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Abstract
The taxonomic status of the freshwater crab Dilocarcinus septemdentatus (Herbst, 1783) is still not well established. Currently, the 
main issue involves synonymization with D. spinifer H. Milne Edwards, 1853, based on a variation of the angulation of the gonopod 
apex. These species are distributed along rivers and lakes in northern South America, with disjunct occurrences in central-west Brazil 
and Argentina. Due to these inconsistencies, an integrative approach was performed to elucidate these questions, with morphological 
(including NanoCT-Scan) and molecular analysis (Maximum Likelihood Trees, Bayesian Inference, Genetics Distance Matrix, and 
Haplotype Network), based on mitochondrial markers COI and 16S rRNA. Both analysis revealed and supported the existence of a 
species complex under the name of D. septemdentatus. Based on the results obtained, we propose the revalidation of D. spinifer, the 
description of a new species, and the redescription of D. septemdentatus s. str., with a neotype designation for this species. The hy-
pothesis that this species complex originated in the Pebas System, an extensive mega wetland system that existed along the lowlands 
of Western Amazonia from late Oligocene to late Miocene (c. 23–11 mya) is discussed.
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1. Introduction

The primary freshwater crab genus Dilocarcinus H. 
Milne Edwards, 1853 has a somewhat complex taxo-
nomic history. In the first comprehensive revision of the 
group,  Rathbun (1906) considered it as a subgenus of 
 Trichodactylus Latreille, 1828, including nine species. In 

Pretzmann’s (1968) and Bott’s (1969) revisions, it was 
treated at the generic level; the former author included 
12 species and subspecies, whereas the latter author split 
the genus into two subgenera, with Dilocarcinus s. str. 
counting three species. Rodríguez’s (1992) system dis-
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regarded the subgenera and was more inclusive in terms 
of constituent species, with 11 species belonging to the 
genus. Magalhães and Türkay (1996a, b, 2008), based on 
existing differences in the male first gonopod and abdom-
inal segmentation, separated the afore mentioned species 
into four genera, being Dilocarcinus composed by three 
species only: D. septemdentatus (Herbst, 1783), D. pagei 
Stimpson, 1861, and D. truncatus Rodríguez, 1992.

In their specific treatment of the genus, Magalhães and 
Türkay (2008) proposed that D. spinifer H. Milne Edwards, 
1853, the type species of Dilocarcinus, be considered a 
junior synonym of D. septemdentatus. This synonymiza-
tion was made based on the variation in the arrangement 
of the apex of their first male gonopod, a diagnostic char-
acter for those species, which was then considered some-
what inconsistent. Dilocarcinus  septemdentatus sensu 
Magalhães and Türkay (2008) is widely distributed in 
northern South America, encompassing the Amazon ba-
sin, coastal river basins of Suriname, French Guiana, and 
northern and northeastern Brazil (states of Acre, Amapá, 
Amazonas, Pará, Maranhão, and Goiás) and eastern Peru 
(Magalhães and Türkay 2008; Santos and Vieira 2017; 
Andrade et al. 2018), with disjunct occurrences in the 
Araguaia basin in Brazil (Magalhães and Türkay 2008) 
as well as in the middle Paraná River basin in Argentina 
(Collins et al. 2009).

Such a wide area of occurrence, with the existence 
of isolated spots (central-west region of Brazil, state of 
Goiás, and Argentina, near Santa Fé), raises the hypoth-
esis that this species corresponds, in fact, to more than 
one cryptic species under the same nomination. The oc-
currence of complexes of two or more cryptic species has 
been increasingly reported for freshwater crabs using mo-
lecular tools (Daniels et al. 2003; Jesse et al. 2010; Keik-
hosravi and Schubart 2013; Phiri and Daniels 2014, 2016; 
Souza-Carvalho et al. 2017; Mantelatto et al. 2022). In 
some of these studies, the use of molecular techniques 
has provided excellent contributions to clarify the di-
versity, assuming an important role in the elucidation of 
taxonomic problems when the morphology alone was 
not enough to make clear conclusion of this field. In the 
present study, we aimed to evaluate the real taxonomic 
status of D. septemdentatus sensu Magalhães and Türkay 
(2008) from the perspective of molecular systematics 
integrated with morphological analysis.

2. Material and methods

2.1. Sampling

All specimens used in the present study were evaluated 
through visits to, or loans from, the crustacean collections 
of the following institutions: Coleção de Crustáceos do 
Departamento de Biologia (CCDB), Faculdade de Filo-
sofia, Ciências e Letras de Ribeirão Preto, Universidade 
de São Paulo, Ribeirão Preto, Brazil; Forschungsinsi-
tut und Naturmuseum Senckenberg (SMF), Frankfurt 

am Main, Germany; Instituto Nacional de Pesquisas da 
Amazônia (INPA), Manaus, Brazil; Instituto de Pesqui-
sas Científicas e Tecnológicas do Estado do Amapá 
(IEPA), Macapá, Brazil; Museo Regionale di Scienze 
Naturali di Torino, Sezione di Zoologia (formerly Mu-
seo di Zoologia del Dipartimento di Biologia Animale 
dell’Università di Torino) (MZUT), Turin, Italy; Museu 
Paraense Emílio Goeldi (MPEG), Belém, Brazil; Museu 
de Zoologia, Universidade de São Paulo (MZUSP), São 
Paulo, Brazil; Museum der Natur – Zoologie (ZMH), 
Leibniz-Institut zur Analyse des Biodiversitätswandels, 
Hamburg, Germany; Museum für Naturkunde (ZMB), 
Leibniz-Institut für Evolutions- und Biodiversitätsfor-
schung, Berlin, Germany; Muséum national d’Histoire 
naturelle (MNHN), Paris, France; National Museum of 
Natural History, Smithsonian Institution (USNM), Wash-
ington, D.C., United States of America; Natural History 
Museum (NHM), London, England; Naturalis Biodiver-
sity Center (formerly Rijksmuseum van Natuurlijke His-
torie) (RMNH), Leiden, The Netherlands; Universidade 
Federal do Maranhão (CCUFMA), São Luiz, Brazil; and 
Zoologische Staatssammlung (ZSM), München, Germa-
ny.

Other abbreviations used: cl = carapace length; cw = car-
apace width; G1, G2 = male first and second gonopods; 
P2–5 = second to fifth pereiopods. Measurements are 
in millimeters and are given in parentheses (cw, cl) af-
ter specimen counts when available; ‘?’ is used when the 
measurement could not be obtained. Tissue samples were 
also obtained, under appropriate permits, from the speci-
mens available in the referred collections, except for the 
CCUFMA material, in which the specimens were fixed in 
formalin and despite our efforts did not allow for DNA 
sequencing.

2.2. Morphological analysis

Morphological analysis was performed on specimens of 
D. septemdentatus from different geographic distribution 
as listed in the material examined section. When indicat-
ing the number and sex (♂ = male; ♀ = female) of the 
specimens examined, one symbol corresponds to a single 
individual of the respective sex, while two symbols cor-
respond to two or more individuals of the respective sex.

The morphological examination was conducted by as-
sessing somatic (shape and number of carapace anterolat-
eral teeth; the number of fused abdominal somites) and 
gonopods (shape and angulation of the apex) characters. 
In addition to this preliminary assessment, a search for 
other potentially taxonomically informative characters 
was also performed, but none was found relevant. The 
terminology for gonopod structures was adapted from 
Magalhães and Türkay (2008). The diagnoses of D. 
 sep tem dentatus and D. spinifer proposed by Magalhães 
and Türkay (2008) were considered for the morpholog-
ical evaluation, as well as complementary information 
available in the literature and compiled in Magalhães 
and Türkay (2008). The morphological examination was 
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made using a Leica® MZ9 5 stereomicroscope with a Lei-
ca® DFC 295 camera attached, and a Nanotomography 
CT-Scan, from the Center for Documentation of Biodi-
versity (CDB/FFCLRP/USP). The high-resolution GE 
Phoenix v|tome|x s 240 Nano CT equipment was used 
to obtain computed tomography scans of the gonopods 
of adult males, and 3D image volume processing and re-
construction were performed using GE phoenix datos| x 
2 and volume analysis and image editing were obtained 
through VGSTUDIO 3.0 (Volume Graphics) (see Man-
telatto et al. 2022 for equipment details).

2.3. Obtaining molecular data

Both molecular analyzes were performed based on mi-
tochondrial genes: Cytochrome Oxidase subunit I (COI) 
and 16S Ribosomal RNA (16S). These markers have 
proven their effectiveness in studies with decapod crus-
taceans, both phylogenetic and variability in different 
taxon levels, including primary crabs (Negri et al. 2014; 
 Laurenzano et al. 2012; Silva et al. 2012; Souza- Carvalho 
et al. 2017; Buranelli et al. 2019; Álvarez et al. 2020; 
Mantelatto et al. 2022).

The steps of DNA extraction, amplification, purifica-
tion, and sequencing followed the protocols of Schubart 
et al. (2000), adapted according to Robles et al. (2007), 
as presented in Mantelatto et al. (2018). DNA extraction 
was performed from pereopod muscle tissue, according 
to the following steps: the tissue was initially incubated in 
a dry bath at 55°C for about 12 h in a solution of 200 μL 

of Chelex resin (5%) with 10 μL of proteinase K (PK), 
this time may vary until the tissue is completely digested; 
with complete digestion, the temperature of the bath was 
raised to 95°C for 3 min, for PK inactivation; then, the 
samples were transferred to a freezer for 10 min and sub-
sequently centrifuged at 14,000 rpm, 18°C for 3 min; fi-
nally, the supernatant was transferred to a new tube, from 
which the contraction and DNA quality of the samples is 
evaluated, using a NanoDrop® 2000/2000 c spectropho-
tometer (Thermo Scientific, Wilmington, DE, USA) and, 
once adequate, the samples proceed to the PCR amplifi-
cation step.

Approximately 600 base pairs (bp) corresponding to 
the COI gene and 500 corresponding to 16S were ampli-
fied using the primers listed in Table 1, with the follow-
ing cycle configurations: initial denaturation at 94°C for 
5 min, 40 denaturation cycles at 95°C for 45 sec, with 
annealing at 50°C (COI) and 48°C (16S) for 1 min, ex-
tension at 72°C for 1 min, and a final extension step at 
72°C for 10 min.

The PCR products were evaluated using agarose gel 
electrophoresis (1.5%), visualized on an L-PIX EX® 
photodocumenter, purified using the SureClean® Plus kit 
(according to the supplier’s protocol), and sequenced us-
ing the ABI Big Dye® Terminator Mix in an ABI Prism 
3100 Genetic Analyzer®, from the FCAV Technology 
Department of UNESP in Jaboticabal, São Paulo, Brazil.

The strands obtained (forward and reverse) were eval-
uated, edited, and used to create consensus sequences, 
using GENEIOUS PRIME® (2021.2.2 Biomatters Ltd). 
Sequence identification was confirmed using the Gen-

Table 1. List of used primers, their respective genes, and studies where they were developed.

Gene primer Sequences References

COI
Pty1 5’ CGCCTGTTTATCAAAAACAT 3’

Souza-Carvalho et al. (pers. communication)
Pty2 5’ CCGGTCTGAACTCAGATCACGT 3’

16S
16SL2 5’ TGCCTGTTTATCAAAAACAT 3’ Schubart et al. (2002)
1472 5’ AGATAGAAACCAACCTGG 3’ Schubart et al. (2000)
16SL15 5’ GACGATAAGACCCTATAAAGCTT 3’ Schubart et al. (2001)

Table 2. Information on specimens of Dilocarcinus species used in molecular analyses. CCDB: Coleção de Crustáceos do Departa-
mento de Biologia da FFCLRP/USP; INPA: Instituto Nacional de Pesquisas da Amazônia; MPEG: Museu Paraense Emílio Goeldi. 
AM = Amazonas; PA = Pará; SP = São Paulo; TO = Tocantis.

Specimen Voucher Locality
GenBank Access
COI 16S

Dilocarcinus spinifer 027 CCDB 5034 Altamira/PA OP252629 —
Dilocarcinus spinifer 028 CCDB 5034 Altamira/PA OP252630 —
Dilocarcinus spinifer 029 CCDB 5034 Altamira/PA OP252631 —
Dilocarcinus septemdentatus 033 INPA 800 Carauari/AM OP252632 OP263690
Dilocarcinus septemdentatus 034 INPA 800 Carauari/AM OP252633 —
Dilocarcinus septemdentatus 045 INPA 805 Res. Mamirauá/AM OP252634 OP263691
Dilocarcinus montinavis sp. n. 050 INPA 0584 Serra do Navio/AP OP252635 OP263692
Dilocarcinus montinavis sp. n. 159 MPEG 1045 Flona do Amapá/AP OP252636 OP263693
Dilocarcinus montinavis sp. n. 160 MPEG 1045 Flona do Amapá/AP — OP263694
Dilocarcinus pagei 021 CCDB 6338 Castilho/SP OP236481 OP245228
Goyazana castelnaui CCDB 4651 Palmas/TO MG344686 MG344657

http://www.ncbi.nlm.nih.gov/nuccore/OP252629
http://www.ncbi.nlm.nih.gov/nuccore/OP252630
http://www.ncbi.nlm.nih.gov/nuccore/OP252631
http://www.ncbi.nlm.nih.gov/nuccore/OP252632
http://www.ncbi.nlm.nih.gov/nuccore/OP263690
http://www.ncbi.nlm.nih.gov/nuccore/OP252633
http://www.ncbi.nlm.nih.gov/nuccore/OP252634
http://www.ncbi.nlm.nih.gov/nuccore/OP263691
http://www.ncbi.nlm.nih.gov/nuccore/OP252635
http://www.ncbi.nlm.nih.gov/nuccore/OP263692
http://www.ncbi.nlm.nih.gov/nuccore/OP252636
http://www.ncbi.nlm.nih.gov/nuccore/OP263693
http://www.ncbi.nlm.nih.gov/nuccore/OP263694
http://www.ncbi.nlm.nih.gov/nuccore/OP236481
http://www.ncbi.nlm.nih.gov/nuccore/OP245228
http://www.ncbi.nlm.nih.gov/nuccore/MG344686
http://www.ncbi.nlm.nih.gov/nuccore/MG344657
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Bank BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.
cgi). Information regarding the sequences used are listed 
in Table 2. After the end of the entire process, the new 
sequences were submitted to GenBank.

2.4. Molecular analyses

Fourteen sequences were used and obtained from individ-
uals previously identified as D. septemdentatus (8 from 
COI and 6 from 16S), and four sequences from D. pagei 
and Goyazana castelnaui (H. Milne Edwards, 1853) 
(one from each gene). The G. castelnaui sequences were 
chosen as an outgroup for the phylogenetic analyses due 
to the close relationship between this species and those 
of the genus Dilocarcinus (see Magalhães and Türkay 
1996a). Tissues from several other individuals/lots were 
also processed, but despite our efforts sequencing of 
these samples was unsuccessful, possibly due to previous 
formalin and/or dry preservation.

All alignments were performed on the MAFFT v.7 
online servers (Katoh et al. 2019) (http://mafft.cbrc.jp/
alignment/server). An alignment for each gene, contain-
ing only sequences from the target species, was submitted 
to DNASP 6 (Rozas et al. 2017) to calculate the number 
of haplotypes, and haplotype diversity (dH) and create 
the POPART 1.7 input files, for the elaboration of haplo-
type networks. Both networks were built by the parsimo-
ny method in POPART 1.7’s TCS Networks (Clement et 
al. 2002; Leigh and Bryant 2015). These same alignments 
were also used to generate the two genetic distance ma-
trices (for COI and 16S), using MEGA 10.0.5 (Kumar et 
al. 2018).

Concatenated alignments were used, with sequences 
from both genes of D. septemdentatus, from D. pagei 
(sister group), and from G. castelnaui (outgroup), for 
the reconstruction of phylograms, one by the Maximum 
Likelihood (ML) method and another by Bayesian Infer-
ence (IB). ML analysis was performed on the IQ-TREE 
(http://www.iqtree.org) (Trifinopoulos et al. 2016), based 
on the TN93+G model, selected through the ModelFinder 
of the IQ-TREE (Kalyaanamoorthy et al. 2017). Branch 
consistency was defined in 1000 bootstrap replicates with 
Ultrafast bootstrap (Hoang et al. 2018) also from IQ-
TREE. In turn, the BI analysis was performed in BEAST 
v.2.6.7 (Bouckaert et al. 2019), with predefined parame-
ters and input files in BEAUTI v.2.6.7 (Bouckaert et al. 
2019), with both the pre-selected models from the Mod-
elFinder of IQ-TREE and MEGA 10.0.5, following the 
BIC. The model chosen for COI alignments was TN93+G 
(G = 0.20) and for 16S it was TN93. To carry out the 
BI analysis, the following parameters were considered: 
Birth-Death model, sampling of a tree every 15.000 gen-
erations, for 30 million generations, sampling frequency 
equal to 100.000, and burn-in of 25%. Three repetitions 
were performed in BEAST, with the same parameters, 
with each result evaluated in TRACER 1.6. (Rambaut 
et al. 2014), referring to ESS values (values above 200) 
(Schneider 2017). After that, both results were combined 
in LOGCOMBINER v.1.8.4 (Drummond and Rambaut 

2007) and the result was evaluated from the summary 
of most trees obtained in TREEANNOTATOR v2.4.4 
(Drummond and Rambaut 2007). After this process, a fi-
nal tree was generated and viewed/edited in Figtree 1.4.4 
(Rambaut 2018).

After comparing the results of both approaches, only 
the phylogram of the tree by IB was presented, with the 
bootstrap value (right) and posterior probability (left) (> 
95%), considering that all clades were recovered by both 
analyzes.

Finally, a divergence time estimation analysis with 
concatenated partitions, referring to COI and 16S, was 
also included in BEAST v.2.6.7. For this purpose, all 
configurations of the phylogenetic analysis by IB were 
considered, with the addition of information for the cali-
bration of the molecular clock (Relaxed Log model), ob-
tained from the fossil record of trichodactylid crabs from 
the Middle Eocene (dated to approximately 38–47.8 mya) 
(see Klaus et al. 2017), using the offset function of the 
exponential distribution.

3. Results

3.1. Morphological analysis

The morphological analysis included specimens identi-
fied a priori as D. septemdentatus sensu Magalhães and 
Türkay (2008), as listed in the material examined sec-
tions.

The main variation observed in D. septemdentatus 
sensu Magalhães and Türkay (2008) was in the shape and 
curvature of the G1 distal portion (Fig. 1A–C), in which 
three distinct forms were found: (a) G1 with the distal 
strongly curved laterally, with an apex approximately as 
long as the moderately developed subdistal lobe (Fig. 
1A); (b) G1 with a slightly bent laterally to nearly straight 
distal portion, apex obliquely inclined towards the lateral 
side and slightly longer than the inconspicuous or weakly 
developed subdistal lobe (Fig. 1B); and (c) G1 bearing a 
distinctly sinuous distal portion, with an accentuated cur-
vature towards the lateral side and an inconspicuous apex 
distinctly shorter than the strongly developed subdistal 
lobe bearing a dense field of spines (Fig. 1C).

It was also interesting to note a correlation found be-
tween the shape of the apex of G1 and the shape of the car-
apace front among the specimens examined. Specimens 
with bent distal portion of the G1 (forms a and c) usually 
show a sinuous frontal margin of the carapace, with a dis-
tinct median concavity (Fig. 1D) whereas those with G1 
distal portion straight or slightly inclined laterally (form 
b) tend to bear a nearly straight frontal margin (Fig. 1E).

3.2. Molecular analyses

The results evidenced that the specimens considered un-
der the name D. septemdentatus sensu Magalhães and 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://mafft.cbrc.jp/alignment/server
http://mafft.cbrc.jp/alignment/server
http://www.iqtree.org
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Türkay (2008) were grouped into three distinct lineages, 
as shown in the concatenated phylogram (IB and ML, Fig. 
2). In addition to the high values of posterior probability 
and bootstrap that support the branches of the lineages, 
these lineages are also strongly supported by the analy-
sis of genetic divergence for both genes (Table 3). When 
the specimens grouped in each lineage were correlated 
with the morphology of their G1 distal portion, they were 
taxonomically determined as follows: Lineage 1 = D. 

septemdentatus – G1 distal portion strongly bent laterally 
(form a, Fig. 1A); Lineage 2 = D. spinifer – G1 distal 
portion nearly straight (form b, Fig. 1B); and Lineage 3 
= a new species, named here as Dilocarcinus  montinavis 
sp. n. – G1 distal portion distinctly sinuous (form c, Fig. 
1C) (see section 3.3.).

The analysis of estimated divergence time pointed to 
an interval between 19 and 13 mya, in which it is esti-
mated that the process of separation of L1 from L2 and 

Figure 1. Computerized nano-tomography of the distal portion of the male right first gonopod of Dilocarcinus septemdentatus, 
INPA 1470 (A), D. spinifer, MPEG 697 (B), and D. montinavis sp. n., paratype, INPA 584 (C), photographed in ventromesial view. 
Outline of the frontal margin of D. septemdentatus (D) and D. spinifer (E). — Abbreviations: a = apex; sl = subdistal lobe. Scale 
bars: 1 mm (A–C), 5 mm (D, E).

6.0

029 D. spinifer (Altamira/PA)

050 Dilocarcinus montinavis sp. n. (Serra do Navio/AP)

034 D. septemdentatus (Carauari/AM)

028 D. spinifer (Altamira/PA)

033 D. septemdentatus (Carauari/AM)

159 Dilocarcinus montinavis sp. n. (Flona do Amapá/AP)

045 D. septemdentatus (Res. Mamirauá/AM)

G. castelnaui

027 D. spinifer (Altamira/PA)

021 D. pagei

160 Dilocarcinus montinavis sp. n. (Flona do Amapá/AP)

1/100

0.99/*

1/95

1/97

1/98

0.99/*

1/97

Lineage 1
Lineage 2
Lineage 3

Figure 2. Phylogram generated by the Bayesian Inference method, based on concatenated alignments of the COI and 16S genes of 
specimens belonging to the Dilocarcinus septemdentatus sensu Magalhães and Türkay (2008) species complex. The values in the 
branches correspond to posterior probability (left) and 1000 bootstrap replicates (right). We considered the recovered branches, in 
both approaches (ML and IB) and with high support value (≥ 95%), showing the recovered lineages. * = bootstrap values < 95%. 
L1, L2, and L3 = strains 1, 2, and 3, respectively.
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L3 occurred. In turn, it is estimated that the separation 
between D. spinifer (L2) and Dilocarcinus montinavis 
n. sp. (L3) occurred in the interval from 14 to 8 Ma. Fig. 
3 below shows the divergence time phylogram.

The haplotype network generated with D.  septemdentatus 
sensu Magalhães and Türkay (2008) sequences recorded 

8 haplotypes (dH = 1) for COI (Fig. 4A) and 5 haplotypes 
(dH = 1) for 16S (Fig. 4B). The size of the circles is pro-
portional to the haplotype frequency and haplotypes with 
low frequency were not presented in the networks, being 
concatenated by similarity. Thus, haplotype 2 (H2) gath-
ered H2 and H3, while H4 gathered H4 and H5.

Figure 3. Phylogram with estimated divergence time generated by the Bayesian Inference method, based on concatenated align-
ments of the COI and 16S genes of specimens belonging to the Dilocarcinus septemdentatus sensu Magalhães and Türkay (2008) 
species complex, to Dilocarcinus pagei, and to Goyazana castelnaui. Blue bars correspond to 95% posterior confidence intervals 
(HPD). Scale in millions of years (Ma).

Amazon basin/AM Amazon basin/PA Amazon basin/AP
1 sample 2 samples

Lineage 1 Lineage 2 Lineage 3

H4

H3

H5

H1
H2H4

H6A B

H7

H8

H1

H2

Figure 4. Parsimony haplotype network of COI (A) and 16S (B) gene fragments from populations of the Dilocarcinus  septemdentatus 
sensu Magalhães and Türkay (2008) species complex. H = haplotype. The size of the circles is proportional to the haplotype fre-
quency. The haplotypes with the colors red, blue, and black correspond, respectively, to Lineages 1, 2, and 3. Likewise, the red, 
green, and purple ellipses correspond, respectively, to samples collected in the states of Pará, Amazonas, and Amapá (Amazon 
Basin), Brazil.



Arthropod Systematics & Phylogeny 82, 2024, 385–405 391

3.3. Taxonomy

Based on the obtained results, it is proposed herein the 
resurrection of Dilocarcinus spinifer as a valid species, 
besides proposing the description of a new species for 
the genus based on morphological and molecular data, 
as well as adjustments in the diagnosis and description of 
the studied species.

Order Decapoda Latreille, 1803

Infraorder Brachyura Latreille, 1803

Family Trichodactylidae H. Milne Edwards, 
1853

Genus Dilocarcinus H. Milne Edwards, 1853

Type species. Dilocarcinus spinifer H. Milne Edwards, 
1853 [subsequent designation by Pretzmann 1968]

3.3.1. Dilocarcinus septemdentatus (Herbst, 
1783)

Figures 1A, C, 2 (L1), 5A–E

Cancer n. 957 — Gronovius 1764: 222.
Cancer Orbicularis — Meuschen 1778: 84 (n. 788) [unavailable name, 

Opinion 260 (ICZN 1954a)]. 
Cancer Orbicularis — Meuschen 1781: unnumbered page (n. 957) [Un-

available name, Opinion 261 (ICZN 1954b)].
Cancer septemdentatus Herbst, 1783: 155. 
Arica septemdentata — White 1847: 31 [nomen nudum].
Dilocarcinus septemdentatus — Gerstaecker 1856: 148. — Göldi 1885: 

662. — Göldi 1886: 28, pl. 2 figs 3–17. — Nobili 1896: 1 [part]. — 
Moreira 1901: 44, 49, 109 [part]. — Pretzmann 1968: 75 (in list). — 
Rodríguez 1981: 48 (in list). — Rodríguez 1992: 128. — Magalhães 
and Türkay 1996a: 67 (in list) [part], 69 (in list) [part], 78 (in list) 
[part], 79, figs 23, 24. — Magalhães 1998: 519 (in list) [part]. — 
Barros and Pimentel 2001: 32 (in list). — Magalhães 2003: 203 (in 
key), 206, figs 108 (map), 109a, b, e. — Collins et al. 2004: 254 
(in list). — Ng et al. 2008: 187 (in list). — Magalhães and Türkay 

2008: 187, figs 3, 5, 6 [part]. — Vieira 2008: 68, 69, table 5.1 (in 
list). — Collins et al. 2009: 50, fig. 1a. — Collins et al. 2011: 191, 
Appendix (in list). — ICMBio 2014: 178. — Magalhães 2016: 431 
(in list) [part].

Orthostoma septemdentatum — Ortmann 1897: 326 (in key), 327 [part]. 
Dilocarcinus (Dilocarcinus) septemdentatus — Bott 1969: 44, pl. 8, fig. 

14a, b, pl. 20, fig. 45.

Diagnosis. G1 with distal portion strongly curved later-
ally; subdistal lobe moderately to well developed; apex 
directed laterally, approximately as long as the subdistal 
lobe.

Description (amended from Magalhães and Türkay 
2008). Carapace (Fig. 5A) smooth, strongly convex lon-
gitudinally; frontal margin unarmed, distinctly bilobed; 
anterolateral margins with 6–7 acute teeth behind exor-
bital tooth. Pleonal somites (Fig. 5B) III–VI fused; so-
mite III smooth, without transversal carina along anterior 
margin. G1 (Fig. 5C–E) with distal portion strongly bent 
laterally; lateral border (“lb” in Fig. 5) gently sinuous, 
with few minute setae medially and dense patch of long 
setae along basal portion; marginal suture (“ms” in Fig. 
5) running along mesial surface, twisted towards lateral 
side near apex (“a” in Figs 1, 5); lateroventral side with 
distinct, moderately to well-developed rounded subdistal 
lobe (“sl” in Figs 1, 5C); field of short spines (“fs” in 
Fig. 5) continuous, located subterminally on lateroventral 
side, denser along and extending distally to dorsal sur-
face; subapical bristles, when present, in small number; 
apex strongly bent laterally, flat, narrow, approximately 
as long as subdistal lobe; distal aperture (“do” in Fig. 5) 
very narrow, slit-like, directed laterally.

Type material. Neotype (designated herein): Male (cw 
47.9, cl 37.6), MZUSP 44534, Brazil, Pará, municipal-
ity of Peixe-Boi, braços do rio Peixe-Boi, 01°11′31″S 
47°18′44″W, 34 m altitude, III.1994, E. Matos.

Type locality. Brazil, state of Pará, municipality of Peixe-
Boi, Peixe-Boi River. 

Material examined (herein confirmed as Dilocarcinus 
 septemdentatus). SURINAME — • 1 ♂, NHM 1959.3.20.6, 1838, I.T. 
Sandersen. — Paramaribo District: • 2 ♂ (cw 48.2, cl 37.8; cw 48.7, 

Table 3. Intra- and interlineage genetic distances of Dilocarcinus septemdentatus, D. spinifer, and Dilocarcinus montinavis sp. n. 
for COI and 16S genes. Values in percentage (%).

COI
Lineage 1 
(D. septemdentatus)

Lineage 3
(D. montinavis sp. n.)

Lineage 1 (D. septemdentatus) 0–0.68
Lineage 2 (D. spinifer) 5.29–5.90
Lineage 3 (D. montinavis sp. n.) 4.09–5.31 0–0.51
16S

Lineage 1 (D. septemdentatus)
Lineage 1 (D. septemdentatus) 0–1.70
Lineage 3 (D. montinavis sp. n.) 4.29–6.73
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cl 39.9), ZMB 12981, near Paramaribo, C. Heller. — Saramacca Dis-
trict: • 1 ♂, RMNH D 20711, near Granmankanare, Saramacca Riv-
er, 7.iv.1964, M. Boeseman. — Brokopondo District: • 2 ♂, NHM 

1959.3.20.7-8, near Donderberg [= Donder Bari Berg, 05°09′50″N 
55°15′07″W], about 91.5 Km S. of Paramaribo, 4.xi.1938, I.T. Sand-
erson. — Sipaliwini District: • 2 ♂ (cw 37.2, cl 30.8) 1 ♀ (cw 25.8, 

Figure 5. Dilocarcinus septemdentatus, neotype male (cw 47.9, cl 37.6), MZUSP 44534. Habitus: dorsal view (A), ventral view (B). 
Right G1: ventromesial view (C); detail of distal portion, dorsal view (D); detail of distal portion, ventral view (E).  Dilocarcinus 
spinifer, lectotype male (cw 38.8, cl 31.8), MNHN 4391: left G1 (regenerated) with G2 in place, ventromesial view (F); dry speci-
men, habitus, dorsal view, in preservation box (G). — Abbreviations: a = apex; do = distal opening; fs = field of spines; lb = lateral 
border; ms = marginal suture; sl = subdistal lobe. Scale bars = 1 mm. Photo credits: A, B by J. Colavite; G by C. Magalhães.



Arthropod Systematics & Phylogeny 82, 2024, 385–405 393

cl 22.5), RMNH D 20710, Suriname River, Kasi-kriki near Pokigron, 
20.iii.1964, M. Boeseman • 1 ♂ (cw 35.5, cl 28.8), RMNH D 21790, Li-
gorio, 03°54′22″N 55°33′59″W, 16.vi.1965, G.F. Mees • 1 ♂ (cw 32.6, 
cl 27.6), RMNH ZMA.Crust.D.102298, near Ligorio, 27.i.1967, H. Ni-
jssen. BRAZIL — Amapá: • 1 ♂ (cw 50.5, cl 39.5), IEPA 255, furo 
do Araguari, arquipélago do Bailique, Macapá, 9.iv.2000, I.M. Vieira, 
O.A. Alencar, O.M. Costa, J. Cardoso and A.C. Souza — Pará: • 1 ♂ 
(cw 36.1, cl 29.8), RMNH D 12187, Apisiké [tributary creek of upper 
West Paru River], 20.iv.1952, D.C. Geijkes • 1 ♂ (cw 51.3, cl 39.7), 
SMF 2718, Quatipuru, campo Santarém, 06.iv.1963, E.-J. Fittkau • 1 
♂ (cw 44.8, cl 35.3), MZUSP 11694, municipality of Peixe-Boi, braços 
do rio Peixe-Boi, 01°11′31″S 47°18′44″W, 34 m altitude, iii.1994, 
E. Matos col. — Amazonas: • 2 ♂♂ (cw 41.2, cl 30.7; cw 49.1, cl 
36.9), INPA 805, rio Solimões, Tefé, Reserva de Desenvolvimento Sus-
tentável de Mamirauá, 26.iv.1994, P. Henderson • 2 ♂♂ (cw 20.5, cl 
16.2; cw 44.5, cl 33.3) 1 ♀ (cw 13.4, cl 10.4), INPA 802, rio Solimões, 
Tefé, Reserva de Desenvolvimento Sustentável de Mamirauá, xii.1993; 
1 ♂ (cw 46.7, cl 36.1), INPA 796, Iranduba, rio Solimões, ponta do 
Catalão, lago do Pirapora, 03°11′S 59°55′W, ix.1999, L. Rapp Py-Dan-
iel et al. • 1 ♂ (cw 42.2, cl 31.9), INPA 1255, Iranduba, rio Solimões, 
ponta do Catalão, lago do Pirapora, braço do paraná do Ximborena, 
03°11′S 59°55′W, 24.v.2000, L. Rapp Py-Daniel et al. • 1 ♂ (cw 44.9, 
cl 35.1), SMF 29878, Iranduba, rio Solimões, ponta do Catalão, lago do 
Pirapora, 03°09′07″S 59°54′50″W, 13.vii.2000, L Rapp Py-Daniel et al. 
• 1 ♂ (cw 47.2, cl 36.7), INPA 1301, rio Amazonas, lago Coró-Coró, 
03°13′50.5″S 58°41′28.7″W, 7.vii.2000, A. Varella • 1 ♂ (cw 47.7, cl 
36.9) 1 ♀ (cw 31.7, cl 25.6), INPA 151, lago Janauacá, rio Solimões, 
8.viii.1985, G.M. Soares • 1 ♀ (cw 12.9, cl 9.9), NHMW 6632, lago 
Janauacá, v.1971, U. Irmler • 1 ♂ (cw 41.5, cl 31.0) 1 ♀ (cw 43.2, 
cl 34.8), INPA 1470, Carauari, Reserva Extrativista (Resex) Médio-Ju-
ruá, comunidade Nova Esperança, 05°05′31″S 67°10′03″W, 27.vi.–16.
vii.2005, F. Xavier Filho and A.L. Henriques • 14 ♂♂ (cw 11.1, cl 9.4 – 
cw 44.2, cl 37.0) 7 ♀♀ (cw 19.4, cl 16.1 – cw 34.1, cl 27.4), INPA 800, 
rio Juruá, lago do Rato/Caroçal, Carauari, 05°43′02.4″S 67°42′12.8″W, 
6.iv.2000, J. Zuanon • 1 ♀ (MZUSP 4770), Pauini, 07°40′S 66°58′W, 
19.xii.1974, P. Vanzolini.

Additional material examined (see Remarks below; herein consid-
ered as not belonging to Dilocarcinus septemdentatus). Dilocarcinus 
pagei Stimpson, 1861: • 7 ♀♀ (cw 36.5, cl 30.7 – 45.7:38.9), ZSM 
1089-4, Brazil, Pará, ilha do Marajó, L. Müller; • 1 ♂ (cw 51.2, cl 40.3 
mm), 2 ♂♂ (cw 34.2, cl 27.6; cw 50.9, cl 41.3) 4 ♀♀ (cw 43.3, cl 35.0 – 
cw 46.7, cl 36.6), MZUT Cr 291, Brazil, Mato Grosso, Carandasinho [= 
Carandazinho], 1899, Dr. A. Borelli • 1 ♀, dry, NHM 1955.2.21.24 (ex-
MZUT), idem; RMNH D-11126, Bolivia, Beni, río Yacuma, near Espir-
itu, 13–28.iv.1954, W. Forster and O. Schindler • 2 ♂♂ 2 ♀♀ (MZUT 
Cr 293), Paraguay, Concepción, Colonia Risso, 1893, Dr. A. Borelli • 5 
♂♂ (cw 16.7, cl 12.7 – cw ?, cl ?), 8 ♀♀ (cw 12.5, cl 10.4 – cw ?, cl ?) 
[in bad condition], MZUT Cr 289, Argentina, Chaco, Resistencia, 1893, 
Dr. A. Borelli. — Poppiana argentiniana (Rathbun, 1905): • 3 ♂♂ (cw 
?, cl ? – cw 28.5, cl 23.5), MZUT Cr 289, Argentina, Chaco, Resisten-
cia, 1893, Dr. A. Borelli.

Distribution. Northern South America, in the central and 
lower Amazon basin as well as in coastal river basins in 
Suriname and Brazil (Fig. 6A) (Magalhães and Türkay 
2008; present paper).

Remarks. Herbst’s (1783) specimen used to describe D. 
septemdentatus could not be found in the ZMB’s hold-

ings despite the efforts of Sakai (1999) and Magalhães 
and Türkay (2008). One of us (C.M.) made a last attempt 
to locate the specimen on a visit to the ZMB on 4th Oc-
tober 2023, but this search was equally unsuccessful. 
Thus, considering that: (a) the name-bearing type spec-
imen can be considered not extant; (b) the three species 
of  Dilocarcinus studied herein are sympatric (and can 
be even syntopic); and (c) the original description of D. 
 septemdentatus was based on somatic characters of a 
single female specimen, with insufficient morphological 
resolution, it seems essential to designate a neotype in 
order to define the present taxon objectively (ICZN 1999: 
Art. 75).

Herbst (1783) did not specify the exact provenance 
of his specimen; he just mentioned it was from Ameri-
can coastal waters. Bott (1969) restricted the type locality 
to the lower Amazon (Brazil, state of Pará, surroundings 
of Belém) but without further explanation. The neotype 
specimen (MZUSP 44534) was therefore chosen from 
specimens collected about 150 km northeast of Belém, in 
a coastal river basin from the state of Pará, northern Brazil.

Nobili (1896: 1; 1898: 9) examined specimens col-
lected by Dr. Borelli from Colonia Risso (río Apa, upper 
río Paraguay) and Resistencia (province Chaco, Argen-
tina) preserved in the “R. Museo Zoologico di Torino” 
(currently Museo Regionale di Scienze Naturali di To-
rino, Sezione di Zoologia) and assigned them, respec-
tively, to Dilocarcinus septemdentatus and Orthostoma 
 septemdentatum. Colosi (1920: 15), in addition to this 
material, also examined specimens from Carandasin-
ho (state of Mato Grosso, Brazil) and treated them as 
 Trichodactylus ( Dilocarcinus) orbicularis. These lots 
have been reexamined by one of us (C.M.) in Novem-
ber 1988 on a visit to the MZUT and the specimens were 
found to be Dilocarcinus pagei Stimpson, 1861 and 
 Poppiana argentiniana (Rathbun, 1905) (see above). 
Rathbun (1906: 58) and Balss (1914: 409) listed D. 
septemdentatus as a junior synonym of Trichodactylus 
( Dilocarcinus) orbicularis but the specimens they have 
dealt with actually belong to D. pagei. The specimen 
from Bolivia (rio Yacuma) treated by  Holthuis (1959: 
218) as Trichodactylus (Dilocarcinus)  septemdentatus is 
also D. pagei (C.M., pers. observation).

3.3.2. Dilocarcinus spinifer H. Milne  Edwards, 
1853

Figures 1B, E, 2 (L2), 5F, G

Dilocarcinus spinifer H. Milne Edwards, 1853: 215 — H. Milne Ed-
wards 1854: 178, pl. 14 fig. 3, 3a–e; A. Milne-Edwards 1869: 176, 
178 (in key). — Young 1900: 231 (in key), 234. — Moreira 1901: 
44 (in list), 49, 109 (in list). — Rodríguez 1981: 48 (in list). — 
Rodríguez 1992: 128, fig. 45. — Holthuis 1994: 9. — Pereira and 
Berrestein 2006: 58, tab. 4.1 (in list).

Dilocarcinus castelnaui — H. Milne Edwards 1853: 216 [part, 1 ♂, 
MNHN 3866]. — H. Milne Edwards 1854: 182 [part, 1 ♂, MNHN 
3866]. — Smith 1870: 36 [part] (in list).

Orthostoma spiniferum Ortmann, 1897: 326 (in key), 327.
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Trichodactylus (Dilocarcinus) spinifer — Rathbun 1904: 242 (in list). 
— Rathbun 1906: 60 [part], pl. 18 fig. 1, text-fig. 121. — Holthuis 
1959: 216, text-figs 50c, 52.

Dilocarcinus (Dilocarcinus) spinifer — Bott 1969: 45, pl. 8, figs 15a, 
b; pl. 20, fig. 46.

Dilocarcinus septemdentatus — Magalhães and Türkay 1996a: 67, ta-
ble 1 (in list) [part], 69, table 2 (in list) [part], 78 (in list) [part], fig. 
17. — Magalhães and Türkay 1996b: 139. — Magalhães 2003: 206, 
figs 108 (map) [part], 109c, d. — Magalhães and Türkay 2008: 187 
[part], figs 1, 2, 4a, b, 6 [part, not figs 3, 5]. — Collins et al. 2009: 
51, fig. 1A, A′. — Magalhães et al. 2018: 4, table 1 (in list), 9 (in 
list), 32, fig. 12 (map). — Andrade et al. 2018: 3, figs 1A (map), 
2C. — Magalhães 2016: 431 (in list) [part]. — Santos and Vieira 
2017: 3, figs 1–9.

Diagnosis. G1 (Fig. 5F) with distal portion straight or 
slightly inclined laterally; subdistal lobe inconspicuous 
or weakly developed; apex slightly longer than the distal 
lobe.

Description. Carapace (Fig. 5G) smooth, strongly con-
vex longitudinally; frontal margin unarmed, slightly 
bilobed to nearly straight; anterolateral margins with 
6–7 acute teeth behind exorbital tooth. Pleonal somites 
III–VI fused and smooth. G1 (Fig. 5F) with distal por-
tion straight or slightly inclined laterally; lateral border 
slightly sinuous, with few short setae medially and dense 
patch of long setae along basal portion; marginal suture 
running along mesial surface, twisted towards lateral side 
very close to apex; lateroventral side with weakly devel-
oped rounded subdistal lobe; field of short spines contin-
uous, located subterminally on lateroventral side, denser 
along lateral surface of subdistal lobe, extending distal-
ly to dorsal surface; subapical bristles, when present, in 
small number; apex directed laterally, slightly longer 
than subdistal lobe; distal aperture very narrow, slit-like, 
directed laterally.

Type material. Lectotype (designated herein): 1 ♂ (cw 
38.8, cl 31.8), dry, MNHN 4391, French Guiana, Cay-
enne, Saint-Armand coll. — Paralectotype: 1 ♂ (cw 
31.1, cl 27.5), dry, MNHN 3867, French Guiana, Cay-
enne, Saint-Armand col.

Type locality. Cayenne, French Guiana.

Material examined. SURINAME: • 1 ♂, INPA 354 • 1 ♂, NHM 
1959.3.20.6, 1838, I.T. Sanderson • 1 ♂ (cw 37.5, cl 31.0), RMNH 
D 5332, 7.vi.1944, D.C. Geijkes • 1 ♂ (cw 22.6, cl 20.2), RMNH D 
3231, Suriname River, 21–28.ix.1938, D.C. Geijkes. — Paramaribo 
District: • 2 ♂ (cw 48.2, cl 37.8; 48.7:39.9), ZMB 12981, near Par-
amaribo, C. Heller. — Saramacca District: • 1 ♂ (cw 43.9, cl 33.9), 
INPA 353, Saramacca, Toni Holo, iv.1959, D.C. Geijkes. — Marowi-
jne District: • 1 ♂ (cw 36.4, cl 29.9), RMNH D 12359, 14.6 Km N.V. 
Moengatapoe, 11.x.1948, Suriname Exped. 1948–49 • 2 ♂♂ (cw 23.6, 
cl 20.3; cw 35.7, cl 29.9) 2 ♀♀ (cw 16.0, cl 14.5; cw 19.2, cl 17.0), 
RMNH D 12123, 8.4 Km N.V. Moengotapoe, 6.x.1948, Suriname Ex-
ped. 1948–49. — Brokopondo District: • 2 ♂♂, NHM 1959.3.20.7-8, 
near Donderberg, about 91.5 km of Paramaribo, 04.xi,1938, I.T. Sand-
erson • 4 ♂♂ (cw 31.0, cl 26.5 – 43.6:36.0) 2 ♀♀ (cw 31.5, cl 27.7; cw 

35.7, cl 30.5), RMNH D 21247, creek tributary of Suriname River near 
Brokopondo, 13.iv.1965, G.F. Mees • 1 ♂ (cw 25.7, cl 22.1), RMNH 
D 21530, Suriname riviertussen, N.V. Kabel, 2.vi.1964, M. Boeseman 
• 2 ♂ (cw ? , cl ?; cw 29.4, cl 24.9), RMNH D 3237, Kabelstation, 
Makambikreek, 27.ix.1938, D.C. Geijkes. — Sipaliwini District: • 3 
♂ (cw 38.7, cl 32.8 – cw 41.1, cl 34.2), 1 ♀ (cw 30.2, cl 26.8), RMNH 
D 27200, creek trib. of Fallawatra river, upper Nickerie river, 2.ii.1971, 
M. Boeseman • 1 ♂ (cw 45.7, cl 38.0), SMF 4887, Sipaliwini, Awara 
creek, trib. of Suriname river, 1.5 Km S. from Botopasi, 18.iii.1967, 
H. Nijssen • 1 ♀ (cw 22.9, cl 20.4), MZUSP 1885, Anapaike village 
[= Kawemhaven, 03°24′42″N 54°01′16″W], 24.xi.1963, B. Malkin. 
FRENCH GUIANA: • 2 ♂ (cw 38.7, cl 32.7; cw 40.3, cl 32.8), NHML 
1890.10.7.106.7, Cayenne, K.R. Jelski. BRAZIL: • 1 ♂ (cw 46.3, cl 35.6 
mm), USNM 32009, Amazon River region, Pará to Manaus, J.B. Steere 
• 2 ♂♂ (cw 16.6, cl 14.1; cw 34.0, cl 27.9), NHMW 6661, unknown 
locality, date and collector. — Amazonas: • 1 ♀ (cw 27.8, cl 21.8), 
NHMW 6642, rio Negro, J. Natterer • 1 ♂ (35.7:27.8), INPA 2563, 
Iranduba, rio Solimões, ponta do Catalão, lago do Pirapora, braço do 
paraná do Ximborena, 03°11′S 59°55′W, 24.v.2000, L. Rapp Py-Daniel 
et al. • 2 ♂♂ (cw 33.1, cl 26.5; 37.5:29.5) 2 ♀♀ (cw 29.7, cl 24.1; cw 
35.1, cl 27.9), SMF 29879, rio Juruá, lago do Rato/Caroçal, Carauari, 
05°43′02.4″S 67°42′12.8″W, 6.iv.2000, J. Zuanon. — Pará: • 1 ♂ 1 
♀, INPA 1509, Tracuateua, 10.ix.2004, S. Alves • 1 ♂ 2 ♀♀, MPEG 
937, Peixe Boi, balneário Urubuquara, 01°10′20.5″S 47°18′56.7″W, 
11.iii.2010, D. Guimarães and I.M. Silva • 1 ♂, CCDB 7593, igarapé 
unnamed, tributary of rio Livramento, municipality of Nova Timbo-
teua, 01.ii.2019, M.A. Almeida, F.A. Bockmann, A.L.H. Esguícero, J. 
Muriel-Cunha, D.F. Regasso, E.L. Reis, P.P. Rizzato, V. Slobodian and 
O.G. Victório • 1 ♂ (cw 53.0, cl 40.0), MPEG 697, fazenda EMA, mu-
nicípio de Viseu, 15.vi.2000, J.O. Dias • 1 ♂ 1 ♀, CCDB 7592, igarapé 
Borges, tirbutary of rio Piripindeu, rio Irituia basin, rio Guamá drain-
age, municipality of Irituia, 02.ii.2019, M.A. Almeida, F.A. Bockmann, 
A.L.H. Esguícero, J. Muriel-Cunha, D.F. Regasso, E.L. Reis, P.P. Riz-
zato, V. Slobodian and O.G. Victório • 1 ♂ (cw 41.7, cl 33.8), MZUSP 
1806, rio Gurupi, iv.1963, B. Malkin • 2 ♂♂ (cw 34.7, cl 28.6; cw 
48.8, cl 37.0), MZUSP 2317, rio Gurupi, aldeia Coraci, 12 Km W. from 
Canindé, 16–26.iv.1963, B. Malkin • 1 ♂ (cw 27.3, cl 23.3) 1 ♀ (cw 
26.5, cl 22.0), INPA 513, idem • 1 ♂, CCDB 7118, rio Xingu, Vitória do 
Xingu, 03°14′42.9″S 51°44′50.8″W, 01.iv.2012, D. Bastos; 1 ♂, INPA 
2504, rio Xingu, 03°19′30.7″S, 51°52′18.2″W 5.iv.2012, D. Bastos • 4 
♂♂, INPA 2505, rio Xingu, 03°28′07.7″S 51°52′40.4″W, 4.x.2012, D. 
Bastos • 1 ♂, CCDB 7117, rio Xingu, Vitória do Xingu, 03°30′30″S 
51°53′05.8″W, 03.iv.2012, D. Bastos et al. • 3 ♂♂, CCDB 5034, rio Ba-
cajaí, Altamira, 03°36′13″S 51°46′03.5″W, 10.iii.2014, R. Robles et al. 
— Maranhão: • 11 ♂♂ (cw 21.0, cl 17.9 – cw 49.3, cl 38.7) 3 ♀♀ (cw 
22.2, cl 18.7 – cw 28.6, cl 22.9), MZUSP 1807, aldeia Araçu, igarapé 
Gurupi-Una, afluente do rio Gurupi, 50 Km E from Canindé [≈ 02°34′S 
46°31″W], 1–15.v.1963, B. Malkin • 1 ♂ 1 ♀, CCUFMA 15, rio Re-
pouso, Chapadinha, 24.iii.2015, J.L.S. Nunes. — Acre: • 1 ♂, CCDB 
7116, igarapé Quinoá, rio Branco, 2016–2018, F. Correa. PERU: 1 ♂ 
(cw 38.4, cl ?), MZUSP 9248, Departamento de Loreto, río Ampiyacu, 
15–25.iv.1966, B. Malkin. — Goiás: • 1 ♂, dry (damaged) (MNHN 
3866), Salinas [≈ 13°38′S 50°30′W], Ht Amazone, F. de Castelnau and 
E. Deville.

Previous records. BRAZIL, Maranhão:  municipality 
of Paulino Neves, riacho São José, 02°49′26.2″S 
42°32′38.3″W (Andrade et al. 2018). Pará: munici-
pality of Primavera, igarapé Rio Preto (00°59′59.2″S 
47°06′53.7″W) (Santos and Vieira 2017). ARGENTINA, 
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Santa Fe: Salado River, Santo Tomé (31°39′S 60°45′W); 
San Javier River (29°13′S 59°35′W); Colastiné Riv-
er, Colastiné Sur (31°37′S 60°34′W); Setúbal lagoon, 
Rincón (31°35′S 60°39′W); Los Amores stream (28°51′S 
59°29′W); Parque del Sur lake, Santa Fe city (31°39′S 
60°42′W) (Collins et al. 2009).

Distribution. Northern and southern South America, 
occurring in coastal river basins from Suriname, French 
Guiana, and Brazil (states of Pará and Maranhão), the 
Amazon River basin in Brazil and Peru, the Araguaia-To-
cantins Rivers basin, and the middle Paraná River basin 
in northern Argentina (Fig. 6B) (Magalhães and Türkay 
2008; Collins et al. 2009; present paper).

Remarks. Both male syntypes of D. spinifer are dried 
specimens that are glued by the abdomen to the base of 
the box in which they are preserved. The left G1 of the 
larger specimen (MNHN 4391) was regenerated in 1988 
(according to handwritten note by Danièle Guinot in the 
box with the specimen – see Fig. 5G), being currently 
preserved in a vial with 70% alcohol, which allowed us 
to illustrate it (Fig. 5F). Because of this, it was chosen 
herein as lectotype.

The three species studied here exhibit a sympatric 
and sometimes even syntopic geographic distribution 
(Fig. 6). Based on the current records, D. spinifer seems 
to have the widest distribution. It extends further east 

and south than that of D. septemdentatus (Fig. 6A), as 
evidenced by the occurrences reported by Andrade et 
al. (2018) from the state of Maranhão and by Collins et 
al. (2009) from northern Argentina (both records as D. 
septemdentatus), respectively. The identity of the speci-
mens from Maranhão was confirmed as D.  spinifer after 
examining Andrade’s et al. (2018) material (N.F.C.F., 
pers. observation). The disjunct distribution of D. 
 spinifer in the middle Paraná River basin is somewhat 
unexpected. Unfortunately, the specimens recorded 
from the area (Collins et al. 2009) could not be reexam-
ined. Those listed as being deposited in the Macrocrus-
taceans Laboratory of the Instituto Nacional de Lim-
nología (ML-INALI) in Argentina were lost during a 
flood of the Paraná River that destroyed the ML-INALI 
facilities (P.A. Collins, pers. communication to C.M.). 
The specimens deposited at the Florentino Ameghino 
Natural Museum (FANM), a municipality museum used 
mainly for environmental education purposes, could not 
be found by one of us (C.M.) during a visit made in 
December 2012. However, judging by the illustration in 
Collins et al. (2009: 51, fig. 1A), the G1 exhibits a mor-
phology that appears to be very much similar to that of 
D. spinifer.

The specimen figured by Rathbun (1906: 61, text-
fig. 121, pl. 18 fig. 1) was the male from the lot USNM 
32009, which contains two small labels indicating “Pho-
tographed” and “Abd. fig.” (C.M., pers. observation).

Figure 6. Map of the geographic distribution of Dilocarcinus septemdentatus and D. montinavis sp. n. (A) and D. spinifer (B).
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3.3.3. Dilocarcinus montinavis sp. n.

ht tps : / /zoobank.org/4CD40FFB-BB0C-4886-9D24-
86CC5B18EBEA

Figures 1C, 2 (L3), 7

Dilocarcinus septemdentatus — Magalhães and Türkay 2008: 187 [part, 
only USU 510, 514, INPA 584].

Diagnosis. G1 with distal portion distinctly sinuous, 
strongly curved laterally; subdistal lobe (“sl” in Figs 1, 
7) well developed, rounded, bearing dense field of short 
spines; apex (form a in Figs 1, 7) directed apically, very 
short, less than 1/3 length of subdistal lobe.

Description of the holotype. Carapace (Fig. 7A) smooth, 
distinctly convex longitudinally, slightly curved trans-
versally; post-frontal lobes as very low protuberances, 
barely distinguishable; carapacial regions ill discernible; 
H-shaped central groove (delimited by the posterior and 
lateral borders of the gastric and lateral borders of the car-
diac regions) very shallow; meso, urogastric and branchial 
regions not elevated compared to other regions; post-gas-
tric pits present, very faint. Frontal margin (Fig. 7A, C, 
D) smooth, unarmed, distinctly bilobed, slightly directed 
downwards, fringed by minute papillae only seen under 
magnification. Exorbital tooth with sharp tooth; antero-
lateral borders bearing 6 regularly spaced acute teeth, 
posterolateral borders unarmed, marked by conspicu-
ous ridge. Suborbital borders (Fig. 7C, D) with 8 slender 
spines increasing size towards inner corner, one at inner 
corner distinctly curved, largest and strongest. Eyes (Fig. 
7C) well developed. Anterolateral corner of the buccal 
cavity (Fig. 7C, D) bearing 4 strong sharp spines. Subor-
bital region (Fig. 7C, D) somewhat pilose, pilosity denser 
towards inner side. Epistome (Fig. 7C) barely visible in 
dorsal view, its median portion smooth, glabrous; opening 
of efferent channels wide, upper arch distinctly curved, 
mid-gutter with 2 distinct points separated by narrow 
concavity. Grooves dividing subhepatic and pterygosto-
mial regions (Fig. 7D) somewhat deep, distinctly pilose. 
Pterygostomial regions with scattered hairs, smooth and 
glabrous towards buccal frame.

Third maxilliped (Fig. 7D) with subtrapezoidal merus, 
its outer margin slightly convex, about 2.3× longer than in-
ner one, bearing distinct blunt tooth-like projection at distal 
corner; ischium outer margin slightly concave. Exopodite 
about 0.8 times as long as endopodite, bearing well-devel-
oped flagellum recurved inwards and downwards.

Chelipeds (Fig. 7A, B) slender, slightly heterochelous, 
right chela a little stronger than left one. Merus outer 
border with subdistal acute spine, inner corner of distal 
lower border blunt, outer corner of distal lower border 
with small spine; distal upper border distinctly arched, 
with row of minute hairs. Carpus upper border with 
strong acute spine, outer surface smooth, glabrous. Palm 
smooth, mostly glabrous, with minute hairs scattered 
along inner, outer surfaces, with small distal, blunt spine 
on upper border; lower border rounded, smooth. Fingers 

slender, no distinct gap between them, bearing triangu-
lar blunt teeth usually slightly larger in middle section of 
cutting edge; tips not crossing. P2–4 (Fig. 7A, B) smooth, 
lower margin of dactylus and half distal portion of propo-
dus with longitudinal row of hairs; P5 lower margin of 
both dactylus and propodus bering longitudinal row of 
hairs [P3 left detached from body of holotype].

Median line of sternum as deep sulcus extending from 
somites V–VIII, interrupted by transversal link at so-
mites VI/VII; furrow corresponding to endosternite IV/V 
reaching midline, following ones ending about halfway 
between beginning of sternopleonal cavity and midline. 

Pleon (Fig. 7B) broader proximally at somites III, IV; 
somites III–VI fused; lateral borders somewhat concave; 
lateral borders of somite VI roughly continuous with 
those of telson. Telson (Fig. 7B) about 2.3× broader than 
long; lateral borders bearing slight concavity subtermi-
nally; tip rounded.

G1 (Figs 1C, 7E, F) slender, straight for about 4/5 of its 
length; broader proximally, with several short, long setae 
along proximal portion of mesial, lateral surfaces; irreg-
ular row of short setae extending distally along median 
portion of lateral border. Lateral border slightly sinuous 
proximal- and medially, with strong concavity subdis-
tally and well-developed, rounded subdistal lobe. Dis-
tal portion narrower, distinctly sinuous, strongly curved 
laterally (slightly curved in subadult specimen). Mar-
ginal suture (“ms” in Fig. 7) running along mesial sur-
face, twisted towards lateral side very close to apex (“a” 
in Figs 1, 7); its proximal portion with narrow, rounded 
protrusion bearing few long setae. Field of short spines 
continuous, located subterminally on lateroventral side, 
denser along subdistal lobe (“sl” in Figs 1, 7), extending 
distally to dorsal surface. Subapical bristles, when pres-
ent, in small number. Apex flat, narrow, very short, less 
than 1/3 length of subdistal lobe; distal aperture very nar-
row, slit-like, directed apically.

G2 (Fig. 7G) as very slender flagellum, slightly sin-
uous, just 1.1× longer than G1, with slight median con-
striction; tip flat, rounded.

Type material. Holotype: 1 ♂ (cw 39.5, cl 32.7), MZUSP 
17440, Brazil, Amapá, Serra do Navio region, rio Amapa-
ri, município de Porto Grande, vila de Cupixi [≈ 00°38′N 
51°45′W], comunidade do Vila Nova, 5.v.1994, M.D.S. 
Tavares coll. (Projeto Diversitas Neotropica n° 335). — 
Paratypes: 1 ♂ (cw 36.6, cl 31.2) 2 ♀♀ (cw 35.1, cl 30.4; 
21.0:18.8), MZUSP 42728, same data as holotype • 1 ♂ 
(cw 38.9, cl 30.7), INPA 584, same data as holotype • 1 ♂ 
(cw 35.5, cl 29.5), MZUSP 44033, Brazil, Amapá, Serra 
do Navio region, rio Amapari, 6.v.1994, M.D.S. Tavares 
coll. (Projeto Diversitas Neotropica n° 405).

Additional material examined. 1 ♂ 1 ♀, MPEG 1045, 
Brazil, Amapá, Floresta Nacional (FLONA) do Amapá 
[≈ 00°55′N 51°35′W], 27.x.2009, C.R. Santos and J.E.M. 
Wanzeler.

Type locality. Serra do Navio region, rio Amapari, Cu-
pixi, state of Amapá, Brazil.

https://zoobank.org/4CD40FFB-BB0C-4886-9D24-86CC5B18EBEA
https://zoobank.org/4CD40FFB-BB0C-4886-9D24-86CC5B18EBEA
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Etymology. The specific epithet refers to the region where 
the type locality of the species is situated, Serra do Navio 
(Serra = mountain range; Navio = ship). It is composed by 

the root (mont) of the Latin word montes (nominative plu-
ral, meaning “mountains”), the connecting vowel i, and 
the word navis (genitive singular, meaning “of the ship”).

Figure 7. Dilocarcinus montinavis sp. n., holotype male (cw 39.5, cl 32.7), MZUSP 17440. Habitus, dorsal view (A), ventral view 
(B), frontal view (C), buccal frame and pterygostomial region (D); left G1, ventromesial view (E); left G1, detail of distal portion, 
ventrodorsal view (F); left G2, ventrolateral view. — Abbreviations: a = apex; ms = marginal suture, sl = subdistal lobe. Scale bars = 
1 mm. Photo credits: J. Colavite, S. Bueno.
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Distribution. The currently known distribution is limited 
to the state of Amapá, rio Araguari basin, Brazil (Fig. 6A).

Remarks. Magalhães and Türkay (2008) considered 
that the peculiar morphology of the distal portion of 
the gonopod exhibited by the few male specimens 
from Amapá examined in their study would be within 
the variation range they observed in the G1 of D. 
 septemdentatus (C.M., pers. observation). This character-
istic was also verified in a subadult male from the FLO-
NA of Amapá (MPEG 1054), although the lateral curva-
ture of the G1 distal portion is much less pronounced than 
that observed in fully adult specimens. This peculiar mor-
phology of the distal portion of the G1 of these specimens 
and the results of the molecular analyzes (Fig. 2), which 
showed a significant genetic divergence (Table 3), sup-
port the decision of considering them a new species for 
the genus Dilocarcinus. The geographical distribution of 
this new species, based on currently available data, seems 
to be restricted to the state of Amapá, Brazil.

The type series of the present species was listed by 
Magalhães and Türkay (2008: 187 – as D.  septemdentatus) 
as deposited in the then carcinological collection of Uni-
versidade Santa Úrsula (Rio de Janeiro, Brazil). This col-
lection was later transferred to MZUSP and the lots were 
catalogued as follows: USU 514 (2 ♂ 2 ♀♀) = MZUSP 
17440 (1 ♂) and MZUSP 42728 (1 ♂ 2 ♀♀); USU 510 (1 
♂) = MZUSP 44033.

Although Dilocarcinus montinavis sp. n. (Lineage 3) 
was retrieved as a sister species of D. spinifer (Lineage 2) 
in the concatenated tree using ML and IB analyzes (Fig. 
2), morphologically it shows a closer resemblance with 
D. septemdentatus, as indicated by the morphology of 
their G1 distal portion (characterized by the strong curva-
ture towards the lateral side) and that of the frontal mar-
gin (clearly bilobed versus near straight in D. spinifer).

The very short apex of the G1 of Dilocarcinus 
 montinavis sp. n. is also found in the G1 of Dilocarcinus 
truncatus Rodríguez, 1992. Both species can be morpho-
logically distinguished from each other by the orientation 
of the G1 distal portion, which is sinuous and distinct-
ly curved laterally in the former (Fig. 7E, F) and nearly 
straight in the latter (see Rodríguez 1992: 112, fig. 39). 
Dilocarcinus truncatus was based on a single male spec-
imen from the Beni River (province of Beni, Bolivia). 
Unfortunately, without the inclusion of molecular tools, 
the phylogenetic affinities between this species and those 
studied herein could not be properly evaluated.

4. Discussion

4.1. Phylogenetic and morphological 
affinities

The existence of cryptic species under the name of D. 
septemdentatus sensu Magalhães and Türkay (2008) 
is indicated by the three highly supported, well-estab-

lished clades (Fig. 2), the haplotype network with the 
formation of distinct haplogroups, separated by a series 
of mutational steps (Fig. 4), and the genetic divergence 
matrix (see  Table 3). For COI gene, a genetic distance 
> 5% between D.  sep tem den tatus and D. spinifer, and 
a distance > 4% both between D. septemdentatus and 
Dilocarcinus montinavis sp. n., and between D. spinifer 
and Dilocarcinus montinavis sp. n. For 16S, a variation 
of 4.3–6.7% was observed between D. septemdentatus 
and Dilocarcinus mon ti navis sp. n. Genetic divergence, 
combined with mor pho lo gical characters, also proved 
to be sufficient for defining other different freshwater 
crab lineages under Trichodactylus fluviatilis Latreille, 
1828 ( Trichodactylidae) (Souza-Carvalho et al. 2017), 
and within some lineages of Fredius Pretzmann, 1967 
(Pseudothelphusidae) (Mantelatto et al. 2022).

Each lineage recovered in the present phylogenetic an-
alyzes can be related to a particular morphology of the G1 
(Fig. 2). Since the specimens grouped in Lineage 2 exhibit 
G1 with morphology similar to that of the syntype of D. 
spinifer (MNHN 4391), this name was revalidated to des-
ignate the species characterized by G1 with distal portion 
nearly straight or just slightly bent laterally. The Lineage 
1 kept the name D. septemdentatus s.str., characterized 
by those specimens with the distal portion of G1 strongly 
curved laterally, considering that such morphology of the 
G1 had already been associated to this name by previous 
authors (Bott 1969; Magalhães and Türkay 2008). Spec-
imens included in Lineage 3, whose G1 bears a distinct 
shape (sinuous distal portion with a pronounced lateral 
curvature, and very short apex) was treated herein as a new 
taxonomic entity and named D. montinavis sp. n.

The variation in the curvature of the G1 distal portion 
(Figs 1A–C, 5C–F, 7E–F) was the more informative tax-
onomic character to distinguish the species associated 
to the D. septemdentatus sensu Magalhães and Türkay 
(2008) complex. Bott (1969) and Rodríguez (1992) had 
already considered that the inclination of the G1 distal 
portion would be sufficient to differentiate between D. 
septemdentatus and D. spinifer. Magalhães and Türkay 
(2008), after evaluating many individuals, found interme-
diate stages of this character in some specimens from the 
same region, thus proposing the synonymization of both. 
It is important, however, to emphasize that this curvature 
of the distal portion of G1 may be the result of the on-
togenetic development, being consolidated only in adult 
individuals. The lot INPA 800, for instance, composed of 
14 males of varying sizes, shows a clear variability in this 
character from juvenile to fully adult specimens. Future 
studies with an ontogenetic focus on G1 characters may 
help to elucidate this issue.

4.2. Origin and distribution

Although several studies in the last two decades have re-
fined paleoclimatic and paleoenvironmental reconstruc-
tions of Cenozoic South America (Hoorn 1993; Lundberg 
et al. 1998; Wesselingh et al. 2002; Albert et al. 2006; 
 Figueiredo et al. 2009; Hoorn and Wesselingh 2010; 
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 Latrubesse et al. 2010; Hoorn et al. 1995, 2010b, 2017, 
2022; Albert and Reis 2011; Sacek 2014; Rodríguez- 
Tribaldos et al. 2017), which greatly contributed to the 
understanding of the processes that led to the great bi-
otic diversification in the continent (Ribas et al. 2011; 
Antonelli et al. 2018;  Albert et al. 2018, 2021;  Roberto 
et al. 2020; Cassemiro et al. 2023), the evaluation of 
the current patterns of geographic distribution of the D. 
 septemdentatus species complex may be compromised by 
some aspects that hamper a clearer association between 
the speciation process within this group and the geomor-
phological history of the region. The main constraint may 
be the fact that the origins and the phylogenetic affini-
ties of  Trichodactylidae among the Brachyura are unclear 
( Rodríguez 1986, 1992; Sternberg 1998; Sternberg and 
Cumberlidge 2001; Cumberlidge and Ng 2009; Schubart 
and Reuschel 2009; Klaus et al. 2014; Tsang et al. 2014) 
as a comprehensive phylogenetic study that proposes a 
more consistent macroevolutionary scenario for the fam-
ily is still missing.

However, considering the wide geographic distribution 
of the genus Dilocarcinus along the lowland areas of the 
Amazon, Paraguay-Paraná and northern South America 
coastal river basins (Magalhães and Türkay 2008; Fig. 6), 
a Western Amazonia origin for the Dilocarcinus lineages 
(noting that D. truncatus is not included in the analysis) 
during the late Eocene (Fig. 3) is herein assumed as being 
the most parsimonious hypothesis, since the region has 
been considered a primary source of Neotropical lineages 
for several groups (Hubert and Renno 2006; Wesselingh 
2006; Wesselingh and Salo 2006; Antonelli et al. 2018; 
Albert et al. 2021; Hoorn et al. 2022).

Taking these constraints into account, as well as pos-
sible non-intentional errors in the molecular clock cali-
bration process (Klaus and Prieto 2014), the divergence 
time estimation analysis suggests that the separation be-
tween D. septemdentatus and the clade of D. spinifer and 
Dilocarcinus montinavis sp. n. took place approximately 
between 19 and 13 mya (Fig. 3). At that time, the Purus 
arch at around 62° longitude divided most of northern 
South America into two separated drainage systems with 
the respective rivers flowing eastward and westward, and 
the lowlands of the western Amazonia were occupied by 
the Pebas System, a vast aquatic environment that lasted 
from late Oligocene to late Miocene (c. 23–11 mya) char-
acterized by shallow lakes and swamps eventually sub-
mitted to episodic marine incursions from its northwest-
ern connection with the Caribbean through the Llanos 
basin (Lundberg et al. 1998; Wesseling and Salo 2006; 
Hoorn et al. 2010a, b, 2021, 2022; Wesselingh and Hoorn 
2011; Boonstra et al. 2015; Jaramillo et al. 2017). The 
Pebas System is believed to have had an important role as 
a cradle of speciation for aquatic and amphibious groups, 
a barrier for dispersal and gene flow (mainly for terres-
trial ones), and a permeable biogeographic system, in 
which the diversity of the environments was a driver for 
speciation by the constant back and forth between gene 
flow and isolation (Hoorn et al. 2010a, b, 2022). This 
extensive lowland, lacustrine environment must have fa-
vored subtle differentiation between populations of the D. 
 septemdentatus complex ancestral stock leading to cryp-

tic lineages that radiated throughout the Western Amazo-
nia during early to middle Miocene (19–12 mya) and later 
reaching eastern and southern regions of the continent.

The radiation of the D. septemdentatus complex to-
wards the eastern Amazonia and coastal river basins of 
northern South America must have occurred from the late 
Miocene onwards coevally with the gradual evolution 
of the Western Amazonia from a megawetland to a flu-
viodeltaic system following the combined effect of late 
Miocene global sea-level lowstand and ongoing Andean 
orogeny coupled with surface processes (sedimentation 
and erosion) on the Western Amazonia that culminated 
in the overcoming of the Purus arch and the reorgani-
zation of the drainage system into the present-day east-
ward-flowing Amazon River during the late Miocene and 
early Pliocene (c. 10.5–4.5 mya) (Lundberg et al. 1998; 
Figueiredo et al. 2009, 2010; Hoorn et al. 2010b, 2017; 
Wesseling and Hoorn 2011; Sacek 2014; Rodríguez-Trib-
aldos et al. 2017; Albert et al. 2018, 2021). The separation 
between D. spinifer and D. montinavis sp. n. c. 14–8 mya 
(Fig. 3) might be related to the onset of the transcontinen-
tal Amazon River during the late Miocene. The disper-
sion of representatives of this species complex towards 
lower Amazon region and coastal basins of northern 
South America must have been facilitated by sea-level 
fluctuation during the Pleistocene.

A possible hypothesis to explain the current occurrence 
of D. spinifer in the middle Paraná River basin (Collins 
et al. 2009) could most likely be the radiation from the 
Western Amazonia due to the capture of the headwa-
ters of upper Paraguay by Western Amazonia drainages 
during middle Miocene (11.8–10.0 mya) (Lundberg et al. 
1998; Carvalho and Albert 2011). The geologic history 
of the watersheds between upper Paraguay River and ad-
jacent basins is complex and the boundaries between the 
Paraguay and Amazon basins underwent several hydro-
geological changes since the middle Eocene due to An-
dean orogeny and headwaters capture events (Lundberg 
et al. 1998; Carvalho and Albert 2011). The hydrologi-
cal interconnections between these regions, particularly 
between the Paraguay and upper Madeira basins (which 
are still in place in modern times) and the Paraguay and 
the Tocantins-Xingu, served as dispersal routes for many 
fish groups (Hubert and Renno 2006; Albert and Carval-
ho 2011; Carvalho and Albert 2011) and might also have 
been used for this group of freshwater crabs to disperse 
towards the Paraguay-Paraná basin.

Confirmation of these hypotheses, or another more 
consistent one to better explain the origin and distribution 
of this species complex, however, can only be achieved 
when the aforementioned constraints, in particular the in-
clusion of other species of the genus in the analysis, can 
be overcome.

5. Conclusion

The morphology-based studies on the systematics of 
the trichodactylid genus Dilocarcinus included either 
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eight (Rodríguez 1992) or three species (Magalhães and 
Türkay 2008), depending on the characters used to de-
limit the genus. The present unprecedented study of D. 
 septemdentatus sensu Magalhães and Türkay (2008) us-
ing an integrative approach through molecular systemat-
ics and morphological analysis based on specimens from 
a wide area along the Amazon basin and north of the 
South America coastal river basins revealed a complex 
consisting of three cryptic species. Each of these species 
was associated with a distinct morphological character of 
the G1 and available names were assigned to the taxa: 
D. spinifer, the type species of the genus, was revalidat-
ed and a lectotype was chosen; a neotype was designat-
ed for D. septemdentatus; and D. montinavis sp. n. was 
described as a new entity. The origin of this complex of 
mainly lowland species could presumptively be associat-
ed with the Pebas System, an extensive megawetland sys-
tem that existed along the lowlands of Western Amazo-
nia from late Oligocene to late Miocene (c. 23–11 mya). 
The use of this integrative approach based on molecu-
lar and morphological data proved to be very useful and 
should be recommended for the elucidation of taxonomic 
questions still pending, whether in this genus or in other 
groups of freshwater crabs. Furthermore, a clearer defi-
nition of the taxonomic situation of the group is relevant 
to provide support for conservation status assessments of 
the aquatic fauna.
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