	109,9	8387,8

Anmerkungen: Alle Flächenangaben in ha. N = nördl. Expositionsbereich (NW, N, NE), S = südl. Expositionsbereich (SE, S, SW), EW = neutraler Expositionsbereich (E, W); PF = permafrostfrei, SP = potentiell sporadischer Permafrost, DP = potentiell diskontinuierlicher Permafrost. Graphische Veranschaulichung der Daten in Abb.45.

Diese Auswertungen erfolgten digital unter Verwendung des geographischen Informationssystems ARC-Info und wurden in dankenswerter Weise von J. GSPURNING durchgeführt. Hierzu wurde die genannte Auswertung der Infrarot-Luftbildkarte durch die aus dem Inventar entnommenen Blockgletscher sowie die Umrisse der Gletscher (um die Mitte der 80er-Jahre des 20. Jahrhunderts und bei den postglazial-neuzeitlichen Hochständen, beide aus LANG & LIEB 1993) ergänzt, digitalisiert und mit dem digitalen Geländemodell des Bundesamtes für Eich- und Vermessungswesen überlagert. Als nächster Schritt erfolgte die Bestimmung der Flächen potentiellen Permafrostes nach den Höhenstufen und Expositionsbereichen von Tab.7. Dabei blieben die gegenwärtigen Gletscher und ihre Vorfelder gänzlich unberücksichtigt, obwohl sie fast zur Gänze in potentiellem Permafrostgebiet liegen. Da jedoch aus den Gletschervorfeldern noch keine Informationen über die Existenz von Permafrost vorliegen (mögliche Neubildung von Permafrost in durch den Gletscherschwund eisfrei gewordenen Gebieten ?), wurden diese Areale vorläufig ausgeschieden und in Tab.7 überhaupt nicht berücksichtigt, d.h. die angegebenen Gesamtflächen der Höhenstufen verstehen sich jeweils ohne Gletscher und Gletschervorfelder.

Die Tabelle zeigt, daß diskontinuierlicher Permafrost potentiell auch noch in Höhenlagen unter 2200 m vorkommt (in wenigstens einem Fall wird dies auch durch die Untergrenze des intakten Blockgletschers mo 231 als real bestätigt) und daß oberhalb von 2600 m in allen Expositionen der potentielle diskontinuierliche Permafrost die größten Flächenanteile an den betreffenden Höhenstufen innehat. Über 3000 m schließlich gibt es keine Anzeichen mehr für die Existenz permafrostfreien Milieus, ohne daß daraus schon auf kontinuierlichen Permafrost geschlossen werden dürfte. Vom Gesamtgebiet (postglazial unvergletscherter Teil von Abb.14 mit 83,878 km²) kommen für diskontinuierlichen Permafrost 37,3 % in Frage, während 46,6 % als wahrscheinlich permafrostfrei einzustufen sind. Eine die relativen Flächenanteile nach Höhenstufen und Expositionsbereichen veranschaulichende Graphik hierzu wird in Abb.45 (Kap.5.1) geboten. Als mittlere Untergrenzen des diskontinuierlichen Permafrostes wurden 2670 m an den Sonn- und 2480 m an den Schattseiten des Seebach- und Dösener Tales (mittels der Methode der konstanten Zirkelschritte) berechnet. Zu diesen Ergebnissen ist zu bemerken, daß

sie aus zwei Gründen Maximalwerte der Permafrostverbreitung anzeigen: Zum einen bewirkt das erwähnte grobblockige Substrat tendenziell auch in tiefen Lagen eine im Vergleich zur jeweiligen Höhenstufe geringere Vegetationsbedeckung, wodurch im Infrarotbild trotz der durchgeführten Korrekturen wohl zu sehr in Richtung Permafrost klassifiziert wurde. So etwa erwiesen sich dem potentiellen sporadischen Permafrostgebiet in Abb.14 zugeordnete Teile des inneren Dösener Tal bei der Permafrostkartierung vor Ort als permafrostfrei (Kap.3, Vergleich mit Abb.30). Zum anderen kann man mit dieser Methode ohnehin nicht reale Permafrostflächen, sondern eben nur potentielle kartieren, von denen die realen natürlich nur Teile einnehmen. Dennoch - oder gerade deswegen - eignet sich diese Methode der Ermittlung möglicher Permafrostareale gut für praktische Belange zu einer überblicksmäßigen Beurteilung der Verhältnisse.

2.4. Veränderungen des Permafrostmilieus 2.4.1. Rückschlüsse aus der Aktivität von Blockgletschern

Da die Permafrost-Untergrenze von der Temperatur abhängt (Kap.5.1), müssen die Temperaturänderungen im Zuge der allgemein bekannten Klimaschwankungen unmittelbare Rückwirkungen auf deren Höhenlage haben. Auf Grund der in der Größenordnung von 10 K (nach HAEBERLI et al. 1993 sogar 15 K) angenommenen Depression der Jahrestemperaturen während des Hochglazials der Würm-Kaltzeit muß die Permafrost-Untergrenze damals weithin in tiefen Lagen, wenigstens im N wohl auch in den Niederungen des Alpenvorlandes, gelegen sein (hierzu sei auf die klassische Arbeit von KAISER 1960, bezüglich des Permafrosts im N der Alpen bestätigt durch HAEBERLI & PENZ 1985, sowie für allgemeine klimatologische Überlegungen auf MORAWETZ 1973 verwiesen). Im folgenden Spätglazial bedeutete die Erwärmung auch ein generelles Ansteigen der Permafrost-Untergrenze, das jedoch sinngemäß bei den Klimarückschlägen der Stadiale Unterbrechungen erfuhr. In dieser Zeit begannen sich mit dem allmählichen Eisfreiwerden der in Frage kommenden Geländeteile Blockgletscher zu entwickeln, welche sich im Hochglazial bei Vollvergletscherung des Gebirges nicht entwickeln konnten. sich aber offenbar auch in den hochglazial unvergletschert gebliebenen Gebirgsräumen, die gerade in den östlichen Alpen so große Flächen einnehmen, nicht bildeten. Zwar beschreibt BARSCH 1993, 263 f., sehr tief gelegene fossile protalus ramparts, die er ursprünglich als "Gehängeschutterrassen" bezeichnet hatte, aus dem Schweizer Jura als möglicherweise hochglaziale Bildungen, doch sind vergleichbare Formen aus dem gegenständlichen Untersuchungsraum bisher noch nicht bekannt geworden - wirklich schön entwickelte fossile Blockgletscher befinden sich im Untersuchungsraum jedoch ausschließlich in Lagen, die bis weit ins Spätglazial hinein vergletschert waren. Diese fossilen Blockgletscher aus dem Spätglazial wurden schon vielfach als Hilfsmittel zur Rekonstruktion spätglazialer Temperaturverhältnisse (bzw. mit zusätzlicher Verwendung von Schnee- und Waldgrenzdaten auch zur Abschätzung des Gesamtklimacharakters) herangezogen. So etwa konnte KERSCHNER 1983 und 1985 die mittleren Jahrestemperaturen der Spätglazialstadien Senders, Daun und Egesen recht genau aus den Depressionen der Untergrenzen der damals aktiven Blockgletscher gegenüber dem heutigen Niveau erschließen und auch einen verstärkt kontinentalen Klimacharakter der Zentralalpen wahrscheinlich machen.

Die im Spätglazial aktiven Blockgletscher enden heute in Höhenlagen, die der subalpinen oder alpinen Höhenstufe und somit einem permafrostfreien Gebiet angehören, und sind daher als fossile einzustufen. Im Postglazial scheinen demgegenüber die langfristigen Schwankungen der Jahrestemperaturen nicht über eine Amplitude in der Größenordnung von 1 bis 2 K hinausgegegangen zu sein, was im wesentlichen auch der Erwärmung von der Mitte des 19. bis zum Ende des 20. Jahrhunderts entspricht. Welche Auswirkungen solche Temperaturschwankungen auf den Hochgebirgspermafrost haben, ist nicht ohne weiteres zu beantworten. Grundsätzlich bewirkt eine Temperaturerhöhung Abbauprozesse im Permafrost (Permafrostdegradation), die sich in erster Linie durch eine Vergrößerung der sommerlichen Auftautiefe und mit dieser verbunden durch Setzungserscheinungen in auftauendem Lockermaterial äußern. Bei längerer Andauer des Erwärmungstrends kann es nach Jahrhunderten zum völligen Abbau des Permafrosts von oben und mit starker Verzögerung auch von unten kommen (HAEBERLI 1990 a, 77). Bezogen auf die Blockgletscher bedeutetet dies, daß aktive Blockgletscher ihre Bewegung verringern, was offenbar sehr rasch erfolgen kann (BARSCH & ZICK 1988), und in weiterer Folge zu inaktiven werden können. Diese Entwicklung wird für viele heute inaktive Blockgletscher für den Zeitraum seit der Mitte des 19. Jahrhunderts postuliert und erscheint auch prinzipiell gut vorstellbar (vgl. auch Kap.2.4.2).

Ein weiterer Aspekt ist der, daß jedoch für die Entwicklung der Blockgletscher als morphologische Leitform Jahrtausende (VIETORIS 1972, 183 f.), wenn nicht sogar das gesamte Postglazial zu veranschlagen sein dürften (BARSCH 1992, 177, und 1994, 18), wie etwa aus heutigen Oberflächengeschwindigkeiten und aus Überlegungen in Zusammenhang mit der Schuttproduktion der Einzugsgebiete (BARSCH 1977 b) geschlossen werden kann. Diese Feststellungen stehen in keinem Widerspruch zueinander, wenn man von der Vorstellung ausgeht, daß entweder die postglazialen Temperaturschwankungen jeweils zu gering waren, um aus aktiven Blockgletschern inaktive zu machen, oder daß Einzelblockgletscher im Laufe des Postglazials mehrfach je nach herrschendem Temperaturniveau ihren Zustand von aktiv auf inaktiv und umgekehrt wechselten. Es scheint in den Alpen durchaus Evidenz für beide Möglichkeiten zu geben, abhängig davon, wie nahe der einzelne Blockgletscher an der sensiblen Untergrenze des diskontinuierlichen Permafrostes liegt. Möglicherweise sind dabei die auf vielen Blockgetschern zu beobachtenden "Generationen" - das sind jene Situationen, in denen das morphologische Erscheinungsbild das Übereinanderliegen zweier oder mehrerer Blockgletscherloben oder -zungen anzeigt (meist aber ohne daß dies stratigraphisch belegbar wäre) - mit solchen Reaktivierungsphasen in den kälteren Perioden des Postglazials zu parallelisieren. Vereinzelt gibt es aber auch Hinweise auf stärkere Depressionen der Permafrost-Untergrenze im Laufe des Postglazials (z.B. bei HEUBERGER 1977, VEIT 1988 und 1993), die die Möglichkeit eröffnen, auch fossile Blockgletscher in ihrer ursprünglichen Anlage ins Postglazial zu datieren.

In diesem Zusammenhang ist schließlich zur Diskussion zu stellen, ob wirklich jede der bekannten Klimaverschlechterungsphasen des Postglazials auch a priori eine Belebung der Blockgletscheraktivität hervorrufen mußte, was angesichts der Komplexität klimageschichtlicher Abläufe doch fraglich erscheint (vgl. HARRIS & CORTE 1992, 104). Beispielsweise könnte bei Annahme einer Temperaturerniedrigung mit gleichzeitiger Zunahme der Niederschläge das potentielle Blockgletscher-Verbreitungsgebiet nach dem Kryosphärenmodell von HAEBERLI 1982 und damit möglicherweise auch die Aktivierungsbereitschaft inaktiver Blockgletscher durchaus eingeschränkt sein. So verwundert es auch nicht, wenn sich aus den Ergebnissen der langjährigen Untersuchungen der Solifluktion in der südlichen Glocknergruppe (VEIT et al. 1995) eine durchaus verschiedenartige Wirkungsweise klimatischer Rahmenbedingungen auf den Periglazialraum einerseits und die Vergletscherung andererseits abzeichnet. Wenn auch in diesem Bereich noch viele Fragen offen sind und vor zu schnellen Schlüssen wohl gewarnt werden muß, so bleibt doch die Aktivität der Blockgletscher eine wichtige klimatische Information, der in Zusammenhang mit dem Temperaturanstieg des ausgehenden 20. Jahrhunderts und den möglichen zukünftigen Entwicklungen ein hoher Stellenwert zukommt.

2.4.2. Mittel- und Langfristbeobachtungen an aktiven Blockgletschern

In Hinblick auf den gegenwärtigen Status und die zukünftigen Veränderungen des Permafrostmilieus erscheint zuerst die Frage interessant, welchen Einfluß die angesprochene Erwärmung seit dem 19. Jahrhundert - für die Hochgebirgsstation Sonnblick wurden die Klimaänderungen seit 1886 von AUER et al. 1992 zusammenfassend dargestellt - auf die Entwicklung des Permafrosts ausübte. Grundsätzlich ist bei einem wahrscheinlichen Anstieg der Permafrost-Untergrenze um 150-250 m "in den letzten hundert Jahren" (HAEBERLI et al. 1993, 170 ff.), wie in Kap.2.4.1 erwähnt, Permafrostdegradation mit all ihren Erscheinungsformen zu erwarten, wobei im besonderen der Inaktivierung von Blockgletschern, die sich
durch eine Verlangsamung der Bewegung ankündigt, von Bedeutung ist. So selbstverständlich eine solche Entwicklung erscheinen mag, so schwierig ist sie jedoch tatsächlich nachzuweisen, weil aus dem vorigen Jahrhundert bislang keinerlei Informationen über den alpinen Permafrost und die Blockgletscher - zumindest nicht aus den österreichischen Alpen - vorliegen. Die Ursache hierfür ist natürlich die im Kap.1 schon angesprochene späte "Entdeckung" dieser Phänomene etwa in der Zwischenkriegszeit. Dennoch entstanden damals schon erste längerfristige Beobachtung des Blockgletscher-Permafrostes, Ansatzpunkte für eine insbesondere durch die Arbeiten PILLEWIZERs, der 1938 Vermessungen am Ölgrubenjoch- und am Hochebenkar-Blockgletscher, Ötztaler Alpen, durchführte (vgl. PILLEWIZER 1957). Insbesondere am Blockgletscher im Hochebenkar (Lage siehe Abb.1) sind seither wiederholt Messungen bzw. kartographische Aufnahmen durchgeführt worden (VIETORIS 1972, zusammenfassende Darstellung bei KAUFMANN 1996, in diesem Band), wobei sich als bemerkenswerteste Eigenschaft dieses Blockgletschers sein starkes Vorrücken über eine Steilstufe hinab ergab.

Dieses Vorrücken der Blockgletscherstirn scheint den klimatischen Rahmenbedingungen zu widersprechen und weist auf die bei Kap.2.4.1 angedeutete Problematik der Parallelisierung von Blockgletscheraktivität und Klimaphasen hin. Dennoch scheint die Mehrzahl der bislang vorliegenden Ergebnisse die Hypothese, daß das ausgehende 20. Jahrhundert eine Periode des Permafrostabbaus sein sollte, zu bestätigen. Entsprechende Beobachtungen an Blockgletschern haben etwa BARSCH & ZICK 1988 zusammengestellt, wobei sowohl über physiognomische Veränderungen als auch über verschiedene Meßergebnisse berichtet wird, die erwartete Verringerung der Blockgletscherbewegung erkennen die lassen. Am Hochebenkar- und am Dösener Blockgletscher hat sich die Oberflächengeschwindigkeit in jüngster Zeit ebenfalls verlangsamt (KAUFMANN 1996, in diesem Band, vgl. auch Kap.3.3.1). Hierzu passen auch die bei Kap.2.2.2 schon erwähnten, im Bohrloch auf dem Blockgletscher Murtèl am Piz Corvatsch (Berninagruppe, Oberengadin) registrierten Anstiege der Temperatur im Permafrost (VONDER MÜHLL et al. 1995 a, b). Dennoch gibt es auch Hinweise, daß an manchen Blockgletschern solche Veränderungen nicht stattfanden und deren Bewegung konstant blieb (BARSCH & ZICK 1991, HAEBERLI 1990 a, 78).

Um Veränderungen im Permafrostmilieu genau erfassen zu können, bedarf es in erster Linie guter Kartengrundlagen, die den Vergleich der Geländesituation für verschiedene Zeitpunkte erlauben. In Österreich liegen solche bislang nur für den Hochebenkar- und nunmehr auch für den Dösener Blockgletscher vor (vgl. Kap.3 und den Beitrag von KAUFMANN 1996, in diesem Band). Um zu noch exakteren Ergebnissen über die Veränderungen der Bewegung an der Blockgletscheroberfläche zu kommen, ist die Anwendung geodätischer Methoden unerläßlich, weil die Bewegungsraten in der Regel ja nur im Dezimeterbereich liegen (BARSCH 1992, 179 f.). Darüberhinaus ist es aber auch durch die Einrichtung von Testgebieten wie dem in der vorliegenden Arbeit präsentierten inneren Dösener Tal (Kap.3) möglich, andere Elemente in der Permafrost-Landschaft in längeren Zeitreihen zu beobachten - so etwa können bei Quelltemperaturen oder geophysikalischen Parametern nach gewisser Zeit an denselben, genau bestimmten Meßpunkten und -profilen Nachuntersuchungen angestellt werden, die dann die Quantifizierung eventueller Veränderungen erlauben.

3. Permafrostforschung im Testgebiet Dösener Tal (Ankogelgruppe, Hohe Tauern, Kärnten)

3.1. Lage und physiogeographisches Umfeld

Um Aussagen nicht nur über die Verbreitung von Permafrost, sondern auch über seine Eigenschaften tätigen zu können, wurde beim Fonds zur Förderung der wissenschaftlichen Forschung gemeinsam mit dem Institut für Geophysik der Montanuniversität Leoben ein interdisziplinäres Forschungsprojekt eingereicht (Kap.3.2.1), das sich zum Ziel gesetzt hatte, in einem eng begrenzten Areal mit breitem Methodenspektrum diesen Fragen auf den Grund zu gehen. Als Testgebiet wurde das innere Dösener Tal in der Ankogelgruppe, Hohe Tauern (Gemeinde Mallnitz, Lage in Abb.1 und Abb.13) gewählt, wofür folgende Faktoren ausschlaggebend waren.

- Die zur Erforschung von aktuellem Permafrost zu überwindende Distanz von den beiden Universitätsstandorten war vergleichsweise kurz.
- Das Gebiet ist recht gut zugänglich (wenn auch nicht mit Kraftfahrzeug oder Aufstiegshilfen) und verfügt über einen zentralen, im Sommer bewirtschafteten Stützpunkt (Arthur-von-Schmid-Haus, Sektion Graz des Österreichischen Alpenvereins).
- Es sind ausgedehnte Blockschuttareale und Blockgletscher vorhanden (der besonders schöne "Dösener Blockgletscher" mit der Nr. mo 238 im Blockgletscherinventar war mir lange bekannt und wurde auch schon von SCHAFFHAUSER 1974, 132 f., erwähnt).
- Die für die rezente Permafrostverbreitung günstige Höhenlage zwischen 2200 und 3086 m ließ einen Einblick in die Verhältnisse von der sporadischen bis in die kontinuierliche Permafroststufe erwarten.
- Die W-E-Erstreckung des Tales sollte den Vergleich der Gegebenheiten in sonn- und schattseitiger Lage ermöglichen.
- Der hohe Natürlichkeitsgrad des Gebietes (seit jeher ausschließlich extensive bis fehlende Nutzung, seit 1986 Teil der Kernzone des Nationalparks Hohe Tauern) sollte gewährleisten, daß der Permafrost keinerlei anthropogenen Beeinträchtigungen ausgesetzt war und ist.

Das Dösener Tal ist in zweierlei Hinsicht ein für die Hohen Tauern typisches und somit überregional repräsentatives Tal. Zum einen weist es ausgeprägten Trogtalcharakter mit geradezu perfektem Stufenbau auf, der schon von PENCK 1909 erwähnt und von CREUTZBURG 1921 ausführlich beschrieben wurde, und zum anderen ist es in seinem großmorphologischen Erscheinungsbild ganz wesentlich vom speziellen geologischen Bau der Hohen Tauern geprägt. Die Abb.15 zeigt ein kombiniert geologisch-topographisches Längsprofil entlang des Dösener Baches und ein Kammprofil des nördlichen Begrenzungsgrates, wobei der Stufenbau Tales gut zur Geltung kommt. Bei den unteren Stufen handelt es sich um des Aufschüttungsstufen als Ergebnis mächtiger Schutt- und Murenkegelschüttungen aus den Talflanken (speziell der südlichen). Diese großen Mengen an Lockermaterial stammen aus lokalen Störungs- und Überschiebungszonen, die durchwegs von Scharten und Schluchten nachgezeichnet werden. Des weiteren zeigt sich in Abb.15 das im gesamten Talraum mit zwar wechselnder Neigung, konstant aber nach W gerichtete Schichtfallen. Dabei erschließt das Tal ein eindrucksvolles Profil von der penninischen Schieferhülle im W über die Habachserie, die den größten Teil des Tales einnimmt, bis zu den Zentralgneisen des Hochalmkernes, dem das engere Arbeitsgebiet im Talschluß angehört (für geologische Details ANGEL & STABER 1952, CLIFF et al. 1971, EXNER 1979; für moderne Übersichten der gesamten Hohen Tauern HÖCK et al. 1994, KRAINER 1994). Morphologisch äußern sich diese Schichtlagerungsverhältnisse in einer deutlichen Asymmetrie der Gipfelformen und der kurzen, steilen Seitentäler des Dösener Baches, wobei natürlich die nach E, also taleinwärts schauenden Hänge die steileren sind. Die Richtung der E-W streichenden Talachse ist tektonisch als Fortsetzung der Gößgraben-Störung nach W vorgezeichnet (ANGEL & STABER 1952, 89).

- Abb.15: Längsprofil des Dösener Tales und seines nördlichen Begrenzungskammes (mit geologischen Haupteinheiten nach den im Text zitierten Autoren; nicht überhöht)
- Fig.15: Longitudinal cross section of Dösen Valley and its marginal crest in the North (with main geological units)

Prägendes Landschaftselement des innersten Talraumes ist der Dösener See (2267 m), der eine markante glazigene Felswanne mit 700 m Länge und 225 m Breite erfüllt und eine Fläche von 13,8 ha sowie eine maximale Tiefe von 44 m besitzt (für weitere gewässerkundliche Details SCHULZ & WIESER 1991). Die den See im W begrenzende Karschwelle, auf der auch das A.-v.-Schmidhaus (2272 m) liegt, trägt zwar oberflächlich Moräne (Abb.19, vgl. auch SENARCLENS-GRANCY 1935), doch scheint diese nicht am Aufstau des Sees beteiligt zu sein. Das Seebecken selbst war nach eigenen Berechnungen höchstwahrscheinlich zuletzt im Egesen-Stadium (Jüngere Dryas) von Eis erfüllt; die im N des Sees aufragenden Seewände waren damals schon eisfrei, das darüber befindliche Niveau der Seealm (bei CREUTZBURG 1921 dem "Firnfeldniveau", bei MORAWETZ 1930 dem "Karniveau" zugeordnet) noch von einem Gletscher bedeckt, der knapp oberhalb der Niveaukante einen schwach ausgeprägten Moränenwall hinterließ (Abb.19). Mit einer Schneegrenze von rund 2400 m in W- (Gletscherzunge Dösener See) und von 2560 m in S-Exposition (Seealm) ergibt sich gegenüber einem auf der Datenbasis des Gletscherinventars von 1850 (LIEB 1993, LANG & LIEB 1993) abgeschätzten Bezugsniveau eine Schneegrenz-Depression von 200 m, was die Zuordnung zum Egesen nahelegt (zur Methodik und zum Vergleich mit anderen Alpengebieten wird auf KERSCHNER 1978 verwiesen). Für die Blockgletscherentwicklung im innersten Talschlußbereich kommt damit erwartungsgemäß nur mehr das Postglazial in Frage.

Morphologisch wird der innerste Talraum (Abb.16, 17) weiters von ausgedehnten Gletscherschliffarealen geprägt, besonders augenfällig auf der Seealm im SW des Säulecks, wo glazigen das W-Fallen der Zentralgneisschichten im Mesorelief prägnant herausmodelliert ist. Im übrigen dominieren weite Schuttakkumulationen, die teils als in situ liegender Frostschutt, teils als Sturzschutt, teils als unter Permafrostbedingungen verformter Schutt klassifiziert werden können (Abb.19). Interessant ist schließlich noch die Frage, ob bei den postglazial-neuzeitlichen Hochständen in der Senke westl. der Mallnitzer Scharte, das ist die Wurzelzone des großen "Dösener Blockgletschers" (mo 238 im Blockgletscherinventar, vgl. Abb.31), ein Gletscher existierte. Noch heute tritt hier wenig unter der grobblockigen Schuttoberfläche blankes Eis auf, und in den meisten Jahren überdauert ein 3 bis 5 ha großer Schneefleck den Sommer. Ob hier ein Gletscher im engen Wortsinn bestand, erscheint

dennoch angesichts des Fehlens klarer Moränenwälle zweifelhaft (weitere Hinweise hierzu in Kap.3.3.1).

Abb.16: Blick von W auf den Dösener See (mit A.v.Schmidhaus) und den Karraum des innersten Dösener Tales. Fotostandpunkt Moräne auf der Karschwelle, hinten (von links nach rechts) Mallnitzer Scharte, Dösener Spitz (darunter der Dösener Blockgletscher mo 238), Dullater Nock und Seescharte (Foto: LIEB, 24.7.1995).

Fig.16:

View from the W towards Dösen Lake (with A.v.-Schmid alpine hut) and the cirque in inner Dösen Valley. Note Dösen rock glacier (mo 238) just left of the centre.

Abb.17: Blick vom Dösener Spitz (2897 m) nach WNW auf das innerste Dösener Tal mit dem Dösener See. In der Bildmitte Maresenspitz(2915 m), rechts das ausgedehnte Niveau der Seealm (Foto: LIEB, 25.7.1995).

Fig.17:

View from Dösener Spitz (2897 m) in WNW direction to the inner Dösen Valley and to Dösen Lake.

Zur Beurteilung der Klimaverhältnisse in grobem Überblick dient Abb.18, worin jedoch unmittelbar aus dem Dösener Tal wegen des Fehlens von Beobachtungsstationen keine Kurven gezeigt werden können. Von den im Diagramm enthaltenen Stationen scheint die nur 11,5 km Luftlinie entfernte Station Reißeckhütte (2248 m) noch am besten für das innere Dösener Tal repräsentative Werte zu liefern. Die Daten standen nicht für die gesamte, der Abb.18 zu Grunde gelegten Periode 1961-90 zur Verfügung und wurden daher auf diese reduziert, wobei sich ein Jahresmittel der Lufttemperatur von 0,4°C (Jänner: -6,4°C, Juli 8,2°C) errechnet. Mit Hilfe des Gradienten zur Station Sonnblick kann die Höhenlage der 0°C-Jahresisotherme mit 2300 m und die der -2°C-Isotherme mit 2580 m (jeweils auf 10 m gerundet) festgelegt werden.

- Abb.18: Jahresgänge von Temperatur und Niederschlag (1961-90) an verschiedenen Stationen im Umkreis der Ankogelgruppe
- Fig. 18: Temperature and precipitation (1961-90) at different stations in the vicinity of the Ankogel group (Hohe Tauern range)

Anmerkungen: Die Werte wurden den Dekadenauswertungen des Hydrographischen Dienstes (1973, 1983, 1994) entnommen und für einige Stationen aus kürzeren Perioden reduziert. Die Niederschlagswerte des Sonnblicks sind die im Totalisator "Hoher Sonnblick" (3086 m, horizontale Auffangfläche) registrierten (vornehmlich nach AUER 1992).

Diese Höhenangaben scheinen in Bezug zu der zu besprechenden Permafrostverbreitung im Dösener Tal doch auffällig hoch zu sein, wobei auf jeden Fall die SW-exponierte Hanglage der Station Reißeckhütte und möglicherweise auch Inhomogenitäten in der Datenreihe eine Rolle spielen. Mit 1353 mm ist die an der Reißeckhütte gemessene Jahressumme des Niederschlags aufgrund der bekannten Meßproblematik dieses Klimaelementes im Hochgebirge zu gering, doch entspricht die Form des Jahresganges mit einem klaren Sommermaximum den realen Gegebenheiten gut. Wahre Niederschlagsmengen abzuschätzen erscheint schwierig, allerdings dürfte der von TSCHERNUTTER 1982 mitgeteilte Jahresniederschlag von 1776 mm (Periode 1956-80) für den Totalisator der Österreichischen Draukraftwerke A.G. im Gößkessel (1673 m, jenseits der Mallnitzer Scharte im Einzugsgebiet der Malta bzw. Lieser gelegen) ein realistischer Wert für die subalpine Waldstufe sein. Für eine Charakterisierung der Schneeverhältnisse, die in Zusammenhang mit der Entwicklung von Permafrost ebenfalls von Interesse sind, wurden für die Station Reißeckhütte die Daten der 19 Jahre von 1960/61 bis 1979/80 ohne 1974/75 ausgewertet. In diesem Zeitraum begann die Schneedecke im Mittel am 5.10. und endete am 15.6., bei einer mittleren Zahl der Tage mit Schneedecke von 221 (Standardabweichung s = 21). Für die Winterdecke lauten die entsprechenden Daten 2.11., 1.6. und 213 Tage (s = 21). Die Summe der Neuschneehöhen betrug 549 cm (s = 161 cm) und die mittlere maximale Schneehöhe 170 cm (s = 57 cm). Damit weist die Statistik diese Station als stark inneralpin geprägt und verglichen mit Stationen vergleichbarer Seehöhe in randalpinen Lagen als ausgesprochen schneearm aus (für einen überregionalen Vergleich siehe WAKONIGG 1975).

Entlang des Dösener Tales ist ein Vegetationsprofil von der montanen bis in die subnival/nivale Stufe zu beobachten, wobei die Pflanzenwelt im wesentlichen der der umliegenden Gebiete Beschreibungen der Vegetationshöhenstufen entspricht. und einiger floristischer Besonderheiten haben HARTL 1979 und WOLKINGER 1991 gegeben, eine genauere Darstellung mit pflanzensoziologischen Aufnahmen verdanken wir AICHINGER 1958. Die tieferen Teile des innersten Talbereiches sind der alpinen Stufe zuzuordnen, wobei rund um den Dösener See und an den südseitigen Hängen der Seealm bis etwa 2500 m typische Krummseggenrasen recht weit verbreitet sind. Darüber schließt die subnivale Stufe an, in der keine geschlossene Vegetationsdecke mehr existiert. Auf den weitflächigen Schuttakkumulationen herrschen abhängig von Fraktion, Stabilität und Alter des Substrats höhere Pionierpflanzen, Flechten oder in den Geländeteilen mit besonders kurzer Aperzeit auch gänzlich vegetationsfreie Flächen vor.

3.2. Das Forschungsprojekt 3.2.1. Projektkonzeption und -ablauf

Aus mehrjährigen Forschungen über Permafrost mittels Blockgletscherkartierung und Quelltemperatur- sowie BTS-Messungen erwuchs im Jahr 1990 die Anregung, in einem überschaubaren Testgebiet mit verfeinerten Methoden genauere Informationen über den Hochgebirgspermafrost zu bekommen. Als Partner für ein solches Vorhaben, das nur in Form eines größeren interdisziplinären Projektes realisierbar sein kann, wurde das Institut für Geophysik der Montanuniversität Leoben (F. WEBER) gewonnen. Das Projekt wurde unter dem Kurztitel "Hochgebirgspermafrost" am 23.11.1992 beim Fonds zur Förderung der wissenschaftlichen Forschung, Wien, eingereicht und am 17.5.1993 in vollem Umfang bewilligt, wofür den zuständigen Gremien des Fonds auch an dieser Stelle aufrichtiger Dank ausgesprochen wird. Die Projektleitung und -koordination oblag dem Institut für Geographie der Universität Graz (H. WAKONIGG), die fachlich-inhaltliche Bearbeitung, wie sie im folgenden präsentiert wird, erfolgte durch mich bzw. bei den geophysikalischen Arbeitsschritten durch R. SCHMÖLLER und R. FRUHWIRTH, Leoben.

Das Projekt Hochgebirgspermafrost sollte ursprünglich noch 1993 mit einer ersten großen Geländekampagne beginnen, doch war von Seiten der betreffenden Grundbesitzer keine Zustimmung hierfür zu erhalten, obwohl die Kärntner Landesregierung bereits einen

entsprechenden positiven Bescheid erlassen hatte. In der Folge zog sich eine mühevolle Verhandlung bis zum 26.3.1994 hin, als es der Projektleitung durch Vermittlung des Bürgermeisters der Gemeinde Mallnitz, W. ANGERMANN, gelang, die notwendige Genehmigung zu erreichen, wofür allen Beteiligten gedankt sei. Besonderer Dank gilt auch den im Vorwort genannten Projektmitarbeitern, denen auch oft außerordentliche Strapazen (Meßgeräte und sonstige Ausrüstung wurden getragen) nicht Freude und Engagement schmälern konnten, sowie den Wirtsleuten des Arthur-von-Schmidhauses.

Bis zu diesem Zeitpunkt wurden nur verschiedene Vorerhebungen durchgeführt, sodaß die projektspezifischen Arbeiten erst am 28.3.1994 mit einer dreitägigen Geländekampagne zur Messung der Basistemperatur der winterlichen Schneedecke (BTS) begannen. Im Anschluß daran konnte eine provisorische Verbreitungskarte des Permafrosts im Testgebiet hergestellt werden, die als Grundlage für die Planung der weiteren Arbeitsschritte fungierte. Im Mittelpunkt der sommerlichen Arbeiten in der Zeit zwischen 25. und 29.7.1994 stand die Aufnahme von 5 refraktionsseismischen Profilen, von denen 4 im größten zusammenhängenden Permafrost-körper des Testgebietes, dem Dösener Blockgletscher, lagen. Neben den zugehörigen Vermessungsarbeiten waren Quelltemperaturmessungen und ergänzende Kartierungen der Schuttformen Kernstücke des Rahmenprogrammes. Im September 1994 erfolgte noch eine als studentische Arbeitsexkursion am Institut für Geographie der Universität Graz organisierte Begehung mit Kontrollmessungen aller im Sommer kartierter Quellen. Nach dem ersten Jahr waren somit Aussagen über die Verbreitung des Permafrostes schon recht exakt, solche über Mächtigkeit und inneren Aufbau allerdings erst in Ansätzen möglich.

Die ersten Geländearbeiten im letzten Projektjahr fanden zwischen 5. und 7.4.1995 statt und umfaßten BTS-Messungen sowie Anlage, Vermessung und Aufnahme von 3 Georadar-Profilen. Die größte Geländekampagne wurde in der Zeit vom 20. bis 26.7.1995 abgewickelt, wobei zuerst ein weiteres refraktionsseismisches Längsprofil über den Dösener Blockgletscher gelegt wurde. Es folgten eine mehrtägige elektromagnetische Meßserie, die an 4 Profilen die Verhältnisse innerhalb und außerhalb des Permafrostbereiches erkundete, sowie Quell- und Bodentemperaturmessungen, die auch über das engere Untersuchungsgebiet hinaus erweitert wurden. Ein für September 1995 geplanter Kontrollmeßgang zu den Quellen mußte wegen der Schneelage entfallen, dennoch konnte das Projekt nach Beendigung der Auswertearbeiten im Herbst 1995 abgeschlossen werden.

In der Gesamtschau ist wohl die Aussage berechtigt, daß die ursprüngliche Konzeption des Projektes sich im Verlauf der Arbeiten bewährt hat und für die Klärung ähnlicher Fragestellungen wieder zur Anwendung kommen sollte. Ausgehend von der aus den Erhebungen zum Blockgletscherinventar (Kap.4) bekannten Tatsache, daß es im Testgebiet Permafrost gibt, wurde dieser in einem ersten Schritt möglichst flächendeckend kartiert (BTS). Hierauf konnten die interdisziplinären Detailuntersuchungen gezielt lokalisiert werden, wobei sich als lokaler Schwerpunkt der Forschungen der Dösener Blockgletscher anbot. Wie im folgenden gezeigt wird, bilden physisch-geographische und geophysikalische Arbeitsweisen insoferne eine ideale Ergänzung füreinander, als die erstgenannten die Erfassung der Verbreitung und die letztgenannten einen genaueren Einblick in den Charakter des Permafrostes erlauben (vgl. auch Kap.2.1). Als Fortsetzung dieses Projektes liefen auch geodätische und kartographische Forschungsaktivitäten (Kurztitel "Blockgletscher-Monitoring") des Instituts für Angewandte Geodäsie und Photogrammetrie der Technischen Universität Graz im Dösener Tal an (KAUFMANN 1996, in diesem Band), die die Beobachtung der raum-zeitlichen Veränderungen des Permafrostmilieus und insbesondere des Dösener Blockgletschers zum Ziel haben. Für die vorliegende Studie konnte die zu diesem Zweck von KAUFMANN hergestellte "Geomorphometrische Studienkarte" 1:5000 bereits verwendet werden.

3.2.2. Angewandte Methodik

Wie schon ausgeführt, wurde den Grundintentionen der gesamten vorliegenden Arbeit entsprechend (Kap.1) auch das Forschungsprojekt im Dösener Tal so konzipiert, daß eine möglichst große Zahl von Methoden zur Anwendung kam. Sie werden in diesem Kapitel kurz besprochen und kartographisch dargestellt, die Ergebnisse dann unter gemeinsamer Betrachtung aller Methoden in Kap.3.3 diskutiert.

In einem ersten Schritt erwies sich eine Kartierung der Bodenbedeckung als zweckmäßig, wobei innerhalb der vorherrschenden Schuttflächen eine stärkere geomorphologische Differenzierung vorgenommen wurde. Besonderes Augenmerk wurde natürlich den permafrostbedingten Schuttformen geschenkt, die in größerem Maßstab als im Block-gletscherinventar (Kap.4), welches im engeren Untersuchungsgebiet nur 3 intakte Blockgletscher (mo 237-239) enthält, durchgeführt wurde. Hierdurch konnten auch alle Blockschuttwülste (protalus ramparts) und blockgletscherartige Schuttformen (Beispiele in Abb.27) berücksichtigt werden. Die Kartierung erfolgte zuerst aus der Luftbildkarte Nationalpark Hohe Tauern 1:10000 (zu dieser vgl. Kap.4.1) und wurde dann durch die Auswertung stereoskopisch betrachtbarer Luftbilder des Bundesamtes für Eich- und Vermessungswesen, Wien, sowie besonders durch umfangreiche Geländebegehungen, die auch die benachbarten Karräume umfaßten, ergänzt. Die in Abb.19 wiedergegebene Darstellung ist eine auf die wesentlichen Grundzüge hin generalisierte Karte, die jedoch die permafrosttypischen Schuttformen vollständig beinhaltet.

Einen besonderen Aspekt innerhalb der Bodenbedeckung stellt die Frage der Schneebedeckung dar, gelten doch perennierende Schneeflecken als Permafrostzeiger (Kap.2.3.2). Die sommerliche Schneeverteilung ist einerseits für die verschiedenen Termine der zur Verfügung stehenden Luftbilder bekannt, andererseits wurden auch bei den jeweils hochund spätsommerlichen Besuchen des Gebietes zwischen 1993 und 1995 entsprechende Kartierungen und Fotodokumentationen durchgeführt, woraus die entsprechenden, stark generalisierten Eintragungen im Umkreis des Dösener Blockgletschers in Abb.28 abgeleitet werden konnten. Die in der Luftbildkarte 1:10000 von KAUFMANN 1996 (Beilage zu diesem Band) abgebildete Schneeverteilung entspricht gut dem mittleren Zustand zur Monatswende Juli/August in den Untersuchungsjähren 1993-95. Eine gedachte Linie, die die in der Karte sichtbaren Schneeflecken nach unten hin umhüllt, gibt gleichzeitig einen besseren Eindruck von der wahren Permafrostverbreitung als die spätsommerlichen Ausaperungszustände, bei denen die Schneeflecken nur mehr jene Stellen zeigen, an denen der Permafrostspiegel an der Geländeoberkante ausstreicht, und damit eine deutlich zu geringe Ausdehnung des Permafrostareals vortäuschen.

Große Bedeutung wurde auch der Kartierung von Quellen und der Temperaturmessung an diesen zuerkannt. Im engeren Untersuchungsgebiet sollte ursprünglich eine vollständige Quellkartierung alle vorhandenen Wasseraustritte erfassen, doch war es auf Grund der Witterungs- und Schneebedeckungsverhältnisse nicht möglich, dieses Vorhaben bei unseren Besuchen zu realisieren. Immerhin konnten 27 Quellen lokalisiert und gemessen werden, 19 davon zumindest zweimal, 6 sogar viermal, worüber Abb.21 und Tab.8 Auskunft geben. Damit konnte die schattseitige Talflanke zur Gänze und die sonnseitige immerhin bis in eine Höhe von 2500 m flächendeckend erfaßt werden, und außerdem wurden auch einige ergänzende Quelltemperaturmessungen in den benachbarten Gebieten vorgenommen. Die Temperaturwerte zeigen in den meisten Fällen eine relativ hohe Konstanz von Messung zu Messung, permafrosttypischen Temperaturbereich, und insbesondere im Wechsel von einer Temperaturklasse zur anderen kommen generell nur selten vor (Permafrost bei Temperaturen von 1°C oder darunter wahrscheinlich, bei solchen über 2°C unwahrscheinlich, dazwischen Unsicherheitsbereich, vgl. Kap.2.2.2), was die Aussagekraft dieser Methode für die Perma-

Abb.19: Oberflächentypen und Schuttformen im inneren Dösener Tal **Fig.19:** Surface types and talus features in the inner Dösen Valley

Legende zur Kart	e der Oberflächentyper	und Schuttformen
------------------	------------------------	------------------

	Charakter der Oberfläche	aktuelle gravitative Substratumlagerung	spätsommerliche Schneebedeckung	Bewuchs
::::	Spätglaziale Moränenakkumulation	keine	keine	meist flächendeckend alpine Grasheide
	Moränenwälle darin		1	
	Blockschuttareale wahr - scheinlich glazialer Herkunft in meist wenig geneigtem Gelände	(fast) keine	keine	starker Flechten - bewuchs
	geringmächtig mit Locker - material überdeckter Fels	keine	keine	überwiegend bewachsen (alpine Grasheide)
<u></u> 1	glazial polierte Schichtköpfe mit Schuttstreu	keine	zahlreiche Schneeflecken	überwiegend unbewachsen (Pioniervegetation)
	Felswände, Schrofenflanken	Steinschlag	keine	schattseitig fast keine, sonnseitig reichlich Pioniervegetation
27	Sturzschutt unter Felswänden	großteils aktive Schutthalden	vereinzelte Schneeflecken	überwiegend unbewachsen
	Blockschutt im Permafrost - milieu, Blockgletscher (mit Code im Inventar) und ver - wandte Formen Stirnböschungen darin	Kriechbewegungen, Stirnböschungen meist steinschlägig	zahlreiche Schneeflecken	unterschiedlich starker Flechtenbewuchs, vereinzelt Pionier - vegetation, off auch unbewachsen
	In - situ - Frostschutt der Hochlagen, mountain top detritus	geringfügig (nur in Hanglagen)	vereinzelte Schneeflecken	überwiegend unbewachsen

- Abb.20: Der Dösener Blockgletscher und die Mallnitzer Scharte von W, Aufnahmestandort: Wegtafel am Beginn des Reißeck-Höhenweges (2300 m) bzw. in deren Nähe, a) Aspekt im Spätwinter (Foto: LIEB, 17.5.1985), b) Aspekt im Hochsommer (Foto: LIEB, 22.7.1995)
- Fig.20: Dösen rock glacier and Mallnitzer Scharte from the West, a) in late winter, b) in midsummer

frostkartierung stützt. Fragliche Werte kommen durch wahrscheinlichen Kontakt der betreffenden Wässer mit Schneefeldern oder durch besonders geringe Schüttungen zustande, nicht meßbar waren Quellen unter Schnee (Altschneefelder im Hochsommer) oder versiegte Quellen (häufig im Spätsommer). Eine Quantifizierung der Schüttung wurde nicht vorgenommen, doch handelt es sich in den meisten Fällen um kleine Schuttquellen mit mittleren sommerlichen Schüttungsmengen um 1 l/sec, nur die große Quelle an der Stirn des Dösener Blockgletschers (Nr.20 in Abb.21 und Tab.8) hat eine um eine Größenordnung stärkere Schüttung. Im Zuge der Quelltemperaturmessungen am 26.7.1995 wurden auch Leitfähigkeitsmessungen durchgeführt, die an allen Quellen Werte unter 22 μ S (bezogen auf eine Temperatur von 25°C) ergaben und damit in einem für ein aus kristallinen Gesteinen aufgebautes Einzugsgebiet typischen Bereich liegen. Eine Interpretation dieser Leitfähigkeitswerte in Hinblick auf den Permafrost scheint nicht möglich zu sein, solange nicht genauere physikalisch-chemische Wasseranalysen vorliegen, wie sie etwa EVIN 1985 in den französischen Alpen durchgeführt hat.

Nr.	Höhe	Exp.	T-A	T-B	T-C	T-D	T-E	L-E	PF
1	2395	S	•	•	•	4,3	3,6	2,0	unw.
2	2405	SW	•	2,7	•		2,7	17,3	unw.
3	2275	S	•	•	•	5,7	5,5	21,2	unw.
4	2275	S	•	5,4	•	6,6	5,4	21,4	unw.
5	2550	S	•			1,3	-	-	mögl.
6	2555	SE	•	•		0,4	-	-	wsch.
7	2585	S		•	•	1,1	-	-	mögl.
8	2570	S		2,5	•		-	-	unw.
9	2600	SW		1,4	•	•	-	-	mögl.
10	2605	SW	•	0,9		•	-	-	wsch.
11	2675	SW	•	0,9	-		-	-	wsch.
12	2385	SW		4,0	-	-	6,8	7,6	unw.
13	2380	SW		4,4	5,4	-	5,0	13,2	unw.
14	2345	SW		4,2	4,9	6,0	3,2	9,0	unw.
15	2340	SW		3,6	4,3	6,4	3,8	9,2	unw.
16	2280	W		4,5			7,3	8,4	unw.
17	2275	SW		4,2		•	5,6	7,2	unw.
18	2360	NW	•	0,7	0,5	0,7	0,2	10,1	wsch.
19	2355	NW		0,6	0,6	1,1	0,2	9,9	wsch.
20	2340	W		1,7	1,8	1,6	1,6	11,1	mögl.
21	2355	NW	-	0,4	(0,1)	0,5	-	-	wsch.
22	2330	N	0,5	0,9	1,2	(2,5)	(0,3)	9,9	mögl.
23	2315	N	•	0,9	2,2	1,5	0,8	16,1	mögl.
24	2285	NE	(1,3)		(0,7)	4,8	-	-	unw.
25	2280	N	1,0	•	-	1,5	-	-	mögl.
26	2275	N	0,9		(0,0)	0,4	0,3	4,1	wsch.
27	2275	NE	•		(0,0)	0,6	(0,0)	-	wsch.

Tab.8: Ergebnisse der Quelltemperaturmessungen im inneren Dösener Tal **Tab.8:** Results of temperature measurement of the springs in the inner Dösen Valley

Anmerkungen: Alle Temperaturwerte (T) in °C, alle Leitfähigkeitswerte (L) in μ S bezogen auf 25°C. Die Nummern der Quellen entsprechen denen in Abb.21. Werte in () sind fraglich, "-" bedeutet, daß die Quelle nicht meßbar war, ".", daß keine Messung erfolgte. Bei der Interpretation der Permafrostverhältnisse (PF) bedeuten "wsch." wahrscheinlichen, "mögl." möglichen und "unw." unwahrscheinlichen Permafrost. Meßtermine: A = 22.7.1993, B = 16.-18.9.1993, C = 26.-28.7.1994, D = 13.-14.9.1994, E = 26.7.1995.

In der Zeit zwischen 22. und 25.7.1995 wurden auch einige einfache Messungen der Bodentemperatur zur Ermittlung von Bodentemperaturgradienten durchgeführt, mit deren Hilfe über Extrapolation die Lage der Permafrostoberfläche grob abgeschätzt werden kann (zur Methodik und Problematik Kap.2.2.2). Einige der Meßergebnisse sind, differenziert nach den 3 Substratkategorien Feinmaterial (vorherrschend sandig, untergeordnet auch schluffig), Grobblockschutt (Korngrößen mehrere Dezimeter bis Meter) und Anstehendes (Messung in Klüften des Granitgneises), in Abb.22 eingetragen und die entsprechenden Meßstellen in Abb.21 verortet. Auf Grund der ungünstigen Meßbedingungen sind nur im Feinmaterial Werte von für vernünftige Extrapolationen ausreichender Qualität vorhanden, wobei jedoch lineare Extrapolationen wahrscheinlich zu hohe Werte der Permafrostoberfläche ergeben. Dennoch signalisieren alle Daten Permafrost, dessen Oberfläche unter grobblockigem Schutt am tiefsten, an keiner beprobten Stelle offenbar jedoch tiefer als 3 m liegen dürfte. Hierbei ist jedoch zu beachten, daß es sich um hoch- und nicht um spätsommerliche Auftautiefen handelt, die in größerer Tiefe zu erwarten sind.

Abb.21: Lage der Quell- und Bodentemperaturmeßstellen im inneren Dösener Tal

Fig.21: Position of measurement sites of spring and soil temperatures in the inner Dösen Valley

Im Rahmen von zwei hochwinterlichen Besuchen des Gebietes wurden BTS-Messungen zur möglichst flächenhaften Erfassung der Permafrostverbreitung durchgeführt (vgl. Kap.2.2.3 und Abb.6). Zwischen 28. und 30.3.1994 wurde die Basistemperatur der winterlichen Schneedecke an 60, am 5.4.1995 an 16 Punkten (9 davon an Meßstellen vom Vorjahr) gemessen, deren Lagen in Abb.23 verzeichnet sind. Zum Zweck der übersichtlichen Präsentation der dabei gewonnenen Daten wurde das durch BTS-Messungen erfaßte Areal des inneren Dösener Tales in 6 Teilgebiete untergliedert, die sich jeweils durch spezifische Geländeeigenschaften und charakteristische BTS-Mittelwerte von den anderen unterscheiden (Abb.23, Tab.9). Die Mittel- und Extremwerte lassen dabei schon Gebiete mit wahrscheinlichem Auftreten von Permafrost (I, III, IV) gegenüber permafrostfreien (II, V) sowie einen Bereich mit unsicherer Information (VI) erkennen. Weiters zeigt Tab.9 verschiedene Besonderheiten der einzelnen Teilgebiete auf; so läßt sich beispielsweise die trotz geringer Höhenlage tiefe mittlere BTS des Gebietes III zwanglos mit der in schattseitiger Hangfußlage großen Horizontüberhöhung erklären. Eine andere Beobachtung ist etwa die, daß alle Teilgebiete, in denen nach Abb.19 Grobblockschutt vorherrscht (I, III, IV) keine positiven BTS-Werte aufweisen, was zur Feststellung von Kap.2.2.3 paßt, daßgrobblockiges Substrat (auch außerhalb des Permafrostes)

Abb.22:

Ergebnisse von Bodentemperaturmessungen in verschiedenen Tiefen (22.-25.7.1995) im inneren Dösener Tal **Fig.22:**

Results of ground temperature measurement in different depths (22.-25.7.1995) in the inner Dösen Valley

zu tieferen BTS neigt. Darüberhinaus wurde, um die in Kap.2.2.3 bereits diskutierten Beziehungen der BTS zu den anderen bei den Meßkampagnen erhobenen Daten zu prüfen, das gesamte Datenkollektiv einer Korrelationsanalyse unterzogen, die jedoch keine statistisch signifikanten Beziehungen zwischen den Größen Hangneigung, Schneehöhe, Seehöhe und BTS ergab, weshalb an dieser Stelle auf eine nähere Präsentation verzichtet wird. Auch eine Differenzierung der BTS-Schwellenwerte für die Zuordnung zu den 3 Klassen (Permafrost wahrscheinlich, möglich, unwahrscheinlich) nach der Schneehöhe, wie sie KING 1984 zeigen konnte, war aus den Daten nicht zu erkennen.

Wie in Kap.3.2.1 schon ausgeführt, kamen aus dem Instrumentarium geophysikalischer Methoden in beiden Projektjahren Refraktionsseismik (Abb.24) und im zweiten Jahr Georadar sowie Elektromagnetik zum Einsatz. Alle Arbeiten wurden entlang von tachymetrisch eingemessenen Profilen ausgeführt, deren Kenndaten in Tab.10 zusammengestellt sind und deren Lagen aus Abb.25 entnommen werden können. Wie diese Abbildung zeigt, lag der Schwerpunkt der Untersuchungen auf dem Dösener Blockgletscher, während außerhalb davon nur ein Profil auf dem Blockgletscher südl. des Dösener Sees (mo 239) mit allen drei Methoden untersucht wurde. Aus logistischen Gründen war es nicht möglich, geophysikalische Untersuchungen wie ursprünglich geplant im Spätsommer, also möglichst nahe am Zeitpunkt der theoretisch tiefsten Lage der Permafrostoberfläche, durchzuführen, was insbesondere bei der Interpretation der Auftautiefe zu berücksichtigen ist. Die Georadar-Messungen wurden im Hochwinter durchgeführt, um den störenden Einfluß von Schmelzwasser ausschließen zu können. Für die Details der technischen Abwicklung der Messungen sowie die bei der Datengewinnung und -auswertung aufgetretenen Probleme wird auf den Beitrag von SCHMÖLLER & FRUHWIRTH 1996 (in diesem Band) verwiesen.

Gebiet	I	II		IV	V	VI	Gesamt
AH-m	2314 m	2328 m	2384 m	2474 m	2574 m	2802 m	2480 m
AH-s	17,5 m	44,9 m	36,5 m	70,7 m	107,4 m	118,5 m	185,5 m
HO-m	36,2°	31,6°	42,3°	30,5°	20,8°	1,2°	26,7°
HO-s	5,5°	5,1°	3,1°	5,9°	4,7°	2,4°	13,6°
HN-m	10,7°	14,8°	25,0°	14,9°	23,9°	17,0°	16,9°
HN-s	5,5°	6,7°	3,1°	6,7°	13,1°	11,1°	10,0°
SH-m	217 cm	235 cm	225 cm	198 cm	250 cm	237 cm	225 cm
SH-s	43 cm	60 cm	45 cm	52 cm	52 cm	53 cm	52 cm
BTS-m	-2,97°C	-0,25°C	-4,31°C	-4,51°C	-1,65°C	-2,30°C	-2,66°C
BTS-s	1,26 K	0,74 K	1,39 K	0,98 K	1,20 K	1,34 K	1,85 K
BTS-max	-0,4°C	+1,1°C	-2,1°C	-2,8°C	+0,4°C	+0,1°C	+1,1°C
BTS-min	-4,5°C	-1,3°C	-6,3°C	-6,3°C	-3,7°C	-4,2°C	-6,3°C
n	13	11	7	14	11	11	67

Tab.9: Kenndaten der BTS nach den Teilgebieten des inneren Dösener Tales in Abb.23**Tab.9:** Characteristic data of BTS according to the areas of Fig.23 in the inner Dösen Valley

Anmerkungen: m = arithmetischer Mittelwert; s = Standardabweichung; max = Maximum; min = Minimum; n = Anzahl der Meßpunkte; AH = absolute Höhe; HO = Horizontüberhöhung in Richtung S; HN = Hangneigung; SH = Schneehöhe; BTS = Basistemperatur der winterlichen Schneedecke. Für die in beiden Jahren gemessenen Punkte wurden die Mittelwerte von SH und BTS der Berechnung und der Darstellung in Abb.23 zu Grunde gelegt.

Abb.23: Lage der BTS-Meßstellen im inneren Dösener Tal

Fig.23: Position of the sites of BTS-measurement in the inner Dösen Valley

- Abb.24: Refraktionsseismische Messung auf dem Dösener Blockgletscher. Links ist das Registriergerät erkennbar, weiters kommt die grobblockige Oberfläche des Blockgletschers gut zur Geltung (Foto: LIEB, 27.7.1994).
- Fig.24: Refraction seismic measurement on Dösen rock glacier (note the bouldery surface)

Tab.10: Kenndaten der geophysikalischen Meßprofile im inneren Dösener Tal **Tab.10:** Data of the geophysical transect measurements in the inner Dösen Valley

Methode	Profil (Abb.25)	Datum	Länge	Höhenbereich	Lage
Seismik	MA 9401	26.7.1994	115 m	2307-2333 m	Blgl. mo 239
	MA 9402	27.7.1994	115 m	2434-2439 m	Dösener Blgl.
	MA 9403	28.7.1994	110 m	2407-2435 m	Dösener Blgl.
	MA 9404	28.7.1994	115 m	2476-2484 m	Dösener Blgl.
	MA 9405	29.7.1994	115 m	2477-2495 m	Dösener Blgl.
	MA 9501	21.7.1995	240 m	2420-2495 m	Dösener Blgl.
Georadar	DT 9501	6.4.1995	180 m	2373-2317 m	Blgl. mo 239
	DT 9502	6.4.1995	140 m	2457-2474 m	Dösener Blgl.
a	DT 9503	6.4.1995	150 m	2495-2498 m	Dösener Blgl.
Elektro-	EM 9501	23.7.1995	115 m	2307-2333 m	Blgl. mo 239
magnetik	EM 9502	24.7.1995	480 m	2379-2495 m	Dösener Blgl.
, ,	EM 9503	25.7.1995	150 m	2441-2446 m	Dösener Blgl.
	EM 9504	25.7.1995	130 m	2345-2385 m	E Dös. See

Anmerkungen: Lage der Profile siehe Abb.25. Die Längen- und Höhenangaben sind provisorische Werte und auf ganze Zahlen gerundet. Blgl. = Blockgletscher, Blgl.-Nummer vgl. Abb.19.

Abb.25: Lage der geophysikalischen Meßprofile im inneren Dösener Tal **Fig.25:** Position of geophysical transect measurements in the inner Dösen Valley

3.3. Ergebnisse

3.3.1. Blockgletscher und verwandte Schuttformen

Die neben den drei im Blockgletscherinventar enthaltenen Blockgletschern im inneren Dösener Tal noch vorhandenen Blockschuttwülste und blockgletscherartig verformten Schuttareale sind in Abb.19 eingetragen. Sie alle enthalten nach den vorliegenden, in Kap.3.2.2 präsentierten Informationen Permafrost, wenn auch einige von ihnen als inaktive Formen anzusprechen sind. weil sie auf den inselhaft vorkommenden Feinmaterialpartien zusammenhängende Flecken von Pioniervegetation tragen. Ein Beispiel hierfür stellt der (möglicherweise einer Felskuppe aufliegende) Schuttwulst südl. der Stirn des Dösener Blockgletschers dar (Lage des südl. Endpunktes der Steinreihe in Abb.28). Bei den beiden einzigen, an der nördlichen Talseite gelegenen Blockgletschern (mo 237 unter dem Großfeldspitz und der Lobus am Fuß der Schutthalden südwestl. unter dem Säuleck) waren offensichtlich Felsstürze an der Bereitstellung des unter Permafrostbedingungen in Bewegung geratenen Materials beteiligt. Eine unmittelbare Beziehung zu Moränen ist bei keinem der Blockgletscher nachweisbar, wenn auch in den breiten Lobus südl. des Dösener Sees (mo 239) neben dem sicher vorherrschenden Schutt aus dem Hintergehänge auch spätglaziale Moräne eingearbeitet sein dürfte. Auch der große Dösener Blockgletscher (mo 238) bezieht seine Schuttmassen, wie die Geländekonfiguration klar zeigt, zum weitaus überwiegenden Teil aus dem Schuttsaum am Fuß der schattseitigen Felswände des Verbindungskammes Dullater Nock-Dösener Spitz und entspricht somit wie auch die anderen Blockgletscher des inneren Dösener Tales dem Typ eines "talus rockglacier" nach BARSCH 1992, 177. Wenn sich bei den postglazial-neuzeitlichen Gletscherhochständen ein Gletscher westl. unterhalb der Mallnitzer Scharte gebildet haben sollte (was, wie bei Kap.3.1. schon erwähnt, unwahrscheinlich, jedenfalls aber unsicher ist), so blieb dieser sicher nur von sekundärer Bedeutung als "Lieferant" von Schuttmaterial für den Blockgletscher.

- Abb.26: Blick vom Dullaten Nock (2656 m) nach ENE auf den Dösener Blockgletscher, auf dem die hochsommerliche Schneeverteilung die Strukturen der Oberfläche besonders gut zur Geltung bringt; darüber in der Bildmitte der Gr. Gößspitz, rechts davon die Mallnitzer Scharte (Foto: LIEB, 25.7.1995).
- Fig.26: View from Dullater Nock (2656 n) in ENE direction towards Dösen rock glacier (the snow pattern of midsummer shows the surface structures very well)

- Abb.27: Tiefblick vom Säuleck (3086 m) nach SSE auf den Dösener Blockgletscher und sein schattseitiges Schutteinzugsgebiet mit den dem Blockgletscher benachbarten selbständigen Blockschuttwülsten, rechts der Dullate Nock (Foto: LIEB, 29.7.1994).
- Fig.27: View down from Säuleck (3086 m) in SSE direction onto Dösen rock glacier (and neighbouring protalus ramparts)

Tab.11: Flächen des Dösener Blockgletschers nach Höhenstufen

 Tab.11: Areas of Dösen rock glacier according to elevational intervals

Höhenstufe (m)	Fläche (ha)	Fläche (%)	FlSumme (ha)	FlSumme (%)
2600-2640	6,27	15,5	40,47	100,0
2550-2600	5,15	12,7	34,20	84,5
2500-2550	5,27	13,0	29,05	71,8
2450-2500	12,42	30,7	23,78	58,8
2400-2450	7,83	19,4	11,36	28,1
2350-2400	3,43	8,5	3,53	8,7
2340-2350	0,10	0,2	0,10	0,2

Dieser Dösener Blockgletscher (mo 238) soll nun als das "Herzstück" der Permafrost-Landschaft des inneren Dösener Tales etwas genauer vorgestellt werden. Hierzu dient als erstes die Tab.11, welche die hypsographischen Grunddaten des eigentlichen Blockgletschers (d.h. ohne Einbeziehung des schuttliefernden Hintergehänges) beinhaltet. Aus diesen Daten errechnet sich über die hypsographische Kurve die mittlere Höhe der Blockgletscher-Oberfläche zu 2498 m. Wie die Abb.26 und 27 sowie die zum Beitrag von KAUFMANN 1996 (in diesem Band) gehörigen Karten zeigen, ist ein erstes wichtiges Charkteristikum ein prachtvoll entwickelter Formenschatz der Blockgletscher-Oberfläche mit einer reichen Gliederung in Hohlund Vollformen (Abb.28), die teils längs, teils quer zur Bewegungsrichtung orientiert sind und die Bewegungsdynamik des Blockgletschers ausgezeichnet visualisieren (solche Formen werden nach HAEBERLI 1985, 93, als Ausdruck des Fließverhaltens im Sinne von compressing und extending flow interpretiert). Die Oberfläche des Blockgletschers besteht fast zur Gänze aus sehr grobblockigem Schutt (Blockdurchmesser im Normalfall um einen Meter, fallweise mehrere Meter; Abb.24 und 29), was die Begehung sehr erschwert. Nur in wenigen Abschnitten ist feineres Material (Kies- und Sandfraktion) angereichert, auf dem sich vereinzelt Pioniervegetation angesiedelt hat. Noch seltener sind schließlich jene Stellen, an denen das

Substrat so weit konsolidiert ist, daß sich eine dünne Rohbodenschicht und auf dieser eine auf kleinen Flächen (Größenordnung 1 m²) geschlossene Vegetationsdecke entwickeln konnte. An diesen in Abb.28 aus Maßstabsgründen zu groß eingetragenen Stellen kommen neben den charakteristischen Pionierpflanzen der subnivalen Stufe (am Dösener Blockgletscher besonders häufig Cerastium uniflorum, Oxyria digyna und Saxifraga bryoides) auch einige etwas anspruchsvollere Arten aus dem Übergangsbereich zur alpinen Stufe (z.B. Primula glutinosa, Saponaria pumila, Phyteuma globularifolia sowie verschiedene Gräser wie etwa Oreochlea disticha) vor. Auch die im Stirnbereich 40° steile und maximal 45 m hohe Randböschung (Abb.28, 29) ist nicht völlig steril, sondern zeigt insbesondere im Fallschatten größerer Blöcke Pionierpflanzen der subnivalen Stufe, an keiner Stelle jedoch zusammenhängende Vegetationsflecken. Die Blöcke auf der Blockgletscheroberfläche besitzen einen meist starken Bewuchs mit verschiedenen Flechten, weithin frei von diesen bleiben nur die lange schneebedeckten Hohlformen sowie die Randböschungen.

In Abb.28 sind Schneeverteilungen eingetragen, die für die 3 Beobachtungsjahre jeweils für den Hoch- und den Spätsommer repräsentativ sind. Sie zeichnen einerseits die größten der Hohlformen auf dem Blockgletscher und die beiden Verflachungen im Längsprofil (Abb.31), andererseits im besonderen die den Blockgletscher nach außen scharf begrenzenden Randtälchen nach. Dabei ist am nördlichen (orographisch rechten) Blockgletscherrand der steile Außenhang an mehreren Stellen mit solchen perennierenden Schneefeldern etwas abgeflacht und erniedrigt, wofür Nivationsprozesse verantwortlich sein könnten (Abb.29). Wie schon erwähnt, entspricht der Charakter der Randböschung dem für aktive Blockgletscher üblichen, und auch eine die Blockgletscherstirn umgebende geschlossene Schuttschürze, wie sie für inaktive Blockgletscher als typisch gilt (BARSCH & ZICK 1988, 405), ist nur über ein kleines Stück im Bereich der Blockgletscher-Hauptquelle (Nr.20 in Abb.21) entwickelt.

Um die Bewegungsdynamik des Blockgletschers als Ausdruck seiner Aktivität zu überprüfen, wurde 1994 auch die in Abb.28 eingetragene Steinlinie angelegt und im Jahre 1995 nachgemessen, wobei in Ermangelung wirklich guter Fixpunkte für die tachymetrische Vermessung nur eine beschränkte Genauigkeit erreichbar war. Somit hat der registrierte mittlere Bewegungsbetrag von 19 cm (23 Steine, Profillänge 242 m, maximale Bewegung 30 cm) nur den Stellenwert einer orientierenden Größe, die aber doch zum einen an der Aktivität des Blockgletschers keinen Zweifel läßt und zum anderen in ihrer Größenordnung ausgezeichnet mit den von KAUFMANN 1996 (in diesem Band) mitgeteilten, aus dem Vergleich von Luftbildern verschiedenen Alters gewonnenen Daten übereinstimmt. Diese lassen auch eine Verringerung der Oberflächenbewegung von der Periode 1954 bis 1975 auf die Periode 1975 bis 1993 erkennen, was ebenfalls im Einklang mit den Verhältnissen auf vielen anderen Blockgletschern steht (Kap.2.4.2). Mit den 1995 begonnenen exakten Vermessungsarbeiten sollten ab 1996 detaillierte Einblicke in das Bewegungsverhalten des Blockgletschers möglich sein.

Der Permafrost des Blockgletschers konnte bei den für die übrigen Arbeiten notwendigen zahlreichen Begehungen mehrfach in kleinen Aufschlüssen, in der Regel in Senken der Oberfläche, direkt beobachtet werden, wobei er häufig als Wasserstauer für kleine Gerinne fungierte (vgl. hierzu auch TENTHOREY 1992, 251). Damit ist schon die Frage nach der Auftautiefe angesprochen, welche mit Hilfe der Refraktionsseismik am genauesten bestimmbar ist. Nach den Ausführungen von Kap.3.3.3 kann dieAuftautiefe im Mittel aller seismischen Profile auf dem Dösener Blockgletscher mit rund 4,5 m angegeben werden, welcher Wert auffallend hoch erscheint, obwohl bei den hochsommerlichen Messungen noch gar nicht die maximale Auftautiefe registriert wurde. Aus diesem Grund wurden in Ergänzung dazu auch die Auftautiefen nach der Regressionsgleichung von HAEBERLI & PATZELT 1983, 145, unter Verwendung der auf dem Blockgletscher gelegenen BTS-Meßwerte berechnet und in Abb.28 eingetragen. Der daraus ermittelte Durchschnittswert beträgt nur 3,3 m (n=15) und weicht damit stark von der seismisch bestimmten Auftautiefe ab. Diese Diskrepanz kann teilweise

Abb.28: Permafrostrelevante Erscheinungen und Physiognomie des Dösener Blockgletschers **Fig.28:** Permafrost features and configuration of Dösen rock glacier

 \leftarrow

mit der ungleichen Lage von BTS-Meßpunkten und seismischen Profilen, mit der Unterschiedlichkeit der Methoden sowie der vielleicht mangelnden Allgemeingültigkeit der verwendeten Regressionsgleichung erklärt werden, doch muß diese Frage beim gegenwärtigen Kenntnisstand offen bleiben (weitere Überlegungen hierzu in Kap.3.3.3). Immerhin passen die Werte von Abb.28 gut zu denen von anderen aktiven Blockgletschern (z.B. BARSCH 1973) und zeigen in ihrer Anordnung auf dem Blockgletscher eine gewisse Regelhaftigkeit in der Weise, daß sie von S nach N und von W nach E abnehmen. Dies stimmt durchaus mit den Beobachtungen in den genannten Aufschlüssen und im Umkreis der perennierenden Schneefelder im östl. (oberen) Teil des Blockgletschers überein, wo die Oberkante des Permafrostes im Spätsommer weitflächig in geringer Tiefe (je nach Distanz von den Schneefeldern in einigen Dezimetern bis etwa 1,5 m) der unmittelbaren Beobachtung zugänglich ist (Eintragung "Eis oberflächennah" in Abb.31). Wenn also für diese Abnahme der Auftautiefen nach E vor allem die in dieser Richtung zunehmende absolute Höhe verantwortlich sein dürfte, so ist es für die Abnahme nach S der schon in Kap.3.2.2 beschriebene Effekt der Permafrostgunst in den gut beschatteten nordseitigen Hängen. Somit liegen die größten Auftautiefen - neben vereinzelten Blockwülsten inmitten des Blockgletschers bevorzugt an seinem nördlichen (rechten) Rand, wo zumindest ein BTS-Wert auch schon den Übergang zu inaktivem Permafrost signalisiert.

- Abb.29: Nördlicher Rand des Dösener Blockgletschers, gesehen von 2380 m in südöstl. Blickrichtung. Zu beachten ist die grobblockige Oberfläche des Blockgletschers und das am steinschlägigen Außenhang aufgeschlossene Feinmaterial (Foto: LIEB, 27.7.1994).
- Fig.29: Northern margin of Dösen rock glacier, seen in SE direction. Note the character of the surface and the marginal slope.

Von Interesse sind schließlich noch die hydrographischen Verhältnisse, die zwar im Detail noch nicht untersucht wurden, über die aber doch vorläufige Aussagen getätigt werden können. Auffällig ist zunächst die mittlere Temperatur der großen Blockgletscherquelle (Nr.20 in Abb.21), die nach Tab.8 mit 1,5°C (im Gegensatz zu ihren ebenfalls unmittelbar aus dem Blockgletscher entspringenden Nachbarquellen 18, 19 und 21) nicht in der permafrost-typischen Temperaturklasse liegt. In diesem Zusammenhang ist auch eine unmittelbar im Bachbett unterhalb der Blockgletscherstirn in 2325 m Höhe im Rahmen der Meßkampagne

1994 durchgeführte BTS-Messung interessant, die einen Wert von +1,1°C ergab. Solch hohe Werte scheinen nach den Erfahrungen aus den anderen Untersuchungsgebieten (vgl. Kap.2.2.3) nur in wassergesättigtem Untergrund oder überhaupt in unter der Schneedecke fließenden Gerinnen möglich zu sein. Dadurch wird wahrscheinlich gemacht, daß dieser Bach auch im Winter fließt (durch eine Grabung konnte dies wegen der Schneehöhe von 3 m nicht nachgewiesen werden). Da im Hochwinter an der Oberfläche des Permafrostkörpers keine Abschmelzung stattfinden kann, handelt es sich entweder um Wasser aus einem ungefrorenen Grundwasserkörper unterhalb des Blockgletscher-Permafrostes oder um Schmelzwasser aus den umliegenden permafrostfreien Arealen, das aber ebenso seinen Weg als Subpermafrostwasser nehmen müßte (vgl. dazu etwa HAEBERLI et al. 1988). Für diese zweite Möglichkeit bieten sich die über die Seewände herabfließenden (bzw. -stürzenden) Gerinne an, die möglicherweise wohl auch im Winter episodisch fließen könnten. Im Sommer jedenfalls entspringen diese Wässer aus Schneefeldern am Fuße des Säulecks, erwärmen sich in mehrere hundert Meter langem Lauf in permafrostfreiem Gelände und versickern am Rande des nördl. (rechten) Blockgletscher-Randtälchens. Auch die elektromagnetischen Meßergebnisse legen die Existenz ungefrorenen, durchfeuchteten Substrates unterhalb des Permafrostkörpers nahe (SCHMÖLLER & FRUHWIRTH 1996, in diesem Band). Somit scheint eine Entwässerung unter dem Permafrostkörper doch sichergestellt, und die etwas höhere Temperatur der Hauptquelle könnte u.a. aus der Mischung der Wässer verschiedener Herkunft im Subpermafrostmilieu erklärt werden. Eine genauere hydrologische Bearbeitung dieser Gegebenheiten unter Einbindung von Markierungsversuchen etwa nach dem Vorbild von TENTHOREY 1992 ist in näherer Zukunft geplant.

3.3.2. Die horizontale und vertikale Verbreitung des Permafrostes

Die Karte der Permafrostverbreitung (Abb.30) wurde in erster Linie auf Grund der Ergebnisse der morphologischen Kartierung, der Boden- und Quelltemperaturmessungen sowie insbesondere der BTS-Messungen erstellt. Die geophysikalischen Messungen boten hierzu nur ergänzende Informationen, weil sie ja erst nach Vorliegen der Ergebnisse der ersten BTS-Meßkampagne speziell innerhalb des potentiellen Permafrostareals lokalisiert wurden und daher nicht für die grundsätzliche Feststellung von Permafrost Verwendung fanden. Während alle geophysikalischen Profile auf dem Dösener Blockgletscher erwartungsgemäß das Vorhandensein von Permafrost erhärteten (d.h. daß ihre Ergebnisse ohne Permafrost nicht erklärbar wären, vgl. Kap.3.3.3) und das Elektromagnetikprofil EM 9504 gezielt in permafrostfreies Areal gelegt wurde, ergaben sich doch an dem mit allen drei geophysikalischen Methoden untersuchten Profil auf dem Blockgletscher mo 239 (Abb.25) Mischinformationen, die in diesem Bereich die Existenz von Permafrost zwar nahelegen, aber doch nicht ganz so sicher belegt erscheinen lassen. Das Problem liegt darin, daß die seismischen Geschwindigkeiten in der dritten Schicht am Profil MA 9401 sowohl die Interpretation als gefrorener Schutt als auch als stark klüftiger Felsuntergrund erlauben. Da die Mehrzahl der Argumente jedoch für Permafrost spricht - im besonderen entsprechen die Ergebnisse des elektromagnetischen und des Georadar-Profiles denen vom Dösener Blockgletscher ganz ausgezeichnet -, wurde das betreffende Gebiet in Abb.30 dennoch der Kategorie "Permafrost wahrscheinlich" (siehe unten) zugeordnet.

Für die Erstellung einer Permafrostkarte sind, wie in Kap.2.2.3 schon erwähnt, die BTS-Meßergebnisse die wichtigste Grundlage, weil sie die größte räumliche Informationsdichte bieten. Die Karte unterscheidet in Anlehnung an die bei BTS- und Quelltemperaturmessungen üblichen Klassen zwischen Gebieten mit möglichem und wahrscheinlichem Auftreten von Permafrost, wobei in Zweifelsfällen in die erste Kategorie klassifiziert und somit eher eine minimale Verbreitung des Permafrosts zur Darstellung gebracht wurde. Im Bereich des Dösener Blockgletschers und der schattseitigen Flanke des Gratzuges Dullater Nock-Dösener Spitz (Teilgebiete III und IV in Abb.23) wäre auch an die Einführung einer Kategorie "Permafrost sicher" zu denken, weil in diesem Areal außer zwei BTS-Werten über -3°C und den in Kap.3.3.1 beschriebenen Vegetationsflecken alle Hinweise für die Existenz von flächendeckendem Permafrost sprechen. Die Felswände wurden nicht klassifiziert, weil aus ihnen mit Ausnahme zweier Bodentemperaturmessungen vom Fuß der Nordwand des Dullaten Nock (Abb.21 und 22) keine Informationen vorliegen. Man kann jedoch aus dem generellen Verbreitungsbild des Permafrostes die Vermutung ableiten, daß die schattseitigen Wandpartien weithin ganzjährig gefroren bleiben, während dies für die sonnseitigen wenn überhaupt, so nur im Niveau des höchsten Gipfels, des Säulecks, erwartet werden kann.

Abb.30: Die Verbreitung des Permafrostes im inneren Dösener Tal (Erläuterungen im Text) **Fig. 30:** The distribution of permafrost in the inner Dösen Valley

Für das außerhalb der Felswände und des Dösener Sees gelegene Areal (236,65 ha, das sind 76,6 % des gesamten, in Abb.30 umgrenzten Testgebietes) wurde eine Auswertung der Flächenanteile des Permafrostes bzw. der drei Kategorien permafrostfrei, Permafrost möglich und Permafrost wahrscheinlich nach Höhenstufen durchgeführt, deren Ergebnisse Tab.12 beinhaltet. Diese ist mit Tab.7 vergleichbar, beruht aber im Unterschied zu jener auf der Kartierung der "realen" und nicht bloß der potentiellen Verbreitung des Permafrostes, wobei der Einfachheit halber für die folgenden Ausführungen in der Kategorie "Permafrost wahrscheinlich" die Existenz von Permafrost als (mit den gewählten Untersuchungsmethoden) gesichert gelten kann. Demnach nimmt der Permafrost eine Fläche von 62,57 ha oder 26,4 % ein, und auf weiteren 41,11 ha oder 17,4 % ist Permafrost zumindest möglich. Bei der Beurteilung dieses Gesamtbildes ist jedoch zu beachten, daß der überproportionale Flächenanteil des südl. Expositionsbereiches, der allein 146,41 ha oder 61,9 % des Areals einnimmt (Ursache hierfür sind die geräumigen Verflachungen der Seealm), die Statistik ein wenig zugunsten der Kategorie "Permafrost unwahrscheinlich" verzerrt.

Im Detail sind die Angaben von Tab.12 deshalb von Interesse, weil für jede Höhenstufe expositionsspezifische Flächenanteile des Permafrostes abgelesen und damit Zuordnungen zu

den Permafrosttypen sporadisch und diskontinuierlich (Kap.1) getroffen werden können. Im nördl. Expositionsbereich wird bereits in der Höhenstufe zwischen 2300 und 2400 m der Schwellenwert für diskontinuierlichen Permafrost (50 % der Fläche) überschritten, und zwischen 2500 und 2700 m sind die schattseitigen Lagen überhaupt flächendeckend von Permafrost unterlagert. Dies ist freilich topographisch und substratbedingt und darf nicht als unterer Teil der Höhenstufe kontinuierlichen Permafrostes aufgefaßt werden (wie nicht zuletzt der wieder abnehmende Flächenanteil in der Höhenstufe 2700-2800 m zeigt). In südl. Auslagen kann nach Tab.12 erst ab einer Höhe von 2900 m von diskontinuierlichem Permafrost gesprochen werden, doch wird der unmittelbare Vergleich mit den Schattseiten im inneren Dösener Tal durch deren völlig unterschiedliche naturräumliche Ausstattung erschwert (Abb.19). Auch aus dem regionalen Vergleich (hierzu am besten Abb.14 und Tab.7) gewinnt man den Eindruck, daß im Testgebiet die Untergrenze des diskontinuierlichen Permafrostes in den Sonnseiten etwas zu hoch liegt. Die neutralen Lagen, die fast ausschließlich durch die W-Exposition repräsentiert werden, nehmen jedenfalls die erwartete Mittelstellung zwischen den beiden anderen Expositionsbereichen ein.

3.3.3. Permafrosteigenschaften und -mächtigkeit

Für die Beschreibung der Permafrosteigenschaften, also die Frage nach dem Charakter des am Aufbau des gefrorenen Schuttkörpers beteiligten Substrates, wurden die vorliegenden Ergebnisse der geophysikalischen Messungen herangezogen. Wie in Kap.2.2.4 schon erläutert, liefern von den angewandten Methoden die refraktionsseismischen Messungen die in Hinblick auf Permafrost am besten interpretierbaren Daten, weil in der einschlägigen Literatur eine Fülle an für Analogieschlüsse geeigneten Angaben (vgl. Tab.5 und als Beispiel einer besonders umfangreichen Datensammlung BARSCH 1973) zur Verfügung steht. Dennoch muß den folgenden Ausführungen vorausgeschickt werden, daß theoretisch eine wirklich sichere Interpretation der seismischen und übrigen geophysikalischen Meßwerte nur bei Vorhandensein wenigstens einer Bohrung in jedem homogenen Meßfeld (der Dösener Blockgletscher könnte als ein solches aufgefaßt werden) möglich wäre.

Höhe (m)	2200-	2300-	2400-	2500-	2600-	2700-	2800-	2900-	3000-	gesamt
	2300	2400	2500	2600	2700	2800	2900	3000	3086	
N-u	4,33	6,73	0,10	-	-	-	•	•	•	11,16
N-m	-	5,00	-,	-	-	0,79	•	•		5,79
N-w	1,11	16,14	12,38	9,70	3,94	5,00	•	•		48,27
N-w%	20,4	57,9	99,2	100	100	86,4	•		•	74,0
S-u	5,58	13,34	14,91	42,81	24,24	5,89	-	-	-	106,77
S-m	-	-	-	0,64	18,54	9,05	3,62	1,37	-	33,22
S-w	-	0,35	-	0,09	2,21	0,58	0,23	1,90	1,06	6,42
S-w%	-	2,5	-	0,2	4,9	3,7	6,0	58,1	100	4,4
EW-u	4,92	6,00	0,83	2,62	0,57	0,10	-			15,04
EW-m	-	-	-	-	0,92	0,87	0,31	•		2,10
EW-w	-	0,39	1,14	0,12	0,99	2,90	2,34	•		7,88
EW-w%	-	6,1	57,9	4,4	39,9	74,9	88,3	•		31,5
G-u	14,83	26,07	15,84	45,43	24,81	5,99	-	-	-	132,97
G-m	-	5,00	- .	0,64	19,46	10,71	3,93	1,37	-	41,11
G-w	1,11	16,88	13,52	9,91	7,14	8,48	2,57	1,90	1,06	62,57
G-w%	7,0	35,2	46,0	17,7	13,9	33,7	39,5	58,1	100	26,4
G-alles	15,94	47,95	29,36	55,98	51,41	25,18	6,50	3,27	1,06	236,65

Tab.12: Die Permafrostverbreitung im inneren Dösener Tal nach Höhenstufen und Expositionsbereichen **Tab.12:** The distribution of permafrost in the inner Dösen Valley according to elevation and aspect

Anmerkungen: Alle absoluten Flächenangaben in ha, alle relativen in Prozenten. N = nördl. Expositionsbereich (NW, N, NE), S = südl. Expositionsbereich (SE, S, SW), EW = neutraler Expositionsbereich (E, W); u = Permafrost unwahrscheinlich, m = Permafrost möglich, w = Permafrost wahrscheinlich (nach Abb.30). w% = Angabe des Flächenanteils der Kategorie "Permafrost wahrscheinlich" an der Gesamtfläche der Höhenstufe im betreffenden Expositionsbereich.

Alle seismischen Profile auf dem Dösener Blockgletscher (MA 9402 bis 9405, MA 9501) zeigen insoferne dasselbe Bild, als sich jeweils im wesentlichen dieselben, durch bestimmte seismische Geschwindigkeiten charakterisierten Schichten voneinander abgrenzen lassen. In einem ersten Überblick kann man zwei Schichten unterscheiden, in deren Grenzbereich an einigen Profilen eine weitere Schicht nachweisbar ist. Für die folgenden Ausführungen werden sie von oben nach unten numeriert.

<u>Schicht 1</u>: Sie bildet die oberste, in den ersten 1 bis 3,5 m am klarsten entwickelte Schicht des Blockgletschers und weist seismische Geschwindigkeiten zwischen 250 und 700 m/s (Mittel bei 350-400 m/s) auf. Diese Werte sind nach Tab.5 charakteristisch für trockenen Blockschutt, wie er auch die Oberfläche des Blockgletschers im Bereich aller Profile bildet (vgl. Kap.3.3.1).

<u>Schicht 2:</u> Mit seismischen Geschwindigkeiten zwischen 1050 und 2500 m/s (Mittel bei 1800-2000 m/s) folgt darunter eine sehr unterschiedlich mächtige Schicht, die auf größeren Teilstrecken einiger Profilen überhaupt aussetzt, vereinzelt aber Mächtigkeiten zwischen 5 und 9 m erreicht. Die Interpretation dieser Gegebenheiten wirft Probleme auf, vor allem weil die auftretenden seismischen Geschwindigkeiten sowohl feuchten (wassergesättigten) Schutt als auch Permafrostmaterial mit nur knapp unter 0°C liegenden Temperaturen anzeigen können (KING 1984, 120 ff.). Man könnte hierin provisorisch jene Schicht sehen, in deren oberem Teil das auf dem Permafrostspiegel abfließende Schmelzwasser angereichert ist (wassergesättigter, tieferer Teil der Auftauschicht, vgl. KING et al. 1992, 76) und deren unterer Teil die stark angetaute Permafrostoberfläche repräsentiert, die in einem solchen Fall zumindest stellenweise weniger als scharfe Grenzlinie, sondern eher als eine Art Übergangszone in Erscheinung zu treten scheint.

<u>Schicht 3</u>: Die tiefste seismisch erfaßbare Schicht zeigt seismische Geschwindigkeiten von 3600[°] bis 3900 m/s, was gut mit den Angaben für gefrorenen Schutt aus anderen Untersuchungsgebieten übereinstimmt (Tab.5), weshalb sich diese Interpretation auch hier anbietet. Nach den Überlegungen von HAEBERLI 1985, 52 ff., kann hieraus auf einen Eisgehalt von 40 bis 50 % geschlossen werden, welcher Wert das Porenvolumen desselben Substrates im eisfreien Zustand um einen Faktor von wenigstens 2 übersteigt, womit sich der Permafrostkörper als eisübersättigt erweist. Die vergleichsweise eher hohen seismischen Geschwindigkeiten im Permafrost des Dösener Blockgletschers können zwanglos mit den wohl auch in tieferen Schichten stark vertretenen großen Korngrößen erklärt werden.

Aus diesen Sachverhalten erwachsen nun die beiden entscheidenden Fragen einerseits nach der Mächtigkeit der Auftauschicht und andererseits nach der Gesamtmächtigkeit des permanent gefrorenen Schuttkörpers. Die Beantwortung der ersten Frage wird durch die Existenz bzw. den Charakter der Schicht 2 erschwert, doch kann man mit der beschriebenen Erklärungsmöglichkeit dieser Schicht (Zuordnung des tieferen Teils zum Permafrostkörper) doch eine mittlere Mächtigkeit der Auftauschicht von rund 4,5 m angeben. Verglichen mit den Daten bei BARSCH 1973 mag dieser Wert für einen aktiven Blockgletscher zu hoch erscheinen, zumal es sich um hoch- und nicht um spätsommerliche Messungen handelt. Diesem Einwand wird man wohl den Charakter der besonders grobblockigen Oberfläche entgegenhalten müssen: An vielen Stellen ist es aufgrund der Größe der Hohlräume zwischen den einzelnen Blöcken möglich, bis zu 3 m unter das Niveau der umgebenden höchsten Blöcke hinabzusteigen, wobei diese gut zugänglichen Hohlräume auch einen freien Luftaustausch mit der Umgebung ermöglichen. Die Geophone mußten demgegenüber jedoch durchwegs auf der Oberfläche solcher Blöcke angebracht werden, weshalb sich eine etwas zu große Mächtigkeit der Auftauschicht ergibt. In diesem Zusammenhang sei auch auf die von BARSCH 1973, 164, mitgeteilte Beobachtung hingewiesen, wonach in den Hohlformen auf dem Blockgletscher Murtèl 1 (Berninagruppe) die Blöcke direkt im Eis stecken - diese Erscheinung ist auch auf dem Dösener Blockgletscher an den in Abb.28 eingetragenen Stellen mit Eisaufschlüssen häufig zu sehen.

Auch die zweite Frage nach der Gesamtdicke des Permafrostes ist nicht zweifelsfrei zu beantworten, weil bedauerlicherweise durch keines der seismischen Profile der unter dem Schuttkörper anstehende Fels durch eine klar erkennbare Zunahme der seismischen Geschwindigkeit festgestellt werden konnte (vgl. dazu auch die Ergebnisse der umfangreichen

refraktionsseismischen Untersuchungen bei VONDER MÜHLL 1993). Dies hat seine Ursache entweder darin, daß die Mächtigkeit des Blockgletschers zu groß ist, um bei den gewählten Meßanordnungen den entsprechenden Knick in der Laufzeitkurve zu erbringen, oder daß sich die seismische Geschwindigkeit des Untergrundes zu wenig stark von der des Permafrostkörpers abhebt (vgl. hierzu auch KING 1984, 122). Diese zweite Möglichkeit erscheint durch die generell starke Klüftigkeit des unterlagernden Zentralgneises, der im Blockgletscherbett darüberhinaus auch einer kräftigen glazialen Beanspruchung ausgesetzt gewesen sein sollte, durchaus plausibel (Beschreibung analoger Gegebenheiten bei HAEBERLI et al. 1988, 940) und wird auch durch die Daten des von den übrigen etwas abweichenden Profiles MA 9401 nahegelegt: Im Bereich dieses Profiles dürfte nach dem Befund des Georadars (SCHMÖLLER & FRUHWIRTH 1996, Abb.12, in diesem Band) der gefrorene Schuttkörper nur eine Mächtigkeit von 10 bis maximal 20 m besitzen, weshalb die für die dritte Schicht des seismischen Profiles MA 9401 errechnete Geschwindigkeit von rund 4000 m/s wenigstens in dem Abschnitt, wo diese beiden Meßprofile einander überlappen, als die Geschwindigkeit des Felsuntergrundes auffaßbar sein könnte. In jedem Fall bleibt aufgrund der bisher vorliegenden Ergebnisse die rechnerische Ermittlung mit Hilfe der Methode der kritischen Entfernung die einzige Möglichkeit, eine Angabe über die Mächtigkeit des gefrorenen Schuttkörpers im Dösener Blockgletscher zu machen - nach den Ausführungen von SCHMÖLLER & FRUHWIRTH 1996 (in diesem Band) beträgt sie mindestens 20 bis 40 m. Diese Wertspanne steht keinesfalls im Widerspruch zu den aus der Literatur bekannten Daten und wird ebenso durch die Radargramme und Ergebnisse der elektromagnetischen Messungen gestützt, welche jeweils jedoch durchaus höhere Werte (bis über 50 m nach auf der Elektromagnetik beruhenden Modellrechnungen) signalisieren.

Wenn hierzu auch unzweifelhaft noch weitere Untersuchungen notwendig sind, so ist eine mittlere Gesamtmächtigkeit des Dösener Blockgletschers von 30 bis 40 m ein wohl nicht zu hoch gegriffener Schätzwert. Mit ihm kann über den Flächenwert von Tab.11 das Volumen des Dösener Blockgletschers zu rund 12 bis 16.10⁶m³ ermittelt werden. Rechnet man davon noch die Auftauschicht ab und nimmt einen Eisgehalt von 50 % an, so ist mit einem Eisvolumen von größenordnungsmäßig 5,5 bis 7,5.10⁶m³ oder 5 bis 6,8.10⁶m³ Wasser zu rechnen (vgl. zu dieser groben Abschätzung die Angaben bei BUCHENAUER 1990, 248). Trotz der erläuterten beträchtlichen Unsicherheiten wurde versucht, in Abb.31 ein Längsprofil des Dösener Blockgletschers zu entwerfen. Die Oberflächentopographie beruht darin auf den Karten von KAUFMANN 1996 (in diesem Band), die interne Struktur auf den geophysikalischen Profilen MA 9403, 9405, 9501 und EM 9502, wobei eine starke Schematisierung und Generalisierung auf ein Zweischichtenmodell erfolgte und die Situation im oberen Teil des Blockgletschers nach einfachen Geländebeobachtungen eingetragen wurde. Die Darstellung gibt daher nur einen orientierenden Überblick, für Details wird auf den Beitrag von SCHMÖLLER & FRUHWIRTH 1996 (in diesem Band) verwiesen.

Die Ergebnisse der übrigen geophysikalischen Untersuchungen bestätigen im wesentlichen die dargelegten Ergebnisse über den Charakter der unter Permafrostbedingungen gefrorenen Schuttmassen im inneren Dösener Tal. In den bei der Georadar-Meßkampagne gewonnenen Radargrammen (FRUHWIRTH & SCHMÖLLER 1995) lassen sich nur am Blockgletscher südlich des Dösener Sees (mo 239) deutliche Reflektoren im Untergrund erkennen, die als der anstehende Fels gedeutet wurden, während die beiden Profile am Dösener Blockgletscher (DT 9502 und 9503) keine wirklich klare schichtmäßige Differenzierung des Untergrundes zeigen. Dies spricht dafür, daß unter hochwinterlichen Bedingungen der Blockgletscher von der Oberfläche bis zur größten Eindringtiefe der in den Untergrund ausgesandten elektromagnetischen Wellen homogen aufgebaut ist. Mit den elektromagnetischen Messungen im Hochsommer konnte im wesentlichen der schichtige Aufbau des Blockgletschers bestätigt werden, wobei in den oberen Metern des Untergrundes sehr geringe, in Tiefen von 20 m und darunter hingegen deutlich höhere elektromagnetische Leitfähigkeiten registriert wurden, wobei die höchsten Werte in den tiefsten Schichten mit einiger Wahrscheinlichkeit bereits den nicht gefrorenen Felsuntergrund anzeigen, ohne daß aber dessen Abstand von der Oberfläche exakt angegeben werden könnte. Bei durchwegs nur sehr geringen Leitfähigkeiten aller beprobten Substrate - in den Auftauschichten mitunter an der Grenze des Registrierbaren - zeigt sich am großen Längsprofil über den Dösener Blockgletscher (EM 9502) eine leichte Abnahme der Leit-

Abb.31: Längsprofil des Dösener Blockgletschers (Erläuterungen im Text) **Fig.31:** Longitudinal transect of Dösen rock glacier

fähigkeit nach E, also blockgletscheraufwärts, was auf in dieser Richtung abnehmende Feuchtigkeit im Untergrund schließen lassen könnte. Einige Einzelbeobachtungen, insbesondere an den Profilen EM 9503 und 9504, fallen aus dem geschilderten Rahmen und können beim gegenwärtigen Kenntnisstand noch nicht erklärt werden (SCHMÖLLER & FRUHWIRTH 1996, in diesem Band).

4. Das Blockgletscherinventar der östlichen österreichischen Alpen

4.1. Pilotstudie Nationalpark Hohe Tauern

Den Ausführungen in Kap.2.3.1 gemäß ist über Luftbilder die Kartierung von Blockgletschern in großen Gebirgsräumen möglich. Bei Beachtung der Aktivität der Formen sind aus der Verteilung der Blockgletscher in weiterer Folge das gegenwärtige (intakte Blockgletscher) und frühere Verteilungsbild des Permafrostes (fossile Blockgletscher) abzuleiten. Für das Herzstück meines Untersuchungsgebietes, die Hohen Tauern, lag hierfür in der "Luftbildkarte Nationalpark Hohe Tauern 1:10.000", einem aus 148 Infrarotorthophotos bestehenden Kartenwerk (KATZMANN et al. 1987), eine ausgezeichnete Quelle vor (Umriß des Kartenwerkes in Abb.32). Die Kartenblätter wurden einzeln durchgesehen, die Blockgletscher daraus kartiert und in Arbeitskarten 1:50000 oder 1:25000 übertragen. Für jeden einzelnen der 546 identifizierten Blockgletscher wurden die folgenden Angaben bzw. Größen erhoben und inventarmäßig in einer EDV-Datei erfaßt:

- 1) Hydrographisches Einzugsgebiet
- 2) Nummer des Blockgletschers
- 3) Lagebezeichnung (aus der Österreichischen Karte 1:50.000)
- 4) Gebirgsgruppe
- 5) Nummer der Österreichischen Karte 1:50.000
- 6) Nummer der Luftbildkarte
- 7) Exposition
- 8) Höhenlage der Blockgletscher-Untergrenze
- 9) Höhenlage des höchsten Punktes der Umrahmung
- 10) Differenz zwischen 9 und 8
- 11) Höhe der Stirnböschung
- 12) Maximale Länge in Fließrichtung
- 13) Maximale Breite quer dazu
- 14) Aktivität in zwei Kategorien (intakt/fossil)
- 15) Gitternetzkoordinaten
- 16) Bestimmte qualitative Hinweise (Moränenkontakt, Gliederung in Generationen u.a.)
- 17) Literaturhinweise.

Die statistische Auswertung war Grundlage meiner darüber publizierten Arbeit (LIEB 1991, dort auch weitere methodische Hinweise), worin ich die wichtigsten Grundmuster der horizontalen und vertikalen Verbreitung der Blockgletscher in den Hohen Tauern dargelegt habe. Es sollte sich zeigen, daß die Vergrößerung des Untersuchungsraumes für die vorliegende Arbeit (Kap.4.2.) zwar eine Erweiterung der regionalen Kenntnis erbrachte, nicht aber grundsätzlich andersartige Verteilungsstrukturen erkennen ließ. Als wichtigste Ergebnisse seien die folgenden vorläufig ohne Quantifizierung hervorgehoben.

- Die Blockgletscher weisen eine deutlich Konzentration auf die Gebirgsgruppen im S des Tauernhauptkammes auf.
- Die Bevorzugung schattseitiger Expositionen ist bei den intakten Blockgletschern stärker ausgeprägt als bei den fossilen.

Die mittleren Untergrenzen der Blockgletscher liegen schattseitig in tieferer Lage als sonnseitig.

Die mittleren Untergrenzen der Blockgletscher befinden sich im N des Tauernhauptkammes in tieferer Lage als im S, wo sich weiters ein Anstieg von E nach W zeigt.

4.2. Erweiterung auf andere Gebiete

Die Daten aus der in Kap.4.1 geschilderten Pilotstudie über den Nationalpark Hohe Tauern bildeten den "Grundstock" für die weiteren Erhebungen, die auf das gesamte Arbeitsgebiet ausgedehnt wurden. Hierfür standen jedoch nicht mehr Infrarotorthophotos, sondern nur herkömmliche Schwarzweiß-Luftbilder zur Verfügung, von denen die meisten direkt am Bundesamt für Eich- und Vermessungswesen, Wien, durchgesehen und bearbeitet wurden. Dies bot zwar gegenüber der Pilotstudie den Vorteil der stereoskopischen Betrachtungsmöglichkeit, der aber aus Gründen des hohen, hierfür notwendigen Zeitaufwandes nicht in allen Gebieten genutzt werden konnte. Demnach mußte für die 905 nicht in einer der Luftbildkarten "Nationalpark Hohe Tauern" abgebildeten Blockgletscher eine wenn auch geringfügig schlechtere Qualität der erhobenen Information in Kauf genommen werden. Dies hat seine Ursache vor allem darin, daß die Maßstäbe kleiner sind (bestenfalls rund 1:15.000, mitunter nur um 1:30.000) und daß die Vegetationsbedeckung der Blockgletscher natürlich ungleich weniger sicher als aus den Infrarotbildern entnommen werden kann. Hieraus ist in Einzelfällen mit Unschärfen in der Unterscheidung intakter und fossiler Blockgletscher zu rechnen, doch konnte diesem Problem in den weitaus meisten Fällen mit den steinschlägigen Stirnböschungen und der Nachbarschaft sommerlicher Schneefelder als anderen gut erkennbaren Merkmalen intakter Blockgletscher in zufriedenstellender Weise begegnet werden.

Die Erkennbarkeit der Blockgletscher an sich stellt in der Regel das geringste Problem dar, kennt doch ihre Oberflächengestalt kaum physiognomische Konvergenzen - als solche

kommen fast nur Felssturzdepotgebiete (vgl. BARSCH 1992, 185) und reich kupierte Moränen-Toteis-Landschaften in Frage, wobei Verwechslungen eher bei fossilen, kaum jedoch bei intakten Blockgletschern möglich sind. Da die genannten Formen in den Hochlagen der Gebirge aber häufig ohnehin vergesellschaftet mit rezentem (bzw. vorzeitlichem) Permafrost auftreten oder auch Permafrostentwicklung induzieren können, fällt eine eventuelle Fehlzuordnung nicht schwer ins Gewicht und birgt kaum die Gefahr in sich, das angestrebte Verbreitungsbild des Permafrostes entscheidend zu verzerren. In diese Richtung gingen auch schon die Überlegungen in Kap.2.3.1, worin für solche Fälle in Anlehnung an HAEBERLI 1985 neutrale Formulierungen wie etwa "blockgletscherartige Überformung" vorgeschlagen wurde (als Beispiel einer glazialmorphologischen Kartierung, in der Übergangsformen zwischen Blockgletschern und anderen Erscheinungen der Schuttumlagerung vorkommen, kann KERSCHNER 1993, Abb.1, genannt werden). Weiters kann das Erkennen von Blockgletschern im Luftbild durch undeutliche Wiedergabe des Geländes an gut ausgeleuchteten Südflanken, in stark beschatteten Wand- und Hangfußlagen sowie in Landschaftsteilen mit starker Schneebedeckung beeinträchtigt sein. Manche derartigen Zweifelsfälle konnten durch Heranziehung von Bildmaterial anderer Befliegungen desselben Gebietes (in der Regel stehen 3 bis 5 zur Verfügung) geklärt werden. In das vorliegende Inventar wurden nur Blockgletscher aufgenommen, die mir in dieser Hinsicht zweifelsfrei erschienen und die eine Mindestausdehnung von 100 x 100 m aufweisen. Nach den Erfahrungen aus vielen Geländebegehungen gibt es in der Natur eine geringfügig größere Zahl an Blockgletschern (schätzungsweise um oder unter 5 %) als durch die Luftbildauswertung erkennbar sind. Korrekturen des aus Luftbildern beruhenden Inventars wurden jedoch in keinem Fall vorgenommen, um methodische Einheitlichkeit zu gewährleisten.

In Gebieten mit besonders zahlreichen und großen Blockgletschern, wofür die in Abb.57 dargestellten zentralen Seckauer Tauern ein Beispiel darstellen, ist es schließlich mitunter schwierig, einzelne Blockgletscherindividuen vertikal und horizontal auseinanderzuhalten: Zum einen ist bei in einem Kar hintereinander in verschiedener Höhe angordneten Blockgletschern die Entscheidung oft nicht leicht, ob es sich um zwei selbständige Blockgletscher oder um zwei Generationen innerhalb desselben Blockgletschers handelt (im Sinne des von EVIN & ASSIER 1983 und HÖLLERMANN 1983, 50, beschriebenen, für große Blockgletscher charakteristischen Aufbaues aus Abschnitten verschiedenen Alters). In diesen Fällen wurde bei nicht wirklich zweifelsfreier Trennung die betreffende Form immer nur als ein Blockgletscher ins Inventar aufgenommen (wobei dann natürlich die Untergrenze der tieferen der beiden Blockgletscherstirnen im Inventar aufscheint). Zum anderen kann es bei großflächig ganze Karböden bedeckenden Blockgletscher-Akkumulationen problematisch sein, nebeneinander liegende Blockgletscher voneinander abzugrenzen, wobei letztlich ein relativ hohes Maß an Subjektivität in diesen allerdings seltenen Fällen nicht zu vermeiden ist (z.B. Blockgletscher mu 273 und 274 in Abb.57, Seckauer Tauern).

Das erarbeitete Blockgletscherinventar, das gegenüber dem ursprünglichen Inventar der Hohen Tauern um einige Kriterien reduziert wurde, befindet sich im Anhang, die Lage aller 1451 Blockgletscher ist in Tafel 1 (Beilage) verzeichnet. Die Blockgletscher sind nach dem Vorbild des Österreichischen Gletscherkatasters durch fortlaufende Numerierung im Uhrzeigersinn innerhalb der Flußeinzugsgebiete identifiziert, wobei Einzugsgebiete dritter Ordnung verwendet und nur die kleinen Seitenbäche der Drau nicht voneinander unterschieden wurden (zum Flußgebiet "dr"=Drau zusammengefaßt). Zur Lokalisierung dienen weiters die Angabe der Lage auf den Kartenblättern der Österreichischen Karte 1:50.000 und der Österreichischen Luftbildkarte 1:10.000 sowie Lagebezeichnungen aus der Österreichischen Karte 1:50.000 und die Zuordnung zu Gebirgsgruppen, deren Umgrenzung und Benennung sich im wesentlichen an der offiziellen Alpeneinteilung der Alpenvereine (GRASSLER 1984) - mit regionalen, zweckorientierten Modifikationen im östlichen Teil des Arbeitsgebietes - orientiert. Die Höhenlage der Blockgletscher-Untergrenze und der höchste Punkt der Umrahmung des Blockgletschers wurden, wenn keine Höhenkoten vorhanden waren, auf 10 m genau interpoliert, die maximale Länge und Breite in den Hohen Tauern ebenfalls auf 10 m, in den übrigen Gebieten jedoch nur auf 50 m genau, weil angesichts der auf rasche Durchführbarkeit ausgerichteten Auswertemethodik bei diesen beiden Größen immer ein relativ breiter Interpretationsspielraum offen bleibt (insbesondere ist die Abgrenzung der Blockgletscher nach oben nur sehr ungenau möglich). Für die im folgenden zu besprechende statistische Auswertung der Daten wurde das Untersuchungsgebiet in 14 Teilräume untergliedert, die in der Tab.13 zusammengestellt und deren Lagen in Abb.32 zu sehen sind. Diese Teilräume ergeben sich als Kompromiß aus geographischer Sinnhaftigkeit der Raumeinheiten einerseits und der Notwendigkeit einer gewissen Mindestgröße der statistischen Stichproben andererseits.

Tab.13: Die Teilgebiete des Untersuchungsraumes und die Zahl der Blockgletscher darin **Tab.13:** Division of the investigated area into regions and the number of rock glaciers

Nr.	Teilraum	GEBIRGE (Flußgebiet)	intakt	fossil	alle
1	Nordalpen	KB, SS, BA, DS	-	31	31
2	westl. Hohe Tauern,	ZA, VE (sa), GR (sa), GG	37	59	96
	Nordseite	(sa)			
3	östl. Hohe Tauern,	SO (sa), AH (sa)	13	41	54
	Nordseite				
4	westl. Niedere Tauern,	RT (sa, en), ST (en)	7	108	115
	Nordseite				
5	östl. Niedere Tauern,	WT (en), SK (en)	-	85	85
	Nordseite				
6	westl. Hohe Tauern,	VE (is), GR (is), GG (is,	17	10	[~] 27
	Südseite	mo)			
7	Deferegger Alpen i.w.S.	DA, RG	56	193	249
8	Schobergruppe	SC	67	59	126
9	östl. Hohe Tauern, Südseite	SO (mo), AH (mo, li, mu)	69	122	191
10	Kreuzeckgruppe	KR	13	134	147
11	westl. Niedere Tauern,	RT (mu), ST (mu)	3	102	105
	Südseite				
12	östl. Niedere Tauern,	WT (mu), SK (mu)	-	116	116
	Südseite				
13	Gurktaler und Seetaler	GU, SE	-	90	90
	Alpen				
14	Südalpen	KA, LD	-	19	19
	Gesamtgebiet		282	1169	1451

Anmerkungen: Abkürzungen der Gebirge und Flußgebiete wie im Blockgletscherinventar, siehe Anhang. Gebirge ohne in () angegebene Flußgebiete fallen zur Gänze in den betroffenen Teilraum, Gebirge mit () nur, soweit sie den angegebenen Flußgebieten angehören.

4.3. Statistische Kenngrößen der Blockgletscher

Die Präsentation des aus dem Blockgletscherinventar der östlichen österreichischen Alpen erarbeiteten Datenmaterials soll mit jenen Größen begonnen werden, die eine Vorstellung von den Dimensionen der Blockgletscher geben. Hierzu eignen sich in erster Linie die Kriterien und Breite, deren Mittel- und Maximalwerte nach Teilgebieten in Tab.14 Länge zusammengestellt sind. Hierbei erübrigt sich die Angabe der Minima, weil ja gemäß den Ausführungen in Kap.4.2 nur Formen mit einer Mindestausdehnung von 100 m in einer Richtung ins Inventar aufgenommen wurden. Es zeigt sich, daß sowohl die Längen als auch die Breiten der Blockgletscher zwischen den einzelnen Teilräumen nur wenig verschieden sind, allein die Südseite der östlichen Niederen Tauern (Gebiet 12) tritt mit den höchsten Mittelwerten und den absoluten Maxima deutlicher hervor (durch Gelände und Gestein besonders begünstigte, große fossile Blockgletscher der Seckauer Tauern). Auch sind die Unterschiede zwischen intakten und fossilen Blockgletschern nur gering, wobei die fossilen etwas größer als die intakten sind, was die Maxima deutlicher als die Mittelwerte zum Ausdruck bringen. Hieraus auf im Spätglazial gegenüber heute günstigere klimatische Rahmenbedingungen für die Entwicklung

Fig.32: The regions of the investigated area and the position of the study in Hohe Tauern National Park

von Blockgletschern zu schließen, erscheint zwar möglich, aber nicht zwingend. Immerhin gibt es Gebirgsgruppen, in denen gegenwärtig alle intakten Blockgletscher wegen der geringen vertikalen Ausdehnung der subnivalen Stufe unterdurchschnittlich klein sind (z.B. Schladminger Tauern, Kreuzeckgruppe), während diese Einschränkung für die fossilen Blockgletscher nicht gilt. In Ergänzung zu Tab.14 veranschaulicht Abb.33 die Häufigkeitsverteilungen der Längen und Breiten der Blockgletscher, die jeweils in beiden Aktivitätsklassen erwartungsgemäß deutlich rechtsschief ist (geringe Häufigkeiten hoher Werte).

Ebenso sind keine signifikanten Unterschiede von Längen und Breiten in den verschiedenen Expositionen erkennbar, was aus Tab.15 zu entnehmen ist, weshalb auch auf eine Präsentation nach Teilräumen verzichtet werden konnte. Als einzige Auffälligkeit in dieser Tabelle kann vielleicht hervorgehoben werden, daß die absoluten Maxima sowohl bei den Längen als auch bei den Breiten jeweils in nördlichen Expositionen liegen (ohne daß dies aber für die Mittelwerte gelten würde). In Hinblick auf die Gestalt der Blockgletscher ist schließlich auch das Verhältnis von mittlerer Länge zu mittlerer Breite interessant - es beträgt für alle Blockgletscher odes Untersuchungsraumes 1:0,71, wobei diese Relation für fossile und intakte Blockgletscher signalisiert, was durch die große Häufigkeit lobenförmiger Blockgletscher im Sinne der Typisierung von HÖLLERMANN 1983 zustande kommt. Eine Berechnung der Gesamt-fläche der Blockgletscher ist aus den vorliegenden Daten nicht möglich, weil ja an den Einzelblockgletschern jeweils nur die größte Länge in Fließrichtung und die größte Breite quer dazu erhoben wurden und eine Multiplikation von Länge und Breite einen zu großen Flächenwert ergeben würde.

Für die Blockgletscher aus der Pilotstudie über die Hohen Tauern (n=546) wurden weiters die relativen Höhen der Böschungen an den Blockgletscherstirnen ("Stirnhöhen", Kap.4.1) erhoben, was mit Hilfe der großmaßstäbigen Orthophotokarten in annehmbarer Genauigkeit möglich war. Diese Auswertung beruhte auf der Vorstellung, daß mit den Stirnhöhen ein Anhaltspunkt für die Mächtigkeit der Blockgletscher gewonnen werden könne, was aber freilich nur unter großen Vorbehalten zutreffen kann. Die Stirnhöhe hängt nämlich nicht nur von der Mächtigkeit des Permafrostkörpers, sondern ebenso (wenn nicht sogar in höherem Maße) von den topogra-

Abb.33: Häufigkeitsverteilung der Längen (a) und der Breiten (b) der Blockgletscher nach 100 m-Klassen.

Fig.33: Frequency of length (a) and width (b) of the rock glaciers according to 100 m-intervals

phischen Verhältnissen im Untergrund ab, die wiederum im eigent-Blockgletscherbett lichen eine andere als an der Stirn sein kann. Dennoch seien an dieser Stelle die folgenden Werte hierzu mitgeteilt: Die mittlere Stirnhöhe beträgt 20 m (n=546, s=9 m) bei einem absoluten Minimum von 10 und einem absoluten Maximum wobei zwischen von 80 m, intakten und fossilen Blockgletschern keine signifikanten Unterschiede auftreten, abgesehen davon, daß die Streuung bei den fossilen deutlich geringer ist. Diese Angaben widersprechen den generellen Vorstellungen von der Mächtigkeit des Blockgletscher-Permafrostes nicht (vgl. auch Kap.3.3.3) und dürften somit trotz der genannten Vorbehalte eine realistische Größenordnung repräsentieren. In Ergänzung zum vorgegebenen im Rahmen wichtigsten, in Kap.4.4 ausführlicher besprochenen Kriterium zur Charakterisierung des Blockgletscherphänomens, der Untergrenze der Blockgletscher, wurde für jeden Blockgletscher auch der höchste Punkt seiner Umrahmung bestimmt. Dieser Wert ist für sich allein von geringer Aussagekraft, spiegelt er doch nichts weiter als die Gipfelhöhen in der engeren Umgebung Blockgletscher der

wider, weshalb er im Bereich der intakten Blockgletscher höher als im Bereich der fossilen liegen muß. Ebenso liegen diese "Umrahmungshöhen" in schattseitigen Lagen tiefer als in sonnseitigen, womit sie den mittleren Untergrenzen folgen (Tab.16). Die Ermittlung der höchsten Punkte der Umrahmungen hatte aber als Hauptzweck, die Bestimmung der Differenz zwischen diesen und den Blockgletscher-Untergrenzen zu ermöglichen. Dem lag die Idee zu Grunde, mit der relativen Höhe im Einzugsgebiet der Blockgletscher ein einfach bestimmbares Maß für die Dimension eben dieses Einzugsgebietes zu gewinnen und gegebenenfalls eine Beziehung zwischen dieser und der Größe der Blockgletscher herzustellen (vgl. dazu BARSCH 1977 b). Dabei lautete die Arbeitshypothese, daß größere Einzugsgebiete (relativ höhere Umrahmungen) längere und breitere Blockgletscher hervorrufen könnten. Vor der Prüfung dieses Zusammenhanges zeigt ein Blick auf Tab.17 die statistische Auswertung der Differenzen zwischen den höchsten Punkten der Umrahmungen und der Blockgletscher-Untergrenzen,

 Tab.14: Mittlere und maximale Längen und Breiten der Blockgletscher nach Teilgebieten (Erläuterungen im Text)

Teilgebiet,	mittl.	S	max. Länge	mittl. Broito	S	max. Broito	n
1 fossil	245	78	400	231	107	600	31
2 intakt	291	146	700	224	110	650	37
2 fossil	289	113	600	227	96	550	59
2 alle	290	127	700	226	102	650	96
3 intakt	296	179	850	188	100	500	13
3 fossil	276	125	700	203	89	500	41
3 alle	281	141	850	199	92	500	54
4 intakt	143	32	200	186	116	450	7
4 fossil	233	125	900	200	89	600	108
4 alle	227	124	900	199	91	600	115
5 fossil	287	151	900	209	94	600	85
6 intakt	338	152	850	210	70	400	17
6 fossil	375	125	550	229	51	350	10
6 alle	352	144	850	217	64	400	27
7 intakt	254	110	700	193	83	400	56
7 fossil	318	154	800	212	84	550	193
7 alle	304	148	800	208	84	550	249
8 intakt	302	106	600	201	78	400	67
8 fossil	348	181	1000	215	91	550	59
8 alle	324	148	1000	208	84	550	126
9 intakt	275	135	900	203	93	600	69
9 fossil	314	173	1000	202	84	500	122
9 alle	300	161	1000	203	87	600	191
10 intakt	219	61	350	154	75	400	13
10 fossil	296	161	900	190	67	400	134
10 alle	289	156	900	186	68	400	147
11 intakt	133	47	200	150	0	150	3
11 fossil	328	162	950	232	88	650	102
11 alle	322	163	950	230	88	650	105
12 fossil	399	267	1400	273	152	1100	116
13 fossil	272	141	750	224	102	750	90
14 fossil	247	113	500	232	67	450	19
gesamt/intakt	277	130	900	200	90	650	282
gesamt/fossil	306	171	1400	217	98	1100	1169
gesamt/alle	301	164	1400	214	97	1100	1451

Tab.14: Mean and maximum length and width of rock glaciers according to regions

Anmerkungen: Längen- und Breitenangaben in m. Teilgebiete wie Tab.13 und Abb.32, s = Standardabweichung, n = Zahl der Blockgletscher.

Tab.15: Mittlere und maximale Längen und Breiten der Blockgletscher nach Expositionsbereichen (Erläuterungen im Text)

Akt.	Exposition	mittl. Länge	max. Länge	mittl. Breite	max. Breite	n
intakt	NW-N-NE	271	900	198	650	161
	E-W	289	850	204	450	71
	SE-S-SW	279	500	199	400	50
fossil	NW-N-NE	300	1400	222	1100	487
	E-W	304	1250	211	650	270
	SE-S-SW	315	1300	216	650	412
alle	NW-N-NE	293	1400	216	1100	648
	E-W	301	1250	210	650	341
	SE-S-SW	311	1300	214	650	462

Tab.15: Mean and maximum length and width of rock glaciers according to expositions

Anmerkung: Längen- und Breitenangaben in m.

die als "Überhöhungen" bezeichnet werden. Sie lassen ein auffallend homogenes Bild in allen Expositionen, Aktivitätsgraden und auch Teilgebieten, die hier nicht gesondert ausgewiesen sind, erkennen.

- **Tab.16:** Mittel und Extremwerte der höchsten Punkte der Umrahmungen der Blockgletscher nach Expositionsbereichen (Erläuterungen im Text)
- Tab.16: Mean and extreme values of the maximum elevations of the catchment areas of rock glaciers according to expositions

Aktivität	Exposition	Mittel	s	Max.	Min.	n
intakte Blgl.	NW-N-NE	2795	157	3185	2477	161
	E-W	2899	176	3371	2349	71
	SE-S-SW	2983	148	3251	2600	50
	alle	2855	177	3371	2349	282
fossile Blgl.	NW-N-NE	2367	188	2990	1960	487
	E-W	2433	222	3022	1920	270
	SE-S-SW	2546	246	3106	2009	412
	alle	2445	231	3106	1920	1169
alle Blgl.	NW-N-NE	2473	259	3185	1960	648
	E-W	2530	285	3371	1920	341
	SE-S-SW	2594	273	3251	2009	462
	alle	2525	275	3371	1920	1451

Anmerkungen: Umrahmungshöhen im m; s=Standardabweichung, n=Zahl der Blockgletscher.

Von Interesse sind sowohl bei den Umrahmungen als auch bei den Überhöhungen weiters die Extremwerte. Der höchste aller Punkte in den Umrahmungen der Blockgletscher hat eine Höhe von 3371 m (intakter Blockgletscher is 165, südöstl. Venedigergruppe, Hohe Tauern), der höchste Punkt in der Umrahmung eines fossilen Blockgletschers eine solche von 3106 m (dr 111, zentrale Schobergruppe, Hohe Tauern). Höhere Gipfel in den Umrahmungen der Block-

- Tab.17: Mittlere und extreme Überhöhungen der Blockgletscher nach Expositionsbereichen
(Erläuterungen im Text)
- Tab.17: Mean and extreme differences between the lower limits of rock glaciers and the maximum elevations of their catchment areas according to expositions

Aktivität	Exposition	Mittel	s	Max.	Min.	n
intakte Blgl.	NW-N-NE	338	126	775	120	161
	E-W	381	142	821	149	71
	SE-S-SW	332	108	631	140	50
	alle	348	129	821	120	282
fossile Blgl.	NW-N-NE	341	131	896	70	487
	E-W	344	138	742	120	270
	SE-S-SW	341	139	950	100	412
	alle	342	135	950	70	1169
alle Blgl.	NW-N-NE	341	129	896	70	648
	E-W	352	139	821	120	341
	SE-S-SW	340	136	950	100	462
	alle	343	134	950	70	1451

Anmerkungen wie Tab.16.

gletscher fehlen, weil diese vergletschert sind (bzw. im Spätglazial waren) und daher den Blockgletschern keinen Raum zur Entwicklung bieten (bzw. boten). Die Minima betragen 2349 m bei den intakten (sa 119, nordwestl. Venedigergruppe) und 1920 m bei den fossilen Blockgletschern (sa 164, Kitzbüheler Alpen). Dieses absolute Minimum veranschaulicht gut die erwähnte Tatsache, daß die Blockgletscher nur in den Gebirgsräumen vorkommen, die rezent in die Hochgebirgsstufe aufragen (vgl. auch Kap.4.4.1). Zuletzt lohnt noch eine Betrachtung der Häufigkeitsverteilung der Überhöhungen, die nach 100 m-Klassen durch Abb.34 ermöglicht wird. Es zeigt sich darin, daß die fossilen Blockgletscher das Häufigkeitsmaximum in der Klasse 200-299 m, die intakten hingegen in der Klasse 300-399 m besitzen und daß die Verteilung der fossilen stärker rechtsschief als die der intakten ist. Nur zwei Blockgletscher weisen Umrahmungen mit weniger als 100 m relativer Höhe auf (mu 38 und 49, beide in den Gurktaler Alpen gelegen), was als Hinweis darauf zu werten ist, daß doch eine gewisser Minimalwert der Umrahmung nicht unterschritten werden darf, damit der zur Blockgletscherbildung notwendige Schutt bereitgestellt wird. Die Maximalwerte bleiben deutlich unter 1000 m und betragen 950 m bei den fossilen (is 218, westl. Schobergruppe) und 821 m bei den intakten Blockgletschern (is 165, Venedigergruppe - das ist der Blockgletscher, der auch die größte absolute Höhe der Dies besitzt. signalisiert, Umrahmung siehe oben). daß unter den aeaebenen Reliefvoraussetzungen der Ostalpen bei höheren Reliefenergien durchwegs extremes Steilrelief herrscht, sodaß eine Entwicklung von Blockgletschern in Ermangelung von flacheren Geländeteilen unmöglich gemacht wird.

Die Prüfung der vorhin angesprochenen Beziehung zwischen den Größenparametern und der Überhöhung der Blockgletscher erfolgte im Rahmen einer das gesamte Datenkollektiv (n = 1451) umfassenden Korrelationsanalyse, die in Form einer Korrelationsmatrix in Tab.18 wiedergegeben ist. Da die Unterschiede zwischen den Expositionen und den beiden Aktivitätsklassen, wie schon aufgezeigt wurde, bei den Größen Länge, Breite und Überhöhung nur sehr gering sind, erfolgte die Auswertung ohne deren Berücksichtigung. Dies fällt bei der vorliegenden Fragestellung auch bei Untergrenzen und Umrahmungshöhen nur wenig ins Gewicht, obwohl diese aktivitäts- und expositionsabhängig sind. Die Korrelationskoeffizienten in der Tabelle zeigen einen generell geringen Zusammenhang zwischen den einzelnen Größen Abb.34: Häufigkeitsverteilung der Überhöhungen der Blockgletscher (Erläuterungen im Text)Fig.34: Frequency of the differences between the lower limits of rock glaciers and the relativeelevation of their catchment areas

(ausgenommen erwartungsgemäß die Beziehung zwischen Untergrenzen und Umrahmungshöhen), immerhin ist der Korrelationskoeffizient zwischen der maximalen Länge und der Überhöhung mit 0,54591 noch relativ am besten und bestätigt wenigstens in Ansätzen die vorhin formulierte Arbeitshypothese.

Tab.18: Korrelationsmatrix zwischen den im Blockgletscherinventar erhobenen statistischenKenngrößen (Erläuterungen im Text)

	Überhöhung	Umrahmung	max. Breite	max. Länge	Untergrenze
Untergrenze	-0,184	0,877	-0,158	-0,163	1
max. Länge	0,546	0,109	0,338	1	
max. Breite	0,253	-0,029	1		
Umrahmung	0,311	1		-	
Überhöhung	1		-		

Tab.18: Correlations of the data included in the rock glacier inventory

4.4. Die horizontale und vertikale Verbreitung der Blockgletscher und ihre Ursachen 4.4.1. Die Lage innerhalb der Alpen

Schon in meiner Studie über die Hohen Tauern (LIEB 1991) konnte ich zeigen, daß die Zahl der Blockgletscher mit Annäherung an das klimatisch kontinental getönte Alpeninnere zunimmt, so wie es der bekannten Modellvorstellung der Blockgletscherverbreitung entspricht, wonach in den stärker maritimen Randalpen die vertikale Erstreckung der für die Bildung von Blockgletschern in Frage kommenden periglazialen Höhenstufe stark reduziert ist (vgl. auch Kap.2.3.1). Diese Grundregel der Verteilung bestätigt sich mit dem hier vorgestellten Datenmaterial, welches nun auch einen regional wesentlich erweiterten Einblick in das Verbreitungsbild erlaubt. Dieses wird auf der Ebene der Einzelblockgletscher durch die beiliegende Tafel 1, auf der Ebene der Zahl der Blockgletscher je Teilgebiet übersichtlicher in Abb.35 veranschaulicht. In dieser Darstellung sticht als auffälligstes Merkmal die zahlenmäßige Dominanz der fossilen Blockgletscher hervor (insgesamt 1169 gegenüber nur 282 intakten), wobei in den randlichen Teilgebieten (1, 5, 12, 13, 14) intakte Blockgletscher überhaupt fehlen und nur in 2 zentralalpinen Teilgebieten (6, 8) die Zahl der intakten die der fossilen übertrifft.
Diese Gegebenheiten sind natürlich in erster Linie mit den in den randlichen (besonders östlichen) Gebirgsgruppen geringeren absoluten Höhen zu erklären (vgl. dazu auch die Statistik der höchsten Punkte der Umrahmungen in Tab.16). Ob und wenn ja, inwieweit die große Zahl der fossilen Blockgletscher auch mit generell blockgletscherfreundlicheren Klimaverhältnissen im Spätglazial in Zusammenhang gebracht werden darf, sei dahingestellt, wenn auch eine Interpretation dieser Art der Vorstellung eines stärker kontinentalen Klimas im Spätglazial (KERSCHNER 1983, 1985) entspräche. Innerhalb der Zentralalpen erweisen sich die dem Alpenhauptkamm im S vorgelagerten Gebirgsgruppen als blockgletscherreicher als die der N-Abdachung, welcher Gegensatz nach E hin (Niedere Tauern) jedoch nicht oder kaum mehr zur Geltung kommt. In einer gegenüber den jeweiligen Nachbargebieten auffallend geringen Anzahl von Blockgletschern pausen sich in zwei Teilgebieten (3, 6) bereits deutlich die geologischen Rahmenbedingungen durch, die in Kap.4.4.3 noch genauer behandelt werden.

Abb.35: Verteilung der intakten und fossilen Blockgletscher nach Teilgebieten **Fig.35:** Distribution of intact and fossile rock glaciers according to regions

Viel besser als mit der Zahl der Blockgletscher kann der angedeutete zentral-periphere Formenwandel jedoch mit den Untergrenzen der Blockgletscher verdeutlicht werden. Hierbei ist nun wichtig, streng zwischen fossilen und intakten Blockgletschern zu unterscheiden, weil diese beiden Aktivitätsklassen ja für ganz verschiedene klimatische Aussagen stehen. Hierzu sind in Tab.19 die wichtigsten gebietsspezifischen Kenngrößen zusammengestellt. Darin sind erwartungsgemäß bedeutende Unterschiede zwischen fossilen und intakten Blockgletschern in der Höhenlage ihrer Stirnen zu erkennen, wobei sich als Differenz der Mittelwerte der Untergrenzen für das Gesamtgebiet (2507 m für die intakten, 2104 m für die fossilen) 403 m errechnen. Dieser Wert veranschaulicht gut den realen Höhenunterschied zwischen den Verbreitungsgebieten fossiler und intakter Blockgletscher, der in der Natur der Lage der betreffenden Formen in verschiedenen geoökologischen Höhenstufen entspricht (intakte Blockgletscher in der subnivalen, fossile in der alpinen und subalpinen Stufe, vgl. Kap.2.4.1). weiters lassen sich diese rund 400 m auch als mittlerer Depressionswert der Permafrost-Untergrenze gegenüber "heute" interpretieren, der unter Annahme eines Temperaturgradienten von 0,65 K/100 m einer Absenkung der Jahrestemperatur von 2,6 K und somit wohl spätglazialen Klimaverhältnissen entspricht. Hierbei ist bemerkenswert, daß dieser aus einer Stichprobe von 1451 Blockgletschern gewonnene Mittelwert recht gut den von vielen Bearbeitern dem Egesenstadium (Jüngere Dryas) zuerkannten Depressionen von Permafrostuntergrenze und Jahrestemperatur entspricht (etwa BUCHENAUER 1990, 249; vgl. dazu auch die entsprechenden Daten bei KERSCHNER 1983 und 1985). Die Frage, ob dies als Hinweis auf das Alter der meisten fossilen Blockgletscher gewertet werden kann, wird in Kap.4.5 noch angesprochen.

	intakte	Blgl.				fossile	Blgl.			
	Mittel	S	Min.	Max.	n	Mittel	s	Min.	Max.	n
Teilgebiet 1	-	-	-	-	-	1828	130	1570	2020	31
Teilgebiet 2	2428	92	2200	2600	37	2163	180	1700	2530	59
Teilgebiet 3	2350	98	2200	2600	13	2093	141	1840	2350	41
Teilgebiet 4	2323	79	2220	2430	7	1966	143	1660	2280	108
Teilgebiet 5	-	-	-	-	-	1850	103	1610	2070	85
Teilgebiet 6	2626	119	2450	2830	17	2294	163	1970	2540	10
Teilgebiet 7	2597	117	2360	2850	56	2355	144	2000	2730	193
Teilgebiet 8	2575	106	2380	2800	67	2303	122	2050	2570	59
Teilgebiet 9	2457	125	2140	2720	69	2266	158	1680	2540	122
Teilgebiet 10	2394	83	2290	2590	13	2183	136	1850	2600	134
Teilgebiet 11	2330	102	2210	2460	3	2021	103	1730	2280	102
Teilgebiet 12	-	-	-	-	-	1836	115	1520	2120	116
Teilgebiet 13	-	-	-	-	-	1984	80	1780	2140	90
Teilgebiet 14	-	-	-	-	-	2095	123	1860	2360	19
Gesamtgebiet	2507	142	2140	2850	282	2104	226	1520	2730	1169

Tab.19: Daten zu den Untergrenzen der intakten und fossilen Blockgletscher nach Teilgebieten **Tab.19:** Values of lower limits of intact and fossile rock glaciers according to regions

Anmerkungen: Höhenangaben in m. Teilgebiete wie Tab.13 und Abb.32, s = Standardabweichung, n = Zahl der Blockgletscher.

Die Blockgletscher sind in einem insgesamt 1330 m umspannenden Höhenstockwerk zwischen 1520 m (tiefste Untergrenze eines fossilen Blockgletschers, mu 275, Seckauer Tauern) und 2850 m (höchste Untergrenze eines intakten Blockgletschers, is 80, Deferegger Alpen) verbreitet, womit die Frage nach den Faktoren, die diesen Höhenbereich begrenzen, zu stellen ist. Die absolute Untergrenze ist offenbar durch die Bindung des Blockgletscherphänomens an den Hochgebirgsraum bzw. die Hochgebirgsstufe im engeren Sinn vorgegeben (allgemein dazu RATHJENS 1982). Dies hat seine Ursache wohl darin, daß nur hier die notwendige Kombination von schuttlieferenden Einzugsgebieten (in der Regel Karwände) und schwach geneigten Geländeteilen vorliegt, die sowohl die Ausbreitung der Schuttmassen als auch deren gravitative Bewegung gestatten (in der Regel Karböden). Eine klimatische Begrenzung kommt nicht in Frage, weil im Hoch- und frühen Spätglazial der Permafrost ja noch in die Niederungen herabreichte und andere fossile Permafrosterscheinungen, möglicherweise auch blockgletscherartige Formen, in tieferen Lagen angetroffen werden können (Kap.2.4.1). Auch die tiefste Untergrenze eines intakten Blockgletschers (2140 m, mo 231, Ankogelgruppe) ist nicht aus den in Kap.3.1 umrissenen großklimatischen Rahmenbedingungen, sondern vielmehr aus einer optimalen topographischen Gunstsituation heraus zu erklären (extreme Schattlage, bedeutende Wandbildungen als Schuttbringer). Auf die absolute Obergrenze der Blockgletscherverbreitung - bei den vorliegenden Daten repräsentiert durch die höchste Blockgletscher-Untergrenze - wurde schon mehrfach, etwa von BUCHENAUER 1990, 242, oder von LIEB 1991, 360, hingewiesen: Sie ergibt sich daraus, daß über einer kritischen Höhe im vorgegebenen Relief nicht mehr genügend hohe Wände oberhalb der potentiellen Blockgletscherareale vorhanden sind und damit nicht mehr ausreichende Schuttmengen zur Verfügung stehen, soferne diese Höhenstufe nicht überhaupt schon ausschließlich von Steilwänden eingenommen wird. Eine noch häufigere Ursache ist jedoch, daß die in Frage

kommenden Höhenbereiche bereits von Gletschern bedeckt werden (vgl. zur Beziehung zwischen Gletschern und Blockgletschern Kap.5.2). Auffallend ist schließlich noch die geringe Differenz zwischen intakten und fossilen Blockgletschern bei den Maximalwerten der Untergrenzen (nur 120 m nach Tab.19).

Abb.36: Mittlere Untergrenzen der intakten und fossilen Blockgletscher nach Teilgebieten **Fig.36:** Mean lower limits of intact and fossile rock glaciers according to regions

Um das räumliche Verbreitungsmuster der mittleren Blockgletscher-Untergrenzen besser zu veranschaulichen, werden die Mittelwerte von Tab.19 in Abb.36 noch einmal, nun aber in Raumlage, gezeigt. Es fällt sowohl bei den intakten als auch bei den fossilen Blockgletschern ein regelhafter Anstieg der mittleren Untergrenzen von den mehr peripher gelegenen Gebirgsgruppen zu den inneralpinen Gebieten auf, wobei die Kulmination im Teilraum 6 (intakte Blockgletscher) bzw. 7 (fossile Blockgletscher), jeweils also im Gebirgsraum Osttirols (Einzugsgebiet der Isel), erreicht wird. Die im Untersuchungsraum faßbaren Unterschiede sind dabei sehr bedeutend und umfassen bei den intakten Blockgletschern eine Differenz von 303 m zwischen dem Gebiet mit der niederigsten (4) und dem mit der höchsten mittleren Untergrenze (6), bei den fossilen Blockgletschern sogar 527 m (zwischen den Werten der Gebiete 1 und 7). Diese Gegebenheiten stehen mit dem peripher-zentralen Anstieg der übrigen Höhengrenzen ausgezeichnet im Einklang und werden in Kap.5.2 am Beispiel der Hohen Tauern noch genauer besprochen und mit vergleichenden Trendflächenanalysen veranschaulicht. Der erwähnte stärkere Anstieg der mittleren Untergrenze der fossilen Blockgletscher kann mit dem Vorbehalt, daß die zu Grunde liegenden Daten Informationen aus verschiedenen Zeiträumen beinhalten, doch als möglicher Hinweis auf eine im Spätglazial verstärkte Kontinentalität des Alpeninneren im Sinne von KERSCHNER 1983 und 1985 gewertet werden.

In Abb.37 ist die Verteilung der mittleren Untergrenzen nach Höhenstufen für die einzelnen Teilgebiete und in Tab.20 in Absolut- und Relativzahlen für den gesamten Untersuchungsraum dargestellt. Sowohl die Abbildung als auch die Tabelle veranschaulichen wieder gut die höhere Lage der Untergrenzen der intakten gegenüber den fossilen Blockgletschern. Bei der Form der Verteilungen ist mit zunehmender Größe der Stichproben eine Annäherung an Normalverteilungen zu beobachten, was sich auch in den Daten für das Gesamtgebiet widerspiegelt. Auffallend sind jedoch die in manchen Teilgebieten und beim Gesamtkollektiv ersichtlichen Doppelmaxima in den Verteilungen der fossilen Blockgletscher, eine Beobachtung, die auch schon in der Pilotstudie über die Hohen Tauern getätigt werden konnte (LIEB 1991, 359). Ob diese sekundären Maxima mit zwei verschiedenen spätglazialen Aktivitätsphasen der Blockgletscher in Verbindung gebracht werden dürfen oder ob sie mit topographischen Gegebenheiten in bestimmten Gebieten zu erklären sind, muß allerdings nach wie vor offen bleiben.

- Abb.37: Hypsometrische Verteilung der Blockgletscher-Untergrenzen nach 100 m-Höhenstufen und Teilgebieten
- Fig.37: Hypsometric distribution of the lower limits of rock glaciers according to vertical intervals of 100 m and regions

- Tab.20: Zahl der Untergrenzen der intakten und fossilen Blockgletscher nach 100 m-Höhenstufen
- Tab.20: Number of lower limits of intact and fossile rock glaciers according to vertical intervals of 100 m

	intakte	Blgl.	fossile	Blgl.	alle	Blgl.
	absolut	%	absolut	%	absolut	%
2800 - 2850	7	2,5	-	-	7	0,5
2700 - 2799	24	8,5	2	0,2	26	1,8
2600 - 2699	47	16,7	6	0,5	53	3,8
2500 - 2599	76	27,0	42	3,6	118	8,1
2400 - 2499	65	23,0	89	7,6	154	10,5
2300 - 2399	45	16,0	118	10,1	163	11,2
2200 - 2299	17	6,0	174	14,9	191	13,2
2100 - 2199	1	0,3	146	12,5	147	10,1
2000 - 2099	-	-	184	15,7	184	12,7
1900 - 1999	-	/	181	15,5	181	12,5
1800 - 1899		-	132	11,3	132	9,1
1700 - 1799	-	-	68	5,8	68	4,7
1600 - 1699	-	- /	24	2,0	24	1,6
1520 - 1599	-	-	3	0,3	3	0,2
gesamt	282	100,0	1169	100,0	1451	100,0

4.4.2. Der Einfluß der Exposition

Permafrost und damit auch Blockgletscher sind als stark strahlungsabhängige Phänomene in ihrem Erscheinungsbild sehr stark von den Expositionsverhältnissen gesteuert, wie dies in dieser Arbeit schon an vielen Stellen, besonders in Kap.3.3.2, zum Ausdruck gekommen ist. Hieraus kann man vermuten, daß die Blockgletscher die im Strahlungsgenuß benachteiligten nördlichen Expositionen bevorzugen, was - wie Tab.21 zeigt - auch tatsächlich der Fall ist, besonders ausgeprägt bei den intakten Blockgletschern. Diese Beobachtung wird auch von Untersuchungsergebnissen aus anderen Alpengebieten (z.B. BARSCH 1977 a, Tab.1) und außeralpinen Hochgebirgen der Nordhemisphäre gestützt (HÖLLERMANN 1983, Fig.14). Bei den fossilen Blockgletschern ist demgegenüber ein stärker ausgeglichenes Verteilungsbild zu beobachten, und bei kleineren Stichproben (etwa manchen Teilgebieten in Abb.39), ja selbst noch beim Gebietsmittel der Hohen Tauern (LIEB 1991, 354), treten Verteilungsmaxima in südl. Expositionen auf. Solche bringt man wohl zu Recht mit dem spätglazialen Vergletscherungsgang in Verbindung, der in sonnseitigen Lagen tendenziell früher als in den noch länger vergletscherten Schattseiten die Blockgletscherbildung ermöglichte.

Einen feineren Einblick in die Expositionsverhältnisse gestatten die Expositionsdiagramme der intakten Blockgletscher in Abb.38 und der fossilen in Abb.39. Diese spiegeln neben der besonders bei den aktiven Blockgletschern starken Bevorzugung von Auslagen im Bereich NW-N-NE in hohem Maße die topographischen Rahmenbedingungen in den betreffenden Teilgebieten wider, namentlich die vorherrschenden Expositionen der zur Blockgletscherbildung geeigneten Kare (vgl. auch BUCHENAUER 1990, 242). So ist beispielsweise das auffällige Zurücktreten der westl. Expositionen in den Niederen Tauern sowie in den Seetaler und Gurktaler Alpen (Gebiete 4, 5, 11, 12, 13) mit der für diese Gebirge typischen Asymmetrie der häufig meridional streichenden Kämme zu erklären (Glatthänge an den W-, Kare an den E-Flanken; ausführlicher hierzu LIEB 1989, 251 ff., mit Begründung und Folgeliteratur).

	intakt	%	fossil	%	alle	%
W	46	13,7	110	8,9	156	12,7
NW	63	12,5	134	21,0	197	14,1
N	59	17,7	146	13,8	205	17,0
NE	39	11,4	207	22,3	246	13,6
E	· 25	12,5	160	7,1	185	11,4
SE	15	13,1	153	5,3	168	11,6
S	20	9,7	146	5,3	166	8,8
SW	15	9,4	113	16,3	128	10,8
gesamt	282	100,0	1169	100,0	1451	100,0

Tab.21: Zahl der intakten und fossilen Blockgletscher nach Expositionen

 Tab.21: Number of intact and fossile rock glaciers according to expositions

Von zentralem Interesse ist bei den Expositionen die Frage nach deren Einfluß auf die Höhenlage der mittleren Blockgletscher-Untergrenze. Eine Übersicht hierzu bietet Tab.22 und die aus den Daten dieser Tabelle entworfene Abb.40. Man erkennt als erstes Merkmal, daß die Blockgletscher-Untergrenzen erwartungsgemäß schattseitig deutlich tiefer als sonnseitig liegen. Die Differenz zwischen den mittleren Untergrenzen der N- und der S-Exposition beträgt (nach Tab.22) 273 m für die intakten und 245 m für die fossilen Blockgletscher, bei Zusammenfassung zu Expositionsgruppen (N-Sektor = NW, N, NE; S-Sektor = SE, S, SW) 194 m für die intakten und 180 m für die fossilen Blockgletscher. Alle diese Werte fügen sich gut in den aus anderen Untersuchungsgebieten bekannten Rahmen: Beispielsweise gibt BARSCH 1977 a,

121, für die Schweizer Alpen als durchschnittliche Differenz zwischen den Untergrenzen aktiver Blockgletscher in südl. und nördl. Exposition 150 bis 250 m an.

Abb.38: Expositionsverteilung der intakten Blockgletscher in den Teilgebieten **Fig.38:** Expositions of intact rock glaciers in the regions

Abb.39: Expositionsverteilung der fossilen Blockgletscher in den Teilgebieten **Fig.39:** Expositions of fossile rock glaciers in the regions

- Tab.22: Mittel- und Extremwerte der Untergrenzen der intakten und fossilen Blockgletscher nach Expositionen
- Tab.22: Mean and extreme lower limits of intact and fossile rock glaciers according to expositions

	intakte	Blgl.			fossile	Blgl.		
	Mittel	S	Min.	Max.	Mittel	S	Min.	Max.
W	2516	133	2200	2800	2173	196	1700	2580
NW	2470	122	2220	2700	2055	183	1660	2500
Ν	2414	110	2140	2660	1998	166	1580	2460
NE	2499	122	2290	2730	2026	189	1520	2500
E	2523	99	2310	2700	2031	219	1600	2560
SE	2628	142	2370	2820	2151	256	1650	2620
S	2687	99	2500	2850	2243	216	1570	2730
SW	2626	111	2400	2830	2232	223	1640	2620
gesamt	2507	142	2140	2850	2104	226	1520	2730

Anmerkungen: Alle Angaben in m, s = Standardabweichung, Zahl der Blockgletscher siehe Tab.21.

- Abb.40: Mittelwerte und Standardabweichungen der Untergrenzen der intakten und fossilen Blockgletscher nach Expositionen
- Fig. 40: Means and standard deviations of the lower limits of intact an fossile rock glaciers according to expositions

Um die Verhältnisse in den einzelnen Teilgebieten darzulegen, wurden für diese die mittleren Untergrenzen nach 3 Expositionsbereichen (N- und S-Sektor wie oben, W und E als "neutrale" Expositionen zusammengefaßt) in Tab.23 zusammengestellt. Schließlich wird das Bild über die Expositionsverhältnisse der Blockgletscher durch die Darstellung der Häufigkeitsverteilung der Untergrenzen nach 100 m-Höhenstufen in Abb.41 abgerundet. Die Unterschiede zwischen Sonn- und Schattseiten liegen in den meisten Gebieten in der angegebenen Größenordnung von rund 200 m, stärker davon abweichende Werte in einzelnen Gebieten sind aus zu geringer

Größe der Stichproben oder spezifischen Geländegegebenheiten zu erklären. Allein für die in drei Fällen gegebene Sondersituation, daß im selben Gebiet die mittleren sonnseitigen Untergrenzen fossiler Blockgletscher tiefer als die schattseitigen liegen (Teilgebiete 5, 12 und 13), scheinen diese Erklärungsmöglichkeiten unzureichend zu sein. Es ist hierbei wohl noch zusätzlich die zeitliche Ungleichheit der Bildungen ins Kalkül zu ziehen, die einen unmittelbaren Vergleich der älteren sonnseitigen mit den jüngeren schattseitigen Blockgletschern erschwert (weitere Überlegungen hierzu bei LIEB 1994 und in Kap.4.5).

- Tab.23: Mittlere Untergrenzen der intakten und fossilen Blockgletscher nach Expositionsbereichen und Teilgebieten
- Tab.23: Mean lower limits of intact and fossile rock glaciers according to expositions and regions

	intakte Blgl							fos- sile	Blgl									
	NW-N-	NE		E-W SE-S-SW			NW-N-NE			E-W			SE-S-SW					
	Mittel	S	n	Mittel	S	n	Mittel	S	n	Mittel	S	n	Mittel	S	n	Mittel	S	n
Teilgebiet 1	-	-	-	-	-	-	-	-	-,	1827	124	17	1822	107	5	1834	152	9
Teilgebiet 2	2410	79	22	2454	113	12	2457	42	3	2063	166	16	2160	144	25	2258	188	18
Teilgebiet 3	2360	109	10	2317	24	3	-	-	-	2051	132	27	2162	131	5	2181	116	9
Teilgebiet 4	2305	70	6	2430	0	1	-	-	-	1957	133	64	1913	117	24	2060	157	20
Teilgebiet 5	-	-	-	- `	-	-	-	-	-	1852	111	50	1860	93	27	1801	70	8
Teilgebiet 6	2594	65	5	2630	135	6	2650	131	6	1970	0	1	2250	0	1	2340	133	8
Teilgebiet 7	2543	91	35	2616	80	10	2752	58	11	2255	112	69	2326	123	37	2446	114	87
Teilgebiet 8	2535	77	29	2545	96	17	2653	107	21	2238	100	14	2273	97	12	2341	124	33
Teilgebiet 9	2411	119	39	2490	95	22	2593	95	8	2149	150	33	2297	160	26	2314	128	63
Teilgebiet 10	2382	75	12	-	-	-	2540	0	1	2114	117	48	2221	109	36	2222	143	50
Teilgebiet 11	2330	102	3	-	-	-	-	-	-	1985	82	35	2012	112	21	2052	105	46
Teilgebiet 12	-	-	-	-	-	-	-	-	-	1839	121	47	1842	113	37	1824	107	32
Teilgebiet 13	-	-	-	-	-	-	-	-	-	1988	74	56	1984	79	10	1973	93	24
Teilgebiet 14	-	-,	-	-	-	-	-	-	-	2075	94	10	2108	111	4	2126	168	5
Gesamtgebiet	2457	123	161	2518	122	71	2651	120	50	2026	182	487	2089	222	270	2206	237	412

Anmerkungen wie Tab.19.

- Abb.41: Verteilung der Untergrenzen der intakten und fossilen Blockgletscher nach Expositionsbereichen und 100 m-Höhenstufen
- Fig. 41: Distribution of the lower limits of intact an fossile rock glaciers according to expositions and vertical intervals of 100 m

4.4.3. Der Einfluß der Gesteinswelt

Bei den Ausführungen von Kap.4.4.1 hat sich gezeigt, daß zur Interpretation der räumlichen Verteilung der Blockgletscher die Beachtung der rand- und inneralpinen Lage nicht ausreicht. In djesen Fällen müssen zur Erklärung die geologischen Gegebenheiten herangezogen werden, deren Bedeutung für die Entwicklung und Verbreitung der Blockgletscher schon von verschiedenen Autoren hervorgehoben wurde. So gibt es neben semiquantitativen Angaben (z.B. HÖLLERMANN 1964, STRUNK 1986) auch schon detaillierte statistische Auswertungen (CHUECA 1992) dieses Zusammenhanges, den BARSCH 1992, 177, treffend in der Form zusammengefaßt hat, daß sich Blockgletscher zwar grundsätzlich in (fast) jedem Gestein entwickeln können, daß aber mit zunehmend blockgletscherungünstigeren klimatischen Rahmenbedingungen der Gesteinscharakter an Bedeutung gewinnt. Entscheidend sind dabei die Verwitterungseigenschaften der Gesteine im Einzugsgebiet der Blockgletscher, und zwar in dem Sinne, daß die Blockgletschergenese und -dynamik umso mehr begünstigt wird, je stärker die Gesteine bei der im Hochgebirge natürlich sehr intensiven physikalischen Verwitterung zu grobblockigem Zerfall neigen. Nach den Erfahrungen aus den östlichen österreichischen Alpen kann man grob folgende Reihung wichtiger Gesteine von grobblockigem (Blockgletscher begünstigendem) zu feinstückigem (Blockgletscher benachteiligendem) Schuttanfall aufstellen: Granite und granitische Gneise - Paragneise - Glimmerschiefer - schwächer metamorphe Schiefer und Phyllite - Dolomite und Kalke. In der Tat zeigt schon eine flüchtige Betrachtung der Verteilung der Blockgletscher (Tafel 1) diese Beziehungen, etwa beim Vergleich der Schladminger mit den Radstädter Tauern (näheres in Kap.5.3.2) oder der Südabdachung der westlichen mit der der östlichen Hohen Tauern (Abb.35). Eine genaue Auswertung der Blockgletscherverbreitung in ihrer Beziehung zu geologischen Einheiten liegt aus dem Untersuchungsraum bisher nur für die Gurktaler und Seetaler Alpen vor (LIEB 1994, 64) und wird im folgenden für das Areal der Pilotstudie Nationalpark Hohe Tauern (Abb.32, 546 Blockgletscher) präsentiert. Für die übrigen Teile des Untersuchungsgebietes liegen wegen der Aufwendigkeit der entsprechenden Erhebungen und der regional fehlenden Verfügbarkeit ausreichend genauer geologischer Karten keine statistisch auswertbaren Angaben vor.

Auch bei der Bearbeitung der Hohen Tauern, die - soweit vorhanden - unter Verwendung geologischer Karten der Maßstäbe 1:50000 oder 1:25000 durchgeführt wurde (Auflistung bei KRAINER 1994, 157), ergaben sich Probleme durch die unterschiedliche Genauigkeit dieser Karten und die oft schlechte Vergleichbarkeit der verschiedenen Karten untereinander. Aus diesem Grund wird an dieser Stelle eine Auswertung primär nach geologisch-tektonischen Großeinheiten und nur sekundär nach ausgewählten Gesteinstypen geboten. Dadurch müssen natürlich gewisse Unschärfen in der Zuordnung der Blockgletscher in Kauf genommen werden, die jedoch für die hier angestrebten Aussagen kaum von Belang sind. Zu Grunde gelegt wurde die geologisch-tektonische Gliederung der Hohen Tauern von THIELE 1980, die sich von den jüngeren (z.B. HÖCK et al. 1994, KRAINER 1994) zwar in der Benennung und Zuordnung einzelner Serien, nicht aber prinzipiell und schon gar nicht in für den vorliegenden Zweck relevanter Weise unterscheidet. Schon der Blick auf die Abb.42 läßt Häufungen von Blockgletschern in bestimmten Einheiten erkennen, während sie in anderen weithin fehlen. Um statistisch fundierte Aussagen zu ermöglichen, wurden die Flächen der geologischen Einheiten ausplanimetriert und mit der jeweiligen Zahl der Blockgletscher darin verglichen (Tab.24). Es zeigt sich, daß das mittelostalpine Altkristallin trotz seines geringen Flächenanteiles am S-Rand des untersuchten Gebietes die größte Zahl von Blockgletschern beherbergt, während Obere und Untere Schieferhülle trotz hoher Flächenanteile blockgletscherarm sind. Die Auswertung nach Gesteinen spiegelt grob die erwähnte unterschiedliche Neigung der Gesteine zu grobblockigem Zerfall wider, wobei vor allem die karbonatischen Gesteine trotz weiter Verbreitung (hierzu gehören die etwa in der Glocknergruppe weithin landschaftsprägenden Kalkglimmerschiefer der Bündnerschieferserie) als sehr blockgletscherungünstig in Erscheinung treten.

Abb.42: Geologische Übersicht der Hohen Tauern (THIELE 1980) und Lage der Blockgletscher **Fig.42:** Geological map of the Hohe Tauern range and the position of rock glaciers

Tab.24: Zahl der Blockgletscher in den geologisch-tektonischen Einheiten der Hohen Tauern

 Tab.24: Number of rock glaciers in the geological-tectonical units of the Hohe Tauern range

geologisch-tektonische	Altkristallin	Ob. Schie-	Unt. Schie-	Zentral-	Gesamt-
Haupteinheit		ferhülle	ferhülle	gneiszone	gebiet
Flächen (km²)	549	1006	967	1094	3700*
Flächen (%)	14,8	27,2	26,1	29,6	100,0*
Zahl der Blgl.	244	51	36	215	546
Zahl der Blgl. (%)	44,7	9,3	6,6	39,4	100,0
ZB Glimmerschiefer	165	-	-	-	165
ZB Gneise	64	-	10	61	135
ZB granitische Gesteine	13	-	-	133	146
ZB karbonat. Gesteine	-	27	-	-	27
ZB sonstige	3	24	26	20	73

Anmerkungen: Die geologisch-tektonischen Haupteinheiten stimmen mit denen in Abb.42 überein. Der bei den Flächenangaben* sich ergebende Fehlbetrag auf die Werte des Gesamtgebietes kommt dadurch zustande, daß der schmale, blockgletscherfreie Anteil an der Grauwackenzone (Salzachtal) in der Tabelle nicht enthalten ist. Blgl. = Blockgletscher, ZB = Zahl der Blockgletscher, in deren Einzugsgebiet das betreffende Gestein dominiert.

Man könnte dieser Interpretation der Blockgletscherverteilung mit Hilfe der geologischen Rahmenbedingungen entgegenhalten, daß eine solche auch mit anderen Faktoren möglich wäre. So etwa liegt das Altkristallin im klimatisch am stärksten kontinental geprägten Teil des untersuchten Bereiches, und die aus den Gesteinen der Schieferhülle aufgebauten Gebiete sind sehr großflächig vergletschert (z.B. Glocknergruppe). Der erste Einwand ist prinzipiell berechtigt, doch gibt es an der inneralpinen S-Abdachung des Tauernhauptkammes auch große, zur Oberen Schieferhülle gehörige Bereiche (z.B. die südl. und südwestl. Venedigergruppe), die trotz klimatischer (und durchaus auch topographischer) Gunst eben aus Gründen des Gesteinsbestandes arm an Blockgletschern sind. Dem zweiten Einwand ist

Lieb

entgegenzuhalten, daß auch die Zentralgneiszone sehr stark vergletschert ist (z.B. Ankogelgruppe) und dennoch wegen der grobblockigen Verwitterungsprodukte der sie aufbauenden granitischen Gesteine in Tab.24 als blockgletscherreich in Erscheinung tritt.

Es ist somit zusammenfassend festzuhalten, daß den Gesteinen bzw. geologisch-tektonischen Einheiten eine wichtige Ergänzungsfunktion bei der Interpretation der Blockgletscherverbreitung zukommt. Offenbar scheinen jedoch nicht nur die Blockgletscher als Form, sondern auch der Hochgebirgspermafrost generell durch Grobblockigkeit von Schuttmassen begünstigt zu sein. Diese zuletzt getätigte Äußerung ergibt sich neben verschiedenen Beobachtungen im Blockgletscherinventar vor allem aus den vorliegenden kleinräumigen Untersuchungen, etwa denen von RENNERT 1991 in der südlichen Glocknergruppe (Kap.5.3.2) oder meinen eigenen in der Ankogelgruppe, wo die Untergrenze diskontinuierlichen Permafrostes in Schuttakkumulationen der Zentralgneiszone regional deutlich gegenüber benachbarten Gebieten mit gesteinsbedingt geringerem Blockschuttanfall herabgedrückt ist (vgl. dazu Kap.2.3.2). Als eine Ursache hierfür kann man mit BARSCH 1977 a, 130, die Neigung zu statischer Bewetterung der großen Porenräume im grobblockigen Substrat nennen.

4.5. Ansätze zur Rekonstruktion der Blockgletschergeschichte

Durch das hiermit präsentierte Blockgletscherinventar liegt eine Fülle von Daten nicht nur über den rezenten Permafrost, sondern auch über die frühere Permafrostverbreitung vor, was nach einer paläoklimatischen Interpretation verlangt. Die grundsätzlichen Überlegungen hierzu wurden schon in Kap.2.4.1 ausformuliert, weshalb an dieser Stelle der Blick auf die vorhandenen Werte selbst gerichtet werden soll. An erster Stelle ist erneut festzuhalten, daß im Untersuchungsraum die Zahl der fossilen Blockgletscher gegenüber der der intakten bei weitem überwiegt (Verhältnis rund 4:1) und daß die fossilen Blockgletscher über ein wesentlich größeres Gebiet als die intakten verteilt sind. Wenn dies natürlich auch durch die Begrenzung des Untersuchungsraumes mitbedingt ist (Gebirge geringer absoluter Höhe), so ist doch unverkennbar, daß die Blockgletscher unter vorzeitlichen Klimabedingungen - nach den Ausführungen in Kap.2.4.1 ist damit vor allem das Spätglazial gemeint - zahlreicher und verglichen mit heute als intakte Formen für größere Gebirgsräume charakteristisch waren. Im Mittel liegen nach Tab.19 die Untergrenzen der fossilen Blockgletscher um etwa 400 m unter denen der intakten, was in Kap.4.4.1 als durchaus mit den Klimabedingungen des ausgehenden Spätglazials in Einklang stehend erläutert wurde.

Damit steht erneut die Frage nach der zeitlichen Parallelisierung von fossilen Blockgletschern mit den bekannten Spätglazialstadien und möglicherweise auch mit den kälteren Perioden des Postglazials im Raum. Meines Wissens war es bislang noch nicht möglich, einen fossilen Blockgletscher absolut zu datieren oder wenigstens in eine durch mehrfache absolute Datierungen wirklich gesicherte Stratigraphie einzubinden, weshalb alle bisherigen Versuche der zeitlichen Zuordnung mit Unsicherheiten behaftet sind. Sie beruhen zum einen auf der Berechnung der Depression von Blockgletscher-(Permafrost-)Untergrenzen und zum anderen auf der relativen Stellung der fossilen Blockgletscher zu Moränen, die in der Regel wiederum nur über die Depression rekonstruierter Schneegrenzhöhen miteinander mehr oder weniger sicher korrelierbar sind. Hierzu haben sich prinzipiell aus den vorliegenden Untersuchungen keine neuen Aspekte ergeben, weshalb auf meine früheren allgemein-methodischen Ausführungen (LIEB 1987 b) sowie auf die verschiedenen, im Regionalteil (Kap.5.3) zitierten Lokalstudien verwiesen werden kann.

Aus dem Datenmaterial des Blockgletscherinventars habe ich jedoch für das Gebiet der Pilotstudie Nationalpark Hohe Tauern versucht, eine Statistik der Depressionen der Untergrenzen der fossilen Blockgletscher zu erstellen. Hierzu wurden insgesamt 27 kleine, jeweils sowohl mit fossilen als auch mit intakten Blockgletschern ausgestattete Teilgebiete ausgewählt, die jeweils die Größenordnung von Talschlüssen oder Großkaren hatten. In diesen wurde unter Be rücksichtigung der Exposition eine mittlere Untergrenze der intakten Blockgletscher bestimmt und für jede einzelne Untergrenze der im betreffenden Teilge-biet gelegenen fossilen Blockgletscher die Differenz zu diesem Mittelwert errech-net. Auf diese Weise konnten für 170 fossile Blockgletscher lokal gültige Depressionsbeträge ermittelt und statis-tisch bearbeitet werden. Als Mittelwert für die gesamte Stichprobe ergibt sich ein Wert von 293 m, wobei die Mittelwerte der drei in Abb.43 berücksichtigten Teilräume (Hohe Tauern-N-Seite, Hohe Tauern-S-Seite, östl. und westl. Teil) davon nur wenig abweichen. Diese Abbildung zeigt die Verteilung der aufgetretenen Depressionswerte nach 50 m-Klassen, die durch ein breites Maximum

zwischen 200 und 400 m ausgezeichnet ist. Vergleicht man diese Angaben mit anderen Bearbeitungen der Blockgletschergeschichte (z.B. KERSCHNER 1983, 589, oder BUCHENAUER 1990, 249), so muß doch der hohe Anteil geringer Depressionsbeträge verwundern. Hierzu ist anzumerken, daß die aus dem vorliegenden Datenkollektiv gewonnenen Werte natürlich nur bedingt mit den aus exakteren Lokalstudien ermittelten vergleichbar sind. Insbesondere dürfte das bekannte Problem ins Gewicht fallen, daß die Untergrenzen jeweils nur Mindestreichweiten und nicht unbedingt reale Reichweiten des Permafrosts anzeigen, wodurch bei einer großräumigen Bearbeitung, wie sie hier versucht wurde, Unsicherheiten in der Aussage auftreten können. Ein unmittelbarer Rückschluß auf die Altersstellung der fossilen Blockgletscher ist somit hieraus nicht möglich.

5. Die Verbreitung von Permafrost und Blockgletschern in den östlichen österreichischen Alpen

5.1. Allgemeine Einführung

Die bisherigen Ausführungen waren überwiegend analytisch strukturiert, d.h. es wurden im wesentlichen die einzelnen Methoden der Permafrostforschung vorgestellt und ihre Ergebnisse diskutiert, von denen die meisten streng genommen nur punktuell oder für kleine Teilgebiete Gültigkeit besitzen. Vor allem im Kap.2.3 wurden aber auch Möglichkeiten aufgezeigt, zu großräumigen Aussagen zu kommen, wobei die Blockgletscherkartierung die beste Methode darstellt, weil sie sowohl leicht durchführbar ist als auch weithin zweifelsfreie Ergebnisse liefert. Somit geben die in Kap.4 ausführlich diskutierten Daten der intakten Blockgletscher schon einen guten Eindruck vom Gesamtverbreitungsbild des rezenten Permafrostes, nicht zuletzt

(BARSCH 1977 a). Dabei setzen aber natürlich die Informationen in den Gebieten aus, wo - wie in den Randalpen - intakte Blockgletscher fehlen. In diesen ist man, wenn keine anderen Permafrostuntersuchungen vorliegen, auf Extrapolationen und vorsichtige Analogieschlüsse angewiesen (auch die in Kap.2.1 angesprochene computergestützte Kartierung potentieller Permafrostflächen gehört letztlich in diese Kategorie). Bevor nun die Verbreitung von Permafrost und Blockgletschern - zuerst in einer Überschau (Kap.5.2), dann nach Teilgebieten (Kap.5.3) - im einzelnen dargelegt wird, sollen noch drei Problemkreise zur Sprache kommen, die für eine Einordnung des Permafrostphänomens in das Gesamtsystem der physischen Geographie der Hochgebirge hilfreich sind.

Der erste dieser Problemkreise ist die Beziehung zwischen Permafrost und Klima, die seit jeher einen klassischen Teilbereich der Permafrostforschung darstellt (gute Übersicht bei GUODONG & DRAMIS 1992) und neuerdings unter dem Eindruck der jüngsten globalen Erwärmung wieder verstärkt Beachtung findet (z.B. GAVRILOVA 1993, HAEBERLI 1990 a, b, 1994, HAEBERLI et al. 1993). Da ich keine speziellen Untersuchungen zu diesem Fragenbereich angestellt habe, sollen an dieser Stelle nur einige Grundtatsachen, verbunden mit Literaturhinweisen, referiert werden. Wie schon mehrfach angedeutet, ist Permafrost ein temperaturabhängiges Phänomen, wobei sich wohl alle Autoren darin einig sind, daß das Niveau der Jahresmitteltemperatur der Luft die primär entscheidende Größe ist. Hierbei gelten Werte von -1°C bis -2°C als charakteristisch für die Untergrenze diskontinuierlichen Permafrostes im Hochgebirge (z.B. BARSCH 1977 a, 134, KARTE 1979, 30, oder KING 1984, 144), solche zwischen -6°C und -8,5°C für die des kontinuierlichen Permafrostes (HAEBERLI 1976, 211, HAEBERLI & KING 1987, 270). Zur Darstellung der Temperaturverhältnisse in den österreichischen Alpen dient Abb.44, die in Form eines Isoplethendiagrammes den Jahresgang der Lufttemperatur für die Höhenstufe zwischen 1500 und 3500 m zeigt. Darüberhinaus sind die Höhenlagen ausgewählter Jahresisothermen eingetragen, wofür die Arbeit von LAUSCHER 1981 die Hauptgrundlage bildete. Es muß betont werden, daß die Daten auf einer großen Zahl von Bergstationen in ganz Österreich beruhen und daher die regionale Differenzierung der Höhenlage der Isothermen (Anstieg von den Rand- zu den Zentralalpen) nicht abbilden können, weshalb nur ein grober Eindruck davon vermittelt wird, ab welcher Höhe in den österreichischen Alpen Permafrost erwartet werden kann: Nimmt man mit den genannten Autoren die Lage der Permafrost-Untergrenze nahe der -2°C-Jahresisotherme (2540 m) an, so fällt sofort die überraschend gute Übereinstimmung mit der mittleren Untergrenze aller intakten Blockgletscher des Blockgletscherinventars (2507 m nach Tab.19 und 22) auf, was die Verwendbarkeit dieses orientierenden Temperatur-Schwellenwertes zur Abgrenzung der Höhenstufe mit Permafrost doch bestätigt.

Bei größermaßstäbiger Betrachtung ist indes das Jahresmittel der Lufttemperatur nicht geeignet, das Verbreitungsbild des Permafrostes klimatologisch zu erklären: So tritt beispielsweise im inneren Dösener Tal Permafrost verbreitet bis 2300 m herab auf, in welcher Höhe dort nach den Überlegungen von Kap.3.1 die 0°-Jahresisotherme liegt. Demnach kommt den mesoklimatischen Gegebenheiten entscheidende Bedeutung zu, wobei an erster Stelle die Differenzierung der Strahlungsverhältnisse durch die Exposition zu nennen ist. Die bisherigen Arbeiten basierten vor allem auf der potentiellen direkten Sonnenstrahlung, die über digitale Geländemodelle berechnet wurde (FUNK & HOELZLE 1992); die besten Übereinstimmungen mit der realen Permafrostverbreitung erbrachte dabei die rechnerische Ermittlung der mittleren kurzwelligen Strahlungsbilanz im Sommer (VONDER MÜHLL et al. 1994). Eine Analyse der potentiellen Sonnenstrahlung im Vergleich mit der vorliegenden Permafrostkartierung des inneren Dösener Tales wird derzeit im Rahmen einer Seminararbeit am Inst. f. Angewandte Geodäsie und Photogrammetrie der Technischen Universität Graz durchgeführt. Als ein weiterer modifizierender Faktor für Permafrost sind die Schneeverhältnisse zu nennen, innerhalb derer die Andauer und Mächtigkeit der Schneedecke - im Hochgebirge ganz entscheidend von Windwirkung und Lawinentätigkeit beeinflußt (vgl.etwa HAEBERLI 1990 a) die wichtigsten Einflußfaktoren darstellen. Ausführliche Informationen zu diesen Beziehungen finden sich bei HARRIS 1995 und speziell für die Schneeverhältnisse unter einem stark anwendungsorientierten Aspekt in der Studie von KELLER 1994. Von den anderen Ansätzen, mit denen verschiedentlich versucht wurde, die Beziehungen zwischen Permafrost und Klima zu fassen, sei beispielhaft die wohl bekannteste genannt, nämlich die Verwendung positiver und negativer Temperatursummen (thawing - freezing indices): Sie wurde von HARRIS 1981 entwickelt und seither wiederholt mit besonders in schneearmen Gebieten zufriedenstellenden Resultaten eingesetzt (z.B. GREENSTEIN 1983, HÖLLERMANN 1983).

- Abb.44: Jahresgang der Temperatur nach der Seehöhe in den österreichischen Alpen und Höhenlage ausgewählter Jahresisothermen
- Fig.44: Temperature and elevation in the Austrian Alps

Anmerkungen: Datengrundlage für die Isoplethen LAUSCHER 1981 (Periode 1946-1979), im 3500 m-Niveau ergänzt nach TOLLNER 1969. Die Berechnung der Höhenlage der Jahresisothermen erfolgte nach der Regressionsgleichung von LAUSCHER 1981, Tab.2).

Der zweite Problemkreis umfaßt die Zuordnung der Permafrostvorkommen zu den *Permafrosttypen* fleckenhaft, sporadisch, diskontinuierlich und kontinuierlich, die nach Flächendeckungsraten des Permafrostes (Kap.1) definiert sind, mitunter aber auch nach klimatischen Grenzwerten bestimmt werden. Es muß betont werden, daß die Ermittlung des relativen Anteils des Permafrostes an einer bestimmten Gesamtfläche immer nur mit bedeutenden Unsicherheiten möglich ist, egal ob man im großen oder kleinen Maßstab arbeitet. So ist es etwa mit der BTS-Methode (Kap.2.2.3) möglich, für einen bestimmten Punkt Permafrost nachzuweisen (genauer: wahrscheinlich zu machen), doch ist daraus noch keine Aussage über die Zugehörigkeit zu einem der Permafrosttypen abzuleiten. Bei einer größeren Zahl von Meßpunkten zeichnet sich aber doch eine sinnvolle Möglichkeit ab, bestimmte

Lieb

Geländeteile (z.B. Meßgebiete wie in Abb.7 oder Höhenstufen wie in Tab.12) auf Grund der Mittelwerte der in ihnen registrierten BTS-Werte oder eventuell auf Grund des Anteils der Meßwerte der einzelnen Temperaturklassen den Permafrosttypen zuzuordnen. Dabei wäre an eine Parallelisierung der Klasse "Permafrost möglich" mit fleckenhaftem oder sporadischem und der Klasse "Permafrost wahrscheinlich" mit diskontinuierlichem oder kontinuierlichem Permafrost zu denken. Bei großräumiger Betrachtung liefert die Untergrenze der intakten Blockgletscher (streng genommen nur der aktiven, Kap.2.3.1) wegen der Bindung dieser Formen an diskontinuierlichen Permafrost auch einen guten Näherungswert für dessen Untergrenze (exakter: für dessen Mindestreichweite), wobei der Begriff "Permafrost-Untergrenze" (seltener unklarer auch "Permafrostlinie") als Untergrenze des und diskontinuierlichen Permafrostes definiert ist (KELLER 1994, 23).

Wo jedoch intakte Blockgletscher fehlen und nur mehr Vegetationsverhältnisse, spätsommerliche Schneeverteilung oder klimatische Überlegungen Anhaltspunkte bieten, erscheint es besser, nur von "potentiellem Permafrost" zu sprechen und den Permafrosttyp offen zu lassen, wie dies in Abb.46 geschah. Für die zentrale Ankogelgruppe wurde in Abb.14 trotz dieser Vorbehalte eine hypothetische Zuordnung durchgeführt, diese nach Höhenstufen sowie Expositionsbereichen statistisch ausgewertet und die dabei gewonnenen Daten von Tab.7 graphisch in Abb.45 veranschaulicht (zum methodischen Hintergrund siehe Kap.2.3.2). Diese Abbildung bringt trotz der verbleibenden Unsicherheiten recht gut die Unterschiede zwischen den einzelnen Expositionen in Hinblick auf die potentiellen Permafrosttypen zur Geltung.

- Abb.45: Flächenanteile sporadischen und diskontinuierlichen Permafrostes nach Höhenstufen in der zentralen Ankogelgruppe
- **Fig.45:** Areas of sporadic and discontinuous permafrost according to elevation in the central Ankogel group, Hohe Tauern range

Anmerkungen: Der Darstellung liegen die Daten von Tab.7 zu Grunde, die wiederum auf einer Auswertung der aus der Infrarotorthophotokarte von SEGER 1996 (Beilage zu diesem Band) gewonnenen Abb.14 beruht.

Der dritte Problemkreis ist die Beziehung des Permafrostes zu anderen Erscheinungen in den Hochlagen des Hochgebirges, die hier nur kurz gestreift werden soll, weil darüber die monographische Arbeit von KARTE 1979 umfassend Auskunft gibt. Aus dieser geht u.a. die wohl allgemein akzeptierte Feststellung hervor, daß der Hochgebirgspermafrost bzw. die intakten Blockgletscher als seine beste morphologische Manifestation Teilglieder im Gesamterscheinungsbild des *Periglazialraumes* (Periglaziärs) sind. Im einzelnen erscheint jedoch die Bindung bestimmter Formen bzw. Prozesse der periglazialen Morphodynamik an

den Permafrost noch nicht restlos geklärt (vgl. auch Kap.2.3.1): So weist beispielsweise KING 1984, 141, darauf hin, daß gut ausgeprägte Steinstreifen und -polygone sowie Blockschuttfelder in Skandinavien nur innerhalb der Permafroststufe anzutreffen wären, und bei ROLSHOVEN 1982 oder KUHLE 1987 werden Makrostrukturböden als Permafrostzeiger gewertet und damit auch die Permafrost-Untergrenze festgelegt. Demgegenüber betont KARTE 1979, 173, daß Strukturbodengroßformen und Formen der Makrosolifluktion Permafrost nicht als unbedingte Voraussetzung hätten. Dies ergibt sich auch aus den Untersuchungen zur solifluidalen Morphodynamik in der südlichen Glocknergruppe (Kap.5.3.2, VEIT et al. 1995), wenn auch VEIT 1988 und 1993 Phasen verstärkter Solifluktion im Postglazial mit Perioden herabgedrückter Permafrost-Untergrenze parallelisiert. Sondert man mit LEHMKUHL 1989 und LEHMKUHL et al. 1992 eine eigene nivale Stufe aus, so deckt sich deren Untergrenze theoretisch weithin mit der Untergrenze der potentiellen Permafrostverbreitung, wie ja auch die für die Formung der nivalen Stufe entscheidenden perennierenden Schneefelder als Permafrostzeiger gewertet werden können (Kap.2.3.2). LEHMKUHL 1989 bietet in seiner Beilage 2 eine Kartierung der geomorphologischen Höhenstufen in der Ankogelgruppe, die mit der vorliegenden Permafrostkartierung in Abb.14 verglichen werden kann.

5.2. Grundzüge der horizontalen und vertikalen Verbreitung

Basierend auf diesen Überlegungen wurde eine kleinmaßstäbige Karte der potentiellen Verbreitung von Permafrost im Untersuchungsgebiet entworfen (Abb.46). Diese Karte, deren Interpretation freilich nur unter Einbeziehung der vertikalen Verbreitung des Permafrostes möglich ist, bringt zum einen die Ausdehnung der Hochgebirgsstufe im engeren Sinne (alpine bis nivale Höhenstufe mit periglazialer Morphodynamik, vgl. HÖLLERMANN 1985, unter Einbeziehung der gegenwärtig vergletscherten Flächen) zur Darstellung, wobei die Untergrenze dieses Areals im wesentlichen mit der Untergrenze der alpinen Grasheiden in der Karte der natürlichen Vegetation von Österreich (WAGNER 1985) übereinstimmt. Zum anderen ist darin das Areal potentiellen Permafrostes gekennzeichnet, wobei die Abbildung nach den Ausführungen von Kap.5.1. nur den Anspruch erheben kann, eine grobe Vorstellung von den Gebieten zu vermitteln, in denen Permafrost mit großer Wahrscheinlichkeit erwartet werden kann, keinesfalls aber die tatsächlichen Permafrostareale wiederzugeben. Die horizontale Verbreitung ist erwartungsgemäß durch relativ große, zusammenhängende Flächen mit wahrscheinlichem Auftreten von Permafrost im Bereich des westlichen Abschnittes des Alpenhauptkammes charakterisiert, während nach N und S, besonders jedoch nach E hin der Flächenanteil potentiellen Permafrostes immer geringer wird, was natürlich ausschließlich ein Effekt der in diese Richtungen abnehmenden absoluten Höhen der Gebirge ist. Eine Quantifizierung potentieller Permafrostflächen liegt für die Ankogelgruppe vor (Kap.2.3.2, bes. Tab.7) und kann darüberhinaus auch aus den von KÖRNER 1989 mitgeteilten Daten der Flächenanteile von Vegetationseinheiten in den Hohen Tauern abgeschätzt werden: Für den von den Meridianen 12°13'20" und 12°53'10"E begrenzten, 2845 km² großen Raum zwischen der Salzach im N und der Drau im S werden in dieser Arbeit Flächenanteile von 14,8 % für "Gletscher, vegetationslose Geröllablagerungen, Fels" und 22,9 % für "alpine Grasheide, Schutt- und Felsvegetation, Schneetälchenvegetation" angegeben, welche beiden Kategorien zusammen die in Abb.46 im betreffenden Gebiet eingetragenen Flächen umfassen.

Die Permafrostverbreitung in den einzelnen Teilgebieten, die den Ausführungen in Kap.4.3 und 4.4. zu Grunde liegen (Abb.32 und Tab.13), ist in Tab.25 überblicksmäßig zusammengestellt. Bei den darin enthaltenen qualitativen Angaben zum Flächendeckungsgrad des Permafrostes (Permafrosttyp) ist daran zu erinnern, daß - wie in Kap.5.1 ausgeführt - das Problem einer exakten Einordnung in die Kategorien fleckenhafter, sporadischer, diskontinuierlicher und kontinuierlicher Permafrost letztlich nicht lösbar ist und die getätigten Aussagen somit mit Unsicherheiten behaftet sein müssen. Ebenso sollen auch die quantitativen Angaben nur orientierende Größen sein, weshalb sie - um nicht eine letztlich unerreichbare Genauigkeit vorzutäuschen - jeweils auf 50 m gerundet und gebietsweise darüberhinaus mit Fragezeichen versehen wurden (für genauere Daten wird auf die mittleren und minimalen Untergrenzen der

Lieb

intakten Blockgletscher in Kap.4.4 verwiesen). Damit ist eine Überleitung zum hypsometrischen Verteilungsmuster geschaffen, das viel entscheidender ist und im folgenden genauer behandelt wird.

Nr.	Teilgebiet	Permafrost- Charakter	UDP-S	UDP-N	Mín.	Belege für Minimum
1	Nordalpen	DP bes. am Dach- stein u. Hochkönig	2500 (?)	2300	2000 (?)	perennierender Schnee
2	westl. Hohe Tauern, N-Seite	DP weit verbreitet	2500- 2600	2400	2200	intakter Blockgletscher
3	östl. Hohe Tauern, N-Seite	DP verbreitet	2500 (?)	2350	2200	intakter Blockgletscher
4	westl. Niedere Tauern, N-Seite	DP fraglich, SP sicher	-	2300	2050	perennierender Schnee
5	östl.Niedere Tauern, N-Seite	frei von DP, SP fraglich	-	-	-	-
6	westl. Hohe Tauern, S-Seite	DP weit verbreitet	2650- 2750	2600	2450	intakter Blockgletscher
7	Deferegger Alpen i.w.S.	DP verbreitet	2750	2550	2350	intakter Blockgletscher
8	Schobergruppe	DP weit verbreitet	2700	2500	2350	intakter Blockgl.
9	östl. Hohe Tauern, S-Seite	DP weit verbreitet	2600	2400	2150	intakter Blockgletscher
10	Kreuzeckgruppe	DP fraglich, SP sicher	2550 (?)	2400	2300	Quelltemp., intakter Blockgl.
11	westl. Niedere Tauern, S-Seite	DP fraglich, SP sicher		2350	2200	Quelltemp., intakter Blockgl.
12	östl. Niedere Tauern, S-Seite	frei von DP, SP fraglich	-	-	-	-
13	Gurktaler und Seetaler Alpen	frei von DP und SP	-	-	-	
14	Südalpen	DP fraglich, SP sicher	-	2500	1850	Eisaufschlüsse, Schuttformen

Tab.25: Angaben zur Verbreitung von Permafrost nach Teilgebieten **Tab.25:** Data on the distribution of permafrost according to regions

Anmerkungen: Teilgebiete wie Tab.13 und Abb.32. SP = sporadischer Permafrost, DP = diskontinuierlicher Permafrost, UDP = Untergrenze des DP, S = südl. Expositionsbereich (SE-S-SW), N = nördl. Expositionsbereich (NW-N-NE), Min. = tiefst gelegenes Permafrostvorkommen in der Hochgebirgsstufe.

Alle Erhebungen im Rahmen dieser Arbeit wurden mit spezieller Bedachtnahme auf die Festlegung der Permafrost-Untergrenze durchgeführt, welche vor allem mit den Quell-temperatur- (Abb.3) und den BTS-Messungen (Abb.6) sowie mit den Untergrenzen der intakten Blockgletscher (Kap.4.4) recht gut möglich war. Innerhalb des Untersuchungsgebietes zeigte sich dabei mehrfach, daß die Höhenlage der Permafrost-Untergrenze von der Entfernung zum Alpenrand abhängt und mit Annäherung an das klimatisch kontinental getönte Alpeninnere ansteigt. Dieser Zusammenhang wird mit den beiden Permafrost-Profilen durch die östlichen österreichischen Alpen in Abb.47 veranschaulicht, worin auch die den Angaben zu Grunde liegenden Methoden eingetragen sind. Es zeigt sich erneut, daß diese lokal zwar zu divergierenden, in der Gesamtschau aber zu sehr gut übereinstimmenden Ergebnissen führen, die den beiderseitigen Anstieg der Untergrenzen gegen die knapp südl. des Alpenhaupt-kammes gelegene Kulmination gut zur Geltung bringen, wenn auch das Bild im Detail durch topographische Besonderheiten der einzelnen Teilgebiete (z.B. Deferegger Alpen) etwas verzerrt erscheint.

Wie in den Kap.4.4.1 und 5.1 schon angedeutet, verdeutlichen die Untergrenzen der intakten Blockgletscher (siehe dazu besonders Abb.36) die talwärtige Mindestreichweite des (diskontinuierlichen) Permafrostes besonders gut. Aus diesem Grund wurde für die Hohen Tauern, in denen die Informationsdichte wegen der großen Häufigkeit intakter Blockgletscher (n=236 im Areal der Pilotstudie Nationalpark Hohe Tauern) am besten ist, eine Trendflächenanalyse durchgeführt (Abb.48). Diese Darstellung, für deren Methodik und Problematik auf die Ausführungen von GSPURNING 1996 (in diesem Band) verwiesen wird, bringt sehr anschaulich den generellen Anstieg der Permafrost-Untergrenze von der N-Abdachung der Hohen Tauern nach S hin und an der S-Abdachung den dort schön ausgebildeten Anstieg von E nach W zur Geltung. Ganz ähnlich verhält sich die Trendfläche der Schneegrenzen, die in analoger Weise nach den Daten des Österreichischen Gletscherkatasters erstellt wurde. Bei diesen Werten handelt es sich um Schneegrenzen von Einzelgletschern, die nach der Flächenteilungsmethode Nährgebiet:Zehrgebiet = 2:1 (GROB et al. 1977) bestimmt wurden und in GROB 1983 publiziert sind (für weitere methodische Details siehe diese beiden Arbeiten). Die Schneegrenze kulminiert wie die Blockgletscher-Untergrenze im Raum Osttirol (südl. Venedigergruppe, Deferegger Alpen i.w.S.), wobei die Höhendifferenz zwischen den beiden Trendflächen mit rund 300 m im wesentlichen über das gesamte Gebiet konstant bleibt und nicht, wie es nach dem Kryosphärenmodell von HAEBERLI 1982 zu erwarten wäre, in den inneralpinen Bereichen höher als in den mehr randalpinen ist. Diese Sondersituation hängt mit dem im S des Tauernhauptkammes vorherrschenden Gletschertyp zusammen, welcher bei der verwendeten Methode zur Bestimmung der Schneegrenze vergleichsweise zu tiefe Werte ergibt (vgl. dazu die weiterführenden Erläuterungen u.a. anhand einer Regressionsanalyse der Schneegrenz- und Blockgletscherdaten bei LIEB 1991, 360 f.). Abb.48 kann sehr gut mit der ähnlich konzipierten für die Schweizer Alpen von BARSCH 1980, Abb.1, verglichen werden, wobei sich in den Westalpen ein im Prinzip gleiches Verbreitungsbild zeigt.

- Abb.48: Quadratische Trendflächen der Untergrenze der intakten Blockgletscher und der Schneegrenze in den Hohen Tauern
- Fig.48: Quadratic trend surfaces of the lower limits of intact rock glaciers and equilibrium lines of the glaciers in the Hohe Tauern range

SCHNEEGRENZE

Die Beziehung des Verlaufs der Untergrenze des diskontinuierlichen Permafrostes zu anderen Höhengrenzen wird schließlich noch in einem etwa im Meridian von Salzburg gelegenen Idealprofil durch die österreichischen Alpen veranschaulicht (Abb.49). Hierbei ist zu beachten, daß - wie schon bei Abb.48 - die Exposition unberücksichtigt blieb und die Informationen in manchen Gebieten, insbesondere in den Südalpen, mit einigen Unsicherheiten behaftet sind. Zu den einzelnen Höhengrenzen ist folgendes zu bemerken: Die Angaben über die Waldgrenze halten sich im wesentlichen an die klassische, immer noch gültige Karte von MAREK 1910. Der Eintragung der Schneegrenze liegen regionale Mittelwerte für die vom Profil erfaßten Gebiete zugrunde, die aus den im Österreichischen Gletscherkataster (GROB 1983) angegebenen

Schneegrenzen der Einzelgletscher gerechnet wurden. Die Siedlungsgrenze schließlich wurde nach eigenen Erhebungen und die Permafrost-Untergrenze auf Grund der in dieser Arbeit präsentierten Ergebnisse eingezeichnet. Für einen Vergleich mit ähnlichen Höhenstufen- bzw. Höhengrenzenprofilen durch die Ostalpen, von denen es in der Literatur zahlreiche gibt, wird beispielhaft auf RATHJENS 1982, 162, MEURER 1984, 399, und HÖLLERMANN 1985, 261 verwiesen.

- Abb.49: Schematischer Verlauf der Permafrost-Untergrenze und anderer Höhengrenzen im Querprofil der östlichen österreichischen Alpen
- Fig.49: Scheme of the vertical position of the lower limit of permafrost and other altitudinal limits in a cross-section over the Eastern Austrian Alps

5.3. Regionale Darstellung 5.3.1. Die Randalpen

Nordalpen

Die Nördlichen Kalkalpen sind prinzipiell sehr arm an Blockgletschern, in weiten Bereichen überhaupt frei davon, wie dies etwa für alle Gebirgsgruppen östlich des Dachsteins gilt. Als Ursache hierfür kommen neben den klimatischen Rahmenbedingungen wohl auch die spezifischen topographischem Gegebenheiten der vorherrschend als Plateaugebirge ausgebildeten Berggruppen in Betracht. Im Untersuchungsraum konnten somit in den Nördlichen Kalkalpen insgesamt nur 7 Blockgletscher (2 im Steinernen Meer, Berchtesgadener Alpen, 5 in der Dachsteingruppe) festgestellt werden. In den weiter westlich gelegenen Gruppen der Nördlichen Kalkalpen scheinen jedoch Blockgletscher nach meinen Beobachtungen stärker verbreitet zu sein. So hat auch KERSCHNER 1993 in seine Kartierung der spätglazialen Formen an der Nordkette (Karwendel, Tirol) 6 fossile Blockgletscher eingetragen und darüberhinaus bei vielen der dortigen Moränen blockgletscherartige Überprägung beschrieben. Es fällt auf, daß es sich bei allen bisher genauer erfaßten Blockgletschern der Nördlichen Kalkalpen um fossile handelt, wobei Parallelisierungsversuche mit spätglazialen Stadien für den Dachstein (SCHOPPER 1989) und das Karwendel (KERSCHNER 1993) vorliegen.

Obwohl nach den bisherigen Erhebungen intakte Blockgletscher fehlen, so ist an der Existenz von rezentem Permafrost dennoch nicht zu zweifeln. Wenn auch fehlende Vegetations-

bedeckung substratbedingt von geringerer Aussagekraft als in den Zentralalpen sein dürfte, so finden sich doch an verschiedenen Stellen neben perennierenden Schneefeldern auch Blockschuttwülste oder verwandte Deformationserscheinungen in gefrorenen Schuttkörpern, deren horizontale Dimensionen meist nur im Bereich weniger Dekameter Durchmesser liegen (vgl. dazu die Ausführungen in Kap. 2.3.1). Als Beispiel hierfür kann eine blockgletscherartige Form an der N-Seite der Nordkette im Karwendel in rund 2300 m angesehen werden (KERSCHNER 1990, mündl. Mitt.), ein Beispiel einer etwas größerflächigen, offensichtlich unter Permafrostbedingungen stehenden Frostschuttlandschaft innerhalb des Untersuchungsgebietes stellt das Gebiet zwischen dem Funtenseetauern (2579 m) und dem Grießkogel (2543 (47°29'N/12°58'30"E): Hier liegen Steinernen Meer dar beiderseits m) im Verbindungsgrates der genannten Gipfel Schuttwülste und Schneefelder in einem fast völlig vegetationsfreien Areal in einer Höhe zwischen 2250 und 2500 m. Nähere Untersuchungen hierzu fehlen jedoch bisher.

Genaue Informationen über rezenten Permafrost sind gegenwärtig nur aus der Dachsteingruppe verfügbar, wo in einem Kar auf der steirischen Seite (Koppenkar) eine Detailstudie mit Grabungen, Quelltemperatur- und BTS-Messungen (Tab.2, 3) durchgeführt wurde. Die dabei gewonnenen Ergebnisse, insbesondere die auf deren Grundlage gezeichnete kleinräumige Karte der Permafrostverbreitung bilden den Inhalt der Publikation von LIEB & SCHOPPER 1991. Es konnte gezeigt werden, daß in schattseitigen Auslagen (NW-, N-, NE-Exposition) in Höhen zwischen 2390 und 2490 m der Mittelwert aller 36 gewonnenen BTS--3.2°C beträgt und somit nach den Ausführungen Kap.2.2.3 Meßwerte in im permafrosttypischen Bereich liegt. In den Abschnitten mit großer Horizontüberhöhung gegen S hin sinkt die mittlere BTS auf nahe -4°C (LIEB & SCHOPPER 1991, Abb.7), und es kommen hier überhaupt keine permafrostfreien Stellen mehr vor. Hieraus ist zu schließen, daß in diesem kleinen Untersuchungsgebiet die Untergrenze des diskontinuierlichen Permafrosts in schattseitigen Lagen noch gar nicht erreicht wurde und diese daher wohl in oder nahe 2300 m anzusetzen sein dürfte, was auch durch die Verteilung von Vegetation und perennierenden Schneefeldern nahegelegt wird.

Die Blockgletscher der *Kitzbüheler Alpen*, von denen nur der östliche Teil in das Untersuchungsgebiet fällt, und der *Salzburger Schieferalpen* wurden ebenfalls den Nordalpen zugezählt, was aus klimageographischer Sicht kritisiert werden kann, aber durch die geringe Größe der vorhandenen Stichprobe notwendig erschien. In den beiden Gebirgen existieren nur fossile Blockgletscher, Hinweise auf rezenten Permafrost gibt es wegen der geringen Höhenlage nicht.

Südalpen

Gegenwärtigen Hochgebirgspermafrost weisen die Südalpen nur im W ihres österreichischen Anteils auf, auch gibt es nur dort fossile Blockgletscher. Die mittleren und östl. Abschnitte (Gailtaler Alpen östl. des Gailberges, Karnische Alpen östl. des Zollnersees und Karawanken) erreichen keine für diskontinuierlichen Permafrost in Frage kommenden Höhen, besitzen aber an mehreren Stellen fleckenhaften Permafrost in tiefen Lagen (WAKONIGG 1996, in diesem Band). Das Fehlen auch von fossilen Blockgletschern erklärt sich aus ungeeigneten topographischen Gegebenheiten und der wohl auch schon im Spätglazial vergleichsweise stark maritimen Klimatönung; auch die von VAN HUSEN 1976 beschriebenen Schuttströme in den Karawanken scheinen in ihrer Genese nicht an früheren Permafrost gebunden zu sein. In den im benachbarten Ausland gelegenen höheren Gebirgsgruppen (Steiner/Sanntaler Alpen, Slowenien, und Julische Alpen, Slowenien/Italien) fehlen Blockgletscher nach meinen bisherigen, allerdings noch nicht flächendeckenden Erhebungen ebenfalls, doch ist in den Hochlagen zumindest der Julischen Alpen (etwa um den Triglav) an der Existenz von zumindest sporadischem Permafrost keinesfalls zu zweifeln. Nach W hin wird der Klimacharakter der Südalpen zunehmend kontinentaler, weshalb sich in den Dolomiten, insbesondere ihrem Südtiroler Teil, Blockgletscher aller Aktivitätsstufen relativ zahlreich einstellen, obwohl das karbonatische Substrat hierfür einen gewissen Ungunstfaktor darstellt (mir bekannte Beispiele liegen in den Sextener und Pragser Dolomiten sowie in der Sellagruppe).

Im österreichischen Anteil der Südalpen liegt der Schwerpunkt der Verbreitung von Blockgletschern in den *Lienzer Dolomiten*, wobei hier auch einige physiognomisch besonders bemerkenswerte, große Formen auftreten (Kerschbaumeralm, dr 5, 6), die wie jene der Deferegger Alpen (Kap.5.3.2) auch in der glazialmorphologischen Kartierung von SENARCLENS-GRANCY 1942 auffallen. Alle Blockgletscher sind fossil, rezenter Permafrost dürfte jedoch in schattseitigen Flanken der Hochgipfel und - gemäß dem Vorhandensein perennierender Schneeflecken - in Wandfußlagen vorhanden sein, wenn auch wohl nur als sporadischer Permafrost. Bei einer Geländebegehung im 4.8.1994 konnte ich im Bereich des Laserz (46°45'50"N, 12°48'E) zwar einige Quelltemperaturmessungen durchführen, doch ergaben sich dabei unterhalb von etwa 2350 m Höhe keine permafrosttypischen Werte.

Für den Westteil der Karnischen Alpen gilt prinzipiell ähnliches, wobei die Existenz gegenwärtigen Permafrostes in schattseitigen Schutthalden wenigstens an zwei Stellen belegt ist. Im Kar westlich des Pfannspitzes (nahe der Obstansersee-Hütte, Osttiroler Teil des Karnischen Hauptkammes; 46°40'50"N, 12°30'E) befindet sich eine Abfolge mehrerer Blockschuttwülste in silikatischem Substrat (Quarzit) im Höhenbereich zwischen 2450 und 2550 m, von denen wenigstens zwei steinschlägige Stirnen als klare Aktivitätszeichen besitzen (eigene Begehung). Wesentlich umfangreichere Beobachtungen liegen vom Fuß der Nordwände des Verbindungsgrates Kellerwand-Hohe Warte vor (östl. des Valentintörls, Zentralteil des Karnischen Hauptkammes; 46°36'45"N, 12°53'30"E): Hier befindet sich der schon in Kap.2.3.1 erwähnte blockgletscherartige Schuttkörper (Abb.11), in dessen Umfeld Permafrost dank der Untersuchungen von G. HOHENWARTER, Villach, mehrfach nachgewiesen werden konnte. So kam es im Sommer 1994 durch ein Starkregenereignis an einem der dortigen Schuttkegel (Karbonatgestein) zu Erosionserscheinungen, die in einer neu gebildeten Abflußrinne Eislinsen in rund 2100 m Höhe aufschlossen. Im Sommer 1995 wurde durch mehrere, über eine Fläche von etwa 3 ha verteilte Grabungen Untergrundeis aufgedeckt und damit gezeigt, daß ein Großteil dieser N-exponierten Schutthaldenpartie (mitsamt der blockgletscherartigen Schuttmasse) bis in rund 1850 m (!) herab gefroren ist. Eine ähnliche Erscheinung beschreibt WEISS 1958 aus den Gailtaler Alpen (Steiner Alm/Jauken, 46°42'20"N, 13°3'E), wobei es sich aber möglicherweise um eine Übergangsform zu unterkühlten Schutthalden handeln könnte (WAKONIGG 1996, in diesem Band).

5.3.2. Die Zentralalpen

Westliche Hohe Tauern: Venediger-, Granatspitz- und Glocknergruppe

In der Venediger- und in der Granatspitzgruppe fällt die Konzentration der Blockgletscher auf die N-Seiten des Hauptkammes auf, was zum einen topographisch - die nördlichen Seitentäler sind länger und die Karräume somit ausgedehnter - und zum anderen geologisch - im N herrschen grobblockig zerfallende Gesteine der Zentralgneiszone und Habachformation vor - bedingt ist. Der Gesteinsbestand ist auch der Grund dafür, daß die Glocknergruppe trotz ihrer großen Grundfläche nur 19 Blockgletscher (davon 8 intakt) beherbergt, denn es dominieren Kalkglimmerschiefer der mesozoischen Bündnerschieferserie (Obere Tauernschieferhülle), die ein sandig-grusiges Verwitterungsprodukt liefern. Besonders augenscheinlich ist in der Venediger- und in der Glocknergruppe ferner das Fehlen von Blockgletschern in den zentralen Teilen der Gruppen, wo die dort vorhandenen geräumigen Altflächen als Akkumulationsgebiete großer Gletscher fungieren, die ihrerseits wieder potentielle Areale von Block-gletschern erfüllen.

Neben den intakten Blockgletschern (in den 3 Gruppen zusammen 41) belegen auch mehrere Aufschlüsse, die bei der Errichtung bzw. Renovierung hochgelegener Schutzhütten geschaffen wurden, die Existenz von Permafrost (Abb.50). Das beste Beispiel hierfür ist die höchstwahrscheinlich in der Stufe des kontinuierlichen Permafrostes gelegene Erzherzog-Johann-Hütte auf der Adlersruhe am Großglockner (3451 m), von wo ein beim Umbau 1989 aufgenommenes Foto bei HAEBERLI 1992 a, 113, publiziert ist. Nähere Informationen hierüber finden sich bei KELLER 1991, der ausführt, daß die Hütte auf eisübersättigtem Permafrost stehe und die Schäden an den Mauern sowie die "laut mündlicher Angabe" fast jährlichen Risse des Seiles der Materialseilbahn damit in Zusammenhang stünden, ohne daß sich aber die beim Ausbau der Permafrostproblematik bewußt gewesen wären. Verantwortlichen Untergrundeis wurde auch bei Bauarbeiten an der Oberwalderhütte (2972 m) und an der Stüdlhütte (2802 m) freigelegt, wobei in der zuletzt genannten auch Setzungserscheinungen im alten Küchentrakt mit Tauprozessen im Untergrund in Zusammenhang gebracht wurden (Енм 1994, mündl. Mitt.). Überraschenderweise scheint beim Ausbau des Defreggerhauses (2962 m) in der Venedigergruppe trotz dabei getätigter tiefer Aushübe im Sommer 1994 kein Permafrost angetroffen worden zu sein (RESCH 1994, mündl. Mitt.) - diese Ausnahmesituation könnte provisorisch entweder damit erklärt werden, daß diese Hütte in einer wegen der Südexposition permafrostfreien Hangpartie steht oder daß die getätigten Grabungen bis in rund 3 m Tiefe die Permafrostbasis eben nicht erreichten. Eine andere Belegstelle für Permafrost ist vom Vorfeld des Schmiedingerkeeses am Kitzsteinhorn bekannt (Lokalität IV in Abb.50), wo im Zuge der dortigen Bauarbeiten für das Gletscherschigebiet 1964 Temperaturmessungen in 2500 m Höhe in bis zu 30 m tiefen Bohrlöchern Werte von "ungefroren bis -3°C" (HAEBERLI 1976, Tab.2, mündl. Bestätigung durch H. SLUPETZKY 1995) ergaben.

Einen weiteren interessanten Hinweis auf bei Bauarbeiten aufgedeckten gefrorenen Schutt verdanken wir dem Bericht des Erbauers der Großglockner-Hochalpenstraße, WALLACK (zitiert nach HUTTER & BECKEL 1985). Er beschreibt, wie bei den sommerlichen Bauarbeiten in der "Knappenstube" im N der Paßhöhe des Hochtores (Höhenbereich 2400-2500 m, Lokalität V in Abb.50) im Jahre 1934 beim Anschnitt einer mehrere Meter mächtigen alten Bergbauhalde insgesamt vier Schichten Eis angetroffen wurden und durch Störung des thermischen Gleichgewichtes bedeutende Umlagerungsprozesse im Blockwerk stattfanden; der Bau der Straße war hier erst nach völliger Beseitigung der gefrorenen Sedimente im anstehenden Fels möglich. Noch heute zeigt das Kar im N des Hochtores das für alpines Permafrostmilieu typische Aussehen: Grobblockige Schuttakkumulationen mit mehreren protalus ramparts (Foto bei KRAINER 1994, 141), lückige bis fehlende Vegetationsbedeckung und in den meisten Jahren perennierende Schneefelder (die im unmittelbaren Nahbereich der Ausflugsstraße auch eine entsprechende Touristenattraktion darstellen). Hierzu passen auch die Temperaturmessungen an einer kleinen gefaßten Quelle gleich neben dem N-Portal des Hochtor-Scheiteltunnels (2505 m, N-Exposition), die ich am 15.9.1991 und am 24.9.1994 jeweils bei Schneefreiheit des Hintergehänges durchführte und die beide Male permafrosttypische Werte von 0,5 bzw. 0,3°C ergaben.

Aus 3 Teilgebieten liegen auch gezielte Permafrostuntersuchungen vor: Eine kleine Studie behandelt den physiognomisch besonders eindrucksvollen Blockgletscher "Tauernfleck" (sa 100 im Blockgletscherinventar, Lokalität I in Abb.50) in der Venedigergruppe, wobei auch einige Quelltemperturmessungen durchgeführt wurden (LIEB & SLUPETZKY 1993). Wesentlich umfangreicher und aufwendiger war die Arbeit von RENNERT 1991, die im Rahmen von großen Projekten der Universitäten Bamberg und Bayreuth erstellt wurde, welche schwerpunktmäßig auf aktuelle solifluidale und fluviatile Morphodynamik sowie die Quantizierung von Sedimentumlagerung und deren Modellierung ausgerichtet waren (VEIT 1988, HÖFNER 1993, VEIT & HÖFNER 1993, VEIT et al. 1995). Derzeit sind hier noch geomorphologischbodenphysikalische Messungen im Gang, deren Schwerpunkt allerdings in nicht unter Permafrostbedingungen stehendem Solifluktionsmaterial liegt (STINGL 1996, mündl. Mitteilung). Hierbei wurden Bodentemperatur-, Quelltemperatur-, BTS-, hammerschlag-seismische und geoelektrische Messungen durchgeführt, die Permafrostverbreitung im Umfeld der Glorerhütte am Bergertörl (Lokalität II in Abb.50) gut herausgearbeitet und die Permafrost-Untergrenze in schattseitigen Lagen mit rund 2600 m festgestellt; als interessante Teilaspekte in der Studie von RENNERT 1991 seien die Differenzierung der Permafrostverbreitung in Abhängigkeit vom

Abb.50: Für die Permafrostforschung wichtige Stellen in den westlichen Hohen Tauern (Erläuterungen im Text)

Fig.50: Sites of permafrost research in the Western Hohe Tauern range

Substrat und der Nachweis inaktiven Permafrostes hervorgehoben. Im dritten Gebiet, dem Talschlußbereich des Stubachtales im Umkreis der Rudolfshütte an der Grenze zwischen Glockner- und Granatspitzgruppe (Lokalität III in Abb.50), wurden wieder eigene Untersuchungen mittels BTS-Messungen durchgeführt, von denen einige Ergebnisse in Kap.2.2.3 anhand von Abb.7 und Tab.4 bereits vorgestellt und diskutiert wurden. In diesem Gebiet kann die Untergrenze diskontinuierlichen Permafrostes mit rund 2500 m in schattseitigen Lagen angegeben werden, für eine klare Beurteilung der Verhältnisse in südlichen Expositionen sind jedoch noch weitere Untersuchungen notwendig.

Deferegger Alpen (im weiteren Sinn)

Dieser weite Gebirgsraum zwischen dem Virgental (obere Isel) im N und dem Pustertal (Drau) im S ist von allen in Kap.4.3 und 4.4 statistisch ausgewerteten Teilgebieten das an Blockgletschern reichste (n = 249). Die meisten der Blockgletscher sind auch in der Karte von SENARCLENS-GRANCY 1942 erkennbar, allerdings unter der Signatur für reich gegliederte, jungstadiale Moränenlandschaften. Wichtig ist, daß die mittlere Untergrenze der fossilen Blockgletscher (2355 m, Tab.19) innerhalb des Untersuchungsraumes hier kulminiert und die der intakten den zweithöchsten Wert (2597 m) annimmt. Dies erwächst in Übereinstimmung mit der hohen Lage der anderen Höhengrenzen aus dem stark kontinental getönten Klima, was mit der besonders guten Abschirmung gegen niederschlagsbringende Luftmassen durch nach allen Seiten hin vorgelagerte Gebirgskulissen sowie einen ausgeprägten Massenerhebungseffekt zu

erklären ist. Das Gebiet untergliedert sich in die nördl. des zentral gelegenen Defereggentales befindliche Lasörlinggruppe (Keesegg, 3173 m, Lasörling, 3098 m) sowie die Villgrater Berge (Weiße Spitze, 2962 m) im S davon, und schließlich wurde auch der kleine österreichische Anteil der stark vergletscherten Rieserfernergruppe (Hochgall, 3436 m) miteinbezogen.

Aus der *Lasörlinggruppe* liegt in der Arbeit von ROLSHOVEN 1982 eine ausgezeichnete Lokalstudie für die Umgebung der Neuen Reichenberger Hütte (2586 m) vor. Hierbei wurden neben einer umfassenden Kartierung aller relevanten Erscheinungen Grabungen, Bohrungen sowie Boden- und Quelltemperaturmessungen durchgeführt, womit die Untergrenze des diskontinuierlichen Permafrosts in nordseitigen Schuttakkumulationen mit 2530 m bestimmt werden konnte. Die Arbeit ist nicht zuletzt deshalb besonders wertvoll, weil sie auch ein größeres, blockgletscherfreies Areal mit relativ flachen Neigungen untersucht (Altfläche der Sentenböden) und in diesem die Beziehungen zwischen Permafrost, Vegetationsbedeckung und Strukturböden aufzeigt (Permafrost in diesen Lagen bei sonnseitiger Exposition nicht unter 2650 m).

In den *Villgrater Bergen* wurden zwar schon Blockgletscher beschrieben, nämlich von STRUNK 1986 in der Umrahmung des auf der Südtiroler Seite gelegenen Gsieser Tales, die Existenz gegenwärtigen Permafrostes war aber noch nicht bekannt. Die drei im Inventar erhobenen intakten Blockgletscher veranlaßten mich zu einer Begehung im Bereich der beiden das Herzstück dieser Untergruppe bildenden Gipfel Hochgrabe (2951 m) und Gr. Degenhorn (2946 m) am 1.8.1995. Dabei konnten zwar wegen noch zu starker hochsommerlicher Schneebedeckung keine permafrosttypischen, sicher von Schnee unbeeinflußten Quelltemperaturen gemessen werden, wohl aber die Aktivität des aus mehreren zusammenhängenden Loben bestehenden Blockgletschers nordwestl. unterhalb der Hochgrabe (dr 60, Abb.51) bestätigt, in einer Grabung Untergrundeis freigelegt und Permafrost mit einer Messung des Bodentempera-

- Abb.51: Aus mehreren Loben zusammengesetzter aktiver Blockgletscher in der N-Flanke der Hochgrabe (dr 60, Deferegger Alpen), Blickrichtung W. Die Untergrenze des rechts im Bild sichtbaren Lobus mit 42° steiler Stirn liegt in etwa 2800 m, an seinem Rand wurde Permafrost in 60 cm Tiefe ergraben (Foto: LIEB, 1.8.1995).
- Fig.51: Active rock glacier in the N-slope of Hochgrabe (Deferegger Alps) consisting of several lobes (lower limit of the snout in the right 2800 m).

turgradienten in 2800 m (NE-Exposition) wahrscheinlich gemacht werden. Nach dem dabei gewonnenen Gesamteindruck dürfte dieses Gebiet in S-Exposition bis ins Niveau der höchsten Gipfel gegenwärtig weithin frei von diskontinuierlichem Permafrost sein. Die *Rieserfernergruppe* besteht zu einem großen Teil aus Plutoniten, die den periadriatischen Intrusiva zugerechnet werden. Diese neigen zu grobblockigem Zerfall und begünstigen damit die Entwicklung von Blockgletschern. Auf der Osttiroler Seite liegen die meisten im Umkreis der Barmer Hütte (2591 m), auf der Südtiroler Seite in den nicht vergletscherten Karen der N-Abdachung. Bei Bergtouren konnte ich an zwei Stellen nahe 3000 m in südlicher Exposition Permafrost feststellen, und zwar in einer wenige Dezimeter tiefen Grabung am Fennereck (Osttirol) und in einem natürlichen Aufschluß an der Gelttalspitze (Südtirol).

Schobergruppe

Diese relativ kleine, kompakte Gebirgsgruppe ist - nunmehr abgesehen vom inneren Dösener Tal (Ankogelgruppe, Kap.3) - das bezüglich des Permafrostes bestuntersuchte Teilgebiet des gesamten Untersuchungsraumes. Abgesehen vom schon frühen Bekanntwerden der Existenz von Untergrundeis (STINGL 1969, 36) liegen sowohl für den östl. (Kärntner) als auch für den westl. (Osttiroler) Teil der Gruppe umfassende Arbeiten vor, die zwar jeweils gletscherkundliche (LIEB 1987 a) bzw. landschaftsgeschichtliche Schwerpunkte (BUCHENAUER 1990) haben, den Blockgletschern und dem Permafrost aber breiten Raum widmen. Dabei ist zu beachten, daß das vorliegende Blockgletscherinventar im Sinne methodischer Einheitlichkeit (Kap.4.2) unabhängig von diesen beiden Dissertationen erstellt wurde, weshalb mitunter Diskrepanzen auftreten können, sind doch die Kartierungen vor Ort im einzelnen genauer als die reine Erhebung aus Luftbildern (vgl. Kap.4.2). Unter den insgesamt 126 Blockgletschern der Gruppe (davon 67 oder 53 % intakt) finden sich zahlreiche physiognomisch besonders schöne

- Abb.52: Blick vom Anstieg zum Bösen Weibl (ca. 3000 m) nach SE ins Tramerkar (Schobergruppe). Links der Bildmitte der das Tramerkar abriegelnde intakte Blockgletscher mo 128, im Hintergrund von links Hornkees, Gr. Hornkopf, Gößnitzkees und Klammerköpfe (Foto: LIEB, 5.9.1983).
- Fig.52: View from the way to Böses Weibl (appr. 3000 m) in SE direction into the cirque Tramerkar (Schober group, Hohe Tauern range), with the intact rock glacier mo 128.

Formen, wofür Abb.52 ein Beispiel darstellt. Besonders hervorzuheben sind die Ergebnisse der Arbeit von BUCHENAUER 1990, der zur Feststellung von Permafrost neben der Blockgletscherkartierung auch Grabungen, Quelltemperatur- und hammerschlagseismische Profilmessungen durchführte (viele interessante Details im umfangreichen Regionalteil dieser Arbeit). Basierend auf den Ergebnissen wurde auch eine Abschätzung des Eisvolumens im Permafrost vorgenommen (BUCHENAUER 1990, Tab.45): Demnach sei in der westlichen Schobergruppe (Gesamtareal ca. 240 km²) mit einem Eisvolumen im Permafrost von mindestens 100.10⁶ m³ zu rechnen, wovon etwa ein Drittel auf intakte Blockgletscher entfalle; damit übertreffe der Permafrost mit seiner Wasserreserve die Gletscher und Seen des Gebietes bei weitem. Weiters liegt für die westliche Schobergruppe eine detailreiche und recht gut abgesicherte Einordnung der fossilen Blockgletscher in die Spätglazialchronologie vor.

Östliche Hohe Tauern: Goldberg(Sonnblick)- und Ankogelgruppe

Die zentrale und nördliche Goldberggruppe sind besonders aufgrund ihres geologischen Baues (Dominanz feinstückig zerfallender Gesteine der Oberen Schiefernhülle) eher arm an Blockgletschern, allein der zum mittelostalpinen Altkristallin gehörige Südteil, die Sadniggruppe, weist eine sehr ausgeprägte Konzentration fossiler Blockgletscher auf. Die gegenwärtige Permafrostverbreitung wird durch mehrere intakte Blockgletscher im Zentrum der Gruppe angezeigt (Abb.53) - sie alle liegen im S des Hauptkammes in den gröberblockig zerfallenden Gesteinen der Zentralgneise des Sonnblickkernes und seiner Hüllgesteine. Einige

- Abb.53: Intakte Blockgletscher und andere für die Permafrostforschung wichtige Stellen in der zentralen Goldberggruppe (Hohe Tauern). Erläuterungen im Text.
- Fig.53: Intact rock glaciers and other sites of permafrost research in the central Goldberg group (Hohe Tauern range)

Lieb

dieser Blockgletscher (z.B. beim Zirm- und Großsee) liegen in unmittelbarer Nachbarschaft zu den Anlagen der Kraftwerksgruppe Fragant, was zur Besprechung der für die Goldberggruppe besonders charakteristischen Interaktionen zwischen menschlichen Aktivitäten und Permafrost überleitet.Die Goldberggruppe wies schon im ausgehenden Mittelalter wegen des bis in die höchsten Lagen betriebenen Goldbergbaues einen außerordentlich hohen Erschließungsgrad auf, wodurch der Mensch auch schon früh mit Permafrost in Kontakt gekommen sein muß, ohne daß aber hierüber Nachrichten vorlägen. Dieses Fehlen von Informationen hängt wohl damit zusammen, daß über naturräumliche Rahmenbedingungen überhaupt wenig (und wenn dann über das "Verkeesen" von Gruben bei den neuzeitlichen Gletscherhochständen) berichtet wurde. Dazu ist aber anzumerken, daß bislang ein systematisches Quellenstudium in diese Richtung noch gar nicht betrieben wurde. Die ältesten, mir zugänglichen Nachrichten über Permafrost tauchen erst im 19. Jahrhundert auf, und zwar in Zusammenhang mit der Errichtung des Sonnblick-Observatoriums 1886 (MOTSCHKA in BÖHM 1986, 93). Auch beim Neubau des Observatoriums und beim Umbau des angeschlossenen Zittelhauses wird von einer Reihe technischer Probleme berichtet, von denen die wichtigsten bereits in Kap.2.2.1. dargelegt wurden.

Mehrfach sind auch beim Ausbau der Kraftwerksgruppe Fragant Probleme mit Permafrost aufgetaucht (Kap.2.2.1). Die drei Stellen, an denen dies der Fall war, sind in Abb.53 eingetragen, wobei es sich durchwegs um Aufgrabungen an Schutthalden zur Gewinnung von Schüttmaterial für die Staudämme handelte. Besonders interessant ist die Lokalität A im Bereich des Oscheniksees, wo der ursprünglich auf Festgestein ausgerichtete Abbau Anfang der 70er-Jahre des 20. Jahrhunderts begann und wo bei einer Gesamtmächtigkeit des aufgeschlossenen Schuttes von 10 m "Eislinsen von rund 3 m mittlerer Stärke angetroffen wurden" (freundliche schriftl. Mitt. der Kärntner Elektrizitäts-A.G. Kelag 1994). Von diesem Eis wurde auch eine Probe (Wassermenge 3,5 I) pollenanalytisch untersucht (KAHLER 1972) und aus dem Pollenspektrum auf ein historisches Alter des Eises geschlossen. Bei der seit 1977 abgebauten Lokalität B ist der Hinweis interessant, daß zwar auch hier ähnliche Eislinsen wie bei A angetroffen und sogar fotografisch dokumentiert wurden, daß diese die Schutt-gewinnung im gesamten aber nicht behinderten, weil in dem weitläufigen Abbaugebiet auch ausreichend nicht gefrorenes Substrat zur Verfügung stand. Dies kann als Hinweis darauf gewertet werden, daß in dieser Höhenlage (2275-2350 m) erwartungsgemäß nur mehr ein geringer Teil des Schuttkörpers unter Permafrostbedingungen stand. Das Vorkommen von Permafrost bei Lokalität C ist in der Literatur schon an zwei Stellen erwähnt: Beim Bau des Speichers Hochwurten (Stauziel 2417 m) traten nach der Notiz bei GRENGG 1977, 106, ähnlich gelagerte Probleme wie bei den beiden anderen Lokalitäten auf, weiters soll es nach HAEBERLI 1992 a, 116, im Schüttdamm zu frostbedingten Hebungs- anstelle der erwünschten Setzungserscheinungen gekommen sein. Schließlich dürften Schäden an den Anlagen des nahe gelegenen Gletscherschigebietes auf dem Wurtenkees, etwa im Nahbereich des dortigen "Eissee", 2795 m (Вöнм 1995, schriftl. Hotels Mitt.), auf anthropogen verursachte Veränderungen im Permafrostmilieu zurückzuführen sein.

Für die zentrale *Ankogelgruppe*, die den Untersuchungsschwerpunkt der vorliegenden Arbeit bildet (Kap.2.3.2 und besonders Kap.3) erübrigen sich an dieser Stelle weitere Ausführungen, die sich daher nur auf zwei mehr oder weniger selbständige randliche Gebirgsteile beschränken können: In der *Reißeckgruppe* erwähnte schon SCHAFFHAUSER 1974 einige der Blockgletscher, interpretierte sie allerdings als glaziale Gebilde. Für die vorliegende Untersuchung wurden in diesem weithin aus Granitgneisen aufgebauten Gebiet, das in den Karräumen in besonders auffälliger Weise von großflächigen Blockschuttakkumulationen geprägt wird, eine Reihe von Quelltemperaturmessungen (Abb.3) sowie ein BTS-Meßprogramm (Abb.6) durchgeführt. Zusammen mit den intakten Blockgletschern, die sich auf Grund der in hoher Reliefenergie bedingten, starken randlichen Zerschneidung der Gruppe auf die Großkare in den Talschlüssen beschränken, kann die Untergrenze des diskontinuierlichen Permafrostes in schattseitigen Lagen nahe 2400 m, in sonnseitigen nahe 2600 m angesetzt werden. Im durch die Reißeckbahn gut erreichbaren Gebiet um die Mühldorfer Seen, von wo auch schon bisher die meisten Informationen vorliegen, sind weiterführende Untersuchungen geplant. Der östliche Teil der Ankogelgruppe, die *Hafnergruppe*, ist von NAGL 1971 hinsichtlich der Blockgletscher untersucht worden, doch sind die dabei gewonnenen Ergebnisse nur unter dem Vorbehalt einer heute nicht mehr haltbaren Entstehungshypothese der Blockgletscher verwendbar. Immerhin sind die lichenometrischen Daten von Interesse, die eine deutliche Zonierung des Blockgletschers li 35 erlauben (möglicherweise als Äquivalente verschieden alter Blockgletschergenerationen aufzufassen). Ebenso wird auch über Eisaufschlüsse, Kryokarstmulden sowie über Bewegungsbeträge an der vorrückenden Stirn des aktiven Blockgletschers li 53 (0,7 m von 1969 auf 1970, NAGL 1971, 18) und über Quelltemperaturen berichtet.

Kreuzeckgruppe

Aus diesem großen, aus Gneisen und Glimmerschiefern des mittelostalpinen Deckenstockwerks aufgebauten und allseits von ausgeprägten Tiefenlinien umgebenen Gebirgsraum lagen bisher keine Hinweise auf die Existenz von Permafrost vor. Zwar waren Blockgletscher schon seit der Arbeit von STOCKER 1971 bekannt - WEISSEL 1965 und 1966 hatte die Blockgletscher noch als spätglaziale Moränen gedeutet -, doch handelte es sich dabei durchwegs um fossile Formen. Von diesen wurden aber interessante Einzelbeschreibungen sowie eine Expositionsverteilung geboten, wonach 60 % der Blockgletscherflächen des Untersuchungsraumes (südöstl. Kreuzeckgruppe) im Expositionsbereich NW bis NE liegen (STOCKER 1971, 125). Die Luftbildauswertung für das Blockgletscherinventar im Rahmen der vorliegenden Studie ergab, daß die Kreuzeckgruppe insgesamt 147 Blockgletscher besitzt, von denen 13 als intakt zu klassifizieren waren.

Um die Existenz bzw. Verbreitung von rezentem Permafrost noch besser zu fassen, erfolgten ergänzend die Durchsicht einer Serie von Farb-Schrägluftbildern des Amtes der Kärntner Landesregierung (dankenswerterweise von H. LANG, Villach, zur Verfügung gestellt) sowie zwei ausgedehnte Geländebegehungen mit Temperaturmessungen an insgesamt 12 Quellen in den Hochlagen des Gebietes am 7. und 8.9.1994 (vgl. Abb.3). Dabei konnten an 3 in schattseitigen Karen gelegenen Quellen zwischen 2360 und 2375 m Höhe Werte registriert werden, die die Existenz von Permafrost wahrscheinlich machen und an einer weiteren Quelle in noch tieferer Lage (2280 m) diese zumindest möglich erscheinen lassen. Nach dem warmen Sommer 1994 war die Ausaperung so stark, daß bei keiner gemessenen Quelle eine Beeinflussung durch Schneeschmelzwasser in Frage kam, weshalb - zusammen mit der Beobachtung intakter Blockgletscher - das Vorhandensein von Permafrost in dieser Gebirgsgruppe als gesichert gelten kann. Dabei stimmen auch die mittlere Untergrenze der intakten Blockgletscher (2394 m) und die Höhenlage der Quellen mit permafrosttypischen Temperaturen recht gut überein. Das Vorkommen von Permafrost, der hier weithin wohl als sporadischer zu klassifizieren sein dürfte, scheint allerdings den Geländebeobachtungen zu Folge stark an das Vorkommen von grobblockigem Substrat gebunden zu sein.

Westliche Niedere Tauern: Radstädter und Schladminger Tauern

Die Existenz von Permafrost ist in den Hochlagen der Schladminger Tauern durch kleine intakte Blockgletscher bzw. Blockschuttwülste (ein Beispiel in Abb.54) sowie ergänzend durch einige Quelltemperaturmessungen zufriedenstellend belegt. Darüberhinaus gibt es zahlreiche perennierende Schneeflecken in Höhenlagen über 2300 m (in extremen Wandfußpositionen auch tiefer), die zusammen mit den übrigen Belegstellen in Abb. 55 eingetragen sind. Einige der Schneeflecken waren bei den postglazial-neuzeitlichen Gletscherhochständen auch Gletscher, wobei für Einzelheiten auf die Ausführungen von SENARCLENS-GRANCY 1962 verwiesen wird. Ob diese Permafrostvorkommen als diskontinuierlicher oder sporadischer Permafrost anzusprechen sind, muß beim gegenwärtigen Erhebungsstand wohl offen bleiben.

Im Bereich des Radstädter Tauern (1739 m) wurden am 20.2.1995 BTS-Messungen im Höhenbereich zwischen 1820 und 1850 m (Obertauern-Hundsfeldmoor) sowie zwischen 2150 und 2190 m (Hundskogel) durchgeführt, wobei die Frage der Nutzbarkeit von Wasservorkommen im Vordergrund stand (Kap.2.2.3). Alle dabei registrierten BTS lagen zwischen

0,4°C und 1,9°C und schließen somit erwartungsgemäß die Existenz von Permafrost in diesem Gebiet unter dem Vorbehalt aus, daß in extremen Wandfußlagen keine Messungen stattfanden.

- **Abb.54:** Intakter Blockgletscher en 124 im Weitkar südöstl. der Deichselspitze (Schladminger Tauern), Blickrichtung S. Solche meist kleinen, lobenförmigen Blockgletscher am Fuß von Schutthalden sind typisch für die Hochlagen der Niederen Tauern (Foto: LIEB, 17.8.1986).
- Fig.54: Intact rock glacier en 124 in the cirque Weitkar SE of Deichselspitze (Schladminger Tauern)

Die Verteilung der Blockgletscher zeigt eine sehr starke Konzentration auf die Schladminger Tauern (n=184), während die Radstädter Tauern (n=36) deutlich blockgletscherärmer sind. Wenn hier auch keine genaue Analyse nach dem geologischen Bau der Blockgletscher-Einzugsgebiete durchgeführt wurde, kann kein Zweifel daran bestehen, daß die Ursache dieser ungleichen Verteilung darin zu sehen ist, daß die Radstädter Tauern weithin aus feinstückig zerfallenden Gesteinen der zentralalpinen Trias (Unterostalpin) bestehen, während in den Schladminger Tauern das blockgletscherfreundliche Altkristallin (Mittelostalpin) dominiert. Wo innerhalb der Radstädter und westlichen Schladminger Tauern dennoch lokale Blockgletscher-Konzentrationen auftreten (z.B. en 190-195), sind diese an das Vorkommen von Quarziten gebunden.

Östliche Niedere Tauern: Wölzer und Seckauer Tauern

Östlich des Sölkpasses, 1788 m, bleiben die Gipfelhöhen der Niederen Tauern durchwegs deutlich unter 2500 m, und dementsprechend fehlen intakte Blockgletscher und andere Hinweise auf die Existenz von diskontinuierlichem Permafrost; fleckenhafter Permafrost ist hingegen aus den Reliefgegebenheiten heraus lokal zu erwarten. Tatsächlich wurden im Zuge der in diesem Gebirgsraum sehr umfangreichen hydrologischen Untersuchungen durch die Forschungsgesellschaft Joanneum Research, Graz, die im Auftrag der Steiermärkischen Landesregierung die Erkundung von Trinkwasserreserven zum Ziel hatten, mehrfach hochsommerliche Quelltemperaturen nahe 1°C im 2000 m-Niveau registriert. Diese traten durchwegs in Quellen auf, die aus fossilen Blockgletschern und verwandten Schuttkörpern

Abb.55: Hinweise auf die Existenz von Permafrost in den zentralen Schladminger Tauern **Fig.55:** Sites indicating the existence of permafrost in the central Schladminger Tauern range

Legende:

	Grat und Gipfel
X X!	perennierende Schneeflecken postglazial – neuzeitliche Vergletscherung wahrscheinlich
▼	intakter Blockgletscher oder protalus rampart (mit Code im Blockgletscherinventar)
0	Quelltemperatur ≤ 1°C (Permafrost wahrscheinlich)
2400	auf 50m gerundete lokale Untergrenze der Permafrostverbreitung

großer Mächtigkeit entsprangen, und können als Hinweis darauf gewertet werden, daß im grobblockigen Schutt schattseitiger Hang- und Wandfußlagen lokal Permafrost in dieser Höhenlage existiert. In diese Richtung weisen auch Untersuchungsergebnisse von GöDEL 1993 im Gebiet der Seckauer Tauern. Die beiden Gebirgsgruppen fallen durch großen Reichtum an Blockgletschern (n=301) auf, den man hier an bzw. nahe der östlichen Verbreitungsgrenze der Blockgletscher in den Ostalpen nicht erwarten würde. Hieraus erklärt sich auch, daß die Blockgletscher schon in mehreren Untersuchungen Beachtung fanden: NAGL 1976 beschrieb die Blockgletscher der Seckauer Tauern in einer glazialmorphologischen Studie, faßte sie allerdings als glaziale Bildungen auf (eindrucksvolle Luftbilder in dieser Publikation). Bei LAZAR et al. 1989 sowie bei LIEB & SULZER 1992 werden fossile Blockgletscher in zwei Beispielgebieten der Wölzer Tauern in ihrer Stellung zu spätglazialen Moränen untersucht und ihre Bildungszeiträume dadurch hypothetisch eingegrenzt. Die Arbeiten von UNTERSWEG & SCHWENDT 1995 und 1996 schließlich fassen wichtige Ergebnisse der schon mehrfach angesprochenen hydrologischen Schwerpunktuntersuchungen zusammen.

- Abb.56: Fossile Blockgletscher mu 222 und 223 von Osten gesehen (Anstieg zum Gaaler Eck, ca. 2000 m, Seckauer Tauern). Die beiden zusammenhängenden fossilen Blockgletscher sind durch eine markante, bis zu 30 m hohe Böschung nach außen begrenzt; links die N-Flanke des Amachkogels, hinten der Lärchkogel (Foto: LIEB, 4.6.1995).
- Fig.56: Fossile rock glaciers mu 222 and 223, seen from the E (Seckauer Tauern, Niedere Tauern range)

Als Beispiel einer eindrucksvollen Konzentration besonders großer fossiler Blockgletscher wird in Abb.57 das Herzstück der Seckauer Tauern im Kammabschnitt zwischen Geierhaupt, 2417 m, und Seckauer Zinken, 2397 m,, gezeigt. Hier liegt nordöstl. des Hochreichart mit dem Blockgletscher mu 275 (etwa 0,9 km Grundfläche) einer der größten Einzelblockgletscher des gesamten Untersuchungsraumes; seine Stirn befindet sich in 1520 m und ist damit die tiefste aller erhobenen Blockgletscher-Untergrenzen. Die hier entspringende große Quelle wurde nach umfangreichen Untersuchungen zur wasserwirtschaftlichen Nutzung gefaßt, wobei auch ein Einblick in den inneren Aufbau dieses fossilen Blockgletschers gewonnen werden konnte (UNTERSWEG & PROSKE 1996, in diesem Band). Die Häufung und sehr eindrucksvolle Physiognomie der Blockgletscher der Seckauer Tauern ist u.a. mit den vorherrschenden, sehr grobblockig zerfallenden Gesteinen (Quarzite der Rannachserie und besonders Granitgneise, für Details METZ 1976) zu erklären, die auch Auswirkungen auf die besondere Form der Berggestalten haben. Diese werden weithin von bis zu etwa 500 m relative Höhe erreichenden Flanken (oft als kaum gegliederte Glatthänge entwickelt), aufgebaut, die weithin von grobblockigem Verwitterungsschutt bedeckt werden. Die Blockgletscher liegen jedoch, wie Abb.57 zeigt, durchwegs am Fuß von Felsabstürzen der Karwände.

Gurktaler und Seetaler Alpen

Im E an den die Hohen Tauern begrenzenden Katschberg (1641 m) anschließend, erreichen diese Gebirgsgruppen nur mehr in wenigen Erhebungen 2400 m und bleiben somit deutlich unter den bisher geschilderten Untergrenzen diskontinuierlichen Permafrostes. Über die zahlreichen Blockgletscher dieses Gebietes (n=90), die alle als fossile einzustufen sind, habe ich eine monographische Studie verfaßt (LIEB 1994), weshalb sich an dieser Stelle Einzelheiten erübrigen. Evidenz über aktuellen Permafrost liegt nicht vor, auch macht der nur gemäßigte

Abb.57: Die fossilen Blockgletscher in den zentralen Seckauer Tauern (Niedere Tauern) **Fig.57:** The fossile rock glaciers in the central Seckauer Tauern (Niedere Tauern range)

Hochgebirgscharakter in diesen Gebieten nicht einmal punktuelle Permafrostvorkommen wahrscheinlich, weil die dafür notwendigen Extremlagen einfach fehlen. Auf dem in schattseitiger Lage mit großer Überhöhung nach S befindlichen, physiognomisch sehr eindrucksvollen fossilen Blockgletscher N des Königstuhls (li 56, Abb.58) wurden am 19.2.1995 einige BTS-Messungen durchgeführt (Abb.6, Kap.2.2.3), die erwartungsgemäß ebenfalls keinen Hinweis auf die Existenz gegenwärtigen Permafrostes erbrachten. Einige Überlegungen zur Datierung der fossilen Blockgletscher am Beispiel der Seetaler Alpen finden sich in LIEB 1989.

6. Zusammenschau und Ausblick

6.1. Versuch einer Bewertung der Ergebnisse

Die vorliegende Arbeit hat unter Verwendung verschiedener Methoden die Existenz von Permafrost in der subnivalen Stufe der östlichen österreichischen Alpen vielfach aufgezeigt und darüberhinaus die bislang in diesem Gebiet nur vagen Vorstellungen über dessen Verbreitung konkretisiert. Hierbei stand die Frage nach der Höhenlage der Permafrost-Untergrenze und ihrer räumlichen Differenzierung im Vordergrund, so wie dies in Kap.5.2 dargelegt wurde. Versucht man unter Außerachtlassung des peripher-zentralen Anstiegs und des Einflusses von Topographie sowie Exposition das komplizierte Wirkungsgefüge auf einen für das gesamte Untersuchungsgebiet gültigen Höhenwert zu reduzieren, über dem grundsätzlich Permafrost zu

- Abb.58: Blick aus der Westflanke des Mühlbacher Nocks nach SW auf den Königstuhl (2336 m), Gurktaler Alpen, mit dem mächtigen, dreilobigen fossilen Blockgletscher li 56 an seinem Fuß (Foto: LIEB, 19.2.1995).
- Fig.58: View from the western slope of Mühlbacher Nock in SW direction to Königstuhl (2336 m), Gurktaler Alps, with the big fossile rock glacier li 56.

erwarten ist, so müßte dieser wohl 2500 m lauten. Diese orientierende Größe ist jedoch selbstverständlich für alle lokalen oder regionalen Fragestellungen wertlos, weil ja in Abhängigkeit von den vorhin genannten Faktoren Hochgebirgspermafrost etwa in den Karnischen Alpen noch unter 2000 m angetroffen wurde, umgekehrt aber in den Hohen Tauern an mehreren über 2900 m hoch gelegenen Stellen keine eindeutigen Hinweise auf die Existenz von Permafrost gefunden werden konnten.

Der zweite Schwerpunkt der Arbeit widmete sich den Blockgletschern als mit dem Auftreten von Permafrost verknüpften morphologischen Leitformen. Sie wurden im gesamten Untersuchungsgebiet flächendeckend aus Luftbildern kartiert und in Kap.4 in Form eines alle Einzelformen umfassenden Inventars präsentiert. Hierbei wurden auch fossile, unter vorzeitlichen Klimabedingungen gebildete Blockgletscher erhoben, womit in die Arbeit auch ein paläoklimatischer Aspekt Eingang fand, der jedoch nicht speziell weiter verfolgt wurde. Im Blockgletscherpermafrost wurde auch ein Großteil der Schwerpunktuntersuchungen im Dösener Tal durchgeführt (Kap.3), durch welche mit geophysikalischen Methoden einige Eigenschaften des Permafrostes wie Auftautiefe, Charakter des gefrorenen Substrates und seine gesamte Mächtigkeit abgeschätzt werden konnten. Für dieses Testgebiet liegen nun sehr umfangreiche permafrostrelevante Informationen wie etwa eine recht genaue und gut belegte Karte der Permafrostverbreitung (Abb.30) vor, sodaß eine Grundlage für die Beobachtung künftiger Veränderungen im Permafrost geschaffen ist.

Alle vorliegenden Ergebnisse fügen sich ausgezeichnet in den von anderern Alpengebieten, insbesondere der Schweiz, bekannten Rahmen, wobei die Vergleichbarkeit auf Grund der einheitlichen Methodik voll gewährleistet ist. Wenn auch hiermit für das Untersuchungsgebiet eine wesentliche Erweiterung der allgemeinen Kenntnis über die naturräumliche Ausstattung des Hochgebirgsraumes ermöglicht wurde, sind doch eine große Zahl von Fragen offen geblieben. Hierzu gehören etwa die Darstellung der Beziehungen zwischen dem Permafrost und seiner klimatischen Umwelt, wobei in Kap.5.1 auf das komplexe Wirkungsgefüge zwischen

den Klimaelementen Strahlung, Temperatur, Wind und Schnee als wichtigste Permafrost limitierende Faktoren nur in qualitativer Weise eingegangen werden konnte. Weiters sind viele Fragen in Zusammenhang mit den Permafrosteigenschaften offen: So ist etwa wenig über den Charakter des Permafrosts außerhalb der Blockgletscher bekannt, und für manche der vorliegenden geophysikalischen Daten gibt es keine eindeutige Interpretation. Davon abgesehen gibt es noch widersprüchliche Informationen über die Auftautiefe, und die Gesamtmächtigkeit des Permafrostes (und damit die darin gespeicherten Wasserreserven) konnte trotz der aufwendigen Untersuchungen selbst am Dösener Blockgletscher (Kap.3.3.3) nur abgeschätzt und nicht exakt bestimmt werden. Schließlich ist die Blockgletschergenese im raum-zeitlichen Bezug noch weithin ungeklärt, sowohl was den Zeitpunkt der Initialbildung der heute aktiven Blockgletscher als auch was die Einzeitung der fossilen betrifft.

Bei der nunmehr an sich recht guten Kenntnis über die Permafrostverbreitung gibt es noch Unklarheiten bei der Abgrenzung der einzelnen Flächendeckungsklassen des Permafrostes (Kap.5.1). So können etwa nach wie vor keine wirklich exakten Angaben für das Untersuchungsgebiet über die Höhenlage der Untergrenze des kontinuierlichen Permafrostes gemacht werden. Zwar gibt es einige Hinweise aus den vorliegenden Ergebnissen in der Form, daß alle über 3000 m beprobten Stellen (BTS-Messungen und Eisaufschlüsse in allerdings nur geringer Anzahl) die Existenz von Permafrost erkennen ließen, doch scheinen mir diese nicht für die Angabe eines wirklich repräsentativen Wertes der Untergrenze auszureichen. Wenn auch etwa ROLSHOVEN 1982, 63, und BUCHENAUER 1990, 246, gleichlautend ab 3200 m kontinuierlichen Permafrost vermuten, so gibt dieser Wert die Höhen der höchsten Gipfel ihrer Arbeitsgebiete an, womit die Überprüfung dieser Feststellung in noch größeren Höhen nicht möglich ist. So muß man sich vorläufig mit der Aussage zufrieden geben, daß in den höchsten Gipfelregionen der östlichen österreichischen Alpen das Vorhandensein von kontinuierlichem Permafrost wahrscheinlich ist.

6.2. Die Praxisrelevanz von Permafrost und Blockgletschern in Österreich

Wie die in Kap.2.2.1 und 5.3 geschilderten künstlichen Aufschlüsse von Permafrost bei Bauvorhaben im Hochgebirge gezeigt haben, sind die Ergebnisse der vorliegenden Untersuchung doch nicht bloß von rein akademischem, sondern durchaus auch von praktischem Interesse. Viele der bautechnischen Probleme wären mit einer besseren Kenntnis über Existenz und Verbreitung von Permafrost (eine solche war ja in vielen Fällen überhaupt nicht gegeben) zu verhindern oder zumindest zu verringern gewesen. Gerade im vorliegenden Untersuchungsraum wird jedoch die Bedeutung von Bauvorhaben im Bereich der Permafroststufe zunehmend geringer, weil die in Frage kommenden Areale weithin unter Naturschutz stehen (Nationalpark Hohe Tauern) und Baumaßnahmen somit - wenn überhaupt - wohl nur mehr punktuell in Frage kommen. Umgekehrt impliziert die Bildungsaufgabe des Nationalparks jedoch auch die Forderung, das Permafrostphänomen als integrierenden Bestandteil der heutigen und früheren Hochgebirgsnatur einem weiten Besucherkreis bekanntzumachen, wofür es zumindest einzelne Ansätze gibt.

Ein anderer Aspekt der Praxisrelevanz ist die Frage nach der Bedeutung des Permafrostes als Wasserspeicher im Hochgebirge. Hierüber liegen noch wenige exakte Informationen, und auch diese nur aus einzelnen kleineren Gebieten, vor (die besten Abschätzungen betreffen die Schobergruppe bei BUCHENAUER 1990 und das innere Dösener Tal in Kap.3 der vorliegenden Arbeit), doch deutet sich regional auch ein gewisses wasserwirtschaftliches Interesse an. Dieses betrifft in den humiden Alpen vorläufig offenbar weniger den aktiven Permafrost, ist aber bereits recht stark bei den als Wasserspeichermedien bedeutsamen fossilen Blockgletschern ausgeprägt, wie die umfangreichen hydrologischen Erhebungen in den Niederen Tauern zeigen (UNTERSWEG & SCHWENDT 1995). Hierbei gibt es auch schon ein Beispiel von Wasserentnahme in größerem Stil an einer aus einem fossilen Blockgletscher austretenden Quelle in den Seckauer Tauern (UNTERSWEG & PROSKE 1996, in diesem Band).
Schließlich wird Permafrost bei der zu erwartenden Andauer der Erwärmung zunehmend auch als Gefahrenquelle im Hochgebirge an Bedeutung gewinnen, wenn es durch Abtauen des Permafrostes zu Mobilisierung von bislang durch die Gefrornis zurückgehaltenen Schuttmassen kommen sollte. In den Schweizer Alpen hat die Analyse von Vermurungsereignissen, insbesondere jener von 1987, in vielen Fällen gezeigt, daß durch abschmelzenden Permafrost freigesetztes Material von Muren abtransportiert wurde (z.B. HAEBERLI et al. 1990, ZIMMERMANN & HAEBERLI 1992). Weiters gibt es etwa auch beim großen Bergsturz vom Val Pola im Veltlin (italienische Ostalpen) Hinweise auf mögliche Beteiligung von Veränderungen des Permafrostmilieus als eine Teilkomponente im Auslösemechanismus dieses Ereignisses (DRAMIS et al. 1995). Hieraus kann eine tendenziell zunehmende Gefährdung alpiner Tallagen und darin gelegener Siedlungen und Verkehrswege durch fortschreitende Permafrostdegradierung unter dem Einfluß der generellen Erwärmung abgeleitet werden. Wenn auch in Österreich noch kaum Fälle von Beteiligung auftauenden Permafrosts an Murenkatastrophen bekannt geworden sind - BUCHENAUER 1990, 247, bringt ein Beispiel aus dem Lesachtal in der Schobergruppe (Hohe Tauern, Osttirol) - und KERSCHNER 1995, 49, solche überhaupt ausschließt, so ist dadurch weder sichergestellt, daß es dazu in näherer Zukunft nicht vermehrt kommen könnte, noch daß sich durch die potentiell erhöhte Geschiebezufuhr in die Gerinne der unbesiedelten Seitentäler auch Rückwirkungen auf die besiedelten Haupttäler ergeben könnten.

6.3. Zukünftige Tendenzen und Forschungsaufgaben

Als wichtigste Forschungsaufgabe für die nähere Zukunft ist an erster Stelle wohl die Beobachtung der gegenwärtigen Veränderungen des Permafrostes im Zuge der jüngsten, im ausgehenden 20. Jahrhundert offenbar beschleunigten Temperaturerhöhung zu nennen. In Österreich liegen Informationen über das Verhalten des Permafrostes in den letzten Jahrzehnten bislang nur vom Hochebenkar-Blockgletscher (Ötztaler Alpen, Kap.2.4.2) in ausreichender Genauigkeit vor. In Zukunft sind solche durch die in Kap.3 beschriebenen Aktivitäten auch im Dösener Tal möglich. Wenn auch die Beobachtung der Veränderungen des Permafrostes in Raum und Zeit auf Blockgletschern am effizientesten durchführbar und wohl auch am eindrucksvollsten ist, so sollte in Zukunft doch auch dem Permafrost außerhalb der Blockgletscher verstärkte Aufmerksamkeit geschenkt werden. So ist etwa, wie erwähnt, über den Permafrost in Felswänden (Klufteis und "dry permafrost") noch sehr wenig bekannt, obwohl gerade in diesem Milieu Veränderungen des Permafrostbestandes besondere Gefahren in sich bergen (Felsstürze u. dgl., vgl. Kap.6.2).

In Zusammenhang mit einem Permafrost-Monitoring im beschriebenen Sinn können für die Zukunft die folgenden Initiativen als vordringlich gelten:

Installierung von Meßeinrichtungen der Bodentemperatur zu deren dauernder Registrierung mit Lage der Meßstellen innerhalb des Verbreitungsgebietes von Permafrost, gleichzeitig Fortführung bzw. Intensivierung der Klimabeobachtung in den sensiblen Höhenlagen.

- Einrichtung von Bohrlöchern in Permafrost, in denen vor allem der Temperaturverlauf als offensichtlich besonders sensibler Indikator für Wandlungen der klimatischen Umwelt genau beobachtet werden sollte.
- Intensivierung der hydrologischen Forschungen im Permafrostmilieu mit dem Ziel, generell genauere Vorstellungen über die im Permafrost gespeicherten Wasserreserven bzw. auch über den Einfluß der Permafrostdegradation in diesem Bereich zu bekommen.
- Generell der Aufbau von Langfrist-Meßnetzen zur exakten geodätischen Beobachtung des Blockgletscher-Permafrostes mit dem wichtigen Nebeneffekt, die immer noch unvollständigen Kenntnisse über die Rheologie dieser Formen zu verbessern.

Weiters wäre auch eine Erweiterung der Kenntnisse über den inneren Aufbau von Permafrostkörpern wünschenswert, worüber nach wie vor z.T. widersprüchliche Informationen existieren. So scheinen Blockgletscher durchaus sehr unterschiedlichen inneren Aufbau besitzen zu können, denkt man etwa an die weite Spannweite, die für mögliche Eisgehalte im Blockgletscherpermafrost angegeben wird (Kap.3.3.3). Nur spärlich ist darüberhinaus das Wissen um chemische und physikalische Eigenschaften des Permafrosteises und des Grundwassers in Permafrostgebieten sowie über den Verlauf der Permafrostbasis, deren Lage bislang erst an wenigen Punkten exakt festgestellt werden konnte. Schließlich sind auch viele Aspekte der Geschichte der Blockgletscher und des Permafrostes noch ungeklärt, etwa die Zuordnung der heute fossilen Blockgletscher zu den Zeitabschnitten des Spät- und Postglazials. Weitere wichtige aktuelle Fragen bzw. zukünftige Forschungsaufgaben sind bei HAEBERLI 1993, HAEBERLI et al. 1993 und - speziell in Hinblick auf die Blockgletscher - bei BARSCH 1992 sowie 1996 zusammengestellt.

Literatur

- AICHINGER, E., 1958: Pflanzensoziologische Studien am Südfuß der Hochalmspitze. Car. II 148/68, 120-139.
- ANGEL, F., & STABER, R., 1952: Gesteinswelt und Bau der Hochalm-Ankogel-Gruppe. Wiss. Alpenvereinshefte 13, Innsbruck, 112 S. (mit geologischer Karte 1:50.000).
- AUER, I., 1992: Die Niederschlagsverhältnisse seit 1927 im Sonnblickgebiet nach Totalisatorenmessungen ergänzt durch Meßergebnisse von Talstationen nördlich und südlich des Alpenhauptkammes. - 86.-87. Jber. d. Sonnblick-Ver. (1988-1989), 3-31.
- AUER, I., BÖHM, R., & MOHNL, M., 1992: Die hochalpinen Klimaschwankungen der letzten 105 Jahre beschrieben durch Zeitreihenanalysen der auf dem Sonnblick gemessenen Klimaelemente. - 88.-89. Jber. d. Sonnblick-Ver. (1990-1991), 3-36.
- BALLANTYNE, C.K., & BENN, D.I., 1994: Glaciological constraints on protalus rampart development. Permafrost and Periglacial Processes 5, 145-153.
- BARSCH, D., 1969: Studien und Messungen an Blockgletschern in Macun, Unterengadin. Z. Geomorph. N.F., Suppl.-Bd.8, 11-30.
- BARSCH, D., 1973: Refraktionsseismische Bestimmung der Obergrenze des gefrorenen Schuttkörpers in verschiedenen Blockgletschern Graubündens, Schweizer Alpen. - Z. f. Gletscherkunde u. Glazialgeol. 9, 143-167.
- BARSCH, D., 1977 a: Alpiner Permafrost ein Beitrag zur Verbreitung, zum Charakter und zur Ökologie am Beispiel der Schweizer Alpen. - In: POSER, H. (Hrsg.), Formen, Formengesellschaften und Untergrenzen in den heutigen periglazialen Höhenstufen der Hochgebirge Europas und Afrikas zwischen Arktis und Äquator. -Abh. d. Akad. d. Wiss. Göttingen, math.-physikal. Klasse, 3.Folge 31, 118-141.
- BARSCH, D. 1977 b: Eine Abschätzung von Schuttproduktion und Schutttransport im Bereich aktiver Blockgletscher der Schweizer Alpen. - Z. Geomorph. N.F., Suppl.-Bd. 28, 148-160.
- BARSCH, D., 1980: Die Beziehungen zwischen der Schneegrenze und der Untergrenze der aktiven Blockgletscher. -In: JENTSCH, C., & LIEDTKE, H. (Hrsg.): Höhengrenzen in Hochgebirgen. - Arb. aus dem Geogr. Inst. d. Univ. d. Saarlandes 29, 119-127.
- BARSCH, D., 1983: Blockgletscherstudien Zusammenfassung und offene Probleme. In: POSER, H., & SCHUNKE, E. (Hrsg.): Mesoformen des Reliefs im heutigen Periglazialraum. - Abh. d. Akad. d. Wiss. Göttingen, math.physikal. Kl., 3.Folge 35, 133-150.
- BARSCH, D., 1992: Permafrost creep and rockglaciers. Permafrost and Periglacial Processes 3, 175-188.
- BARSCH, D., 1993: Schneehaldenmoränen (Protalus Ramparts). Ein falsches Modell behindert die paläoklimatische Deutung. - In: Geowissenschaftliche Beiträge zu Forschung, Lehre und Praxis (HAGEDORN-Festschrift). Würzburger Geogr. Arb. 87, 257-267.
- BARSCH, D., 1994: Der alpine Permafrost. Vergangenheit Gegenwart Zukunft. In: Geomorphologie der Gebirge und ihrer Vorländer. 1. Mitteleuropäische Geomorphologentagung Wien 1994, Vortragskurzfassungen, 18-20.
- BARSCH, D., 1996: Rockglaciers. Indicators for the present and former geoecology in high mountain environments. -Springer Series in Physical Environment 16, 280 S.
- BARSCH, D., & HELL, G., 1976: Photogrammetrische Bewegungsmessungen am Blockgletscher Murtèl I, Oberengadin, Schweizer Alpen. - Z. f. Gletscherkunde u. Glazialgeol. 11 (1975), 111-142.
- BARSCH, D., & ZICK, W., 1988: Das Verhalten der Blockgletscher als Permafrostkörper in der subnivalen Höhenstufe der Gebirge. 20 Jahre Blockgletschervermessung in Macun/Engadin. - 46. Dt. Geographentag München 1987
 Tagungsbericht u. wissenschaftl. Abhandlungen, Stuttgart, 404-407.
- BARSCH, D., & ZICK, W., 1991: Die Bewegungen des Blockgletschers Macun 1 von 1965-1988 (Unterengadin, Graubünden, Schweiz). Z. Geomorph. N.F. 35, 1-14.
- Вöнм, R., 1986: Der Sonnblick. Die 100 jährige Geschichte des Observatoriums und seiner Forschungstätigkeit. -Wien, 224 S.
- BUCHENAUER, H. W., 1990: Gletscher- und Blockgletschergeschichte der westlichen Schobergruppe (Osttirol). -Marburger Geogr. Schr. 117, 276 S.
- CHUECA, J., 1992: A statistical analysis of the spatial distribution of rock glaciers, Spanish central Pyrenees. -Permafrost and Periglacial Processes 3, 261-265.
- CLIFF, R.A., NORRIS, R.J., OXBURGH, E.R., & WRIGHT, R.C., 1971: Structural, metamorphic and geochronological studies in the Reisseck and southern Ankogel groups, the Eastern Alps. Jb. Geol. B.-A. 114, 121-272 (mit geologischer Karte 1:25.000).
- CREUTZBURG, N., 1921: Die Formen der Eiszeit im Ankogelgebiet. Ostalpine Formenstudien Abt.2, Heft 1, Berlin, 102 S.

- DRAMIS, F., GOVI, M., GUGLIELMIN, M., & MORTARA, G., 1995: Mountain permafrost and slope instability in the Italian Alps: the Val Pola landslide. - Permafrost and Periglacial Processes 6, 73-82.
- ECKEL, O., 1960 a: Bodentemperatur. In: Klimatographie von Österreich. Österr. Akad. d. Wiss., Denkschriften der Gesamtakademie Bd.3, 2. Lieferg., 207-292.
- ECKEL, O., 1960 b: Temperatur der Gewässer. In: Klimatographie von Östereich. Österr. Akad. d. Wiss., Denkschriften der Gesamtakademie Bd.3, 2. Lieferg., 293-380.
- EMBLETON-HAMANN, C., o.J.: Austria. In: IGU-Commission of Geomorphological Hazards (Ed.), Geomorphological Hazards of Europe. Amsterdam (in Druck).
- EVIN, M., 1985: Caractéristique physico-chimiques des eaux issues des glaciers rocheux des Alpes du Sud (France). - Z. f. Gletscherkune u. Glazialgeol. 20 (1984), 27-40.
- EVIN, M., 1993: Glacier et glaciers rocheux dans les Vallons de Mongioie et de Schiantala (Haute Stura di Demonte, Italie). Une nouvelle interpretation. - Z. f. Gletscherkunde u. Glazialgeol. 27/28 (1991/92), 1-10.
- EVIN, M., & ASSIER, A., 1983: Mesures d'orientations de blocs sur quelques glaciers rocheux des Alpes du Sud. Etablissement de coefficients permettant l'étude des glaciers rocheux. - Z. f. Gletscherkunde u. Glazialgeol. 18 (1982), 107-126.
- EXNER, C., 1979: Zur Geologie der Ankogel-Hochalmgruppe. Alpenvereinsjahrbuch 1979 (Zeitschrift 104), 5-15.
- FISCH, W., FISCH, W., & HAEBERLI, W., 1978: Electrical D.C. resistivity soundings with long profiles on rock glaciers and moraines in the Alps of Switzerland. Z. f. Gletscherkunde u. Glazialgeol. 13 (1977), 239-260.
- FRUHWIRTH, R.K., & SCHMÖLLER, R., 1995: GeoRadar Dösensee. Unpubl. Kurzbericht, Inst. f. Angewandte Geophysik, Joanneum Research, Leoben, 5 S.(+Radargramme)
- FUNK, M., & HOELZLE, M., 1992: A model of potential solar radiation for investigating occurrences of mountain permafrost. Permafrost and Periglacial Processes 3, 139-142.
- GARLEFF, K., & STINGL, H., 1986: Geomorphologische Aspekte aktuellen und vorzeitlichen Permafrostes in Argentinien. Zbl. Geol. Paläont. Teil I, 9/10, Stuttgart, 1367-1374.
- GAVRILOVA, M.K., 1993: Climate and Permafrost. Permafrost and Periglacial Processes 4, 99-111.
- GÖDEL, S., 1993: Geohydrologie der Blockgletscher im Hochreichhart-Gebiet (Seckauer Tauern, Steiermark). -Unpubl. Diplomarb., Univ. Wien, 165 S.
- GORBUNOV, A.P., 1978: Permafrost investigations in high-mountain regions. Arctic and Alpine Research 10/2, 283-294.
- GRASSLER, F., 1984: Alpenvereinseinteilung der Ostalpen (AVE). Berg '84. Alpenvereinsjahrbuch ("Zeitschrift" 108), 215-224.
- GREENSTEIN, L.A., 1983: An investigation of midlatitude permafrost on Niwot Ridge, Colorado Rocky Mountains, USA. Permafrost, Proceedings of the 4th International Conference, Washington D.C., 380-383.
- GRENGG, H., 1977: Wurtenkees und Hochwurten-Speicher. Z. f. Gletscherkunde u. Glazialgeol. XII/1 (1976), 105-107.
- GROß, G., 1983: Die Schneegrenze und die Altschneelinie in den österreichischen Alpen. In: Arbeiten zur Quartärund Klimaforschung. Innsbrucker Geogr. Stud. 8 (FLIRI-Festschrift), 59-83.
- GROB, G., KERSCHNER, H., & PATZELT, G., 1977: Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. Z. f. Gletscherkunde u. Glazialgeol. 12 (1976), 223-251.
- GSPURNING, J., 1996: Trendflächen in der Geographie am Beispiel der Untergrenzen der intakten Blockgletscher in den Hohen Tauern. In diesem Band.
- GUODONG, C., & DRAMIS, F., 1992: Distribution of mountain permafrost and climate. Permafrost and Periglacial Processes 3, 83-91.
- HAEBERLI, H., 1973: Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen. Z. f. Gletscherkunde u. Glazialgeol. 9, 221-227.
- HAEBERLI, W., 1975: Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapaß und Piz Grialetsch (Graubünden). Mitt. d. Versuchsanst. f. Wasserbau, Hydrologie und Glaziologie a. d. ETH Zürich 17, 221 S.
- HAEBERLI, W., 1976: Eistemperaturen in den Alpen. Z. f. Gletscherkunde u. Glaz.geol. 11 (1975), 203-220.
- HAEBERLI, W., 1979: Holocene push-moraines in alpine permafrost. Geografiska Annaler 61 A, 1-2, 43-48.
- HAEBERLI, W., 1982: Klimarekonstruktionen mit Gletscher-Permafrost-Beziehungen. Materialien zur Physiogeographie 4, Basel, 9-17.
- HAEBERLI, W., 1985: Creep of mountain permafrost: Internal structure and flow of alpine rock glaciers. Mitt. d. Versuchsanst. f. Wasserbau, Hydrologie u. Glaziologie ETH Zürich 77, 142 S.
- HAEBERLI, W., 1989: Glacier ice-cored rock glaciers in the Yukon Territory, Canada? Journal of Glaciology 35/120, 294-295.
- HAEBERLI, W., 1990 a: Permafrost. In: Schnee, Eis und Wasser der Alpen in einer wärmeren Atmosphäre. Internationale Fachtagung 1990. Mitt. d. Versuchsanst. f. Wasserbau, Hydrologie u. Glaziologie ETH Zürich 108, 71-88.
- HAEBERLI, W., 1990 b: Glacier and Permafrost signals of 20th-century warming. Annals of Glaciology 14, 99-101.
- HAEBERLI, W., 1992 a: Construction, environmental problems and natural hazards in periglacial mountain belts. -Permafrost and Periglacial Processes 3, 111-124.
- HAEBERLI, W., 1992 b: Possible effects of climatic change on the evolution of alpine permafrost. In: BOER, M., & KOSTER, E. (Hrsg.), Greenhouse-impact on cold-climate ecosystems and landscapes. Catena Supplement 22, Cremlingen, 23-35.
- HAEBERLI, W., 1993: Research on permafrost and periglacial processes in mountain areas status and perspectives. - Permafrost, Proceedings of the 6th International Conference (1993), Vol.2, Beijing, 1014-1018.
- HAEBERLI, W., 1994: Accelerated glacier and permafrost changes in the Alps. In: BENISTON, M. (Hrsg.), Mountain environments in changing climates. London, New York, 91-107.
- HAEBERLI, W., GUODONG, C., GORBUNOV, A.P., & HARRIS, S.A., 1993: Mountain Permafrost and climatic change. -Permafrost and Periglacial Processes 4, 165-174.

- HAEBERLI, W., HUDER, J., KEUSEN, H.-R., PIKA, J., & RÖTHLISBERGER, H., 1988: Core drilling through rock glacierpermafrost. - Permafrost, Vth International Conference, Proceedings 2, Trondheim, 937-942.
- HAEBERLI, W., & KING, L., 1987: Polarer und alpiner Permafrost. Verhandl. d. Deutschen Geographentages 45, Stuttgart, 269-274.
- HAEBERLI, W., KING, L., & FLOTRON, A., 1979: Surface movement and lichen-cover studies at the active rock glacier near the Grubengletscher, Wallis, Swiss Alps. - Arctic and Alpine Research 11/4, 421-441.
- HAEBERLI, W., & PATZELT, G., 1983: Permafrostkartierung im Gebiet der Hochebenkar-Blockgletscher, Obergurgl, Ötztaler Alpen. - Z. f. Gletscherkunde u. Glazialgeol. 18 (1982), 127-150.
- HAEBERLI, W., & PENZ, U., 1985: An attempt to reconstruct glaciological and climatological characteristics of 18 ka BP Ice Age glaciers in and around the Swiss Alps. - Z. f. Gletscherkunde u. Glazialgeol. 21, 351-361.
- HAEBERLI, W., RICKENMANN, D., & ZIMMERMANN, M., 1990: Investigations of 1987 debris flows in the Swiss Alps: general concept and geophysical soundings. - In: Hydrology in Mountainous Regions. II - Artificial Reservoirs; Water and Slops. IAHS Publ. no.194, 303-310.
- HARRIS, S.A., 1981: Distribution of zonal permafrost landforms with freezing and thawing indices. Erdkunde 35, 81-90.
- HARRIS, S.A., 1995: Temperature conditions in permafrost areas of the mountains of Southwestern Alberta and the European Alps. - Z. Geomorph. N.F. 39, 211-235.
- HARRIS, S.A., & CORTE, A.E., 1992: Interactions and relations between mountain permafrost, glaciers, snow and water. - Permafrost and Periglacial Processes 3, 103-110.
- HARTL, H., 1979: Hochtäler der Hochalm- und Ankogelgruppe naturkundlich betrachtet. Alpenvereinsjahrbuch 1979 (Zeitschrift 104), 32-36.
- HEUBERGER, H., 1974: Geomorphologische Beschreibung. In: Gletscher, Firnflächen, frische Wallmoränen am Sulztalferner, Ötztal. - Landformen im Kartenbild (Topographisch-Geomorphologische Kartenproben 1:25.000), Gruppe VII: Alpen/Zentralalpen, Kartenprobe 3, 5-16.
- HEUBERGER, H., 1977: Gletscher- und klimageschichtliche Untersuchungen im Zemmgrund. Alpenvereinsjahrbuch 1977 (Zeitschrift 182), 39-50.
- HÖCK, V., KOLLER, F., & SEEMANN, R., 1994: Geologischer Werdegang der Hohen Tauern vom Ozean zum Hochgebirge. - In: Mineral & Erz in den Hohen Tauern. Hrsg. vom Naturhistorischen Museum Wien, 29-54.
- HOELZLE, M., 1992: Permafrost occurence from BTS measurements and climatic parameters in the Eastern Swiss Alps. - Permafrost and Periglacial Processes 3, 143-147.
- HÖFNER, T., 1993: Fluvialer Sedimenttransfer in der periglazialen Höhenstufe der Zentralalpen, südliche Hohe Tauern, Osttirol. Bestandsaufnahme und Versuch einer Rekonstruktion der mittel- bis jungholozänen Dynamik. - Bamberger Geogr. Schr. 13, 121 S.
- HÖLLERMANN, P., 1964: Rezente Verwitterung, Abtragung und Formenschatz in den Zentralalpen am Beispiel des oberen Suldentales (Ortlergruppe). - Z. Geomorph. N.F., Suppl.-Bd. 4, 257 S.
- HÖLLERMANN, P., 1983: Blockgletscher als Mesoformen der Periglazialstufe. Studien aus europäischen und nordamerikanischen Hochgebirgen. - Bonner Geogr. Abh. 67, 73 S.
- HÖLLERMANN, P., 1985: The periglacial belt of mid-latitude mountains from a geoecological point of view. Erdkunde 39, 259-270.
- HUTTER, C. M., & BECKEL, L., 1985: Großglockner. Saumpfad-Römerweg-Hochalpenstraße. Salzburg, Wien, 195 S.
- Hydrographischer Dienst in Österreich (Hrsg.), 1973: Die Niederschläge, Schneeverhältnisse, Luft- und Wassertemperaturen in Österreich im Zeitraum 1961-1970. - Beiträge zur Hydrographie Österreichs 43, 364 S.
- Hydrographischer Dienst in Österreich (Hrsg.), 1983: Die Niederschläge, Schneeverhältnisse und Lufttemperaturen in Österreich im Zeitraum 1971-1980. - Beiträge zur Hydrographie Österreichs 46, 453 S.
- Hydrographischer Dienst in Österreich (Hrsg.), 1994: Die Niederschläge, Schneeverhältnisse und Lufttemperaturen in Österreich im Zeitraum 1971-1980. - Beiträge zur Hydrographie Österreichs 52, 529 S.
- IVES, J.D., 1974: Permafrost. In: IVES, J.D. & BARRY, R.G. (Hrsg.), Arctic and Alpine Environments. Methuen, London, 159-194.
- JACOBS, F., & MEYER, H., 1992: Geophysik Signale aus der Erde. Einblicke in die Wissenschaft. Stuttgart, Leipzig, Zürich, 167 S.
- KAHLER, F., 1972: Pollenanalytische Untersuchung des Toteises "Oschenig-See". Unpubl. Studie, Klagenfurt, 2 S.
- KAISER, K., 1960: Klimazeugen des periglazialen Dauerfrostbodens in Mittel- und Westeuropa. Eiszeitalter und Gegenwart 11, 121-141.
- KARTE, J., 1979: Räumliche Abgrenzung und regionale Differenzierung des Periglaziärs. Bochumer Geogr. Arb. 35, 211 S.
- KATZMANN, W., KNAPPITSCH, E., & KUX, S., 1987: Nationalpark Hohe Tauern Infrarotorthophotokarte und Bildanalyse für die Landschaftsplanung. - Österr. Bundesinst. f. Gesundheitswesen, Wien, 108 S.
- KAUFMANN, V., 1996: Der Dösener Blockgletscher Studienkarten und Bewegungsmessungen. In diesem Band.
- KELLER, F., 1991: Permafrost im Baugrund. In: Modelle in der Geomorphologie Beispiele aus der Schweiz. Fachtagung der Schweizerischen Geomorph. Ges., Freiburg 1990. Geogr. Inst. Freiburg/CH, Berichte und Forschungen 3, 115.
- KELLER, F., 1992: Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. - Permafrost and Periglacial Processes 3/2, 133-138.
- KELLER, F., 1994: Interaktionen zwischen Schnee und Permafrost. Eine Grundlagenstudie im Oberengadin. Mitt. d. Versuchsanstalt f. Wasserbau, Hydrologie u. Glaziologie d. ETH Zürich 127, 145 S.
- KERSCHNER, H., 1978: Untersuchungen zum Daun- und Egesenstadium in Nordtirol und Graubünden (methodische
- Überlegungen). Geogr. Jber. Österr. XXXVI (1975-76), 26-49. KERSCHNER, H., 1982: Zeugen der Klimageschichte im oberen Radurschltal. Alte Gletscherstände und Blockgletscher in der Umgebung des Hohenzollernhauses. - Alpenvereinsjahrbuch 1982/83 (Zeitschrift 107), 23-27.

KERSCHNER, H., 1983: Lateglacial paleotemperatures and paleoprecipitation as derived from permafrost:glacier relationships in the Tyrolean Alps, Austria. - Permafrost, Proceedings of the 4th Internat. Conference (1983), Washington, 589-594.

KERSCHNER, H., 1985: Quantitative paleoclimatic inferences from lateglacial snowline, timberline an rock glacier data, Tyrolean Alps, Austria. - Z. f. Gletscherkunde u. Glazialgeol. 21, 363-369.

KERSCHNER, H., 1993: Späteiszeitliche Gletscherstände im südlichen Karwendel bei Innsbruck, Tirol. - In: Der Geograph im Hochgebirge. Innsbr. Geogr. Stud. 20 (HEUBERGER-Festschrift), 47-55.

KERSCHNER, H., 1995: Naturereignisse-Naturgefahren. Hochwasser und Wildbäche im alpinen Lebensraum. - Geogr. Rundschau 47/1, 46-51.

KERSCHNER, H., & BERKTOLD, E., 1982: Spätglaziale Gletscherstände und Schuttformen im Senderstal, nördliche Stubaier Alpen, Tirol. - Z. f. Gletscherkunde u. Glazialgeol. 17/2, 125-134.

KING, L., 1977: Permafrostuntersuchungen in Tarfala (Schwedisch Lappland) mit Hilfe der Hammerschlagseismik. -Z. f. Gletscherkunde u. Glazialgeol. 12 (1976), 187-204.

KING, L., 1982: Qualitative und quantitative Erfassung von Permafrost in Tarfala (Schwedisch-Lappland) und Jotunheimen (Norwegen) mit Hilfe geoelektrischer Sondierungen. - Z. Geomorph. N.F., Suppl.-Bd. 43, 139-160.

KING, L., 1984: Permafrost in Skandinavien. Untersuchungsergebnisse aus Lappland, Jotunheimen und Dovre/Rondane. - Heidelberger Geogr. Arb. 76, 174 S.

KING, L., 1990: Soil and rock temperatures in discontinuous permafrost: Gornergrat and Unterrothorn, Wallis, Swiss Alps. - Permafrost and Periglacial Processes 1, 177-188.

KING, L., & AKERMAN, J., 1993: Mountain permafrost in Europe. - Permafrost, Proceedings of the 6th Internat. Conference (1993), Vol. 2, Beijing, 1022-1027.

KING, L., FISCH, W., HAEBERLI, W., & WAECHTER, H.P., 1987: Comparison of resistivity and radio-echo soundings on rock glacier permafrost. - Z. f. Gletscherkunde u. Glazialgeol. 23, 77-97.

KING, L., GORBUNOV, A.P., & EVIN, M., 1992: Prospecting and mapping of mountain permafrost and associated phenomena. - Permafrost and Periglacial Processes 3/2, 73-81.

KÖRNER, C., 1989: Der Flächenanteil unterschiedlicher Vegetationseinheiten in den Hohen Tauern: Eine quantitative Analyse großmaßstäblicher Vegetationskartierungen in den Ostalpen. - In: Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern. Veröff. d. Österr. MaB-Programmes 13, 33-47.

KRAINER, K., 1994: Die Geologie der Hohen Tauern. - Nationalpark Hohe Tauern. Wissenschaftliche Schriften. Hrsg. v. d. Nationalparkfonds der Länder Kärnten, Salzburg und Tirol. Großkirchheim, Neukirchen, Matrei, 160 S.

KUHLE, M., 1987: Physisch-geographische Merkmale des Hochgebirges: Zur Ökologie von Höhenstufen und Höhengrenzen. - In: Hochgebirge. Ergebnisse neuer Forschungen. - Frankfurter Beiträge zur Didaktik der Geographie 10, 15-40.

LANG, H., & LIEB, G.K., 1993: Die Gletscher Kärntens. - Naturwiss. Ver. f. Kärnten, Klagenfurt, 184 S.

LAUSCHER, A. & F., 1981: Vom Schneeklima der Ostalpen. Nach Beobachtungen von 38 Höhenstationen in Österreich im Zeitraum 1946-1979. - 76.-78. Jber. d. Sonnblick-Ver. (1978-1980), 15-23.

LAZAR, R., LIEB, G.K., PIRKER, D., & UNTERSWEG, T., 1988: Physisch-geographische Untersuchungen im hinteren Eselsberggraben (Wölzer Tauern, Steiermark). - Mitt. naturwiss. Ver. Steiermark 119, 41-58.

LEHMKUHL, F., 1989: Geomorphologische Höhenstufen in den Alpen unter besonderer Berücksichtigung des nivalen Formenschatzes. - Göttinger Geogr. Abh. 88, 113 S.

LEHMKUHL, F., BÖHNER, J., & ROST, K.T., 1992: Die nivale Höhenstufe und ein Versuch ihrer klimatischen Abgrenzung anhand ausgewählter Gebiete der Alpen und Skandinaviens. - Erdkunde 46, 3-13.

LIEB, G.K., 1987 a: Die Gletscher und Blockgletscher im Kärntner Teil der Schobergruppe und ihre Entwicklung seit dem Spätglazial. - Unpubl. Diss., Univ. Graz, 286 S.

LIEB, G.K., 1987 b: Zur spätglazialen Gletscher- und Blockgletschergeschichte im Vergleich zwischen den Hohen und Niederen Tauern. - Mitt. Österr. Geogr. Ges. 129, 5-27.

LIEB, G.K., 1989: Die Seetaler Alpen (Steiermark) - Länderkundliche Grundstrukturen und pleistozäne Landschaftsgenese. - Arb. Geogr. Inst. Univ. Graz 29, 243-276.

LIEB, G.K., 1991: Die horizontale und vertikale Verteilung der Blockgletscher in den Hohen Tauern (Österreich). - Z. Geomorph. N.F. 35/3, 345-365.

LIEB, G.K., 1993: Zur quantitativen Erfassung des Rückganges der Kärntner Gletscher vom Hochstand um 1850 bis 1969. - Arb. Geogr. Inst. Graz 31, 231-251.

LIEB, G.K., 1994: Eine Bestandsaufnahme der fossilen Blockgletscher in den Gurktaler und Seetaler Alpen. - Mitt. naturwiss. Ver. Steiermark 124, 61-70.

LIEB, G.K., & SCHOPPER, A., 1991: Zur Verbreitung von Permafrost am Dachstein (Nördliche Kalkalpen, Steiermark). - Mitt. naturwiss. Ver. Steiermark 121, 149-163.

LIEB, G.K., & SLUPETZKY, H., 1993: Der Tauernfleck-Blockgletscher im Hollersbachtal (Venedigergruppe, Salzburg, Österreich). - Wiss. Mitt. aus dem Nationalpark Hohe Tauern 1, 138-146.

LIEB, G.K., & SULZER, W., 1992: Regionalgeographische Aspekte der Paßlandschaft von Hohentauern. - Mitt. naturwiss. Ver. Steiermark 122, 49-63.

MAHRINGER, W., 1966: Untersuchungen von Boden- und Felstemperaturen auf dem Hohen Sonnblick (3100 m). -60.-62. Jber. d. Sonnblick-Vereines (1962-1964), 17-31.

MAHRINGER, W., 1973: Der Jahresgang der Temperatur in der Schneedecke am Hohen Sonnblick (3100 m). - 68.-69. Jber. d. Sonnblick-Vereines (1970-1971), 31-40.

MAREK, R., 1910: Waldgrenzstudien in den österreichischen Alpen. - Pet. Mitt., Erg.-H.168, 102 S.

MAYR, G., 1987: Blockgletscher im Nationalpark Hohe Tauern. - Unpubl. Hausarb., Univ. Salzburg, 61 S.

MEURER, M., 1984: Höhenstufung von Klima und Vegetation. Erläutert am Beispiel der mittleren Ostalpen. - Geogr. Rundschau 36/8, 395-403. METZ, K., 1976: Der geologische Bau der Seckauer und Rottenmanner Tauern. - Jb. Geol. B.-A. 119/2, 151-205.

- MORAWETZ, S.O., 1930: Beiträge zur Geomorphologie der Kreuzeck- und Reisseckgruppe. Veröff. Geogr. Inst. Univ. Graz 3, 32 S.
- MORAWETZ, S., 1973: Permafrost Schneegrenze Periglaziales. In: Beiträge zur Klimatologie, Meteorologie und Klimamorphologie. Arb. Geogr. Inst. Univ. Salzburg 3 (TOLLNER-Festschrift), 37-44.
- NAGL, H., 1971: Zur Erkenntnis quartärer Klimaschwankungen aus geomorphologischen Erscheinungen am Beispiel des Pöllatales (Hafnergruppe, Kärnten). Car. II 161/81, 9-30.
- NAGL, H., 1976: Die Raum-Zeit-Verteilung der Blockgletscher in den Niederen Tauern und die eiszeitliche Vergletscherung der Seckauer Tauern. Mitt. naturwiss. Ver. Steiermark 106, 95-118.
- Österreichischer Gletscherkataster, o.J.: Unpubl. Computerausdruck, Univ. Innsbruck.
- PATZELT, G., 1983: Die spätglazialen Gletscherstände im Bereich des Mieslkopfes und im Arztal, Tuxer Voralpen, Tirol. - In: Arbeiten zur Quartär- und Klimaforschung. Innsbrucker Geogr. Stud. 8 (FLIRI-Festschrift), 35-44.
- PENCK, A., 1909: Aegerters Karte der Ankogel-Hochalmspitzgruppe. Mitt. d. D.u.Ö.A.V. 25/35, 273-274.
- PILLEWIZER, W., 1957: Untersuchungen an Blockströmen der Ötztaler Alpen. In: Geomorphologische Abhandlungen . Abh. d. Geogr. Inst. d. Freien Universität Berlin 5, 37-50.
- RATHJENS, C., 1982: Geographie des Hochgebirges. 1: Der Naturraum. Teubner Studienbücher Geographie, Stuttgart, 210 S.
- RENNERT, R., 1991: Geoökologische Untersuchungen zur Bodengefrornis an der Untergrenze des alpinen Permafrostes unter Einsatz von Hammerschlagseismik, Geoelektrik und Bodentemperaturmessungen. -Unpubl. Diplomarb., Univ. Bayreuth, 141 S.
- Rolshoven, M., 1982: Alpines Permafrostmilieu in der Lasörlinggruppe/Nördliche Deferegger Alpen (Osttirol). -Polarforschung 52 (1/2), 55-64.
- SCHAFFHAUSER, H., 1974: Hang- und Wanduntersuchungen in der Reißeckgruppe. Unpubl. geogr. Diss., Univ. Graz, 161 S.
- SCHMÖLLER, R., & FRUHWIRTH, R., 1996: Komplexgeophysikalische Untersuchungen auf dem Dösener Blockgletscher (Hohe Tauern, Österreich). - In diesem Band.
- SCHOPPER, A., 1989: Die glaziale und spätglaziale Landschaftsgenese im südlichen Dachstein und ihre Beziehung zum Kulturlandausbau. Unpubl. Diplomarb., Univ. Graz, 161 S.
- SCHULZ, N., & WIESER, G., 1991: Der Dösener See. Alpenverein Graz, Mitteilungen 43/2, 54-57.
- SEGER, M., 1989: Landnutzungsanalyse aufgrund einer Farbinfrarot-Orthophotokarte. Mitt. Österr. Geogr. Ges. 131, 5-26.
- SEGER, M., 1996: Bildkarten aus Fernerkundungsdaten: Herstellung und geographisch-interpretative Nutzung. Mit einer Luftbildkarte des östlichen Tauernmassivs. In diesem Band.
- SENARCLENS-GRANCY, W., 1935: Stadiale Moränen im Hochalmspitz-Ankogel-Gebiet. Z. f. Gletscherkunde 23, 153-171.
- SENARCLENS-GRANCY, W., 1942: Zur Gliederung eiszeitlicher und jüngerer Gletscherspuren in den Alpen zwischen Venediger, Glockner und Pustertal. Mitt. d. Alpenländ. geol. Ver. (Mitt. geol. Ges. Wien) 35, 125-178.
- SENARCLENS-GRANCY, W., 1962: Beiträge zur Eingliederung der Moränen der Schladminger Tauern, der Mittelennstaler Moore und der Ramsau- oder Ennstalterrasse bei Schladming in das alpine Jungquartär. - Jb. Geol. B.-A. 105, 65-128.
- STÄBLEIN, G., 1985: Permafrost. Faktor des Naturraumpotentials in den kalten Randsäumen der Ökumene. Geogr. Rundschau 37/7, 322-329.
- STINGL, H., 1969: Ein periglazialmorphologisches Nord-Süd-Profil durch die Ostalpen. Göttinger Geogr. Abh. 49, 115 S. STINY, J., 1940: Zur Landformenkunde Kärntens. Car. II 130/50, 16-45.
- STOCKER, E., 1971: Hanguntersuchungen in der Kreuzeckgruppe (Kärnten). Arb. Geogr. Inst. Univ. Graz 16, 166 S.
- STRUNK, H., 1986: Der Einfluß langsamer Massenbewegungen auf das Sanftrelief der südlichen Zentralalpen. Z. Geomorph. N.F., Suppl.-Bd. 61, 77-88.
- TENTHOREY, G., 1992: Perennial névés and the hydrology of rock glaciers. Permafrost and Periglacial Processes 3, 247-252.
- THIELE, O., 1980: Das Tauernfenster. In: OBERHAUSER, R. (Red.), Der geologische Aufbau Österreichs. Hrsg. Geol. B.-A., Wien, New York, 300-314.
- TOLLNER, H., 1969: Klima, Witterung und Wetter in der Großglocknergruppe. In: Neue Forschungen im Umkreis der Glocknergruppe. Wiss. Alpenvereinshefte 21, Innsbruck, München, 83-94.
- TSCHERNUTTER, P., 1982: Niederschläge in Kärnten 1951 bis 1980. Schriftenreihe für Raumforschung und Raumplanung 26, Klagenfurt, 40 + 135 S.
- UNTERSWEG, T., & PROSKE, H., 1996: Untersuchungen an einem fossilen Blockgletscher im Hochreichartgebiet (Niedere Tauern, Steiermark). In diesem Band.
- UNTERSWEG, T., & SCHWENDT, A., 1995: Die Quellen der Blockgletscher in den Niederen Tauern. Ber. d. wasserwirtschaftl. Planung 78, Graz, 76 S.
- UNTERSWEG, T., & SCHWENDT, A., 1996: Blockgletscher und Quellen in den Niederen Tauern. Mitt. Österr. Geol. Ges. 87, 47-55.
- VAN HUSEN, D., 1976: Schuttströme als Ausdruck des periglazialen Massenabtrags in den Östlichen Karawanken (Österreich). Z. Geomorph. N.F. 20, 97-107.
- VAN TATENHOVE, F., & DIKAU, R., 1990: Past and present permafrost distribution in the Turtmanntal, Wallis, Swiss Alps. Arctic and Alpine Research 22/3, 302-316.
- VEIT, H., 1988: Fluviale und solifluidale Morphodynamik des Spät- und Postglazials in einem zentralalpinen Flußeinzugsgebiet (südliche Hohe Tauern, Osttirol). - Bayreuther Geowiss. Arb. 13, 167 S.

- VEIT, H., 1993: Holocene solifluction in the Austrian and Southern Tyrolean Alps: dating and climatic implications. -In: FRENZEL, B. (Hrsg.), Solifluction and climatic variation in the holocene. - ESF Project European Paleoclimate and Man 6, 23-32.
- VEIT, H., & HÖFNER, T., 1993: Permafrost, gelifluction and fluvial sediment transfer in alpine/subnival ecotone, Central Alps, Austria: Present, past and future. Z. Geomorph. N.F., Suppl.-Bd.92, 71-84.
- VEIT, H., STINGL, H., EMMERICH K.-H., & JOHN, B., 1995: Zeitliche und räumliche Variabilität solifluidaler Prozesse und ihre Ursachen. Eine Zwischenbilanz nach acht Jahren Solifluktionsmessungen (1985-1993) an der Meßstation "Glorer Hütte", Hohe Tauern, Österreich. - Z. Geomorph. N.F., Suppl.-Bd. 99, 107-122.
- VIETORIS, L., 1972: Über den Blockgletscher des Äußeren Hochebenkars. Z. f. Gletscherkunde u. Glazialgeologie 8, 169-188.
- VONDER MÜHLL, D., 1993: Geophysikalische Untersuchungen im Permafrost des Oberengadins. Mitt. d. Versuchsanstalt f. Wasserbau, Hydrologie u. Glaziologie d. ETH Zürich 122, 222 S.
- VONDER MÜHLL, D., & HAEBERLI, W., 1990: Thermal characteristics of the permafrost within an active rock glacier (Murtèl/Corvatsch, Grisons, Swiss Alps). Journal of Glaciology 36/123, 151-158.
- VONDER MÜHLL, D., HAEBERLI, W., & HOELZLE, M., 1995 a: Monitoring of mountain permafrost in Switzerland: An overview. Unpubl. Bericht, IPA working group on mountain permafrost. Zürich, 3 S.
- VONDER MÜHLL, D., HAEBERLI, W., HOELZLE, M., KELLER, F., WAGNER, S., & ARIZTEGUI, D., 1995 b: Permafrost investigations in the area Corvatsch-Furtschellas. - In: SCHIRMER, W. (Hrsg.), Quaternary field trips in Central Europe. - International Union for Quaternary Research, XIV International Congress Berlin, Bd. 2. München, 682-687.

VONDER MÜHLL, D., HOELZLE, M., & WAGNER, S., 1994: Permafrost in den Alpen. - Geowissenschaften 12/5-6, 149-153.

- VONDER MÜHLL, D., & HOLUB, P., 1992: Borehole logging in alpine permafrost, Upper Engadin, Swiss Alps. -Permafrost and Periglacial Processes 3, 125-132.
- WAGNER, H., 1985: Die natürliche Pflanzendecke Österreichs. Österr. Akad. d. Wiss., Kommission f. Raumforschung, Beiträge zur Regionalforschung 6, 63 S. (+Karte)
- WAHRHAFTIG, C., & COX, A., 1959: Rock glaciers in the Alaska Range. Bull. Geol. Soc. America 70, 383-436.
- WAKONIGG, H., 1975: Die Schneeverhältnisse des österreichischen Alpenraumes (1950-1960). Wetter und Leben 27, 193-203.
- WAKONIGG, H., 1996: Unterkühlte Schutthalden. In diesem Band.
- WEISS, E.H., 1958: Eine Eis führende Schutthalde in den Gailtaler Alpen. Car. II 148/68, 62-63.
- WEISSEL, G., 1965: Das Spätglazial in der östlichen Kreuzeckgruppe. Unpubl. geogr. Diss., Univ. Graz, 259 S.
- WEISSEL, G., 1966: Die spätglaziale Vergletscherung in der östlichen Kreuzeckgruppe. Car. II 156/76, 12-21.
- WOLKINGER, F., 1991: Botanische Wanderung zum Arthur-von-Schmid-Haus (2272 m) und auf das Säuleck (3068 m). -Alpenverein Graz, Nachrichten 43/2, 52-53.
- ZIMMERMANN, M., & HAEBERLI, W., 1992: Climatic change and debris flow activity in high-mountain areas a case study in the Swiss Alps. - In: BOER, M., & KOSTER, E. (Hrsg.), Greenhouse-impact on cold-climate ecosystems and landscapes. Catena Supplement 22, Cremlingen, 59-72.
- ZÜCKERT, G., 1996: Versuch einer landschaftsökologischen Gliederung der Hochflächen der südlichen Hochschwabgruppe. - Mitt. naturwiss. Ver. Steiermark 125, 55-72.

Anschrift des Verfassers:

Univ.Doz. Mag. Dr. Gerhard Karl LIEB Universität Graz, Institut für Geographie Heinrichstraße 36 A-8010 Graz

Anhang

Gesamtinventar der Blockgletscher in den östlichen österreichischen Alpen ("Blockgletscherinventar")

Inventory of the rock glaciers in the Eastern Austrian Alps

Das Blockgletscherinventar, für dessen Zustandekommen auf die Ausführungen in den Kap.4.1 und 4.2. verwiesen wird, muß zusammen mit der beiliegenden Indexkarte (Tafel 1) benützt werden, wobei in beiden dieselben Abkürzungen für Flußeinzugsgebiete und Gebirgsgruppen aufscheinen.

Lage des Blockgletschers/position of the rock glacier

Spalte/column 1: Flußeinzugsg	jebiet/river basin:	
dr = Drau	ki = Kitzbüheler Ache	sa = Salzach
en = Enns	la = Lavant	tr = Traun
ga = Gail	li = Lieser	zi = Ziller
gk = Gurk	mo = Möll	
is = Isel	mu = Mur	

<u>Spalte/column 2</u>: Nummer des Blockgletschers innerhalb des Flußeinzugsgebietes/number of the rock glacier within the river basin.

<u>Spalte/column 3</u>: Örtlichkeitsname aus der Österreichischen Karte (ÖK) 1:50.000/location name out of the official map Österreichische Karte (ÖK) 1:50.000.

<u>Spalte/column 4</u> : Gebirgsgrupp	e/mountain group:	
AH = Ankogelgruppe	KB = Kitzbüheler Alpen	SO = Goldberggruppe
BA = Berchtesgadener Alpen	KR = Kreuzeckgruppe	SS = Salzburger Schieferalpen
DA = Deferegger Alpen	LD = Lienzer Dolomiten	ST = Schladminger Tauern
DS = Dachsteingruppe	RG = Rieserfernergruppe	VE = Venedigergruppe
GG = Glocknergruppe	RT = Radstädter Tauern	WT = Wölzer Tauern
GR = Granatspitzgruppe	SC = Schobergruppe	ZA = Zillertaler Alpen
GU = Gurktaler Alpen	SE = Seetaler Alpen	
KA = Karnische Alpen	SK = Seckauer Tauern	

Anmerkung: Die Abkürzung AH ist von der ebenfalls üblichen Bezeichnung "Ankogel-Hochalm-Gruppe" und SO von "Sonnblickgruppe" abgeleitet

<u>Spalte/column 5</u>: Nummer der ÖK/number of ÖK <u>Spalte/column 6</u>: Nummer der Österr. Luftbildkarte 1:10.000/number of Österr. Luftbildkarte (aerial photograph map) 1:10.000

Kenndaten des Blockgletschers/data of the rock glacier

<u>Spalte/column 7</u>: Exposition/exposition (NW, N, NE, E, SE, S, SW, W) <u>Spalte/column 8</u>: Blockgletscher-Untergrenze (m)/lower limit of the rock glacier (m) <u>Spalte/column 9</u>: maximale Länge (m, in vermuteter Fließrichtung)/maximum length (m, in estimated flow direction) <u>Spalte/column 10</u>: maximale Breite (m)/maximum width (m) <u>Spalte/column 11</u>: Aktivität (i = intakt/f = fossil = reliktisch)/activity (i = intact/f = fossile = relict) <u>Spalte/column 12</u>: höchster Punkt der Blockgletscher-Umrahmung (m)/highest point of the catchment area of the rock glacier (m) <u>Spalte/column 13</u>: "Überhöhung" = Differenz zwischen 12 und 8 (m)/difference between 12 and

8 (m)

·			T				····					
F	NR	NAME	GEB	ÖK	ÖLK NR	Е	UG	ML	MB	Ζ	U	dH
dr	1	Garnitzenkar	LD	180	4219103	e	2060	200	250	f	2340	280
dr	2	Zabratalm	LD	180	4219103	n	1860	350	150	f	2200	340
dr	3	Baumgarten	LD	180	4218100	ne	2180	250	200	f	2459	279
dr	4	Laserz	LD	179	4119103	nw	2140	500	200	f	2738	598
dr	5	Kerschbaumeralm	LD	179	4118101	e	2150	400	250	f	2694	544
dr	6	Kerschbaumeralm	LD	179	4118101	n	2130	250	450	f	2586	456
dr	7	Hallebachtal	LD	179	4119103	e	2260	400	250	f	2704	444
dr	8	n Sattelegg	LD	196	4018101	n	2070	200	300	f	2376	306
dr	9	n Pfannegg	LD	196	4018100	ne	2080	150	200	f	2248	168
dr	10	n Hochegg	KA	195	3918103	nw	2160	150	250	f	2477	317
dr	11	Obstans	KA	195	3918103	ne	2140	400	200	f	2665	525
dr	12	n Parggenspitze	DA	178	3819103	ne	2230	100	200	f	2330	100
dr	13	e Thurntaler	DA	178	3819103	n	2280	200	150	f	2390	110
dr	14	nw Thurntaler	DA	178	3819103	n	2120	200	200	f	2330	210
dr	15	Oberhoferalm	DA	178	3819102	n	2190	300	100	f	2526	336
dr	16	Oberhoferalm	DA	178	3819102	ne	2250	350	250	f	2540	290
dr	17	ne Gannekofel	DA	178	3819102	n	2180	150	200	f	2340	160
dr	18	n Gannekofel	DA	178	3819102	ne	2240	150	300	f	2488	248
dr	19	nw Gruberspitze	DA	177	3819102	nw	2120	150	200	f	2355	235
dr	20	w Gannekofel	DA	177	3819102	w	2280	150	200	f	2488	208
dr	21	n Marchenswand	DA	177	3819102	n	2220	150	250	f	2480	260
dr	22	ne Toblacher Pfannhorn	DA	177	3819102	ne	2200	650	300	f	2640	440
dr	23	sw Gruberlenke	DA	177	3819102	se	2420	150	200	f	2615	195
dr	24	ne Gruberlenke	DA	177	3819102	e	2260	250	150	f	2510	250
dr	25	Fisell	DA	177	3819100	ne	2220	200	100	f	2500	280
dr	26	ne Multerspitze	DA	177	3819100	e	2260	300	200	f	2500	240
dr	27	Kärlsspitze	DA	177	3819100	e	2290	150	150	f	2520	230
dr	28	se Kreuzspitz	DA	177	3919100	w	2180	400	200	f	2540	360
dr	29	se Kreuzspitze	DA	177	3819100	sw	2320	400	150	f	2624	304
dr	30	n Kreuzspitze	DA	177	3819100	ne	2330	250	350	f	2683	353
dr	31	e Rotlahner	DA	177	3819100	se	2470	250	150	f	2743	273
dr	32	n Rotlahner	DA	177	3820102	ne	2220	300	150	f	2743	523
dr	33	Hellböden	DA	177	3820102	se	2470	350	150	f	2711	241
dr	34	Hellböden	DA	177	3820102	se	2530	200	150	f	2670	140
dr	35	sw Pfannspitze	DA	177	3820102	sw	2450	300	250	f	2676	226
dr	36	sw Gschritt	DA	177	3820102	sw	2300	400	250	f	2690	390
dr	37	se Storfenspitze	DA	178	3820103	s	2490	350	100	f	2895	405
dr	38	sw Großes Degenhorn	DA	178	3820103	sw	2600	300	150	f	2845	245
dr	39	sw Kugelwand	DA	178	3820103	w	2600	200	150	i	2803	203
dr	40	w Kugelwand	DA	178	3820103	n	2390	100	300	f	2580	190
dr	41	e Kaschaswand	DA	178	3820103	nw	2600	300	150	i	2810	210
dr	42	sw Kaschaswand	DA	178	3820103	SW	2410	400	200	f	2717	307
dr	43	nw Rotes Ginggele	DA	178	3820103	nw	2450	250	150	f	2763	313
dr	44	sw Rotes Ginggele	DA	178	3819101	sw	2330	300	200	f	2763	433
dr	45	nw Grumauerberg	DA	178	3819101	nw	2250	800	350	f	2670	420
dr	46	w Grumauerberg	DA	178	3819101	sw	2180	450	200	f	2670	490
dr	47	ne Grumauerberg	DA	178	3819101	ne	2330	450	250	f	2670	340
dr	48	Remasseen	DA	178	3819101	e	2534	150	250	f	2763	229
dr	49	w Sieben Seen	DA	178	3820103	S	2530	200	150	f	2720	190
dr	50	Sieben Seen	DA	178	3820103	s	2500	100	250	f	2760	260
dr	51	Sieben Seen	DA	178	3820103	se	2550	200	250	f	2803	253
dr	52	Sandalm	DA	178	3819101	w	2100	500	200	f	2830	730
dr	53	In den Böden	DA	178	3819101	nw	2290	350	500	f	2746	456
dr	54	In den Böden	DA	178	3819101	nw	2300	250	400	f	2600	300

dr	55	In den Böden	DA	178	3819101	nw	2280	300	200	f	2589	309
dr	56	w Hohes Haus	DA	178	3919100	sw	2550	150	300	f	2784	234
dr	57	nw Brandalm	DA	178	3919100	s	2500	200	150	f	2725	225
dr	58	ne Sauspitze	DA	178	3920102	nw	2370	300	200	f	2665	295
dr	59	s Sauspitze	DA	178	3920102	w	2380	250	100	f	2665	285
dr	60	nw Hochgrabe	DA	178	3920102	ne	2720	150	300	i	2951	231
dr	61	e Ochsenlenke	DA	178	3920103	s	2580	200	250	f	2825	245
dr	62	w Karnase	DA	178	3920102	se	2500	200	150	f	2796	296
dr	63	se Kleinitzer Törl	DA	178	3920102	w	2580	150	150	f	2797	217
dr	64	se Kleinitzer Törl	DA	178	3920102	sw	2560	150	300	f	2770	210
dr	65	w Marcheggenspitze	DA	178	3920102	w	2440	250	400	f	2684	244
dr	66	s Marcheggenspitze	DA	178	3920102	s	2420	200	150	f	2684	264
dr	67	sw Kugelspitze	DA	178	3920102	sw	2400	300	350	f	2796	396
dr	68	nw Arnscharte	DA	178	3920103	sw	2410	600	300	f	2783	373
dr	69	Talletalm	DA	178	3920103	w	2250	400	150	f	2780	530
dr	70	Talletalm	DA	178	3919101	nw	2210	250	150	f	2812	602
dr	71	s Rappler	DA	178	3919101	sw	2420	250	200	f	2812	392
dr	72	se Rappler	DA	178	3919101	w	2530	200	150	i	2680	150
dr	73	w Gölbner	DA	178	3919101	nw	2280	600	200	f	2943	663
dr	74	sw Gölbner	DA	178	3919101	sw	2300	500	150	f	2943	643
dr	75	sw Gumriaul	DA	178	3919101	w	2300	400	150	f	2918	618
dr	76	Kropfkaralm	DA	178	3919100	nw	2080	500	200	f	2594	514
dr	77	w Rauchegg	DA	178	3919102	w	2280	350	200	f	2594	314
dr	78	Ascher Alm	DA	178	3919101	ne	2260	350	100	f	2470	210
dr	79	n Ascher Riedl	DA	178	3919101	e	2460	250	100	f	2640	180
dr	80	s Gumriaul	DA	178	3919101	S	2600	150	200	f	2890	290
dr	81	n Anraser See	DA	178	3919101	s	2538	250	200	f	2740	202
dr	82	Anraser Alm	DA	178	3919101	s	2400	250	150	f	2610	210
dr	83	Anraser Alm	DA	178	3919101	S	2290	400	150	f	2580	290
dr	84	ne Gölbner	DA	178	3919101	ne	2700	200	100	i	2920	220
dr	85	n Steigenspitze	DA	178	3919101	n	2050	300	400	f	2469	419
dr	86	se Sichelsee	DA	178	3920103	S	2300	500	200	f	2700	400
dr	87	e Sichelsee	DA	178	3920103	SW	2410	500	350	f	2806	396
dr	88	Die Zarre	DA	178	4019100	w	2390	500	250	f	2710	320
dr	89	Villfurtalm	DA	178	4019100	SW	2260	250	150	f	2580	320
dr	90	n Compedal	DA	179	4019100	ne	2130	350	150	f	2320	190
dr	91	e Tullenkogel	DA	179	4019100	n	2200	350	150	f	2470	270
dr	92	ne Tullenkogel	DA	179	4019100	ne	2300	650	200	f	2580	280
dr	93	Gritschlacken	DA	179	4019100	se	2210	300	100	f	2350	140
dr	94	Brunnalm	DA	178	4019100	e	2360	250	100	f	2540	180
dr	95	Brunnalm	DA	178	4019100	se	2420	300	200	f	2660	240
dr	96	sw Jakoberjoch	DA	179	4019100	sw	2290	250	100	f	2560	270
dr	97	se Jakoberjoch	DA	179	4019100	s	2270	150	200	f	2430	160
dr	98	ne Jakoberjoch	DA	179	4019100	n	2250	250	200	f	2480	230
dr	99	nw Jakoberjoch	DA	179	4019100	e	2308	200	150	f	2645	337
dr	100	sw Rotstein	DA	179	4020102	s	2320	200	150	f	2640	320
dr	101	se Rotstein	DA	179	4020102	s	2410	350	150	f	2702	292
dr	102	w Schönbergspitze	DA	179	4019101	sw	2270	250	150	f	2640	370
dr	103	w Böses Weibele	DA	179	4019101	sw	2240	200	300	f	2521	281
dr	104	Neualplseen	SC	179	4120101	se	2480	400	300	f	2905	425
dr	105	Trelebitschkar	SC	179	4120101	nw	2050	150	150	f	2651	601
dr	106	Trelebitschkar	SC	179	4120101	n	2510	300	350	i	2905	395
dr	107	ne Trelebitschkar	SC	179	4120101	n	2260	200	400	f	2838	578
dr	108	Mirnitzboden	SC	179	4120100	e	2390	250	200	f	2872	482
dr	109	Mirnitzboden	SC	179	4120100	se	2340	300	200	f	2640	300

-	_											
dr	110	s Schobertörl	SC	179	4121102	s	2740	350	250	i	3119	379
dr	111	se Ralfkopf	SC	179	4121102	se	2390	400	200	f	3106	716
dr	112	se Ralfkopf	SC	179	4121102	s	2520	500	200	i	3106	586
dr	113	e Glödis	SC	179	4121102	se	2800	100	150	i	3206	406
dr	114	sw Gößnitzkopf	SC	179	4121102	s	2650	350	350	i	3119	469
dr	115	Weißenkar	SC	179	4121103	w	2540	400	270	i	3126	586
dr	116	sw Klammerköpfe	SC	179	4121103	sw	2450	350	350	i	3081	631
dr	117	sw Klammerköpfe	SC	179	4121103	sw	2400	200	150	i	2600	200
dr	118	Steinkar	SC	179	4120101	S	2150	700	380	f	3081	931
dr	119	Perschitzkar	SC	179	4121103	w	2670	350	230	i	3125	455
dr	120	sw Perschitzkar	SC	179	4121101	w	2500	350	200	i	3010	510
dr	121	s Himmelswand	SC	179	4220100	w	2170	600	250	f	2821	651
dr	122	s Mittereck	SC	179	4220100	s	2280	200	380	f	2657	377
dr	123	s Mittereck	SC	179	4220100	sw	2200	300	100	f	2450	250
dr	124	sw Seichenkopf	SC	179	4220100	s	2390	350	150	f	2916	526
dr	125	sw Seichenkopf	SC	179	4220100	s	2240	400	200	f	2916	676
dr	126	s Seichenkopf	SC	179	4220100	w	2390	500	230	f	2840	450
dr	127	Hinterberger Alm	KR	180	4319102	sw	2070	300	200	f	2260	190
dr	128	Taubichl	KR	180	4319101	sw	2230	200	150	f	2462	232
dr	129	sw Plattachsee	KR	180	4319101	nw	2120	300	350	f	2340	220
dr	130	n Torwand	KR	180	4319103	w	2400	150	200	f	2540	140
dr	131	sw Torwand	KR	180	4319103	w	2370	150	100	f	2562	192
dr	132	nw Scharnik	KR	180	4319103	sw	2230	200	100	f	2562	332
dr	133	w Scharnik	KR	180	4319103	w	2220	150	150	f	2470	250
dr	134	sw Scharnik	KR	180	4319103	s	2120	300	250	f	2657	537
dr	135	se Mokarspitz	KR	180	4319103	se	2120	150	200	f	2304	184
dr	136	n Mokarspitz	KR	180	4319103	n	2100	150	250	f	2304	204
dr	137	ne Scharnik	KR	180	4319103	n	2360	150	150	i	2657	297
dr	138	n Scharnik	KR	180	4319103	ne	2410	150	150	i	2657	247
dr	139	e Drischaufeleck	KR	180	4319101	ne	2260	300	150	f	2577	317
dr	140	se Kreuzlhöhe	KR	180	4319101	e	2320	250	300	f	2624	304
dr	141	w Hochkreuz	KR	180	4319101	sw	2410	300	150	f	2682	272
dr	142	nw Plattmander	KR	180	4319101	w	2250	200	200	f	2409	159
dr	143	s Sandfeldtörl	KR	181	4419100	s	2260	200	150	f	2497	237
dr	144	se Sandfeldtörl	KR	181	4419100	SW	2140	200	300	f	2497	357
dr	145	se Rennsfeld	KR	181	4419100	se	2100	500	200	f	2418	318
dr	146	e Sandfeldtörl	KR	181	4419100	P	2200	250	150	f	2457	257
dr	140	e Sandfeldtörl	KR	181	4419100	e	2220	450	200	f	2650	430
dr	148	In der Kirschen	KR	181	4419100	n	2330	350	400	i	2650	320
dr	149	In der Kirschen	KR	181	4419100	s	2210	350	100	f	2468	258
dr	150	w Rothorn	KR	181	4419100	sw	2340	500	150	f	2620	280
dr	151	w Schwarzsteinkonf	KR	181	4419100	sw	2300	250	150	f	2580	280
dr	152	nw Grafische Tristen	KR	181	4419100	w	2150	350	100	f	2400	250
dr	152	sw Hochtristen	KR	181	4419102	w	2230	250	200	f	2536	306
dr	154	n Hohe Grenten	KR	181	4419102	nw	2150	300	100	f	2320	170
dr	155	n Knoten	KR	181	4419102	ne	2060	100	150	f	2214	154
dr	156	s K noten	KR	181	4419102	s	2010	100	350	f	2214	204
dr	157	ne Naßfeldriegel	KR	181	4419103	n	1900	300	150	f	2238	338
dr	158	nw Naßfeldriegel	KR	181	4419103	n	2080	200	200	f	2220	140
dr	159	s Schwarzstein	KR	181	4419103	Se	1960	300	150	f	2390	430
dr	160	ne Sensenspitz	KR	181	4419103	ne	2290	2.00	200	f	2480	190
dr	161	e Schwarzstein	KR	181	4419103	ne	2020	200	200	f	2220	2.00
dr	162	ne Grubachkogel	KR	181	4419101	ne	1900	350	150	f	2240	340
dr	163	ne Grubachkogel	KR	181	4419101	ne	2000	350	100	f	2394	394
dr	164	ne Grafische Tristen	KR	181	4419101	n	2050	450	200	f	2553	503
			1									

	1.60		TTD	101								
dr	165	nw Grafische Tristen	KR	181	4419100	ne	2340	150	200	f	2480	140
dr	166	n Grafische Tristen	KR	181	4419101	ne	2150	350	150	f	2553	403
dr	167	Plattach	KR	181	4419100	e	2360	150	200	f	2502	142
dr	168	n Schwarzsteinkogel	KR	181	4419100	ne	2300	200	150	f	2515	215
dr	169	e Glenktörl	KR	181	4419100	e	2260	500	250	f	2600	340
dr	170	se Kreuzeck	KR	181	4419100	s	2480	100	250	f	2680	200
dr	171	s Dechant	KR	181	4419101	s	2430	150	150	f	2609	179
dr	172	Bratleitenalm	KR	181	4419101	s	2300	100	200	f	2400	100
dr	173	sw Subachtörl	KR	181	4419101	w	2210	200	200	f	2360	150
dr	174	sw Naßfeldtörl	KR	181	4419101	s	2200	350	200	f	2398	198
dr	175	Bödensee	KR	181	4419101	se	2250	200	200	f	2416	166
dr	176	sw Stawipfel	KR	181	4419101	w	2140	200	100	f	2300	160
dr	177	Steinfelder Gem. Alm	KR	181	4519100	ne	1950	300	200	f	2200	250
dr	178	Steinfelder Gem. Alm	KR	181	4519100	n	2060	350	150	f	2242	182
dr	179	ne Putzen	KR	181	4519100	ne	1900	350	200	f	2330	430
dr	180	nw Putzen	KR	181	4419101	n	2060	300	200	f	2330	270
dr	181	se Stawipfel	KR	181	4419101	ne	2140	300	200	f	2514	374
dr	182	se Annaruhe	KR	181	4419101	se	2210	300	100	f	2508	298
dr	183	sw Speikboden	KR	181	4519100	sw	2200	300	250	f	2508	308
dr	184	w Grakofel	KR	181	4519100	w	2220	350	250	f	2551	331
dr	185	sw Grakofel	KR	181	4519100	w	2070	250	250	f	2275	205
dr	186	sw Lenkenspitze	KR	181	4519100	sw	2080	250	300	f	2280	200
dr	187	n Moschegstrand	KR	181	4519100	n	2000	300	100	f	2220	220
dr	188	s Rastl	KR	181	4519101	s	2020	250	150	f	2165	145
dr	189	ne Lenkenspitz	KR	181	4519100	n	1980	500	200	f	2298	318
dr	190	nw Karlhöhe	KR	181	4519100	e	2050	150	150	f	2210	160
dr	191	ne Grakofel	KR	181	4519100	e	1850	900	300	f	2551	701
dr	192	sw Salzkofel	KR	181	4519100	se	2160	150	150	f	2388	228
dr	193	sw Salzkofel	KR	181	4519100	s	2150	200	100	f	2400	250
dr	194	sw Salzkofel	KR	181	4519100	sw	2060	250	150	f	2498	438
dr	195	se Salzkofel	KR	181	4519100	s	2120	350	150	f	2498	378
dr	196	se Salzkofel	KR	181	4519101	se	2050	750	200	f	2498	448
dr	197	s Kleiner Salzkofel	KR	181	4519101	se	1920	550	200	f	2260	340
en	1	w Schrimpfkogel	SK	131	5526103	w	1950	150	300	f	2207	257
en	$\frac{1}{2}$	w Schaunitztörl	SK	131	5525101	n	1700	200	500	f	2072	372
en	3	n Kettentalkogel	SK	131	5525101	ne	1680	350	300	f	2152	472
en	4	n Krugtörl	SK	130	5525101	nw	1730	700	250	f	2124	394
en	5	e Mödringkogel	SK	130	5525100	ne	1710	350	200	f	2127	432
en	6	nw Gamskögel	SK	130	5525100	n	1920	400	300	f	2386	466
en	7	se Knaudachkogel	SK	130	5525100		1880	200	300	f	2140	260
en	8	e Knaudachkogel	SK	130	5525100		1840	350	150	f	2140	387
en	9	se Knaudachtörl	SK	130	5525100	SP SP	1900	150	150	f	2175	275
en	10	ne Kleiner Grießstein	SK	130	5526102	ne	1620	750	250	f	2175	555
on	10	e Großer Grießstein	SK	130	5526102		1820	300	200	1 f	2175	500
	12	s Triebenkogel	SK	130	5426102	ne	1820	750	300	1 f	2320	300
	12	s Theoenkogel	SK CV	120	5426103	n	1610	000	400	1 f	2229	621
	13	Kastenhoden	CV SIX	130	5426103	<u> </u>	1850	300	150		2231	350
	14	San Großer Scheihlese		120	5426103	-	1000	300	200		2120	220
	15	Sw Großer Scheiblace		120	5426100	<u> 11</u>	1060	250	100	1 F	2120	220
	10	sw Großer Dögenstein		120	5426100		2040	250	250		2190	250
	10	ne Großer Bösenstein		120	5426100		2040	150	200	1 F	2393	500
	10	a Haabbaida		120	5426100		1940	200	100		2440	402
	20	n Hochheide		120	5427100		10/0	250	100	1 F	2303	473
	20	ne Dieweldgunf		130	5327102		1760	250	300		2300	170
	21	n Wurzlaitan		120	5326101		1720	250	200		2230	4/0
	1 44		INAT	1130	101020101	1 ne	11/20	1 220	1 200	1 1	12000	540

en	23	w Großer Bösenstein	WT	130	5426100	w	1940	300	300	f	2448	508
en	24	n Hochschwung	WT	130	5326103	e	1730	300	200	f	2130	400
en	25	s Kleiner Reitersee	WT	130	5326103	e	1850	400	250	f	2095	245
en	26	Zirbenkar	WT	129	5326101	nw	1800	250	150	f	1990	190
en	27	nw Sommereck	WT	129	5626102	ne	1760	250	300	f	1960	200
en	28	e Schattofen	WT	129	5326102	e	1790	100	200	f	1980	190
en	29	se Hintergullingspitz	WT	129	5225101	e	1730	350	300	f	2000	270
en	30	se Hintergullingspitz	WT	129	5225101	se	1800	300	350	f	2095	295
en	31	se Hochrettelstein	WT	129	5226103	se	1820	400	150	f	2220	400
en	32	e Hochrettelstein	WT	12.9	5226103	e	1780	350	100	f	2160	380
en	33	s Seekoppe	WT	129	5226103	se	1770	400	150	f	2090	320
en	34	se Seekoppe	WT	129	5226101	e	1880	100	200	f	2150	270
en	35	ne Seekoppe	WT	12.9	5226101	e	1880	150	200	f	2150	270
en	36	e Mittlerer Gstemmerspitz	WT	129	5226103	ne	1850	2.50	150	f	2104	254
en	37	nw Mittl Gstemmerspitz	WT	129	5226103	ne	1840	250	100	f	2136	296
en	38	ne Vorderer Gstemmerspitz	WT	129	5226103	P	1720	450	200	f	2136	416
en	30	Schriten	WT	129	5226100	n	1710	150	400	f	2080	370
en	40	s Mölbegg	WT	129	5226100	11	1650	300	150	f	2000	350
en	40	e Plannersee	WT	129	5226103	nw	1770	300	600	f	2007	233
on	42	e Gläserkoppe	WT	120	5226103	nw	1840	200	150	f	2003	170
	42	e Gläserkoppe		129	5226103	nw	1840	150	200	I f	1070	179
en	45			129	5226103	ne	1040	150	200	I f	1970	130
en	44			129	5226102	e	1090	100	200	1 f	2000	170
en	45	nw rattermann	WI	129	5225102	ne	1/90	100	150	I f	2000	210
en	40	nw Schreim	WI	129	5225100	ne	1830	250	150	I f	2154	324
en	4/	Michelifingsee	WI	129	5226102	n	1800	350	300	I	2035	235
en	48	w Goldbachsee	WI	129	5226102	e	1890	250	300	f	2097	207
en	49	Krottensee	WI	129	5225101	se	1850	250	200	1 C	2045	195
en	50	n Riedlerzinken	WT	129	5225101	n	1840	200	150	t	2175	335
en	51	Beireut	WT	129	5225103	S	1850	100	250	1 C	2120	270
en	52	Laubtal	WT	129	5225102	w	1730	350	250	t	2100	370
en	53	Laubtal	WT	129	5225102	n	1870	750	250	t	2231	361
en	54	nw Laubtaleck	WT	129	5225102	nw	1770	200	150	t	2100	330
en	55	sw Laubtaleck	WT	129	5225102	nw	1900	250	150	t	2120	220
en	56	ne Idlereckscharte	WT	129	5225102	nw	2030	200	100	f	2240	210
en	57	nw Idlereckscharte	WT	129	5225102	n	1990	450	200	f	2220	230
en	58	ne Hochwart	WT	129	5225102	n	1740	200	350	f	2301	561
en	59	ne Hochwart	WT	129	5225102	e	1940	200	100	f	2301	361
en	60	e Wolfnalmspitze	WT	129	5225102	se	1770	200	150	f	2049	279
en	61	Oberer Tanzboden	WT	129	5125101	n	1840	150	100	f	2033	193
en	62	n Großes Bärneck	WT	128	5125101	n	1860	200	200	f	2071	211
en	63	s Dornkarspitze	WT	128	5126104	e	1810	200	150	f	1990	180
en	64	n Plöschmitzzinken	WT	128	5126102	n	1940	200	150	f	2095	155
en	65	e Gumpeneck	WT	128	5126102	e	1750	200	100	f	2145	395
en	66	ne Gumpeneck	WT	128	5126102	e	1860	200	100	f	2042	182
en	67	nw Melleck	WT	129	5124101	n	1780	300	250	f	2365	585
en	68	w Melleck	WT	129	5124101	n	2030	250	250	f	2360	330
en	69	e Schafdach	WT	129	5124101	ne	1900	200	300	f	2314	414
en	70	e Kammkarlspitz	WT	129	5124101	ne	1870	300	150	f	2220	350
en	71	n Kammkarlspitz	WT	129	5125103	nw	2030	200	100	f	2248	218
en	72	ne Tischfeldspitze	WT	129	5125103	nw	1840	200	300	f	2100	260
en	73	e Tischfeldspitze	WT	129	5125103	ne	2010	250	150	f	2268	258
en	74	n Tischfeldspitze	WT	129	5125103	n	2040	150	150	f	2240	200
en	75	e Unholdingspitze	WT	129	5125103	e	2000	300	200	f	2293	293
en	76	ne Unholdingspitze	WT	129	5125103	ne	2010	200	200	f	2293	283
en	77	nw Unholdingspitze	WT	129	5125103	n	1920	200	100	f	2220	300

en	78	Weitenkar	WT	128	5125103	nw	1860	200	100	f	2080	220
en	79	Weitenkar	WT	128	5125103	e	1780	350	150	f	2000	220
en	80	n Haseneckscharte	WT	129	5124101	w	2070	200	100	f	2320	250
en	81	nw Hochstubofen	WT	129	5124101	nw	2030	250	250	f	2385	355
en	82	w Hochstubofen	WT	129	5124101	nw	1920	250	150	f	2220	300
en	83	n Aarfeldspitz	WT	129	5124101	n	1980	300	200	f	2284	304
en	84	nw Aarfeldspitz	WT	129	5124101	ne	1920	200	100	f	2277	357
en	85	e Sölkpass	WT	129	5124101	ne	1740	250	150	f	2120	380
en	86	w Sölkpass	ST	128	5124101	n	1920	100	100	f	2155	235
en	87	n Oberer Kaltenbachs	ST	128	5124101	se	1940	150	200	f	2200	260
en	88	e Deneck	ST	128	5124101	ne	1870	250	150	f	2100	230
en	89	se Deneck	ST	128	5124100	e	2020	300	150	f	2433	413
en	90	ne Deneck	ST	128	5124100	se	2200	250	300	f	2433	233
en	91	nw Breitmodl	ST	128	5124100	nw	1760	200	250	f	2150	390
en	92	e Schimpelscharte	ST	128	5024101	ne	2130	100	200	f	2413	283
en	93	sw Schimpelsee	ST	128	5024101	ne	1950	550	350	f	2424	474
en	94	ne Gjoadeck	ST	128	5024101	ne	2160	200	300	f	2420	260
en	95	Grünsee	ST	128	5024101	e	1980	350	300	f	2440	460
en	96	se Seekarlscharte	ST	128	5025103	se	2200	200	250	f	2445	245
en	97	w Griegelsee	ST	128	5025103	n	1920	300	250	f	2360	440
en	98	w Weißensee	ST	128	5025103	ne	2250	150	100	f	2460	210
en	99	s Großer Knallstein	ST	128	5025103	s	2230	250	450	f	2599	369
en	100	e Großer Knallstein	ST	128	5025103	e	2040	150	100	f	2360	320
en	101	ne Kleiner Knallstein	ST	128	5025103	n	2050	150	100	f	2378	328
en	102	ne Karlspitze	ST	128	5025101	e	1980	150	200	f	2170	190
en	103	e Karlscharte	ST	128	5025101	ne	1800	250	150	f	2070	270
en	104	sw Madelsgrubenalm	ST	128	5025101	ne	1660	450	250	f	2120	460
en	105	sw Großer Knallstein	ST	128	5025103	nw	1980	400	200	f	2460	480
en	106	Gamskarl	ST	128	5024101	nw	2130	250	200	f	2480	350
en	107	Tuchmoarkar	ST	128	5024101	ne	1930	350	200	f	2290	360
en	108	sw Gioadeck	ST	128	5024101	SW	2240	200	100	f	2500	260
en	109	nw Bauleiteck	ST	128	5024101	w	2010	200	150	f	2460	450
en	110	Schottrog	ST	128	5024101	nw	1920	300	300	f	2300	380
en	111	Steinkar	ST	128	5024101	nw	1890	250	200	f	2320	430
en	112	n Kircheleck	ST	128	5024100	n	2180	250	150	f	2414	234
en	112 113	e Kitzbergspitze	ST	120	5024100	II SP	2130	150	200	f	2414	336
en	$113 \\ 114$	n Kitzbergspitze	ST	128	5024100	ne	2030	200	300	f	2466	436
en	115	se Ghagspitz	ST	128	5024100	e	2030	200	250	f	2400	391
en	115	ne Ghagspitz	ST	120	5024100	ne	2010	100	350	f	2431	431
en	117	w Kitzbergsnitze	ST	120	5024100	SW	2000	200	200	f	2451	396
en	118	n Predigtstuhl	ST	120	5024100	n	2260	150	100	i	2543	283
on	110	n Pantentörl		120	5024100	<u>nw</u>	1040	250	100	f	2240	300
en	120	w Rantentörl		120	5024100	ne	2130	150	250	f	2240	257
on	120	ne Opferstock		120	5024100	ne	1920	200	200	f	2307	407
on	121	n Holzkarsee		120	5024100		1020	150	150	1 f	2327	300
en	122	nyy Drohortörl		120	5024100	50	2020	200	250	1 f	2230	270
	123	nw Fieuenum	51 6T	120	4024100	no	2050	100	450	i	2400	371
	124	Speikhoden	10 T2	12/	5025100		2230	200	150	1 F	2350	250
	123	no Spotoch	101 CT	120	5025100	10	1000	150	200	1 F	2339	256
en	120	ne Spateck	101 77	120	5025100		1050	150	200	1 F	2230	300
en	12/	ne Spateck	101	128	5025100	e 	1930	150	200	1 F	2230	1300
en	128	Somnagskar		128	4025102	n	1020	130	100	1	2290	574
en	129	n vockentalspitze	<u> 51</u>	12/	4925101	<u> </u>	1030	200	150	1	2404	214
en	130	n Gruberberg	16	12/	4925101		2200	150	200	1	2414	214
en	131		10	12/	4925101	se	1020	130	300	1 F	2280	107
en	132	sw woarannisee	101	112/	14723100	16	11000	1 200	1 2 3 0	11	1220/	140/

en	133	Kaiblingloch	ST	127	4925100	n	1840	900	350	f	2267	427
en	134	w Höchstein	ST	127	4925100	nw	1780	550	350	f	2409	629
en	135	e Krahbergzinken	ST	127	4925100	n	1780	350	200	f	2221	441
en	136	ne Krabergzinken	ST	127	4925100	n	1820	400	150	f	2134	314
en	137	se Pulverturm	ST	127	4925103	se	2080	250	300	f	2463	383
en	138	s Gruberberg	ST	127	4925103	S	2180	200	150	f	2414	234
en	139	Trattenkar	ST	127	4925103	se	2200	350	156	f	2500	300
en	140	nw Greifenberg	ST	127	4924100	n	2410	150	100	i	2618	208
en	141	e Elendberg	ST	127	4924100	e	2430	100	200	i	2672	242
en	142	n Elendberg	ST	127	4924100	n	2260	150	150	i	2520	260
en	143	Wildkaralm	ST	127	4925102	nw	1800	300	150	f	2180	380
en	144	Wildkar	ST	127	4925102	nw	2150	150	150	f	2458	308
en	145	Wildkar	ST	127	4925102	n	2190	250	150	f	2460	270
en	146	Herzmaierkar	ST	127	4825103	nw	1990	200	200	f	2360	370
en	147	e Sonntagkarscharte	ST	127	4825103	e	1870	350	150	f	2243	373
en	148	e Seekarzinken	ST	127	4825103	se	2040	100	200	f	2220	180
en	149	ne Seekarzinken	ST	127	4825103	e	1880	300	150	f	2120	240
en	150	Lettmaierkaralm	ST	127	4825103	n	1880	150	200	f	2120	240
en	151	Lettmaierkaralm	ST	127	4825103	ne	1900	300	100	f	2231	331
en	152	Grubachkar	ST	127	4924100	sw	2280	100	300	f	2511	231
en	153	nw Elendberg	ST	127	4924100	nw	2390	200	100	i	2672	282
en	154	w Elendberg	ST	127	4924100	w	2090	350	150	f	2672	582
en	155	w Eiskarsee	ST	127	4824101	ne	1920	250	100	f	2300	380
en	156	nw Trockenbrotscharte	ST	127	4824101	nw	1970	200	200	f	2350	380
en	157	w Trockenbrotscharte	ST	127	4824101	nw	1950	200	150	f	2396	446
en	158	n Brettspitze	ST	127	4824101	ne	2020	150	100	f	2412	392
en	159	s Krukeck	ST	127	4824101	S	2100	100	200	f	2428	328
en	160	e Krukeck	ST	127	4824101	e	1890	250	150	f	2400	510
en	161	ne Murspitzen	ST	127	4824101	nw	1900	100	100	f	2065	165
en	162	n Murspitzen	ST	127	4824101	n	2060	200	200	f	2333	273
en	163	w Murspitzen	ST	127	4824101	nw	2020	200	100	f	2352	332
en	164	nw Vetternspitzen	ST	127	4824101	nw	2220	150	200	f	2524	304
en	165	Vetternkar	ST	127	4824101	n	2080	150	200	f	2518	438
en	166	e Oberer Giglachsee	ST	127	4824100	n	2000	150	150	f	2260	260
en	167	s Oberer Giglachsee	ST	127	4824100	n	1940	200	100	f	2225	285
en	168	Hollerkar	ST	127	4825103	e	1770	100	200	f	2084	314
en	169	n Hochfeld	ST	127	4825102	nw	2020	150	100	f	2189	169
en	170	n Hochfeld	ST	127	4825102	ne	1930	350	100	t	2189	259
en	171	sw Schledeck		127	4825102	w	1820	300	150	1 C	2260	440
en	1/2	nw Kampspitze	51	127	4824100	nw	2050	150	150		2390	340
en	1/3	n Meregg	<u>51</u>	127	4824100	ne	1960	200	100	I	2235	2/5
en	174	se Nebelspitze	51 6T	127	4824100	se	1940	230	100	f	2142	202
en	175	ne nevelspitze	51 6T	127	4824100	ne	1920	200	100		2134	214
en	170	w Obere Moserann	51 6T	127	4825102	10	1800	150	100	I f	2020	320
en	1//		51 6T	127	4825102	ne	1090	200	200	l f	2120	230
en	170	m Steinkerhöhe	SI CT	127	4825100	- -	1800	200	150	1 f	2000	200
	190	n Stellikalille	<u>т</u>	12/	4724101	11 C117	2070	100	250	f	2000	170
	100	ne Seekarsnitze	<u>ст</u>	120	4724101	ow no	1700	500	400	f	2240	120
	101	se Hinterer Geißstein		120	4725102		1880	150	200	L F	2100	310
	102	e Vorderer Geißstein		120	4725103	6	1800	100	200	1 f	2170	377
en	18/	ne Vorderer Geißstein	ST	120	4725103	50	1820	300	200	f	2140	320
en	185	se Hinterer Fager	ST	120	4725103	P	1750	250	300	f	1978	228
en	186	n Hinterer Fager	ST	126	4725103	n	1820	100	300	f	1978	158
en	187	nw Vorderer Geißstein	ST	126	4725103	w	1700	700	200	f	2140	440
						1 11			~ ~ ~	. ^		

en 189 n. Seekarspizze ST 126 4724101 w 180 100 f 2320 530 en 191 nw Welattenspizze ST 126 4724100 nw 1840 100 f 2280 130 en 193 se Spazeck RT 126 4724100 re 170 400 600 f 2063 15 en 194 ne Spazeck RT 126 4724102 e 100 500 16 2403 130 400 f 2403 30 en 195 se Lobeseck RT 156 4726101 sw 180 500 16 2321 602 ga 1 e Polinik KA 197 4317102 se 2000 100 200 f 2410 140 140 ga 2 e Polinik KA 197 4317102 se 200 150	en	188	w Vorderer Geißstein	ST	126	4725103	nw	1660	100	350	f	2000	340
en 190 nw Seekarcck ST 126 4724100 nw 1950 150 f 2280 330 en 191 m Kesselkopf RT 156 4524102 nc 120 250 150 f 2251 150 150 125 355 en 193 ses Exbeseck RT 126 4724102 e 1700 150 100 f 2033 333 en 196 se Cubeseck RT 126 4727101 sw 1680 350 400 f 2323 333 en 198 w Windlegerspitz DS 126 4726101 nw 1730 200 150 150 f 2424 424 a c Polinik KA 197 4317102 se 2000 100 200 f 2140 140 ga 1 se Letterspitz KA 196 4017101 n <t< td=""><td>en</td><td>189</td><td>n Seekarspitze</td><td>ST</td><td>126</td><td>4724101</td><td>w</td><td>1820</td><td>200</td><td>150</td><td>f</td><td>2320</td><td>500</td></t<>	en	189	n Seekarspitze	ST	126	4724101	w	1820	200	150	f	2320	500
en 191 w Platenspitze ST 126 4724(10) w 1840 250 100 f 2294 454 en 193 se Spazeck RT 126 4724100 se 1700 000 600 f 2053 315 en 195 se Liebeseck RT 156 4724102 se 1700 150 100 f 2033 303 en 195 se Liebeseck RT 156 4726101 w 180 300 450 f 2322 602 ga 1 ePolinik KA 197 4317102 s 2000 150 150 f 2325 612 234 144 124 140 1214 140	en	190	nw Seekareck	ST	126	4724100	nw	1950	150	150	f	2280	330
en 192 n Kesselkopf RT 156 46424102 nc 120 250 150 f 2252 152 en 194 nc Spazeck RT 126 4724102 sc 1700 400 600 f 2063 303 en 195 sc Licbeseck RT 126 47241012 sc 2000 150 f 2303 303 en 196 s Goasustein DS 126 4726101 sc 150 150 f 2422 622 en 199 sw Windlegerspitz DS 126 4726101 sc 170 150 150 f 2224 640 140 ga 1 e Polinik KA 197 4317102 sc 2000 100 200 f 246 246 440 440 426 250 300 f 2460 480 300 124 143 4217101 sc 190 200 250 f 246 430 430 440 </td <td>en</td> <td>191</td> <td>w Plattenspitze</td> <td>ST</td> <td>126</td> <td>4724101</td> <td>w</td> <td>1840</td> <td>250</td> <td>100</td> <td>f</td> <td>2294</td> <td>454</td>	en	191	w Plattenspitze	ST	126	4724101	w	1840	250	100	f	2294	454
en 193 es Spazeek RT 126 4724102 se 170 400 600 f 2065 315 en 194 ne Spazeek RT 126 4724102 c 170 150 100 f 2033 303 en 196 sc Gosaustein DS 126 4726101 sv 180 300 400 f 2033 444 en 197 Eiskart DS 126 4726101 w 1730 200 150 f 2322 602 ga 1 ePolinik KA 197 4171700 se 2001 150 f 2461 400 ga 3 Giramondopass KA 197 4171701 n 1980 250 100 150 f 2460 430 ga 5 Mitterkar KA 196 4017101 nv 250 100 <td>en</td> <td>192</td> <td>n Kesselkopf</td> <td>RT</td> <td>156</td> <td>4624102</td> <td>ne</td> <td>2120</td> <td>250</td> <td>150</td> <td>f</td> <td>2252</td> <td>132</td>	en	192	n Kesselkopf	RT	156	4624102	ne	2120	250	150	f	2252	132
en 194 ne Spazeck RT 126 4724100 ne 1750 200 450 f 265 315 en 195 se Liebeseck RT 156 4724102 e 2000 150 100 f 2033 303 en 197 Eiskart DS 126 4726101 sv 1680 350 400 f 2324 52 en 198 sw Windlegerspitz DS 126 4726101 nv 1730 000 250 f 2324 24 ga 2 ePolinik KA 197 4317102 se 2000 100 200 f 2160 1260 200 126 126 303 5 ga 3 Giramondopass KA 196 4117101 e 1960 250 100 120 300 f 2463 303 6 3235 383 2360 100	en	193	se Spazeck	RT	126	4724102	se	1700	400	600	f	2065	365
en 195 se Liebeseck. RT 156 4724102 e 2000 150 200 f 2303 303 en 196 s Gosaustein DS 126 4726101 sv 168 350 400 f 2322 2572 en 198 w Windlegerspitz DS 126 4726101 sv 1750 200 150 f 2322 622 ga 1 e Polinik KA 197 4317102 se 2000 100 200 f 2140 140 ga 2 e Polinik KA 197 4317102 se 2000 100 200 f 2140 140 ga 3 Giramondopass KA 197 4317101 e 1980 250 500 f 2463 503 ga 3 se Edrofel LD 179 4118101 sw 2300 150 f <td>en</td> <td>194</td> <td>ne Spazeck</td> <td>RT</td> <td>126</td> <td>4724100</td> <td>ne</td> <td>1750</td> <td>200</td> <td>450</td> <td>f</td> <td>2065</td> <td>315</td>	en	194	ne Spazeck	RT	126	4724100	ne	1750	200	450	f	2065	315
en 196 s Gosaustein DS 126 4727103 s 1570 150 100 f 2034 464 en 197 Eiskarl DS 126 4726101 w 1680 350 400 f 2472 792 en 199 swWindlegerspitz DS 126 4726101 w 1700 300 250 f 2322 602 ga 1 e Polinik KA 197 4317102 se 2000 100 200 f 2140 140 ga 3 Giramondopass KA 196 4117101 e 1960 250 150 f 2435 535 ga 5 Mitterkar KA 196 417100 rw 2100 250 250 f 2375 385 ga 7 se Großer Kinigat KA 195 318103 se 2360 100 10 12 20	en	195	se Liebeseck	RT	156	4724102	e	2000	150	200	f	2303	303
en 197 Eiskarl DS 126 4726101 sw 1680 350 400 f 2472 792 en 198 w Windlegerspitz DS 126 4726101 w 1700 300 250 f 2322 572 ga 1 e Polinik KA 197 4317102 se 2010 150 250 f 2324 244 ga 2 c Polinik KA 197 4317102 se 2000 100 200 f 2160 200 ga 4 se Letterspitz KA 196 4017101 n 1980 250 100 150 f 2395 385 ga 7 se Grofer Kinigat KA 195 318103 se 2360 100 150 f 2260 400 200 f 2310 230 ga 7 se Grofer Kinigat KA 195 31	en	196	s Gosaustein	DS	126	4727103	s	1570	150	100	f	2034	464
en 198 w Windlegerspitz DS 126 4726101 w 1750 200 150 f 2322 672 ga 1 e Polinik KA 197 4317102 sc 2000 100 205 f 2322 622 ga 2 e Polinik KA 197 4317102 sc 2000 100 200 f 2140 140 ga 3 Giramondopass KA 197 4217100 sc 1960 100 200 f 2140 140 ga 5 Setterspitz KA 196 4117101 n 1980 250 150 f 2460 430 ga 8 Setterspitz KA 196 4117101 n 1980 250 200 f 2735 385 ga 8 setterspitz KA 195 31101 sc 2300 150 1200 12120	en	197	Eiskarl	DS	126	4726101	sw	1680	350	400	f	2472	792
en 199 sw Windlegerspitz DS 126 4726101 nw 1720 300 250 f 2322 602 ga 1 e Polinik KA 197 4317102 s 2010 150 250 f 2254 244 ga 3 Giramondopass KA 197 4317102 sc 2000 100 200 f 2140 140 ga 3 Giramondopass KA 196 4117101 n 1960 250 150 f 2463 503 ga 5 Mitterkar KA 196 4117101 n 1980 250 300 f 2363 333 ga 7 see Großer Kinigat KA 195 3918103 se 2300 250 f 2326 140 150 200 f 2310 303 ga 8 See Großer Kinigat KA 1920 130	en	198	w Windlegerspitz	DS	126	4726101	w	1750	200	150	f	2322	572
ga 1 e Polinik KA 197 4317102 s 2010 150 250 f 224 24 ga 2 e Polinik KA 197 4317102 se 2000 100 200 f 2140 140 ga 3 Girramondopass KA 196 4117101 e 1960 150 f 2146 303 ga 5 Mitterkar KA 196 4117101 n 1980 250 300 f 2460 480 ga 7 sc Großer Kinigat KA 195 918103 se 2300 150 f 2338 385 gk 1 se Falkert GU 183 4920103 n 1815 400 100 f 2120 350 380 35 se Grußer Kingat KA 193 4920103 ne 1815 400 100 f 2120 300 150	en	199	sw Windlegerspitz	DS	126	4726101	nw	1720	300	250	f	2322	602
ga 2 e Polinik KA 197 4317102 se 2000 100 200 f 2140 140 ga 3 Giramondopass KA 197 4217100 se 1960 100 200 f 2160 200 ga 4 se Letterspitz KA 196 4117101 e 1980 250 150 f 2463 503 ga 5 Mitterkar KA 196 4017100 nw 2010 250 150 f 250 150 f 2501 150 f 2501 150 120 152 100 150 f 250 120 162 34 34 20103 nc 120 250 120 162 34 34 220 150 200 f 2120 200 250 120 162 34 34 20103 nc 2100 150 1210 305 16 140 200 150 1210 305 150 15 1210	ga	1	e Polinik	KA	197	4317102	s	2010	150	250	f	2254	244
ga3GiramondopassKA197 4217100 se1960100200f2160200ga4se LetterspitzKA1964117101n1980250300f2460800ga6BärenbadKA1964017100n1980250300f2460800ga7se Großer KinigatKA1964017100n1980250300f2535385ga7se Großer KinigatKA1953918103se2300100150f2550190ga8se SeekofelLDD794118101sw2300250200f2738438gk1see FalkertGU1834920103ne192020050f2120305gk3KAaplingalmGU1834920103nw1815400100f2120305gk4n SchiestInockGU1834920103ne1940200f2232410gk6S HoazhôheDA1794020103ne1240200f2232410gk6S HoazhôheDA1794020103ne200f2232410gk6S HoazhôheDA1794020102nu2200250f2230360gk5 </td <td>ga</td> <td>2</td> <td>e Polinik</td> <td>KA</td> <td>197</td> <td>4317102</td> <td>se</td> <td>2000</td> <td>100</td> <td>200</td> <td>f</td> <td>2140</td> <td>140</td>	ga	2	e Polinik	KA	197	4317102	se	2000	100	200	f	2140	140
ga4se LetterspitzKA1964117101e1960250150f2463503ga6BärenbadKA1964017100nu2010250250f2350385ga7se Großer KinigatKA1953918103se2360100150f2550190ga8se SeekofelLD1794118101sw2300250200f2738438gk1se FalkertGU1834920103ne1920200250f2260300gk3KaplingalmGU1834920103ne1900300150f2120305gk4n SchiestinockGU1845020100se1820400200f2250310is1n Böses WeibeleDA1794020103ne2200250f2260310is2LaschkitzeDA1794020103ne2200250f250300is3Schlaitener AlmDA1794020103ne2200250f2508360is4nw TorviesenDA1794020102nu23035055f2508f2508f2508260is6Weißes KarDA1794020102nu23035050	ga	3	Giramondopass	KA	197	4217100	se	1960	100	200	f	2160	200
ga5MitterkarKA1964017101n1980250300f2460480ga6BärenbadKA1953918103se2360100150f2355180ga7see Großer KinigatKA1953918103se2300250250100f2550190ga8see SeckofelLD1794118101se2300250200f2738438gk1see FalkertGU1834920103n2020150200f2120305gk3KaplingalmGU1834920103ne1920300150f2120305gk4n SchiestlnockGU1834920100se1820400200f2130230gk6s HoazhöheGU1845020100se1820400200f2130300is1n Böses WeibeleDA1794020103ne2200200f2230310jj2400330is4nw TorwiesenDA1794020102ne200200i2380360is5n RotstinDA1794020102ne2300350150f2400330is4nw TorwiesenDA1794020102ne2300 <td>ga</td> <td>4</td> <td>se Letterspitz</td> <td>KA</td> <td>196</td> <td>4117101</td> <td>e</td> <td>1960</td> <td>250</td> <td>150</td> <td>f</td> <td>2463</td> <td>503</td>	ga	4	se Letterspitz	KA	196	4117101	e	1960	250	150	f	2463	503
ga6BärenbadKA1964017100nw2010250250f2395385ga7se Großer KinigatKA1953918103se2360100150f2550190ga8se SeekofelLD1794118101sw2300250200f2256340gk1se FalkertGU1834920103n1920200150f2726340gk2s FalkertGU1834920103n1815400100f2120305gk4n SchiestlnockGU1834920103ne1815400100f2120300gk5se GruftGU1834920103ne1815400100f2120300gk6s HoazhõheGU1834920103ne180150200f2232412gk6s HoazhõheGU1845020100se1940250200f2232410is1n Böses WeibeleDA1794020103ne200250f2360400is3Schlaitener AlmDA1794020102ne200200150f2400300is3Schlaitener AlmDA1794020102nu230030050f2420 <td>ga</td> <td>5</td> <td>Mitterkar</td> <td>KA</td> <td>196</td> <td>4017101</td> <td>n</td> <td>1980</td> <td>250</td> <td>300</td> <td>f</td> <td>2460</td> <td>480</td>	ga	5	Mitterkar	KA	196	4017101	n	1980	250	300	f	2460	480
ga7se Großer KinigatKA1953918103se2360100150f2550190ga8se SeekofelLD1794118101sw2300250200f2738438gk1se FalkertGU1834920103ne1920200250f2260340gk2s FalkertGU1834920103nu1815400100f2110290gk3KappingalmGU1834920104ne1900300150f2180280gk6s HoazhôheGU1845020100se1820400200f2252310is1n Böses WeibeleDA1794020103ne2140250200f2250310is2LaschkitzeDA1794020103ne2200200350f2440440is3Schlaitener AlmDA1794020102nu2290150150f2380360is5n RotsteinDA1794020102nu2200250f2380260is6Weißes KarDA1794020102nu230055250f2702402is7nw GelenkscharteDA1794020102nu2300150f2560	ga	6	Bärenbad	KA	196	4017100	nw	2010	250	250	f	2395	385
ga8se SeekofelLD1794118101sw2300250200f2738438gk1se FalkertGU1834920103ne1920200250f2260340gk2s FalkertGU1834920103n2020150200f2120305gk4n SchiestInockGU1834920104ne1900300150f2120305gk5se GruftGU1845020100se1820400200f2232412gk6s HoazhôheGU1845020100se1820400200f2250310is1n Böses WeibeleDA1794020103ne2200200350f2404440is3Schlaitener AlmDA1794020103ne2200200350f2404440is3Schlaitener AlmDA1794020102n2200250f2380360is5n RotsteinDA1794020102n2200250f2402302is6Weißes KarDA1794020102nw2300350250f2702402is7nw GelenkscharteDA1784020102nw2360200i2682302<	ga	7	se Großer Kinigat	KA	195	3918103	se	2360	100	150	f	2550	190
gk1se FalkertGU1834920103ne1920200250f2260340gk2s FalkertGU1834920103n2020150200f2310290gk3KaplingalmGU1834920103nw1815400100f2180280gk4n SchiestlnockGU1845020100se1820400200f2232412gk6s HoazhôheGU1845020100se1940250200f2250310is1n Böses WeibeleDA1794020103ne2200200350f2640440is3Schlaitener AlmDA1794020102n2200250f2380360is5n RotsteinDA1794020102nw2300350150f2400300is6Weißes KarDA1794020102nw2300350150f2420250is6Weißes KarDA1794020102nw2300350150f2420250is8nw GelenkscharteDA1784020102nw2300350150f2420250is10s ZagoritseeDA1784020102ne2360200100f267	ga	8	se Seekofel	LD	179	4118101	sw	2300	250	200	f	2738	438
gk2s FalkertGU1834920103n2020150200f2310290gk3KaplingalmGU1834920103nw1815400100f2120305gk4n SchiestinockGU1834920104ne1900300150f2180280gk5seGruftGU1845020100se1820400200f2232412gk6s HoazhöheGU1845020100se1840250200f2320310is1n Böses WeibeleDA1794020103ne2200200350f2440440is3Schlaitener AlmDA1794020102nu2200250f2380360is4nw TorwiesenDA1794020102nu2200350f2400330is5n RotsteinDA1794020102nu2300350250f2380360is7nw GelenkscharteDA1794020102nu2300350250f2420250is8nw GelenkscharteDA1784020102nu2100150f2420250is10s ZagoritseeDA1784020102nu2150400200f2560 <td< td=""><td>gk</td><td>1</td><td>se Falkert</td><td>GU</td><td>183</td><td>4920103</td><td>ne</td><td>1920</td><td>200</td><td>250</td><td>f</td><td>2260</td><td>340</td></td<>	gk	1	se Falkert	GU	183	4920103	ne	1920	200	250	f	2260	340
gk 3 Kaplingalm GU 183 4920103 nw 1815 400 100 f 2120 305 gk 4 n Schiestlnock GU 183 4920104 ne 1900 300 150 f 2180 280 gk 5 se Gruft GU 184 5020100 se 1820 400 200 f 2232 412 gk 6 s Hoazhöhe GU 184 5020100 se 1820 400 200 f 2232 412 gk 6 S Hoazhöhe GU 184 5020100 se 1820 400 200 f 2350 f 2400 330 is 1 nb Torviesen DA 179 4020102 n 2380 400 200 is 183 360 is 7 nk Gelenkscharte DA 179 4020102 ne 2380 400	gk	2	s Falkert	GU	183	4920103	n	2020	150	200	f	2310	290
gk4n SchiestlnockGU1834920104ne1900300150f2180280gk5se GruftGU1845020100se1820400200f2232412gk6s HoazhôheGU1845020100se1940250200f2230340is1n Böses WeibeleDA1794019101ne2180150f2640440is3Schlaitener AlmDA1794020103ne200200250f2380360is4nw TorwiesenDA1794020102n2200200250f2380360is5n RotsteinDA1794020102nw2300350250f2702402is6Weißes KarDA1794020102nw2300350250f2400300is7nw GelenkscharteDA1794020102nw2300350250f2402250is8nw GelenkscharteDA1784020102nw2170150150f2400200is10s ZagoritseeDA1784020102se2400350150f2400300is11s GreinspitzeDA1784020102se2400350150f<	gk	3	Kaplingalm	GU	183	4920103	nw	1815	400	100	f	2120	305
gk5se GruftGU1845020100se1820400200f2232412gk6s HoazhöheGU1845020100se1940250200f2250310is1n Böses WeibeleDA1794019101ne2180150200f2520340is2LaschkitzeDA1794020103ne2200250f2300330is4nw TorwiesenDA1794020102n2020250f2380360is5n RotsteinDA1794020102nw2290150150f2702402is6Weißes KarDA1794020102nw2300350250f2702402is7nw GelenkscharteDA1794020102nw2100150150f2420250is9w GelenkscharteDA1784020102nw2170150150f2600120is10s ZagoritseeDA1784020102ne2360200100f2697337is11s GreinspitzeDA1784020102se2400350150f2702320is13GranitzseenDA1784020102se2400350150f2752 <t< td=""><td>gk</td><td>4</td><td>n Schiestlnock</td><td>GU</td><td>183</td><td>4920104</td><td>ne</td><td>1900</td><td>300</td><td>150</td><td>f</td><td>2180</td><td>280</td></t<>	gk	4	n Schiestlnock	GU	183	4920104	ne	1900	300	150	f	2180	280
gk6s HoazhöheGU1845020100se1940250200f2250310is1n Böses WeibeleDA1794019101ne2180150200f2520340is2LaschkitzeDA1794020103ne2000350f2640440is3Schlaitener AlmDA1794020102n2000250f2380360is4nw TorwiesenDA1794020102nw2290150f2580290is5n RotsteinDA1794020102nw2300350150f2702402is7nw GelenkscharteDA1794020102nw2170150f2420250is8nw GelenkscharteDA1784020102nw2170150f2560410is10s ZagoritseeDA1784020102ne2360200100f2670337is11s GreinspitzeDA1784020102ne2400350150f2720320is13GranitzseenDA1784020102se2400100f2677377is14GranitzseenDA1784020102se2400350150f2720320is13 </td <td>gk</td> <td>5</td> <td>se Gruft</td> <td>GU</td> <td>184</td> <td>5020100</td> <td>se</td> <td>1820</td> <td>400</td> <td>200</td> <td>f</td> <td>2232</td> <td>412</td>	gk	5	se Gruft	GU	184	5020100	se	1820	400	200	f	2232	412
is1n Böses WeibeleDA1794019101ne2180150200f2520340is2LaschkitzeDA1794020103ne2200200350f2640440is3Schlaitener AlmDA1794020103ne2070350f2400330is4nw TorwiesenDA1794020102n2020200250f2380360is5n RotsteinDA1794020102nw2290150150f2580290is6Weißes KarDA1794020102nw2300350250f2702402is7nw GelenkscharteDA1794020102nw2300350250f2420250is8nw GelenkscharteDA1784020102nw2170150150f2420250is9w GelenkscharteDA1784020102ne2360200100f2660110is11s GreinspitzeDA1784020102ne2360200100f2755255is14GranitzseenDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se250700400 <t< td=""><td>gk</td><td>6</td><td>s Hoazhöhe</td><td>GU</td><td>184</td><td>5020100</td><td>se</td><td>1940</td><td>250</td><td>200</td><td>f</td><td>2250</td><td>310</td></t<>	gk	6	s Hoazhöhe	GU	184	5020100	se	1940	250	200	f	2250	310
is2LaschkitzeDA1794020103ne2200200350f2640440is3Schlaitener AlmDA1794020103ne2070350150f2400330is4nw TorwiesenDA1794020102n2020200250f2380360is5n RotsteinDA1794020102nw2300350250f2702402is6Weißes KarDA1794020102nw2300350250f2702402is7nw GelenkscharteDA1794020102nw2300350250f2420250is8nw GelenkscharteDA1784020102nw2170150150f2420250is9w GelenkscharteDA1784020102w2150400200f2560410is11s GreinspitzeDA1784020102se2400100f2670320is11s GreinspitzeDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se2400350150f2420255is14GranitzseenDA1784020102se250200f26	is	1	n Böses Weibele	DA	179	4019101	ne	2180	150	200	f	2520	340
is3Schlaitener AlmDA179 4020103 ne 2070 350 150 f 2400 330 is4nw TorwiesenDA179 4020102 n 2020 200 250 f 2380 360 is5n RotsteinDA179 4020102 nw 2290 150150f 2580 290 is6Weißes KarDA179 4020102 nw 2300 350 250 f 2702 402 is7nw GelenkscharteDA179 4020102 nw 2380 400 200 i 2682 302 is8nw GelenkscharteDA178 4020102 nw 2170 150f 2420 250 is9w GelenkscharteDA178 4020102 ww 2150 400 200 f 2660 410 is10s ZagoritseeDA178 4020102 ww 2150 400 200 f 2607 337 is11s GreinspitzeDA178 4020102 ww 2480 200 100 f 2697 337 is12e GreinspitzeDA178 4020102 se 2400 350 f 2720 320 is13GranitzseenDA178 4020102 se 250 700 f 2620 560 is16Wirtsal	is	2	Laschkitze	DA	179	4020103	ne	2200	200	350	f	2640	440
is4nw TorwiesenDA1794020102n2020200250f2380360is5n RotsteinDA1794020102nw2290150150f2580290is6Weißes KarDA1794020102nw2300350250f2702402is7nw GelenkscharteDA1794020102n2380400200i2682302is8nw GelenkscharteDA1784020102nw2170150150f2420250is9w GelenkscharteDA1784020102w2150400200f2667337is10s ZagoritseeDA1784020102ne2360200100f2697337is11s GreinspitzeDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se2400350150f2702320is14GranitzseenDA1784020102se250700400f2755255is14GranitzseenDA1784020102se250200f2620560is16WirtsalmDA1784020102se250250f2380<	is	3	Schlaitener Alm	DA	179	4020103	ne	2070	350	150	f	2400	330
is5n RotsteinDA1794020102nw2290150150f2580290is6Weißes KarDA1794020102nw2300350250f2702402is7nw GelenkscharteDA1794020102n2380400200i2682302is8nw GelenkscharteDA1784020102nw2170150150f2420250is9w GelenkscharteDA1784020102w2150400200f2660410is10s ZagoritseeDA1784020102ne2360200100f2697337is11s GreinspitzeDA1784020102se2400350150f2720320is12e GreinspitzeDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se2500700400f2667217is15WirtsalmDA1784020102ne2060500200f2620560is16WirtsalmDA1784020102ne2060500200f2480230is17ne RudnigDA1784020100ne2000250f<	is	4	nw Torwiesen	DA	179	4020102	n	2020	200	250	f	2380	360
is 6 Weißes Kar DA 179 4020102 nw 2300 350 250 f 2702 402 is 7 nw Gelenkscharte DA 179 4020102 n 2380 400 200 i 2682 302 is 8 nw Gelenkscharte DA 178 4020102 nw 2170 150 f 2420 250 is 9 w Gelenkscharte DA 178 4020102 w 2150 400 200 f 2560 410 is 10 s Zagoritsee DA 178 4020102 ne 2360 200 100 f 2697 337 is 11 s Greinspitze DA 178 4020102 se 2400 350 150 f 2720 320 is 13 Granitzseen DA 178 4020102 se 2500 700 fd0 12	is	5	n Rotstein	DA	179	4020102	nw	2290	150	150	f	2580	290
is7nw GelenkscharteDA1794020102n2380400200i2682302is8nw GelenkscharteDA1784020102nw2170150150f2420250is9w GelenkscharteDA1784020102w2150400200f2560410is10s ZagoritseeDA1784020102ne2360200100f2697337is11s GreinspitzeDA1783920103e2480200100f2600120is12e GreinspitzeDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se2500700400f2755255is14GranitzseenDA1784020102sw2450250200f2667217is15WirtsalmDA1784020102ne2060500200f2620560is16WirtsalmDA1784020102e2250200150f2480230is17ne RudnigDA1784020100w2100250150f2480230is18sw RudnigDA1784020102sw250150f <td< td=""><td>is</td><td>6</td><td>Weißes Kar</td><td>DA</td><td>179</td><td>4020102</td><td>nw</td><td>2300</td><td>350</td><td>250</td><td>f</td><td>2702</td><td>402</td></td<>	is	6	Weißes Kar	DA	179	4020102	nw	2300	350	250	f	2702	402
is8nw GelenkscharteDA1784020102nw2170150150f2420250is9w GelenkscharteDA1784020102w2150400200f2560410is10s ZagoritseeDA1784020102ne2360200100f2697337is11s GreinspitzeDA1783920103c2480200100f2607120is12e GreinspitzeDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se2500700400f2755255is14GranitzseenDA1784020102sw2450250200f2667217is15WirtsalmDA1784020102ne2060500200f2620560is16WirtsalmDA1784020100ne2000250f2380380is17ne RudnigDA1784020102sw2450250250f2460310is18sw RudnigDA1784020100w2100250162760310is19n GreinspitzeDA1784020102sw2450250250f2760	is	7	nw Gelenkscharte	DA	179	4020102	n	2380	400	200	i	2682	302
is9w GelenkscharteDA1784020102w2150400200f2560410is10s ZagoritseeDA1784020102ne2360200100f2697337is11s GreinspitzeDA1783920103e2480200100f2697337is12e GreinspitzeDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se2500700400f2755255is14GranitzseenDA1784020102se2500200f2667217is15WirtsalmDA1784020102ne2060500200f2620560is16WirtsalmDA1784020100ne2000250f2380380is17ne RudnigDA1784020100w2100250100f2410310is18sw RudnigDA1784020102sw2450250250f2380380is19n GreinspitzeDA1784020100w2100250100f2410310is20nw BocksteinDA1784020102sw2450250250f27603	is	8	nw Gelenkscharte	DA	178	4020102	nw	2170	150	150	f	2420	250
is10s ZagoritseeDA1784020102ne2360200100f2697337is11s GreinspitzeDA1783920103e2480200100f2600120is12e GreinspitzeDA1784020102se2400350150f2720320is13GranitzseenDA1784020102se2500700400f2755255is14GranitzseenDA1784020102se250200f2667217is15WirtsalmDA1784020102ne2060500200f2620560is16WirtsalmDA1784020100ne2000250f2380380is17ne RudnigDA1784020100w2100250100f2410310is19n GreinspitzeDA1784020102sw2450250250f2760310is20nw BocksteinDA1783920103n2360400300i2805445is21sw OchsenseeDA1783920103n2560200i2720180is22nw OchsenseeDA1783920103n2560200i2720180is <td>is</td> <td>9</td> <td>w Gelenkscharte</td> <td>DA</td> <td>178</td> <td>4020102</td> <td>w</td> <td>2150</td> <td>400</td> <td>200</td> <td>f</td> <td>2560</td> <td>410</td>	is	9	w Gelenkscharte	DA	178	4020102	w	2150	400	200	f	2560	410
is 11 s Greinspitze DA 178 3920103 e 2480 200 100 f 2600 120 is 12 e Greinspitze DA 178 4020102 se 2400 350 150 f 2720 320 is 13 Granitzseen DA 178 4020102 se 2500 700 400 f 2755 255 is 14 Granitzseen DA 178 4020102 se 2500 700 400 f 2755 255 is 14 Granitzseen DA 178 4020102 se 2500 200 f 2667 217 is 15 Wirtsalm DA 178 4020102 e 2250 200 f 2620 560 is 17 ne Rudnig DA 178 4020100 we 2100 250 f 2480 380 is 18 sw Rudnig DA 178 4020102 sw 2450 <t< td=""><td>is</td><td>10</td><td>s Zagoritsee</td><td>DA</td><td>178</td><td>4020102</td><td>ne</td><td>2360</td><td>200</td><td>100</td><td>f</td><td>2697</td><td>337</td></t<>	is	10	s Zagoritsee	DA	178	4020102	ne	2360	200	100	f	2697	337
is 12 e Greinspitze DA 178 4020102 se 2400 350 150 f 2720 320 is 13 Granitzseen DA 178 4020102 se 2500 700 400 f 2755 255 is 14 Granitzseen DA 178 4020102 sw 2450 250 200 f 2667 217 is 15 Wirtsalm DA 178 4020102 ne 2060 500 200 f 2620 560 is 16 Wirtsalm DA 178 4020102 e 2250 200 150 f 2480 230 is 17 ne Rudnig DA 178 4020100 ne 2000 250 f 2380 380 is 18 sw Rudnig DA 178 4020102 sw 2450 250 250 f 2760 310 is 19 n Greinspitze DA 178 3920103	is	11	s Greinspitze	DA	178	3920103	e	2480	200	100	f	2600	120
is13GranitzseenDA1784020102se2500700400f2755255is14GranitzseenDA1784020102sw2450250200f2667217is15WirtsalmDA1784020102ne2060500200f2620560is16WirtsalmDA1784020102e2250200150f2480230is17ne RudnigDA1784020100ne2000200250f2380380is18sw RudnigDA1784020100w2100250100f2410310is19n GreinspitzeDA1784020102sw2450250250f2760310is20nw BocksteinDA1784020102sw2450250250f2760310is21sw OchsenseeDA1783920103n2360400300i2805445is21sw OchsenseeDA1783920103s2500100f2700200is23n OchsenseeDA1783920103s2500150f2600270is23n OchsenseeDA1783920103s2500150f2600270i	is	12	e Greinspitze	DA	178	4020102	se	2400	350	150	f	2720	320
is 14 Granitzseen DA 178 4020102 sw 2450 250 200 f 2667 217 is 15 Wirtsalm DA 178 4020102 ne 2060 500 200 f 2620 560 is 16 Wirtsalm DA 178 4020102 e 2250 200 150 f 2480 230 is 17 ne Rudnig DA 178 4020100 ne 2000 200 250 f 2380 380 is 18 sw Rudnig DA 178 4020100 w 2100 250 100 f 2410 310 is 19 n Greinspitze DA 178 4020102 sw 2450 250 250 f 2760 310 is 20 nw Bockstein DA 178 3920103 n 2540 150 200 i 2720 180 is 21 sw Ochsensee DA 178 392010	is	13	Granitzseen	DA	178	4020102	se	2500	700	400	f	2755	255
is 15 Wirtsalm DA 178 4020102 ne 2060 500 200 f 2620 560 is 16 Wirtsalm DA 178 4020102 e 2250 200 150 f 2480 230 is 17 ne Rudnig DA 178 4020100 ne 2000 200 250 f 2380 380 is 18 sw Rudnig DA 178 4020100 w 2100 250 f 2380 380 is 19 n Greinspitze DA 178 4020102 sw 2450 250 250 f 2760 310 is 20 nw Bockstein DA 178 3920103 n 2360 400 300 i 2805 445 is 21 sw Ochsensee DA 178 3920103 n 2540 150 200 i 2720 180 is 22 nw Ochsensee DA 178 3920103 s<	is	14	Granitzseen	DA	178	4020102	sw	2450	250	200	f	2667	217
is 16 Wirtsalm DA 178 4020102 e 2250 200 150 f 2480 230 is 17 ne Rudnig DA 178 4020100 ne 2000 200 250 f 2380 380 is 18 sw Rudnig DA 178 4020100 w 2100 250 f 2380 380 is 19 n Greinspitze DA 178 4020100 w 2100 250 100 f 2410 310 is 19 n Greinspitze DA 178 4020102 sw 2450 250 250 f 2760 310 is 20 nw Bockstein DA 178 3920103 n 2360 400 300 i 2805 445 is 21 sw Ochsensee DA 178 3920103 n 2540 150 200 i 2720 180 is 23 n Ochsensee DA 178 3920103 <td< td=""><td>is</td><td>15</td><td>Wirtsalm</td><td>DA</td><td>178</td><td>4020102</td><td>ne</td><td>2060</td><td>500</td><td>200</td><td>f</td><td>2620</td><td>560</td></td<>	is	15	Wirtsalm	DA	178	4020102	ne	2060	500	200	f	2620	560
is 17 ne Rudnig DA 178 4020100 ne 2000 200 250 f 2380 380 is 18 sw Rudnig DA 178 4020100 w 2100 250 100 f 2410 310 is 19 n Greinspitze DA 178 4020102 sw 2450 250 250 f 2760 310 is 20 nw Bockstein DA 178 4020102 sw 2450 250 250 f 2760 310 is 20 nw Bockstein DA 178 3920103 n 2360 400 300 i 2805 445 345 is 21 sw Ochsensee DA 178 3920103 n 2540 150 200 i 2720 180 is 23 n Ochsensee DA 178 3920103 s 2500 150 f 2600 2700 200 is 25 nw Ochsenbichl DA 178	is	16	Wirtsalm	DA	178	4020102	e	2250	200	150	f	2480	230
is 18 sw Rudnig DA 178 4020100 w 2100 250 100 f 2410 310 is 19 n Greinspitze DA 178 4020102 sw 2450 250 250 f 2760 310 is 20 nw Bockstein DA 178 3920103 n 2360 400 300 i 2805 445 is 21 sw Ochsensee DA 178 3920103 n 2560 200 i 2720 180 is 22 nw Ochsensee DA 178 3920103 e 2560 200 100 f 2760 200 is 23 n Ochsensee DA 178 3920103 s 2500 150 f 2600 2700 200 is 24 sw Ochsenbichl DA 178 3920103 s 2500 150 f 2600 270 is 25 nw Ochsenbichl DA 178 3920103 nw	is	17	ne Rudnig	DA	178	4020100	ne	2000	200	250	f	2380	380
is 19 n Greinspitze DA 178 4020102 sw 2450 250 250 f 2760 310 is 20 nw Bockstein DA 178 3920103 n 2360 400 300 i 2805 445 is 21 sw Ochsensee DA 178 3920103 n 2540 150 200 i 2720 180 is 22 nw Ochsensee DA 178 3920103 e 2560 200 100 f 2760 200 is 23 n Ochsensee DA 178 3920103 s 2500 150 200 f 2700 200 is 24 sw Ochsenbichl DA 178 3920103 s 2500 150 f 2600 270 is 26 w Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 329 is 26 w Ochsenbichl DA 178 3920103 </td <td>is</td> <td>18</td> <td>sw Rudnig</td> <td>DA</td> <td>178</td> <td>4020100</td> <td>w</td> <td>2100</td> <td>250</td> <td>100</td> <td>f</td> <td>2410</td> <td>310</td>	is	18	sw Rudnig	DA	178	4020100	w	2100	250	100	f	2410	310
is 20 nw Bockstein DA 178 3920103 n 2360 400 300 i 2805 445 is 21 sw Ochsensee DA 178 3920103 n 2540 150 200 i 2720 180 is 22 nw Ochsensee DA 178 3920103 e 2560 200 100 f 2760 200 is 23 n Ochsensee DA 178 3920103 s 2500 150 200 f 2700 200 is 23 n Ochsensee DA 178 3920103 s 2500 150 200 f 2700 200 is 24 sw Ochsenbichl DA 178 3920103 e 2330 350 150 f 2600 270 is 26 w Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 329 is 26 w Ochsenbichl DA 178	is	19	n Greinspitze	DA	178	4020102	SW	2450	250	250	f	2760	310
is 21 sw Ochsensee DA 178 3920103 n 2540 150 200 i 2720 180 is 22 nw Ochsensee DA 178 3920103 e 2560 200 100 f 2760 200 is 23 n Ochsensee DA 178 3920103 s 2500 150 200 f 2700 200 is 23 n Ochsensee DA 178 3920103 s 2500 150 f 2700 200 is 24 sw Ochsenbichl DA 178 3920103 e 2330 350 150 f 2600 270 is 25 nw Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 449 is 26 w Ochsenbichl DA 178 3920103 nw 2240 300 250 f 2569 329 is 27 w Ochsenbichl DA 178 3920103 </td <td>is</td> <td>20</td> <td>nw Bockstein</td> <td>DA</td> <td>178</td> <td>3920103</td> <td>n</td> <td>2360</td> <td>400</td> <td>300</td> <td>i</td> <td>2805</td> <td>445</td>	is	20	nw Bockstein	DA	178	3920103	n	2360	400	300	i	2805	445
is 22 nw Ochsensee DA 178 3920103 e 2560 200 100 f 2760 200 is 23 n Ochsensee DA 178 3920103 s 2500 150 200 f 2700 200 is 24 sw Ochsenbichl DA 178 3920103 e 2330 350 150 f 2600 270 is 25 nw Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 449 is 26 w Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 329 is 27 w Ochsenbichl DA 178 3920103 nw 2090 300 150 f 2569 479 is 27 w Ochsenbichl DA 178 3920103 nw 2090 300 150 f 2569 479 is 28 w Pumpersee DA 178 <td>is</td> <td>21</td> <td>sw Ochsensee</td> <td>DA</td> <td>178</td> <td>3920103</td> <td>n</td> <td>2540</td> <td>150</td> <td>200</td> <td>i</td> <td>2720</td> <td>180</td>	is	21	sw Ochsensee	DA	178	3920103	n	2540	150	200	i	2720	180
is 23 n Ochsensee DA 178 3920103 s 2500 150 200 f 2700 200 is 24 sw Ochsenbichl DA 178 3920103 e 2330 350 150 f 2600 270 is 25 nw Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 449 is 26 w Ochsenbichl DA 178 3920103 nw 2240 300 250 f 2569 329 is 27 w Ochsenbichl DA 178 3920103 nw 2000 300 150 f 2569 479 is 27 w Ochsenbichl DA 178 3920103 nw 2090 300 150 f 2569 479 is 28 w Pumpersee DA 178 3920103 se 2560 200 150 f 2796 236	is	22	nw Ochsensee	DA	178	3920103	e	2560	200	100	f	2760	200
is 24 sw Ochsenbichl DA 178 3920103 e 2330 350 150 f 2600 270 is 25 nw Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 449 is 26 w Ochsenbichl DA 178 3920103 nw 2240 300 250 f 2569 329 is 27 w Ochsenbichl DA 178 3920103 nw 2090 300 150 f 2569 479 is 28 w Pumpersce DA 178 3920103 se 2560 200 150 f 2796 236	is	23	n Ochsensee	DA	178	3920103	S	2500	150	200	f	2700	200
is 25 nw Ochsenbichl DA 178 3920103 nw 2120 450 150 f 2569 449 is 26 w Ochsenbichl DA 178 3920103 nw 2240 300 250 f 2569 329 is 27 w Ochsenbichl DA 178 3920103 nw 2090 300 150 f 2569 479 is 28 w Pumpersce DA 178 3920103 se 2560 200 150 f 2796 236	is	24	sw Ochsenbichl	DA	178	3920103	e	2330	350	150	f	2600	270
is 26 w Ochsenbichl DA 178 3920103 nw 2240 300 250 f 2569 329 is 27 w Ochsenbichl DA 178 3920103 nw 2090 300 150 f 2569 479 is 28 w Pumpersee DA 178 3920103 se 2560 200 150 f 2796 236	is	25	nw Ochsenbichl	DA	178	3920103	nw	2120	450	150	f	2569	449
is 27 w Ochsenbichl DA 178 3920103 nw 2090 300 150 f 2569 479 is 28 w Pumpersee DA 178 3920103 se 2560 200 150 f 2796 236	is	26	w Ochsenbichl	DA	178	3920103	nw	2240	300	250	f	2569	329
is 28 w Pumpersee DA 178 3920103 se 2560 200 150 f 2796 236	is	27	w Ochsenbichl	DA	178	3920103	nw	2090	300	150	f	2569	479
	is	28	w Pumpersee	DA	178	3920103	se	2560	200	150	f	2796	236
is 29 Röte DA 178 3920102 se 2450 300 150 f 2680 230	is	29	Röte	DA	178	3920102	se	2450	300	150	f	2680	230

			r				· · · · · · · · · · · · · · · · · · ·					
is	30	e Röte	DA	178	3920102	s	2330	150	300	f	2500	170
is	31	Bichleralm	DA	178	3920100	n	2140	750	300	f	2649	509
is	32	Bichleralm	DA	178	3920100	ne	2370	250	100	f	2540	170
is	33	Laschkitzenalm	DA	178	3920100	w	2140	300	150	f	2340	200
is	34	Laschkitzenalm	DA	178	3920100	nw	2260	300	100	f	2440	180
is	35	Laschkitzenalm	DA	178	3920100	ne	2380	200	300	f	2571	191
is	36	Laschkitzenalm	DA	178	3920100	ne	2220	250	150	f	2440	220
is	37	nw Röte	DA	178	3920100	nw	2310	350	150	f	2580	270
is	38	nw Röte	DA	178	3920102	S	2380	250	100	f	2580	200
is	39	e Beilspitze	DA	178	3920100	e	2210	400	200	f	2587	377
is	40	sw Beilspitze	DA	178	3920100	w	2270	350	200	f	2730	460
is	41	sw Kleiner Leppleskofel	DA	178	3820101	s	2365	100	300	f	2469	104
is	42	s Großer Leppleskofel	DA	178	3820103	s	2470	300	250	f	2820	350
is	43	nw Ochsenlenke	DA	178	3820103	sw	2575	250	300	f	2877	302
is	44	ne Rote Spitze	DA	178	3820102	ne	2560	200	100	i	2956	396
is	45	s Langschneid	DA	177	3820100	ne	2250	350	200	f	2729	479
is	46	n Langschneid	DA	177	3820100	n	2460	150	200	f	2688	228
is	47	w Gamsburg	DA	177	3820102	w	2490	200	150	f	2750	260
is	48	se Plankfeld	DA	177	3820102	e	2350	300	150	f	2720	370
is	49	se Plankfeld	DA	177	3720103	e	2430	300	400	f	2710	280
is	50	ne Gahorn	DA	177	3820100	se	2450	100	200	f	2560	110
is	51	ne Gahorn	DA	177	3820100	ne	2290	250	150	f	2540	250
is	52	n Gahorn	DA	177	3720101	ne	2220	300	150	f	2580	360
is	53	w Gahorn	DA	177	3720103	w	2390	350	200	f	2692	302
is	54	w Gsieser Törl	DA	177	3720101	e	2400	300	150	f	2820	420
is	55	ne Pfannhorn	DA	177	3720101	ne	2550	300	200	i	2819	269
is	56	nw Pfannhorn	DA	177	3720101	nw	2560	250	200	i	2819	259
is	57	Zinsental	DA	177	3720103	nw	2480	150	100	i	2680	200
is	58	Zinsental	DA	177	3720103	nw	2280	550	200	f	2836	556
is	59	Weißenbachtal	DA	177	3720103	nw	2450	200	150	i	2729	279
is	60	Weißenbachtal	DA	177	3720102	ne	2330	200	400	f	2670	340
is	61	s Almerhorn	RG	177	3720100	s	2680	200	160	i	2985	305
is	62	s Almersäulen	RG	177	3720100	se	2460	150	300	f	2910	450
is	63	nw Almersäulen	RG	177	3720100	ne	2500	250	200	i	2910	410
is	64	ne Almerhorn	RG	177	3720100	n	2600	350	400	i	2910	310
is	65	ne Almerhorn	RG	177	3720100	ne	2730	200	100	i	2985	255
is	66	n Almerhorn	RG	177	3720100	n	2520	200	170	i	2720	200
is	67	e Barmerhütte	RG	177	3720100	n	2530	300	400	i	2713	183
is	68	s Barmerhütte	RG	177	3720100	nw	2620	250	150	i	3005	385
is	69	sw Seebl	RG	177	3721102	ne	2530	150	150	i	2915	385
is	70	nw Seebl	RG	177	3721102	e	2600	100	100	i	2915	315
is	71	Rötelboden	RG	177	3721102	SW	2420	550	300	f	2800	380
is	72	Rötelboden	RG	177	3721102	SW	2430	350	250	f	2789	359
is	73	Rötelboden	RG	177	3720100	S	2400	300	200	f	2789	389
is	74	sw Glockhaus	VE	151	3721100	w	2800	300	250	i	3129	329
is	75	w Totenkarspitz	DA	177	3721100	SW	2830	500	220	i	3133	303
is	76	Bruchmauer	DA	177	3721102	s	2500	700	200	f	2850	350
is	77	sw Panargenspitze	DA	177	3721102	sw	2570	150	250	f	2921	351
is	78	se Panargenspitze	DA	177	3721103	S	2780	350	200	<u>i</u>	3117	337
is	79	Eggsee	DA	177	3721103	W	2580	100	250	<u>i</u>	2898	318
is	80	se Keesegg	DA	177	3721103	S	2850	150	100	i	3089	239
is	81	se Keesegg	DA	177	3721103	S	2720	450	300	<u>f</u>	3089	369
1S	82	sw Panargenscharte		177	3721103	SW	2710	300	130	1	3040	330
is	83	s Panargenscharte		177	3721103	W	2670	450	150	1	3112	442
15	84	sw Alplesspitze	DA	1177	5721103	W W	2520	700	150	1	13149	029

r	· · · · · · · · · · · · · · · · · · ·											
is	85	sw Alplesspitze	DA	177	3721103	n	2450	350	250	i	2884	434
is	86	s Hutnerspitze	DA	177	3720101	sw	2480	150	250	f	2720	240
is	87	s Alplesboden	DA	177	3721103	se	2450	250	350	f	2807	357
is	88	w Alplesboden	DA	177	3721103	se	2750	200	200	i	2890	140
is	89	Alplesboden	DA	177	3721103	S	2790	350	250	i	3149	359
is	90	w Seespitze	DA	177	3721103	w	2740	150	150	i	3021	281
is	91	sw Seespitze	DA	177	3721103	w	2690	100	150	i	2880	190
is	92	Erlsbacheralm	DA	177	3720101	sw	2230	500	230	f	2734	504
is	93	s Oberseitsee	DA	177	3720101	s	2400	750	350	f	2892	492
is	94	e Oberseitsee	DA	177	3721103	sw	2670	150	300	i	2903	233
is	95	w Weißes Beil	DA	177	3821102	se	2580	450	150	f	2891	311
is	96	nw Weißes Beil	DA	177	3821102	n	2500	200	120	i	2825	325
is	97	Gamsköpfl	DA	177	3721103	e	2510	350	400	i	3088	578
is	98	e Reichenbergerhütte	DA	177	3821102	n	2660	300	300	i	2930	270
is	99	sw Heinzenspitze	DA	177	3821102	sw	2620	250	150	f	2930	310
is	100	w Kesselsee	DA	177	3821102	S	2520	700	350	f	2930	410
is	101	nw Kesselsee	DA	177	3821102	s	2730	250	170	f	2930	200
is	102	n Kesselsee	DA	177	3821102	sw	2750	100	220	i	2985	235
is	103	se Finsterkarspitze	DA	177	3821102	s	2670	450	200	f	3028	358
is	104	s Finsterkarspitze	DA	177	3821102	S	2480	600	300	f	2985	505
is	105	s Stampfleskopf	DA	177	3821102	s	2780	300	400	i	3071	291
is	106	s Stampfleskopf	DA	177	3821102	sw	2470	600	150	f	2900	430
is	107	s Blindisspitze	DA	177	3821102	s	2540	400	270	f	2870	330
is	108	se Blindisspitze	DA	177	3821102	s	2680	200	150	i	3000	320
is	109	se Blindisspitze	DA	178	3821102	sw	2520	650	200	f	2947	427
is	110	Knappengruben	DA	178	3821102	sw	2290	650	300	f	2792	502
is	111	Tögischer Bachl	DA	177	3821102	se	2450	700	350	f	2792	342
is	112	Tögischer Bachl	DA	178	3821103	sw	2550	400	250	f	2830	280
is	113	Tögischer Bachl	DA	178	3821103	SW	2400	450	270	f	2900	500
is	114	s Steingrubenhöhe	DA	178	3821103	SW	2530	500	400	f	2900	370
is	115	Tögischer Bachl	DA	178	3821103	w	2180	500	100	f	2776	596
is	116	e Gasserhörndle	DA	178	3821103	e	2330	300	170	f	2612	282
is	117	se Kascht	DA	178	3821103	se	2490	450	300	f	2776	286
is	118	e Kascht	DA	178	3821103	S	2530	400	250	f	2720	190
is	119	se Gritzer See	DA	178	3821103	w	2470	300	130	f	2632	162
is	120	e Gritzer See	DA	178	3821103	se	2500	300	250	f	2772	272
is	121	s Bachscharte	DA	178	3821103	se	2500	150	450	f	2736	236
is	122	e Stanzling	DA	178	4019100	se	2470	350	150	f	2729	259
is	123	e Rotes Kögele	DA	178	3921102	ne	2260	200	100	f	2570	310
15	124	nw Rotes Kögele	DA	178	3921102	ne	2450	150	200	f	2655	205
1S	125	e Großer Zunig		178	3921102	s	2260	150	100	t	2520	260
is	126	w Arnitzsee	DA	178	3921102	ne	2560	200	100	1	2743	183
<u>1S</u>	127	Darwitz		178	3921102	ne	2180	250	150	t	2480	300
1S	128	w Torkogel		178	3921102	ne	2190	350	250	t	2580	390
15	129	sw Torkogel		178	3921102	ne	2390	250	200	1 C	2580	190
15	130	nw Oberstkogel	DA	178	3921102	nw	2190	300	150	t C	2570	380
1S ·	131	sw Oberstkogel	DA	178	3921102	W	2320	250	250	1 C	2520	200
1S	132	ne Griffen	DA	178	3921102	ne	2330	450	200	I	2720	390
1S	133	e Legerle		178	3921102	ne	2340	150	100	1 C	2550	210
1S	134	sw Legerle		178	3921102	W	2330	300	150	1	2580	250
15	135	sw Zupaisee		170	3921102	ne	24.30	150	150	1	2705	2/5
	130	w Zupaisee		1/8	3921102	ne	2280	400	300		2499	219
	13/	nu Donnerstein		170	2021102	11	2300	200	150		2700	220
	130	nw Donnerstein		170	3921102		2370	200	550	1 F	2700	115
1 15	1137		I DA	11/0	13741104	1 mw	12200	1 200	1 3 3 0	1 1	12123	1 4 4J

		· · · · · · · · · · · · · · · · · · ·										
is	140	n Bachscharte	DA	178	3821103	ne	2450	300	250	f	2736	286
is	141	nw Bachscharte	DA	178	3821103	n	2520	200	100	i	2736	216
is	142	e Gumpenlacke	DA	178	3821103	n	2510	200	100	i	2700	190
is	143	e Gumpenlacke	DA	178	3821103	ne	2520	400	120	i	2721	201
is	144	e Gumpenlacke	DA	178	3821103	nw	2500	300	100	f	2720	220
is	145	n Steingrubenkar	DA	178	3821103	ne	2540	300	200	i	2900	360
is	146	se Lasörling	DA	178	3821103	se	2620	200	350	f	3056	436
is	147	se Lasörling	DA	178	3821103	se	2420	400	250	f	3056	636
is	148	n Lasörlinghütte	DA	178	3821103	ne	2500	150	180	f	2750	250
is	149	Hinterstaber	DA	178	3821103	e	2230	800	250	f	2850	620
is	150	Hinterstaber	DA	178	3821103	se	2300	750	200	f	2882	582
is	151	s Bergerkogel	DA	178	3821101	n	2420	200	250	f	2764	344
is	152	ne Lasörling	DA	178	3821103	nw	2480	400	200	i	3056	576
is	153	s Kriselacht	DA	177	3821100	ne	2620	250	250	i	3049	429
is	154	n Finsterkarspitze	DA	177	3821102	nw	2670	200	170	i	3071	401
is	155	n Finsterkarspitze	DA	177	3821102	n	2500	300	300	i	3028	528
is	156	n Finsterkarspitze	DA	177	3821102	ne	2640	300	130	i	2960	320
is	157	ne Gösleswand	DA	177	3821100	ne	2600	300	100	i	2912	312
is	158	nw Rosenspitze	DA	177	3721101	w	2720	250	300	i	3060	340
is	159	e Törlspitze	VE	177	3721100	е	2520	350	120	i	3052	532
is	160	w Hohes Kreuz	VE	151	3721101	w	2800	250	300	i	3156	356
is	161	sw Quirl	VE	151	3722103	s	2830	400	200	i	3251	421
is	162	ne Türmljoch	VE	151	3822102	se	2640	500	250	i	3120	480
is	163	w Mullwitzkopf	VE	152	3822101	nw	2600	350	250	i	2957	357
is	164	nw Eissee	VE	152	3822103	se	2820	200	250	i	2994	174
is	165	sw Eichham	VE	152	3822103	w	2550	850	200	i	3371	821
is	166	Bei der Lacke	VE	152	3922102	s	2180	350	200	f	2603	423
is	167	se Tauernkogel	VE	152	3923103	se	2570	250	200	i	2989	419
is	168	Grauer See	GR	152	3923103	sw	2540	200	250	f	2863	323
is	169	e Venedigerblick	GR	152	3923103	sw	2120	350	250	f	2702	582
is	170	sw Glockenkogel	GR	152	3922101	sw	2550	200	180	i	2829	279
is	171	se Glockenkogel	GR	152	4022100	se	2490	400	400	i	2829	339
is	172	w Muntanitz	GR	152	4022100	s	2330	450	250	f	2681	351
is	173	w Muntanitz	GR	152	4022100	sw	2400	500	250	f	2983	583
is	174	n Nussingscharte	GR	152	4022102	w	2660	200	150	i	3117	457
is	175	Goldried	GR	179	4021100	nw	1970	400	170	f	2720	750
is	176	Goldried	GR	179	4021100	w	2250	500	350	f	2702	452
is	177	sw Spinewitrol	GR	153	4022101	sw	2320	150	170	f	2483	163
is	178	Rumesoikar	GG	153	4022103	nw	2670	300	200	i	3005	335
is	179	e Kristallspitz	GG	153	4022103	ne	2560	250	100	i	3031	471
is	180	e Kristallspitz	GG	153	4022103	ne	2650	250	120	i	3005	355
is	181	sw Glorerhütte	GG	153	4121100	sw	2340	550	200	f	2824	484
is	182	sw Glorerhütte	GG	153	4121100	nw	2490	300	200	i	2824	334
is	183	sw Glorerhütte	GG	153	4121100	w	2450	400	200	i	2824	374
is	184	w Peischlachkar	SC	153	4121100	w	2580	250	120	i	2900	320
is	185	nw Tschadinhorn	SC	179	4121100	nw	2580	300	130	i	3017	437
is	186	nw Tschadinhorn	SC	179	4121100	nw	2560	250	100	i	3017	457
is	187	se Schönleitenspitze	SC	179	4121100	s	2450	500	180	f	2810	360
is	188	se Schönleitenspitze	SC	179	4121100	nw	2600	400	150	i	2926	326
is	189	s Schönleitenspitze	SC	179	4121102	sw	2150	600	250	f	2834	684
is	190	sw Böses Weibl	SC	179	4121100	s	2780	350	400	i	3113	333
is	191	sw Ruiskopf	SC	179	4121100	sw	2600	300	200	i	3120	520
is	192	nw Ganot	SC	179	4221102	nw	2530	400	270	i	3020	490
is	193	Fall Windes	SC	179	4021103	w	2230	250	200	f	2693	463
is	194	Fall Windes	SC	179	4021103	w	2430	350	250	i	2798	368

				·····								
is	195	Fall Windes	SC	179	4021103	n	2400	300	100	i	2819	419
is	196	Fall Windes	SC	179	4021103	w	2240	200	230	f	2510	270
is	197	sw Winkeleck	SC	179	4021103	s	2540	300	230	f	2819	279
is	198	s Winkeleck	SC	179	4021103	s	2590	300	250	i	2798	208
is	199	s Winkeleck	SC	179	4021103	w	2500	450	180	i	2868	368
is	200	Staniskaalm	SC	179	4021103	sw	2280	500	250	f	2768	488
is	201	s Wasserfallspitze	SC	179	4121102	s	2580	450	300	i	2868	288
is	202	s Wasserfallspitze	SC	179	4121102	nw	2490	600	300	i	3185	695
is	203	nw Kastenkees	SC	179	4021103	w	2430	350	300	i	3101	671
is	204	e Riegelkopf	SC	179	4021103	n	2500	300	230	i	2941	441
is	205	nw Riegelkopf	SC	179	4021103	n	2280	400	180	f	2800	520
is	206	e Zutrugenspitz	SC	179	4020101	sw	2430	400	150	f	2941	511
is	207	w Zilinkopf	SC	179	4120100	se	2500	350	300	f	2979	479
is	208	nw Hochschoberhütte	SC	179	4120100	se	2350	800	450	f	3101	751
is	209	Gartlsee	SC	179	4120100	se	2570	300	300	f	3069	499
is	210	s Gartlsee	SC	179	4120100	w	2450	250	200	i	2872	422
is	211	sw Gartlsee	SC	179	4120100	w	2390	350	200	f	2872	482
is	212	ne Hochschoberhütte	SC	179	4120100	w	2340	250	300	f	2872	532
is	213	se Hochschoberhütte	SC	179	4120100	nw	2320	300	200	f	2710	390
is	214	nw Barrenlesee	SC	179	4120100	nw	2540	350	300	i	2906	366
is	215	nw Prijakte	SC	179	4120100	nw	2440	300	400	i	3064	624
is	216	w Prijakte	SC	179	4120100	nw	2540	200	250	i	3056	516
is	217	w Prijakte	SC	179	4120100	n	2420	150	120	f	2727	307
is	218	s Prijakte	SC	179	4120100	sw	2050	1000	300	f	3000	950
is	219	Pitschedboden	SC	179	4120100	s	2230	300	550	f	2529	299
is	220	w Alkuser See	SC	179	4120100	se	2430	450	130	f	2725	295
is	221	e Prijakte	SC	179	4120100	se	2740	200	200	i	2954	214
is	222	sw Rotspitze	SC	179	4120100	s	2700	500	270	i	3053	353
is	223	sw Rotspitze	SC	179	4120100	S	2740	300	230	i	3053	313
is	224	Alkuser See	SC	179	4120100	sw	2430	450	200	f	2869	439
is	225	s Alkuser See	SC	179	4120100	nw	2340	100	120	f	2660	320
is	226	s Alkuser See	SC	179	4120100	w	2230	300	130	f	2696	466
ki	1	sw Hoher Mahdstein	KB	122	3926103	e	1700	250	150	f	1920	220
ki	2	ne Hoher Mahdstein	KB	122	3926103	ne	1830	250	200	f	2063	233
ki	3	Reckmoos	KB	122	4026102	e	1760	300	250	f	2078	318
ki	4	n Bischof	KB	122	3926103	n	1580	300	300	f	2127	547
ki	5	s Gebrakapelle	KB	122	3926103	ne	1600	350	150	f	2057	457
ki	6	sw Bischof	KB	122	3926103	nw	1740	200	300	f	2062	322
ki	7	nw Geißstein	KB	122	3925101	nw	1770	300	250	f	2360	590
la	1	Lavantsee	SE	160	5522102	ne	2050	200	300	f	2230	180
la	2	w Köhlerhütte	SE	161	5522103	S	1900	200	300	f	2185	285
li	1	n Böse Nase	AH	182	4620103	ne	1950	250	300	f	2350	400
li	2	Roßalm	AH	182	4620102	ne	2060	1000	350	f	2432	372
li	3	sw Sonnblick	AH	182	4620100	e	2240	150	100	f	2410	170
li	4	e Sonnblick	AH	182	4620100	ne	2150	150	150	f	2320	170
li	5	se Roßalmscharte	AH	182	4620100	se	2370	400	150	i	2662	292
li	6	sw Gmeineck	AH	182	4620103	s	2100	500	200	f	2540	440
li	7	ne Gmeineck	AH	182	4620101	ne	2040	400	200	f	2460	420
li	8	se Kleines Reißeck	AH	182	4621102	s	2400	250	200	f	2670	270
li	9	Hohenkar	AH	182	4621103	s	2370	300	100	f	2544	174
li	10	sw Tandlspitze	AH	182	4621103	S	2340	150	100	f	2633	293
li	11	e Roter Nock	AH	182	4621103	e	2070	250	200	f	2498	428
li	12	e Roter Nock	AH	182	4621103	n	2300	150	170	i	2498	198
li	13	Tandlalm	AH	182	4621103	ne	1680	700	300	f	2250	570
li	14	Tandlalm	AH	182	4621103	ne	1900	750	350	f	2460	560

li	15	Tandlalm	AH	182	4621103	ne	2150	550	180	f	2460	310
li	16	Sameralm	AH	182	4621102	e	2120	350	100	f	2360	240
li	17	e Tristen	AH	181	4521103	ne	2440	250	150	i	2729	289
li	18	e Tristen	AH	181	4521103	e	2550	250	130	i	2929	379
li	19	w Schönanger	AH	181	4521103	e	2490	300	100	i	2783	293
li	20	e Mallnitzerscharte	AH	181	4521101	e	2520	200	130	i	2899	379
li	21	e Säuleck	AH	181	4521101	e	2650	450	200	i	3085	435
li	22	se Zsigmondykopf	AH	156	4621100	S	2720	400	220	i	3147	427
li	23	Trippalm	AH	182	4621100	s	2440	300	200	f	2903	463
li	24	Trippalm	AH	182	4621100	s	2320	350	200	f	2903	583
li	25	e Hochalmsee	AH	156	4621100	n	2220	400	450	i	2616	396
li	26	s Hochalmsee	AH	156	4621100	n	2620	150	120	i	2778	158
li	27	Preimelkar	AH	156	4622102	se	2280	250	300	f	2710	430
li	28	w Petereck	AH	156	4622100	w	2490	150	120	i	2800	310
li	29	sw Wastlkarkees	AH	156	4622102	w	2400	400	250	i	2840	440
li	30	w Kattowitzerhütte	AH	156	4622102	se	2300	300	100	f	2680	380
li	31	e Kattowitzerhütte	AH	156	4622103	w	2510	350	200	i	2972	462
li	32	se Kattowitzerhütte	AH	156	4622102	w	2200	500	200	f	2620	420
li	33	Melnikalm	AH	156	4622103	se	2150	400	170	f	2600	450
li	34	Melnikalm	AH	156	4622103	e	2620	150	280	i	2820	200
li	35	Melnikalm	AH	156	4622103	e	2640	550	200	i	3000	360
li	36	Melnikalm	AH	156	4622103	se	2500	250	100	f	2850	350
li	37	s Melnikscharte	AH	156	4722102	w	2570	150	180	i	2720	150
li	38	s Reitereck	AH	156	4721100	se	2000	450	350	f	2612	612
li	39	s Reitereck	AH	156	4721100	e	2090	550	300	f	2620	530
li	40	n Stubeck	AH	182	4721101	n	2130	250	200	f	2370	240
li	41	e Seemannwand	AH	156	4722102	e	2390	500	200	i	2740	350
li	42	Lasörnsee	AH	156	4722102	se	2320	150	150	f	2546	226
li	43	Seemannwand	AH	156	4722102	ne	2640	250	200	i	2814	174
li	44	Melcher Eisig	AH	156	4722102	ne	2040	900	200	f	2720	680
li	45	e Melnikscharte	AH	156	4722102	ne	2400	200	300	i	2720	320
li	46	e Melnikscharte	AH	156	4722102	ne	2420	250	180	i	2720	300
li	47	e Moar Eisig	AH	156	4722102	e	2310	300	270	i	2747	437
li	48	Ebenlanischsee	AH	156	4622103	n	2370	250	230	i	2747	377
li	49	Lieserkar	AH	156	4622103	nw	2410	150	250	i	2640	230
li	50	Lieserkar	AH	156	4622103	ne	2160	450	280	f	2990	830
li	51	s Lanischseen	AH	156	4622103	w	2350	250	200	i	2744	394
li	52	s Lanischseen	AH	156	4622103	nw	2350	300	100	i	2990	640
li	53	Sonnblickkees	AH	156	4622103	n	2580	350	180	i	3030	450
li	54	w Schurfspitze	AH	156	4622101	S	2530	100	120	f	2764	234
li	55	w Schurfspitze	AH	156	4622101	s	2430	200	130	f	2663	233
li	56	n Königstuhl	GU	183	4921102	n	2000	300	750	f	2336	336
li	57	Rosaninsee	GU	183	4821102	ne	2070	150	150	f	2246	176
li	58	nw Peitlernock	GU	183	4821103	n	2035	350	150	f	2280	245
li	59	ne Bärenaunock	GU	183	4821103	ne	2070	200	300	f	2292	222
li	60	nw Bärenaunock	GU	183	4821103	nw	2075	200	400	f	2292	217
li	61	ne Hohe Pressing	GU	183	4821103	n	2080	100	200	f	2290	210
li	62	n Hohe Pressing	GU	183	4821103	ne	2010	500	300	f	2370	360
li	63	Juryalm	GU	183	4821103	nw	1950	150	150	f	2340	390
li	64	s Karlnock	GU	183	4920100	se	2140	200	150	f	2300	160
li	65	s Stangnock	GU	183	4920101	s	2060	200	300	f	2280	220
li	66	sw Schiestlscharte	GU	183	4920102	n	2020	150	150	f	2250	230
li	67	e Plattnock	GU	183	4920100	ne	2010	200	150	f	2316	306
li	68	ne Plattnock	GU	183	4920100	n	1940	200	150	f	2200	260
li	69	n Plattnock	GU	183	4920100	n	1880	500	200	f	2240	360

li	70	w Plattnock	GU	183	4820101	nw	1900	450	250	f	2316	416
li	71	Bliemalm	GU	183	4820101	nw	1820	400	200	f	2240	420
li	72	e Rabenkofel	GU	183	4820101	se	1780	200	200	f	2059	279
li	73	e Langnock	GU	183	4820103	se	1820	350	300	f	2109	289
li	74	n Kleiner Rosennock	GU	183	4820103	nw	1980	300	400	f	2361	381
li	75	w Kleiner Rosennock	GU	183	4820103	nw	2080	200	100	f	2361	281
li	76	Wendenalm	GU	183	4820103	w	1940	550	250	f	2400	460
	77	e Rosennock	GU	183	4820103	ne	2035	600	200	f	2440	405
li	78	sw Kleiner Rosennock	GU	183	4820103	e	1930	500	300	f	2400	470
	79	e Kleiner Rosennock	GU	183	4820103	se	2025	450	200	f	2361	336
 1i	80	w Zunderwand	GU	183	4920102	s	1950	150	200	f	2160	210
	81	Erlacher Bock	GU	183	4920102	sw	1930	400	200	f	2180	250
 	82	Oswalder Bock	GU	183	4920102	se	1925	150	150	f	2140	215
mo	1	n Kleiner Salzkofel	KR	181	4519101	ne	1880	400	300	f	2265	385
mo	2	nw Salzkofel	KR	181	4520102	nw	2000	200	150	f	2320	320
mo	3	w Hoher Polz	KR	181	4519100	w	2180	200	250	f	2320	200
mo	4	n Annaruhe	KR	181	4419101	337	2090	400	200	f	2502	412
mo	- 	ne Nassfeldtörl	KB	181	4419101	ne	2000	150	100	f	2302	150
mo	6	n Nassfeldtörl	KP	181	4419101	ne	2130	300	150	1 f	2410	260
mo	7	a Seebachtörl	VD KK	101	4419101	no	2130	250	200	I f	2390	160
mo	- /	re Seebachtörl	VD	101	4419101	ne	2100	200	200	I f	2340	260
mo	8	Ne Seebachion	VD	101	4419101	e	2210	400	200	I f	24/9	269
mo	9		KR VD	101	4419101	n	2040	200	100		2400	200
mo	10		KR VD	101	4419101	e	2200	200	100	1	2400	200
mo	11	e Dechant	KR VD	101	4419101	ne	2290	200	100	1	2580	290
mo	12	nw Kaltseetori	KR	181	4419100	nw	2360	200	100	1	2580	220
mo	13	e Gobnitztori	KR	181	4420102	ne	2240	250	300	Ť.	2613	3/3
mo	14	e Goßnitztorl	KR	181	4420102	ne	2300	300	100	1	2540	240
mo	15	e Hochalmsee	KR	181	4420102	w	2470	200	300	t	2660	190
mo	16	se Scheuchenkopf	KR	181	4420102	se	2480	300	200	<u>t</u>	2715	235
mo	17	s Striedenkopf	KR	181	4420102	ne	2590	250	150	1	2715	125
mo	18	se Striedenkopf	KR	181	4420102	s	2600	100	100	f	2749	149
mo	19	Penker Eisenalm	KR	181	4420102	se	2210	550	200	f	2639	429
mo	20	Penker Eisenalm	KR	181	4420102	S	2410	150	200	f	2585	175
mo	21	Penker Eisenalm	KR	181	4420102	se	2330	300	150	f	2585	255
mo	22	Penker Eisenalm	KR	181	4420103	S	2340	150	100	f	2620	280
mo	23	sw Trögersee	KR	181	4420103	se	2200	750	200	f	2688	488
mo	24	nw Trögersee	KR	181	4420103	se	2250	350	150	f	2688	438
mo	25	n Trögersee	KR	181	4420103	s	2350	250	150	f	2620	270
mo	26	e Trögersee	KR	181	4420103	s	2220	200	150	f	2480	260
mo	27	nw Mattlzehr	KR	181	4420103	se	2290	150	200	f	2562	272
mo	28	n Mattlzehr	KR	181	4420103	se	2220	400	150	f	2560	340
mo	29	n Mattlzehr	KR	181	4420103	S	2100	200	200	f	2540	440
mo	30	Tanzböden	KR	181	4420103	e	2220	900	400	f	2641	421
mo	31	se Polinik	KR	181	4420103	se	2460	300	150	f	2784	324
mo	32	e Tanzböden	KR	181	4420103	sw	2160	200	250	f	2462	302
mo	33	w Geistlacke	KR	181	4420103	sw	2200	250	100	f	2509	309
mo	34	n Geistlacke	KR	181	4420103	S	2240	300	250	f	2460	220
mo	35	w Kesselsee	KR	181	4420103	e	2270	100	150	f	2460	190
mo	36	se Kesselsee	KR	181	4520102	s	2050	450	200	f	2350	300
mo	37	ne Polinik	KR	181	4420101	e	2310	150	200	f	2656	346
mo	38	sw Polinik	KR	181	4420103	w	2270	350	100	f	2784	514
mo	39	Steinkar	KR	181	4420103	w	2150	450	300	f	2635	485
mo	40	w Raggascharte	KR	181	4420100	nw	2020	400	100	f	2420	400
mo	41	w Strieden	KR	181	4420102	nw	2200	300	100	f	2500	300
mo	42	w Strieden	KR	181	4420102	w	2220	250	200	f	2682	462

~							_						
[mo	43	w Scheuchenkopf	KR	181	4420102	sw	2540	200	150	i	2715	175
[mo	44	nw Gößnitztörl	KR	181	4420102	w	2240	600	150	f	2540	300
[mo	45	w Wöllatörl	KR	181	4419100	sw	2390	250	150	f	2613	223
	mo	46	s Feldsee	KR	181	4419100	n	2400	200	150	i	2565	165
	mo	47	sw Feldsee	KR	181	4419100	nw	2300	100	150	f	2510	210
	mo	48	e Weißenkopf	KR	180	4419100	e	2310	100	250	f	2452	142
Γ	mo	49	w Weißenkopf	KR	180	4419100	w	2140	300	400	f	2498	358
	mo	50	e Großer Griedelkopf	KR	180	4319101	e	2200	600	150	f	2659	459
	mo	51	ne Großer Griedelkopf	KR	180	4319101	n	2370	250	100	i	2610	240
	mo	52	ne Großer Griedelkopf	KR	180	4319101	e	2280	450	200	f	2594	314
	mo	53	e Kleiner Griedelkopf	KR	180	4319101	ne	2440	150	100	i	2565	125
	mo	54	n Kleiner Griedelkopf	KR	180	4320103	n	2360	150	150	i	2565	205
	mo	55	e Trögersee	KR	180	4320103	w	2140	150	150	f	2320	180
	mo	56	s Trögersee	KR	180	4320103	nw	2190	650	200	f	2474	284
E	mo	57	w Kleiner Griedelkopf	KR	180	4319101	w	2320	250	200	f	2565	245
Ľ	mo	58	ne Roter Beil	KR	180	4319101	ne	2370	250	150	i	2534	164
E	mo	59	nw Roter Beil	KR	180	4319101	nw	2340	200	150	f	2450	110
	mo	60	n Taubichl	KR	180	4319101	ne	2050	800	400	f	2462	412
E	mo	61	w Taubichl	KR	180	4319101	nw	2190	200	150	f	2432	242
Ŀ	mo	62	s Gippersee	KR	180	4319100	ne	2100	400	200	f	2504	404
	mo	63	w Gippersee	KR	180	4319100	e	2170	200	250	f	2541	371
E	mo	64	w Gippersee	KR	180	4319100	n	2220	150	200	f	2541	321
Ē	mo	65	e Ebeneck	KR	180	4319100	ne	2160	200	100	f	2340	180
F	mo	66	n Sandfeld	KR	180	4319100	sw	2160	200	100	f	2440	280
F	mo	67	w Moritzhorn	KR	180	4319100	sw	2310	350	150	f	2546	236
F	mo	68	Sandfeld	KR	180	4319100	nw	2110	750	200	f	2554	444
F	mo	69	Sandfeld	KR	180	4319100	n	2180	200	250	f	2554	374
F	mo	70	Sandfeld	KR	180	4319100	ne	2090	200	300	f	2320	230
F	mo	71	Sandfeld	KR	180	4319100	ne	2010	200	300	f	2269	259
F	mo	72	n Wildseetörl	KR	180	4319100	nw	2180	150	150	f	2340	160
F	mo	73	Zleinitzen	KR	180	4319100	n	2060	500	250	f	2439	379
F	mo	74	Zleinitzen	KR	180	4319100	ne	2140	300	150	f	2421	281
F	mo	75	se Lussensee	KR	180	4319100	ne	2230	150	150	f	2425	195
F	mo	76	w Lussensee	KR	180	4319100	ne	2180	200	150	f	2340	160
	mo	77	ne Straßboden	SC	180	4220100	e	2110	600	230	f	2416	306
F	mo	78	nw Straßboden	SC	180	4220100	ne	2290	200	120	f	2416	126
F	mo	79	s Großbohn	SC	180	4220100	se	2350	150	130	f	2520	170
F	mo	80	s Steinscharte	SC	180	4220100	e	2440	250	150	i	2774	334
F	mo	81	se Steinscharte	SC	180	4220100	se	2320	500	150	f	2774	454
F	mo	82	sw Granitzen	SC	180	4220100	s	2280	400	200	f	2520	240
F	mo	83	se Granitzen	SC	180	4220100	se	2090	650	200	f	2435	345
F	mo	84	ne Granitzen	SC	180	4220100	ne	2140	600	200	f	2435	295
F	mo	85	n Granitzen	SC	180	4220100	e	2280	200	300	f	2599	319
ł	mo	86	n Granitzen	SC	180	4220100	se	2340	150	150	f	2599	259
$\left \right $	mo	87	n Granitzen	SC	180	4220100	se	2240	350	100	f	2527	287
$\left \right $	mo	88	se Törlkonf	SC	180	4220100	se	2290	150	150	f	2527	237
\mathbf{F}	mo	89	e Törlkonf	SC	180	4220100	ne	2200	150	120	f	2527	327
$\left \right $	mo	90	nw Törlkopf	SC	180	4220100	nw	2310	150	250	f	2527	217
ŀ	mo	91	ne Steinscharte	SC	180	4220100	<u>n</u>	2430	200	180	i	2599	169
	mo	92	w Steinscharte	SC	180	4220100	n	2540	150	150	i	2774	234
ł	mo	93	w Steinscharte	SC	180	4220100	e	2560	250	100	i	2916	356
ŀ	mo	94	nw Seichenkonf	SC	179	4220100	n	2420	250	150	i	2888	468
ŀ	mo	95	se Perschitzscharte	SC	179	4120101	se	2640	250	100	i	3181	541
F	mo	96	Prititschkar	SC	179	4221102	se	2380	300	200	f	2798	418
F	mo	97	s Friedrichscharte	SC	179	4221102	se	2600	400	170	i	3090	490
						• -							

										_		
mo	98	n Ochsenkopf	SC	180	4221102	ne	2280	150	100	f	2610	330
mo	99	n Kreuzspitze	SC	180	4221102	е	2420	300	100	i	2925	505
mo	100	nw Kreuzspitze	SC	180	4221102	ne	2520	250	130	i	2925	405
mo	101	s Törlkopf	SC	180	4221102	n	2500	300	130	i	2855	355
mo	102	s Himmelwand	SC	180	4221102	S	2370	200	150	f	2620	250
mo	103	Lackneralm	SC	180	4121103	е	2140	250	350	f	2661	521
mo	104	Noßbergerhütte	SC	179	4121103	nw	2550	550	150	i	3000	450
mo	105	ne Kreuzkopf	SC	179	4121103	ne	2600	350	250	i	3103	503
mo	106	e Kögele	SC	179	4121103	e	2650	200	220	i	3030	380
mo	107	Inneres Kar	SC	179	4121101	sw	2750	200	150	i	3019	269
mo	108	Äußeres Kar	SC	179	4121101	e	2580	400	200	i	3019	439
mo	109	Äußeres Kar	SC	179	4121101	sw	2640	150	120	i	3080	440
mo	110	Innerkretschitz	SC	179	4221100	se	2780	350	180	i	3099	319
mo	111	Außerkretischitz	SC	153	4221100	se	2590	350	180	i	3018	428
mo	112	n Fleckenkopf	SC	154	4221100	ne	2150	450	250	f	2483	333
mo	113	Zopenitzen	SC	153	4221100	se	2480	200	200	f	2847	367
mo	114	Zopenitzen	SC	153	4221100	se	2390	250	200	f	2876	486
mo	115	Retschitz	SC	153	4221100	n	2090	550	200	f	2704	614
mo	116	ne Schildberg	SC	153	4221100	e	2360	150	100	f	2565	205
mo	117	nw Langtalköpfe	SC	153	4121101	nw	2200	300	250	f	2847	647
mo	118	nw Bretterscharte	SC	153	4121101	nw	2520	400	180	i	3001	481
mo	119	Seekampkar	SC	153	4121101	n	2380	250	200	i	2923	543
mo	120	nw Vorderes Seekampkar	SC	179	4121101	nw	2700	200	100	i	2986	286
mo	121	Beilkees	SC	179	4121101	w	2720	150	100	i	3099	379
mo	122	Beilkees	SC	179	4121101	nw	2600	250	200	i	3086	486
mo	123	Beilkees	SC	179	4121101	nw	2700	150	100	i	2880	180
mo	124	Hinteres Langtalkar	SC	179	4121101	nw	2520	600	300	i	3019	499
mo	125	nw Kögele	SC	179	4121101	nw	2570	250	250	i	2902	332
mo	126	w Kögele	SC	179	4121103	sw	2670	150	120	i	2902	232
mo	127	nw Großer Hornkopf	SC	179	4121103	nw	2580	250	120	i	2954	374
mo	128	Tramerkar	SC	179	4121100	ne	2560	300	300	i	3160	600
mo	129	Grubenkar	SC	153	4121100	e	2700	300	270	i	3007	307
mo	130	Grubenkar	SC	153	4121100	se	2760	200	130	i	3020	260
mo	131	sw Schulterkopf	SC	153	4121101	SW	2450	300	200	f	2619	169
mo	132	s Schulterkopf	SC	153	4121101	se	2400	200	100	f	2619	219
mo	133	Hinterm Rahn	SC	153	4121101	ne	2650	250	100	i	2909	259
mo	134	n Saukopf	SC	153	4122103	n	2480	200	230	i	2749	269
mo	135	w Kirchtagscharte	<u>SC</u>	153	4122103	w	2500	350	200	i	2749	249
mo	136	nw Zinketzkamp	SC	153	4121101	W	2600	150	150	i	2876	276
mo	137	sw Hochtor	GG	154	4222100	se	2490	300	200	f	2735	245
mo	138	e Hochtor	SO	154	4222100	SW	2450	350	200	f	2664	214
mo	139	Zirmsee	SO	154	4222103	nw	2520	350	200	i	2894	374
mo	140	w Kleinfleißkees	SO	154	4222103	SW	2360	350	250	f	2790	430
mo	141	w Sandkopf	SO	154	4222103	nw	2480	200	200	i	2920	440
mo	142	sw Sandkopf	SO	154	4221101	sw	2440	200	200	f	2812	372
mo	143	e Apriacheralm	SO	154	4221101	nw	2330	350	300	f	2731	401
mo	144	nw Stanziwurten	SO	154	4221101	W	2390	300	100	$\int f$	2620	230
mo	145	w Stanziwurten	SO	154	4221101	SW	2250	650	180	$\frac{f}{c}$	2500	250
mo	146	w Stanziwurten	SO	154	4221101	W	2440	150	300		2707	267
mo	147	w Stanziwurten	50	154	4221101	W	2200	800	270		2683	483
mo	148	ne Stanziwurten	<u>SO</u>	154	4221101	ne	2460	400	200	<u>t</u>	2707	247
mo	149	e Großsee	80	154	4321100	nw	2600	200	120		2910	310
mo	150		50	154	4321100	W	2460	350	300		2910	450
mo	151	sw weibseekopi	50	154	4321100	SW	2000	150	130		2910	500
1110	1102	sw weinseekopi	UG I	1134	14321100	I SW	12320	1 200	1 3 3 0	11	12210	1720

mo	153	w Schwarzseekopf	SO	154	4321100	w	2560	200	300	i	2825	265
mo	154	ne Stellkopf	SO	180	4321100	n	2560	300	200	i	2844	284
mo	155	Göritzertörl	SO	180	4321102	nw	2410	350	250	f	2604	194
mo	156	nw Makernispitz	SO	180	4321102	nw	2150	300	200	f	2644	494
mo	157	sw Makernispitz	SO	180	4321102	w	2350	250	100	f	2644	294
mo	158	nw Hirtenkopf	SO	180	4321102	w	2470	200	250	f	2602	132
mo	159	w Hirtenkopf	SO	180	4321102	w	2450	100	120	f	2606	156
mo	160	n Mull. Sadnig	SO	180	4321102	nw	2300	200	100	f	2569	269
mo	161	n Sadnig	SO	180	4321102	n	2570	100	150	i	2690	120
mo	162	w Sadnigscharte	SO	180	4321102	n	2260	400	350	f	2622	362
mo	163	n Aicheneggsee	SO	180	4321102	sw	2440	100	350	f	2622	182
mo	164	nw Sadnig	SO	180	4321102	nw	2580	150	180	i	2745	165
mo	165	e Aicheneggsee	SO	180	4321102	w	2430	550	400	f	2745	315
mo	166	n Stelenkopf	SO	180	4320100	n	2220	250	250	f	2626	406
mo	167	n Stelenkopf	SO	180	4320100	nw	2170	300	100	f	2590	420
mo	168	n Hohe Wiftl	SO	180	4320100	nw	2220	150	150	f	2590	370
mo	169	se Hohe Wiftl	SO	180	4320100	s	2340	200	150	f	2590	250
mo	170	se Stelenkopf	SO	180	4320100	s	2400	200	300	f	2590	190
mo	171	se Stelenkopf	SO	180	4320100	se	2370	100	150	f	2550	180
mo	172	sw Feldkopf	SO	180	4320100	sw	2510	200	150	f	2670	160
mo	173	sw Fürst	SO	180	4320100	sw	2220	500	200	f	2557	337
mo	174	s Kleiner Sadnig	SO	180	4320100	w	2420	200	130	f	2633	213
mo	175	e Schwarzsee	SO	180	4320101	w	2540	150	150	f	2664	124
mo	176	s Schwarzsee	SO	180	4320100	w	2440	200	300	f	2600	160
mo	177	n Maritschnig	SO	180	4320100	n	2140	350	200	f	2364	224
mo	178	n Maritschnig	SO	180	4320100	n	2140	350	150	f	2464	324
mo	179	n Maritschnig	SO	180	4320100	n	2200	200	100	f	2464	264
mo	180	ne Kruckenkopf	SO	180	4320100	ne	2080	250	150	f	2464	384
mo	181	n Kruckenkopf	SO	180	4320100	n	2080	400	350	f	2542	462
mo	182	ne Hohe Nase	SO	180	4320100	n	2270	200	100	f	2542	272
mo	183	n Hohe Nase	SO	180	4320100	w	2120	450	200	f	2542	422
mo	184	nw Hohe Nase	SO	180	4320100	nw	2170	350	150	f	2556	386
mo	185	s Grollerkopf	SO	180	4320100	s	2180	100	180	f	2420	240
mo	186	n Zellinkopf	SO	180	4320100	n	2250	150	300	f	2595	345
mo	187	e Zellinkopf	SO	180	4320100	se	2300	150	100	f	2540	240
mo	188	Klenitzen	SO	180	4320101	ne	2090	250	200	f	2356	266
mo	189	Klenitzen	SO	180	4320101	ne	2150	200	250	f	2356	206
mo	190	e Klenitzentörl	SO	180	4320101	e	2350	150	200	f	2550	200
mo	191	s Ochsenkopf	SO	180	4320101	sw	2240	250	300	f	2536	296
mo	192	e Ochsenkopf	SO	180	4320101	e	2150	350	100	f	2500	350
mo	193	n Ochsenkopf	SO	180	4320101	ne	2290	200	300	f	2536	246
mo	194	e Kreuzeck	SO	180	4320101	e	2470	250	120	f	2656	186
mo	195	s Klenitzen	so	180	4320101	s	2220	350	500	f	2440	220
mo	196	e Klenitzen	so	180	4320101	s	2200	150	150	f	2355	155
mo	197	Im Winkel	SO	180	4321103	ne	2030	400	170	f	2440	410
mo	198	se Hirtenkopf	SO	180	4321102	se	2400	250	100	f	2606	206
mo	199	se Hirtenkopf	SO	180	4321102	s	2240	100	250	f	2400	160
mo	200	e Makernispitz	SO	180	4321102	e	2350	250	150	f	2644	294
mo	$\frac{200}{201}$	e Rote Wand	SO	180	4321100	e	2530	200	150	i	2855	325
mo	202	s Sandfeldkonf	SO	180	4321101	s	2610	150	100	i	2919	309
mo	203	se Saustellscharte	so	180	4321101	s	2420	200	150	f	2610	190
mo	2.04	se Saustellscharte	SO	180	4321101	s	2340	300	200	f	2610	270
mo	205	ne Saustellscharte	SO	180	4321101	nw	2440	200	150	i	2617	177
mo	206	w Schwarzsee	SO	154	4321101	e	2520	200	300	f	2825	305
mo	207	Astromkar	SO	180	4321101	sw	2100	450	140	f	2640	540
1	1					+						·

mo	208	Astromkar	SO	180	4421100	w	2340	200	150	i	2720	380
mo	209	Astromkar	SO	180	4421100	nw	2400	200	250	i	2780	380
mo	210	Oscheniksee	SO	181	4421102	nw	2400	150	150	i	2834	434
mo	211	e Schwanspitze	SO	181	4421102	se	2240	300	150	f	2684	444
mo	212	s Schusterriegl	SO	181	4421102	S	1990	400	150	f	2834	844
mo	213	e Böseck	SO	181	4421102	e	2390	300	100	i	2834	444
mo	214	Obere Hütten	SO	181	4421102	w	1940	250	250	f	2498	558
mo	215	w Zedölnik	SO	181	4421100	n	2340	250	300	i	2800	460
mo	216	n Astromspitze	SO	180	4421100	n	2300	250	120	i	2650	350
mo	217	e Feldseekopf	SO	154	4421100	ne	2310	350	250	f	2864	554
mo	218	se Ulschartl	AH	155	4421100	s	2340	100	150	f	2540	200
mo	219	sw Romatespitze	AH	155	4421100	s	2380	200	130	f	2640	260
mo	220	s Kleines Woisgenkar	AH	155	4422102	s	2300	300	120	f	2559	259
mo	221	s Romatewand	AH	155	4421101	S	2170	400	250	f	2630	460
mo	222	se Romatewand	AH	155	4421101	se	2200	200	200	f	2640	440
mo	223	Pleschischg	AH	155	4522102	w	2460	250	300	i	2788	328
mo	224	Pleschischg	AH	155	4521100	w	2080	500	250	f	2788	708
mo	225	Schafkar	AH	155	4521100	s	2290	400	150	f	2550	260
mo	226	e Cellerhütte	AH	155	4521101	s	2260	150	170	f	2881	621
mo	227	Hinteres Kar	AH	155	4521101	sw	2320	150	100	f	2901	581
mo	228	Kärl	AH	155	4521101	s	2260	400	300	f	2901	641
mo	229	Hinteres Leitnerkar	AH	155	4521100	n	2440	250	120	i	2708	268
mo	230	Hinteres Leitnerkar	AH	155	4521100	n	2420	200	150	i	2702	282
mo	231	Vorderes Leitnerkar	AH	155	4521100	n	2140	650	180	i	2915	775
mo	232	Maresenkar	AH	181	4521100	sw	2330	600	280	f	2915	585
mo	233	Maresenkar	AH	155	4521100	s	2460	250	150	f	2736	276
mo	234	e Maresenkar	AH	181	4521100	s	2220	400	150	f	2736	516
mo	235	Großfeld	AH	181	4521100	s	2380	250	130	f	2708	328
mo	236	nw Schmidhaus	AH	181	4521100	s	2390	350	150	f	2788	398
mo	237	n Schmidhaus	AH	181	4521101	s	2590	250	140	i	2828	238
mo	238	e Dösenersee	AH	181	4521101	nw	2340	900	250	i	2899	559
mo	239	s Dösenersee	AH	181	4521101	n	2270	350	600	i	2750	480
mo	240	se Ochladinspitze	AH	181	4521103	s	2390	150	130	f	2750	360
mo	241	s Ebeneck	AH	181	4521103	sw	2570	200	100	i	2899	329
mo	242	w Tristen	AH	181	4521103	nw	2530	250	200	i	2929	399
mo	243	n Kesselegg	AH	181	4521103	nw	2220	550	200	i	2759	539
mo	244	Steinstell	AH	181	4521103	s	2260	350	140	f	2691	431
mo	245	Ödes Kar	AH	181	4521103	se	2290	600	250	f	2706	416
mo	246	s Kesselegg	AH	181	4521103	se	2160	350	120	f	2759	599
mo	247	s Tristen	AH	181	4521103	s	2620	300	130	i	2929	309
mo	248	s Gamolnigspitze	AH	181	4521103	s	2440	200	150	f	2788	348
mo	249	se Zwenberger Törl	AH	181	4521103	se	2380	400	220	f	2769	389
mo	250	e Zwenberger Törl	AH	181	4521103	sw	2660	150	100	i	2876	216
mo	251	e Hochalmsee	AH	182	4621102	w	2430	400	170	i	2872	442
mo	252	s Großer Stapnik	AH	182	4621102	s	2480	350	350	f	2872	392
mo	253	n Schoberspitze	AH	182	4620100	nw	2220	400	150	i	2573	353
mo	254	e Kammwand	AH	182	4620100	e	2570	100	150	i	2753	183
mo	255	e Kammwand	AH	182	4620100	se	2490	200	100	f	2770	280
mo	256	se Riedbock	AH	182	4620100	e	2540	250	350	i	2770	230
mo	257	sw Radlmauer	AH	182	4620100	sw	2520	150	300	f	2720	200
mo	258	ne Hochkedl	AH	182	4620100	n	2380	150	100	i	2662	282
mo	259	s Hochkedl	AH	182	4620100	S	2280	200	150	f	2558	278
mo	260	se Hochkedl	AH	182	4620100	sw	2400	150	150	f	2662	262
mo	261	s Kleine Leier	AH	182	4620100	w	2300	250	350	f	2560	260
mo	262	nw Sonnblick	AH	182	4620100	nw	2290	200	250	i	2515	225

mu	1	ne Zirbitzkogel	SE	160	5522100	ne	1960	300	300	f	2376	416
mu	2	n Zirbitzkogel	SE	160	5522100	n	2090	250	150	f	2396	306
mu	3	n Lindersee	SE	160	5522100	se	1950	400	500	f	2240	290
mu	4	ne Scharfes Eck	SE	160	5522100	n	2060	150	200	f	2320	260
mu	5	nw Scharfes Eck	SE	160	5522100	ne	2040	300	300	f	2291	251
mu	6	Ochsenlacke	SE	160	5522100	ne	2040	100	200	f	2291	251
mu	7	s Erslstand	SE	160	5522100	se	1930	250	200	f	2122	192
mu	8	s Zelinsee	GU	184	5020100	n	1890	150	150	f	2120	230
mu	9	sw Zelinsee	GU	184	5020101	ne	1900	250	200	f	2140	240
mu	10	Schwarzsee	GU	184	5020101	n	1880	600	250	f	2190	310
mu	11	ne Lattersteighöhe	GU	184	5020101	n	1980	150	150	f	2264	284
mu	12	e Rapitzsattel	GU	184	5020101	ne	1980	150	100	f	2140	160
mu	13	e Grünbühel	GU	184	5021101	ne	1950	250	350	f	2172	222
mu	14	se Schafwände	GU	158	5021101	se	1940	200	200	f	2190	250
mu	15	Karlboden	GU	158	5021101	e	1840	250	200	f	2198	358
mu	16	nw Wintertalernock	GU	184	5021103	nw	2120	150	100	f	2404	284
mu	17	nw Wintertalernock	GU	184	5021103	n	2020	450	200	f	2404	384
mu	18	se Eisenhut	GU	184	5021103	ne	2015	250	300	f	2333	318
mu	19	se Stangnock	GU	183	4920101	e	1980	350	300	f	2316	336
mu	20	e Stangnock	GU	183	4920101	e	1940	100	200	f	2316	376
mu	21	n Stangnock	GU	183	4929103	ne	1935	400	300	f	2316	381
mu	22	e Karlnock	GU	183	4921102	ne	2090	250	250	f	2300	210
mu	23	e Königstuhl	GU	183	4921103	e	2040	250	300	f	2250	210
mu	24	e Rosaninscharte	GU	183	4921103	e	2050	250	150	f	2240	190
mu	2.5	se Mühlbacher Nock	GU	183	4921103	s	2000	350	200	f	2273	273
mu	26	sw Werchzirbenseen	GU	183	4921103	sw	1890	150	350	f	2050	160
mu	27	se Mühlbacher Nock	GU	183	4921103	s	2040	400	200	f	2280	240
mu	28	e Frauennock	GU	183	4921103	e	2050	250	200	f	2240	190
mu	29	sw Reißeck	GU	183	4921103	s	2060	200	150	f	2240	180
mu	30	e Reißeck	GU	184	4921103	e	1940	450	200	f	2305	365
mu	31	s Kilnnrein	GU	184	4921103	s	2040	550	250	f	2380	340
mu	32	Schönfeld	GU	184	4921101	ne	2040	200	150	f	2320	280
mu	32	Schönfeld	GU	184	4921101	se	2110	200	250	f	2408	200
mu	34	nw Frauennock	GU	183	4921103	nw	1840	350	250	f	2270	430
mu	35	w Frauennock	GU	183	4921103	nw	2000	100	200	f	2270	260
mu	36	n Mühlbacher Nock	GU	183	4921103	n	2000	750	600	f	2280	270
mu	37	Kühkar	GU	183	4921103	ne	2010	150	150	f	2200	190
mu	38	s Ochsenriegel	GU	183	4921103	ne	2000	150	150	f	2190	90
mu	30	ne Ochsenriegel	GU	183	4921103	ne	1050	600	200	f	2190	332
mu	40	e Schilchernock	GU	183	4921101		2130	150	150	f	2202	140
mu	40	se Bärennock	GU	183	4921101	Se C	2080	100	200	f	2270	154
mu	42	ne Bärennock	GU	157	4921101	ne	2000	150	200	f	2180	150
mu	13	s Kleiner Königstuhl	GU	157	4921101		2030	450	150	f	2254	174
mu	43	sw Feldernock	GU	157	4921101	SU	1920	300	100	f	2234	320
mu	44	nw Feldernock	GU	157	4921101	n	1080	350	150	f	2240	277
mu	45	n Kleiner Königstuhl	GU	157	4921101	$\frac{n}{n}$	1970	200	400	1 f	2254	284
mu	40	se Mühlhauserhöhe	GU	157	4921101		2020	300	250	f	2234	194
mu	4/	ne Mühlhauserhöhe	GU	157	4922100	nw	1900	250	200	f	2140	240
mu	10	Wirnshergeralm	GU	182	4921100	n	1080	100	100	f	2050	70
m	50	winiourgerann		157	4021100	 	1960	100	150	f	2030	150
mu	50	ne Anderlesse	GU	182	4821100	n	10/5	150	200	f	2140	105
mu	51	e Schwarzward	CTT	157	4821102	 	2040	200	200	1 f	22140	174
mu	52	ne Schwarzwand	GU	157	4821101	n	2040	150	100	f	2150	150
mu	55		GU	157	4821101	 	2000	200	200	f	2160	160
mu	55	Atzenherger See	GU	157	4821101	n	2000	100	200	f	2160	140
1	1 22		1 30	1 * 2 /	1.061101	1 **	12020	1 * 7 7	, - ~~	<u>۰</u>	1-100	1 * ' '

mu	56	Wengerkar	AH	156	4722103	se	1930	450	130	f	2220	290
mu	57	Kegeleben	AH	156	4722100	n	1950	400	180	f	2657	707
mu	58	nw Silbereck	AH	156	4622101	nw	2490	150	200	i	2804	314
mu	59	Rotgüldenkees	AH	156	4622101	nw	2380	400	200	i	2852	472
mu	60	Schloßboden	AH	156	4622100	w	2240	300	400	f	2681	441
mu	61	ne Muritzenkees	AH	156	4622100	nw	2480	250	400	i	2647	167
mu	62	n Muritzenkees	AH	156	4622100	n	2340	350	350	i	2900	560
mu	63	Oberer Schwarzsee	AH	156	4622100	e	2340	150	200	f	2661	321
mu	64	ne Frauennock	AH	156	4623102	nw	2400	200	300	i	2572	172
mu	65	n Frauennock	AH	156	4623102	n	2360	250	400	i	2678	318
mu	66	w Schmalzscharte	AH	156	4622100	n	2400	200	120	i	2661	261
mu	67	ne Dolenzberg	RT	156	4723102	ne	2040	200	150	f	2390	350
mu	68	Wastalalm	RT	156	4723102	n	1980	200	150	f	2390	410
mu	69	In der Hölle	RT	156	4623101	n	1990	500	200	f	2600	610
mu	70	Ödenkar	RT	156	4623101	n	2040	250	150	f	2540	500
mu	71	n Rothenwändersee	RT	156	4623101	e	1890	400	200	f	2240	350
mu	72	s Permuthwand	RT	156	4624103	s	2010	250	250	f	2479	469
mu	73	se Permuthwand	RT	156	4624103	s	2020	350	200	f	2375	355
mu	74	n Zwillingwand	RT	156	4623101	nw	1990	250	200	f	2518	528
mu	75	se Zeppspitze	RT	156	4723102	s	2160	350	250	f	2459	299
mu	76	s Weißeneck	RT	156	4723102	se	2170	200	250	f	2550	380
mu	77	Passeggeralm	RT	157	4823102	n	2000	200	250		2347	347
mu	78	Passeggeralm	RT	157	4823102	e	2020	300	200	f	2366	346
mu	79	Holzeralm	RT	157	4823103	ne	1950	700	300	f	2360	410
mu	80	Holzeralm	RT	157	4823103	e	2070	150	250	f	2288	218
mu	81	e Lapernigspitze	RT	157	4823100	ne	1890	250	150	f	2369	479
mu	82	ne Treberlingspitze	RT	156	4723101	nw	1800	200	300	f	2083	283
mu	83	ne Grubachspitze	RT	156	4723101	n	2020	200	250	f	2430	410
mu	84	ne Kämnen	RT	156	4723101	e	1960	200	150	f	2260	300
mu	85	n Kämnen	RT	156	4723101	n	2020	200	300	f	2320	300
mu	86	n Kämpen	RT	156	4723100	n	2080	300	200	f	2320	240
mu	87	e Heißenspitze		156	4723100	ne	1980	200	150	f	2288	308
mu	88	se Stampferwand	RT	156	4724102	e	2060	250	250	f	2342	282
mu	89	Windsfeld	RT	156	4724102	SW	2080	100	300	f	2252	172
mu	90	Zinnerkar	RT	156	4724102	SP	2000	250	150	f	2252	320
mu	91	Zehnerkar	RT	156	4724102	SW	1880	200	200	f	2361	481
mu	92	Mittereckalm		156	4724103	6	1930	450	500	f	2361	431
mu	03	sw Gamskarlsnitze	RT	156	4724103	SW	1950	250	250	f	2411	461
mu	01	s Gamskarlspitze	ST	157	4724103	6	2100	200	100	f	2411	311
mu	05	e Gurnitscheck		157	4824102	SP SP	1950	200	250	f	2300	350
mu	96	Schönalm	ST	157	4824102	n	1900	600	250	f	2300	415
mu	07	Schönalm	ST	157	4824102	ne	1960	350	250	f	2400	440
mu	08	s Oberer Wirnitschsee	ST	157	4824102	ne	2090	150	150	1 f	2400	238
mu	00	Unteres Tauernkar		157	4824102	ne	1940	250	150	$\frac{1}{f}$	2320	359
mu	100	se Tscheibitschsee	ST	157	4824102	n	1910	250	200	f	2340	130
mu	100	e Gamskarlsnitze		127	4824102		1910	400	200	1 f	2411	450
mu	101	Peinkar		127	4824102	CIV.	1850	800	200	1 f	2411	563
mu	102	Poiskarl		127	4824102	SW	2160	200	200	1 f	2415	300
mu	103	Fngelkor		127	4824100	6 (17)	2060	300	150	1 f	2400	403
mu	104	Knappenkar	<u>ст</u>	127	4024101	SW SW	2000	200	150	1 F	2403	240
mu	105	Knannankar	<u>т</u>	127	4824101	SW CTT	2200	400	150		2320	427
mu	107	Talkenkarl		127	4824101	n sw	2110	250	100		25/2	122
mu	107	re Zechnerkorsnitze	<u>ст</u>	157	4824101	<u> </u>	2000	650	200	1 F	2/57	367
mu	100	se Hundstein		157	482/102		2070	300	200	f I	2500	430
mu	110	se Hundstein	<u>т</u>	157	4824102	60	2010	300	150	1 F	2500	534
jiiiu	LTTA		1 01	110/	17047103	1 30	12000	1 200	1 100	L T	12014	1254

mu	111	ne Hundstein	ST	157	4824103	se	2160	300	150	f	2600	440
mu	112	w Lignitzsee	ST	127	4824103	se	2020	400	150	f	2477	457
mu	113	n Gensgitsch	ST	157	4924102	se	2110	250	100	f	2360	250
mu	114	s Ötschenriegel	ST	157	4824103	e	2070	250	150	f	2563	493
mu	115	n Ötschenriegel	ST	157	4824103	n	1960	300	400	f	2563	603
mu	116	Hafensteinkar	ST	127	4824101	e	2160	250	150	f	2481	321
mu	117	se Landwierseehütte	ST	127	4824101	n	1950	250	150	f	2320	370
mu	118	n Landwierseehütte	ST	127	4824101	s	2110	150	300	f	2360	250
mu	119	n Piendlsee	ST	157	4924102	s	2050	300	200	f	2740	690
mu	120	se Piendlsee	ST	157	4924102	sw	2100	200	250	f	2600	500
mu	121	ne Gummaberg	ST	157	4924102	se	1960	700	250	f	2540	580
mu	122	nw Schneegrube	ST	157	4924102	se	2140	500	200	f	2646	506
mu	123	n Schneegrube	ST	157	4924102	s	1990	150	250	f	2463	473
mu	124	Pöllerkarl	ST	127	4924101	s	2200	300	250	f	2601	401
mu	125	Lungauer Klaffersee	ST	127	4924101	se	2200	250	450	f	2500	300
mu	126	nw Kaiserscharte	ST	127	4924101	w	2190	350	150	f	2576	386
mu	127	nw Deichselspitze	ST	127	4924101	nw	2060	250	300	f	2684	624
mu	128	n Große Barbaraspitze	ST	158	4924103	n	2210	100	150	i	2726	516
mu	129	n Große Barbaraspitze	ST	158	4924103	ne	1980	250	200	f	2573	593
mu	130	nw Roteck	ST	158	4924103	nw	2460	100	150	i	2742	282
mu	131	sw Lindlsee	ST	158	4924103	ne	2090	200	300	f	2405	315
mu	132	Stierkar	ST	158	4924103	sw	2150	250	150	f	2505	355
mu	132	Preberkessel	ST	158	4924103	s	2070	350	200	f	2660	590
mu	134	nw Rantensee	ST	128	5024102	ne	2060	2.50	150	f	2340	280
mu	135	sw Rantentörl	ST	128	5024100	e	2100	200	150	f	2387	287
mu	136	sw Predigtstuhl	ST	128	5024100	sw	2140	300	250	f	2472	332
mu	137	w Kircheleck	ST	128	5024102	w	2100	250	200	f	2380	280
mu	138	w Kircheleck	ST	158	5024102	nw	2070	150	250	f	2360	290
mu	130		ST	158	5024102	SP	2160	200	200	f	2360	200
mu	140	Mitterkarsee	ST	158	5024102	6	2150	350	350	f	2300	260
mu	140	Gamsleiten	ST	158	5024102	SW	1980	700	200	f	2414	440
mu	141 142	<u>e Schafsitz</u>	ST	158	5024102	50	1940	350	250	f	2720	280
mu	142	ne Dockneralm	ST	158	5024103	ne	1980	200	250	f	2357	377
mu	143	Gartleralm	ST ST	158	5024103		1880	900	450	f	2337	563
mu	144	ne Hikarscharte	ST	158	5024103		2010	400	300	f	2445	410
mu	145	Hubenbauernalm	ST	158	5024103		1000	400	650	f	2420	580
mu	140	Hubenbauernalm	ST ST	158	5024103		1730	550	350	f	2405	600
mu	147	e Kircheleck	ST ST	158	5024102	50	2180	250	200	f	2414	234
mu	140	ne Grübelsee		128	5024102	SC	1050	450	200	1 f	2414	254
mu	147	s Paulaitack		120	5024101	SW	2050	450	200	I f	2300	374
mu	150	Grafonalm		120	5024101	5	1800	200	150	I f	2424	200
mu	151	a Schimpelscharte		120	5024101	50	2050	600	250	1 f	2200	200
mu	152	Gomekorl		120	5024101		2030	400	250	1 f	2420	250
mu	155	Saucfansaa		120	5124101	5 DW	1080	500	250	1 f	2420	320
mu	154	Sauotensee		120	5124100	nw	1980	200	400	1 f	2300	520
mu	155	a Trübaak		120	5124100	nw	2000	450	200	1 f	2405	267
mu	150			150	5124102	ne	2000	430	200		2307	200
mu	15/	no Triback	ы ст	150	5124102		1020	400	250	L F	2400	550
mu	158	Nahallian	101 0T	150	5124102	se	2020	250	250		2400	550
mu	159	INCOCIKAT	101 0T	150	5124102		2030	330	200		2500	170
mu	160	se Dachieiteck		158	5124102	e	2030	400	300	1	2300	4/0
mu	161		10	128	5124102	ne	1000	200	230	1 1	2480	510
mu	162	e Eisennut	101	158	5124102	e m	1050	350	150	1 1	2430	3/0
mu	163	ne Eisennut		138	5124102	ne	1010	200	150	1	2130	500
mu	164	ne Eisennut		158	5124102		1010	250	150	1 7	2430	50/
mu	102	n Eisennut	101	1728	5124102	ne	10/0	450	330	l t	12430	1200

mu	166	n Arkogel	ST	158	5124102	e	1930	400	150	f	2451	521
mu	167	se Schöderkogel	ST	128	5124100	ne	2320	200	150	i	2500	180
mu	168	s Sauofen	ST	128	5124100	e	2160	250	150	f	2415	255
mu	169	Schilling	ST	128	5124100	se	1770	950	350	f	2380	610
mu	170	Gschrött	ST	128	5124100	se	2060	300	200	f	2433	373
mu	171	Gschrött	ST	128	5124100	sw	1960	150	350	f	2433	473
mu	172	e Narrenspitze	WT	129	5124101	e	1820	250	250	f	2336	516
mu	173	sw Hochstubofen	WT	129	5124101	s	1940	200	250	f	2385	445
mu	174	Reineben	WT	159	5224102	s	1930	450	250	f	2475	545
mu	175	se Rettelkirchspitz	WT	129	5224100	s	1990	500	300	f	2475	485
mu	176	nw Rechengrat	WT	129	5224100	nw	1860	500	150	f	2140	280
mu	177	e Rettelkirchspitz	WT	129	5224100	n	1980	400	350	f	2390	410
mu	178	nw Rettelkirchspitz	WT	129	5124101	ne	1960	250	400	f	2360	400
mu	179	e Melleck	WT	129	5224100	ne	2040	300	100	f	2365	325
mu	180	ne Melleck	WT	129	5224100	ne	2050	250	100	f	2365	315
mu	181	s Talkenschrein	WT	129	5224100	w	2120	250	200	f	2400	280
mu	182	e Stangeneck	WT	129	5224101	e	1880	2.50	150	f	2291	411
mu	183	ne Stangeneck	WT	129	5224100	n	1840	200	350	f	2291	451
mu	184	e Bernkadlereck	WT	129	5224100	ne	1720	1100	350	f	2262	542
mu	185	n Bernkadlereck	WT	129	5224100	nw	1860	250	150	f	2262	402
mu	186	nw Bernkadlereck	WT	129	5224100	n	1880	250	500	f	2150	270
mu	187	Zagelsee	WT	129	5225102	ne	2010	350	250	f	2130	413
mu	188	ne Hasenlacken	WT	129	5225102	w	1980	400	200	f	2425	343
mu	180	se Hasenlacken	WT	120	5225103	W	1980	150	100	f	2323	220
mu	100	sw Hasenlacken	WT	120	5225103	n n	1950	150	200	f	2100	150
mu	101	Gastrumerhöhe	WT	120	5223103		1950	250	150	f	2100	100
mu	191		WT	129	5224101	<u> </u>	2020	200	100	1 f	2200	400
mu	192	e Ostoder		129	5224101	11	2020	150	200	I f	2313	293
mu	193		WT	129	5225102	ne	1050	250	200		2310	220
mu	194			129	5225105	ne	1930	350	300	1 	2318	308
mu	195			129	5225105	S	1920	750	450	1 6	2140	220
mu	196	s Vorderer Gigler		129	5225103	e	1/80	/50	300	I	2320	540
mu	19/	nw Hinterer Gigler		129	5225103	nw	1940	150	200	I	2294	354
mu	198	sw Glattjoch		129	5225103	e	1/50	250	200	t	2200	450
mu	199	Plattental		129	5324100	ne	1/10	600	300		2210	500
mu	200	Scharnitzalm		129	5325102	ne	1830	350	150	1 C	2250	420
mu	201	Weittal	WI	129	5325102	se	1820	150	350	t	2100	280
mu	202	n Großhansl	WT	129	5325102	n	1880	550	300	<u>t</u>	2260	380
mu	203	e Hohenwart	WT	129	5225103	n	1810	300	350	f	2140	330
mu	204	ne Hohenwart	WT	129	5225103	ne	1820	550	200	f	2300	480
mu	205	Karl	WT	129	5225101	n	1710	250	150	f	2000	290
mu	206	Tierkessel	WT	129	5225101	e	1820	250	100	f	1960	140
mu	207	Tierkessel	WT	129	5225101	e	1810	250	150	f	2000	190
mu	208	Schwabergeralm	WT	129	5225101	e	1820	450	350	f	2109	289
mu	209	ne Seitner Zinken	WT	129	5326102	e	1800	350	350	f	2164	364
mu	210	Tubaysee	WT	129	5326102	e	1900	350	400	f	2156	256
mu	211	Tubaysee	WT	130	5326103	e	1800	350	200	f	2156	356
mu	212	Auwinkel	WT	130	5326103	w	1750	150	200	f	2060	310
mu	213	n Schüttneralm	WT	130	5326103	s	1880	200	100	f	2132	252
mu	214	Gamskar	WT	130	5326103	e	1880	300	150	f	2132	252
mu	215	Pölskar	WT	130	5326103	e	1860	400	100	f	2132	272
mu	216	Geißrinksee	WT	130	5426100	sw	1710	400	200	f	2395	685
mu	217	Steinkar	WT	130	5426100	se	1680	550	200	f	2320	640
mu	218	se Triebener Törl	SK	130	5526102	sw	1800	300	600	f	2337	537
mu	219	w Rauchauftörl	SK	130	5526102	sw	1870	300	200	f	2337	467
mu	220	w Knaudachtörl	SK	130	5526102	w	1900	300	200	f	2060	160

mu	221	w Knaudachtörl	SK	130	5525100	nw	1790	450	250	f	2227	437
mu	222	Ochsenboden	SK	130	5525100	nw	1890	250	300	f	2280	390
mu	223	Ochsenboden	SK	130	5525100	n	1840	350	500	f	2280	440
mu	224	w Amachkogel	SK	130	5525100	s	1880	300	150	f	2258	378
mu	225	Krausen	SK	130	5525100	e	1980	200	250	f	2308	328
mu	226	Krausen	SK	130	5525100	se	1770	750	250	f	2308	538
mu	227	e Amachkogel	SK	130	5525100	ne	1840	500	400	f	2312	472
mu	228	Hühnersteige	SK	130	5525100	se	1810	600	650	f	2320	510
mu	229	e Hühnersteige	SK	130	5525100	sw	1880	200	200	f	2040	160
mu	230	se Hühnersteige	SK	130	5525100	se	1660	850	300	f	2320	660
mu	231	Krugsee	SK	130	5525100	w	1850	200	300	f	2047	197
mu	232	s Krugspitze	SK	130	5525100	s	1600	500	500	f	2047	447
mu	233	sw Gaaler Törl	SK	131	5525101	se	1780	250	150	f	2080	300
mu	234	sw Gaaler Törl	SK	131	5525101	s	1820	300	150	f	2080	260
mu	235	se Gaaler Törl	SK	131	5525101	sw	1850	150	150	f	2079	229
mu	236	w Tierscharte	SK	131	5525101	w	1760	200	200	f	2260	500
mu	237	Kuhalm	SK	131	5525103	sw	1970	150	250	f	2210	240
mu	238	Kuhalm	SK	131	5525103	s	1920	200	200	f	2210	290
mu	239	Ochsenalm	SK	131	5525103	w	1720	650	200	f	2240	520
mu	240	e Großer Ringkogel	SK	131	5525103	e	1720	1000	350	f	2277	557
mu	241	s Sundlsee	SK	131	5525103	ne	1920	200	550	f	2277	357
mu	242	w Sundlsee	SK	131	5525103	e	2030	150	200	f	2220	190
mu	243	nw Sundlsee	SK	131	5525103	se	2020	400	200	f	2300	280
mu	244	ne Sundlsee	SK	131	5525103	s	1950	150	150	f	2150	200
mu	245	ne Madlriegel	SK	131	5525103	e	1800	300	150	f	2120	320
mu	246	ne Pletzen	SK	131	5525101	ne	1860	550	200	f	2240	380
mu	247	nw Pletzen	SK	131	5525101	ne	1930	200	200	f	2220	290
mu	248	e Tierscharte	SK	131	5525101	e	1940	450	200	f	2210	270
mu	249	e Tierscharte	SK	131	5525101	se	1900	200	300	f	2260	360
mu	250	se Sonntagkogel	SK	131	5525101	e	1980	200	200	f	2343	363
mu	251	se Sonntagkogel	SK	131	5525101	s	1880	100	250	f	2080	200
mu	252	n Sonntagkogel	SK	131	5525101	ne	1840	200	200	f	2160	320
mu	253	n Gaaler Törl	SK	131	5525101	ne	1820	150	100	f	2080	260
mu	254	n Gaaler Törl	SK	131	5525101	e	1620	450	300	f	2124	504
mu	255	s Kettentörl	SK	131	5525100	se	1760	200	500	f	2080	320
mu	256	s Hahnenkamm	SK	131	5525101	e	1800	100	250	f	2080	280
mu	257	Donnerofen	SK	131	5525101	sw	1640	700	250	f	2180	540
mu	258	sw Liesingtörl	SK	131	5525101	s	1770	400	150	f	2180	410
mu	259	s Liesingtörl	SK	131	5525101	w	1760	350	100	f	2300	540
mu	260	Hölltal	SK	131	5525101	e	1690	150	500	f	2040	350
mu	261	Hölltal	SK	131	5525101	se	1840	1300	600	f	2417	577
mu	262	Dürrtal	SK	131	5625100	sw	1680	650	200	f	2416	736
mu	263	s Goldlacke	SK	131	5625101	e	1910	300	150	f	2220	310
mu	264	w Goldlacke	SK	131	5625101	e	1970	600	450	f	2397	427
mu	265	e Hämmerkogel	SK	131	5625101	n	1740	850	500	f	2253	513
mu	266	ne Hämmerkogel	SK	131	5625101	e	1900	400	100	f	2120	220
mu	267	ne Hämmerkogel	SK	131	5625101	se	1760	450	100	f	2040	280
mu	268	Zinkenkar	SK	131	5625101	n	1880	350	250	f	2300	420
mu	269	Gotstal	SK	131	5625101	ne	1600	1200	450	f	2397	797
mu	270	Gotstal	SK	131	5625100	se	1690	850	250	f	2127	437
mu	271	w Bärenwandspitze	SK	131	5625100	nw	1750	700	300	f	2127	377
mu	272	ne Brandstätterkogel	SK	131	5225100	ne	2000	200	300	f	2234	234
mu	273	ne Brandstätterkogel	SK	131	5625100	e	1680	1250	350	f	2234	554
mu	274	Brandstätterkar	SK	131	5625100	n	1700	1000	650	f	2200	500
mu	275	ne Hochreichart	SK	131	5625100	ne	1520	1400	1100	f	2416	896

	·			· · · · ·	i							
mu	276	Reichartkar	SK	131	5625100	ne	1870	450	400	f	2416	546
mu	277	n Hirschkarlgrat	SK	131	5625100	n	1710	700	250	f	2282	572
mu	278	Postleiten	SK	131	5625100	ne	1640	650	400	f	2200	560
mu	279	Hocheggkar	SK	131	5525101	ne	1820	250	150	f	2260	440
mu	280	Hocheggkar	SK	131	5526103	ne	1680	400	200	f	2260	580
mu	281	n Geierhaupt	SK	131	5526103	nw	1740	150	100	f	2417	677
mu	282	nw Geierhaupt	SK	131	5526103	n	1760	150	150	f	2417	657
mu	283	nw Geierhaupt	SK	131	5526103	ne	1860	350	250	f	2240	380
mu	284	se Kerschkern	SK	131	5526103	e	1930	400	300	f	2225	295
mu	285	Finsterliesing	SK	131	5526103	e	1600	450	500	f	2225	625
mu	286	ne Kerschkern	SK	131	5526103	n	1810	250	450	f	2225	415
mu	287	Steinkar	SK	131	5523103	ne	1720	600	350	f	2140	420
sa	1	nw Faulkogel	RT	156	4624102	nw	2220	150	200	i	2540	320
sa	2	w Faulkogel	RT	156	4624102	w	2050	100	150	f	2654	604
sa	3	Zederbergalm	RT	155	4523101	ne	1930	400	150	f	2359	429
sa	4	n Gamsköpfl	RT	155	4524103	nw	1950	150	2.50	f	2160	210
sa	5	nw Draugstein	RT	155	4523101	nw	1920	300	250	f	2359	439
sa	6	Kreekar	AH	155	4523103	nw	2090	200	300	f	2402	312
ca ca	7	w Muritzenscharte		156	4622100	SW	2280	150	100	f	2520	240
54	8	Marchkar		156	4622100	nw	2260	450	130	i	2630	370
54	0	Marchkar	ΔΗ	155	4522100	n	2080	200	150	f	2030	116
50	10	Arlscharte		155	4522101		2000	450	250	1 f	2320	207
Sa	10	Getäß		155	4522101	nw	2220	150	250	1	2427	177
sa	11	n Karkagal		155	4522101	nw	1020	150	230	1 f	24//	1//
sa	12			155	4525102	<u> </u>	1930	700	200	ſ	2088	158
sa	15			155	4525102	nw	2030	/00	300		2442	412
sa	14	Ниппегкаг	AH	155	4522100	sw	1900	600	250	I	2442	542
sa	15	n Heidentempel	AH	155	4523102	n	19/0	450	350	1 C	2315	345
sa	16	Frauenkar	AH	155	4423101	nw	2100	350	250	t	2423	323
sa	17	e Arlspitze	AH	125	4424101	e	1910	250	150	t	2180	270
sa	18	ne Austuhl	AH	125	4424101	ne	1840	200	150	f	2151	311
sa	19	se Windschnursee	AH	155	4422101	n	2200	300	200	1	2531	331
sa	20	Plattenkar	AH	155	4422101	nw	1860	250	100	f	2231	371
sa	21	Palfnerkar	AH	155	4422101	w	2180	400	280	f	2531	351
sa	22	Palfnerkar	AH	155	4422101	nw	2320	200	100	i	2540	220
sa	23	s Palfnerseekogel	AH	155	4422101	sw	2120	350	170	f	2540	420
sa	24	Hinteres Lainkar	AH	155	4422103	sw	2140	250	220	f	2428	288
sa	25	Hinteres Lainkar	AH	155	4422103	w	2300	300	170	i	2529	229
sa	26	s Hinteres Lainkar	AH	155	4422103	S	2280	200	130	f	2529	249
sa	27	n Korntauern	AH	155	4422103	s	2230	200	200	f	2481	251
sa	28	ne Korntauern	AH	155	4422103	nw	2370	250	130	i	2640	270
sa	29	n Gamskarlspitze	AH	155	4422103	nw	2280	850	500	i	2832	552
sa	30	ne Grasleitenkar	AH	155	4422103	n	1910	300	170	f	2377	467
sa	31	nw Grasleitenkar	AH	155	4422103	w	2200	250	180	f	2377	177
sa	32	w Roßkarkopf	AH	155	4422103	w	2300	150	200	i	2532	232
sa	33	w Roßkarkopf	AH	155	4422103	sw	2280	200	170	f	2532	252
sa	34	Höhkar	AH	155	4422103	w	2350	200	130	i	2709	359
sa	35	n Kleines Woisgenkar	AH	155	4422102	nw	2390	250	100	i	2708	318
sa	36	w Kreuzkogel	AH	155	4422102	nw	2460	300	180	i	2630	170
sa	37	Bockhartsee	SO	154	4322101	ne	1950	200	350	f	2529	579
sa	38	w Miesbichlscharte	SO	154	4322101	se	2240	150	150	f	2540	300
sa	39	w Miesbichlscharte	SO	154	4322101	s	2160	400	150	f	2512	352
sa	40	sw Stubnerkogel	SO	155	4422100	nw	1970	200	100	f	2220	250
sa	41	sw Stubnerkogel	SO	155	4422100	nw	1950	350	380	f	2350	400
sa	42	w Zittauer Tisch	SO	154	4422100	nw	2110	300	300	f	2390	280
sa	43	e Nachtkarwand	SO	154	4322101	e	2280	100	200	f	2400	120

sa	44	ne Mauskarkopf	SO	154	4323103	n	1990	500	200	f	2373	383
sa	45	n Mauskarkopf	SO	154	4323103	n	2170	200	130	f	2373	203
sa	46	ne Türchlwand	SO	154	4323103	n	2200	150	100	f	2488	288
sa	47	ne Hundskopf	SO	154	4323101	ne	2060	250	300	f	2404	344
sa	48	ne Kramkogel	SO	154	4323101	n	1960	200	100	f	2180	220
sa	49	ne Kramkogel	SO	154	4323101	ne	1960	250	150	f	2230	270
sa	50	sw Bernkogel	SO	154	4424102	nw	2050	200	150	f	2325	275
sa	51	n Kramkogel	SO	154	4323101	n	1980	350	150	f	2454	474
sa	52	w Rührkübl	SO	154	4323103	w	2240	300	200	f	2472	232
sa	53	nw Silberpfennig	SO	154	4322101	nw	2290	250	150	f	2524	234
sa	54	Seealm	SO	154	4322101	nw	1960	150	130	f	2190	230
sa	55	Filzenkar	SO	154	4322101	nw	2110	300	200	f	2350	240
sa	56	s Bockkarsee	SO	154	4223103	nw	2600	150	200	i	2796	196
sa	57	s Bockkarsee	SO	154	4223103	n	2420	300	150	i	2796	376
sa	58	e Hochtor	SO	154	4222100	nw	2350	250	500	f	2689	339
sa	59	e Hochtor	SO	154	4222100	ne	2300	150	250	f	2470	170
sa	60	e Edelweißspitze	GG	154	4223102	s	2310	400	200	f	2520	210
sa	61	Baumgartlkar	GG	154	4223102	e	2340	150	330	f	2572	232
sa	62	Baumgartlkar	GG	154	4223102	w	2270	200	450	f	2423	153
sa	63	ne Hirzkarkopf	GG	154	4223102	se	2230	200	100	f	2580	350
sa	64	ne Schwarzkopf	GG	154	4223100	ne	2480	300	180	i	2764	284
sa	65	n Schwarzkopf	GG	154	4223100	nw	2450	200	180	i	2764	314
sa	66	nw Schwarzkopf	GG	154	4223100	n	2350	200	200	i	2764	414
sa	67	Piffkühkar	GG	154	4223102	w	2300	250	250	f	2621	321
sa	68	Piffkühkar	GG	154	2423102	nw	2250	400	550	f	2621	371
sa	69	Roßkarl	GG	154	4223102	sw	2380	350	400	f	2621	241
sa	70	e Kendlkopf	GG	154	4223102	w	2290	2.50	100	f	2587	2.97
sa	71	n Edelweißspitze	GG	154	4223102	n	2350	200	130	f	2577	227
sa	72	w Grünsee	GR	153	4023102	ne	2440	200	250	i	2801	361
sa	73	w Grünsee	GR	153	4023102	se	2470	150	150	i	2669	199
sa	74	ne Magaiskopf	GR	153	4023100	e	2320	2.50	200	f	2636	316
sa	75	Rauchwiegen	GR	153	4023101	e	1780	200	200	f	2508	728
sa	76	w Teufelsmühle	GR	153	4023100	w	2040	200	200	f	2508	468
sa	77	w Teufelsmühle	GR	153	4023100	w	1970	150	150	f	2508	538
sa	78	Brünnlkar	GR	153	4023100	w	2120	250	250	f	2669	549
sa	79	se Gamskarhöhe	GR	152	4023100	e	2290	250	220	f	2671	381
sa	80	s Glanzsee	GR	152	4023100	ne	2350	200	180	i	2571	221
sa	81	w Glanzscharte	GR	152	4023100	w	2100	500	300	f	2571	471
sa	82	w Glanzscharte	GR	152	3923101	w	1950	400	350	f	2571	621
sa	83	s Glanzkopf	GR	152	4023100	w	2170	300	220	f	2555	385
sa	84	e Heidnische Kirche	GR	152	3923101	w	2000	300	250	f	2555	555
sa	85	nw Gamskarhöhe	GR	152	4023100	sw	2220	300	200	f	2555	335
sa	86	nw Gamskarhöhe	GR	152	4023100	w	2180	400	170	f	2539	359
sa	87	sw Gamskarhöhe	GR	152	4023102	w	2180	200	150	f	2671	491
sa	88	e Schwarze Lacke	GR	152	4023102	w	2390	250	200	<u>i</u>	2615	225
sa	89	ne Amertaler Hütte	GR	152	4023102	nw	2400	250	200	i	2898	498
sa	90	n Amertaler Hütte	GR	152	4023102	nw	2560	350	150	i	2841	281
50	91	nw Großes Schrankeck	GR	152	3923101	nw	2020	300	350	f	2395	375
sa	92	sw Großes Schrankeck	GR	152	3923101	w	2180	2.00	170	f	2380	2.00
sa	93	sw Großes Schrankeck	GR	152	3923101	nw	2200	250	350	f	2425	225
sa	94	Roßalmkar	VE	152	3924102	sw	2090	300	180	f	2513	423
sa	95	Roßalmkar	VE	152	3924102	nw	1950	300	2.50	f	2340	390
sa	96	Lachhochalm	VE	152	3924102	sw	2000	350	230	f	2340	340
sa	97	n Steinkarl	VE	152	3924102	w	2150	300	450	f	2400	250
sa	98	Steinkarl	VE	152	3924102	nw	2230	200	170	f	2468	238
				· ·	-	• • • • •						

-												
sa	99	sw Steinkarl	VE	152	3924102	nw	2250	300	150	f	2630	380
sa	100	Tauernfleck	VE	152	3923102	w	2360	650	300	i	2989	629
sa	101	w Abretterkopf	VE	152	3923102	w	2440	450	450	i	2870	430
sa	102	Schneegrube	VE	152	3824103	n	2100	450	200	f	2800	700
sa	103	e Schafkopf	VE	152	3824103	e	2130	120	120	f	2516	386
sa	104	Karscharte	VE	152	3824103	s	2190	100	130	f	2348	158
sa	105	ne Karsee	VE	152	3824103	nw	1990	350	100	f	2348	358
sa	106	e Karsee	VE	152	3824103	w	2170	100	400	f	2348	178
sa	107	e Thüringerhütte	VE	152	3823101	w	2510	100	100	i	3022	512
sa	108	e Thüringerhütte	VE	152	3823101	w	2280	400	150	f	3022	742
sa	109	Hochflach	VE	151	3823100	se	2400	200	150	i	2774	374
sa	110	nw Frühnaglkopf	VE	151	3824102	ne	2430	250	150	i	2730	300
sa	111	Leutachkopf	VE	151	3824102	nw	2130	400	120	f	2441	311
sa	112	Törlbirg	VE	152	3823102	w	2600	200	150	i	3064	464
sa	113	ne Wartkopf	VE	151	3823100	se	2390	200	250	f	2640	250
sa	114	Steinkar	VE	151	3823102	w	2470	350	150	i	3291	821
sa	115	Kleines Jaidbachkees	VE	151	3723103	n	2400	300	150	i	2756	356
sa	116	Kleines Jaidbachkees	VE	151	3723103	nw	2280	500	300	i	2756	476
sa	117	nw Seebachalm	VE	151	3723101	s	2230	200	200	f	2460	230
sa	118	Kleefelder	VE	151	3723101	se	2280	200	150	f	2619	339
sa	119	n Hopffeldkar	VE	151	3723101	w	2200	150	350	i	2349	149
sa	120	n Hopffeldkar	VE	151	3723101	n	2290	400	270	i	2630	340
sa	121	Sulzauer Rinderkar	VE	151	3724103	se	1700	200	250	f	2087	387
sa	122	w Akogel	VE	151	3724103	n	1800	300	220	f	2125	325
sa	123	sw Akogel	VE	151	3724103	n	1850	250	250	f	2200	350
sa	124	Rinderkarsee	VE	151	3723100	w	2280	100	250	f	2416	136
sa	125	n Hütteltalkogel	VE	151	3723100	w	2570	150	400	i	2786	216
sa	126	n Hütteltalkogel	VE	151	3723100	n	2500	300	150	i	2962	462
sa	127	Krimml Rinderkar	VE	151	3724102	n	2180	600	200	_f	2700	520
sa	128	Weiglkar	VE	151	3723102	w	2440	600	230	i	2850	410
sa	129	ne Birnlücke	VE	151	3722101	ne	2370	400	150	i	2800	430
sa	130	n Birnlücke	ZA	151	3722100	n	2350	250	200	i	2780	430
sa	131	Schlachterkarl	ZA	151	3722100	ne	2400	200	200	i	2750	350
sa	132	Gamsstellen	ZA	151	3722100	nw	2400	350	350	i	2819	419
sa	133	ne Krimmler Tauern	ZA	151	3722100	nw	2600	100	150	i	2722	122
sa	134	w Krimmler Tauern	ZA	151	3722100	n	2460	150	400	i	2774	314
sa	135	e Windbachscharte	ZA	151	3623103	s	2500	350	170	i	2843	343
sa	136	e Windbachtalkogel	ZA	151	3723102	e	2600	100	250	i	2830	230
sa	137	se Windbachkarkogel	ZA	151	3723102	se	2530	300	100	f	2763	233
sa	138	e Windbachkarkogel	ZA	151	3723102	S	2500	200	200	f	2665	165
sa	139	e Windbachkarkogel	ZA	151	3723102	S	2390	400	100	f	2645	255
sa	140	se Richterhütte	ZA	151	3623103	n	2450	400	170	i	2802	352
sa	141	s Rainbachsee	ZA	151	3723102	se	2250	300	280	f	2845	595
sa	142	Rainbachsee	ZA	151	3723102	S	2420	350	350	f	2967	547
sa	143	e Rainbachsee	ZA	151	3723102	S	2330	500	250	f	2820	490
sa	144	s Rainbachkogel	ZA	151	3723102	S	2200	250	230	f	2530	330
sa	145	Weißkar	ZA	151	3723100	ne	2360	250	180	i	2967	607
sa	146	Waldbergkar	ZA	151	3723100	e	2520	150	150	i	2915	395
sa	147	ne Seekarsee	ZA	151	3723100	<u>w</u>	1930	500	150	f	2400	470
sa	148	Seekarsee		151	3723100	W	2230	100	250	f	2385	155
sa	149	e Seekarscharte		151	3623101	e	2350	300	150	f	2613	263
sa	150	Steinkar	ZA	151	3624103	ne	1920	500	300	f	2477	557
sa	151	sw Geißstein	KB	122	3925103	e	1960	250	150	f	2182	222
sa	152	sw Bärensteigkopf		123	4025102	S	2010	200	250		2225	215
sa	153	se Barensteigkopf	KB	123	4025102	S	[2020]	300	100	f	2225	205

sa	154	s Klinglertörl	KB	123	4025103	se	1980	150	200	f	2249	269
sa	155	e Hundstein	SS	124	4225103	ne	1910	150	100	f	2100	190
sa	156	Sandkarl	BA	124	4226101	se	1900	200	200	f	2400	500
sa	157	se Bonegg	BA	124	4326100	se	1800	400	250	f	2560	760
sa	158	w Hundstein	SS	124	4225103	n	1810	150	150	f	1995	185
sa	159	w Zirmkogel	KB	123	4025103	n	1890	150	250	f	2150	260
sa	160	w Zirmkogel	KB	123	4025103	ne	1950	150	100	f	2080	130
sa	161	nw Klinglertörl	KB	123	4025103	ne	1970	200	200	f	2249	279
sa	162	se Polzalm	KB	123	4025103	nw	1940	300	100	f	2220	280
sa	163	w Medalscharte	KB	123	4025102	ne	1930	100	300	f	2187	257
sa	164	n Manlitzkogel	KB	122	4025102	ne	1920	200	400	f	2220	300
sa	165	e Hohe Penhab	KB	122	4025100	se	1860	300	300	f	2213	353
sa	166	se Geißstein	KB	122	3925103	e	1940	200	250	f	2320	380
sa	167	ne Geißstein	KB	122	3925103	ne	1830	400	300	f	2363	533
sa	168	se Gamshag	KB	122	3925100	ne	1980	300	600	f	2174	194
sa	169	e Staffkogel	KB	122	3925101	se	1690	300	150	f	2115	425
tr	1	n Großwand	DS	95	4727102	ne	1680	250	300	f	2415	735
zi	1	sw Farnbichl	ZA	151	3624103	nw	1840	350	200	f	2386	546
zi	2	Mitterkar	ZA	151	3623101	e	2350	300	180	i	2982	632
zi	3	Ankenhochkar	ZA	151	3623101	n	2300	350	100	i	2640	340
zi	4	Silberkarl	ZA	151	3624103	ne	1940	450	180	f	2330	390
zi	5	nw Heiliggeistjöchl	ZA	151	3622101	n	2410	700	650	i	2857	447

Fließbewegungen am Dösener Blockgletscher 5000

parkfonds. Druck: Steierm finanzieller Unterstützung **MIS** enschaftlichen Landesdruckerei des Fonds , Graz. vationalrschung ZU

© Victor Mercator, Technische Universität Graz, 1996

Bildquelle: SW-Luftbild vom 17.9.1975. Luftbild vervielfältigt mit Genehmigung des Bundesamtes für Eich- und Vermessungswesen (Landesaufnahme) in Wien, ZI.L 70 385/95. Geometrische Auflösung des Orthophotos: 0.625 m. Photogrammetrische Auflösung des Orthophotos: 0.625 m. Benzinger. Digitale Bildverarbeitung und kartographische Bearbeitung durch V. Kaufmann, R. Benzinger und R. Ladstädter. Gesamtdurchführung am Institut für Angewandte Geodäsie und Photogrammetrie (O. Univ.-Prof. Dr. G. Brandstätter), Technische Universität Graz. Herausgegeben mit finanzieller Unterstützung des Fonds zur Förderung der mit finanzieller Unterstützung des Fonds zur Förderung der enschaftlichen Forschung (Projekt s zur Förd P09565) und g der des

Gauß-Krüger-Abbildung im 3° breiten Meridianstreifen M31 Umrechnung von BMN in die Gauß-Krüger-Meridianstreifenabbildung x GM = Hochwert BMN

x _{GKM} = Hochwert _{BMN} y _{M31} = Rechtswert _{BMN} - 450 km

≤<

1 : 5000 (1 cm [≜] 50 m)

50

100

150

200

250 m

255

 $\overline{}$

 $\mathbf{\cdot}$

ш

Kärntner Nationalparkfonds. Druck: Steiermärkische Landesdruckerei, Graz

© Victor Mercator, Technische Universität Graz, 1996

Bildquelle: SW-Luftbild vom 17.9.1975. Luftbild vervielfältigt mit Genehmigung des Bundesamtes für Eich- und Vermessungswesen (Landesaufnahme) in Wien, ZI.L 70 385/95. Geometrische Auflösung des Orthophotos: 0.625 m. Photogrammetrische Auflösung des Orthophotos: 0.625 m. Benzinger. Digitale Bildverarbeitung und kartographische Bearbeitung durch V. Kaufmann, R. Benzinger und R. Ladstädter. Gesamtdurchführung am Institut für Angewandte Geodäsie und Photogrammetrie (O. Univ.-Prof. Dr. G. Brandstätter), Technische Universität Graz. Herausgegeben mit finanzieller Unterstützung des Fonds zur Förderung der mit finanzieller Unterstützung des Fonds zur Förderung der enschaftlichen Forschung (Projekt s zur Förd P09565) und g der des

Gauß-Krüger-Abbildung im 3° breiten Meridianstreifen M31 Umrechnung von BMN in die Gauß-Krüger-Meridianstreifenabbildung x GM = Hochwert BMN

x _{GKM} = Hochwert _{BMN} y _{M31} = Rechtswert _{BMN} - 450 km

≤<

1 : 5000 (1 cm [≜] 50 m)

50

100

150

200

250 m

255

 $\overline{}$

 $\mathbf{\cdot}$

ш

Kärntner Nationalparkfonds. Druck: Steiermärkische Landesdruckerei, Graz

© Victor Mercator, Technische Universität Graz, 1996

Bildquelle: SW-Luftbild vom 15,8,1983. Luftbild vervielfältigt mit Genehmigung des Bundesamtes für Eich- und Vermessungswesen (Landesaufnahme) in Wien, ZI.L 70 385/95. Photogrammetrische und kartographische Bearbeitung durch V. Kaufmann am Institut für Angewandte Geodäsie und Photogrammetrie (O. Univ.-Prof. Dr. G. Brandstätter), Techn. Universität Graz. Herausgegeben mit finanzieller Unterstützung des Fonds zur Förderung der wissenschaftlichen Forschung (Projekt P09565) und des Kämtner Nationalparkfonds.

© Victor Mercator, Technische Universität Graz, 1996

Umrechnung von BMN in die Gauß-Krüger-Meridianstreifenabbildung

X GKM = Hochwert BMN Y M31 = Rechtswert BMN

- 450 km

Gauß-Krüger-Abbildung im 3° breiten Meridianstreifen M31

300

600

900

1200

1500 m

© Victor Mercator, Technische Universität Graz, 1996

Reliefkarte 1 : 10 000

48° N

0

Ö s t

Φ

e

c h

۲

100

R

5

Θ

(LO)

E

∋

œ

© Victor Mercator, Technische Universität Graz, 1996

Luftbildkarte 1 : 10 000

Gletscher im steilen Gelände. Blankes Eis blau, Gletscherspalten im Gletscherbruch dunkelblau. Firnfelder weiß (Großelendkees).

Gipfelpyramiden und Felsgrate, Felsköpfe (dunkel) und schutterfülltes Kar (flächig graublau, unten): Beleuchtung aus Südost, entsprechender Schattenwurf (Maresenspitze).

Felswand, durch Steinschlagrinnen vertikal gegliedert (dunkel, unten), große Schutthalde am Wandfuß (oben), Schneereste im Geländeknick. Rot: Pioniervegetation (südliche Seite des Seebachtales).

Firnfeld eines Gletschers (links, weiß) und Spaltenzone (Kleinelendkees), ausgeaperter Fels durch Gletscherrückzug (Mitte oben), Schneeflecken im Sommer in Mulden und Rinnen (rechts), Karsee (dunkel, Schwarzhornsee).

Karge alpine Rasen an der Vegetationsgrenze (Bürstling-Rasen): rosa bis fahl gelblich-rot. Durchfeuchtete Mulden mit dichter Rasendecke: kräftig rot. Offener Fels hellblau (nahe Hannover-Haus).

Alpine Matten und Weiden an der Waldgrenze: kräftiges Rot des üppigen Grasbewuchses. Nadelwald dunkel, Bachlauf (blaugrau) und helles Schotterbett des Baches erkennbar (Jamnigalm).

Nadelwald (dunkel rotbraun) und Felsgelände (Blautöne). Im steilen Gelände fehlt eine Mattenzone, und der Waldgürtel ist durch Lawinenbahnen und Wildbachrinnen sowie durch tief hinabreichende Schuttströme gegliedert.

Seebachtal, Stappitzsee. Erlen-Bruchwald der Talzone kräftig rot, ebenso Grünerlen-Buschwald der Hangzone (oben). Weideflächen rosa, Nadelwald dunkel braunrot (unten), auf der Sonnseite heller.

Landnutzung der Talsohle. Mähwiesen rot; rosa, wenn jüngst gemäht. Nadelwald der Schatt- und Sonnseite dunkel, mit Schlagschatten bzw. heller und differenziert. Bei Mallnitz, mit Südportal des Tauerntunnels (Mitte links).

Siedlungsbereich. Ortskern und einzelne Gebäude heben sich vom umgebenden Grünland (rot) deutlich ab, ebenso Straßenzüge und die Eisenbahnlinie. Sonnund Schattseite der Nadelwaldzone sind deutlich unterscheidbar. Mallnitz.

Forstwirtschaftliche Nutzung der Waldzone. Schlagflächen hell nelblich-rot rot hei dichtem Gras- und Stau-

,200.000

TIROL

Fremdenverkehrsnutzung als Eingriff in die Naturland-schaft. Schipiste als heller Streifen im Nadelwald. Spär-liche Vegetationsbedeckung der Piste (keine Rottöne), aber auch keine Erosionsschäden (keine Blautöne offe-nen Bodens). Häusleralm bei Mallnitz.

Energienutzung im Hochgebirge. Speicher eines Was-serkraftwerkes mit Staumauer. In der Umgebung alpine Matten (rot), lockere Waldbestockung (rechts) und Krummholz (einförmig dunkel, unten). Galgenbichl-Speicher der Malta-Gruppe.

Die Farbinfrarotkarte stellt die Vegetation in verschiedenen Rottönen dar. Grüne Blätter reflektieren das Sonnenlicht im infraroten Bereich des Spektrums beson-ders stark. Dadurch wird eine Differenzierung der Vegetation erreicht, die wesent-lich besser ist als beim herkömmlichen Farbfilm. Eine dichte Vegetationsdecke (Laubwald, hochwüchsige Rasen und Wiesen) erscheint in kräftigem Rot, lockere und niedrige Vegetation in hellen oder gelblichen Rottönen. Der Nadelwald ist rot-braun bis schwärzlich, abhängig von der Beleuchtungsituation. Fels und Schutt erscheinen in blaugrauem, blauem bis schwarzem Farbton, Gewässer blau bis schwarz, Gebäude und Straßen sind meist unfarbig und hell. Das Orthofoto stellt ein Umbildungsprodukt des zentralperspektivischen Luftbildes in die kartenmäßige Parallelprojektion dar. Das führt zu einer meßfähigen fotografischen Geländedarstel-lung und ermöglicht die Erstellung eines Bildmosaiks.

Die Karte ist ein Bildmosaik aus 30 Farbinfrarot-Orthofotos im Blattschnitt der Öster-reichischen Luftbildkarte 1:10.000. Bildflug (22./23.7. und 15. 8. 1984) und Orthofotoer-stellung: Bundesamt für Eich- und Vermessungswesen, Wien. Die Orthofotos wur-den an einem Reproscanner zusammengefügt und digital farblich korrigiert und angeglichen. Kartengestaltung: M. Seger, Namensgut: J. Gradenegger.

Hergestellt am Institut für Geographie der Universität Klagenfurt i. A. des Amtes der Kärntner Landesregierung und im Rahmen des Forschungsschwerpunktes "Ferner-kundung" des Fonds zur Förderung der wissenschaftlichen Forschung, Wien. Scannerarbeit: Reprozentrum, Viktring. Druck: Carinthia, Klagenfurt, 1991.

Verwendung der Luftbilder und Vervielfältigung mit freundlicher Genehmigung des Umweltbundesamtes, Wien, des Bundesamtes für Eich- und Vermessungswesen (Landesaufnahme), Wien, Zl. LB 208/91; Freigabe: BM f. wirtschaftliche Angelegen-heiten, Zl. 96 222/40–1X/6/91. Kartenkoordinaten: NE-Eckpunkt: + 10.000/5,220.000, SE-Eckpunkt: + 10.000/5,200.000.

Nationalparkregion Hohe Tauern R

