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1. Preface 
 

Biological outlines may be investigated by various mathematical models. There is a 

well-developed theory of shape (Zelditch 2004) for the case of sufficiently many good 

landmarks. For the morphometrics of outlines with few or no landmarks sometimes simple 

polygonal curves (Bézier curves) have been used (see for instance Loy 2000), but this may 

lead to polynomials of rather high degree, which tend to oscillate in an undesirable way. This 

is a well-known problem in many technical applications, especially in computer aided 

geometric design (CAGD), where it is usually overcome by the use of splines (Hoschek and 

Lasser 1993, Farin 1990). 

Splines consist of several polynomial curves of low degree that smoothly fit together. 

Two of the most widely used splines are Bézier splines and B-splines. These are not different 

curves, but only different representations of the same curves; they may be transformed into 

one another (Hoschek and Lasser 1993). In both cases the shape of the curve is determined by 

a list of geometrically meaningful control points, but for B-splines fewer control points are 

needed. 

The name B-spline was coined by Isaac Jacob Schoenberg and it is used as an 

abbreviation for basic spline (de Boor 1978, Farin 2001). The authoritative person for the 

development of the theory of B-spline curves and surfaces was Carl de Boor due to his 

researches at General Motors. 

In the 50s and 60s of the last century the automobile industry in particular had to face 

the difficulty that freeform curves and surfaces couldn't be exactly reproduced owing to a lack 

of a proper mathematical description. Carl de Boor solved this problem by depicting the shape 

of component parts as parametric curves, defined piecewise 

by polynomials. 
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As a result, the curve's shape is determined by its so-called control points or de-Boor 

points, which are the vertices of the control polygon. It turned out that this way of 

characterizing curves and shapes was advantageous for other fields and generalized versions 

and enhancements of B-splines were developed shortly after. Representing curves and shapes 

using B-splines and their further development is still employed in Computer-Aided-Design 

systems. Nowadays the areas of application are manifold and diversified and reach far beyond 

technical mould design and construction (Bartels 1987, Farin 2001, Hoschek and Lasser 

1993). 

For our task, the approximation of outline data, B-spline curves offer several 

advantages. B-spline curves are invariant under affine transformations, the pixel data can be 

approximated by a numerically stable and accurate algorithm and, we obtain an enormous 

data reduction. The primary outline data, consisting of approximately 1000 to 1400 pixels, 

can be excellently depicted by a B-spline curve determined by just 16 control points. A 

further important fact to mention in advance is a property called “local control”. Thereby the 

shifting of a single control point of the B-spline curve does not cause the change of the entire 

curve progression but just a deviation in the surrounding of the concerning control point. This 

characteristic has proved very useful for the examination of morphological structures just 

having an effect on single parts of the outline. 

This article gives an overview of the theoretical background of approximating B-spline 

curves, following the elaborations in Bartels (1987), de Boor (1978), Hoschek and Lasser 

(1993), Piegl (1995). A detailed description of the algorithm for the approximation of 

ostracods’ outlines is presented in Bayer et al. (2002) and Neubauer (2007). The shape of a 

carapace offers the possibility of a fast and stable computation. Moreover, the area deviation 

provides us with demonstrative results for the application in palaeontology since a 

perspicuous graphical representation of the stated area is feasible and the output is in units of 

square micrometers. 

The last section deals with a method of distinguishing two populations of ostracods by 

using the data of a distance matrix, which frequently finds application in biological research. 
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2. B-Spline Representation 
 

2.1. B-Spline Curves 

 

Definition 2.1. A pth-degree B-spline curve is defined by 

 
The Pi are the control points, and the Ni,p(t) are the pth-degree B-spline basis functions 

defined by 

 
where U = (u0,...,um) is a nondecreasing sequence of real numbers, i.e., ui ≤ ui+1, i = 0,...,m-1, 

called knot vector. The items ui are called knots and the polygon formed by the Pi is the 

control polygon.  

Particularly we use B-spline curves of degree p = 2, also called quadratic B-spline 

curves, for the approximation of ostracods’ outlines. Their basis functions are, already 

calculated, given by 

 
and Ni,2(t) = 0 for t outside the interval [ui,ui+3). In these formulas, division by zero may 

occur. When this is the case, the result of the division is set equal to zero. 

A common choice for the knot vector of pth-degree basis functions is setting the first 

p+1 knots 0, the last p+1 knots 1 and the interior knots equally spaced; 
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This so-called uniform knot vector has, referring to our application with p = 2, the form 

 
As an example, for n = 6 the basis functions of degree 2 generated by an uniform knot 

vector are depicted below (fig. 1). 

 

Figure 1: The nonzero second-degree basis functions generated by a knot vector U = 

(0,0,0,1/5,2/5,3/5,4/5,1,1,1). 

 

To give an introductory idea of B-spline techniques we contemplate the following 

example. Let U be a uniform knot vector as defined in the equation above, p = 2 and the set of 

control points 

 
Figure 2 shows the resulting B-spline curve. 

 
Figure 2: B-spline curve using the conditions of the example above. 
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Below a number of properties of B-spline curves following mostly from the definition 

2.1 are given. 

Property 2.2. Endpoint interpolation: C(0)  = P0 and C(1)  = Pn. 

Property 2.3. Affine invariance: An affine transformation, including translation, 

rotation and scaling, is applied to the curve by applying it to the control points. 

Property 2.4. Local support: Moving Pi changes C(t) only in the interval [ui,ui+p+1) 

(fig. 3). This follows from the fact that Ni,p(t) = 0 for t ∉ [ui,ui+p+1), since Ni,p(t) is a just linear 

combination of Ni,0(t),...,Ni+p,0(t) (see definition 2.1) and those zero-degree basis functions are 

0 outside [ui+m,ui+m+1), m = 0,...,p. The triangular scheme illustrates this fact for the basis 

function N1,2(t). 

 

N1,2(t) is a combination of N1,0(t), N2,0(t), and N3,0(t). Thus, N1,2(t) is nonzero only for t ∈ 

[u1,u4). 

Conversely, in any given knot span [uj,uj+1) at most p+1 of the Ni,p(t) are nonzero, 

namely the functions Nj-p,p,...,Nj,p. 

 

 

Figure 3: A curve with degree p = 2 on U = (0,0,0,1/6,2/6,3/6,4/6,5/6,1,1,1); moving P4 to P4’ 

changes the curve in the interval [2/6,5/6). 
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Moving along the curve from t = 0 to t = 1, the functions Ni,p(t) act like switches. As the 

parameter t moves past a knot, one Ni,p(t) and the corresponding Pi switches off and Pi+p+1 

switches on. 

Property 2.5. The B-spline curve tangents each segment of the control polygon. 

 

2.2. Approximation to Outline Pixel Data with B-Spline Curves 

 

In this section we study the construction of B-spline curves that should fit a rather 

arbitrary set of geometric data, such as pixels of an ostracod's outline, following the 

elaborations in Hoschek and Lasser (1993), Piegl (1995), Bayer et al. (2002), Deuflhard and 

Hohmann (2002). The aim is to construct curves that do not necessarily satisfy the given data 

in an exact way, but only approximately. In some applications - such as ours - a large number 

of points is generated, which can contain measurement errors or computational noise. In this 

case, it is important for the curve to capture the “shape” of the data, but not to “wiggle” its 

way through each single point. 

Given is an array of sequenced pixels {Qk}, k = 0,...,l, which we want to approximate 

with a second-degree B-spline curve. If we assign a parameter value tk to each pixel Qk, and 

select the knot vector U = (u0,...,um) to be uniform, we can set up a system of linear equations 

 

 

with l+1 equations, where the control points Pi are the n+1 unknowns. The choice of the 

parameter values tk enormously affects the shape of the curve. An adequate method provides 

the chordal parameterisation. It assigns the parameter values tk proportionally to the total 

length of the outline. Let d be the total chord length 

 

 

The parameter values are given by 
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Typically, it is necessary to find a B-spline curve approximating a large number of 

points. In general, the number of pixels l to approximate is much higher than the number of 

desired control points n. Hence, the system of equations is overdetermined and we will not get 

an exact solution. 

The best way to overcome this difficulty is to solve the system in the sense of 

minimizing the sum of the squared differences between the given set of pixels {Qk} and the 

appropriate values of the B-spline curve C(tk), 

 

 

There are manifold possibilities to get a solution for this least square problem. A 

numerical stable computation of the minimizing problem results from the pseudo-inverse 

matrix gathered from the singular value decomposition of the system matrix (see Deuflhard 

and Hohmann 2002, Hogben 2007, Strang 1998). This method is implemented in 

MORPHOMATICA to approximate outlines. 

 

 

3. Implementation of the Formal Methods to Ostracod Outlines 

 

3.1. Data Structure 

 

A photograph of an ostracod’s valve is taken under a microscope. Afterwards, the so-called 

Tps-dig (Rohlf 2001) saves the outline in a data set. This program creates a file with the pairs 

of coordinates of the outlining pixels of the picture. Also other information, such as potential 

landmarks and the file name of the picture, is saved in this file. The illustration below 

schematically shows the structure of such a file. 
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The file describes an outline with no specified landmarks (LM = 0) and one contour 

(OUTLINES = 1) with 1387 pixels (POINTS = 1387). 

 

3.2. Centre of Gravity and Axes of Inertia 

 

The positions of the valves on the pictures vary widely and the tps-files do not tag any 

basing points. Nevertheless, a meaningful comparison of two valves should be independent of 

alignment and position in the picture. Therefore, to compare the shape of two outlines, they 

first have to be superimposed. Ideally, this should be done in such a way that the “difference” 

between them is as small as possible. But this would be a very difficult task, so we choose to 

position the two outlines in such a way that the centroids and the main axes of inertia 

coincide. 

The structure of the tps-data suggests computing the centroid based on the pixels using 

the arithmetic mean of the coordinate vectors of the points Qk, that is 

 

 

But this is the centroid of these points and not of the whole outline. Consequently, this 

only makes sense if the points are distributed very uniformly. If parts of the outline are a little 

bit rugged or jagged, there will be relatively many points Qk concentrated in these parts and S 

tends to move towards them. So the centroids of two very similar outlines may be rather 

different, if only one has some rugged parts. Figure 4 illustrates this difficulty. 
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Figure 4a: Centroid and main axes 

computed with the outline points. 

Figure 4b: The origin now is the centre of 

gravity of the domain and the axes 

correspond with the main axes of inertia. 

 

This is why the above centroid should be replaced by the centre of gravity of the domain 

A surrounded by the given outline. This centre is defined by 

 

 

where sx and sy denote the coordinates of S, and a is the area of the domain A. It turns out that 

S can be computed in the following rather simple way, if xk and yk denote the coordinates of 

Qk, and the points are given in counterclockwise order, 

 

 
sy is computed in a similar way with x and y interchanged and the whole expression multiplied 

by -1. Of course, (xl+1,yl+1) is understood to be equal to (x1,y1). 

Analogical to the centroid, the axes of inertia should also be calculated not only for the 

points, but for the whole outline or, more precisely, for the domain surrounded by the outline. 

The moment of inertia with regard to a certain axis (passing through the origin) is defined to 

be the integral of the squared distance from this axis, taken over the considered domain. It 

may be computed in a similar, but somewhat more complicated way as the centre of gravity 

above. 

If the moment of inertia is not equal for all directions of axes, there is a unique direction, 

which yields the minimum moment, and this is taken to be the new x-axis. This direction is 

given by an eigenvector of a certain 2 by 2 matrix and thus it is not difficult to compute. 

 

©Institut f. Erdwissensch., Geol. u. Paläont., Karl-Franzens-Universität Graz; download www.biologiezentrum.at



Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 13 Graz 2008 
 

30   
 

The new y-axis is, of course, perpendicular to the new x-axis and corresponds to the 

maximum moment of inertia. 

Finally, we have to define a congruence transformation f, which moves the points of the 

contour as mentioned above. Shifting S to the point Y = (0,0) and rotating the vectors E1 = 

(e11,e12), specifying the axis with minimum moment of inertia, and E2 = (e21,e22), specifying 

the axis with maximum moment, to (1,0) resp. (0,1) can be done by a transformation 
 

 
Applying this transformation to each point moves the contour into the desired position. 

 

3.3. Approximation to Contour Data 

 

To prepare the point data for a good and meaningful approximation, it is necessary to 

divide the contour into two halves. If the B-spline approximation is applied in a 

straightforward way to an outline, it may happen that two very similar outlines lead to rather 

different control points. This is the case, for instance, with the two artificial elliptical outlines 

of figure 5. One should note that this phenomenon occurs due to the fact that moving the 

control points simultaneously in a suitable way around the curve has only little influence on 

the shape of the curve. 
 

 
Figure 5: Two rather similar elliptic outlines with different control points. 

 

To avoid this problem, we cut the outline in two pieces and approximate each half 

separately under the condition that the resulting curves fit together. 

After the standardisation this can easily be done by using the x-axis as dividing line. 

Concretely, all points Pi = (xi,yi) with xi > 0 will be assigned to the dorsal region and all points 

with xi < 0 to the ventral region. Therefore we must assume that the contour crosses the x-axis 
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at most at two points, what is usually the case for ostracods’ outlines (fig. 6). Hence there are 

only two pairs of consecutive points in the contour where xi ≥ 0 and xi+1 < 0. 

We pass a line through these points, determine the intersection points with the x-axis 

and add them to the contour. These intersections will be the starting and end points of the 

approximating B-spline curves. 

 

 

Figure 6: Ostracod contour after standardisation. 

 

The outlining points of the respective region get numbered consecutively clockwise and 

are approximated by a B-spline curve of degree p = 2 with a uniform knot vector and 

parameter value gathered by a chordal parameterisation. The procedure is explained in 

sections 2.1 and 2.2. Figure 7 plots the contour data of an ostracod with its approximating B-

spline curve. 

 

 

 

 

 

 

 

Figure 7: Ostracod contour approximated by a second-degree B-spline curve and its control 

polygon. 
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However, this approximation scheme does not bring an optimum result. A better 

solution can be achieved if the vector C(ti) - Qi, ti indicating the corresponding chord length 

parameter of Qi, is perpendicular to the curve. Therefore we alter the parameter ti iteratively 

by adding a value λi until C(ti) - Qi is roughly perpendicular to the tangent C’(ti). 

The comparison in figure 8 shows the desired result. After 6 iterations the 

approximating B-spline curve approaches the contour data in an observable better way. 

 
 

 
 

Figure 8a: Before adjusting the parameter. 

 
 

 

 
 
 

Figure 8b: After 6 iterative steps a better 
approach is guaranteed. 

 

To compare biological aspects of ostracoda it is sometimes useful to adjust the sizes of 

the standardized outlines. This is essential for comparing, e.g., ostracods of different age. 

Transforming the control points of the B-spline curve in such a way that the end points 

P0 = (x0,0), Pn = (xn,0), lying on the x-axis, get the coordinates P0 = (-1,0), Pn = (1,0) is one 

possibility. This method has one slight shortcoming. The centre of gravity shifts out of the 

origin, what can cause difficulties if the contour is rather anomalous or pear-shaped. 

We obtain a better solution if we use a transformation 

 
 

where a is the ratio of the areas a1, a2 enclosed by the B-spline curves, 

 

 

This method keeps the centre of gravity in the origin and guarantees a better 

comparability. 
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4. Distinguishing Outlines 

 

4.1. Distance of the Corresponding Control Points 

 

At first sight, the following concept of a distance between two B-spline curves seems to 

be quite natural. 

Definition 4.1. Let C, D be two B-spline curves with control point sequences P0,...,Pn 

resp. Q0,...,Qn. We define the distance between C and D as the square root of the sum of all 

squared Euclidean distances between the corresponding control points divided by the number 

of control points 
 

 
Defining the difference between two B-spline curves in this way has a number of 

coherent reasons. First of all, two superimposed B-spline curves are identical if their 

corresponding control points coincide. Property 2.3 (Affine invariance) implies that a 

translation or rotation is applied to the curve by applying it to the control points. Both indicate 

a reasonable measure. A further evidence provides the attribute that the control polygon 

represents a kind of approximation to the B-spline curve. So, to some extent, the control 

points describe the shape of the curve (cf. Baltanás et al. 2003). 

A further advantage of distinguishing B-spline curves by using the distance of the 

corresponding control points arises from property 2.4 (Local support). A single control point 

takes effect just on a part of the B-spline curve. By measuring the Euclidean distance of two 

corresponding control points we should be able to determine whether the respective regions 

differ significantly or not. 

Moreover, our measure d is of special interest for users from the field of biology or 

palaeontology, since it is a tangible, intelligible and easy to visualize tool. The computing 

time is extremely short and the approximation of the outline pixel data generates a unique 

sequence of control points. Their distances may have an explanatory power of the difference 

in the curves shape. 

Nevertheless, the computation of the difference of two superimposed B-spline curves 

with the measure defined above has some shortcomings, which are discussed in this section. 

At first, this distance function does not induce a metric. This is easy to comprehend by 

imaging a B-spline curve whose control points are located on a straight line. 
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The resulting B-spline curve corresponds with this line. After moving one or several 

control points along the line, our measurement d gets positive, but the B-spline curve is still 

the same line. 

Additionally, the measure d only considers the magnitude of the difference vector 

between two corresponding points, but not the direction. To comprehend the effect of shifting 

a control point, we examine the following testing arrangement. Let P0,...,P4 be control points 

put on a semicircle of radius 1 in uniformly distributed angles, that is 
 

 
By selecting various vectors Vj with the same length ||Vj|| = a for all j and adding them 

to control point P2, we obtain a B-spline curve Cj(t) for each vector. Owing to the measure 

defined above, 
 

 
for any vector of length a, although, intuitively speaking, some of the curves deviate much 

more from C(t) than others (fig. 9). 
 

 
Figure 9: The primal B-spline curve (red) and various B-spline curves (blue) generated by 

adding different vectors with the same length to a control point. 

 

This difficulty is of particular importance if we adjust several control points. Each point 

of the curve is determined by at least 3 control points (for degree ≥ 2), see property 2.4. 

Thereby, neighbouring control points can be positioned in such a way that an almost identical 

curve emerges. Figure 5 shows this effect. The left B-spline curve results from the right curve 

by rotating the control points by 30°. It is obvious, that both curves are nearly similar, but our 

difference measure yields a high value of dissimilarity. 
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4.2. Area Deviation 

 

The B-spline curves we use to approximate ostracods’ outlines feature some “nice” 

characteristics. We want to use these characteristics for computing a demonstrative and 

tangible measure to distinguish contours. Our approximating B-spline curves have no loops, 

self-intersections or other anomalies. We obtain solely so-called simply-closed curves given 

by 

Definition 4.2. A curve C(t), t ∈ [a,b], in the plane is called simply-closed if it has no 

self-intersections, 
  

and the endpoints coincide, 
  

Accordingly, a simply-closed curve C constitutes a bounded part of the plane A 

surrounded by the curve. A can also be seen as the interior of C. To distinguish two simply-

closed curves C and D with their interiors A and B, we consider the area of the part of the 

plane, which is contained in exactly one of the domains A and B and may be viewed as the 

area “between” the outlines. This corresponds to the area of the symmetric difference A ∆ B, 

which is called the area deviation of A and B, illustrated in figure 10. 

 

 
Figure 10: The light blue area is the area deviation of two superimposed simple-closed B-

spline curves. 

 

The area deviation offers several advantages for the use in ostracodology. This 

common and very natural measure is demonstrative and tangible; the resulting differences are 

in square micrometers, what doubtless contributes to a better conceivability. Furthermore, the 

measure is rather inured to possible data errors and measuring faults. 
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As mentioned above, ostracods’ outlines feature a good characteristic for a fast 

computation without difficulties. In general, the approximating polygons are not convex, but 

the angles between the x-axis and a straight line from the origin to the vertices are in 

ascending order. This fact makes it possible to reduce the number of computations for 

possible points of intersection substantially. 

Every specimen is approximated by two open B-spline curves describing two regions, a 

dorsal and a ventral one, fixed by the main axes of inertia with the minimum moment. To 

calculate an approximative value for the enclosed area “between” the B-spline curves of two 

specimen-halves, in the present implementation 51 points on each curve, corresponding to 

equally spaced parameter values, are computed. We denote them with Ci for the first curve 

and Dj for the second (i,j = 0,...,51). This yields a polygon with 50 line segments substituting 

each B-spline curve, with Si = CiCi+1 denoting the segments of the first polygon and Tj = 

DjDj+1 denoting the segments of the second. 

To evaluate the area deviation, the points of intersection of the two superimposed 

polygons are of importance. In principle, it would be necessary to determine the points of 

intersection of each segment of the first polygon with each segment of the second polygon, 

what requires 50 × 50 = 2500 comparisons for each specimen-half. This goes beyond the 

scope of a tolerable computing time. 

To accelerate the process, the cotangent cot(ϕ) = x/y is assigned to every vertex Ci resp. 

Dj. For this purpose, let ϕi be the angle between the x-axis and the vector OCi, pointing from 

the origin to the vertex Ci, and ψj be the angle between the x-axis and the vector ODj. If the 

cotangent values are in ascending order, this means 
 

 
and 

 
we can confidently assume that points of intersection on a segment Si can only be possible for 

segments Tj where 

 
and 

  
see figure 11. 
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Figure 11: For possible points of intersection of the segment Si only the segments Tj and Tj+1 

of the other polygon are worth considering. 

 

Usually, a segment of a polygon has to be compared with 2 or 3 segments of the other 

polygon. This makes it possible to reduce the number of comparisons to about 150 as opposed 

to 2500 mentioned above. 

Due to the structure of the algorithm certain outlines of specimens cannot be treated. As 

described above the cotangent-values of the successive vertices of the spline-approximating 

polygon must be in ascending order. In other words, the B-spline considered as a clockwise 

directed curve must not change its direction (viewed from the origin). As a rule, such shapes 

occur only in faulty datasets. To get a general idea of such uncalculable shapes, a couple of 

exemplary specimens with their approximating B-splines are indicated below. 

 
Figure 12: Examples of uncalculable outlines (black) and their approximating B-spline curves 

(red). 
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The distinction of ostracods using the area deviation is implemented in the current 

version of the program MORPHOMATICA (Linhart et al. 2006) and a brief documentation of the 

algorithm was introduced for the first time by us in Minati et al. (2008). 

The program additionally offers the possibility to distinguish the valves by examining only 

the dorsal resp. ventral region. 

 

 

5. Classification of Populations 

 

In many fields of ostracodology a comparison of whole groups or populations of 

ostracods is wanted and necessary. In the following a measure for the dissimilarity of two 

populations is explained, which is proposed by one of us (J. L.). It is supposed that for any 

two individuals a kind of “distance” is available. So let P = p1,...,pn and Q = q1,...,qm be two 

populations and d a distance defined on P ∪ Q. The dissimilarity index of P and Q is then 

defined by 
 

 
where 

 

 
and 

 

 
 

 

Some essential properties of this dissimilarity index are: 

1. diss(P,Q) only depends on the distances d(x,y) with x,y ∈ P ∪ Q. 

2. diss(P,Q) is invariant to scaling transformations. 

3. diss(P,Q)  = 1 if P = Q. 

4. If the underlying distance d is a so-called hypermetric (see Kelly 1970), 

diss(P,Q) is always ≥ 1. The area deviation (cf. chapter 4.2) is a typical example for a 

hypermetric (see also Kelly 1970). 
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The dissimilarity index of P and Q may be viewed as the ratio of the average distance 

between individuals of different populations to the average distance between individuals of 

the same population. Perhaps this becomes more clear if the denominator of the expression 

defining diss(P,Q) is written in the following form: 

 
 

 
At first sight, it seems that here n2/2 should be replaced by n(n-1)/2, since this is the 

number of distances within the population P (and analogously for Q). But then the value of 

diss(P,Q) would be smaller than 1 for P = Q, which does not make sense. Intuitively, one 

might think that to a certain extent also the distances between identical individuals (which are 

of course equal to zero) should be taken into account. 

For several purposes it will be more convenient to consider the natural logarithm of the 

dissimilarity index, 

 
which yields a value in the range [0,∞) instead of [1,∞). 

 

The current version (1.6) of “Morphomatica” creates a “resemblance matrix” with 

entries representing the pairwise distances given by the area deviation. Table 1 shows a 

resemblance matrix comparing the valves of respectively 8 specimens of the species 

Pseudocandona danubialis from Ada-Kaleh (fig. 13) and Pseudocandona eremita from Aştileu 

(fig. 14), both localities in Romania. The data and pictures originate from a comparative study 

of Iepure et al. 2007, investigating the morphology of valves belonging to populations from 

Romania. 

 

 

 

 

 

 

Figure 13: Lateral view of female valves belonging to the species Pseudocandona danubialis 

from Ada-Kaleh. 
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Figure 14: Lateral view of female valves belonging to the species Pseudocandona eremita 

from Aştileu. 

 

Computing the above dissimilarity index for the Ada-Kaleh and Aştileu populations 

(resemblance matrix table 1) yields 

 
and 
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