Schutz der Waldökosysteme Madagaskars im Zeichen von Klimawandel

- Jörg U. Ganzhorn, Hamburg -

Abstract

Madagascar's forest ecosystems and their endemic biota are under pressure from anthropogenic land transformation. Gradual climatic changes in combination with extreme weather events add another level of unpredictability. Land degradation in combination with climatic unpredictability is also relevant for food security, especially for the rural human population. Coping strategies of plants, animals and people are most visible in the south of Madagascar where living conditions are precarious and climatic changes are most evident. During times of crop failure and shortly thereafter, people resort to food resources provided by the remaining forests and fallow land. There, people collect food from perennial woody plants that can tolerate prolonged droughts while the conventional annual crops fail. Replanting these annual crops represents a risk under the present changes of the seasonal rainfall patterns people were used to for generations.

The endemic mammalian fauna also suffers from the increasingly unpredictable weather conditions in a similar way as the human agricultural system. Increasing drought frequencies and unpredictable primary production due to changing rainfall pattern make the timing of reproduction difficult. Under these conditions, some lemurs persist in areas with high tree species diversity that buffers food availability against failure of certain tree species to produce food, but are absent in parts of forests with lower tree species richness.

Solutions to improve food security for people and suitable habitats for forest animals seem to converge and could be achieved by promoting perennial crops in various agroforestry systems and species rich forest restorations with shrub and tree species that can be used by people and animals alike. The restoration activities cannot be implemented on current productive agricultural land, but could be initiated on fallow land. Fallows have different names in the local terminology and can develop differently. This local knowledge is rarely considered in development projects but could be combined with revised restoration strategies based on natural succession. The resulting forest systems could complement the agricultural systems and provide some insurance against crop failure for people and serve as buffer zones and corridors for endemic species.

Keywords: Madagascar, forest ecosystems, conservation, climate change, forest restoration

Einleitung

Madagaskar, die Insel im Indischen Ozean vor der Ostküste Afrikas, ist bekannt für seine einzigartige Pflanzen- und Tierwelt und deren Bedrohung durch die Transformation von Waldökosystemen in Ackerland und Siedlungsräume (BITTNER 1992, MYERS et al. 2000, Pyritz 2012, Ganzhorn et al. 2016, Goodman 2023, Ralimanana et al. 2022). Nach den Vorstellungen des letzten Jahrhunderts, besiedelten Menschen Madagaskar vor nicht mehr als 2000 Jahren und sollten eine Insel vorgefunden haben, die im Osten von Regenwäldern bedeckt war, die dann nach Westen durch Trockenwälder und im Süden durch Madagaskars einzigartige Dornwälder ersetzt wurden (Abb. 1). Das zentrale Hochland sollte dann innerhalb weniger Jahrhunderte durch Brandrodung weitgehend entwaldet worden sein. Damit galt Madagaskar lange als Paradebeispiel für destruktive Siedlungsgeschichte von Menschen. Neuere Ausgrabungen, Pollenanalysen, Analysen der Kohlenstoff-Isotopenzusammensetzung subfossiler Knochen mittlerweile ausgestorbener Pflanzenfresser und phylogeographische Rekonstruktion von Genflüssen zwischen Populationen und der Evolution von Arten ergab, dass Menschen bereits mehrere tausend Jahre früher auf der Insel angekommen waren als gedacht und bereits vor Ankunft des Menschen Grasländer mit endemischen Grasarten vorhanden gewesen sein mussten, die von Weidegängern wie Flusspferden genutzt worden sind (DEWAR 2014, VORONTSOVA et al. 2016, YODER et al. 2016, DOUGLASS et al. 2019, BOND et al. 2023, Crowley et al. 2023, Razafimanantsoa & Razanatsoa 2014; Abb. 1). Selbst die ursprünglich als Konsequenz von Rodung, Beweidung und nicht adäquater Nutzung von Hängen angesehenen Erosionsformationen der "Lavaka", die sich fingerförmig in die Hänge fressen, entstehen zumindest zu gleichen Teilen sowohl durch anthropogene Initiation als auch durch natürliche Verwitterungsprozesse im Untergrund. Letztlich haben sie in ihrem Auftreten nach Ankunft von Menschen nicht messbar zugenommen (Wells et al. 1991, Cox et al. 2024). Auch wenn die konventionelle Vorstellung revidiert werden muss, dass Madagaskar weitgehend von Wald bedeckt war und Menschen nach ihrer Ankunft innerhalb weniger Jahrhunderte den Wald gerodet hätten, bleibt doch das Problem anthropogener Waldzerstörung, die vor etwa 1000 Jahren verstärkt eingesetzt hat (Crowley et al. 2017, Godfrey et al. 2019) und heute mit Verlusten von etwa 1 % der derzeitigen Waldbedeckung pro Jahr (Harper et al. 2007, Vieilledent et al. 2018, 2020) eine massive Bedrohung der endemischen Pflanzen- und Tierwelt darstellt (Allnutt et al. 2008, Schwitzer et al. 2014, Ralimanana et al. 2022) (Abb. 2).

Sozio-ökonomischer Hintergrund

Die Ursachen für die prekäre Situation sind vielfältig. Madagaskar war 2021/2022 auf Platz 173 von 191 des Human Development Index und Platz 119 von 121 der von der Welthungerhilfe erfassten Länder auch eines der ärmsten Länder der Erde, dessen menschliche Bevölkerung zu mehr als zwei Dritteln auf dem Land und in direkter Abhängigkeit von der lokalen Agrarproduktion und Nutzung natürlicher Ressourcen lebt (Neudert et al. 2015; von Grebmer et al. 2022). Positive Effekte vieler Entwicklungsprojekte enden mit dem Ende der Projekte (Freudenberger 2010) oder werden durch

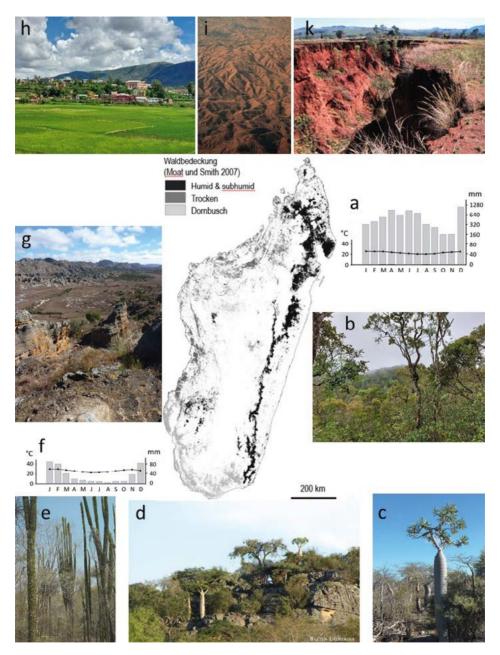


Abb. 1. Klimatische Bedingungen Madagaskars von Gebieten mit Regenwäldern im Norden und Osten mit mehreren tausend mm Niederschlag pro Jahr (a, b) bis zu Trockengebieten mit Dornbusch und Trockenwäldern im Süden und Westen (c - e [d von B. Lauströer], f). Die Vegetation des zentralen Hochlands bestand wahrscheinlich aus Grasland mit Waldfragmenten und Galeriewäldern (g). Heute ist das Hochland geprägt von Ackerbau (h), oder Grasland mit z. T. großflächiger Erosion und Lavaka (Spülnischen; i, k).

den rasanten Bevölkerungszuwachs von derzeit 2,7 %/Jahr direkt kompensiert (Abb. 2; https://www.worldometers.info/world-population/madagascar-population/). Wo Naturwälder noch verfügbar sind, werden sie als Lieferant für Brenn- und Bauholz, sowie in Notzeiten als Quelle wild-wachsender Nahrungsmittel, Jagd oder Exploitation von Edelhölzern genutzt (Schwitzer et al. 2014; Borgerson et al. 2022; Ralambomananatsoa et al. 2023; Wilmé et al. 2020; Jones et al. 2022). Neben der eigenen Nahrungsmittelversorgung tragen auch Rodungen für "cash crops" (Erdnüsse, Mais) und Vergrößerung der Weidefläche für den internationalen Markt zur Entwaldung bei (Vieilledent et al. 2020, Jones et al. 2022). Die Umsetzung nationaler Entwicklungspläne wird durch Korruption und aufgrund von Desinteresse an ländlicher Entwicklung erschwert (Jones et al. 2022). Als Folge dieser komplexen Konstellation hinkt Madagaskar beim Erreichen mehrerer Kenngrößen der Millenium Development Goals der Entwicklung in Afrika wesentlich hinterher (Waeber et al. 2016).

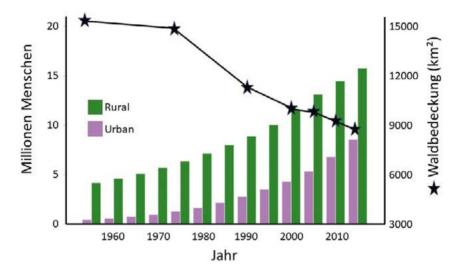


Abb. 2. Populations- und Waldentwicklung in Madagaskar von 1953 bis 2015. Daten von (https://www.worldometers.info/world-population/madagascar-population/ und VIEILLEDENT et al. 2018).

Wald-Schutzgebiete

Andererseits sind positive Entwicklungen im Naturschutz unverkennbar. Die Ankündigung des früheren Präsidenten Marc Ravalomanana beim World Parks Congress in Durban im Jahr 2003, die Fläche der Schutzgebiete Madagaskars von 3 % auf etwa 10 % der Landesfläche zu vergrößern, war 2015 weitgehend umgesetzt. Im Jahr 2015 standen rund 70.000 km² (\approx 12 % der Landesfläche) unter Schutz. Hiervon sind etwa 40.000 km² von Wald bedeckt (Goodman et al. 2018; Waeber et al. 2020; Rafanoharana et al. 2023, 2024). Während die bereits bestehenden Schutzgebiete hauptsächlich klassisch

definierte Schutzgebiete blieben (IUCN Kategories I – IV; Abb. 3, Tabelle 1), kombinieren die neuen Gebiete Schutz von Lebensräumen und Biodiversität mit verschiedenen Nutzungsformen und der Übertragung von Nutzungsrechten und Management der Gebiete an die lokale Bevölkerung. Ziel ist dabei, Naturschutz und nachhaltige Nutzung biotischer Ressourcen zu integrieren (IUCN Kategorien V und VI; Gardner et al. 2018). Letzteres folgte einer Empfehlung des 2. Nationalen Umwelt-Aktionsplans Madagaskars vom April 1995 (Hannah et al. 1998) und illustriert, dass man im Naturschutz trotz aller Dringlichkeit mehr in Generationen als in Förderperioden denken muss.

Probleme dieser Schutzgebiete sind, dass Waldflächen auch innerhalb der Grenzen häufig zerstückelt sind und im landesweiten Median gerade einmal 22 km² messen. Dies führt zur Isolation von Arten, die offene Lebensräume nicht nutzen oder überbrücken können. Durch die langen Ränder sind die Wälder auch sehr viel stärker den jährlichen Buschfeuern ausgesetzt, die am Ende der Trockenzeit gelegt werden, um die Weidequalität zu verbessern. Problematisch ist auch die Übertragung des Managements und von Nutzungsrechten der neuen Schutzgebiete mit IUCN-Status V und VI an die lokalen Gemeinden. Hier sind Interessenskonflikte vorprogrammiert, wenn die ansässige Bevölkerung ihre traditionelle Ressourcennutzung zugunsten von Biodiversitätsschutz ändern soll, ohne hierfür auf der Entscheidungsebene geschult zu sein, Werkzeuge oder Richtlinien zur Bewertung verschiedener Aktivitäten zu haben, oder über Kompensationsmittel zu verfügen, wenn die Bevölkerung die Nutzung der lokalen Ressourcen einschränken soll (GARDNER et al. 2018, RASOAMANANA et al. 2023). Dies führt dazu, dass Wälder in den neuen Schutzgebieten mit Schutzstatus V und VI sehr viel stärker zurückgehen als in den etablierten Gebieten unter Schutzstatus I bis IV (Tabelle 1). Trotz der Problematik erfüllen viele Schutzgebiete Schutzfunktionen. Damit sollte es möglich sein, viele Waldgebiete noch einige Jahrzehnte in der Hoffnung zu erhal-

Tabelle 1: Größe von Wäldern innerhalb von 111 der 122 terrestrischen Schutzgebiete und ihr jährlicher Verlust an Wald zwischen 2015 und 2017; Angaben in Medianen und Quartilen (Q_{25} – **Median** – Q_{75}) (aus Rafanoharana et al. 2024)

IUCN Kategorie	Status	Anzahl an Wäldern	Größe der Wälder [km²]	Gesamte Waldfläche in 2017 [km²]	Waldverlust / Jahr zwischen 2015 und 2017 [%]
I	Wildnisgebiet	2	13.62 / 868.00	882	0.00 / 1.29
II	Nationalpark	48	5.37 - 52.56 - 422.77	16320	0.04 - 0.19 - 0.56
III	Naturdenkmal	1	37.45	37	0.02
IV	Biotop- u. Artenschutz	26	7.09 – 28.21 – 16.61	2667	0.03 - 0.44 - 1.41
V	Geschützte Landschaft	66	2.37 - 20.48 - 54.38	10236	0.14 - 0.95 – 2.74
VI	Nachhaltige Nutzung	27	4.81 - 9.13 - 86.34	6332	0.55 - 1.95 - 3.18

ten, dass die bekannten Defizite behoben werden und Madagaskar von einem Land des Waldverlustes zu einem Land mit Zuwachs an Naturwäldern werden kann (RAFANO-HARANA et al. 2024).

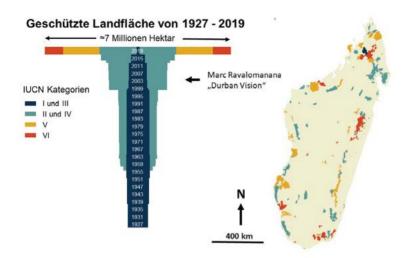


Abb. 3. Zeitliche Entwicklung der Schutzgebietsausweisungen unterschiedlicher IUCN-Kategorien von 1927 bis 2019 (verändert nach WAEBER et al. 2020).

Tourismus

Tourismus galt lange als eine Möglichkeit zur Finanzierung von Naturschutz. Verbesserungen der Infrastruktur führte auch zu einer kontinuierlichen Zunahme der Besucherzahlen von Schutzgebieten (Jones et al. 2022; Andrianambinina et al. 2023a). Über 50 % der Einnahmen aus Eintrittsgebühren in Schutzgebiete werden aber von nur vier Gebieten generiert und decken auch dort nur etwa 30-40 % der laufenden Kosten. Diese Berechnungen gelten nur für die klassischen Schutzgebiete der Kategorien I – IV. Die neuen Schutzgebiete der Kategorien V und VI, die in 2015 etabliert worden waren, müssen erst noch entsprechende Infrastruktur etablieren und bekannter werden, um von Touristen in nennenswertem Maß angenommen zu werden. Letztlich kann Tourismus aber nicht die notwendigen Mittel beisteuern, die für den Unterhalt weder einzelner noch der gesamten Schutzgebiete notwendig sind. Die Situation verschärft sich insbesondere zu Zeiten politischer Unsicherheit (meist nach Wahl einer neuen Regierung). Dies spiegelt sich zum einen in der Reduktion von Besucherzahlen, aber auch in der gleichzeitigen Zunahme der Waldrodungen wider, wie es in den Jahren 2002 und 2009/2010 der Fall war (Abb. 4; Andrianambinina et al. 2023b; Zinner et al. 2014). Der mit Covid assoziierte vollständige Lockdown hatte selbstverständlich ebenfalls gravierende Auswirkungen. Über zwei Jahre hinweg kam der internationale Tourismus genauso zum Erliegen, wie die Transport- und Reisemöglichkeiten innerhalb des Landes und damit die Möglichkeit, Waldressourcen zu vermarkten. Während dieser Krise kam

es zu erhöhtem Auftreten von Brandrodungen, allerdings mit geringeren Konsequenzen innerhalb von Schutzgebieten als in angrenzenden Gebieten (Andrianambinina et al. 2022, Eklund et al. 2022, Andrianambinina et al. 2023b).

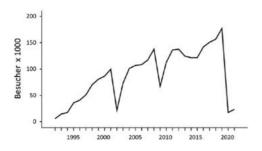


Abb. 4. Besucherzahl der 43 Schutzgebiete, die von Madagascar National Parks verwaltet werden von 1992 bis 2021. Die Rückgänge von 2002 und 2009 sind politischen Unwägbarkeiten durch Regierungswechsel zuzuschreiben. Der Covid-Effekt ist ab 2020 sichtbar (Andrianambinina et al. 2023a).

Klimawandel

Die prekäre Situation des Naturschutzes und des Fortbestehens vieler endemischer Arten wird durch den derzeitigen Klimawandel verstärkt. Für Madagaskar werden für das gesamte Land steigende Temperaturen gemessen und auch weiter vorhergesagt. Die Jahresniederschläge nehmen im Durchschnitt ab, wobei die Änderungen in den unterschiedlichen Landesteilen unterschiedlich sind (Tadross et al. 2008, Stalen-BERG et al. 2018). Langfristige Populationsuntersuchungen von Lemuren im westlichen Trockenwald zeigten, dass sinkende Niederschläge und steigende Temperaturen mit einer sinkenden Lebenserwartung selbst wenig spezialisierter Mausmakis einhergehen (Ozgul et al. 2023). Unter der Annahme, dass die derzeitige Verbreitung von Arten mit durch Temperatur- und Niederschlagsverhältnisse bedingt werden, sagen Anwendung der derzeitigen Klimamodelle auf die Verbreitung von Wälder und Arten vorher, dass sich die geographischen Toleranzgrenzen für viele der endemischen Arten verschieben werden. Aufgrund der starken Fragmentierung der Wälder und Isolation der Waldreste durch landwirtschaftliche Nutzflächen, die von vielen waldbewohnenden Arten nicht überbrückt werden können, besteht für mehrere Restpopulationen die Gefahr aufgrund der sich ändernden Wetterbedingungen auszusterben.

Die Problematik ist dieselbe für Kleinbauern, die aufgrund von Eigentumsverhältnissen auch nicht beliebig wandern können (Harvey et al. 2014, Brown & Yoder 2015, Tagliari et al. 2021, Hending et al. 2022, Behie et al. 2024). Hier sind sowohl für die Menschen als auch für die heimische Tier- und Pflanzenwelt Anpassungen notwendig.

Offenbar können aber nicht nur ausbleibende Niederschläge, sondern auch ungewöhnlich exzessive Regenfälle in Folge von Zyklonen zum Problem werden. Im immergrünen Regenwald von Ranomafana (Südost-Madagaskar) brechen die Geburtenraten von Milne-Edwards Diademsifaka (*Propithecus edwardsi*) regelmäßig in Jahren mit Zyklonen und exzessiven Regenfällen ein (Abb. 5). Dies kann eine Folge zu starker

Belastung durchnässter trächtiger Weibchen durch Thermoregulation oder Futtermangel sein, wenn Zyklone Früchte und Blätter zerstört haben (Dunham et al. 2011). Die Häufigkeit von Zyklonen, die auf Madagaskar treffen, hat sich nicht geändert, aber ihre Auswirkungen scheinen sich nach subjektivem Empfinden verstärkt zu haben (S.M. Goodman, pers. Mitteilung). Dies kann darauf beruhen, dass die Intensität der Zyklone

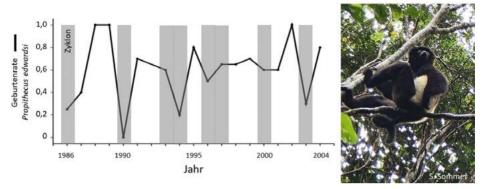


Abb. 5. Geburtenrate von Milne-Edwards Diademsifaka (*Propithecus edwardsi*) in Relation zum Auftreten von Zyklonen (grau hinterlegt) (aus Dunham et al. 2011; Foto von S. Sommer).

zugenommen hat, oder auch, dass kleinere Waldfragmente stärker unter starken Winden leiden als große zusammenhängende Wälder.

Genauso wichtig oder sogar wichtiger als graduelle Zu- oder Abnahmen von Temperatur und Niederschlag sind allerdings sowohl für Pflanzen und Tiere als auch für die Agrarproduktion jahreszeitliche Verschiebungen oder generell nicht verlässliche saisonale Muster in den Niederschlägen. Reproduktionsphänomene werden häufig durch sich ändernde Tageslängen initiiert (Perret & Aujard 2001, Ratovonamana et al. 2011, Andriaharimalala et al. 2012). Diese evolvierten als Trigger und Indikatoren für die weitere Entwicklungen von Temperatur, Niederschlag und Primärproduktion im Lauf der Jahreszeiten, die über lange Zeiträume hinweg zuverlässig eintraten. Diese Koppelung ist vor allem in den trockeneren Bereich verloren gegangen, so dass Pflanzen und Tiere mit der Reproduktion beginnen, sie aber nicht erfolgreich abschließen können. Für Bauern im Süden Madagaskars hat sich der Zeitpunkt der Aussaat zum Lotteriespiel entwickelt. Immer häufiger fallen erste Niederschläge, die Bauern bestellen ihre Felder und der Regen bleibt dann aus oder kommt später im Jahr (Abb. 6) (GANZ-HORN 1995, DEWAR & RICHARD 2007, RATOVONAMANA et al. 2013, NEUDERT et al. 2015, ZHANG et al. 2019, RATOVONAMANA et al. 2024). Die daraus resultierenden Ausfälle in der Agrarproduktion führen seit Beginn der Aufzeichnungen im 20. Jahrhundert bis heute vor allem im Süden der Insel wiederholt zu Hungersnöten (Jolly 2004; https://www.welthungerhilfe.de/presse/pressemitteilungen/2021/madagaskar-nothilfeduerre/), von denen auch die heimische Fauna betroffen wird (Gould et al. 1999, Kasola et al. 2020). In diesen Dürrezeiten greifen Menschen mit Zugang zu Naturwäldern verstärkt auf Knollen, Früchte und Blätter perennierender Pflanzen zurück, die sie im

Wald finden oder sie verkaufen Vieh, das als "Versicherung" gegen derartige Produktionsausfälle gehalten wird, wobei nur ein Bruchteil der Bevölkerung Nutztierhaltung betreiben kann (Andriamparany et al. 2015, Noromiarilanto et al. 2016, Hänke and Barkmann 2017, Ralambomanantsoa et al. 2023).

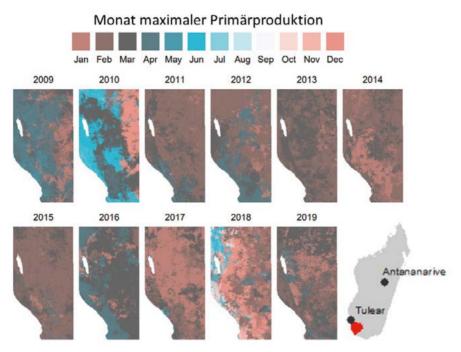


Abb. 6. Illustration der Schwankungen der jährlichen Niederschlagsverteilung anhand der jahreszeitlichen Variabilität der pflanzlichen Primärproduktion im trockenen Südwesten Madagaskars (verändert nach RATOVONAMANA et al. 2024).

Anpassungen

Tiere haben verschiedene Anpassungen an diese Unwägbarkeiten entwickelt. Strahlenschildkröten (*Astrochelys radiata*) legen über einen Zeitraum von mehreren Monaten Eier, aber die Jungen schlüpfen alle innerhalb weniger Tage nach Einsetzen der Regenzeit (Abb. 7) (HAMMER 2015). Hier ist die Entwicklung der Jungen offenbar plastisch genug, um mehrere Monate auf den richtigen Zeitpunkt des Schlüpfens warten zu können.

Lemuren können als Primaten die Entwicklung ihrer Föten nicht beschleunigen oder verlangsamen. Wieselmakis (*Lepilemur petteri*) gehören zu den wenigen Lemurenarten, die im trockenen Südwesten Madagaskars noch überleben können, erreichen hier aber offenbar auch die Grenzen ihrer ökologischen Toleranz, da sie nicht mehr flächendeckend, sondern nur noch in bestimmten Waldbereichen vorkommen. Ihre

Anpassungen können daher als Beispiel dienen, wie waldabhängige Tiere auf zunehmende Temperatur und abnehmende Niederschläge reagieren könnten. Sie brauchen Lebensräume, in denen vor allem während der ersten Lebensmonate der Jungen Futter (Blätter) verlässlich zur Verfügung stehen. Bei der von Jahr zu Jahr stark schwankenden Primärproduktion steigt die Zuverlässigkeit, mit der in einem gegebenen Jahr auch tatsächlich genügend Futter vorhanden ist, mit der Dichte großer Bäume und der Anzahl an Baumarten. Dies hat zur Folge, dass die Tiere primär dort in der Region vorkommen, wo die Baumdichte und Anzahl der Baumarten überdurchschnittlich hoch ist (Abb. 7) (RATOVONAMANA et al. 2024).

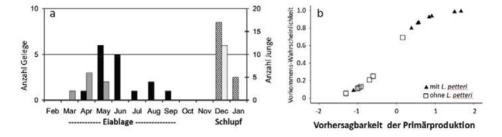


Abb. 7. (a) Eiablage und Schlupf von Strahlenschildkröten von zwei verschiedenen Populationen (Hammer 2015); (b) Wahrscheinlichkeit des Vorkommens und reale Vorkommen (schwarze Dreiecke) von Wieselmakis (*L. petteri*) in Gebieten unterschiedlicher Vorhersagbarkeit der pflanzlichen Primärproduktion in Südwestmadagaskar (Ratovonamana et al. 2024).

Lösungsmöglichkeiten

Aus den Anpassungen von Menschen und Tieren an die klimatischen Unwägbarkeiten ergeben sich Optionen, die Resilienz sowohl für die Ernährungssituation der Menschen als auch für die Schutzgebiete mit der heimischen Artenvielfalt zu erhöhen. In den trockeneren Bereichen Madagaskars bilden in "normalen" Jahren einjährige Feldfrüchte wie Mais, Hirse, Bohnen, Erdnüsse, Gemüse und Süßkartoffeln die Ernährungsgrundlage. Hinzu kommen Maniok und Früchte von mehrjährigen Pflanzen. In Trockenzeiten kehrt sich das Verhältnis der Nutzung von ein- und mehrjährigen Pflanzen für die Ernährung um (Abb. 8a). Mehrjährige Pflanzen erreichen bei der derzeitig stark auf Selbstversorgung ausgerichteten Wirtschaftsform nicht die Produktivität, die notwendig wäre, um die regionale Bevölkerung zu ernähren, aber sie liefern Nahrung, wenn die annuellen Pflanzen aufgrund von Dürre ausfallen. Hier könnte die Ernährungssicherung der Menschen durch die Integration verschiedener Agroforst-Kulturen in die bestehende Agrarnutzung wesentlich verbessert werden (Wurz et al. 2022, RALAMBO-MANANTSOA et al. 2023). Vielversprechende Optionen für Trockengebiete Madagaskars sind die Kultivierung oder zumindest nicht-destruktive Nutzung verschiedener Arten wilden Yams (Dioscorea spp.), die entweder im Wald nicht-destruktiv genutzt werden

oder auf entsprechenden Böden zum Beispiel auch an Zäunen angebaut werden könnten, die zur Einfriedung von Feldern angelegt werden (Andriamparany et al. 2015, Kobbe et al. 2015). In Trockengebieten würden auch verschiedene Arten von Feigenkakteen (*Opuntia* spp.) Futter für Vieh, Nahrung für Menschen und Vermarktungsmöglichkeiten der Samen für die Kosmetikindustrie bieten (Jolly 2004, Hänke et al. 2018). Opuntien gelten derzeit als invasive Arten und werden mit großem Aufwand entfernt. Die heute dominierenden Formen sind zum Teil extrem stachelig. Frühere Formen waren teilweise stachellos und waren Garanten für das Überleben von Vieh und Menschen während Dürreperioden (Jolly 2004). Dies ist ein Beispiel, wo altes Wissen durch neue Wirtschaftsmethoden verdrängt worden ist, mittlerweile aber wieder hochaktuell und relevant sein kann.

Die auf Wälder angewiesenen Lemuren nutzen viele Baum- und Straucharten, die auch von Menschen genutzt werden. Dies gilt sowohl für heimische Arten in Naturwäldern als auch für eingeführte Arten, sowohl in Regen- als auch in Trockenwäldern. Von 1379 als eingeführt betrachteten Pflanzenarten werden mehr als 100 auch von endemischen Wirbeltierarten Madagaskars genutzt (Kull et al. 2012, Gérard et al. 2015). Nutzung von Früchten kann zum Interessenskonflikt zwischen Menschen und Tieren führen und birgt die Gefahr von Zoonosen (Iehle et al. 2007, Joffrin et al. 2020). Viele Baumarten sind aber vor allem auch für Bau- und Brennholzzwecke oder als Medizinpflanzen wichtig und können von Wildtieren als Lebensraum und Futter in Form von Blättern, Nektar, Exudaten oder auch Früchten genutzt werden, ohne dass es zu Interessenskonflikten kommt (Styger et al. 1999, Andriamparany et al. 2014, Gérard et al. 2015, Rakotoarivelo et al. 2015, Steffens 2020, Konersmann et al. 2022, Ganzhorn et al. 2023).

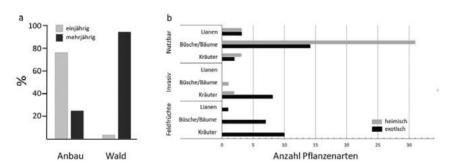


Abb. 8. (a) Anbau und Nutzung ein- oder mehrjähriger Pflanzenarten in "normalen" Jahren (Feld) und in Dürrejahren (Wald; nach Ralambomanantsoa et al. 2023); (b) heimische und eingeführte Pflanzenarten, die sowohl von Menschen als auch von Tieren genutzt werden (aus Konersmann et al. 2022).

Renaturierungen könnten durch Berücksichtigung lokalen Wissens optimiert werden. Madagassische Bauern haben viele verschiedene Bezeichnungen für aufgelassenes Land, das sich in verschiedenen Stadien der Renaturierung befindet und sich ohne Intervention sehr unterschiedlich entwickeln kann. Dieses Wissen wird in den wenigsten Projekten berücksichtig (Styger 1995, Genini 1996, Styger et al. 2007, Manjaribe et

Abb. 9. Madagassisches Immergrün (*Catharanthus roseus*) als Bodendecker zum Erosionsschutz für spätere Aufforstungen.

al. 2013). Beispielsweise kann das als Produzent wichtiger Komponenten gegen Krebs bekannte Madagassisches Immergrün (*Catharanthus roseus*) als Bodendecker genutzt werden, um Erosion zu verhindern und spätere Anpflanzungen zu fördern (Abb. 9). Daneben sind viele heimische Pflanzenarten bekannt, die für Aufforstungen von Wert für Menschen und Tiere verwendet werden können. Anpflanzungen könnten durch exotische Arten mit höherem wirtschaftlichem Wert ergänzt werden. Ökonomischer Nutzen kann aus diesen Pflanzungen innerhalb weniger Jahre (z. B. Yams) bis zu Jahrzehnten (Früchte) oder Jahrhunderten (z. B. Edelhölzer) erzielt werden. Unsere Ansätze sind dabei allzu häufig von Sendungsbewusstsein im Sinne von "Naturschutz-Missionaren" geprägt (RICHARD 2022). Stärkere Berücksichtigung lokalen Wissens und Interessen würden die Optionen erweitern und die Erfolgschancen derartiger Aktivitäten wesentlich verbessern (MARIE et al. 2009, KONERSMANN et al. 2022).

Zusammenfassung

Die Naturschutzsituation Madagaskars ist gekennzeichnet durch starke Fragmentation der verbliebenen Wälder, schleppend oder nicht umgesetzter nachhaltiger Agrarpolitik und in vielen Regionen die Abhängigkeit der menschlichen Bevölkerung von der Ag-

rarproduktion, gekoppelt mit entsprechendem Landbedarf. Unter diesen Umständen ist es schwierig, produktives Agrarland in geschützte Wälder zurück zu wandeln. Schutz von Wäldern muss sich daher auf Schutz der Restwälder und der Etablierung von Pufferzonen, Korridoren und "Ersatzwäldern" konzentrieren, die in Bereichen etabliert werden, die aus der landwirtschaftlichen Nutzung genommen werden mussten. Diese Bereiche könnten mit Pflanzenarten renaturiert und letztlich aufgeforstet werden, die sowohl für Tiere als auch für Menschen von Wert sind. Dabei sollten auch Arten von kulturellem Wert ohne kommerziellen Nutzen (z. B. Affenbrotbäume, *Adansonia* spp. oder Tamarinden, *Tamarindus indica*) berücksichtigt werden. Dies würde die Akzeptanz derartiger Aktivitäten durch die menschliche Bevölkerung und damit die Erfolgschancen erhöhen, bestehende Restwälder zu vergrößern und zu vernetzen.

Literatur

- Allnutt, T. F., S. Ferrier, G. Manion, G. V. Powell, T. H. Ricketts, B. L. Fisher, G. J. Harper, M. E. Irwin, C. Kremen & J. N. Labat (2008): A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conservation Letters 1: 173–181.
- Andriaharimalala, T., E. Roger, C. Rajeriarison & J. U. Ganzhorn (2012): Phenology of different vegetation types in the dry forest of Andohahela National Park, southeastern Madagascar. Malagasy Nature **6**: 24–45.
- Andriamparany, J. N., K. Brinkmann, V. Jeannoda & A. Buerkert (2014): Effects of socio-economic household characteristics on traditional knowledge and usage of wild yams and medicinal plants in the Mahafaly region of southwestern Madagascar. Journal of Ethnobiology and Ethnomedicine 10: 82. doi: 10.1186/1746-4269-10-82.
- Andriamparany, J. N., K. Brinkmann, M. Wiehle, V. Jeannoda & A. Buerkert (2015): Modelling the distribution of four *Dioscorea* species on the Mahafaly Plateau of south-western Madagascar using biotic and abiotic variables. Agriculture Ecosystems & Environment 212: 38–48.
- Andrianambinina, F. O. D., P. O. Waeber, D. Schuurman, P. P. Lowry & L. Wilmé (2022): Clarification on protected area management efforts in Madagascar during periods of heightened uncertainty and instability. Madagascar Conservation & Development 17: 25–28.
- Andrianambinina, F. O. D., D. Schuurman, M. A. Rakotoarijaona, C. N. Razanajovy, H. M. Ramparany, S. C. Rafanoharana, H. A. Rasamuel, K. D. Faragher, P. O. Waeber & L. Wilmé (2023a): Boost the resilience of protected areas to shocks by reducing their dependency on tourism. – PLoS ONE **18**: e0278591. doi: 10.1371/journal.pone.0278591
- Andrianambinina , F. O. D., S. C. Rafanoharana , H. A. T. Rasamuel, P. O. Waeber, J. U. Ganzhorn & L. Wilmé (2023b): Decrease of deforestation in Protected Areas of Madagascar during the Covid-19 years. Madagascar Conservation & Development 18: 15–21.

- Behie, A. M., T. S. Steffens, K. Yaxley, A. Vincent, P. C. Wright, S. E. Johnson & M. S. Pavelka (2024):. Can cyclone exposure explain behavioural and demographic variation among lemur species? PLoS ONE **19**: e0300972. doi: 10.1371/journal.pone.0300972
- BITTNER, A. (1992): Madagaskar. Birkhäuser, Basel.
- Bond, W. J., J. A. SILANDER & J. RATSIRARSON (2023): Madagascar's grassy biomes are ancient and there is much to learn about their ecology and evolution. Journal of Biogeography **50**: 614–621.
- BORGERSON, C., S. E. JOHNSON, E. HALL, K. A. BROWN, P. R. NARVÁEZ-TORRES, B. J. R. RASOLOFONIAINA, B. N. RAZAFINDRAPAOLY, S. D. MERSON, K. E. T. THOMPSON & S. M. HOLMES (2022): A national-level assessment of lemur hunting pressure in Madagascar. International Journal of Primatology 43: 92–113.
- Brown, J. L. & A. D. Yoder (2015): Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution 5: 1131–1142.
- Cox, R., E. K. Phillips & A. F. M. Rakotondrazafy (2024): Gullying and landscape evolution: Lavaka in Lac Alaotra, Madagascar shed light on rates of change and non-anthropogenic controls. Science Advances 10: doi:10.1126/sciadv.adi0316.
- Crowley, B. E., L. R. Godfrey, R. J. Bankoff, G. H. Perry, B. J. Culleton, D. J. Kennett, M. R. Sutherland, K. E. Samonds & D. A. Burney (2017): Island-wide aridity did not trigger recent megafaunal extinctions in Madagascar. Ecography **40**: 901–912.
- Crowley, B. E., L. R. Godfrey & K. E. Samonds (2023): What can hippopotamus isotopes tell us about past distributions of C4 grassy biomes on Madagascar? Plants People Planet 5: 997–1010.
- Dewar, R. E. (2014): Early human settlers and impacts on Madagascar's flora and fauna.

 In: I. R. Scales (Hrsg.): Conservation and Environmental Management in Madagascar: 44–64. Earthscan, Routledge, London, New York.
- DEWAR, R. E. & A. F. RICHARD (2007): Evolution in the hypervariable environment of Madagascar. Proceedings of the National Academy of Science USA **104**: 13723–13727.
- Douglass, K., S. Hixon, H. T. Wright, L. R. Godfrey, B. E. Crowley, B. Manjakahery, T. Rasolondrainy, Z. Crossland & C. Radimilahy (2019): A critical review of radiocarbon dates clarifies the human settlement of Madagascar. Quaternary Science Reviews 221. doi:10.1016/j.quascirev.2019.105878.
- Dunham, A. E., E. M. Erhart & P. C. Wright (2011): Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Global Change Biology 17: 219–227.
- EKLUND, J., J. P. G. JONES, M. RÄSÄNEN, J. GELDMANN, A.-P. JOKINEN, A. PELLEGRINI, D. RAKOTOBE, O. S. RAKOTONARIVO, T. TOIVONEN & A. BALMFORD (2022): Elevated fires during COVID-19 lockdown and the vulnerability of protected areas. Nature Sustainability 5: 603–609.
- Freudenberger, K. (2010): Paradise lost? Lessons from 25 years of USAID environment programs in Madagascar. International Resources Group, Washington, D.C.
- GANZHORN, J. U. (1995): Cyclons over Madagascar: Fate or fortune? Ambio **24**: 124–125.

- GANZHORN, J. U., J.-L. MERCIER & L. WILMÉ (2016): Inseln als Modelle für Evolution Zusammenleben und Schutz von Biodiversität am Beispiel von Madagaskar. In: U. Schickhoff (Hrsg.): Biogeographie und Biodiversität. Hamburger Symposium Geographie 8: 39–57, Hamburg.
- Ganzhorn, J. U., Y. R. Ratovonamana, M. Rother, P. Giertz, C. A. Andrews, S. Baumann, Y. Bohr, P. M. Kappeler, B. K. Montero, A. Pommerening-Röser, U. Radespiel, S. J. Rakotondranary, O. Schülke, K. J. E. Steffens, S. Thorén, G. Timmermann & I. Tomaschewski (2023): Nutritional and possible pharmaceutical aspects of tree exudates eaten by lemurs of Madagascar's dry forests. Separations 10: 575. doi: 10.3390/separations10110575.
- GARDNER, C. J., M. E. NICOLL, C. BIRKINSHAW, A. HARRIS, R. E. LEWIS, D. RAKOTOMAL-ALA & A. N. RATSIFANDRIHAMANANA (2018): The rapid expansion of Madagascar's protected area system. – Biological Conservation **220**: 29–36.
- GENINI, M. (1996): Deforestation. In: GANZHORN, J. U. & J.-P. SORG (Hrsg.): Ecology and Economy of a Tropical Dry Forest in Madagascar. Primate Report **46-1**: 49–54. Goltze, Göttingen.
- GÉRARD, A., J. U. GANZHORN, C. A. KULL & S. M. CARRIÈRE (2015): Possible roles of introduced plants for native vertebrate conservation: the case of Madagascar. Restoration Ecology 23: 768–775.
- GODFREY, L. R., N. SCROXTON, B. E. CROWLEY, S. J. BURNS, M. R. SUTHERLAND, V. R. PEREZ, P. FAINA, D. MCGEE & L. RANIVOHARIMANANA (2019): A new interpretation of Madagascar's megafaunal decline: The "Subsistence Shift Hypothesis". Journal of Human Evolution 130: 126–140.
- GOODMAN, S. M (2023): Updated estimates of biotic diversity and endemism for Madagascar-revisited after 20 years. Oryx **57**: 561–565.
- GOODMAN, S. M., M. J. RAHERILALAO & S. WOHLHAUSER (2018): Les aires protégées terrestres de Madagascar: leur histoire, description et biote / The terrestrial protected areas of Madagascar: their history, description, and biota. Association Vahatra. Antananariyo.
- GOULD, L., R. W. SUSSMAN & M. L. SAUTHER (1999): Natural disasters and primate populations: the effects of a 2-year drought on a naturally occurring population of Ring-Tailed Lemurs (*Lemur catta*) in Southwestern Madagascar. International Journal of Primatology **20**: 69–84.
- HAMMER, J. M. (2015): Reproduction as a function of living conditions: the breeding biology of the radiated tortoise (*Astrochelys radiata*) under natural and captive conditions in southwest Madagascar. Journal of Herpetology **49**: 633–640.
- HÄNKE, H. & J. BARKMANN (2017): Insurance function of livestock, Farmers coping capacity with crop failure in southwestern Madagascar. World Development **96**: 264–275.
- HÄNKE, H., J. BARKMANN, C. MÜLLER & R. MARGGRAF (2018): Potential of *Opuntia* seed oil for livelihood improvement in semi-arid Madagascar. Madagascar Conservation & Development 13: 34–44.
- Hannah, L., B. Rakotosamimanana, J. Ganzhorn, R. A. Mittermeier, S. Olivieri, L. Iyer, S. Rajaobelina, J. Hough, F. Andriamialisoa, I. Bowles & G. Tilkin (1998): Participatory planning, scientific priorities & landscape conservation in Madagascar. Environmental Conservation 25: 30–36.

- HARPER, G. J., M. K. STEININGER, C. J. TUCKER, D. JUHN & F. HAWKINS (2007): Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation 34: 325–333.
- HARVEY, C. A., Z. L. RAKOTOBE, N. S. RAO, R. DAVE, H. RAZAFIMAHATRATRA, R. H. RABARIJOHN, H. RAJAOFARA & J. L. MACKINNON (2014): Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences **369**: 20130089.
- HENDING, D., M. HOLDERIED, G. McCabe & S. Cotton (2022):. Effects of future climate change on the forests of Madagascar. Ecosphere 13: e4017.
- IEHLE, C., G. RAZAFITRIMO, J. RAZAINIRINA, N. ANDRIAHOLINIRINA, S. M. GOODMAN, C. FAURE, M. C. GEORGES-COURBOT, D. ROUSSET & J. M. REYNES (2007): Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerging Infectious Diseases 13: 159–161.
- Joffrin, L., S. M. Goodman, D. A. Wilkinson, B. Ramasindrazana, E. Lagadec, Y. Gomard, G. Le Minter, A. Dos Santos, M. C. Schoeman, R. Sookhareea, P. Tortosa, S. Julienne, E. S. Gudo, P. Mavingui & C. Lebarbenchon (2020): Bat coronavirus phylogeography in the Western Indian Ocean. Scientific Reports 10. doi: 10.1038/s41598-020-63799-7.
- Jolly, A. (2004): Lords and Lemurs. Houghton Mifflin Company, Boston.
- JONES, J. P. G., O. S. RAKOTONARIVO & J. H. RAZAFIMANAHAKA (2022): Forest conservation on Madagascar: past, present and future. In: GOODMAN, S. M. (Hrsg.): The New Natural History of Madagascar: 2130–2140. Princeton University Press, Princeton.
- KASOLA, C., F. ATREFONY, F. LOUIS, G. N. ODILON, R. G. RALAHINIRINA, T. MENJANAHARY & Y. R. RATOVONAMANA (2020): Population dynamics of *Lemur catta* at selected sleeping sites of Tsimanampesotse National Park. Malagasy Nature **14**: 69–80.
- Kobbe, S., E. Verjans, J. Nopper, J. C. Riemann, L. Prill, T. Andrianasolo, J. Rakotondranary, D. Fraust, R. Ratsimbarison & D. Kübler (2015): Recherche participative pour le soutien de la gestion durable des terres du Plateau Mahafaly dans le sud-ouest de Madagascar. Conclusions préliminaires. University of Hamburg, Hamburg.
- Konersmann, C., F. Noromiarilanto, Y. R. Ratovonamana, K. Brinkmann, K. Jensen, S. Kobbe, M. Köhl, D. Kuebler, P. Lahann, K. J. E. Steffens & J. U. Ganzhorn (2022): Using utilitarian plants for lemur conservation. International Journal of Primatology **43**: 1026–1045.
- Kull, C. A., J. Tassin, S. Moreau, H. R. Ramiarantsoa, C. Blanc-Pamard & S. M. Carriere (2012): The introduced flora of Madagascar. Biological Invasions **14**: 875–888.
- Manjaribe, C., C. Frasier, L., B. Rakouth & E. E. Louis Jr (2013): Ecological restoration and reforestation of fragmented forests in Kianjavato. International Journal of Ecology **2013**: 726275. doi: 10.1155/2013/726275

- Marie, C. N., N. Sibelet, M. Dulcire, M. Rafalimaro, P. Danthu & S. M. Carriere (2009): Taking into account local practices and indigenous knowledge in an emergency conservation context in Madagascar. Biodiversity and Conservation 18: 2759–2777.
- MOAT, J. & P. SMITH (2007): Atlas of the Vegetation of Madagascar. Atlas de la Végétation de Madagascar. Kew Publishing, Royal Botanic Gardens, Kew.
- Myers, N., R. A. Mittermeier, C. Mittermeier, G. da Fonseca & J. Kents (2000): Biodiversity hotspots for conservation priorities. Nature **403**: 853–858.
- NEUDERT, R., J. F. GOETTER, J. N. ANDRIAMPARANY & M. RAKOTOARISOA (2015): Income diversification, wealth, education and well-being in rural south-western Madagascar: Results from the Mahafaly region. Development Southern Africa 32: 758–784.
- NOROMIARILANTO, F., K. BRINKMANN, M. H. FARAMALALA & A. BUERKERT (2016): Assessment of food selfsufficiency in smallholder farming systems of south-western Madagascar using survey and remote sensing data. Agricultural Systems 149: 139–149.
- OZGUL, A., C. FICHTEL, M. PANIW & P. M. KAPPELER (2023): Destabilising effect of climate change on the persistence of a short-lived primate. Proceedings of the National Academy of Sciences USA 120: e2214244120. doi: 10.1073/pnas.2214244120.
- Perret, M. & F. Aujard (2001): Regulation by photoperiod of seasonal changes in body mass and reproductive function in Gray Mouse lemurs (*Microcebus murinus*): differential responses by sex. International Journal of Primatology **22**: 5–24.
- Pyritz, L (2012): Madagaskar. Von Makis und Menschen. Springer-Verlag, Berlin, Heidelberg.
- RAFANOHARANA, S. C., F. O. D. ANDRIANAMBININA, H. A. RASAMUEL, P. O. WAEBER, J. U. GANZHORN & L. WILMÉ (2023): Tree Canopy Density thresholds for improved forests cover estimation in protected areas of Madagascar. Environmental Research Communications 5: 071003. doi: 10.1088/2515-7620/ace87f
- RAFANOHARANA, S. C., F. O. D. ANDRIANAMBININA, H. A. RASAMUEL, P. O. WAEBER, L. WILMÉ & J. U. GANZHORN (2024): Projecting forest cover in Madagascar's protected areas to 2050 and its implications for lemur conservation. Oryx 58: 155–163
- RAKOTOARIVELO, N. H., F. RAKOTOARIVONY, A. V. RAMAROSANDRATANA, V. H. JEANNODA, A. R. KUHLMAN, A. RANDRIANASOLO & R. W. BUSSMANN (2015): Medicinal plants used to treat the most frequent diseases encountered in Ambalabe rural community, Eastern Madagascar. Journal of Ethnobiology and Ethnomedicine 11. doi: 10.1186/s13002-015-0050-2.
- RALAMBOMANANTSOA, T. F., M. E. RAMAHATANARIVO, G. DONATI, T. M. EPPLEY, J. U. GANZHORN, J. GLOS, D. KÜBLER, Y. R. RATOVONAMANA & J. S. RAKOTONDRANARY (2023): Towards new agricultural practices to mitigate food insecurity in southern Madagascar. In: Dormann, C. F., P. Batáry, I. Grass, A.-M. Klein, J. Loos, C. Scherber, I. Steffan-Dewenter & T. C. Wanger (Hrsg.): Defining Agroecology: 187–204. Tredition.com. doi: 10.5281/zenodo.8418541.

- RALIMANANA, H., A. L. PERRIGO, R. J. SMITH, J. S. BORRELL, S. FAURBY, M. T. RAJAONAH, T. RANDRIAMBOAVONJY, M. S. VORONTSOVA, R. S. C. COOKE, & L. N. PHELPS (2022): Madagascar's extraordinary biodiversity: Threats and opportunities. Science **378**: eadf1466.
- RASOAMANANA, A., R. TAHINA & C. GARDNER (2023): Linking institutional weaknesses to deforestation drivers in the governance of protected areas in Madagascar. In: Ongolo, S. & M. Krott (Hrsg.): Power Dynamics in African Forests. The Politics of Global Sustainability: 188–209. Routledge, London.
- RATOVONAMANA, Y. R., C. APEL, D. H. HAJANANTENAINA, W. J. FOLEY, D. KÜBLER, S. NEVERMANN, S. RAKOTONDRANARY, J., E. M. STALENBERG & J. U. GANZHORN (2024): Linking vegetation characteristics of Madagascar's spiny forest to habitat occupancy of *Lepilemur petteri*. International Journal of Primatology. doi: 10.1007/s10764-024-00441-7.
- RATOVONAMANA, Y. R., C. RAJERIARISON, R. EDMOND & J. U. GANZHORN (2011): Phenology of different vegetation types in Tsimanampetsotsa National Park, southwestern Madagascar. Malagasy Nature 5: 14–38.
- RATOVONAMANA, Y. R., C. RAJERIARISON, R. EDMOND, I. KIEFER & J. U. GANZHORN (2013): Impact of livestock grazing on forest structure, plant species composition and biomass in southwestern Madagascar. In: Beau, N., S. Dessein & E. Robbrecht (Hrsg.): African Plant Diversity, Systematics and Sustainable Development Proceedings of the XIXth AETFAT Congress, held at Antananarivo, Madagascar, 26–30 April 2010. Scripta Botanica Belgica. National Botanic Garden of Belgium: 82–92. Meise.
- RAZAFIMANANTSOA, A. H. I. & E. RAZANATSOA (2024): Modern pollen rain reveals differences across forests, open and mosaic landscapes in Madagascar. Plants People Planet, **6**: 729–742.
- RICHARD, A. (2022): The Sloth Lemur's Song: Madagascar from the Deep Past to the Uncertain Present. William Collins, London
- Schwitzer, C., R. A. Mittermeier, S. E. Johnson, G. Donati, M. Irwin, H. Peacock, J. Ratsimbazafy, J. Razafindramanana, E. E. Louis, L. Chikhi, I. C. Colquhoun, J. Tinsman, R. Dolch, M. LaFleur, S. Nash, E. Patel, B. Randrianambinina, T. Rasolofoharivelo & P. C. Wright (2014): Averting lemur extinctions amid Madagascar's political crisis. Science 343: 842–843.
- STALENBERG, E., M. F. HUTCHINSON & W. J. FOLEY (2018): Using historical normals to improve modern monthly climate normal surfaces for Madagascar. International Journal of Climatology **38**: 5746–5765.
- STEFFENS, K. J. E. (2020): Lemur food plants as options for forest restoration in Madagascar. Restoration Ecology **28**: 1517–1527.
- STYGER, E. (1995) Recherche agricole et agroforestière sur les "Monka" au Menabe Central. Rapport technique. Intercooperation, Berne / Direction des Eaux et Forêts, Antananarivo / SAF-Côte Ouest, Morondava.
- Styger, E., J. E. M. Rakotoarimanana, R. Rabevohitra & E. C. M. Fernandes (1999): Indigenous fruit trees of Madagascar: potential components of agroforestry systems to improve human nutrition and restore biological diversity. Agroforestry Systems 46: 289–310.

- STYGER, E., H. M. RAKOTONDRAMASY, M. J. PFEFFER, E. C. M. FERNANDES & D. M. BATES (2007): Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agriculture Ecosystems & Environment 119: 257–269.
- TADROSS, M., L. RANDRIAMAROLAZA, Z. RABEFITIA & Z. K. YIP (2008): Climate change in Madagascar: recent, past and future. World Bank, Washington, DC.
- Tagliari, M. M., P. Danthu, J. M. Leong Pock Tsy, C. Cornu, J. Lenoir, V. Carval-но-Rocha & G. Vieilledent (2021): Not all species will migrate poleward as the climate warms: The case of the seven baobab species in Madagascar. Global Change Biology **27**: 6071–6085.
- VIEILLEDENT, G., C. GRINAND, F. A. RAKOTOMALALA, R. RANAIVOSOA, J. R. RAKOTOARIJAONA, T. F. ALLNUTT & F. ACHARD (2018): Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation 222: 189–197.
- VIEILLEDENT, G., M. NOURTIER, C. GRINAND, M. PEDRONO, A. CLAUSEN, T. RABETRANO, J.-R. RAKOTOARIJAONA, B. RAKOTOARIVELO, F. A. RAKOTOMALALA, L. RAKOTOMALALA, A. RAZAFIMPAHANANA, J. M. RALISON & F. ACHARD (2020): It's not just poverty: unregulated global market and bad governance explain unceasing deforestation in Western Madagascar. bioRxiv: 2020.2007. 2030.229104.
- VON GREBMER, K., J. BERNSTEIN, D. RESNICK, M. WIEMERS, L. REINER, M. BACHMEIER, A. HANANO, O. TOWEY, R. NÍ CHÉILLEACHAIR, C. FOLEY, S. GITTER, G. LAROC-QUE & H. FRITSCHEL (2022): 2022 Global Hunger Index: Food Systems Transformation and Local Governance. Welthungerhilfe and Concern Worldwide, Bonn, Dublin.
- Vorontsova, M. S., G. Besnard, F. Forest, P. Malakasi, J. Moat, W. D. Clayton, P. Ficinski, G. M. Savva, O. P. Nanjarisoa, J. Razanatsoa, F. O. Randriatsara, J. M. Kimeu, W. R. Q. Luke, C. Kayombo & H. P. Linder (2016): Madagascar's grasses and grasslands: anthropogenic or natural? Proceedings of the Royal Society B-Biological Sciences 283: 20152262.
- Waeber, P. O., L. Wilmé, J.-R. Mercier, C. Camara & P. P. Lowry II (2016):. How effective have thirty years of internationally driven conservation and development efforts been in Madagascar? PLoS ONE **11(8)**: e0161115. doi: 10.1371/journal. pone.0161115.
- Waeber, P. O., S. Rafanoharana, H. A. Rasamuel & L. Wilmé (2020): Parks and reserves in Madagascar: managing biodiversity for a sustainable future. In: Bakar, A. N. & M. N. Suratman (Hrsg): Protected Areas, National Parks and Sustainable Future: 89–108. IntechOpen, London. doi: 10.5772/intechopen.85348.
- Wells, N. A., B. Andriamihaja & H. F. S. Rakotovololona (1991): Patters of development of lavaka, Madagascar's unusual gullies. Earth Surface Processes and Landforms 16: 189–206. doi: 10.1002/esp.3290160302.
- WILMÉ, L., J. L. INNES, D. SCHUURMAN, B. RAMAMONJISOA, M. LANGRAND, C. V. BARBER, R. A. BUTLER, G. WITTEMYER & P. O. WAEBER (2020):. The elephant in the room: Madagascar's rosewood stocks and stockpiles. Conservation Letters 13: e12714. doi: 10.1111/conl.12714.

- Wurz, A., T. Tscharntke, D. A. Martin, K. Osen, A. A. N. A. Rakotomalala, E. Raveloaritiana, F. Andrianisaina, S. Dröge, T. R. Fulgence & M. R. Soazafy (2022): Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nature Communications 13: 4127. doi: 10.1038/s41467-022-30866-8.
- Yoder, A. D., C. R. Campbell, M. B. Blanco, M. dos Reis, J. U. Ganzhorn, S. M. Goodman, K. E. Hunnicutt, P. A. Larsen, P. M. Kappeler, R. M. Rasoloarison, J. M. Ralison, D. L. Swofford & D. W. Weisrock (2016): Geogenetic patterns in mouse lemurs (genus *Microcebus*) reveal the ghosts of Madagascar's forests past. Proceedings of the National Academy of Sciences of the United States of America 113: 8049–8056.
- ZHANG, L. B., E. I. AMECA, G. COWLISHAW, N. PETTORELLI, W. FODEN & G. M. MACE (2019): Global assessment of primate vulnerability to extreme climatic events. Nature Climate Change 9: 554–561.
- ZINNER, D., C. WYGODA, L. RAZAFIMANANTSOA, R. RASOLOARISON, H. ANDRIANANDRASANA, J. U. GANZHORN & F. TORKLER (2014): Analysis of deforestation patterns in the Central Menabe, Madagascar, between 1973 and 2010. Regional Environmental Change 14: 157–166.

Adresse des Autors:

Prof. Dr. Jörg U. Ganzhorn Institut für Zell- und Systembiologie der Tiere Universität Hamburg Martin-Luther-King Platz 3 20146 Hamburg joerg.ganzhorn@uni-hamburg.de

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Berichte der Reinhold-Tüxen-Gesellschaft

Jahr/Year: 2024

Band/Volume: 33

Autor(en)/Author(s): Ganzhorn Jörg

Artikel/Article: Schutz der Waldökosysteme Madagaskars im Zeichen von

Klimawandel 171-190