Archiv für Molluskenkunde

der

Deutschen Malakozoologischen Gesellschaft

und der

Senckenbergischen Naturforschenden Gesellschaft

Herausgegeben von Dr. W. WENZ und Dr. A. ZILCH

Die Verbreitung und Häufigkeit der rezenten Cypraeidae.

Von F. A. Schilder und M. Schilder

In den älteren Cypraeiden-Monographien (Gray, Kiener, Sowerby, ROBERTS, MELVILL) beschränkten sich die Angaben über die Verbreitung der Arten meist auf allgemeine Angaben wie "Indopazifik" oder "Australien" oder auf Nennung einzelner Vorkommen (oft des Fundortes des Typus); erst Weinkauff (1881 S) und HIDALGO (1906 C) haben sich bemüht, alle für die einzelnen Arten bekanntgewordenen Fundorte zusammenzustellen, der letztere leider ohne Quellenangaben und unter Einschluß von mehr als 10% offensichtlich falscher Angaben. Die in den früheren Arbeiten von F. A. Schilder (1924 I, 1927 R und 1932 Q) verzeichneten Grenzen der Verbreitung umschließen leider z. T auch noch solche Irrtümer; ihre Unrichtigkeit konnte von uns erst nach Bearbeitung von etwa 60 000 rezenten Cypraeidae von über 2 200 Fundorten nachgewiesen werden, als wir durch die Auffindung feiner Unterschiede zwischen geographischen Rassen in die Lage versetzt waren, die Richtigkeit zweifelhafter Angaben zu überprüfen. Die Ergebnisse dieser an etwa 80 Museen und Privatsammlungen in 14 europäischen Staaten im Geiste von Rensch's Rassenkreislehre durchgeführten Rassenstudien wurden von uns erst kürzlich veröffentlicht (Schilder-Schil-DER 1938/9 P); wir haben diesem "Prodrome" unter kritischer Mitberücksichtigung von Literaturangaben über weitere 1500 Fundorte Faunenverzeichnisse der dort unterschiedenen 113 Gebiete hinzugefügt. Eine anschließende gründliche Durcharbeitung der 15 000 Cypraeidae der jetzt im Museum Brüssel aufbewahrten Sammlung DAUTZENBERG (Januar 1939) bot uns die Gelegenheit, neben der 15. 4. 40.

Überprüfung der Rassen-Merkmale auch die meisten der im "Prodrome" offen gelassenen zoogeographischen Fragen zu klären. So können wir heute ein erneut bestätigtes bezw. stellenweise berichtigtes Verzeichnis der für die einzelnen Formen (= Rassen und ungeteilten Arten) nachgewiesenen Verbreitungsgebiete veröffentlichen, das wir hier aber so anordnen, daß sowohl die Gesamtverbreitung jeder Form als auch die Fauna jeder Region gleichzeitig überblickt werden kann.

In enger Anlehnung an die im "Prodrome" gegebene, großteils auf der Temperatur der Meeresoberfläche im Jahresmittel und im kältesten Monate fußende Einteilung des Lebensraumes der Cypraeidae, aber unter mannigfacher Zusammenziehung oder zweckmäßig erscheinender Umgruppierung der dort unterschiedenen 113 Gebiete ("areas") haben wir hier die Fundorte der westlichen Hemisphäre in 2 und die der östlichen in 4 Provinzen (A, E, I, M, N, P) zusammengefaßt und jede Provinz nach den Himmelsrichtungen (N, S, E, W, dazu noch C = Central) in 4-5 Regionen geteilt (EN würde dem nur von Triviidae und Amphiperatidae bewohnten Westeuropa entsprechen, NS auch Neuseeland umfassen). Iede Region zerfällt wieder nach der Himmelsrichtung in Gebi et e (den "areas" im "Prodrome" entsprechend), welche durch kleine Exponenten (", s e w, c) zu den durch je 2 Großbuchstaben (= Provinz und Region) bezeichneten Regionen unterschieden werden können. Jedes Gebiet zerfällt in 1-3 Teilgebiete, die je etwa 1000 km Küstenlänge bezw. Abstand der Haupt-Inseln umfassen, und deren Hauptorte in der folgenden Übersicht durch ein trennt wurden.

A = Amerika.

- AW = nördliche Westküste: "Los Angeles-Cedros. "C. S. Lucas; La Paz-Guayamas. "Mazatlan-Tres Marias; Revilla Gigedo. "Acapulco; Guatemala-Coiba. "Clipperton; Cocos I.
- $AS = s\"{u}dliche Westk\"{u}ste: \ ^{n}Panama-Columbia. \ ^{c}Ecuador. \ ^{s}Peru. \ ^{w}Galapagos.$
- AN = nördliche Ostküste: ^eBermuda. ^cCarolina; Florida. ^wTexas; Tampico.
- AC = centrale Ostküste: ⁿBahama; Cuba; Jamaica; Haiti. ^cGuadeloupe; Barbados-Trinidad. ^wVeracruz-Yucatan; Honduras-Limon. ^sDarien; Venezuela; Curaçao. ^eGuiana; Nordbrasilien.
- AE = südliche Ostküste: ^eFernando Noronha. ⁿPernambuco; Bahia. ^sRio de Janeiro; Santos.

E = Eurafrika.

EE = Mittelmeergebiet: WCatalonien; Marseille - Rom. Balearen - Sardinien; Neapel - Malta. Adria; Epirus-Creta; Agäis. Cypern - Syrien; Agypten; Cyrenaica. Tripolis-Gabes; Tunis; Algier-Ceuta.

- EW = nördliches Westafrika: ^eMalaga; Algarve. ^wAzoren. ^cMadeira; Canaren. ^sWest-Marokko; Rio de Oro.
- EC = centrales Westafrika: W.C. Verde Inseln. "Senegambien; Liberia. "Gold-küste; Nigeria-Kamerun. "Principe-Annobon; Gabun. "Loango-Loanda; Benguella."
- ES = südliches Westafrika: eMossamedes. Ascension. cSt. Helena.

I = Indik.

- IS = Südafrika: ⁸Agulhas; Algoa-Bay. ⁿNatal; Inhambane.
- IW = Ostafrika (westlicher Indik): ^sTuléar; Tamateve. ^eNossi Bé; Comoren. ^cMozambique; Masia-Mombas. ⁿMogadiscio; Hasun-Socotra.
- IC = centraler Indik: ^sRéunion-Mauritius; Rodriguez-Cargados. ^cAmiranten-Seychellen. ^eChagos. ⁿMalediven-Laccadiven.
- IN = Rotes Meer: "Suez-Akaba. "Suakin; Djidda; Massaua; Yemen. "Obock-Berbera; Aden; Kuria Muria Inseln.
- IE = Ostindien: "Oman; Persischer Golf. "Karachi. "Bombay; Malabar. "Ceylon."
 "Madras; Calcutta.

M = Malaysia.

- MW = West-Malaysia: "Mergui; Medan, "Andamanen-Nikobaren. cAtjeh; West-sumatra-Nias. sCocos Keeling; Christmas I. eSundastraße; Südjava.
- MS = Südost-Malaysia: ^sBali-Flores; Timor. ^cKei; Amboina; Ostcelebes. ^eAru; Südwest-Neuguinea.
- ME = Ost-Malaysia: eNordwest-Neuguinea; Halmahera. sMenado Talaut. cSulu In.; Mindanao-Samar. mMindoro-Luzon.
- MC = Central-Malaysia: ^eWestcelebes; Südostborneo. ^sTiger In.; Nordjava. ^cBanka; Singapore; Südwestborneo. ^wSiam; Cochinchina. ⁿNordwestborneo; Palawan; Tizard.
- MN = Ostasien: ^sAnnam; Tonkin-Hainan. ^wHongkong; Futschou. ^cFormosa; Ryu kyu In. ^eKiushiu-Tosa; Tokyo. ⁿNordwestnippon (Fukui).

N = Notogäis.

- NC = Südaustralien: ^eTwofold Bay. ^sTasmania; Victoria. ^cAdelaide; Eucla. ^wAlbany; Fremantle.
- NW = Westaustralien: WSharks Bay; Exmouth Golf. Broome; Darwin. Carpentaria Golf.
- NE = Ostaustralien: ⁿTorresstraße; Queensland. ^cBrisbane. ^eLord Howe In. ^sSydney.
- NS = (Neuseeland mit:) Worfolk I. Kermadec In.

P = Pazifik.

PS = Sūdwest-Pazifik: ⁿGeelvink Bay; Humboldt Bay. ^wAstrolabe Bay; Sūdost-Neuguinea. ^cBismarck Archipel; Salomonen. ^eNeue Hebriden. ^sNeu Caledonien.

- PC = Central-Pazifik: *Fiji. *Tonga; Niue. *Samoa; Wallis. *Tokelau-Suwarow; Phoenix; Howland. *nEllice; Gilbert (Kingsmill).
- PW = West-Pazifik: eMarshall In. Carolinen. Palau; Yap. Marianen; Bonin In.
- PE = Ost-Pazifik: WCook In.; Tahiti. STuamotu; Gambier-Henderson. Oster I. CMarquesas; Flint-Malden. Jarvis Palmyra.
- PN = Nordost-Pazifik: ^sJohnston I. ^eHawaii-Kauai. ^wFrench Frigate; Laysan-Midway.

Die **relative Häufigkeit** der Arten und Rassen ist noch schwieriger festzustellen als ihre Verbreitung schlechthin, u. zw. sowohl die Häufigkeit der einzelnen Formen im Vergleiche zu den übrigen Cypraeidae überhaupt, als auch ihre Häufigkeit in den einzelnen von ihnen besiedelten Gebieten.

Die Gesamthäufigkeit einer Form hängt naturgemäß nicht nur von ihrer relativen Häufigkeit an den einzelnen Orten ihres Verbreitungsgebietes, sondern auch von der Ausdehnung des letzteren ab; der "Marktpreis" aber ist außerdem noch davon abhängig, ob in diesem Verbreitungsgebiete viel oder wenig gesammelt wird und in welche Länder die betreffenden Ausbeuten zu gelangen pflegen, er ist also örtlichen und zeitlichen Schwankungen unterworfen und kein brauchbarer Maßstab der tatsächlichen Häufigkeit der Form in der Natur.

Von den beiden häufigsten Arten, den "Kauri" moneta und annulus, wurden seit 1800 etwa 75 Milliarden Schalen nach Afrika als "Geld" und Schmuck eingeführt (ihr Wert sank bis zu 1 Pfennig für 40 Stücke!), und annulus diente auf Zanzibar zur Macadamisierung der Straßen (Schilder 1926 E).

— Im Gegensatze hierzu seien folgende seltene Arten genannt: die nach einem einzigen Stücke frühzeitig beschriebenen, auffälligen Arten leucodon (beschrieben 1828), marginata (1849) und barclayi (1857) wurden seither nicht wiedergefunden (von den beiden ersteren ist sogar der Fundort unbekannt!), und von anderen großen, schönen Arten wie guttata (1769/1791), valentia (1811) und broderipii (1832) sind bisher nur wenige Stücke bekannt geworden (vgl. Melvul. 1888 S); daher wurde eine guttata um 1880 um 42 Pfund Sterling verkauft (Roberts) und 1904 mit 1200 Francs bewertet (Brief von Geret in coll. Dautzenberg), und eine valentia wurde 1917 von Sowerby & Fulton um 75 Pfund Sterling an Dautzenberg verkauft. Dagegen wurde die ebenso auffällige hesitata (= umbilicata, 1825), von der das zweite Stück 1849 um 30 Pfund Sterling verkauft worden war (Gray), schon 1882 als in Tasmanien stellenweise gemein bezeichnet (Brazier) und 1924 von Sowerby & Fulton um je 10—15 Shilling verkauft. Von den erst in allerjüngster Zeit beschriebenen, allerdings unscheinbaren Arten vredenburgi (1927: 1 Stück!), catholicorum (1938; als fischeri 1933: 5 Stück!) und serrulijera (1938: 2 Stück!) kennen wir jetzt stattliche Serien: von vredenburgi, die vorhen nur in 4 Sammlungen vertreten war, wurden in den letzten Jahren in Süd-Java über 1800 Schalen gesammelt und von serrulijera fanden sich über 70 Stücke aus dem Bismarckarchipel, und von serrulijera fanden sich über 70 Stücke aus dem Bismarckarchipel, und von serrulijera fanden sich über 70 Stücke aus Gem Bismarckarchipel, und von serrulijera fanden sich über 70 Stücke aus Gem Bismarckarchipel, und von serrulijera fanden sich über 70 Stücke aus Gem Bismarckarchipel, "common" sein (Odhner). — Die australischen

europäischen Sammlungen (einschließlich dem sonst so vollständigen British Museum!) viel spärlicher vertreten, als nach ihrer dortigen Häufigkeit zu erwarten wäre.

Die relative Häufigkeit der Formen in einzelnen Gegenden ist naturgemäß am besten aus individuenreichen Originalausbeuten zu erkennen, bei denen Gewißheit besteht, daß wirklich alle gefundenen Individuen zur Untersuchung gelangt sind und nicht etwa der Sammler von den gemeinsten oder von großen Arten zur Vermeidung von Transportschwierigkeiten nur Proben aufbewahrt hat1). Doch selbst solche einwandfrei eingesammelten Originalausbeuten geben oft kein richtiges Bild der in der Umgebung des Fundortes häufigen Arten, wenn z. B. die Aufsammlung nur in einer flachen Bucht erfolgte, wo einzelne Arten selten sein oder ganz fehlen können, die wenige Kilometer weiter in der Brandungszone vorgelagerter Inseln häufig sind; die oft recht widerspruchsvollen Angaben verschiedener Autoren über ihre Sammelergebnisse am "gleichen" Fundorte dürften meist so zu erklären sein, und auch der Zeitpunkt des Sammelns (Monsune!) ist wohl nicht ohne Einfluß auf die Zusammensetzung der jeweiligen lokalen Fauna. -Wenn aber solche Originalausbeuten nicht sofort vom Spezialisten bestimmt und durchgezählt werden, sondern erst in die Hände von Sammlern oder Museums-Kustoden gelangen, dann werden bald die "Dubletten" der häufigen Arten ausgeschieden und an andere Sammlungen abgegeben; der verbleibende Rest läßt dann wohl erkennen, welche Arten überhaupt gefunden worden waren (falls nicht, was leider oft geschieht, Stücke anderer Herkunft dazwischen geraten!), nicht aber ihre relative Häufigkeit, da von großen und schon von anderen Orten reichlich vorhandenen Arten aus Raumgründen meist weniger Exemplare aufbewahrt zu werden pflegen als von kleinen, schwer bestimmbaren Formen. In diese Kategorie fallen leider die meisten der in den Museen und besonders in Privatsammlungen aufbewahrten Ausbeuten. — Da sind die vom Sammler oft publizierten allgemeinen Angaben wie "gemein", "sehr selten" usw. meist aufschlußreicher, obwohl solche Schätzungen oft subjektiv sind und die Richtigkeit der Artbestimmung wie bei allen Literaturangaben nicht nachzuprüfen ist. — Ein weiteres Kriterium der relativen Häufigkeit einer Form in begrenztem Gebiete oder überhaupt bildet die Zahl der Literaturangaben und der in den

¹⁾ Wir erhielten solche wissenschaftlich wertvolle Ausbeuten von de Priester (Süd-Java: fast 17000 Exemplare!), Pater J. Schneider (Bismarck-Archipel: fast 8000 Ex.), Winckworth (Seychellen: 1400 Ex.; Andamanen: 750 Ex.; Ceylon und Karachi: je über 500 Ex.), Pietschmann (Leeward In. bei Hawaii: 600 Ex.) usw. und haben sie z. T. schon einzeln publiziert.

Sammlungen aufbewahrten Belege (ohne Rücksicht auf die noch vorhandene Individuenzahl!), verglichen mit der Zahl entsprechender Angaben für andere Formen; hierbei ist aber darauf zu achten, daß nur dem Autor vorliegende Arten (also nicht Wiederholungen der Angaben früherer Autoren) gezählt, und daß Belege aus der gleichen Quelle, die jetzt über mehrere Museen verstreut sind, nur als ein einziger Fund betrachtet werden.

Wenn man von Preislisten der Händler, die immer mehr ein Augenblicksbild der Marktlage als die wirkliche relative Häufigkeit der Arten wiederspiegeln, absieht, wurde der erste Versuch einer Klassifikation der rezenten Cypraeidae nach der Häufigkeit (in 5 Klassen) von Schilder 1924 I und 1928 V gegeben; in Schilder 1933 C wurde die Zahl der von uns bis dahin gemessenen Stücke jeder Art (insgesamt 15 000) publiziert (in 9 Klassen); in unserem "Prodrome" (Schilder-Schilder 1938/9 P) haben wir dann die relative Häufigkeit aller rezenten Arten und Rassen in 5 Klassen nach der Zahl der Literaturangaben und Sammlungsbelege, modifiziert durch die Häufigkeitsangaben anderer Autoren und Anteile in publizierten oder selbst untersuchten Populationen, sowohl insgesamt wie auch für die einzelnen Gebiete berechnet.

In ähnlicher Weise erfolgte die hier mitgeteilte Klassifikation in 6 Häufigkeitsgrade²), jedoch unter stärkerer Berücksichtigung der Individuen-Zahlen und unter Ausscheidung aller nicht ganz vertrauenswürdig erscheinender Angaben; neu hinzugekommene Originalausbeuten und besonders die Bearbeitung der reichen Sammlung Dautzenberg setzten uns in Stand, den neuen Berechnungen ein wesentlich vermehrtes Material zu Grunde zu legen.

Der Gang unserer Berechnung war folgender: In jedem Teilgebiete (s. o.) wurde für jede Form (Rasse bezw. ungeteilte Art) die Zahl der Funde (Literaturangaben und Belege in Sammlungen) ermittelt (= "Ortszahl"), sowie die Summe der in diesen Funden enthaltenen Exemplare (= "Stückzahl"); u. zw. wurde bei Ausbeuten von weniger als 100 Cypraeidae als "Stückzahl" die wirkliche Zahl der gemeldeten oder erhaltenen Individuen eingesetzt, bei größeren Ausbeuten dagegen der Prozentsatz der Form in der betreffenden Cypraeiden-Population, wobei in beiden Fällen alle Zahlen proportional so verkleinert wurden, daß in jeder Ausbeute das Vorkommen der häufigsten Art mit höchstens 32 (= 25, d. i. "gemein") Stücken bezw. Prozenten bewertet zu werden brauchte; bei Literaturangaben zählten die Ausdrücke "sehr selten" = 1, "selten" = 2, "ziemlich selten" = 4, "ziemlich häufig" = 8, "häufig" = 16 und "gemein" = 32, d. i. die Zahl 2 in der 0 ten bis 5 ten Potenz, bei Fehlen von Häufigkeitsangaben wurde jede Literaturangabe mit 1 bewertet. — Das arithmetische Mittel aus "Ortszahl" und "Stückzahl" wurde als "lokale

²) Eine Einteilung in 6 statt 5 Klassen erscheint uns grundsätzlich den Vorzug zu verdienen, weil 6 Klassen sowohl in 2 'als auch in 3 gleich große Gruppen von Klassen zusammengefaßt werden können, also in 2 extreme Gruppen mit oder ohne eine Mittelgruppe!

Häufigkeit" jeder Form betrachtet und zwecks Ermöglichung eines Vergleiches verschiedener Gegenden mit einem meist zwischen ¹/₃ und 1 liegenden Faktor multipliziert; dieser Faktor wurde unter Berücksichtigung der "Güte der Erforschung" des Teilgebietes (ausgedrückt durch den Quotienten aus der Summe der "Jokalen Häufigkeiten" aller Arten des Teilgebietes und aus der Zahl der dort zu erwartenden Formen) derart bestimmt, daß die Summen der "Jokalen Häufigkeit" (s. u.) aller Arten in benachbarten Teilgebieten in annähernd gleichem Verhältnis standen wie die Gesamtzahlen der dort vorgefundenen Formen, und daß nur wirklich gemeine Arten eine "Jokale Häufigkeit" von 24 oder mehr (d. i. = 2⁵) zuerkannt erhielten. — Die so korrigierten Zahlen aller Teilgebiete einer Region (s. o.) ergaben durch Addition die "regionale Häufigkeit" einer Art oder Rasse in dieser Region; der besseren Übersichtlichkeit wegen und zur Ausschaltung ziffernmäßiger scheinbarer Unterschiede zwischen tatsächlich als gleich groß zu betrachtenden Werten wurden diese einbis dreistelligen Zahlen durch Potenzen von 2 ausgedrückt; so wurde für die "regionale Häufigkeit" 1 (oder weniger als 1) der Exponent 0 als Wert eingesetzt, für die "regionale Häufigkeit" 2 der Wert 1, für 3-5, 6-11, 12-23, 24-47, 48-95 und 96-192 die Werte 2, 3, 4, 5, 6 und 7 (das festgestellte Maximum bildete annulus in MC mit der "regionalen Häufigkeit" 153 = 27). Die Werte 0 bis 7 können als "Häufigkeitsklassen" bezeichnet werden. — Diese Klassen sind als Exponenten von 2 naturgemäß nicht addierbar, sondern man muß zur Berechnung der Häufigkeit einer a) Rasse bezw. b) aus Rassen zusammengesetzten Art in ihrem ganzen Verbreitungsgebiete, sowie zur Berechnung der Häufigkeit einer a) Rasse bezw. b) aus Rassen zusammenge-setzten Art in ihrem ganzen Verbreitungsgebiete, sowie zur Berechnung der Häufigkeit einer a) Rasse bezw. b) aus Rassen zusammenge-setzten Art in ihrem ganzen Verbreitungsgebiete, sowie zur Berechnung der Häufigkeit einer a) Rassen bestümmten Region lebenden C

Die nachstehende kleine Tabelle gibt an, welche "Häufigkeitsklassen" erfahrungsgemäß bei Beurteilung der Häufigkeit A) einer Form in einer einzelnen Region, B) einer Rasse und C) einer Art in ihrem ganzen Verbreitungsgebiete als "sehr selten" (bisweilen als RR bezeichnet), "selten" (R), "ziemlich selten" (MR), "ziemlich häufig" (MC), "häufig" (C) oder "gemein" (CC) anzusprechen ist, bezw. (in Klammern) den Prozentsatz der auf diese 6 "Häufigkeitsgrade" entfallenden A) 1065, B) 369 und C) 165 Fälle bei den rezenten Cypraeidae.

A) Region: RR =
$$0(14)$$
, R = 1-2(32), MR = 3(21), MC = 4(18), C = 5(11) CC = 6-7(4)
B) Rasse: 0-1(8), 2-3(24), 4(26), 5(21), 6-7(19), 8-9(3)
C) Art: 0-1(7), 2-3(19), 4-5(34), 6-7(31), 8-9(8)

Die zweite kleine Übersicht gibt bei den einzelnen Regionen die Summe der "regionalen Häufigkeiten" aller dort gefundenen Cypraeidae (in Potenzen von 2), sowie (in Klammern) die Zahl der dort bisher nachgewiesenen Rassen (und ungeteilten Arten) und (nach dem:) die Zahl derjenigen Formen an, welche in der betreffenden Region offensichtlich ihre Heimat (d. i. die größte Häufigkeit oder das Zentrum der Verbreitung) haben. Der Gegensatz zwischen der westlichen und östlichen Hemisphäre sowie zwischen den aequatorialen und mehr gemäßigten Regionen inbezug auf das

Vorkommen der Cypraeidae überhaupt tritt in diesen Zahlen ebenso deutlich hervor wie die Bedeutung der einzelnen Regionen für die Entwicklung der Arten und geographischen Rassen.

 Amerika
 Eurafrika
 Indik
 Malaysia
 Notogäis
 Pazifik

 AW 7 (7:5)
 EE 7 (6:6)
 IS 8 (47:15)
 MW 10 (72:15)
 NC 7 (20:15)
 PS 10 (88:33)

 AS 7 (6:5)
 EW 6 (8:1)
 IW 9 (58:24)
 MS 9 (56:10)
 NW 7 (38:12)
 PC 10 (64:24)

 AN 6 (4:1)
 EC 7 (11:11)
 IC 10 (62:35)
 ME 10 (66:18)
 NE 9 (61:19)
 PW 9 (58:5)

 AC 7 (6:5)
 ES 5 (5:4)
 IN 9 (56:21)
 MC 10 (60:23)
 NS 3 (2:0)
 PE 10 (46:26)

 AE 5 (3:1)
 IE 9 (65:17)
 MN 9 (59:8)
 PN 8 (31:10)

In der großen Liste, in der aus Gründen der Raumersparnis die Arten der beiden Hemisphären getrennt wurden, bezeichnet die erste Zahl die Artnummer in unserem "Prodrome" (Schilder-Schilder 1938/9 P), die darauffolgende eingeklammerte Zahl die Häufigkeitsklasse der gesamten Art, die auf den Art- und Rassennamen folgende eingeklammerte Zahl die Häufigkeitsklasse der betreffenden Rasse. Das Vorkommen der Rasse in den einzelnen Regionen ist durch die Häufigkeitsklassen 0 bis 7 bezeichnet, wobei die Klasse in der angenommenen "Heimat" der Rasse (s. o.) fett gedruckt ist und bei Beschränkung des Vorkommens auf 1-2 Randgebiete der Region die oben (Seite) erklärten Exponenten $\overset{\text{n}}{,}\overset{\text{s}}{,}\overset{\text{ew c}}{,}$ zugefügt wurde ($\overset{\text{n}}{w}$ bedeutet nicht etwa Nordwest, sondern $\overset{\text{n}}{,}$ und $\overset{\text{w}}{.}$!); auf das bisherige Fehlen in 1-2 Randgebieten einer Region wurde dagegen keine Rücksicht genommen, auch wenn eine spätere Auffindung daselbst wie im Falle der zu PE zählenden Osterinsel (auf der nur caputdraconis lebt) ausgeschlossen erscheint. - Die Anordnung der Arten erfolgte nach dem von Schilder 1939 G publizierten neuesten Systeme, sie verteilen sich auf folgende Genera und Subgenera (die fetten Zahlen bezeichnen die Genus-Nummern in Schilder 1939 G, die übrigen Zahlen die Art-Nummern in Schil-DER-SCHILDER 1938/9 P; Arten, deren Nummern mit + verbunden sind, können im Sinne von Rensch zu Artenkreisen zusammengefaßt werden):

Unterfamilie Cypraeorbinae

BERNAYINI: Bernaya (42 *Protocypraea*: 122), 44 Barycypraea (121), 46 Zoila, (123, 124 + 125, 126).

CYPRAEORBINI: 48 Siphocypraea (127).

Unterfamilie Cypraeinae

LURIINI: Luria (52 Basilitrona: 132+131+130; 53 Luria: 128+129).

CYPRAEINI: **55** Chelycypraea (137), **56** Trona (138), **57** Macrocypraea (139, 140 + 141), Mauritia (**58** Arabica: 147, 148 + 149, 150, 151 + 152, 153; **59** Mauritia: 154; **60** Leporicypraea. 145 + 146), **61** Callistocypraea (133 + 134 + 135 + 136), Talparia (**62** Arestorides: 142; **63** Talparia: 143 + 144), Cypraea (**64** Cypraea: 155 + 156; **65** Lyncina: 157, 158 + 159, 160, 161 + 162 + 163 + 164. 165).

Unterfamilie Nariinae

PUSTULARIINI: 66 Annepona (1), Pustularia (67 Pustularia. 2, 3, 4+5; 68 Ipsa. 6), 70 Propustularia (7).

NARIINI: Monetaria (72 Ornamentaria. 36+37; 73 Monetaria. 38+39), 74 Naria (11), 75 Paulonaria (8+9+10), Erosaria (76 Ravitrona: 17, 18+19, 20, 21, 22+23, 24, 25+26; 77 Erosaria: 27, 28, 29, 30+31, 32+33, 34, 35), Staphylaea (78 Staphylaea: 13+14, 12; 79 Nuclearia. 15+16).

Unterfamilie Cypraeovulinae

ZONARIINI: 81 Schilderia (40), Zonaria (82 Zonaria: 41, 42, 43, 44, 45, 46, 47; 83 Neobernaya: 48; 84 Pseudozonaria: 49, 50 + 51).

CYPRAEOVULINI: Cypraeovula (86 Luponia: 54, 55, 56, 57; 87 Cypraeovula: 58, 59), Notocypraea (88 Notocypraea: 76, 77, 78, 79, 80; 89 Guttacypraea. 75).

UMBILIINI: 91 Umbilia (52+53).

ERRONEINI: Erronea (93 Adusta: 60+61+62, 63, 64, 65, 66+67+68+69, 91, 70; 94 Erronea: 71, 72, 73, 74; 95 Melicerona. 92), 96 Notadusta (81), Palmadusta (97 Palmadusta: 82, 83, 84+85, 86, 87, 88, 89, 90; 98 Purpuradusta: 93, 94+95, 96, 97, 98), Blasicrura (99 Talostolida: 109, 111, 110+112; 100 Blasicrura: 99, 100, 101, 102; 101 Derstolida: 103, 105, 106, 104, 107+108), Cribraria (102 Ovatipsa: 113+114; 103 Cribraria. 115+116, 117, 118, 119+120).

Bezüglich der Trennung der Arten in geographische Rassen haben wir — besonders auf Grund der aus der Sammlung Dautzenbero gewonnenen neuen Erkenntnisse — gegenüber dem "Prodrome" folgende Änderungen eintreten lassen:

Als nicht trennbar erwiesen sich folgende "Rassen": (127) testudinaria testudinosa ist mit t. testudinaria zu vereinigen, (140) cervus peilei mit c. cervus (der Name peilei ist also wieder nur mehr für die pleistocäne Ahnform zu verwenden), (158) vitellus sarcodes

mit v. dama und (35) turdus zanzibarica mit t. pardalina (alle wirklich ostafrikanischen Stücke gehören zu t. turdus, Sullioti's Beschreibung von zanzibarica enthält Merkmale von pardalina und winckworthi, wir halten es für zweckmäßig, zanzibarica auf die erstere zu beschränken und so den irreführenden Namen als Synonym verschwinden zu lassen!). Später werden wahrscheinlich noch (31) marginalis pseudocellata, (64) subviridis anceyi und (114) coloba greegori einzuziehen sein. — Dagegen mußten folgende Arten bezw. Rassen weiter getrennt werden: von (138) stercoraria ist eine auf Senegambien beschränkte, gleichmäßig gewölbte, mehr gerandete, am Rücken mehr grünliche (statt blaugraue) und weniger verwischt gefleckte st. conspurcata (GMELIN 1791) abtrennbar, während auch oblonge Stücke der weit verbreiteten st. stercoraria im hinteren Teile des Rückens einen deutlichen Höcker aufweisen; (3) bistrinotata von der Cocos Keeling Insel (leg. Wood-JONES, Brit. Mus.) hat kürzere Zahnfalten und schwächere Rückengranulierung (auch die Basisflecke erinnern an b. sublaevis), und da auch weiter westlich gefundene bistrinotata die gleichen Merkmale zeigen, sei sie als b. keelingensis nov. abgetrennt; die (6) childreni von Japan sind größer und breiter als die pazifischen Stücke und seien, da die Verbreitungsgebiete beider Formen nicht zusammenhängen, als ch. samurai abgetrennt (die uns unbekannten Stücke des südchinesischen Meeres gehören wohl dazu); das Verbreitungsgebiet von (9) beckii ist ebenfalls nicht zusammenhängend, die westliche Form ist vielleicht etwas größer und, da noch ungenügend bekannt, vorläufig mit dem Namen des pliozänen Vorfahren b. fufana (Fischer 1921) zu bezeichnen; (15) nucleus scheint in eine malayische nucleus (s. str.) und in eine noch gröber gekörnte melanesische Form zu zerfallen, für die der Name granulosa (Sowerby 1870) verwendet werden könnte; die nordaustralischen (66) pyriformis sind kleiner, breiter, weniger birnförmig, mehr callös und gröber gezahnt als die malayischen und sind daher als smithi (Sowerby 1881) abzutrennen; von der seltenen (86) saulae wurde 1939 von Ingram (Nautilus, 52, p. 122) eine kleinere Form mit farblosen Zahnzwischenräumen als *jensostergaardi* von Palau beschrieben; (87) contaminata mit ähnlicher Verbreitung wie beckii zerfällt in c. malaysiae nov. mit dichteren Collumellarzähnen, an distans erinnernden Enden und Basis und stärker ausgebildeten Innenrandzähnen der Fossula, und c. contaminata (s. str.); die westaustralische Form von (101) pallidula gleicht in der Dichte der Zähne (Formel 20. 54. 23. 16) der malayischen pallidula (s. str.), in den übrigen Merkmalen aber der melanesischen p. rhino-

ceros (vgl. Schilder-Schilder 1938/9 P, p. 164), und sei daher als p. simulans nov. abgetrennt; in Analogie zur Verbreitung von (111) rashleighana lebt in Ost-Melanesien eine Rasse von (119) gaskoinii, die kleiner ist, gröbere Zähne³) und gröbere, weniger zahlreiche Seitentropfen als die Hawaii-Rasse g. gaskoinii (s. str.) hat, und auf die der Typus (nicht die "Metatypen" und späteren Mißdeutungen!) von fischeri (VAYSSIÈRE 1910) bezogen werden muß. — Bei einigen Arten ergab eine Überprüfung der Rassenmerkmale eine leichte Verschiebung der geographischen Grenzen einzelner Rassen, besonders bei: (12) staphylaea consobrina: Rückenkörner dichter als bei st. staphylaea, Basis flacher, mittlere Basisrippen nicht ganz bis zum Rande reichend; (113) chinensis sydneyensis: Mündung weiter, Fossula schmal, Columellarfurche seichter als bei ch. chinensis; (115) cribraria fallax: da die ostaustralische melwardi offensichtlich mit der westaustralischen fallax vereinigt werden muß, mußte die pazifische Rasse umbenannt werden (orientalis nov.); die westamerikanische (130) mexicana unterscheidet sich durch die bräunlichen Seiten und die weniger feinen Labialzähne von allen isabella-Rassen, zu denen auch die von atriceps durch abgesetzte Enden, hinten gebogene Mündung und vorspringenden Fossula-Innenrand unterscheidbare Hawaii-Rasse controversa gezählt werden muß (beide Rassen bilden zwei durch die Schalengröße deutlich unterscheidbare Ecotypen aus). — Die pleistozänen (64) subviridis putjanganensis und (86) saulae modjokertensis wurden in das Verzeichnis der rezenten Formen mit aufgenommen. — Da der Name von (74) caurica obscura (Rossiter 1882) durch Gaskoin 1849 (= Trivia napolina) präokkupiert ist, wurde er in obscurata nov. abgeändert.

Zitierte Literatur.

HIDALGO 1906 C: Mem. Ac. Cienc. Madrid, 25, p. 1.

MELVILL 1888 S: Mem. Manchester Lit. Soc., (4) 1, p. 184.

Schilder 1924 I: Archiv f. Naturgesch., 90, A. 4, p. 179.

- 1926 E: Zeitschr. f. Ethnologie, 1926, p. 313.
- 1927 R: Archiv f. Naturgesch., 91, A. 10, p. 1.
- 1928 V: Zool. Anzeiger, 79, p. 5.
- 1932 Q: in: Fossilium Catalogus, 1 (Animalia), pars 55, p. 1.
- 1933 C: Zool. Anzeiger, 101, p.180.
- 1939 G: Archiv f. Molluskenkunde, 71, p. 165.

Schilder-Schilder 1938/39 P: Proc. Malac. Soc. London, 23, p. 119.

Weinkauff 1881 S: in: Martini-Chemnitz, System. Conchyl. Cabin., (2. ed.) 5, pars 3.

³) Die Formel nach Archiv f. Molluskenk., **71,** p. 75 (1939) ist für fischeri 12. 61. 21. 18, für gaskoinii 22. 62. 22. 20.

Arten der östlichen Hemisphäre.

		Ξ	Indik	u		M	a l a	Malaysia	ಡ		Not	Notogäis	is	Ь	Pazifik	
	IS	IW	IS IW IC IN	Z	ΙE	MW MS ME MC	NS N	1E M	C MN		NC NW NE NS	N NE	NS	PS PC	PC PW PE PN	PN :
122 (2) teulèrei (2)	1	I	1	္ရ	0w]	I	i	 	ı	1		1		.	
121 (1) fultoni (1)	1 u	l		1	1	1	1	' 	' 1					1		I
123 (2) venusta (2)	1			1	1		I	' 	1	1	7	 ≽	1	1	1	1
124 (4) decipiens (4)		[1	1	1	1		1	1	1	4		I	1		1
125 (5) frie. thersites (4)				1		1	1	1	1	ı	- 4 c	1		1		1
— contraria (1)			1		1	1	1	i	1	1	<u>-</u>	1	ł	1	1	1
- vercoi (0)		1		1	1		Į	1	1	1	MO		1	i	1	1
- friendii (4)]	1	1		İ	1	1	4 ™		1	!		1
126 (0) marginata (0)	-	1	ı	1	1	l	1	1	1		۔ •-	!	1	1	1	1
132 (4) pulchra (4)	I	I	-	4	2₩				' '	1	!	ì	1	1	i I	1
131 (9) isa. rumphii (7)	ı			-	5 _s	īΟ	4	2	4		l	 ≱_	1			1
- lekalekana (7)	1	1	1		1		1	9e	1	1		- 2	l	. 5 .	5	1
— isabella (6)	_	ν.	ιC	3				İ	1	1		1		!	1	1
— <i>atriceps</i> (5)				1	1	1		, I	1	ı				1 2		
— controversa (5)		-			1	1			1	ı		1	.	1		S
137 (6) test. testudinaria (6)	1	-		-	1		5^{c}	7	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	2°c		-	İ	3 4	3 2	I
— ingens (3)		_	7					i	1	ı	1			1	1	
147 (6) scurra indica (5)	1				1	0e	_{ا د}	7	0 2		1	7	l	ا «	1	1
- retifera (5)		1		Ì	1			İ		1	İ		l	 -	2 4	2
$-$ scurra $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4)$		16	m	1) c	3	1	1	\ \	ı	1	- mc	1	1		
148 (6) eglan. couturieri (5)		١				O	3	m	2°	2				- ₂		1
- eglantina (4)				}	1			· 	1	ı			l	3 ^w _s 2	0	0 _w
149 (7) grayana (7)		$2^{\rm n}_{\rm s}$	- 1°	9	$_{\rm n}^{4^{\rm w}}$		1	İ	}	1	1	1		1		1
150 (9) arab. arabica (8)		1			ţ	9	rO.	5	ت ا	1	1	1	i	1	1	Į.

	6 5 4 3 -	- 2 5				1 3 4 3	2 5 3 5 3°			$ 1^{n}$ $-$ 5 4 5 4 3^{e}		- $ -$	$- 0_{\rm e}^{\rm c} 1_{\rm n}$	$ 0^{n}$ $-$ 4 4 4 2^{w}_{s} $-$						- $ 2$ 3 3 2 ^w $-$	- $ -$	l ⁿ 4 4 4 4		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	$ 0^{n}$ $-$ 4 4 4 3 2			- 0 ^c $ -$ 1 ⁿ $ -$
$ 1^{n}$ 4^{n}_{w} 5	1 1 1		$3_{\rm w}^{\rm n} 1^{\rm c} -$	 	4	 	$ 2_{c}^{n}$ $ 1^{e}$	4	5 3 - 2 -	- 4 $-$ 3	1 1 1	 	-3 4 1 $\frac{1}{6}$	1 1 1	7 7	 	2^{n}	 	 	 	4 3 2 3 2	 - - -	 	3 3 3 3 2^{c}	 	 	 	4 5 5 5 4
(g) · · · ·	(7) · · · ·	· · · · (5) · · · ·	$\ldots (6) - 2 - \mathbf{5_e}$	$$ (5) 3 5 4_s^c $$	\ldots (6) 3 5 $ 3$	(5)	(9) · · ·	$\ldots (5) - 2 - 3_e^{cs}$	$\ldots (6) - - - 3_e^s$	(T)	(5) 0 3 4 1 ⁸ 1 ^w	\dots (2) $ -$	(5)	(5)	\dots (2) $ -$	(3) - 1 2 1cs -	$\ldots (3) - - - \mathbf{2_e^s}$	$(0) - 0^e$	- $ -$	(5)	$(6) 3_e^s$	$ (9) \cdots$	\dots (3) - 2 3	$(6) 3_{\rm e}^{\rm s}$		$$ (5) $0n$ 4 3 3 0^{w}	$\dots (3) 3 -$	(L) · · ·
– asiatica .	– niger	- westralis .	— dilacerata .	— immanis	(6) histrio	152 (5) maculijera	(7) depr. depressa.	- dispersa .	154 (8) maur. regina .	— calxequina	mauritiana	145 (2) valentia	146 (6) mappa mappa .	— viridis	— geographica	-alga	133 (3) nivosa	(0) broderípii	(0) leucodon	(5) aurantium	142 (7) argus argus .	— ventricosa .	— contrastriata	143 (7) talpa talpa	- saturata .	— imperialis .	144 (3) exusta	(8) tigris pardalis.

:	בייה	3
	200	٠ د
	ב	J
_	ששעט	د :
-	-	1110
	2	5
	1	
	1	•

	ļ	-					-		1								
	IS	_	W IC IN	Z	ΙΕ	MW	MS]	MW MS ME MC	IC MN	1	NC NO	NC NW NE NS		PS PC PW PE PN	PW	PE	PN
tigris lyncichroa (7)					1		1		 			4 ^c -		5 4	4	4	2°
$-$ tigris $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (6)$	I I	7	4	5 _s	$2^{\rm s}_{\rm e}$			Ì		i			ı				l
156 (6) panth. catulus (2)	-		1	~	ĺ		1	· 	1		1		1	1			1
— pantherina (5)	-		1	5	1	1			l		1		1		1	1	
157 (9) <i>lynx vanelli</i> (8)				-	$4_{\rm e}^{\rm s}$	9	5	9	4		0		ı		-		l
— caledonica (7)			1		1			1	ı	1		4 ⁿ -	ı	5	5	3	1 _e
$- lynx \dots \dots (6)$	1 _n	5	īΟ	1	1			İ	1			İ	ı		1	1	1
- williamsi (4)	. [4	1				l l	1		1	ı			1	1
158 (8) vit. vitellus (7)	-				1	5	8	τς π	5		0^{W} 1	l	ı	3 ⁿ –			I
— polynesiae (6)	-			1	1	1	1	· 	 		1	1	1	4 5	4	4	₂ e
- orcina (5)					1			1			1	. 5	1	1		1	
$ dama$ $\cdot \cdot \cdot \cdot \cdot (6)$	7	3	4	Ls	$3^{\rm s}_{\rm e}$				1		 	İ	ı	1		1	1
159 (5) camelopardalis (5)			1	2	1		-[l l		 	1	ı	1	1		1
160 (5) ventriculus (5)					1			1				1	ı	1 4	3	4	a_l
161 (4) reevei (4)					ì				 		4 ° ⊢	1	1				l
162 (8) carn. carneola (7)		-		-	1	4	4	'	3		72		1			-	
— propingua (7)					1				 	1	1	4	i	5 5	4	4	₂ e
$-$ sowerbyi $\cdot \cdot \cdot \cdot \cdot (6)$	7	٠	τC		$3^{\rm CS}_{\rm e}$				1	,			1		1		1
$-$ crassa $\cdot \cdot \cdot \cdot \cdot \cdot (6)$	1			9	3 ™a	1			1		1	1	1	1		1	1
163 (4) leviathan (4)				1	Ì				l		1	l	1	!	1	m	7
164 (5) sulcidentata (5)	-				1	1			1		1	1	1	1	-	1	5
165 (5) arenosa (5)					1		1	1	1		1		1	_ 	- °		_
1 (5) mariae (5)					ì	1		2 _n	1	1	1		1	1 3	* 0	, S	
2 (7) cic. cicercula (5)					1	3	3	e.	_		I	1	1	2 0	0s -		
— liénardi (4)			4	Ls	1	1	I		1		1	1	1		1		
— margarita (5)				1	ì		1	1	1	1		1	ı	3 3	7	4	2 _e

4 2 4	2 s
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 _c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
votata	— nashi (4) — — — — — — — — — — — — — — — — — — —

	٥	;
	ī	
:	ď	3
•	_	-
		1
	U	
	=	
	Ε	=
	4	ı
	Ī	-
۰	_	-
	_	_
	5	
	٥	
	2	
	ζ)
•	-	-
	-	3
	-	כ
:	c	5
	٤	-
	٩	
•	c	3
	2	=
	С	
-		
	٤-	•
	_	•

:	SI S	I w	Indik IW IC I		田田	Malaysia MW MS ME MC	aysi: ME M	MN C	Notogäis NC NW NE NS	Pazifik PS PC PW PE PN
cern. cernica (3)			e s						 	
19 (4) citrina (4)	4	$_{\rm s}^{\rm o}$			ı	1	ı 		 	1 1 1
20 (5) gang. gangranosa (4)		I			ı	3^{e} 0^{s}	1s 2	1	1	$0^{\rm n}$
— reentsii (4)	$0^{\mathbf{u}}$	00	7 _n	$_{\rm s}^{0}$	$_{\rm e}^{\rm s}$	m	1		 	
21 (5) boivinii (5)		,	1	· 	ì	3^{c}_{e} 3	3	I	 	
24 (8) helv. helvola $\cdot \cdot \cdot \cdot \cdot (7)$	Ì	1	1	1	ı	4 3	4 4	5	 	$3_{\rm c}^{\rm n} - 3_{\rm w}^{\rm n}$
— citrinicolor (2)		1	1	i	I	1		1	$0^{\rm w} 2^{\rm v}$	
- callista (6)	-	1	1	i	I	1			2 -	$3 4 3_e^c 5 -$
— mascarena (6)		rc	5	$_{\rm s}^{\rm s}$	4 _e	$ _{\rm m}0$	l			
- hawaiiensis (5)			l	İ	l	1	l	1	 	5 5
$-$ argella $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	311	2 °C	1	° so	ı	1			 	
meridionalis (4)	4	1		1	ı	1				
25 (9) cap. reticulum (8)		1	[ı	1	6 4	5	סנ	- 2 ^c $ -$	5
— caputserpentis (7)	4	ĸ	9	1	$4_{\rm e}^{\rm s}$	1			 	
— argentata (7)	-	-		1	1	1	1	1	- 2 ⁿ 3	4 6 5 6 -
- $mikado$ (4)		[1	1	!		– 4 e	 	
- kenyonae (4)		-	1	1	I	1			2^{w} 3^{w} —	
- caputanguis (5)	-		1	1	ı	1		1	 	
— caputophidii (5)			1		ı				 	5 – – – 5
26 (3) caputdraconis (3)		1	1	1			1		1 1	- 3 ^e
27 (7) por. scarabaeus (7)	-	1				0 -	3	1 ⁿ 2 ^c	 - 	4 6 3 5 2 ^e
- poraria $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$		1	7	1	5 _s	4	1	1	$-2^{w}-$	
28 (9) erosa phagedaina (7)				1	1	,	5	4	 	- $ 0$
	1	1		1	l	1	1		$ 1_{\text{n}}$	5 5 3
$-$ erosa $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	ဗ	ú	4	1	$3^{\rm s}$	 			 	
- lactescens (5)		1	1	1	1	1			 	$ -$ 4 2^{e}

	0 ⁿ 0 0 ⁿ	0 c	4 + 4 + 1
m			
	0e		3 4 4 4 5 7 6 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
- purissima (4) similis (4) 3 ⁿ 3 1 1 ^s 1 ^w 1 ^w 29 (6) neb. nebrites (6) - 1 ⁿ - 5 ceylonica (2) 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s. lina vorthi zina incta	14 (5) semiplota (5) — — — — — — — — — — — — — — — — — — —

Arten der östlichen Hemisphäre.

nuc.madagascariensis . (4) — gemmosa (6)	IS 0n -	Indik IW IC 2 4	In dik IS IW IC IN 0 ⁿ 2 4 —			Malaysia MW MS ME MC	a la IS M	y s i	M N I	NC NW N NW NW	Notogais NC NW NE NS		PS PC — — — — 5	Pazifik PC PW PE 5 2 4	k PN	
	"	1	1	1		İ	1	1	1	1	1		1	ì	4	
54 (2) fuscorubra (2) 55 (3) fus. coronata (0)	o" ~		1 1	1 1			1 I	1 1						1 1		
— fuscodentata (3)	°m			1	1	İ	ı I		}		1					
56 (3) algoensis (3)	₈ w 4	[1 1					1 1					1 1		
(0) amphithales	· °o	1	1	 	1	Ì		 	1	1	1	1			 	
59 (4) capensis (4)	4	1	Ì	1		İ	1	1	1] 	1		1	1	1	
76 (5) piperita (5)	1	1		1		İ	1	1	1		- s ₀			· 	1	
(3) comptonii			1	1	1	İ	1	1		m				,		
(3) declivis		Ī	1	l I		1	i	1	1	m	1	1	1	· 	1	
(2) mayi $\dots \dots$		l	i	l i	,		' 	1	1	7	1	1	1	· {	 	
80 (4) angustata (4)				l I	1	İ	1	1	1	4		1	 	1	1	
(4) pulicaria		1		1	1	1	1	1	1	4 °°	1	1	 		1	
52 (0) armeniaca (0)			1	1	,	İ		ı	1) 0		1	1	· {	1	
53 (4) hes. hesitata (4)			İ	1	1	İ	ı	1	ì	. 4	1		 	· {	1	
— howelli (2)				1	1	İ	' 	1	1	7 e —		1	 	· {	 	
- beddomei (3)		1	1	1		Ì	' 	 	1		SM	1	1	1	1	
60 (4) xanthodon (4)	1	1	1	1	1	İ	ı	1	1		4	1	1	· {	1	
61 (4) vredenburgi (4)		l		1		•	1	 	1	1	[1		1	
62 (6) pall. insulicola (1)	1	1	1	1		ၟၣ	' 	1	\ s_			1	1	· 	1	
$-$ pallida $\cdot \cdot \cdot \cdot \cdot (6)$	1	1		9 °(1	' 	1	1	1	1	1		1	 	1
63 (0) hirasei (0)	1	1		ı I	,	1	1) 	• -	1			} 	· 		
64 (5) subv subviridis (2)]		- 1		ļ		1	1		1		7 s –	Ì	 	
													ı			

1 1 1	 	 	 	1"	0,	 	1 1 1 1	 	1 1 1 1	 		0,	1 1 1 1	 	 	 	 	 	 	 	 	7 _s	 	4 ^w	4	$2^{n} - 2^{w}$	5 3	2^{w}	
 uga 	 	4	_ z _s	 	 	 	 	 	 	 	- 3 ^c 1 ⁿ -	 	 	 	 	 	 	1 1	 	- 8	 	 	0 _c -	1	$ 1^{n} -$	 	 	- 4 5 -	
 	ts	- 1 _e	 	0^{e} 2 3 3 3	 	 	$1^{\frac{w}{n}}$	 	 	$0^{n} 4 1 4 -$	 	 	4 ^w	 	 		 	 	$-0^{\rm w}$ 3 3 $-$	 	 	1 1 1 1	2 ^c 4 3 6 2	 	 	5 5 6 4	 	 	5 ^w
- anceyi (3)	- $+$ putjanganensis . (1) $ -$	- dorsalis (4)	- vaticina (2)	65 (6) onyx onyx (5) $$	— melanesiae (0) — — — —	- nymphae $\dots \dots (3)$ $\mathbf{3_e^s}$	- succincta (4) $ \mathbf{3_e^{cs}}$	– persica (3) – – – $3_{\mathbf{n}}^{\mathbf{w}}$	$-$ adusta $\ldots \ldots (4)$ 1^n 3 1_s^c $ -$	66 (5) pyr. pyriformis \dots (5) $ 2_{\rm e}^{\rm s}$	- snithi (4)	67 (5) pul. novaebritanniae . (0) — — — — —	— pulchella (4) — — — — —	— vayssièrei (0) — $ 0^{\mathrm{s}}$ —		68 (2) hungerfordi (2) $ -$	69 (0) barclayi (0) $-$ - 0^{e} - $-$	91 (5) lentiginosa $\dots \dots (5)$ — — 0^{s} 5	70 (5) wal. surabajensis (4) $ -$	— continens (3) — — — —	— walkeri (3) — — 3 — —	– brégeriana (2) – – – – –	71 (7) ovum ovum (6) $ -$	$-$ palauensis $\cdot \cdot \cdot \cdot (4)$	— chrysostoma (4) — — — — —	72 (9) err. errones $\dots \dots (8)$ — — — — —	escens · · ·	$ 0$ \cdots	- bimaculata $\cdot \cdot \cdot \cdot (6)$ - 0 , 0 , 1 , 4 , 4

ć	ن
	_
:0	٠ ح
2	
	_
	<u>, </u>
	"
	Ξ
	ט
I	7
	_
:	=
d	υ
2	=
	ر
-	
+	-
•	0
:0	~
٠	_
1	_
d	υ
τ	3
١	=
	ט
	-
١	-
<	(

Pazifik PS PC PW PE PN	 	$2 - 3^{w}$	$2^{n} - 3$	$4 4 - 1^{W} -$	 	1 1 1 1	1 1 1	 	 	 	$-4 + 4 0^{c}$	 	 	 	 	0 _e	 	3 3	- 8	 	$2^{n} - 0^{w}$	4 4	 	1 1 1 1 1	 	4 4 2 2^{w} —	
Notogäis NC NW NE NS	- 4 -	$ 1^{n} -$! ! !	- 0 _u	3 3		 		 		$0^{e} - 4 -$	 		 	 		 	$-\ \ -\ \ 2\ \ -$		1	 	$ 2^{n} -$	SW	1 1 1	 	- 4 -	
Malaysia MW MS ME MC MN		$3 + 3 \cdot 3 \cdot 3_e^{C}$	2 ^e 4 4 5 3	 	 	4	1 1 1 1	 		3 2 2 $0^{\rm s}$ $2^{\rm c}_{\rm e}$	 	1 1 1	1 1 1 1	1	f _c	 	$2 2 3 0_{\rm e}^{\rm s} 1_{\rm e}^{\rm c}$! ! ! !	 	 	4 4 3 3 2 ^c	 	 	 	3 2 2 1 —	0 _e	
Indik IS IW IC IN IE		0	 	! ! !		s 3	- 4 5	$-3^{\rm n}-5^{\rm w}$	5 0			3	4 4 —	$ 3_{c}^{s} 4_{n}^{w}$	 		 	 	 	$0^{\rm n} 0^{\rm s}$ 3 $0^{\rm s} -$	 	 	 	$-2_{\rm s}^{\rm e} 4 0^{\rm s} 3^{\rm s}$	İ	i 	
	73 (6) cyl. sowerbyana (4)	– cylindrica (6)	74 (8) cau. caurica (6)	— obscurata (5)	- longior \dots (4)	$-$ corrosa $\cdot \cdot \cdot \cdot \cdot (4)$	- dracaena (5)	— quinquefasciata . (5)	— elongata (5)	92 (7) fel. pauciguttata (4)	— melvilli (5)	- listeri \ldots (5)	$-$ felina \ldots (5)	- fabula . . (5)	(1) mart. martini (1)	- superstes · · · · (0)	82 (6) punc. atomaria (4)	- iredalei (5)	- trizonata (3)	- punctata (4)	(7) ase. vespacea (6)	- bitaeniata (5)	— latefasciata (3)	- $asellus$ (4)	84 (7) clan. moniliaris (4)	- candida . . (6)	

e e e e e e e e e e e e e e e e e e e	0°	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 5. 0.
	0" 0"	0	m
- clandestina (4) - 0 ^e 2 1 ^s 4 ^s - passerina (4) 1 ⁿ 2 ^c 3 ^s 85 (4) artuffeli (4) 86 (3) sau. †modjokertensis . (0) jensostergaardi (0)		eysti	- diluculum (3) 1 3 - 0 - 28 93 (7) gra. gracilis (5) 28 - notata (5) 5 3 ^m - japonica (5) 5 3 ^m - macula (5)

Arten der östlichen Hemisphäre.

		IS	IW	Indik IW IC I	k IN	IE	MW	Malaysia MW MS ME MC	ays ME	i a MC	MN	Notogäis NC NW NE NS	Pazifik PS PC PW PE PN
98 (5) mic. microdon	(4) · · · · (4)				{		3	0	3	$1_{\rm n}^{\rm w}$	0 <mark>c</mark>	 	
— granum	n cdot c				ļ		1	-				$- 0^{n} -$	3 3
— chrysa	$lis \dots (2)$	[-	S ₂	s ₀	I				1	1	 	1 1
109 (5) good. fuscomaculata	comaculata . (3)		-		-		l		-		I		
— goodal,	$Uii \dots Uii$		1								ļ	 	- 4
111 (3) rash. rashleighana	lleighana (1)			1	-							 	
- eunota	$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $				-						I	 	7
110 (7) teres teres	(5) 8					$0^{\rm s}$	ю	m	4	_	$2_{\rm e}^{\rm c}$	 - - -	$ 2_{\rm n}^{\rm w}$
- subfasciata	ciata (4)	1		İ	-	l	-				1	- 3 -	3 3
- pelluce	(4) · · · · (4)				-			-		1	1	 	$ 1^{6} 4 3$
alveolus	(4) 81	3	m	3	$^{\circ}0$	1	ļ	1		1	I	 	
112 (2) subteres .	$\ldots \ldots \ldots (2)$		1	l		1	-		1	1	1	 	$ 2_{s}^{w}$ $-$
99 (2) coxeni	$\ldots \ldots (2)$		I				[1	1	 	${f 2}_{ m c}^{ m w}$
100 (6) qua. quadrimaculata	Irimaculata . (6)		1			-	62	7	4	4	္ ့	 	$2 - 2^{W}$
— garretti	$ti \qquad (3)$				1		ļ						me -
— thielei	(4) (4)				-			Į	1	1	1	$ \mathbf{3_e^c}$ $2^{\rm n}$ $-$	
101 (6) pall. pallidula	idula (4)						$2_{\rm e}^{\rm n}$	7	7	m	0°c	 	1 ^w
- rhinoce	eros (5)	-	-		-		1		1			1 _n -	4 3
- simula	$(ns \dots (2)$				1		1				1	$ \mathbf{z}^{w}$ $ -$	
102 (4) interrupta	(4)				-	2 _s	4	-	0	1	1	 	
103(6) kie. depries	steri (4)				-	-	m	63	7	I _s	0°c	 	
— schneia	deri (4)	1			- 1						1	 - 	3 3
reductesignata	esignata (5)			5	1		1	1	1	1	1	 	
— kieneri	$i \cdots i$		4	l			-		}	1	1		
105 (7) hir. neglecta	cta (6)			l			4	4	3	ဗ	3	_ 2	$ 2_{n}^{w}$ $ -$
- rouxi	(5)				-	1	-		1	1	1	- 2 $-$	4 3

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 		$2 \ 2 \ -2^{c}_{e} \ \ 2 \ 0^{n} \ 3 \ 1^{n} \ 1^{e}$	- $ -$							2 2 0 ⁸ 1 ^c 3 2 2	0^{w} 3 $1_{\mathrm{c}}^{\mathrm{n}}$				- $ 0$ ⁿ $ 1$ ^c $ -$	$$ 0, \mathfrak{q}_{c} $$	3 _e	$ 3_e^n$ $ 4$ $-$	- m
	4	I	1	- 2°c)	1 1	1 _e			1		l	7 ¤	7		1	1		ĺ					1
· · · · · · · · · · · · · · · · · · ·	106 (5) urs. ursellus (5) $ 0^{s}$ $-$ amoeba (4) $ -$	104 (4) owenii owenii (4) — 0^s 4 — —		101 (4) erythraeensis $\ldots \ldots (4)$ — — 4 — 108 (6) sto. stolida $\ldots \ldots (5)$ — — — 2^s		- diauges (3) 1^{11} 0 2^{5}_s - brevidentata (2)	113 (6) chin. chinensis (5)	— sydneyensis (3) — — — — —	<i>a</i>			$\ldots \ldots (2) 2$	(2) $$	115 (6) cri. cribraria (4) — — 1_e^n 1_s^c 2	– orientalis (5) – – – – –		$-$ comma $\dots \dots \dots (2)$ $0^{\mathbf{n}}$ 1 $0^{\mathbf{c}}$ $ -$	116 (3) cribellum (3) $-$ - 3^{s} - $-$	117 (3) esontropia (3) $-$ - 3^s - $-$	118 (2) catholicorum (2) — — — — —	119 (3) gask. fischeri \dots (1) $ -$	– gaskoini (3) – – – –	120 (5) cum. cumingii (4) — — — — —	– cleopatra (1) – – – –

Arten der westlichen Hemisphäre.

AW AS AN AC AE EE EW EC ES EV EC ES				Α	mer	ika		Е	ura	frik	a
130 (4) mexicana (4) 4 128 (7) cinerea (7) 4 6 3 \(3 \) 3 \(7 \) 4 6 3 \(6 \) 3 \(7 \)			AW	AS	AN	AC	AE	EE	EW	EC	ES
130 (4) mexicana (4) 4	127 ((3) mus (3)	_	_	_	3 s				_	_
129 (7) lurida oceanica			4	_	_	_	_		_	_	
129 (7) lurida oceanica	128 ((7) cinerea (7)	_	_	4	6	3 ^e n		_	_	_
- lurida	129 ((7) lurida oceanica (3)	_	_	_	_	_	_		_	3 ⁿ
138 (6) sterc. conspurcata		— minima (5)		_	_	_	-	_	_	5	_
Stercoraria (5)		— lurida (6)	_	_	_		_	6	4	_	_
139 (6) zebra zebra	138 ((6) sterc. conspurcata (4)		_	_	_	_	_	_	4 n	_
- dissimilis		— stercoraria (5)	_	_		_	_	_	_	5	2 ^e
140 (4) cervus	139 ((6) zebra zebra (6)	_	_	4	5	_	_	_		_
141 (5) cervinetta (5)		- dissimilis (4)	_		_		4	_	_	_	
7 (2) surinamensis (2)	140 ((4) cervus (4)	_	_	3	3_n^w	—		_	_	_
22 (5) albu. albuginosa (4)	141 ((5) cervinetta (5)	4	5		_	—		_	_	
- nariaeformis (2) - 2 2	7 ((2) surinamensis (2)		_	_	2	—	_	_	_	_
23 (7) spur. acicularis (6) — — 3° 6 3 — — — — 3° 6 3 — — — — 3° 6 3 — — — — 3° 6 3 — — — — 3° 6 5 — — 3° 6 5 — — — 3° 6 5 — — — 3° 6 5 — — — 3° 6 5 — — — 3° 6 5 — — — 3° 6 5 — — — 3° 6 5 — — — — 3° 6 5 — — — — 3° 6 5 — — — — 3° 6 5 — — — — — 3° 6 5 5 — — — — — — 3° 6 5 5 — — — — — — 3° 6 5 5 — — — — — — — 3° 6 5 5 — — — — — — — 3° 6 5 5 — — — — — — — — — 3° 6 5 5 — — — — — — — — — — — — — — — — —	22 ((5) albu, albuginosa (4)	$\mathbf{4_c^w}$	_	_	_		_	_	_	_
- sanctaehelenae . (3) 3\frac{1}{c} - atlantica (5) 4\frac{1}{c} 5 4\frac{1}{c} 5 4\frac{1}{c} 5 4\frac{1}{c} 5		— nariaeformis (2)	_	$2_{\mathrm{c}}^{\mathrm{w}}$		_	_	_		_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 ((7) spur. acicularis (6)	_	_	3°	6	3	_	_	_	_
- spurca (5) 5 1 e 40 (4) acha. achatidea (3) 3 v 0e 0n oranica (4) 0n		— sanctaehelenae (3)	_	_	_	_	_	_	_	_	3 ¹¹
40 (4) acha. achatidea (3)		— atlantica (5)	_	_	_	_	_	_	_	5	_
- oranica (4) 3 ^s 0 ^e 0 ⁿ 0 ⁿ 0 ⁿ 0 ⁿ 1 ^e 41 (5) zonaria (5) 1 ^s 5 1 ⁿ 1 ⁿ 1 ⁿ		$-$ spurca \cdot \cdot \cdot \cdot (5)	_	_	_	_	_		1 ^e		_
- inopinata	40 ((4) acha. achatidea (3)	-	_			_		_		_
- longinqua (1) 1 ^e 41 (5) zonaria (5) 1 ^e 42 (1) gambiensis (1) 1 ⁿ		$-$ oranica $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	_			-	_	3 ^s	0 ^e	_	_
41 (5) zonaria (5) — — — — — — — — 1 ^s 5 — 42 (1) gambiensis (1) — — — — — — — — 1 ⁿ — 43 (4) picta (4) — — — — — — — 0 ^s 4 ^w _n — 44 (5) ann. aequinoctialis (3) — 3 ^c _s — — — — — — — — — — — — — — — 45 (3) sanguinolenta (4) 4 ^w _c — — — — — — — — — — — — — — 46 (3) petitiana (3) — — — — — — — — 3 ⁿ — — 46 (3) petitiana (3) — — — — — — — — 2 ⁿ — — — — — — 1 ^e — — angolensis (1) — — — — — — — 4 ^{cs} — — — — — 1 ^e — — — — — — — 4 ^{cs} — — — — — — — — — 4 ^{cs} — — — — — — — — — — — — 4 ^{cs} — — — — — — — — — — — — — — — — — — —		•	_	_	_	-	_		_	0 "	_
42 (1) gambiensis (1) $ -$			_	_	_	_	_	_	_	_	1 e
43 (4) picta			_	_	_	_	_	_	18		_
44 (5) ann. aequinoctialis (3) — 3° — — — — — — — — — — — — — — — — —			_	_	_	_	_	_		-	-
- annettae			_	_	_	_	_	_	0,	4 ^w _□	_
45 (3) sanguinolenta (3) — — — — — — — — 3 ⁿ — 46 (3) petitiana (3) — — — — — — — — 3 ⁿ — 47 (6) pyrum senegalensis (2) — — — — — — — — 1 ^e — angolensis (1) — — — — — — — — 1 ^e — insularum (4) — — — — — — 4 ^s — — — — — — 4 ^s — — — — — — 4 ^s — — — — — — 4 ^s — — — — — — 4 ^s — — — — — — 49 (5) robertsi (5) 1 5 — — — — — — — — — — — — — — — — — —	44 (_	$\mathbf{3_s^c}$	_	_	_	_		_	_
46 (3) petitiana (3) — — — — — — — — 3 ⁿ — 47 (6) pyrum senegalensis (2) — — — — — — — — — 1 ^e — angolensis (1) — — — — — — — — — 1 ^e — insularum (4) — — — — — — — 4 ^s — — — — maculosa (5) — — — — — — 4 ^e 3 ^e — — — — — — 48 (3) spadicea (5) — — — — — — 5 — — — — — — 49 (5) robertsi (6) 5 4 — — — — — — — —		` '	4°	_	_	_	- .	_	_	_	.—
47 (6) pyrum senegalensis . (2) — — — — — — — — — — 1° — angolensis (1) — — — — — — — — 1° — insularum (4) — — — — — — — 4°s — — — — — — — — 4°s — maculosa (5) — — — — — — — 5 — — — — — — — — — — — — — — — — — — —			_	_	_		_	_	-		-
- angolensis (1)			_	_	_	_	_	_	_		
- insularum (4) 4 ^{cs} - maculosa (5) 4 ^{cs} - pyrum (5) 5 48 (3) spadicea (3) 3 ⁿ 49 (5) robertsi (5) 1 5 50 (6) arabicula (6) 5 4	47 (_		_	_	_	_	2"	_
- maculosa (5) 4 e 3 e - pyrum (5) 5 48 (3) spadicea (3) 3 n 49 (5) robertsi (5) 1 5 50 (6) arabicula (6) 5 4			_	_	_	_	_	_	_	_	1
- pyrum (5) 5			_	_	_	_			_	_	-
48 (3) spadicea (3) 3 ⁿ			_	_	_	_	_	-	36	_	
49 (5) robertsi (5) 1 5				_	_	_	_	5	_	_	_
50 (6) arabicula (6) 5 4 — — — — —		• • •					_		_	_	_
• • • • • • • • • • • • • • • • • • • •						_		_	_	_	_
51 (5) nigropunctata (5) — 5 — — — — —		• •	5		_	_	_	_	_	_	_
	51 ((5) nigropunctata (5)		<u>5</u>	_	_	_	_	_	_	

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Archiv für Molluskenkunde

Jahr/Year: 1940

Band/Volume: 72

Autor(en)/Author(s): Schilder Franz Alfred, Schilder M.

Artikel/Article: Die Verbreitung und Häufigkeit der rezenten

Cypraeidae. 33-56