
Berichte Geol. B.-A., 93, ISSN 1017‐8880 – Time Lapse Data Inversion 
 

106 
 

 
4D inversion of L1 and L2 norm minimizations 

 
JUNG-HO KIM1, 3, PANAGIOTIS TSOURLOS2 and ROBERT SUPPER3 

 

1 Korea Institute of Geoscience and Mineral Resources, 30 Gajeong-dong, Yuseong-gu, Daejeon 
305-350, South Korea. 
2 Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece. 
3 Geological Survey of Austria, Neulinggasse 38, 1030 Vienna, Austria. 
 
jungho@kigam.re.kr 
 
Abstract 
A new 4-dimensional (4D) inversion algorithm is developed so that any of data misfits and model 
roughness in the space and time domains can be selectively minimized either in terms of L1 norm 
or in L2 norm. This study is motivated by the experiences that a 4D inversion adopting full L2 
norm minimization may sometimes result in a model too smoothly varying with time. It is further 
encouraged by the realization that a particular criterion of either L1 or L2 norm cannot universally 
be the optimal approach for accurately reconstructing the subsurface condition. Along with this 
development of the algorithm, we try to overcome the difficulties of jointly choosing two optimal 
regularization parameters in the space and time domains. To achieve this, we devise automatic 
determination methods not only of the Lagrangian multipliers for the space-domain smoothness 
constraint but also of the regularization parameter for penalizing the model roughness along the 
time axis. Both kinds of the regularization parameters are actively updated as data misfits and 
model roughness vary at each iteration step. We conducted inversion experiments using synthetic 
and field monitoring data to test the proposed algorithms and further to compare the 
performance of L1 norm and L2 norm minimizations. Both of the synthetic and field data 
experiments proved that the automatic determination method developed in this study is very 
effective for calculating the ground changes that are closer to the ground truth than the 
approaches of using pre-determined parameter values. Synthetic data examples showed that L1 
norm minimization of the time-domain roughness could cure the problem of unnecessary smooth 
model changes when the subsurface changes are locally confined, but at the same time, the L2 
norm approach would be more reasonable when the changes are expected widespread. 
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Introduction 
DC resistivity monitoring has widely been applied to many environmental and engineering 
problems (e.g., DAILY and RAMIREZ, 1995) and its application has recently been extended to the 
geological disaster mitigation (e.g., SUPPER et al., 2009). The ground condition changes are 
quantified and visualized by the difference of a pair of time-lapse images which frequently boosts 
up the artefacts; these artefacts amplified in the difference images may contribute to a 
misinterpretation of the ground condition change. KIM et al. (2009) proposed a four dimensional 
(4D) inversion algorithm where time dimension is included into inversion. The regularization in 
both the space domain and the time domain effectively reduce inversion artefacts. KARAOULIS at 
al. (2011) noted that the time regularization sometimes makes the inverted results too smooth in 
the time domain and proposed the 4D Active Time Constrained (4D-ATC) inversion where the  
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time regularization is allowed to vary depending on the degree of resistivity changes in the space-
time domain. 
Most of the studies on the inversion of electric monitoring data have adopted the L2 norm 
minimization of penalty values. It is known that the L2 norm minimization assumes a normal 
distribution, while a Laplace or exponential distribution is the basic assumption for the L1 norm 
inversion (MENKE, 1984). Therefore, a particular criterion of either L1 or L2 norm cannot 
universally be the optimal approach for accurately reconstructing the subsurface condition. We 
should flexibly select either L1 or L2 norm according to the behaviours of monitoring data and 
inverse model parameters in the 4D space. To address this, we develop a new inversion algorithm 
where any of the data misfits and two kinds of model roughness in the space and time domains 
can be selectively minimized either in terms of L1 norm or in L2 norm. Together with this, we note 
that it is very difficult to simultaneously determine regularization parameters which optimally 
control the two smoothness constraints both in the space and time domains. To solve the 
difficulties, we devise methods to automatically determine the regularization parameters that are 
actively updated as the data and model roughness vary at each iteration step. The newly 
developed methods are compared and their performances are demonstrated via synthetic 
examples as well as field data application for landslide monitoring. 
 
4D inversion algorithm based on either L1 or L2 norm minimization 
The 4D inversion defines the many subsurface models sampled in each monitoring time-laps as a 
single model vector in the space-time domain and the entire monitoring data sets as well: 
 

P = {p1, …, pi,…, po} and                                              (1a) 

D = {d1, …, di,…, do},                                   (1b) 

where o is the number of time-lapses. Owing to these definitions, the regularizations can be 
introduced both in the space domain and in the time domain. Accordingly, the objective function 
is expressed as 
 

Φ(P+ΔP) = Ξ (P+ΔP) + Ψ (P+ΔP) + Γ (P+ΔP).                                          (2) 
 

P is a starting model or a model calculated in the previous iteration. ΔP is the unknown model 
perturbation vector, i.e., ΔP = Pj+1 - Pj, where j is the iteration number. Ξ, Ψ and Γ are the penalty 
functions of the data misfit, the model roughness in the space and that in the time domains, 
respectively. Any of these three functions are defined in either L1 or L2 norm which is to be 
minimized or penalized through an inversion process in a trade-off manner. Each penalty function 
is a measure of data misfit or model roughness and is quantified as its L1 norm or L2 norm:  
 

( ) ( ) pΞ =P WE P , ( )
psΨ ∆ = ∆P ΛC P , and ( )

ptαΓ =P AC P , where p = 1 or 2.  (3)                    

E is the data misfit between the field and theoretically calculated data. The superscripts t and s 
imply space and time domains, respectively. W is a diagonal matrix of data weighting factors. Cs is 
a second order differential operator in the space domain. Ct is a difference operator to calculate 
the model roughness in the time domain. 
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The active constraint balancing (ACB) method (YI et al., 2003) is adopted to balance the 
smoothness constraints in the space domain; thus, the regularization parameter for controlling 
the contribution of the roughness term Γ is expressed as a diagonal matrix, Λ = diag (λi), in the 
above equations. The model smoothness along the time axis is controlled by another 
regularization parameter α in the roughness term Ψ. These two different kinds of regularization 
parameters should optimally be chosen, which will be discussed later. 
The time domain model roughness Γ includes a diagonal matrix, A = diag (ai), which is called as 
the cross-time weighting matrix. It is introduced mainly to alleviate the problem that the 4D 
inversion of L2 norm minimization may result in an inverse 4D model too smoothly varying in the 
time domain (KARAOULIS et al., 2011). Another function of the matrix is to reduce the problem that 
the model parameters having less resolving power are more likely to be contaminated by 
inversion artefacts. Its diagonal elements (cross-time weighting factors) are automatically 
calculated so that a lower weighting factor can be assigned to an inverse model parameter which 
is more quickly changing with time, and vice versa. It should be noted that the average of the 
upper and lower bounds of the weighting factors is set as one on logarithmic scale. By doing this, 
the contribution of the time-domain roughness is systematically controlled by adjusting the 
regularization parameter α. 
To numerically implement the L1 norm minimization of a particular penalty term, we adopt an 
algorithm of the iteratively reweighted least-squares inversion (FARQUHARSON and OLDENBURG, 
1998). A merit of the algorithm is to easily implement the L1 norm minimization within the 
framework of commonly used least-squares inversion. By adopting the reweighting algorithm, the 
partial derivative of a penalty term with respect to the model perturbation vector is expressed in 
a similar form of L2 norm minimization but includes additional term of a reweighting matrix, R = 
diag (ri). For example, the derivative of the L1 norm model roughness in the time domain, i.e., Γ, is 
expressed as following: 
 

1 ( ) ( )( )
2

t T t
tα α∂Γ

≅ + ∆
∂∆

AC R AC P p
P

, and                 (4) 

2 1/2
, ,

1
[ ]

m o
t t

i i i i k k
k

r a C Pα ε
×

−

=

= +∑ ,                         (5) 

where the superscript T means the transpose of a matrix and ε is a small constant to avoid the 
division by zero. Note that the updated model and data misfits are necessary to calculate the 
reweighting matrices but they are actually not calculated yet. FARQUHARSON and OLDENBURG (1998) 
once calculated the model using a least-squares inversion and again used it for computing the 
reweighting matrices as an approximation of the updated model for L1 norm inversion. In this 
study, we simply use the solution at the previous iteration as equation (5) implies. 
In such ways, we have the following normal equation for minimizing the L1 norms of all penalty 
terms: 
 

{( ) ( ) ( ) ( ) ( )}

( ) ( ) ( )

T d s T s s t T t t

T d t T t
t

α α

α α

+ + ∆

= −

WJ R WJ ΛC R ΛC AC R AC P

WJ R WE AC R AC P
,              (6) 

where J is the partial derivatives of the data (apparent resistivity) with respect to the model 
parameters (resistivity), Jacobian matrix. Rd, Rs and Rt are the reweighting matrices for the data 
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misfit functional and the two model roughness in the space and time domains, respectively. Note 
that we can have a normal equation of a mixed version of L1 and L2 norm minimizations of 
penalty measures, when a particular reweighting matrix is selectively replaced with a unit matrix. 
Solving the normal equation iteratively results in the final inverted subsurface model in the space-
time domain.  
 
Automatic determination of regularization parameters in the space and time domains 
Our inversion algorithm includes two smoothness constraints in the space and time domains. 
Correspondingly, two different kinds of regularization parameters should optimally be chosen, but 
it is not easy since two constraints both in the space and time domains would be cross-related in 
an actual inversion process. Furthermore, the developed algorithm allows us to define the 
measure of each roughness in either L1 or L2 norm as we want. This in turn gives rise to more 
difficulties in selecting optimal Lagrangian multiplier values, since it is practically impossible to 
choose regularization parameter to be universally optimal for any arbitrary combination of 
penalty measures. These difficulties lead us to devise methods to automatically determine two 
different regularization parameters. The proposed methods are to calculate the parameter values 
by using of the relative value of each penalty measure with respect to the data misfit measure as 
follows. 
The space-domain parameters, i.e., Λ = diag (λi), are computed so that the space-domain model 
roughness Ψ will be a constant fraction of the data misfit measure Ξ; the fraction value is given by 
the user and specified as a percentage with respect to the data misfit value Ξ. This is a practical 
implementation for maintaining the relative contribution of the space-domain model roughness 
with respect to the data misfits at a certain fixed level throughout the entire inversion process.  
For automatically determining the time-domain parameter, we newly introduce a concept of the 
time-domain data roughness which is defined using the time differences of data misfits. This is 
introduced to realize that the amount of data misfits at each time-lapse should be almost 
constant along the time axis if an inverted 4D model would appropriately mimic the true 
subsurface model changes. The time domain regularization parameter α is computed to be 
inversely proportional to the relative value of the newly introduced data roughness with respect 
to the data misfit value. Actual computation of the parameter value includes the relative amounts 
of the model roughness in the time domain with respect to that in the space domain as well.  
The devised method demands to optimally choose two predetermined proportional constants, 
but it is much more effective compared to regular approaches using pre-determined parameter 
values. Once optimal constants are chosen, then the value would be optimal to any combinations 
of penalty measures, since the penalty values themselves are used to compute the parameter. 
Furthermore, the regularization parameters are actively computed as the data and model 
roughness vary at each iteration step. 
 
Numerical example 
We conducted numerical experiments of surface resistivity monitoring firstly to verify the 
performance of the proposed algorithm and secondly to compare the performances of the L1 
norm and L2 norm minimizations particularly of the time-domain model roughness. For 
convenience of discussion, let us denote “L1” and “L2” for the L1 and L2 norm minimization 
respectively. Similarly, “D”, “S” and “T” denote the data misfit, the model roughness in the space 
domain and that in the time domain, respectively. For example, L2D_L2S_L1T means the 4D  
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inversion of minimizing the L2 norm of both the data misfit and the model roughness in the space 
domain, and L1 norm in the time domain. In model studies discussed here, the adopted array was 
dipole-dipole and there were eight monitoring surveys. Synthetic data were calculated using the 
2.5D finite element modeling code. Random electrical noise of 1 mV/A pea-to-peak amplitude 
was added to the synthetic potential difference data to simulate the field data. 
Figure 1 illustrates inversion experiments using a subsurface model where the resistivity changes 
are spatio-temporally localized as shown in Figure 1a. The automatic determination method 
always resulted in the difference images much closer to the ground truth than the usual methods 
of using pre-determined parameter values. Comparing the L2 and L1 norm minimizations of the 
time-domain roughness, the L1 norm minimization is much superior to the L2 one in this test 
model experiments. The cross-time weighting positively affected the inversion results when 
adopting the L2 norm of the time-domain roughness (see Figure 1c and 1d), but negatively when 
the L1 norm was selected. Applying the cross-time weighting can be regarded as an attempt to 
partly introduce a L1 norm minimization concept into L2 norm inversion. The experiments using 
this type model seem to conclude that the L1 norm of the time-domain model roughness would 
be a way to achieve the best inversion results. We can find a good example of field application in 
KIM et al. (2010). 

 
 
Fig. 1: Inversion experiments based on a model where the resistivity is changing very locally not only in the 
space domain but also in the time. (a) The true model changes between two sequential time steps. (b)-(d) 
are the results of L2D_L2S_L1T approach adopting (b) α = 0.1, and the automatic determination of 
regularization parameters (c) without and (d) with the cross-time weighting. (e) and (f) are those of 
L2D_L2S_L1T. (e) α = 0.1. (f) Automatic determination of regularization parameters without the cross-time 
weighting. 
 
Figure 2 shows another test model in the case that the resistivity throughout the entire modeled 
region is always changing during the whole monitoring period. The characteristics of the assumed 
resistivity changes are completely different from those of the previous scenario that the resistivity 
changes are confined only at several particular 4D coordinates. As shown in Figure 3, the 
reconstructed difference images in this test case are relatively less accurate compared to the 
previous numerical experiments. In particular, discrepancies from the ground truth are more 
pronounced in deep depths, which are mainly due to the lower resolving power of deeper region.  
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The most important conclusion in this test case is that the L2 norm of the time-domain roughness 
is far better than the L1 norm approach; this is completely opposite to the previous experiments. 
 

 
 
Fig. 2: A test model in which the resistivity throughout the entire modelled region is decreasing with time. 
ρk is the resistivity of each zone in Ωm at the monitoring time step k. 
 

 
 
Fig. 3: Inversion experiments based on the test model of Figure 2. (a) The true model changes between 
sequential time steps. (b) L2D_L2S_L1T. (c) L2D_L2S_L1T. Regularization parameters were automatically 
determined. 
 
As illustrated in the first model experiments, the problems of too smoothly varying model with 
time can be solved by minimizing the L1 norm of the time-domain roughness. However, numerous 
numerical experiments, for instance, the above two synthetic examples, led us not to conclude 
that a particular norm (L1 or L2) inversion would be the best choice for inverting monitoring data 
in a 4D inversion manner. Either L1 or L2 norm criterion should be selected through the careful 
consideration of the behavior of data and inverse model parameters in the 4D space. Particularly 
for the minimization of the time-domain model roughness, the L1 norm would be better when the 
subsurface changes are locally confined, while the L2 norm approach would be more reasonable 
when the changes are expected widespread. 
 
Field application: landslide monitoring 
Austrian Geological Survey has been operating six test sites for the monitoring of landslides for 
the TEMPEL project. DC resistivity data observed at the Bagnaschino site in the north-western 
Italy were chosen for the field application test of the developed algorithms. At the test site, 
significant displacements up to about 100 mm were recorded during the period of 15 to 18 March 
2011, and we selected the 9 time-lapse data sets recorded from 14 March to 16 March (Figure 3).  
The reconstructed difference images illustrated in Figure 4 implies that the ground condition 
changes have mainly happened horizontally at the depth interval of 4-8 meters, which is 
expressed as conductivity increase. Movements of the changes with time are also recognizable; at  

Soil layer: ρk = 100 – 5×(k-1)

Basement: ρk = 200 – 10×(k-1)

Conductor: ρk = 100 – 10×(k-1)

T4/T3                                                             T6/T5                                                      T8/T7

(a)

(b)

(c)

Resistivity ratio
0.80         0.89         1.00         1.12        1.25
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the monitoring step T3 the change started in the zone of about 90-110 meters and propagated 
leftwards along the slope until T5. At the T7 phase, the anomalous zone became more resistive; 
the original ground condition somehow started to be recovered. According to the displacements 
recorded by a high-precision borehole inclinometer, ground movements were dominant from the 
surface down to about 8 meter depth; the ground mass above the 8 meter depth slid. These 
observations well match the understanding of ground changes from the difference images. 
Comparing the L1 norm minimization of the time-domain roughness with the L2 norm one, the 
anomalies in the L1 norm results look are more focussed, while the L2 ones are more horizontally 
elongated. Nevertheless, both results well agree with the observations of ground displacement. It 
is hardly concluded which particular approach would be superior to the other one, since the true 
changes are not precisely known and both reasonably match the known information. 
 

 
 
Fig. 4: Reconstructed difference images between two sequential time steps. The left column is the results by 
the L2D_L2S_L1T approach while the right is L2D_L2S_L2T. (a) T3/T2. (b) T4/T3. (c) T5/T4. (d) T6/T5. (e) 
T7/T6. 
 
Conclusions 
A new 4D inversion algorithm of resistivity monitoring data is presented for precisely estimating 
the ground condition changes. Through the developed method, we intend to provide a way to 
adopt either L1 norm or L2 norm minimization of any penalty values in the 4D inversion based on 
the characteristics of expected subsurface model as well as measured data. The most innovative 
aspect of the developed algorithm is that the optimal values of the regularization parameters 
controlling the two smoothness constraints can automatically be updated at each iteration step as 
the data misfits and the model roughness varies. 
Comparisons with the inversion results adopting many different pre-determined values of the 
regularization parameters confirmed the effectiveness of the newly devised automatic methods.  

(a)

(b)

(c)

(d)

(e)

Resistivity ratio
0.90         0.95         1.00         1.05        1.11

A

A

A

A

B

B

A

A

A

A

B

B
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The automatic determination method always resulted in the difference images much closer to the 
ground truth than the approaches of using pre-determined parameter values. The problems of 
too smoothly varying model with time can be solved simply by minimizing the L1 norm of the 
time-domain roughness. However, either L1 or L2 norm criterion should be selected through the 
careful consideration of the behavior of data and inverse model parameters in the 4D space. 
Particularly referring to the time-domain model roughness, the L1 norm minimization would be 
better when the subsurface changes are locally confined, while the L2 norm approach would be 
more reasonable when the changes are expected widespread. 
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