Notes on the biology of Orientus ishidae (Matsumura, 1902) in Piedmont (Italy) (Hemiptera: Cicadellidae: Deltocephalinae)

Gianluca Parise1

Summary: Some aspects of the biology of Orientus ishidae (Matsumura, 1902) (Hemiptera: Cicadellidae: Deltocephalinae) were studied in some protected areas of Piedmont (Northern Italy) in the years 2012-2014 and in 2016. A case of predacious attack by Icius spec. (juvenile) (Araneae; Salticidae) was observed. Cases of parasitism by Dryinidae (Hymenoptera: Chrysidoidea) and Erythraeidae (Acarina: Prostigmata) were also observed. The mite Erythraeus jowitae Haitlinger, 1987 is reported for the first time for the Italian fauna.

Key words: biological cycle, parasitation, predation, Anteon fulviventre, Erythraeus jowitae, Charletonia cardinalis, Icius spec.

1. Introduction
Orientus ishidae (Matsumura, 1902) (Hemiptera: Cicadellidae) is a leafhopper widespread in Japan, the USA, Canada, Switzerland, Austria, Slovenia, the United Kingdom, France, Italy, Germany, Hungary, the Czech Republic (EPPO 2015), the Netherlands (den Bieman & van Klink 2015) and Poland (Klejdysz et al. 2017). It is probably present also in Belgium, Slovakia and Spain (EPPO 2015). In Italy O. ishidae was found for the first time in Lombardia in 1998 (Guglielmino 2005) and afterwards in Tuscany (Mazzoni 2005), Piedmont (Alma et al. 2009), Veneto and Emilia-Romagna (Nicolì Aldini & Piccolino 2014) (Fig. 1).

In 2012-2014 and in 2016, some aspects of the biology of *O. ishidae* were studied in protected areas of Piedmont (Northern Italy) with the aim to increase the knowledge about the host plant range, the temporal dynamics of the nymphs and adults and the presence of natural enemies. The results of this effort are presented below.

2. Material and methods

The research was conducted in the years 2012-2014 and in 2016 from May to October (first 10 days) in three protected areas of Piedmont: Po Morto Oasis (near Carignano, Turin Province), Merlino Wood (near Caramagna, Cuneo Province) and Crociato Wood (near Pocapaglia, Cuneo Province) (Fig. 2).

![Fig. 2: Position of sampling sites of Orientus ishidae (Matsumura) in Piedmont, Northern Italy](image)
Notes on the biology of Orientus ishidae in protected areas in Piedmont (Italy)

Po Morto Oasis is a 490 hectares natural reserve which extends on abandoned meanders of Po River. It is protected by the European Union as reproductive area of Pelobates fuscus (Laur.enti, 1768) (Amphibia: Pelobatidae), which is a species listed in IUCN red list (IUCN 2016). This oasis is characterized by a riparian vegetation, with a high incidence of Robinia pseudo-acacia L. and broad-leaved plants (Vai 1997). Merlino Wood (Fig. 3) is one of the last plain forests of South Piedmont. It extends about 50 hectares in width. It is characterized by a woodland vegetation with a prevalence of Quercus robur L., Carpinus betulus L. and Corylus avellana L. (Abbà 1982). This wood is recognized as Site of Community Importance (SCI) as reproductive area of Rana latasei (Boulanger, 1879) (Amphibia: Ranidae), which is a vulnerable species listed in IUCN red list (IUCN 2016). Crociato Wood is situated in “Rocche del Roero” region, a wide hill area of the Central Piedmont. This area was originated from the Tanaro river stream piracy about 250,000 years ago and is characterized by a high incidence of Quercus pubescens Wild., Populus spp. and Tilia spp. (Rota 2008).

Immature stages of O. ishidae were captured by vial aspirator from May to August. The adults were collected by TEMO-O-CID® 25x 40 cm yellow sticky traps and by beating tray (sheet opening 0.95 x 0.95 m) from June to the beginning of October. Samplings by sticky traps were conducted for three years from 2012 to 2014. The traps were placed in Po Morto Oasis and Merlino Wood in 2012, in Po Morto Oasis and Crociato Wood in 2013 and in Merlino and Crociato Wood in 2014. There was a trap in every sampling site (for two years) and the traps were replaced every two weeks. Both nymphs and adults were killed in 95% alcohol.

Five genitalia of O. ishidae ♂♂ were handled by the techniques proposed by Knight (1965) for leafhopper identification according to Guglielmino (2005). Mites were killed in 30% alcohol and sent to Prof. Ryszard Haitlinger (Wrocław University, Poland) for identification. Nymphs of O. ishidae parasitized by dryinids were reared in glass tubes with a layer of clay to permit the cocooning of dryinid larvae. Inside the tubes a Japanese quince leaf was also placed for leafhoppers feeding. It was changed every two days until the cocooning of dryinid larvae. After the emergence, the dryinid adults were killed in 95% alcohol and sent to Prof. Massimo Olmi (Tropical Entomology Research Center, Italy) for identification. The spider was killed in 70% alcohol and sent to Dr. Marco Isaia (Turin University, Italy) for identification.

Host plant range of O. ishidae was recorded by observing the feeding activity of nymphs causing symptomatic leave alterations which consist of a uniform yellow patch evolving to brown followed by necrosis of the entire leaf. The leaf yellowing and necrosis follow a basipetal course (Fig. 4a and b) (Felt & Bromley 1941; Garman & Townsend 1952). On the other hand, adults were captured by beating directly on host plants.

3. Results

3.1 Surveys of immature stages and adults

Immature stages were present from mid May to early August. The adults were present from late June to late September; adult females with eggs were observed from early July to late September. Concerning traps, 170, 1176 and 107 specimens, resp., were collected in 2012, 2013 and 2014. The last captures were made in mid September. The flight peak of adults occurred in late July 2012 and in mid July in 2013 and 2014 (Fig. 5).
Fig. 3: Merlino Wood.

Fig. 4: (a) Early symptoms of feeding activity of Orientus ishidae (Mats.) on a leaf of Carpinus betulus L., (b) advanced symptoms of feeding activity of O. ishidae on a leaf of Juglans nigra L.

Fig. 5: Seasonal abundance of adults of Orientus ishidae (Mats.) in 2012, 2013, 2014.
Notes on the biology of *Orientus ishidae* in protected areas in Piedmont (Italy)

3.2 Putative host plants

The nymphs were observed on 18 species of flowering plants belonging to 11 families (Table 1). The family more prevalent was Rosaceae (22%); the prevalent life-form was Phanerophytes caespitose (44%) (Fig. 6). The adults of *O. ishidae* were collected on 9 plant species belonging to 9 families (Table 1). The family more prevalent was Betulaceae (33%); both Phanerophytes caespitose and Phanerophytes scapose were the prevalent life-forms. On *Ostrya carpinifolia* the nymphs of first and second instar of *O. ishidae* were concentrated on leaves of water sprouts and on *Corylus avellana* on leaves of suckers.

3.3 Natural enemies

From the last decade of June to the last week of July parasitic activity by mites belonging to the family Erythraeidae was discovered. Larvae of *Charletonia cardinalis* (C.L. Koch, 1837) (Acarina: Erythraeidae: Callidosomatinae) were observed to parasitize nymphs and adults of *O. ishidae*. In addition, in 2014, larvae of *Erythraeus jowitae* (Haitlinger, 1987) (Acarina: Erythraeidae: Erythraeinae) were observed to parasitize nymphs.

Between the end of June and the first week of August, parasitic attacks of *Anteon fulviventre* (Haliday, 1828) (Hymenoptera: Chrysidoidea: Dryinidae) on nymphs of *O. ishidae* (Fig. 7) were observed (7 parasitized specimens in 2013, 9 in 2014) as well as a predaceous attack by a juvenile stage of *Icius* spec. (Araneae: Salticidae).

<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th>Life form</th>
<th>Nymphs</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedera helix L.</td>
<td>Araliaceae</td>
<td>P lian</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Carpinus betulus L.</td>
<td>Betulaceae</td>
<td>P caesp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ostrya carpinifolia Scop.</td>
<td>Betulaceae</td>
<td>P caesp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Viburnum tinus L.</td>
<td>Adoxaceae</td>
<td>P caesp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Corylus avellana L.</td>
<td>Betulaceae</td>
<td>P caesp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Robinia pseudoacacia L.</td>
<td>Fabaceae</td>
<td>P caesp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Juglans regia L.</td>
<td>Juglandaceae</td>
<td>P scap</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Juglans nigra L.</td>
<td>Juglandaceae</td>
<td>P scap</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Forsythia viridissima Lindl.</td>
<td>Oleaceae</td>
<td>P caesp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fraxinus excelsior L.</td>
<td>Oleaceae</td>
<td>P scap</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chelidonium majus L.</td>
<td>Papaveraceae</td>
<td>H scap</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chaenomeles speciosa (Sweet) Nakai</td>
<td>Rosaceae</td>
<td>P caesp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cydonia oblonga Mill.</td>
<td>Rosaceae</td>
<td>P scap</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Prunus avium L.</td>
<td>Rosaceae</td>
<td>P scap</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rubus fruticosus L.</td>
<td>Rosaceae</td>
<td>NP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Populus alba L.</td>
<td>Salicaceae</td>
<td>P scap</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ribes uva-crispa L.</td>
<td>Grossulariaceae</td>
<td>NP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ulmus minor Mill.</td>
<td>Ulmaceae</td>
<td>P caesp</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1: Putative host plant life-forms of nymphs and adults of *O. ishidae* in the studied area. P lian: Phanerophytes liane, P caesp: Phanerophytes caespitose, P scap: Phanerophytes scapose, H scap: Hemi-cryptophytes scapose, NP: Nanophanerophytes.
4. Discussion

According to the observations of Lessio et al. (2016) in Piedmont and the data here presented, *O. ishidae* seems to have a life cycle very similar to *Scaphoideus titanus* (Chuche & Thiery 2014) a leafhopper belonging to the same subfamily (Deltocephalinae) (Zahniser & Dietrich 2013) and a vector of 16 Srv phytoplasmas to grapevine. *O. ishidae* is a univoltine species present as immature stages from mid May until early August and as adult from early July until early October (Lessio et al. 2016). Under laboratory conditions *O. ishidae* laid eggs on branches of grapevine (Lessio et al. 2016) confirming that *O. ishidae* passes the winter in the egg stage. The ovipositing process, in the area studied, seems to begin in July and to finish at the beginning of October.

The polyphagy characterizes both nymphs and adults. *O. ishidae* seems to feed preferably broad-leaved shrubs and trees, more rarely herbaceous plants (Lessio et al. 2016, Nickel 2010). The broad range of putative host plants can explain the ability of this leafhopper to inhabit a wide range of biotopes (Guglielmino 2005; Nickel 2010; Lessio et al. 2016). Differences in the host range between nymphs and adults of *O. ishidae* can be explained with a moving of nymphs after the hatching (Lessio et al. 2016).

A predaceous attack by a juvenile stage of *Icius* spec. on this leafhopper is here reported for the first time. The genus *Icius* is present in the Italian fauna with four species of Mediterranean or western Mediterranean distribution (Pantini & Isaia 2016). These spiders are generalist predators with the capacity of capturing a wide variety of arboricolous arthropods (Dr. Marco Isaia, personal comm.).
Hunting spiders, as *Icius* species, may be efficient in reducing and stabilizing prey densities (Symondson et al. 2002) and spiders may prey on leafhoppers more frequently than predaceous insects (Fournier et al., 2008). More observations are necessary to better evaluate the potential of this hunting spider as biocontrol agents of leafhoppers.

Parasitic activity of *Charletonia cardinalis* and *Erythraeus jowitae* on the nymphs of *O. ishidae* is here reported for the first time. *C. cardinalis* is widespread in Australia, Azerbaijan, Japan, Europe and the USA (Mąkol & Wohltmann 2012), where it is known as an ectoparasitic mite on insects belonging to Hemiptera, Coleoptera and Lepidoptera (Stroiński et al. 2013). Among the Hemiptera, the following hosts of *C. cardinalis* are known: *Javesella pellucida* (Fabricius, 1794); *Eurybregma nigrolineata* Scott, 1875; *Muellerianella brevipennis* (Boheman, 1847) (all Fulgoromorpha: Delphacidae) and *Cicadella viridis* (Linnaeus, 1758) (Cicadomorpha: Cicadellidae) (Mąkol & Wohltmann 2012; Stroiński et al. 2013). Other known hosts are *Phyllostreta undulata* (Kutschera, 1860) (Coleoptera: Chrysomelidae) and *Simyra henrici* (Grote, 1873) (Lepidoptera: Noctuidae) and *Nerice bidentata* (Walker 1855) (Lepidoptera: Notodontidae) (Treat 1975, 1980). *E. jowitae* is a mite described from Poland (Haitlinger 1987a) and afterwards reported in France, Macedonia, Hungary, Sweden and Romania (Mąkol & Wohltmann 2012). No hosts of this mite were known so far. The record presented in this paper is the first for Italy. Generally very little is known about the potential of mites as biological control agents because of the limited knowledge of their biology and ecology (Muñoz-Cárdenas et al. 2015).

The parasitic activity of *Antheon fulviventre* on nymphs of *O. ishidae* is a new record. In Japan, where this leafhopper was originally described, there is only one record of an unidentified dryinid wasp attacking *O. ishidae* nymphs (Toshiharu Mita, personal comm.). In the USA Valley & Wheeler (1985) reported three *O. ishidae* nymphs parasitized by unidentified dryinid wasps of the subfamily Anteoninae. *A. fulviventre* is widespread in Europe, Morocco and Algeria (Olmi 1999). Its hosts are Cicadellidae Deltocephalinae (Guglielmino et al. 2013). The new record of *A. fulviventre* as a parasitoid of *O. ishidae* nymphs highlights the potential of this dryinid wasp to fit a new exotic host.

5. Zusammenfassung

6. Acknowledgements

I am especially grateful to Prof. Massimo Olmi (Tropical Entomology Research Center, Italy) for his constructive suggestions for dryinids rearing and identification. I thank Prof. Adalgisa Guglielmino (Tuscia University, Italy) for helpful advice. I would like to express my great appreciation to Prof. Ryszard Haitlinger (Wrocław University, Poland) for the identification of mites and to Dr. Marco Isaia (Turin University, Italy) for spider identification. Special thanks are due to Dr. Toshiharu Mita (Kyushu University, Japan) for information about parasitoids of *O. ishidae* in Japan, to Dipl. Christoph Bückle (Tübingen, Germany) for his translation of the summary from English to German and to Gernot Kunz (Graz, Austria) for his photograph.

7. References

Notes on the biology of Orientus ishidae in protected areas in Piedmont (Italy) 27

Mazzoni V. (2005): Contribution to the knowledge of the Auchenorrhyncha (Hemiptera Fulgoromorpha and Cicadomorpha) of Tuscany (Italy) – Redia LXXXVIII: 85-102.

Mehle N., Seljak G., Rupar M., Ravnikar M., Dermastia M. (2010): The first detection of a phytoplasma from the 16Sr V (Elm yellows) group in the mosaic leafhopper Orientus ishidae. – New Disease Reports 22 (11): 12-16.

Address of the author
Gianluca Parise, Via Monte di Pietà, 10041 Carignano, Torino, Italy