|--|

## Hydrochemische Untersuchungen im Wettersteinkalk und im Hauptdolomit des Karwendelgebirges

von

### Carl Job und Georg MUTSCHLECHNER

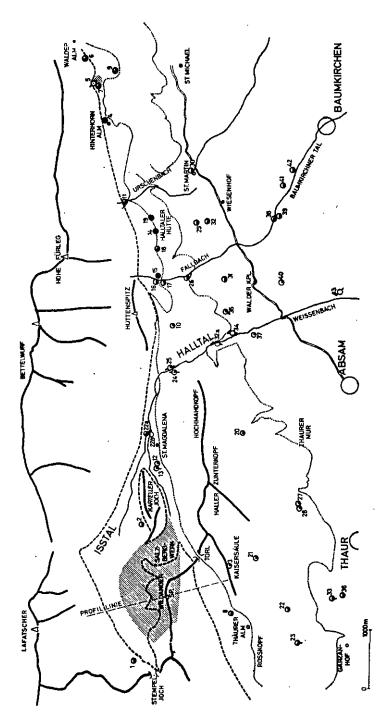
(Aus dem Forschungsinstitut Gastein der Österreichischen Akademie der Wissenschaften (Mitteilung Nr. 346) und dem Institut für Physiologie und Balneologie der Universität Innsbruck; Vorstand beider Institute; Univ.-Prof. Dr. F. SCHEMINZKY)

#### Hydrochemical investigations in limestone mountains

Synopsis: The chemical composition of surface-waters and mine-waters in the Wetterstein limestone and in the dolomite of the Karwendel-mountains was investigated in the area of the saltmine near Hall and compared with the geological situation.

Two groups of springs can be distinguished with respect to the altitude of emergence, which are separated by an almost springless zone lying between 950 and 1200 m above sea level. At these altitudes two water stemming strata run through the area of investigation.

The surface waters contain mainly earth-alkali carbonates with different Ca/Mg-relations. Ca/Mg-relations around I characterize waters in the area of the dolomite. Ca/Mg-relations between 2 and 4 are found in waters emerging from the Wetterstein-limestone and from the gravels of the Inn-valley. The waters emerging from the non-uniform limestone strata between the Wetterstein- and Hauptdolomit-area show Ca/Mg-relations between 4 and 12. The Mg-content probably comes from strewn-in dolomite. The carbonate content of the higher situated springs is generally lower than that of the lower group of springs. Exceptions can be explained by the lusher vegetation in the emergence area. Springs emerging from dolomite tend to higher carbonate contents on account of the lusher vegetation in this rock. Sulfates were found in all springs of the Halltal as well as in some springs west of Thaur and in one spring in the eastern part of the investigated area emerging from saliferous clay. The chemical compositions of the waters of the Solbad Hall saltmine correspond to the penetrated rock material: while the highest inflow carries only limestone, the waters of the lower roadways contain gypsom and sodiumchloride.


Chemische Analysen einfacher kalter Quellen werden häufig zur Prüfung ihrer Brauchbarkeit als Trink- und Brauchwasser ausgeführt. Für diese Verwendungszwecke interessieren im allgemeinen nur relativ ergiebige, einigermaßen konstante und für den Verbraucher günstig gelegene Wasseraustritte. Zur Klärung der Beziehungen zwischen dem Grundwasser und seinem geochemischen Umraum sind solche Nutzungsanalysen, die meist nur über die Wasserhärte und die Verschmutzungsindikatoren Aufschluß geben, nicht ausreichend. Deshalb schien uns die Durchführung einer regional dichteren und analytisch vollständigeren Quellenuntersuchung in einem geologisch gut definierten Gebiet wünschenswert.

## Geologische Situation des Quellgebietes:

Das untersuchte Quellgebiet erstreckt sich zwischen 11°26' und 11°34' östlicher Länge und zwischen 47°18' und 47°20' nördlicher Breite. Die Grundlage für die Auffindung der Quellen im Gelände bildete die Umgebungskarte von Innsbruck (Maßstab 1:25.000) des Bundesamtes für Eich- und Vermessungswesen. Die Karte wurde 1962 aufgenommen und 1964 durch einzelne Nachträge ergänzt.

Das Untersuchungsgebiet liegt am Südrand des zu den Nordtiroler Kalkalpen zählenden Karwendelgebirges (Abb. 1). Dieses ist ein Faltengebirge aus W-O-verlaufenden Faltenzügen. Die Hauptketten des Gebirges entsprechen mächtigen Schichtaufwölbungen (Faltensätteln), die dazwischen liegenden Täler den Einbiegungen (Faltenmulden). Diese Faltenzüge werden im Süden vom Inntal schräg angeschnitten. Am Halltal läuft mit dem Hohen Zunterkopf die südlichste Karwendelkette, die Innsbrucker Nordkette, spitz aus. Östlich dieses tiefen Taleinschnittes reicht der nächste Gebirgszug, die Halltal- oder Bettelwurfkette, an das Inntal heran. Diese orographische Gliederung entspricht jedoch nicht den geologischen Verhältnissen.

Im Fernblick von Süden gegen das Bettelwurfmassiv kann man dank der Verschiedenheiten der Geländeformung, der Gesteinsfarben und des Bewuchses zunächst zweierlei Gesteinsbereiche unterscheiden. Der Felssockel des Gebirges aus meist leicht bituminösem Hauptdolomit erscheint vergleichsweise weniger steil, fast überall gangbar, verhältnismäßig dunkel, mit Mischwald und Legföhren bestanden. Die darüber aufragende Gesteinsmasse aus Wettersteinkalk bildet steile, bleiche und kahle Felsformen, in denen nur örtlich einzelne kleine Legföhrenbestände noch ein Stück emporreichen. Zwischen diesen beiden so grundverschiedenen Gesteinsarten erstreckt sich eine schmale Zone, die etwas flacheres Gelände liefert und besser begrünt ist. Hier entspringen Quellen, die sich zu Bächen vereinigen. Hier führt auch ein vielbegangener Höhenweg, der die Verbindung zwischen den an die Wasseraustritte gebundenen Almen und Berghütten herstellt. Diese relativ schmale Zone ist sehr wechselnd und kompliziert zusammengesetzt. Über dem Hauptdolomit folgen stellenweise Lagen, Linsen und Späne von Plattenkalk, Kössener Schichten, Liaskalk, Radiolarit des Malm und Tithonkalk. Darüber erscheinen, ebenso ungleich umgrenzt, die viel älteren Reichenhaller Schichten (Rauhwacken, Dolomite, Kalke), Muschelkalk, Wettersteinkalk und Hauptdolomit. Erst dann kommt die Hauptmasse des Wettersteinkalks.



der Nordgrenze des Hauptdolomits ist eine Zone von Trias- und Jura-Kalken eingeschoben. Die Quellen und Entnahme Abb. 1: Skizze des untersuchten Quellgebietes mit den wichtigsten Gebirgszügen (stark ausgezogene Linien), der Salzlagerstätte bzw. der Salztonfundstelle bei Quelle 5 (schraffierte Felder), der Südgrenze des Wettersteinkalkes (gestrichelte Linie) sowie der Nord- bzw. Südgrenze des Hauptdolomits (punktierte Linie). Zwischen der Südgrenze des Wettersteinkalks und stellen sind durch Kreise markiert. Striche am Kreisrand kennzeichnen den Sulfat-Gehalt über 5 val% (1 Strich) bzw. über 20 val% (2 Striche). Die Ca/Mg-Quotienten sind durch unterschiedliche Kreisfüllung dargestellt und zwar als viertel gefüllte Kreise bei Ca/Mg. Quotienten von 1 bis 2, als halb gefüllte Kreise von 2 bis 4, als dreiviertel gefüllte Kreise von 4 bis 8 und als ganz gefüllte Kreise von 8 bis 16.

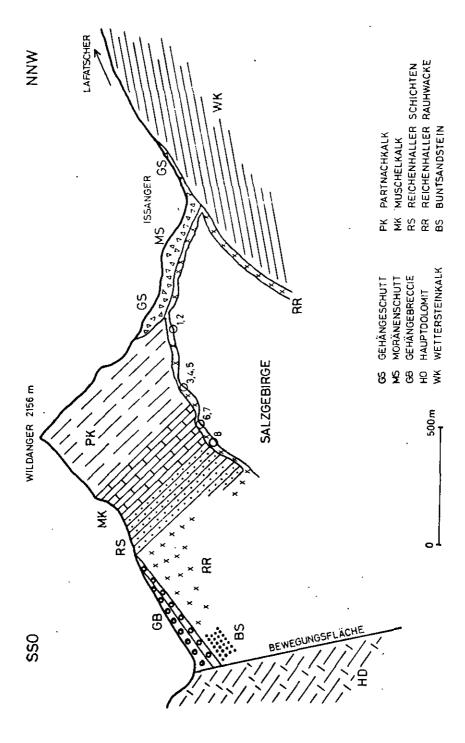



Abb. 2: Profil durch den Haller Salzberg. Das Salzgebirge liegt von einer Schicht Reichenhaller Rauhwacke umgeben unter Kalken. Die bezifferten Kreise I bis 8 entsprechen den ungefähren Austrittsstellen der untersuchten Grubenwässer.

Die geologische Situation beiderseits des Halltals ist durch einen Deckenbau gekennzeichnet. Der Südrand des Karwendelgebirges und damit die tieferen Gebirgsteile westlich und östlich des Halltales wurden von O. Ampferen zur Lechtaldecke gerechnet, das nördlich angrenzende Hochgebirge zur Inntaldecke. Die Grenze dieser beiden großtektonischen Einheiten ist eine steile Bewegungsfläche (Abb. 2). Der Ausstrich dieser in mehrfacher Hinsicht wichtigen Grenzfläche läßt sich durch die Hänge der Nordkette oberhalb Innsbruck von Westen nach Osten allmählich ansteigend - durch Wasseraustritte und kleine Almen markiert - zum Törl, dem Übergang in das Halltal verfolgen, wobei man in vielen Aufschlüssen immer wieder einen auffallend roten Sandstein (Buntsandstein) über dem grauen Dolomit sehen kann. Zwischen dem Törl und dem Haller Zunterkopf liegt südlich der Hauptstörungsfläche noch ein kleiner Deckenrest von Buntsandstein und Reichenhaller Schichten (Rauhwacke, Dolomit, Kalk) auf Hauptdolomit und Plattenkalk. Vom Törl in das tief eingeschnittene Halltal hinunter ist die unmittelbare Einsicht in die Grenzfläche weithin durch Schutt verhüllt. Doch stößt westlich von St. Magdalena Reichenhaller Rauhwacke an den Hauptdolomit. Die geologische Gesamtsituation läßt in diesem Bereich erkennen, daß der nördliche Gebirgsteil abgesunken ist. Oberhalb des Bettelwurfbrünnls (Abb. 1, Quelle 24) verläßt die Bewegungsfläche das Halltal. Die Grenze zwischen den beiden großen tektonischen Einheiten kann man unter den Steilabbrüchen des Wettersteinkalks entlang weithin nach Osten verfolgen: zunächst durch eine markante Geländefurche zum Vogelboden oberhalb der Alpensöhne-Hütte südlich vom Hüttenspitz. Die Fortsetzung zieht stets am Fuß der Kalkfelsen mehr oder weniger hoch über dem Höhenweg entlang. Sie schneidet den Fallbach bei 1400 m und weiter östlich den Urschenbach in gleicher Höhe. Dann verläuft sie unter Schuttbedeckung durch die Zunterseite. Nördlich der Hinterhornalm setzt die Bewegungsfläche wieder sichtbar ein und läßt sich über die Walder Alm hinaus feststellen. Besonders interessant ist eine Stelle östlich der Hinterhornalm am Ursprung des Hasenbaches, wo grüner Sandstein mit Gips zum Vorschein kommt.

Das tiefeingreifende Halltal entspricht in seinem inneren, West-Ost orientierten Verlauf der Fortsetzung einer im Westen breiten, am Ostende jedoch stark zusammengepreßten Schichtenmulde. Diese wird von der großen, dem inneren Halltal folgenden, dann an der Verengungsstelle oberhalb des Bettelwurfbrünnls querenden Bewegungsfläche schräg angeschnitten. Der äußere, fast nord-südlich verlaufende Abschnitt des Tales durchbricht den gegen das Inntal vorgelagerten Riegel aus Hauptdolomit der Lechtaldecke und ist vermutlich durch einen Sprung oder Bruch der spröden Gesteinsmasse vorgezeichnet.

Das Halltal birgt als geologische Besonderheit das westlichste bekanntgewordene Steinsalzvorkommen der Ostalpen: den Haller Salzberg. Die Inntaldecke ist hier durch jüngere Brüche in mehrere große Schollen zerlegt, deren Begrenzungen in der Morphologie als tiefe Kerben in Erscheinung treten. Die Scholle der stark zerklüfteten Wildangerspitzen und die Scholle des Karteller Jöchls, zwischen dem

eigentlichen Halltal und dem Isstal, ruhen auf der Salzlagerstätte, die sich im innersten Teil beider Täler befindet.

Die durch den Bergbau teilweise aufgeschlossene Lagerstätte besteht hauptsächlich aus Haselgebirge, Salzton, Grausalz, Blättersalz, Fasersalz, aber auch mächtigen Zügen und Schollen von Anhydrit, ferner etwas Dolomit und Breunerit. Das Salz kommt überwiegend im Haselgebirge und nur seltener als größere Einlagerungen vor. Meist sind es nur sog. Salzstriche. Über Tag ist davon nur wenig zu sehen. Hier findet man nicht mehr das leicht lösliche Steinsalz, sondern nur mehr ausgelaugtes Haselgebirge, grünlichen Sandstein und Salzton sowie Gips. Die ganze Lagerstätte ist von einem verhältnismäßig dünnen Mantel aus Rauhwacken der Reichenhaller Schichten überzogen. Die mindestens bis auf das Jahr 1232 zurückreichende, vielleicht schon in urgeschichtlicher Zeit betriebene Salzgewinnung wurde im Sommer 1967 wegen Unrentabilität stillgelegt.

Die Weitung des inneren Halltales und des Isstales hängt mit der verhältnismäßig leichten Zerstörbarkeit der hier aufgedrungenen Salzlagerstätte und ihrer Begleitgesteine zusammen. Das bewegliche und schmiegsame Salzgebirge suchte nach Stellen geringen Drucks auszuweichen. Die Lagerstätte liegt nach bisheriger Kenntnis zwischen zwei Störungszonen oder genauer Bruchzonen, nämlich zwischen der dem inneren Halltal folgenden Halltaler Störung (hier zugleich die Deckengrenze) im Süden und der durch das Isstal westlich bis über das Stempeljoch hinaus verfolgbaren Isstalstörung im Norden.

Die aus den Grubenbauen und den wenigen Aufschlüssen über Tag bekannte Lagerstätte ist durch das Emporquellen des im Vergleich zu dem Nachbargestein spezifisch leichteren und beweglicheren Materials in ein höheres Niveau gelangt, wobei der umgebende Mantel aus Rauhwacke die Wanderung mitgemacht hat. Der Haller Salzberg ist nur ein Teil des gesamten Salzgebirges. Das noch unerschlossene Salzgebirge zieht gegen Westen vermutlich bis unter das Gebiet der Pfeis hinein und nach Norden unter das Lafatscher Joch. Lediglich die Südgrenze ist eindeutig durch die große Störungszone der Halltaler Störung bestimmt. Das östliche Ende dürfte in der Gegend nördlich des Bettelwurf-Brünnls (Abb. 1, Quelle 24) zu suchen sein. Wie erwähnt, sind noch 5 km weiter im Osten Haselgebirge (mit den typischen grünen Sandsteinen) und Gips zwischen der Hinterhorn- und der Walder Alm längs der weit reichenden Bewegungsfläche entblößt, ein Hinweis, daß das Salzgebirge in der Tiefe noch beträchtlich über das sichtbar gewordene Verbreitungsgebiet reichen kann.

## Hydrochemische Untersuchungen:

Analysen-Methoden:

Die Entnahme der Wasserproben erfolgte in den Monaten Juni bis November 1966 sowie Oktober bis November 1967. Die Bestimmung des pH-Wertes, der elektrolytischen Leitfähigkeit und die chemischen Analysen wurden innerhalb von 2 bis 3 Tagen nach der Entnahme nach allgemein üblichen Analysenverfahren durchgeführt: Na- und K-Ionen wurden nach 10facher Einengung der angesäuerten Wasserprobe und Pufferung mit Aluminiumnitrat

Caesium-Chlorid flammenphotometrisch bestimmt. Die Analyse auf Ca- und Mg-Ionen erfolgte komplexometrisch mit 0,02n EDTA in jeweils 50 ml Probe. Als Indikator diente bei der Ca-Bestimmung Calcon, bei der kombinierten Ca- und Mg-Bestimmung die Indikatorpuffertabletten Merck Nr. 8430. Aus der Differenz der beiden Titrationen ergab sich der Mg-Gehalt des Wassers. Eisen-(Mangan?)Spuren störten die komplexometrische Erdalkalibestimmung in den Wässern 4, 6, 7, 9. Die Störung wurde durch Natriumdiäthyldithiocarbaminat und Ausschütteln mit Tetrachlorkohlenstoff beseitigt. Die Bestimmung der Gesamtalkalität erfolgte in 100 ml Wasser mit 0,05n Salzsäure durch elektrometrische Titration bis zum Äquivalenzpunkt der Hydrogencarbonate (pH 4, 3), die Chlorid-Bestimmung in 50 ml Wasser nach Ansäuerung mit Salpetersäure durch Titration mit 0,02n Quecksilbernitratlösung unter Verwendung von Diphenylcarbazon als Indikator. Zur Sulfatbestimmung wurden 100 ml Wasser mit einem stark sauren Kationen-Austauscher versetzt und 30 min gerührt. Das Wasser wurde sodann vom Austauscher filtriert und am kochenden Wasserbad mit einem bekannten Überschuß 0,1n Bariumchlorid-Lösung versetzt. Der nicht gefällte Teil der Barium-Ionen wurde komplexometrisch bestimmt (Sijderius 1954).

Die Konzentrationen der aufgefundenen Inhaltstoffe werden in Mikroval/I Wasser angegeben. Zur Umrechnung auf Milligramm/I sind die Werte durch 1000 zu dividieren und mit dem Äquivalentgewicht der betreffenden Ionen zu multiplizieren. Die Gesamthärte in deutschen Härtegraden entspricht der Mikroval-Summe der Ca- und Mg-Ionen multipliziert mit dem Faktor 0,0028. Die Carbonat-Härte ergibt sich durch Multiplikation des Hydrogencarbonat-Gehaltes mit demselben Faktor.

#### Prüfung der Analysengenauigkeit:

Theoretisch sollten die Mikroval-Summen der Kationen  $(S_K)$  und Anionen  $(S_A)$  gleich sein. Praktisch trifft dies aber nur in seltenen Fällen zu, da die Einzelanalysen unvermeidliche Fehler enthalten und nicht alle im Wasser enthaltenen Ionenarten analytisch erfaßt werden. Im allgemeinen wird ein Analysenergebnis als richtig betrachtet, wenn die Differenz zwischen der Kationen- und Anionen-Summe innerhalb der statistischen Standard-Abweichung liegt (Standard Methods 1960). Die Überprüfung kann durch den Prüfquotienten

$$Q = \frac{S_A - S_K}{106,5 + 0,0155 \ S_A}$$

vorgenommen werden. Bei nicht hinreichend genauen und vollständigen Analysen ist der Prüfquotient  $Q>\pm 1.$ 

Die Prüfquotienten sind im letzten Stab der Analysentabellen angegeben. Die Oberflächenwässer (Tab. 1) hatten fast durchwegs negative Prüfquotienten, weil die Kationensumme größer als die Anionensumme war. Eine der Ursachen hierfür ist, daß der Äquivalenzpunkt der Hydrogenearbonate von ihrer Konzentration abhängt. Der pH-Wert von 4,3, bis zu welchem die Carbonatalkalität üblicherweise titriert wird, entspricht deshalb nicht immer dem tatsächlichen Endpunkt der Titration, so daß zu niedrige Hydrogenearbonat-Werte gefunden werden. Prüfquotienten bis zu - 0,4 in Wässern mit überwiegendem Hydrogenearbonat-Gehalt haben meist diese Ursache. Einige Analysen ergaben Prüfquotienten Q>- 1 und zwar auch bei Zweituntersuchungen, die 2 bis 13 Monate später durchgeführt wurden. Die Mehrzahl dieser Analysen betraf Wässer, die in der Nähe von beweideten Almen und Talungen austreten. Das Anionen-Defizit ist daher wahrscheinlich auf die nichtbestimmten Nitrat-Ionen zurückzuführen. Die Grubenwässer (Tab. 2) zeigten durchwegs Prüfquotienten  $Q<\pm 1$ , wobei allerdings im Wasser 7 die kritische Grenze beinahe erreicht wurde.

### Chemische Charakteristik der Oberflächenwässer:

Die überwiegende Mehrzahl der untersuchten Quellwässer gehört dem Typ der bekannten Erdalkali-Hydrogencarbonat-Wässer an (Tab. 1). Die Ca-Werte der sulfatfreien Wässer streuen zwischen 1100 und 4900 Mikroval/l, die Mg-Werte

Tab. 1: Chemische Zusammensetzung der Quellwässer. Austrittshöhe (Sh), Entnahmetag, Wassertemperatur (°C), pH-Wert bei 20° C, Leitfähigkeit (uS bei 20° C) und Ionenkonzentrationen in Mikroval/l. Sκ bzw. S<sub>A</sub> bedeuten die Kationen- bzw. Anionensummen. <u>۔</u> م

| 2 030         Bande-Steig         1.8.66         4.0.7.8         16.61         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1562         1562         1562         1562         1562         1562         1562         1562         1562         1562         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1563         1564         1674         1674         1674         1674 <th>Nr.</th> <th><math>\mathbf{S}\mathbf{h}</math></th> <th>Quelle</th> <th>Tag</th> <th>°С р</th> <th>pH μS</th> <th>Na</th> <th>. K</th> <th>Ca.</th> <th>. Mg</th> <th><math>\mathbf{S}_{\mathbf{K}}</math></th> <th>Ca./Mg</th> <th>Ċ</th> <th>SO4''</th> <th>HCO,</th> <th><math>\mathbf{S}_{\mathbf{A}}</math></th> <th><b>~</b></th> | Nr. | $\mathbf{S}\mathbf{h}$ | Quelle           | Tag        | °С р | pH μS | Na  | . K    | Ca.  | . Mg | $\mathbf{S}_{\mathbf{K}}$ | Ca./Mg | Ċ  | SO4''  | HCO,      | $\mathbf{S}_{\mathbf{A}}$ | <b>~</b> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------|------------------|------------|------|-------|-----|--------|------|------|---------------------------|--------|----|--------|-----------|---------------------------|----------|
| 1660         Issignch         1. 8. 66         4,0         7,3         176         31         5         1803         361         2340         3.6         9,0         226           1660         Kaisersäule         27. 6. 66         4,0         7,7         300         31         4         2003         1807         3845         1.1         0         0         375           1520         Hinterhornalum         21. 8. 66         1.5         4         4         1.8         4732         456         5247         10,4         0         375           1510         Sollboden         26. 10. 67         8.0         7.8         635         1.8         4.20         522         871         4.4         4.0         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         5                                                                                                                                                                                                                                                                                                                                                                                                               | -   | 2030                   | Bande-Steig      | တင်        | 1,0  | 12    | l . | 91 8   | 1102 |      | 1557                      | _      | 0  | 0      | 1561      | 1561                      | +0,03    |
| 1660         Kaisersäule         27. 6. 66         4,0         7.7         300         31         4         2003         1845         1.1         0         0         3756           1520         Hinterhornalun         21. 9. 66         1.5 6.9         400         41         18         4732         456         5247         10,4         64         9         4849           1510         Scilhoden         26. 10. 67         7.0         7.4         392         18         470         525         5247         10,4         6         464         9         4849           1500         Kolihoden         19. 9. 61. 10. 67         50. 7.8         392         18         6         522         5247         10,4         46         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50 <td>87</td> <td>1660</td> <td>Issiochl</td> <td>တ</td> <td>4.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2340</td> <td>_</td> <td>0</td> <td>0</td> <td>2265</td> <td>2265</td> <td>-0,53</td>                                                                                                                                                                                         | 87  | 1660                   | Issiochl         | တ          | 4.0  |       |     |        |      |      | 2340                      | _      | 0  | 0      | 2265      | 2265                      | -0,53    |
| 1520         Hinterhornalum         21.         9.         61         18         4732         456         5247         10,4         64         9         484           1510         Sillboden         26.         10.         7         -7.         410         39         26         4914         470         5449         10.5         64         9         4849           1510         Sillboden         26.         10.67         8.0         7.8         392         21         8,4300         952         2814         4.6         9         9         50         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ಣ   | 1660                   | Kaisersäule      | 6.         | _    | - •   |     |        |      | _    | 3845                      |        | 0  | 0      | 3756      | 3756                      | -0.54    |
| 1510         Sollboden         26. 10. 67         - 7, 6         410         39         26. 4914         470         5449         10.5         64         9         508           1510         Walderalm         26. 10. 67         8.0         7.8         635         13         12         6180         5522         5281         4.5         0         0         5095           1500         Walderalm         19. 9. 67         7.0         7.4         392         21         8         4.90         952         5281         4.5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>4</td><td>1520</td><td>_</td><td>6</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>5247</td><td></td><td>64</td><td>•</td><td>4849</td><td>4913</td><td>-1,83</td></td<>                                                                                                                                                                                                                                            | 4   | 1520                   | _                | 6          | -    |       |     |        |      |      | 5247                      |        | 64 | •      | 4849      | 4913                      | -1,83    |
| 1510         Söllboden         26. 10. 67         8.0         7.8         635         13         12         6180         2532         8737         244(0,52)         16         4767***         3986           1500         Walderalm         19. 9. 67         7.0         7.4         392         21         8         430         952         5281         4.5         0         0         505           1500         Walderalm         19. 9. 67         7.0         7.8         390         16         9         4250         872         544         9         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td>10.</td><td>-</td><td>-</td><td></td><td>9 26</td><td>4914</td><td></td><td></td><td></td><td>64</td><td>0</td><td>5085</td><td>5149</td><td>-1,61</td></t<>                                                                                                                                                                                                                                            |     |                        |                  | 10.        | -    | -     |     | 9 26   | 4914 |      |                           |        | 64 | 0      | 5085      | 5149                      | -1,61    |
| 1500         Walderalm         19.         9.         67         7,0         7,4         392         21         8         4300         952         5281         4,5         0         0         509           1500         Walderalm         26.         10.         67         7.8         390         16         9         4250         872         5147         4,9         0         0         500         500         150         10.         67         7.8         390         16         9         4250         872         5147         4.9         0         0         0         500         500         500         10.         9         6         50         7.0         7.8         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0                                                                                                                                                                                                                                                                                                                                                                                                                 | rO  | 1510                   | Söllboden        | 10.        |      |       |     |        |      |      |                           |        | 16 | 4167** | 3988      | 8771                      | +0.14    |
| Holztrog)         26. 10. 67         6.0         7.8         390         16         9. 4550         872         6147         4.9         0         5126         60         50. 365         6.2         0         50. 361           1500         Thaurer Alm         26. 10. 67         9.0         7.8         289         17         9         3126         50.         6.0         5.0         8.0         17.8         28         17         9         3126         50.         9.0         7.8         289         17         9         3126         50.         9.0         9.0         7.8         9.0         9         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9 <td< td=""><td>9</td><td>1500</td><td>Walderalm</td><td>တဲ</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>5095</td><td>5095</td><td>-1,00</td></td<>                                                                                                                                                                                                                       | 9   | 1500                   | Walderalm        | တဲ         | _    |       |     |        |      |      |                           |        | 0  | 0      | 5095      | 5095                      | -1,00    |
| 1500         Söllboden         26, 10, 67         90, 7,8         289         17         9         3126         565 8,9         6,2         9         7,8         289         17         9         3126         565 8,9         6,2         9         7,8         17         23         4         1602         501         319         9         7         6         6         50         8         17         23         4         1602         501         130         3,2         0         9         9         9         7         7         7         370         20         4         1602         501         130         4,9         9         9         9         7         7         8         10         4         1503         4         100         5         145         4         1503         450         10         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9 <th< td=""><td>:</td><td></td><td>(Holztrog)</td><td>10.</td><td></td><td></td><td></td><td>6 9</td><td>4250</td><td></td><td></td><td></td><td>0</td><td>0</td><td>5026</td><td>5026</td><td>-0.66</td></th<>                                                                                                                                                                                                                             | :   |                        | (Holztrog)       | 10.        |      |       |     | 6 9    | 4250 |      |                           |        | 0  | 0      | 5026      | 5026                      | -0.66    |
| 1300         Thauver Alim         27. 6, 66         5.0         9.0         172         23         4         1602         501         2130         3.2         0         504         4874           1380         Gungglkopf         19. 9, 67         7.0         7.8         370         26         11         4227         856         5120         4.9         0         56         4874           1370         Alpensöhne         6. 8, 66         8.6         7.4         350         20         4         2504         2003         4531         1.3         0         0         4451           1300         Urschenbach         6. 8, 66         5.0         7.4         219         93         12         1280         285         179         5.3         170         171         170         178         180         27         6         4         150         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180         180                                                                                                                                                                                                                                                                                                                                                                                                     | r   | 1500                   | Söllboden        | 10.        |      |       |     | 7 9    | 3126 |      |                           |        | 0  | 0      | 3514      | 3514                      | -0.89    |
| 1380         Gunggkopf         19.         9.         67.         7.         7.         370         26         11         4227         856         5120         4.9         0         56         4874           1370         Alpensöhne         6.         8.66         8.7         7.4         350         20         4         2504         2003         4531         1.3         0         6         4451           1300         Urschenbach         26.         10.67         7.0         7.8         144         6         4         1503         285         1798         5.3         0         0         4451           1300         St. Magdalena I         6.         8.66         5.0         7.4         216         24         7         1602         1405         308         1,1(1,0)         20         211         211         21.         21.         21.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22.         22. </td <td>00</td> <td>1500</td> <td>Thaurer Alm</td> <td>6.</td> <td>_</td> <td></td> <td></td> <td>ن<br/>4</td> <td>1602</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>2145</td> <td>2145</td> <td>+0.12</td>                                                                                                                                                                           | 00  | 1500                   | Thaurer Alm      | 6.         | _    |       |     | ن<br>4 | 1602 |      |                           |        | 0  | 0      | 2145      | 2145                      | +0.12    |
| 1370         Alpensöhne         6.         8. 66         8.5         7.4         350         20         4         2504         2003         4531         1.3         0         4451           1300         Urschenbach         26. 10. 67         7.0         7.8         144         6         4         1503         285         1798         5.3         0         0         1712           1300         St. Magdalena I         6.         8. 66         5.0         7.4         219         24         7         1602         1405         308         1,1(1,0)         20         2118         23         220         258         11,1(1,0)         20         210.         2337         20         258         11,1(1,0)         20         210.         2337         20         258         11,1(1,0)         20         210.         2337         20         258         11,1(1,0)         20         210.         2337         20         258         11,1(1,0)         20         210.         2337         2337         20         258         11,1(1,0)         20         210.         2337         20         258         11,1(1,0)         20         210.         2337         20         238                                                                                                                                                                                                                                                                                                                                                                                | 6   | 1380                   | Gungglkopf       | 6          |      |       |     | 0 1.1  | 4227 |      |                           |        | 0  | 56     | 4874      | 4930                      | -1,04    |
| 1300         Urschenbach         26. 10. 67         7.0         7.8         144         6         4         1503         285         1798         5.3         0         0         1712           1300         St. Magdalena I         6. 8. 66         5.0         7.4         219         93         12         1302         1280         2687         1.0         16         0         2118           1300         St. Magdalena II         6. 8. 66         5.0         7.4         236         24         7         1602         1405         3038         1.1(1,0)         20         2118         283         200         2586         11,78         0         0         2104         2830           1270         Halltaler Hütte         21. 9. 66         12.0         7.8         126         2353         200         2588         11,77         0         0         2393           1270         Fallbach hütte         25. 11. 67         5.0         8.0         26         7         3         1443         358         14,9         0         0         0         1702           1260         Fallbach hütte         25. 11. 67         5.0         8.0         201         15 <t< td=""><td>10</td><td>1370</td><td>Alpensöhne</td><td>œ</td><td></td><td></td><td></td><td>0</td><td>2504</td><td>64</td><td></td><td></td><td>0</td><td>0</td><td>4451</td><td>4451</td><td>-0.45</td></t<>                                                                                                                                                                                  | 10  | 1370                   | Alpensöhne       | œ          |      |       |     | 0      | 2504 | 64   |                           |        | 0  | 0      | 4451      | 4451                      | -0.45    |
| 1300         St. Magdalena I         6. 8. 66         5,0 7,4         219         93         12         1302         1360         11,1,0         20         2518         251         1300         St. Magdalena II         6. 8. 66         5,0 7,4         236         24         7         1602         1405         3038         1,1(1,0)         20         210*         2830           1270         Halltaler Hütte         21. 9. 66         12,0 7.8         198         27         6         2353         200         2586         11,7         0         0         219         2397         200         2588         11,7         0         0         2397         2397         2392         10,9         0         2397         2392         10,9         0         2392         1290         2392         1392         2392         1392         2392         1392         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392         140         2392                                                                                                                                                                                                                                                                                                                                                               | 1   | 1300                   | Urschenbach      | 10.        |      |       |     | 6 4    | 1503 |      |                           |        | 0  | 0      | 1712      | 1712                      | +0,65    |
| 1370         St. Magdalena II         6. 8. 66         5,0 7,4         236         24         7 1602         1405         3038         1,1(1,0)         20         210*         2830           1270         Halltaler Hütte         21. 9. 66         12,0 7.8         198         27         6         2353         200         2586         11,8         0         0         2397           1270         Fallbachhütte         25. 11. 67         8,0         226         9         4         2355         200         2588         11,7         0         0         2397           1270         Fallbachhütte         25. 11. 67         8,0         80         226         9         4         2668         245         2926         10,9         0         2397           1260         Fallbach         25. 11. 67         8,0         80         12         7         1969         599         2590         3,3         0         0         2432           1260         Wandlalm         25. 11. 67         8,0         8,1         26         16         8,2         266         358         354         8,3         0         0         2432           1260         Wandlalm <t< td=""><td>12</td><td></td><td>St. Magdalena I</td><td>တ်</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>16</td><td>0</td><td>2518</td><td>2534</td><td>-1,05</td></t<>                                                                                                                                                                                             | 12  |                        | St. Magdalena I  | တ်         |      |       |     |        |      | •    |                           |        | 16 | 0      | 2518      | 2534                      | -1,05    |
| 1270         Halltaler Hütte         21. 9. 66         12.0 7.8         198         27         6         2353         200         2586         11.8         0         0         2397           1270         Fallbachnütte         25. 11. 67         8.0         2.0         4         2365         200         2588         11,7         0         0         2392           1270         Fallbachnütte         25. 11. 67         8.0         8.0         226         9         4         2668         245         2926         10,9         0         0         2392           1260         Fallbach         25. 11. 67         6.8         8.0         21         7         3         1443         358         1811         4,0         0         0         2793           1260         Fallbach         25. 11. 67         6.8         8.0         21         24         29         11         269         590         3.3         0         0         2432           1260         Wandlalm         25. 11. 67         7.5         8.1         260         16         8         2958         358         3340         8.3         0         0         2890           1250                                                                                                                                                                                                                                                                                                                                                                                                                 | 13  |                        | St. Magdalena II | œ          |      |       |     | 4 7    | 1602 |      |                           |        | 20 | 210*   | 2830      | 3060                      | +0,14    |
| 1270         Fallbachnitte         25. 11. 67         8.0         2.0         4         2.355         200         258 11.7         0         0         2392           1270         Fallbach         25. 11. 67         8.0         8.0         226         9         4         2668         245         2926 10.9         0         0         2709           1270         Fallbach         25. 11. 67         6.8         8.0         201         15         7         1969         599         2590         3.3         0         0         2432           1260         Grabenbach         25. 11. 67         9.0         8.1         264         29         11         269         2590         3.3         0         0         2432           1260         Wandlalm         25. 11. 67         7.5         8.1         260         16         8         2958         358         3340         8.3         0         0         2890           1250         Buchtalhütte         20.         8.6         9.0         7.4         320         19         7         2203         3003         4232         1.1         0         0         4113           1250         Backrhütte </td <td>14</td> <td></td> <td>Halltaler Hütte</td> <td>တဲ</td> <td></td> <td></td> <td></td> <td>7</td> <td>2353</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>2397</td> <td>2397</td> <td>-1,32</td>                                                                                                                                                                                        | 14  |                        | Halltaler Hütte  | တဲ         |      |       |     | 7      | 2353 |      |                           |        | 0  | 0      | 2397      | 2397                      | -1,32    |
| 1270         Fallbachhütte         25. 11. 67         8,0         8,0         26         9         4         2668         245         2926         10,9         0         2799           1270         Fallbach         25. 11. 67         6,8         8.0         142         7         3         1443         358         1811         4,0         0         0         702           1260         Fallbach West         25. 11. 67         9,0         8,1         244         29         11         2632         470         3142         5,0         0         2432           1260         Grabenbach         25. 11. 67         7,5         8,1         260         16         8         2958         354         8,3         0         0         2890           1260         Wandlalm         25. 11. 67         7,5         8,1         260         16         8         2958         358         3340         8,3         0         0         2890           1250         Buchtalhütte         20.         8.6         9.0         7,4         320         19         7         2203         2003         4232         1,1         0         0         4113                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                        |                  | Ξ.         |      |       |     | 9      | 2355 |      |                           |        | 0  | 0      | 2392      | 2392                      | -1,36    |
| 1270         Fallbach         25. 11. 67         5.0         8.0         142         7         3         1443         358         1811         4,0         0         0         1702           1260         Fallbach West         25. 11. 67         6,8         8.0         201         15         7         1969         599         2590         3,3         0         0         2432           1260         Grabenbach         25. 11. 67         7,5         8,1         264         29         1         265         470         3142         5,6         0         2890           1260         Wandlalm         25. 11. 67         7,5         8,1         260         16         8         2958         354         3340         8,3         20         0         2890           1250         Buchtalhütte         20.         8.6         9.0         7.4         320         19         7         2203         2003         4232         1,1         0         0         4113           1250         Biggerhütte         10.         8.6         14,0         7.7         320         24         4         2153         2157         4338         1.0         0                                                                                                                                                                                                                                                                                                                                                                                                                      | 33  | 1270                   | Fallbachhütte    | 25, 11, 67 |      |       |     | 9 4    | 5668 |      |                           |        | 0  | 0      | 2799      | 2799                      | -0,84    |
| 1260         Fallbach West         25. 11. 67         6,8         8.0         201         15         7         1969         599         2590         3,3         0         0         2432           1260         Grabenbach         25. 11. 67         9,0         8,1         244         29         11         2632         470         3142         5,6         0         0         2890           1260         Wandlalm         25. 11. 67         7,5         8,1         260         16         8         2958         358         3340         8,3         20         0         2890           1250         Buchtalhütte         20.         8.66         9,0         7,4         320         19         7         2203         2033         4232         1,1         0         0         4113           1250         Eggerhütte         10.         8.66         14,0         7,7         320         24         4         2153         2157         4338         1,0         0         0         4260           1250         Haselberg         27. 9. 67         8,0         7.6         365         49         13         3906         1045         5013         3,7                                                                                                                                                                                                                                                                                                                                                                                                                | 16  | 1270                   | Fallbach         | 11.        |      |       |     | 7      | 1443 |      |                           | •      | 0  | 0      | 1702      | 1702                      | -0.82    |
| 1260         Grabenbach         25.11.67         9,0         8,1         244         29         11         263         470         3142         5,6         0         0         2890           1260         Wandlahm         25.11.67         7,5         8,1         260         16         8         2958         358         3340         8,3         20         0         3021           1250         Buchtalhütte         20.         8.66         9,0         7,4         320         19         7         2203         2033         4232         1,1         0         0         4113           1250         Eggerhütte         10.         8.66         14,0         7,7         320         24         4         2153         2157         4338         1,0         0         0         4260           1200         Haselberg         27.         9.67         8,0         7.6         365         49         13         3906         1045         5013         3,7         0         0         4859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17  | 1260                   | Fallbach West    | Ξ          | 8,9  |       |     | 5 7    | 1969 |      |                           |        | 0  | 0      | 2432      | 2432                      | -1,10    |
| 1260         Wandlalm         25 11. 67         7,5 8,1 260         16         8 2958         358         3340         8,3         20         0 3021           1250         Buchtalhütte         20. 8. 66         9.0 7.4         320         19         7 2203         2003         4232         1,1         0         0 4113           1250         Eggerhütte         10. 8. 66         14,0 7.7         320         24         4 2153         2157         4338         1,0         0         0 4260           1200         Haselberg         27. 9. 67         8,0 7.6         365         49         13         3906         1045         5013         3,7         0         0         4859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8   | 1260                   | Grabenbach       |            |      |       |     | 9 11   | 2632 |      | 3142                      |        | 0  | 0      | 2890      | 2890                      | -1,66    |
| 1250 Buchtalhütte 20. 8. 66 9.0 7.4 320 19 7 2203 2003 4232 1,1 0 0 4113 1250 Eggerhütte 10. 8. 66 14,0 7,7 320 24 4 2153 2157 4338 1,0 0 0 4260 1200 Haselberg 27. 9. 67 8,0 7,6 365 49 13 3906 1045 5013 3,7 0 0 4859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19  | 1260                   | Wandlalm         | Ξ          |      |       |     |        | - '  |      | •                         | Ė      | 20 | 0      | 3021      | 3041                      | -1,94    |
| 1250 Eggerhütte 10. 8. 66 14,0 7,7 320 24 4 2153 2157 4338 1,0 0 0 4260 1200 Haselberg 27. 9. 67 8,0 7,6 365 49 13 3906 1045 5013 3,7 0 0 4859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  | 1250                   | Buchtalhütte     | œ          | 0.6  |       | _   | 9      | 2203 |      | •                         |        | 0  | 0      | 4113      | 4113                      | -0,70    |
| 1200 Haselberg 27. 9. 67 8,0 7.6 365 49 13 3906 1045 5013 3,7 0 0 4859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21  | 1250                   | Eggerhütte       | œ          |      | _     | _   | 4      | 2153 | -    | 4338                      |        | 0  | 0      | $^{4260}$ | 4260                      | -0.45    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22  | 1200                   | Haselberg        |            |      |       |     | 31 6   | 3906 |      |                           |        | 0  | C      | 4859      | 4859                      | -0.8     |

| Nr. | Sh.  | Quelle               | $T_{ag}$   | ၁    | $^{\mathrm{hd}}$ | r.S | Na         | K  | Ca:  | Mg.  | SK     | Ca.'/Mg'' | Cľ. | SO4"   | HC0, | SA   | <b>~</b> |
|-----|------|----------------------|------------|------|------------------|-----|------------|----|------|------|--------|-----------|-----|--------|------|------|----------|
| ដូ  | 1120 | RGasperl-Quelle      | 27. 6.66   | 9,0  | 7,3              | 245 | 22         | မှ | 2303 | 801  | 3192   | 2,9(2,5)  | 32  | *182   | 2930 | 3243 | +0,33    |
| 24  | 1000 | Bettelwurfbrünnl     | 6. 8.66    | 7.0  | 2,2              | 268 | 173        | 11 | 2103 | 801  | 3088   | 2,6(1,3)  | 153 | 1065** | 1803 | 3021 | -0.44    |
| 25  | 1000 | Bettelwurf-Quelle    | 2.11.66    | 6,0  | 9,7              | 250 | 61         | 9  | 2158 | 890  | 3115   | 2,2(1,1)  | 38  | 1168** | 1862 | 3068 | -0.31    |
| 26  | 950  | Fallbachversickerung | 25, 11, 67 | 4.5  | 8,0              | 150 | α <b>0</b> | 4  | 1515 | 394  | 1921   | 3,8       | 0   | 0      | 1797 | 1797 | -0.93    |
| 27  | 910  | Garzan Ost           | 10. 8.66   | 0,6  | 7,5              | 292 | ļ          | 1  | 1853 | 1906 | (3759) | 1,0       | 0   | 0      | 3565 | 3565 | (-1,19)  |
| 28  | 910  | Garzan West          | 10. 8.66   | 8,0  | 7,3              | 315 | 40         | œ  | 2604 | 1505 | 4157   | 1,7(1.6)  | 91  | 170    | 3827 | 4013 | -0.85    |
| 29  | 006  | Fischleraste         | 27. 9.67   | 9,5  | 7,5              | 245 | 27         | 10 | 2540 | 651  | 3228   | 3,9       | 0   | 40     | 3122 | 3162 | -0.42    |
| 30  | 890  | St. Martin           | 26. 10. 67 | 7,0  | 7,6              | 158 | 10         | 5  | 1865 | 408  | 2378   | 3,7       | 0   | 0      | 2276 | 2276 | -0,72    |
| 31  | 890  | Brugglahn            | 27. 8.66   | 13,0 | 7.8              | 350 | 32         | G  | 3105 | 1502 | 4644   | 2,1       | 0   | 0      | 4572 | 4572 | -0.41    |
| 32  | 880  | Wiesenhof Nord       | 27. 9.67   | 9,5  | 7,2              | 506 | 27         | 10 | 2628 | 844  | 3509   | 3,1       | 0   | 0      | 3343 | 3343 | -1,05    |
| 33  | 860  | APichler-Quelle      | 27. 7.66   | 0.6  | 8,9              | 450 | 64         | rO | 4707 | 1402 | 6178   | 3,4(3,1)  | 24  | 391*   | 5639 | 6054 | -0,62    |
| 34  | 850  | Maximilian-Quelle    | 27. 8.66   | 0,0  | 7,4              | 572 | 58.        | 1  | 4857 | 2553 | 7479   | 1,9(-)    | 35  | 4931** | 2300 | 7263 | -0.99    |
| 35  | 840  | Usterberg            | 27. 8.66   | 8,0  | 7,6              | 320 | 22         | 15 | 2303 | 1956 | 4301   | 1,2(1,0)  | 0   | 424*   | 3756 | 4180 | -0,71    |
| 36  | 835  | Marstanzboden        | 27. 9.67   | 9,5  | 7,5              | 510 | .73        | 12 | 5421 | 1306 | 6812   | 4,2(3,9)  | 0   | 282    | 6425 | 6707 | -0.52    |
| 37  | 830  | Salzbergstraße       | 18. 9.67   | 8,0  | 7,4              | 368 | 35         | 23 | 2942 | 2130 | 5120   | 1,4(1,3)  | 16  | 218    | 4758 | 4992 | -0.70    |
| ဆို | 735  | Baumkirchner Tal     | 18. 9.67   | 0,01 | 7,5              | 292 | 84         | 36 | 2664 | 1093 | 3877   | 2.4       | 0   | 0      | 3651 | 3651 | -1,39    |
|     |      |                      | 25. 11. 67 | 7,0  | 7,8              | 274 | 72         | 31 | 2504 | 1013 | 3620   | 2,5       | 0   | 0      | 3424 | 3424 | -1,23    |
| 39  | 730  | Baumkirchner Tal     | 18. 9.67   | 8,0  | 7,5              | 301 | 46         | 29 | 2853 | 1165 | 4093   | 2.4       | 0   | 0      | 3899 | 3899 | -1,16    |
|     |      |                      | 25. 11. 67 | 8,5  | 7,6              | 596 | 45         | 26 | 2845 | 1033 | 3949   | . 8,2     | 0   | 0      | 3756 | 3756 | -1,17    |
| 40  | 725  | Schöberbrünnl        | 18. 9.67   | 8.5  | 7,5              | 335 | 72         | 45 | 2853 | 1503 | 4473   | 1,9(1,8)  | 24  | 131    | 4270 | 4425 | 0,27     |
| 41  | 705  | Baumkirchner Tal     | 18. 9.67   | 9.0  | 8,0              | 276 | 56         | 37 | 2471 | 1065 | 3629   | 2,3(2,2)  | 54  | 141    | 3358 | 3523 | -0.66    |
| 42  | 200  | Baumkirchner Tal     | 18. 9.67   |      | 2,5              | 312 | 56         | 33 | 2958 | 1141 | 4188   | 2,6       | 0   | 0      | 3877 | 3877 | -1,87    |
| 43  | 069  | Milser Aichat        | 27. 9.67   | 0'6  | 7,4              | 429 | 54         | 55 | 3930 | 1728 | 5734.  | 2,3(0,82) | 32  | 2499** | 3152 | 5683 | -0.26    |

zwischen 200 und 2200 Mikroval/l. Na- und K-Ionen sind nur in geringen Mengen vorhanden. Die Ca/Mg-Quotienten gruppieren sich mit einzelnen Ausnahmen um 1, zwischen 2 und 4 und mit größeren Streuungen um 8 (4,9 bis 11,8). In sulfathältigen Wässern wird der Ca/Mg-Quotient nicht nur durch das Ca/Mg-Verhältnis der Carbonat-Gesteine, sondern auch durch das Verhältnis Gips/Bittersalz bestimmt. Sofern Gips überwiegt, kann man das aus den Carbonatgesteinen stammende Ca annähernd durch Subtraktion des Sulfatgehaltes vom Gesamt-Ca berechnen. Diesen "korrigierten" Ca-Werten entsprechen die in der Tab. 1 eingeklammerten Ca/Mg-Quotienten. Diese Korrektur ändert den Ca/Mg-Quotienten bei sulfatgehalten unter 20 Mikroval% nur unbedeutend. Bei höheren Sulfatgehalten wird der Quotient mitunter kleiner als 1 (Quelle 5, 43) oder läßt sich, weil das Wasser mehr Sulfat als Calcium enthält, nicht berechnen (Quelle 34). Solche Wässer führen dann nicht nur Gips, sondern auch größere Mengen Bittersalz.

Chloride waren in den untersuchten Quellwässern nicht oder nur in sehr geringen Mengen (16 bis 64 Mikroval/l) nachweisbar. Nur das Wasser der Quelle 24 (Bettelwurf-Brünnl) hatte einen etwas höheren Cl-Gehalt (153 Mikroval/l). Da auch der Na-Gehalt (173 Mikroval/l) erhöht war, hat dieses Wasser offensichtlich eine sehwach kochsalzhältige Zone durchlaufen.

Die Hydrogencarbonat-Werte (HCO<sub>3</sub>-Werte) streuen zwischen 1561 und 6425 Mikroval/l. Sie stehen in Beziehung zur Seehöhe der Quellen. Nach den Höhenlagen der Austritte lassen sich zwei Gruppen von Quellen unterscheiden, die zwischen 1200 m und 950 m Seehöhe von einer nahezu quellfreien Zone getrennt sind (Abb. 3). In der oberen Quellgruppe liegen die HCO3-Werte vorwiegend in den Konzentrationsbereichen zwischen 2000 und 3000 Mikroval/l sowie 4000 und 5000 Mikroval/l. In der unteren Quellgruppe kommt dagegen ein mittlerer Konzentrationsbereich (3000 bis 4000 Mikroval/l) am häufigsten vor. Mit einer einzigen Ausnahme zeigen alle Wässer der unteren Quellgruppe HCO<sub>3</sub>-Werte über 3000 Mikroval/l. Wässer mit Ca/Mg-Quotienten um 1 enthalten im Durchschnitt mehr Hydrogencarbonate  $(3946 \pm 651 \, \text{Mikroval/I})$  als Wässer mit Ca/Mg-Quotienten zwischen 2 und 4 (3181  $\pm$  1003 Mikroval/l). Dieser Unterschied ist nach dem t-Test für p = 0,05 zwar noch nicht signifikant, liegt aber immerhin der Signifikanzgrenze schon so nahe, daß bei größerer Probenzahl Signifikanz zu erwarten ist. Ca/Mg-Quotienten über 4 finden sich nur in den Wässern der oberen Quellgruppe. Bei diesen Wässern besteht keine Beziehung zwischen dem Ca/Mg-Quotienten und den HCO3-Gehalten.

### Chemische Charakteristik der Grubenwässer:

Die chemische Zusammensetzung der Grubenwässer des Haller Salzberges läßt alle Übergänge zwischen einfachen Ca-Mg-Hydrogencarbonat-Wässern und Ca-Sulfat-Wässern mit geringen Anteilen von Kochsalz und Magnesiumsulfat erkennen (Tab. 2). Das Wasser des Wallach-Schurfs (Abb 2, Austritt 1) entspringt direkt aus geklüfteten Partnachkalken und hat das Haselgebirge noch nicht berührt. Auf der

Kationenseite überwiegen die Ca-Ionen (Ca/Mg-Quotient = 6,1), auf der Anionenseite sind, abgesehen von ganz geringen Cl-Mengen, ca. 1700 Mikroval/l Hydrogencarbonat enthalten. In dieser Größenordnung liegen auch die HCO<sub>3</sub>-Werte der übrigen Grubenwässer (1600 bis 1900 Mikroval/l). Sie sind somit im Durchschnitt niedriger als in den Übertagquellen gleicher Höhenlage. Ähnlich niedrige HCO<sub>3</sub>-Werte wurden in allen frei fließenden Bächen (Tab. 1: 11, 16, 26) beobachtet, aber nur in drei Quellwässern des Untersuchungsgebietes (Tab. 1: 1, 24, 25), von denen die Quelle 1 den höchstgelegenen Wasseraustritt darstellt, während die beiden anderen (24, 25) durch ihren Sulfatgehalt von mehr als 20 val% den Grubenwässern an die Seite zu stellen sind. Die Austritte des Schwarzhuberwandl- und Zacher-Wassergebäudes (Tab. 2: 2, 4, 8) führen Ca-Sulfat-Wässer\*. Die übrigen Grubenwässer sind als Ca-Sulfat-Hydrogencarbonat-Wässer zu bezeichnen. Die Mineral-wassergrenze (1000 mg/l) wird nur im Wasser des Zacher-Wassergebäudes überschritten (1470 mg/l).

# Geologische Beziehungen der Oberflächenwässer: Quellhorizonte:

Bei der Besprechung der  $\mathrm{HCO_3}$ -Gehalte der Oberflächenwässer ist bereits auf das Bestehen von 2 Quellgruppen verschiedener Höhenlage hingewiesen worden, die durch eine quellfreie Zone zwischen 950 m und 1200 m Seehöhe getrennt sind. In diesen Höhenlagen durchziehen wasserstauende Schichten das Untersuchungsgebiet. Die Untergrenze der oberen Quellgruppe (1200 m) entspricht westlich des Halltales einem Band von Raiblerschichten, das von der Thaurer Alm durch die Südflanke des Halltaler Zunterkopfes zieht. Östlich des Halltales wirkt die bunt zusammengesetzte Schichtenfolge unter der Deckengrenze wasserstauend, weshalb hier nahezu sämtliche Quellen an der Nordgrenze des Hauptdolomits austreten. Die obere Begrenzung der tieferen Quellgruppe (950 m) entspricht weitgehend der Fels-Schutt-Grenze. Hier stauen die lehmreichen Schuttmassen des Inntals das Wasser.

## Geologische Position der einzelnen Quellen und Wasserläufe:

Im großen gesehen haben die untersuchten Quellwässer eine oder mehrere der fünf geologisch gut charakterisierbaren Schichten entweder durchlaufen oder berührt: den Wettersteinkalk des Hochgebirges, den Hauptdolomit des Gebirgssockels, den dazwischenliegenden Schichtenkomplex verschiedener Kalke und Mergel, das Salzgebirge und schließlich — teilweise als Folgequellen nochmals erscheinend — die gegen das Inntal an- und aufgelagerten Schuttmassen (Terrassenschotter, Sande, sandige Tone, "Bändertone", Grundmoräne und junge Schuttfächer).

<sup>\*</sup> Die Namensgebung bezieht sich auf diejenigen Ionen, die mit mehr als 20 Valprozent im Wasser enthalten sind.

Theoretisch müßte sich die chemische Zusammensetzung der durchlaufenen Gesteine im Chemismus des Wassers widerspiegeln. Diese Zusammenhänge sind aber oft schwer erkennbar, weil das Quellwasser auf dem Weg vom Nährgebiet zum Austritt meist sehr verschiedene Gesteinsarten berührt. Soweit Aussagen über den mutmaßlichen Quellweg und das Austrittsmaterial möglich erschienen, wurden sie für den Vergleich mit den chemischen Analysen in der nachstehenden Tabelle geordnet.

| Höhen-<br>lage | Quellort oder<br>Entnahmestelle         | Austrittsmaterial                             | Quellweg .                                           |
|----------------|-----------------------------------------|-----------------------------------------------|------------------------------------------------------|
| 2030           | Wilde Bande-Steig<br>NO vom Stempeljoch | Wettersteinkalk                               | Vermutlich kurz. Nur durch<br>Kalk mit Dolomitbänken |
| 1660           | Östlich Issjöchl                        | Reichenhaller Schichten                       | Kurz, durch kalkreiche<br>Moräne                     |
| 1660           | Östlich der Kaisersäule                 | Hauptdolomit                                  | Kurz, nur durch Dolomit                              |
| 1520           | Nahe östlich der<br>Hinterhornalm       | Aus Kalken und Mergeln                        | Durch verschiedene Kalke                             |
| 1510           | 750 m ONO der<br>Hinterhornalm          | Ausgelaugtes<br>Haselgebirge                  | Durch verschiedene Kalke                             |
| 1500           | 300 m südwestlich der<br>Walder Alm     | Feuchte Wiese über<br>hornsteinführendem Kalk | Kalkreiche Moräne                                    |
| 1500           | Östlich der<br>Hinterhornalm            | Hornsteinführender<br>Kalk                    | Durch verschiedene<br>Kalke                          |
| 1500           | Nordöstlich der<br>Thaurer Alm          | Reichenhaller Schichten                       | Vorwiegend durch Kalke                               |
| 1380           | Fahrweg südlich vom<br>Gungglkopf       | Kalke und Mergel                              | Durch kalkreiche<br>Gesteinsarten                    |
| 1370           | Östlich der<br>Alpensöhne-Hütte         | Hauptdolomit                                  | Nur durch Dolomit                                    |
| 1300           | Urschenbach                             | Kalkschutt                                    | Durch und über<br>verschiedene Kalke                 |
| 1300           | Westlich St. Magdalena<br>(Halltal)     | Hauptdolomit                                  | Vorwiegend durch<br>Dolomit                          |
| 1300           | Westlich St. Magdalena<br>(Halltal)     | Hauptdolomit                                  | Vorwiegend durch<br>Dolomit                          |

| Höhen-<br>lage | Quellort oder<br>Entnahmestelle                            | Austrittsmaterial                                            | Quellweg                                                                |
|----------------|------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
| 1270           | Brunnen bei der alten<br>Halltaler Hütte                   | Kalkschutt                                                   | Durch verschiedene<br>Kalke                                             |
| 1270           | 50 m östlich<br>Fallbachhütte                              | Aus Hangschutt an<br>der Obergrenze des<br>Hauptdolomits     | Durch verschiedene<br>Kalke und Mergel                                  |
| 1270           | Fallbach, oberhalb Steig                                   | Bachschutt (Kalk)                                            | Durch und über Kalk<br>mit Dolomitbänken                                |
| 1260           | Westlich vom Fallbach,<br>unterhalb des Steiges            | Verwitterungsboden<br>oberhalb Hauptdolomit-<br>grenze       | Durch Kalke und Mergel<br>(Kössener Schichten und<br>Jura)              |
| 1260           | Graben westlich der<br>alten Halltaler Hütte               | Kalkschutt an der<br>Obergrenze des<br>Hauptdolomits         | Durch verschiedene<br>Kalke                                             |
| 1260           | Nahe oberhalb der<br>Wandl-Hütte                           | Verwitterungsboden<br>an der Obergrenze<br>des Hauptdolomits | Durch Kalke und wenig<br>Mergel (Kössener Schichten<br>und Lias)        |
| 1250           | Buchtalhütte unterhalb<br>Hochmahdkopf                     | Raibler Schichten                                            | Durch Hauptdolomit                                                      |
| 1250           | Südöstlich der Kaiser-<br>säule, östlich der<br>Eggerhütte | Raibler Schichten                                            | Durch Hauptdolomit                                                      |
| 1200           | Südöstlich der<br>Thaurer Alm                              | Raibler Schichten                                            | Karbonatreiche<br>Raibler Schichten                                     |
| 1120           | RGasperl-Quelle,<br>südlich vom Thaurer<br>Roßkopf         | Raibler Schichten                                            | Karbonatreiche Raibler<br>Schichten, vermutlich auch<br>Raibler Dolomit |
| i000           | Bettelwurfbrünnl<br>(Halltal)                              | Dolomitschutt                                                | Durch Hauptdolomit                                                      |
| 1000           | Bettelwurf-Quellen<br>(Halltal)                            | Dolomitschutt                                                | Durch Hauptdolomit                                                      |
| 950            | Fallbach-Versickerung                                      | Über Kalk- und<br>Dolomitschutt,                             | Zuerst über Wetterstein-<br>kalk, dann über Haupt-<br>dolomit           |
| 910            | Garzan, südlich<br>Guggermauer-Hütte                       | Dolomit der Raibler<br>Schichten                             | Dolomit der Raibler<br>Schichten                                        |
| 910            | Garzan, südlich<br>Guggermauer-Hütte                       | Dolomit der Raibler<br>Schichten                             | Dolomit der Raibler<br>Schiehten                                        |

| Höhen-<br>lage | Quellort oder<br>Entnahmestelle                                   | Austrittsmaterial                                                | Quellweg                                                                                                  |
|----------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 900            | Südlich der Fischler-Aste                                         | Kalkreicher Schutt<br>über Grundmoräne                           | Kalkreicher Schuttfächer                                                                                  |
| 890            | Nahe östlich der<br>Kirche St. Martin                             | Kalkreicher Schutt<br>über Grundmoräne                           | Langer Weg durch kalk-<br>reichen Schutt. Zusam-<br>menhang mit dem Urschen-<br>bach nicht ausgeschlossen |
| 890            | Brugglahn nördlich<br>der Walder Kapelle                          | Kalkreicher<br>Moränenschutt                                     | Längerer Weg durch kalk-<br>reichen Schutt                                                                |
| 880            | Nordwestlich vom<br>Wiesenhof                                     | Kalkreicher Schutt<br>über Grundmoräne                           | Durch kalkreichen Schutt.<br>Vielleicht eine Folgequelle                                                  |
| 860            | Adolf-Pichler-Quelle                                              | Grundmoräne unter<br>kalkreichem Schutt der<br>Raibler Schichten | Durch kalkreiche Raibler<br>Schichten                                                                     |
| 850            | Maximilian-Quelle                                                 | Schuttstrom aus<br>Dolomit und Kalk                              | Durch das Schuttbett<br>des Weißenbaches                                                                  |
| 840            | Usterberg östlich der<br>Maximilian-Quelle                        | Dolomitschutt                                                    | Durch Hauptdolomit                                                                                        |
| 835            | Marstanzboden, südlich<br>der APichler-Quelle                     | Grundmoräne des<br>Inngletschers                                 | Durch Kalke, vermutlich<br>von Nordwesten                                                                 |
| 830            | Quelle an der Salzberg-<br>straße oberhalb<br>Bettelwurf-Siedlung | Grundmoräne des<br>Inngletschers                                 | Durch Hauptdolomit                                                                                        |
| 735            | Baumkirchner Tal                                                  | Kalkreicher Schutt                                               | Durch kalk- und dolomit-                                                                                  |
| 730            | Baumkirchner Tal                                                  | über Tonlagen<br>Kalkreicher Schutt<br>über Tonlagen             | reichen Schutt sowie durch<br>Inntalschotter und -sande.<br>Vermutlich auch Wasser<br>des Fallbaches      |
| 725            | Schöberbrünnl, südlich<br>Walder Kapelle                          | Grundmoräne                                                      | Vermutlich durch Inntal-<br>schotter und -sande                                                           |
| 705            | Baumkirchner Tal                                                  | Schotter und Sande<br>über Tonlagen                              | Durch Inntalschotter<br>und -sande                                                                        |
| 700            | Baumkirchner Tal                                                  | Schotter und Sande<br>über Tonlagen                              | Durch Inntalschotter<br>und -sande                                                                        |
| 690            | Milser Eichat                                                     | Schuttfächer des<br>Weißenbaches                                 | Durch das Schuttbett<br>des Weißenbaches                                                                  |

### ' Ionenverhältnisse:

Das Verhältnis der Alkali-Ionen (Na/K-Quotient) steht in keiner erkennbaren Beziehung zur geologischen Position der untersuchten Quellen. Lediglich die Kalium-Gehalte zeigen eine leichte steigende Tendenz in den Quellwässern, die inner- und unterhalb wirtschaftlich genutzter und teilweise bebauter Gebiete austreten (4, 38 bis 43).

Die Ca/Mg-Quotienten wurden in vier Gruppen zusammengefaßt (Ca/Mg = 1 bis 2, 2 bis 4, 4 bis 8 und 8 bis 16). Diese geometrische Intervallprogression erwies sich zweckmäßig, weil mit abnehmendem Mg-Gehalt kleine, geochemisch irrelevante Schwankungen desselben zunehmend größere Unterschiede des Ca/Mg-Quotienten bewirken. Die gewählten Intervalle umfassen prozentuell gleiche Änderungen des Mg-Gehaltes.

Betrachtet man die Ca/Mg-Quotienten (Tab. 1 und Abb. 1), so fällt zunächst auf, daß diese in den Wässern aus dem Wettersteinkalk (1, 11, 16 und Tab. 3: 22a) sehr verschieden sind (Ca/Mg = 2,7; 5,3; 4,0; 6,4). Die über 1000 m mächtige Kalkmasse ist nämlich nicht ausschließlich Kalk. Horizontweise sind dünne dolomitische Einlagerungen nicht selten. Eigentlicher Wettersteindolomit d. h. kartenmäßig erfaßbarer Dolomit gleichen Alters kommt hier aber nicht vor.

Im Bereich des Hauptdolomits, des zweiten Felsbildners, der auf die tieferen und dem Inntal näher gelegenen Gebirgsteile beschränkt ist, äußert sich das Ca/Mg-Verhältnis des Gesteins von annähernd 1 in gleicher Weise auch im Wasser. Geringe Abweichungen sind durch den Übergang des Hauptdolomits in den hier vorkommenden Plattenkalk bedingt.

In der zwischen den beiden Hauptgesteinsarten eingeklemmten und sehr bunt zusammengesetzten Zone aus Kalken verschiedenen Alters, von Reichenhaller Kalk der älteren Trias bis zum Aptychenkalk des jüngeren Jura und zusätzlicher Einschaltung von Mergeln; verschiebt sich das Ca/Mg-Verhältnis stark zugunsten des Ca. Die Zone mit Ca/Mg-Quotienten über 4 erstreckt sich zwischen dem Oberlauf des Fallbaches und der Walder Alm. Im Bereich der Inntalschuttmassen liegen die Ca/Mg-Quotienten in der Regel zwischen 2 und 4.

Ca/Mg-Quotienten um 1 sind durch Auflösung des Dolomits erklärbar, der ja eine Ca-Mg-Carbonat-Verbindung darstellt, die fast gleiche Anteile von beiden Erdalkalien enthält. Schwerer zu deuten sind die von 1 abweichenden Ca/Mg-Quotienten. Bei der Auflösung eines Gemisches von Ca- und Mg-Carbonat übersteigt nämlich — wie Laboratoriumsversuche ergeben — der Mg-Gehalt den Ca-Gehalt der Lösung um das Zehnfache, wenn das Gemisch nur 1 val% Mg enthält. Die natürlichen Wässer enthielten aber stets mehr Calcium- als Mg-Ionen. Es folgt daraus, daß ihr Mg-Gehalt entweder aus einem Kalkgestein kommt, das nur Spuren von Mg-Carbonat enthält, oder aber, und das ist wahrscheinlicher, aus Dolomiteinlagerungen.

3 Scheminzky 33

## Hydrogenearbonat-Gehalt:

Die Löslichkeit der Erdalkalicarbonate ist bekanntlich weitgehend von dem im Wasser gelösten Kohlendioxydgas abhängig, das, soferne es nicht vulkanischen Ursprungs ist, aus der atmosphärischen Luft und aus biologischen Oxydations-

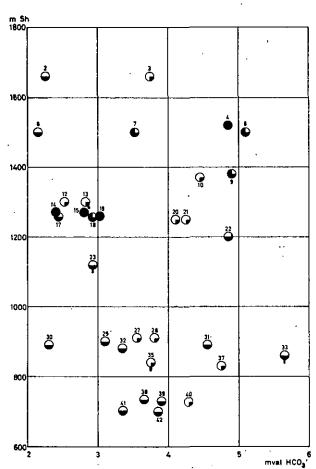



Abb. 3: Hydrogencarbonat-Konzentrationen geordnet nach den Austrittshöhen der untersuchten Quellen. Wässer mit mehr als 20 val% Sulfat wurden nicht eingezeichnet. Die Bachwässer (11, 16, 26) sowie die Quellwässer 1 und 36 liegen außerhalb des dargestellten Bereiches. Es sind zwei Quellgruppen (unterhalb 950 bzw. oberhalb 1200 m) mit drei bevorzugten Konzentrationsbereichen erkennbar, die in der unteren Quellgruppe zwischen 3000 und 4000 Mikroval/l, in der oberen Quellgruppe zwischen 2000 und 3000 Mikroval/l sowie 4000 und 5000 Mikroval/lliegen. 1000 Mikroval = 1 Millival (mval).

vorgängen im Erdboden stammt. Die HCO3-Werte der Quellwässer des Untersuchungsgebietes nicht zufällig verteilt, sondern gruppierten sich in den Quellgruppen der beiden Höhenlagen um verschiedene Schwerpunkte (Abb. 3). In der unteren Quellgruppe (690 bis 950 m) lagen mit einer Ausnahme · (Quelle 30) alle HCO3-Werte über 3000 Mikroval/l, wobei eine deutliche Häufung im Konzentrationsbereich zwischen 3000 und 4000 Mikroval/l erkennbar war. Die obere Quellgruppe wies zwei bevorzugte Konzentrationsbereiche auf, wovon der eine zwischen 2000 und 3000 Mikroval/l, der andere zwischen 4000 und 5000 Mikroval/l lag. Läßt man diesen höheren Konzentrationsbereich zunächst außer Betracht, weil er durch besondere lokale Verhältnisse bedingt ist (siehe unten), dann haben die Wässer der Quellgruppe im unteren Durchschnitt einen höheren HCO<sub>3</sub>-Gehalt als die der oberen. Als Ursache hierfür kommt in erster Linie ein größerer Gehalt an Vegetationskohlensäure im Erdboden der tieferen Geländeabschnitte in Frage. Die biologische CO<sub>2</sub>-Bildung hängt vom Bodentyp und von der Art des Bewuchses ab. Durch die Atmung der Wurzeln und Bodenbakterien wird im Erdreich CO<sub>2</sub> frei und steht für die Auflösung von Erdalkalicarbonaten zur Verfügung. Man nimmt an, daß etwa ein Drittel von den Wurzeln und zwei Drittel von den Mikroben gebildet wird. In einem Naturexperiment zeigt sich die Wirkung der Boden-CO<sub>2</sub> am Verhalten der HCO<sub>3</sub>-Werte in den einzelnen Abschnitten des Fallbaches. Der HCO<sub>3</sub>-Gehalt ändert sich im freien Abfluß zwischen 1070 m (Entnahmestelle 16) und der Versickerung bei 950 m (Entnahmestelle 26) nur unbedeutend von 1702 auf 1792 Mikroval/l. In der anschließenden ca. 2 km langen Versickerungsstrecke aber, bis zum Wiederaustritt des Wassers im Baumkirchner Tal (Quelle 38, 735 m), steigt der HCO<sub>3</sub>-Gehalt auf rund 3400 Mikroval/l an.

Die Höhenverteilung der HCO3-Werte wird nun aber durch eine Reihe von Quellen der oberen Gruppe durchbrochen, die 4000 bis 5000 Mikroval/l Hydrogencarbonate enthalten. Diese in Anbetracht der Höhenlage der Quellenaustritte zu hohen HCO3-Werte sind durch besondere Vegetationsverhältnisse im Austrittsgebiet bedingt. Hier handelt es sich um Hauptdolomit-Quellen und um Quellen im Gebiet bewirtschafteter Almen (Hinterhornalm, Walder Alm). Es wurde bereits erwähnt, daß die Quellwässer aus dem Hauptdolomit im allgemeinen zu etwas höheren HCO3-Werten tendieren. THURNER (1967) führt die größere Härte der Dolomitgestein-Wässer auf die engen Kluftwege dieser Gesteinsart zurück, die ein langsameres Durchfließen bewirken, so daß mehr Carbonate aufgenommen werden können. Wahrscheinlich ausschlaggebender ist aber die bessere Vegetationsbedeckung des Hauptdolomits. Hierbei kommt és nicht nur auf die biologische Aktivität im Erdreich des Einzugsgebietes an: Der HCO3-Gehalt des Wassers kann sich auch im Austrittsgebiet noch merklich erhöhen, besonders bei kleineren Quellen, deren Wässer oft mehr oder weniger diffus durch die Bodenkrume sickern, ehe sie in einer Geländefurche zusammenfließen und an einer Geländestufe zutage treten.

# Sulfat- und Chlorid-Gehalt:

Sulfathältige Wässer wurden in drei Zonen des Untersuchungsgebietes gefunden. Das erste Gebiet umfaßt die Quellen im Halltal längs des Weißenbachs. Die Salzlagerstätte des Halltales enthält große Mengen Anhydrit und Gips. Dieses Material gelangt durch Auslaugung in den Grundwasserstrom des Halltals und macht sich in den Quellen bemerkbar (13, 24, 25, 34, 37, 40, 43). Der Weißenbach des äußeren Halltales entsteht durch den Zusammenfluß seines Oberlaufes mit dem Issbach (Abb. 1: 22a bzw. 22b) und erhält neben kleineren Zuflüssen auch die Überläufe der zur Trinkwasserversorgung gefaßten Bettelwurf-Quellen. Diese Bachwässer wurden in letzter Zeit untersucht. (Tab. 3): Während der Issbach gewöhnliches Ca-Hydrogencarbonat-Wasser führt, enthält der Oberlauf des Weißenbachs zusätzlich beträchtliche Kochsalzmengen (rd. 4 g/l) und Gips. Die Chloridwerte im Unterlauf des

Weißenbachs (Abb. 1, 32a) treten durch die Vermischung mit den sulfathältigen, aber chloridarmen Überwässern der Bettelwurf-Quellen stark zurück. Ähnliche Vermischungen scheinen auch im Grundwasserstrom stattzufinden, da die Quellen des äußeren Halltals nur sehr schwach kochsalzhältig sind, aber reichlich Gips enthalten.

Ein stark sulfathältiges Wasser findet sich im östlichen Teil des Untersuchungsgebietes zwischen der Hinterhornalm und der Walder Alm (Quelle 5). Hier konnte die geologische Feststellung (graugrüner Salzton mit Gips an der Deckengrenze) nunmehr auch durch die chemische Untersuchung bestätigt werden.

Sulfathältige Wässer entspringen auch nordwestlich von Thaur (Quelle 23, 33, 36). Es wäre aber wohl verfrüht, darin eine Bestätigung jener Überlieferung zu erblicken, wonach früher bei Thaur Kochsalz-Quellen ausgetreten seien.

## Geologische Beziehungen der Grubenwässer des Haller Salzberges:

Das Salzgebirge ist von einem ungleichmäßig dicken, das Wasser abhaltenden Mantel ausgelaugten Haselgebirges (mit Gips) und von einem lückenhaften Überzug aus Rauhwacke umgeben (Abb. 2). Trotz dieser schützenden Hülle tritt an mehreren Stellen aus den darüber befindlichen stark zerklüfteten Kalkmassen des Wildangergebirges und aus den Blockablagerungen Wasser in das Grubengebäude ein.

Die chemischen Zusammensetzungen der einzelnen in den höchsten Horizonten des Salzberges entspringenden Quellen bzw. eindringenden Wässer zeigen große Unterschiede (Tab. 2). Darin kommt die Beschaffenheit des durchwanderten Gesteinsmaterials sehr deutlich zum Ausdruck. Das am Wallach-Schurf (Wasserberg) eindringende Wasser (Tab. 2, Austritt 1) ist am schwächsten mineralisiert. Es ist mit dem Salzgebirge noch wenig in Berührung gekommen. Das 105 m tiefer im Zacher-Wassergebäude des Steinberg-Horizontes entnommene Wasser (Austritt 8) zeigt die stärkste Mineralisierung. Es enthält reichlich Ca- und Mg-Sulfat sowie Kochsalz.

Im Zusammenhang mit der im Sommer 1967 erfolgten Auflassung des Haller Salzberges erhebt sich das noch zu wenig beachtete Problem, wie sich diese bisher sorgfältig gesammelten und aus dem Berg abgeleiteten Wässer im Laufe der Zeit auswirken können, wenn ihre Fassungen und Ableitungsrohre zugrunde gehen. Durch die auflösende Wirkung des Wassers wird das Salzgebirge auf natürliche Weise allmählich ausgelaugt und zerstört werden. Die dabei entstehenden Kochsalzwässer werden sich in den Weißenbach ergießen und diesen noch mehr als bisher "versalzen". Es könnte dadurch auch zu einer Beeinträchtigung der Trinkwasserquellen kommen.

Die Abbildungen und Tabellen wurden von Frau Helma Stöver angefertigt. Ihr möchten wir an dieser Stelle für die gewissenhafte Ausführung herzlich danken.

Chemische Zusammensetzung der Grubenwässer. Austrittshöhe (Sh.), Entnahmetag, Wassertemperatur (°C), pH-Wert bei 20° C, Leitfähigkeit (μS bei 20 °C) und Ionenkonzentrationen in Mikroval/I. S<sub>K</sub> bzw. S<sub>A</sub> bedeuten die Kationen- bzw. Anionensumme. Der letzte Stab der Tabelle enthält die Prüfquotienten. Tab. 2.

| ď                | +0,04                   | +0,19               | -0.16               | -0.18                           | -0,18                    | -0,29                   | -0.96           | +0,67                  |
|------------------|-------------------------|---------------------|---------------------|---------------------------------|--------------------------|-------------------------|-----------------|------------------------|
| $S_{\mathbf{A}}$ | 1747                    | 8756                | 5281                | 13557                           | 4944                     | 5919                    | 2964            | 21078                  |
| NO,              | 27                      | 32                  | 28                  | 28                              | 22                       | 34                      | 53              | 29                     |
| HCO,             | 1692                    | 1672                | 1873                | 1191                            | 1883                     | 1662                    | 1657            | 1893                   |
| SO4''            | •                       | 8002                | 3292                | 11781                           | 2794                     | 4179                    | 1240            | 17782                  |
| ਰਿ               | 82                      | 44                  | 88                  | 137                             | 245                      | 44                      | 4               | 1374                   |
| SK               | 1741                    | 8710                | 5308                | 13616                           | 4978                     | 5976                    | 3111            | 20787                  |
| Mg''             | 238                     | 364                 | 552                 | 715                             | 426                      | 477                     | 552             | 2471                   |
| Ca.              | 1455                    | 8266                | 4666                | 12745                           | 4290                     | 5419                    | 2496            | 16996                  |
| К. (             | 1-                      | 9                   | Ġ.                  | 10                              | œ                        | 7                       | 20              | 36                     |
| Na.              | 41.                     | 74                  | 81                  | 146                             | 254                      | 73                      | 58              | 1284                   |
| μS               | 147                     | 655                 | 423                 | 965                             | 400                      | 470                     | 255             | 1330                   |
| bН               | 7,6                     | 7,5                 | 7,7                 | 7,5                             | 7,2                      | 7,5                     | 7,5             | 9,7                    |
| ၁့               | 3,0                     | 3,0                 | 3,0                 | 3,5                             | 4,0                      | 3,5                     | 4,0             | 4,0                    |
| Tag              | 2. 11.                  | 2. 11.              | 3) 2. 11.           | de 2. 11.                       | assergeb. 2. 11.         | 2. 11.                  | 2. 11.          | 2. 11.                 |
| Nr. Sh Quelle    | 1 . 1655 Wallach-Schurf | 2 1655 Schwarzhuber | Wallach-Schurf (Fuf | 1640 Wandl-Wassergebäude 2, 11. | 1630 Corolanza-Wassergeb | 1600 Landsee-Wassergeb. | 1595 Puchenberg | 1550 Zacher-Wassergeb. |
| $^{ m Sh}$       | 1655                    | 1655                | 1630                | 1640                            | 1630                     | 1600                    | 1595            | 1550                   |
| Nr.              | <u> </u>                | 61                  | ಣ                   | 4                               | 5                        | 9                       |                 | 00                     |

Tab. 3: Chemische Zusammensetzung der Bachwässer des Halltales. Zeichenerklärung siehe Text zu Tab. 2, Lage der Entnahmestellen siehe Abb. 1.

| Nr. Sh         Bach         Tag         °C         μS         Na'         K'         Ca''         Mg"         S <sub>K</sub> Cl'         SO4"         HCO <sub>4</sub> "         S <sub>A</sub> Q           22a         1180         Weißenbach, Oberlauf         11. 4. 68         4         180         49         5         1885         293         2232         48         0         2104         2152         -0,57           32a         880         Weißenbach, Unterlauf         11. 4. 68         7         450         262         16         3834         1551         5663         334         3305         2054         5693         +0,15 |                           | 2,        | 75,        | ,15         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|------------|-------------|
| Bach         Tag         °C μS         Na°         K°         Ca°         Mg°         S <sub>K</sub> Cl°         SO4″         HCO <sub>2</sub> ′           Weißenbach, Oberlauf         11. 4. 68         3 6450         67249         483         9122         2021         78875         68716         7932         1959         7           Isstalbach         11. 4. 68         4 180         49         5 1885         293         2232         48         0 2104           Weißenbach, Unterlauf         11. 4. 68         7 450         262         16 3834         1551         5663         334         3305         2054                       | ♂                         | 0-        | 0          | 0+          |
| Bach         Tag         °C μS         Na'         K'         Ca''         Mg"         S <sub>K</sub> Cl'         SO4"           Weißenbach, Oberlauf         11. 4. 68         3 6450         67249         483         9122         2021         78875         68716         7932           Isstalbach         11. 4. 68         4 180         49         5 1885         293         2232         48         0           Weißenbach, Unterlauf         11. 4. 68         7 450         262         16 3834         1551         5663         334         3305                                                                                          | $\mathbf{S}_{\mathbf{A}}$ | 78607     | 2152       | 5693        |
| Bach       Tag $^{0}$ C $\mu$ S       Na'       K'       Ca''       Mg'       S <sub>K</sub> Cl'       S         Weißenbach, Oberlauf       11. 4. 68       3 6450       67249       483       9122       2021       78875       68716         Isstalbach       11. 4. 68       4 180       49       5 1885       293       2232       48         Weißenbach, Unterlauf       11. 4. 68       7 450       262       16 3834       1551       5663       334                                                                                                                                                                                              | HCO,                      | 1959      | 2104       | 2054        |
| Bach       Tag       °C μS       Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 804"                      | 7932      | 0          | 3305        |
| Bach         Tag         °C μS         Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ′                         | 91289     |            | 334         |
| Bach         Tag         °C         μS         Na*         K*         Ca**           Weißenbach, Oberlauf         11. 4. 68         3 6450         67249         483         9122           Isstalbach         11. 4. 68         4 180         49         5 1885           Weißenbach, Unterlauf         11. 4. 68         7 450         262         16 3834                                                                                                                                                                                                                                                                                             | SM                        | 78875     | 2232       | 5663        |
| Bach       Tag       °C μS       Na° K°         Weißenbach, Oberlauf       11. 4. 68       3 6450 67249 483         Isstalbach       11. 4. 68       4 180       49 5         Weißenbach, Unterlauf       11. 4. 68       7 450       262       16                                                                                                                                                                                                                                                                                                                                                                                                       | Mg                        | 2021      | 293        | 1551        |
| Bach       Tag       °C μS       Na'         Weißenbach, Oberlauf       11. 4. 68       3 6450 67249         Isstalbach       11. 4. 68       4 180       49         Weißenbach, Unterlauf       11. 4. 68       7 450       262                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | 9122      | 1885       | 3834        |
| Bach       Tag       °C μS       Na'         Weißenbach, Oberlauf       11. 4. 68       3 6450 67249         Isstalbach       11. 4. 68       4 180       49         Weißenbach, Unterlauf       11. 4. 68       7 450       262                                                                                                                                                                                                                                                                                                                                                                                                                         | K.                        | 483       | ıΩ         | 16          |
| Bach         Tag         °C         µ           Weißenbach, Oberlauf         11. 4. 68         3         €           Isstalbach         11. 4. 68         4         4           Weißenbach, Unterlauf         11. 4. 68         7                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | 67249     | 49         | 262         |
| Meißenbach, Oberlauf 11. 4. 68  Weißenbach Unterlauf 11. 4. 68  Weißenbach, Unterlauf 11. 4. 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ES.                       | 6450      | 180        | 450         |
| Bach Weißenbach, Oberlauf Isstalbach Weißenbach, Unterlauf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ပ္စ                       | 3         | 4          | 7           |
| Bach<br>Weißenbach,<br>Isstalbach<br>Weißenbach,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tag                       | 11. 4. 68 | 11. 4. 68  | 11. 4. 68   |
| Nr. Sh<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bach                      | _         | Isstalbach | Weißenbach, |
| Nr.<br>22a<br>22b<br>32a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sh                        | 1180      | 1180       | 880         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nr.                       | 22 a      | 22 b       | 32a         |

### Literatur:

SIJDERIUS, R.: Anal. Chim. Acta 11, 28 (1954).

STANDARD METHODS: Standard Methods for the Examination of water and waste water.

11. Auflage. American Public Health Association. INC. New York, 1960.

THURNER, A.: Hydrogeologie, Springer-Verlag 1967, Seite 102.

Anschrift der Verfasser: Doz. Dr. C. Job, Institut für Balneologie, A-6020 Innsbruck, Schöpfstraße 41; Doz. Dr. G. Mutschlechner, A-6020 Innsbruck, Innrain 30a.

## ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Berichte des naturwissenschaftlichen-medizinischen

Verein Innsbruck

Jahr/Year: 1969

Band/Volume: 57

Autor(en)/Author(s): Mutschlechner Georg, Job Carl

Artikel/Article: <u>Hydrochemische Untersuchungen im Wettersteinkalk und im</u>

Hauptdolomit des Karwendelgebirges. 19-38