| Bonn. zool. Beitr. Bd. 47 H. 3-4 S. 257-276 Bonn, So | |--| |--| # A biochemical and morphological investigation of Suncus dayi (Dobson, 1888) and discussion of relationships in Suncus Hemprich & Ehrenberg, 1833, Crocidura Wagler, 1832, and Sylvisorex Thomas, 1904 (Insectivora: Soricidae) Paulina Jenkins, Manuel Ruedi, and François M. Catzeflis Abstract. A recent field expedition in South India yielded a series of seven specimens of Suncus dayi (Dobson, 1888), a poorly known crocidurine shrew collected in highaltitude wet evergreen forests in the Nilgiri Hills. The morphology (external, cranial, dental) of this species was investigated in a comparative study with a few taxa of the genera Suncus Hemprich & Ehrenberg, 1833 (e.g. S. stoliczkanus (Anderson, 1877), S. fellowesgordoni Phillips, 1932), Sylvisorex Thomas, 1904 (e.g. S. morio (Gray, 1862), S. granti Thomas, 1907 group) and Crocidura Wagler, 1832 (e.g. C. attenuata Milne-Edwards, 1872). A biochemical survey of isozyme variation at 32 genetic loci allowed the estimation of the genetic differentiation between S. dayi and four other white-toothed shrews: Suncus murinus (Linnaeus, 1766), Crocidura olivieri (Lesson, 1827), C. fuliginosa (Blyth, 1855) and C. russula (Hermann, 1780). In its cranial and dental morphology, Suncus dayi retains many plesiomorphic features common to some members of the African genus Sylvisorex, whereas other species of Suncus instead show many apomorphic states. The electrophoretic survey indicates that S. dayi shares derived characters with Crocidura and Suncus, not with Sylvisorex. In combination, these studies do not exclude the conclusion that the peculiar morphology of Suncus dayi could be the result of convergent evolution related to its possibly scansorial way of life. Key words. Suncus, Insectivora, India, systematics. #### Introduction Suncus dayi (Dobson, 1888) is a poorly known species from southern India recorded from the holotype deposited in the Natural History Museum, London and one other specimen presumed to be in the collection of the Zoological Survey, Bombay (see Lindsay 1929). Few authors elaborated on its original short description or commented on its status (Blanford 1888; Ellerman & Morrison-Scott 1966) and a century elapsed from the initial discovery, before seven additional specimens were collected from the Nilgiri Hills in southern India by the Catzeflis-Boursot Expedition to India in October 1990. These specimens have enabled us to study variation within the species and to perform more extensive comparisons with other taxa. Although *S. dayi* has always been associated with species currently assigned to the genus *Suncus*, it exhibits a suite of characters differing from those found in most other members of this genus, which suggest that its affinities lie elsewhere. Comparisons have therefore been made with other similar and closely related genera belonging to the subfamily Crocidurinae or white-toothed shrews, namely *Suncus*, 258 Crocidura and Sylvisorex, and theories of possible relationships have been advanced, as reported below. Besides the morphological examination, a comparative biochemical study of isozyme variation was undertaken in Suncus dayi and four other crocidurine shrews: Suncus murinus, Crocidura russula, C. fuliginosa, and C. olivieri. Electrophoresis of homologous proteins has proved an adequate and powerful approach for solving the systematics and evolutionary relationships of species and genera within the family Soricidae, as exemplified by recent studies of Catzeflis et al. (1985), George (1986) and Maddalena (1990b). The primary aim of the genetic survey was to decipher the probable relationships of Suncus dayi with regard to other white-toothed shrews, and to compare the new findings with those published for other Asian, African, and European members of the genus Crocidura sensu lato (Maddalena 1990b, Ruedi et al. 1990, 1993). #### Material Specimens used in the morphological analysis include the holotype of Suncus dayi BM (NH) 1867.11.14.7 adult of undetermined sex, skin and skull, Trichur, Cochin (10°31'N 77°13'E), and seven individuals from the Nilgiri Hills collected in October 1990 by P. Boursot, A. Orth and F. Catzeflis: V-543 undetermined sex: Ootacamund: wet evergreen forest, 2150 m, 11°24'N 76°42'E; V-557 juvenile male, V-562 subadult male, V-563 juvenile female, V-567 juvenile female: Avallanchi: wet evergreen primary forest, 2100 m, 11°23'N 76°36'E; V-572 subadult male, V-576 juvenile female: Kotagiri: wet evergreen primary and secondary forest, 1500 m, 11°26'N 76°53'E. The following comparative material of other taxa in The Natural History Museum collections was examined: 13 specimens of Suncus stoliczkanus (Anderson, 1877) from Pakistan and India; 6 specimens of Suncus etruscus (Savi, 1822) from India; 3 specimens of Suncus fellowesgordoni Phillips, 1932 from Sri Lanka; 28 specimens of Suncus murinus (Linnaeus, 1766) from the Nilgiri Hills, India; 7 specimens of Suncus lixus (Thomas, 1898) from southern Africa; - 7 specimens of Sylvisorex johnstoni (Dobson, 1888) from East and West Africa; 17 specimens of Sylvisorex granti Thomas, 1907 from East and West Africa; - 11 specimens of Sylvisorex megalura (Jentink, 1888) from East and West Africa; 9 specimens of Sylvisorex morio (Gray, 1862) from Cameroon, West Africa; 20 specimens of Crocidura attenuata Milne-Edwards, 1872 from Assam, North East India; 20 specimens of Crocidura fuliginosa dracula Thomas, 1912 from North Vietnam. The material used in the electrophoretic study included frozen tissue samples of seven Suncus dayi (V-543, V-557, V-562, V-563, V-567, V-572 and V-576) from Nilgiri Hills; eight Suncus murinus (V-546 to V-551, V-554 and V-555) from Mudumalai, Tamil Nadu, South India; three Crocidura olivieri (Lesson, 1827) from Central Africa (Maddalena 1990a, b); five Crocidura russula (Hermann, 1780) from Switzerland (Maddalena 1990a); and three Crocidura fuliginosa (Blyth, 1855) from Malaysia (Ruedi et al. 1990). Voucher specimens of all these animals are deposited in the collections of Lausanne (IZEA) and/or London (BM[NH]). #### Methods Morphological analysis Measurements in millimetres were taken using dial calipers or a microscope measuring stage. The dental nomenclature follows that of Heim de Balsac & Lamotte (1957), Swindler (1976) and Butler & Greenwood (1979). In their bench-mark work on African Sylvisorex, Suncus and Crocidura, Heim de Balsac & Lamotte (1957) determined which external and cranial characters were primitive for this group and which were derived. Butler & Greenwood (1979) and Butler et al. (1989) similarly assessed the mandibular characters of fossil and Recent African Soricidae. One of us (PJ) has provided additional characters from the maxillary dentition and external features. Using the studies of these authors as a framework for the current analysis, primitive (plesiomorph) and derived (apomorph) characters have been scored for Asian and African members of the genera *Suncus* and *Sylvisorex*, with the objective of obtaining a relative ranking of *S. dayi*. #### Electrophoretic study Tissue samples (kidney, liver, heart) were frozen in liquid nitrogen immediately after autopsy in the field, and maintained at -70 °C at Lausanne until processing. Electrophoresis of homologous proteins was done as described in Ruedi et al. (1993) for studying the variation at the following 32 presumptive nuclear loci: (abbreviations as in Ruedi et al. 1993): Ada, Adh, Ak-1 & -2, Alb, Ck-1 & -2, Est-1, Got-1 & -2, Gpd, G-6-pd, Hk-1, Idh-1 & -2, Lap, Ldh-1 & -2, Mdh-1 & -2, ME, Mpi, Pa, Prot-x, 6-Pgd, Pgi, Pgm, Sod-1, -2 & -3, and Xdh-1 & -2. Alleles were designated by their mobility relative to the most common allele found in *C. olivieri* (Maddalena 1990b). Individual genotypes were transformed into allelic frequences by the BIOSYS-1 program (release 1.7; Swofford & Selander 1981) in order to compute Rogers (1972) and Nei (1978) genetic distances between pairs of compared taxa. The Rogers (1972) distances, which are additive, were treated by the Neighbor-Joining (Saitou & Nei 1987) and distance Wagner procedures (in BIOSYS-1) in order to yield dendrograms built without the hypothesis of rate-equality of biochemical changes among lineages. #### Abbreviations used BM(NH): The Natural History Museum, London, British Isles (formerly British Museum [Natural History]); IZEA: Institut de Zoologie et Ecologie Animale, University of Lausanne, Switzerland; ISEM: Institut des Sciences de l'Evolution de Montpellier, France. c: circa; CBL: condylo-basal length; HB: head and body length; HF: hind foot length; m: metre; n: number; p: page; pers. comm.: personal communication; SD: standard deviation; TL: tail length. Abbreviations for dental nomenclature are given in the text. #### Results ## Morphological analysis Diagnosis and description: Suncus dayi is a dark brown, medium sized shrew (HB 70-78, CBL 18.9-20.2), with a long slender tail (TL 83-88), clothed in short hairs but lacking long bristle hairs. The hindfeet are elongated (15.5-16.5; ratio of HF to CBL 79.1-84.7), with elongated cheiridia. The cranium has a relatively short rostrum, with a broad interorbital region and the braincase is rounded and domed (see Figs 1-2 and Table 1). The fourth upper unicuspid (Un⁴) is slightly smaller than the second (Un²); the cingula on the upper unicuspids are broad and distally flared. The third upper molar (M³) is long relative to the upper toothrow. The first lower incisor (I₁) has two marked denticulations. The last lower molar (M₃) has a distinct talonid basin and entoconid with a very short entoconid ridge. Comparison with other taxa: Crocidura is characterised by the possession of three upper unicuspid teeth, so clearly S. dayi does not conform in this diagnostic character; S. dayi also lacks the bristle hairs on
the tail characteristic of Suncus and of most species of Crocidura. Crocidura apparently has a restricted distribution in India; only the very small Crocidura horsfieldii (Tomes, 1856) has been recorded from southern India (HB < 75, CBL < 18.0). Brief comparisons were therefore made Table 1: Characters of Suncus dayi and Suncus fellowesgordoni relative to Sylvisorex and Suncus. P: plesiomorphic character state; I: character of intermediate expression; A: apomorphic character state. | | | | | | + | · | | | | | | |---------------------------|--------------------------|---|--|---|---------------------------------------|---|--------------------------------------|--|------------------|---|--| | Apomorphic state | present
long | present
shorter, narrower
adpressed
flattened | <54 % [S. lixus 51—56 %] A narrow iruscus P] | 5-84 % | tall, slender, opisthodont reduced | more reduced | narrow
S. lixus P] | short, reduced reduced | | A reduced [S. murinus I, S. etruscus P] | short, reduced
6—8.1 %] | | Suncus | ∢ ∢ ∢ | * * * * | <54 % [S
A
[S. etruscus P] | <71 % 671 % | 4 4 d | . Y | A narrow [S. etruscus I, S. lixus P] | A
P ·
[S etruscus A] | A | A
[S. murinus I, | A short, 1 [S. murinus 1] < 7.4 % [S. murinus 6.6—8.1 %] | | Suncus
fellowesgordoni | ΑΑΩ | 4 4 4 4 | 51.7 %
P | 77.5 % | A d d | д | വ | <u>a</u> a | A | പ | 1
7.6, 7.8 % | | Suncus dayi | d I d | L CL CL CL | 58—60 %
P | 0/0 88 —92 | 444 | ч | d | ᅀ,ᅀ | ьч | I | 7.8—8.5 % | | Sylvisorex | ብ ብ ብ | 나 라 라 라 | >58 %
P/I | >75 %
[S. johnstoni 71 %] | | . d. | പ | P
P
IS <i>iohnstoni</i> Al | [S. johnstoni A] | P
[S. johnstoni A] | P | | Plesiomorphic state | absent very short | aosent
longer & broader
widely spaced
convex or elevated | ase height
row length
broad
hiral breadth | eadth | short, stout, proodont well developed | present
less reduced in size
tual | broad, well developed | long, well developed
well developed | well developed | well developed | long, well developed P ngth to upper toothrow length $>7.5~\%$ | | Character | Tail: vibrissae
hairs | unckening
Hindfeet:
cheiridia
Braincase | ratio of braincase height to upper toothrow length Interorbital region broad ratio of interorbital breadth | to maxillary breadth | II: anterior cusp talon | buccal and lingual | cingula | P ⁴ : talon
protocone | hypocone | parastyle | M':
Ratio of M³ length | able 1: continue | Character | Plesiomorphic state | Sylvisorex | Suncus dayi | Suncus
fellowesgordoni | Suncus | Apomorphic state | |--|---|---|--------------|---------------------------|--|--| | Mandible: ratio of condyle width to height less the | lible: ratio of condyle
width to height less than 80 % | A
> 80 % | P
57—65 % | P
76.3 % | A
>82 % | greater | | ratio of
ramus o
length | ratio of horizontal ramus depth to $M_1 - M_3$ length less than 36 % | P
<36 % | P
29-33 % | P
30.3 % | A
>36 % IS | A greater
>36 % [S. etruscus 29—35 %] | | I ₁ : elevations on posterior ridge two | n posterior
two | А | Ь | Ь | . ∢ | none | | ameroningual
ridge | low, parallel to ventral
border, long | Ь | Ь | ď | A
[S. lixus P] | higher, divergent
short | | posterolingual
cingulum | posterolingual cingulum present | Д | ¥ | [P] | 4 | absent | | length | 75 % or less | I
<86 % | I
76—81 % | I
72, 78 % | A
>82 % | greater, up to 100 % or more | | ratio of I ₁ h
length | ratio of I_1 height to M_1 — M_3
length 20 % or less | P, I
<24 % | P
18-20 % | I
18, 21 % | I, A
>20 % | greater, up to $28-29$ % or more | | I₂: protostylidP₄: protostylidoverlap of I₂ | protostylid present protostylid present protostylid present overlap of $\rm I_2$ c 0.25 length of $\rm I_2$ | [S. granti 17—20 %]
P, A
P, A
P, A | A A A | A A G | [S. lixus 17—23 %] A abs A abs A abs A abs A gre | 3 %]
absent
absent
greater | | M ₁ : ratio of breadth to length M ₁ . Most-enfocurid | adth to 67 % or less | Ι | A | Ą | [3. 11343 F] | greater, up to 80 % | | ledge linonal | wide | P, I | I | Ι | A | narrow | | cingulum | complete | P, A | Ь | Ь | P, A | confined to anterior | | M ₃ : talonid | well-developed,
resembling M ₂ | P, I, A | А | ı | I, A | simplified | between *S. dayi* and the slightly larger *Crocidura attenuata* found in Assam, north east India and in Southeast Asia (Assam specimens HB 70–87, CBL 19.7–21.6), and also with *Crocidura fuliginosa* from Southeast Asia, which is considerably larger (Vietnam specimens HB>85, CBL>22.2). The latter was the only Asian species available for the electrophoretic analysis, therefore it was also included in the morphological study, but because it is readily distinguished from *Suncus dayi* by its much greater size, comparisons given below were restricted to the more comparably sized *C. attenuata*. Crocidura attenuata differs externally from Suncus dayi in its grey brown pelage colour and shorter, bristle haired tail (ratio of TL to HB 70-95). The skull has a longer, shallower rostrum and the braincase is shallower, less rounded with slightly more angular
superior articular facets. The mandible has a deeper, straighter horizontal ramus, while the ramal fossa is smaller and broader. The most obvious dental differences are the absence of the fourth upper unicuspid, and the shape of the first upper incisor, with its elongated anterior cusp (see Fig. 2). Suncus dayi is compared here with other species of Suncus which occur in India: S. murinus, S. stoliczkanus and S. etruscus. Suncus dayi is considerably larger than S. etruscus (HB < 55, CBL < 14.0), and considerably smaller than S. murinus (HB > 100, CBL > 23.5). Confusion with S. murinus and S. etruscus is therefore unlikely and no further reference is made to these two species. Suncus dayi (HB 70-78, CBL 18.9-20.2) is similar in size to S. stoliczkanus (HB 68-85, CBL 18.6-22.2); however the external appearance of S. dayi and S. stoliczkanus is otherwise quite different: S. dayi is dark brown dorsally and ventrally, the tail is uniformly dark brown, longer than head and body (TL 83-88; ratio of TL to HB 109.9-123.5), clothed with short hairs but lacking the long bristle hairs which are characteristic of Suncus and most species of Crocidura; the hindfeet are elongated (15.5-16.5, ratio of HF to CBL 79.1-84.7), the cheiridia are widely spaced and elongated. In contrast, Suncus stoliczkanus ranges in colour from pale grey to grey brown dorsally, paler ventrally; the tail is pale grey to grey brown, shorter than head and body (TL 44-55; ratio of TL to HB 60.8-76.8), with long bristle hairs; the hind feet are medium sized (10.5-15.0; ratio of HF to CBL 56.5-75.2), and the cheridia are adpressed and rounded. Suncus dayi is similar in many features to members of the African genus Sylvisorex, and it is compared here with the slightly smaller Sylvisorex morio, with additional comments on other species of Sylvisorex where S. morio is atypical. In the following external features, S. dayi shows a closer resemblance to members of the genus Sylvisorex than to those of Suncus. The tail is long, slender and, as in Sylvisorex, lacks the long bristle hairs which are characteristic of Suncus and most species of Crocidura; instead the tail has short hairs, which are longer and more numerous than those of S. morio (some Indomalayan species of Crocidura-C. elongata Miller & Hollister, 1921; C. miya Phillips, 1929 and C. paradoxura Dobson, 1887 — also have a long slender tail with few or no long bristle hairs). The cheiridia on the hindfeet of S. dayi and S. morio are elongated, unlike the rounded cheiridia of S. stoliczkanus. In craniodental morphology and proportions, S. dayi is also more similar to Sylvisorex than to Suncus (see Figs 1-6, and Tables 1-2). The skull of S. dayi is more similar to that of S. morio in general shape; the rostrum of both species is ## Biochemical and morphological investigation of Suncus dayi Fig. 1: Dorsal view of cranium from left to right of *Sylvisorex morio* (BM [NH] 88.81), *Suncus dayi* (V-576), *Suncus fellowesgordoni* (BM [NH] 32.6.11.1), *Suncus stoliczkanus* (BM [NH] 79.586) and *Crocidura attenuata* (BM [NH] 27.3.7.2). Fig. 2: Lateral view of cranium from left to right of above *Sylvisorex morio* (BM [NH] 88.81) and *Suncus dayi* (V-576), below *Suncus fellowesgordoni* (BM [NH] 32.6.11.1), *Suncus stolicz-kanus* (BM [NH] 79.586) and *Crocidura attenuata* (BM [NH] 27.3.7.2). relatively short, while that of *S. stoliczkanus* is slightly elongated and parallel-sided; the angle between the rostral portion of the maxilla carrying the unicuspid teeth and the premolar and molar portion of the maxilla is much more acute in *S. stoliczkanus* ## P. Jenkins et al. Table 2: Selected measurements in specimens of *Suncus stoliczkanus*, *Suncus dayi*, *Sylvisorex morio* and *Crocidura attenuata*. Range, mean \pm standard deviation, sample size. | | Suncus
stoliczkanus | Suncus
dayi | Sylvisorex
morio | Crocidura
attenuata | |--|--------------------------------|------------------------------|------------------------------|-------------------------------| | Condylobasal
length | 18.6-22.2
19.78±1.03 | 18.9-20.2
19.66±0.40 | 17.1-18.8
17.91±0.50
9 | 19.7-21.6
20.20±0.52
10 | | Upper toothrow
length | 8.1-10.3
9.07±0.65
11 | 8.5-8.8
8.66±0.13 | 7.8-8.4
8.07±0.21 | 8.0-9.8
8.90±0.47
21 | | Maxillary breadth at level of M ² | 5.2-6.9
5.98±0.40
11 | 5.6-6.0
5.83±0.16 | 5.1-5.4
5.29±0.10
9 | 5.5-6.5
6.00±0.23
21 | | Interorbital
breadth | 3.8-4.3
3.98±0.14
10 | 4.3-4.7
4.47±0.13 | 4.1-4.6
4.31±0.13
9 | 4.1-4.7
4.37±0.15 | | Braincase
breadth | 8.3-9.8
8.73±0.41
10 | 8.9-9.6
9.34±0.22
7 | 8.6-9.4
8.97±0.23 | 8.7-9.8
9.08±0.32 | | Braincase
height | 3.9-5.0
4.30±0.32
10 | 5.0-5.3
5.12±0.12
6 | 4.8-5.2
5.01±0.15
8 | 4.4-5.3
4.89±0.25 | | Braincase
length | 7.9-9.0
8.36±0.30
10 | 7.8-8.5
8.09±0.21
7 | 6.9-7.4
7.20±0.17
8 | 8.0-8.9
8.26±0.25 | | Interorbital breadth:
maxillary breadth | 59.4-71.4
66.33±0.28
10 | 72.9-88.0
78.10±4.40 | 75.9-86.8
81.40±3.12
9 | 68.9-77.6
72.69±2.2 | | Length of M ³ : upper toothrow length | 6.0-7.0
6.48±0.28
10 | 7.6-8.5
8.07±0.35
7 | 8.2-9.6
8.96±0.41
9 | 7.1-8.0
7.56±0.25 | | Braincase breadth:
condylobasal length | 42.0-45.3
43.90±1.12
10 | 46.1-48.0
47.51±0.37
7 | 47.0-52.6
50.08±1.53
9 | 42.0-47.6
44.81±1.42 | | Braincase height:
condylobasal length | 19.8-23.2
21.65±1.00
10 | 25.1-27.0
25.82±0.58
6 | 26.9-28.9
28.06±0.59
8 | 21.9-25.5
24.22±1.0 | | Braincase length:
braincase breadth | 91.8-100.0
95.72±2.33
10 | 83.9-89.9
86.57±2.40 | 76.7-83.1
80.12±2.07
8 | 87.9-96.6
90.95±3.00
10 | Fig. 3: Buccal view of left upper Incisor and Un¹ from left to right of above *Suncus dayi* (V-576) and *Suncus fellowesgordoni* (BM [NH] 32.6.11.1), middle *Sylvisorex granti* (BM [NH] 11.4.7.12) and *Sylvisorex morio* (BM [NH] 88.86), right *Suncus stoliczkanus* (BM [NH] 79.586). Scale 1 mm. Fig. 4: Occlusal view of right Un¹—Un⁴ and P⁴ from left to right of *Sylvisorex granti* (BM [NH] 11.4.7.12), *Sylvisorex morio* (BM [NH] 88.86), *Suncus dayi* (V-576), *Suncus fellowesgordoni* (BM [NH] 32.6.11.1) and *Suncus stoliczkanus* (BM [NH] 30.2.11.138). Scale 1 mm. than in *S. dayi* or *S. morio*. The interorbital region of *S. stoliczkanus* is relatively narrower and increases only slightly from anterior to posterior, whereas the posterior portion of the interorbital region is much broader than the anterior in *S. dayi* and *S. morio*. Both *S. dayi* and *S. morio* have rounded, domed braincases, while that of *S. stoliczkanus* is shallow, flat and laterally angular. The braincase is short relative to condylobasal length in *S. morio*, moderate in *S. dayi* but long in *S. stoliczkanus*. The parieto-occipital suture is prominently ridged in *S. stoliczkanus*, scarcely evident in *S. dayi* and practically absent in *S. morio*. The shape of the first upper incisor (I¹) is more similar in *S. dayi* and *S. morio* than in *S. stoliczkanus*. In *S. dayi* and S. morio this tooth is more proodont, the anterior cusp is moderately stout, and less than twice the height of the posterior cusp, while in S. stoliczkanus I¹ is opisthodont, the anterior cusp is slender and elongated and more than twice the height of the posterior cusp. The cingula on the upper unicuspid teeth of S. dayi are broad and distally flared as in S. morio but unlike those of S. stoliczkanus, which further differs in the position of the fourth upper unicuspid (Un⁴), which is partially obscured by the protocone of the premolar (P3) in distal view. In S. dayi the lingual cingula of Un1, Un3 and Un4 and the buccal cingulum of Un2 are broader than those of S. morio. In S. dayi and S. morio, P3 has a prominent hypocone and well-developed talon, unlike S. stoliczkanus in which the hypocone is low and the talon reduced in size. The third upper molar (M³) of S. dayi and S. morio is longer relative to the upper toothrow than that of S. stoliczkanus. The first lower incisor (I1) of S. dayi has two marked denticulations and the anterolingual ridge is complete and parallel with the ventral border as in S. morio but unlike S. stoliczkanus which shows no denticulation and the anterolingual ridge is incomplete and divergent. A protostylid is present on the lower premolar (P₄) of S. morio and S. granti, but absent in most other species of Sylvisorex as well as in S. dayi and S. stoliczkanus. The talonid of the last lower molar (M₃) differs in all three species; in S. morio the talonid basin, entoconid and entoconid ridge are well developed; in S. dayi, the talonid basin and entoconid are distinct but the entoconid ridge is very short, while in S. stoliczkanus the talonid basin is distinct, the entoconid ridge low but the entoconid less distinct. The development of the talonid of M_3 is variable within Sylvisorex but is usually reduced in Suncus. Historical perspective and morphological relationships: In his original description, Dobson (1888) placed the new species in *Pachyura* Sélys-Long-champs, 1839, which at that time was considered to be a subgenus of *Crocidura* but was later recognised as a distinct genus under the senior synonym of *Suncus*. An illustration of the lateral view of the anterior maxillary toothrow was given by Dobson (1890, Plate 28, Fig. 6). The few subsequent authors (Blanford 1888; Lindsay 1929; Ellerman & Morrison-Scott 1966) who examined this litte known and poorly represented species, only commented on the unusually large fourth upper unicuspid. Ellerman & Morrison-Scott considered that it was probably a member of the *Suncus stoliczkanus* group. In the course of collaborative work with R. Hutterer, Bonn (pers. comm. 1988), several of the taxa of Asian *Suncus* were examined, including the holotype of *S.
dayi* and three specimens of *S. fellowesgordoni*, another poorly known taxon generally regarded as a subspecies of the widespread species *Suncus etruscus* (see Ellerman & Morrison-Scott 1966; Eisenberg & McKay 1970; Corbet & Hill 1992). These two taxa (*S. dayi*, *S. fellowesgordoni*) showed some similarities in several characters not generally found in other species of *Suncus* (see Table 1). Many of these characters are regarded as primitive, following the views of Heim de Balsac & Lamotte (1957), Butler & Greenwood (1979), and Butler et al. (1989). Butler (1978: p. 62) stated that some species of *Suncus* in Asia, such as *S. fellowesgordoni* from Sri Lanka, have primitive characters like *Sylvisorex*, such as a narrow mandibular condyle and a basined talonid on M₃, and they cast doubt on whether the two genera should be Fig. 5: Lingual view of right 1₁ and I₂ from left to right of above *Sylvisorex granti* (BM [NH] 71.1828) and *Sylvisorex morio* (BM [NH] 88.86), middle *Suncus dayi* (V-576) and *Suncus fellowesgordoni* (BM [NH] 32.6.11.1), below *Suncus stoliczkanus* (BM [NH] 79.586). Scale 1 mm. Fig. 6: Lingual view of right M₃ from left to right of above *Sylvisorex morio* (BM [NH] 88.86) and *Syvisorex granti* (BM [NH] 11.4.7.12), below *Suncus dayi* (V-576), *Suncus fellowesgordoni* (BM [NH] 32.6.11.1) and *Suncus stoliczkanus* (BM [NH] 79.586). Scale 1 mm. separated. Butler et al. (1989: p. 402) repeated this view that *Suncus* includes some primitive forms such as *S. fellowesgordoni*; they noted that most species of *Suncus* are from the Indomalayan Region and suggested that this genus may have arisen from a *Sylvisorex*-like form in Asia, which subsequently extended its range into Africa. 268 Table 1 shows that *Sylvisorex* is plesiomorphic in the majority of its character states, while the majority of the characters of *Suncus* are apomorphic. Although not shown here, *Crocidura attenuata* and *C. fuliginosa* also show more apomorphic than plesiomorphic characters; it is hoped to discuss the relationships of these species of *Crocidura* and *Suncus* in a separate paper. Examination of *S. fellowesgordoni* confirms the above observations that many of its characters are plesiomorphic (see Table 1) and common to *S. dayi* and *Sylvisorex*, but also shows 10 shared derived features (synapomorphies) with *Suncus* and 3 with the *Sylvisorex granti* group. Comparison of *S. dayi* reveals an even larger suite of plesiomorphic characters in common with *Sylvisorex*, and a few synapomorphic features with *Suncus* (4), *S. fellowesgordoni* (3) and 2 with the *Sylvisorex granti* group. # Electrophoretic study Among the 32 assayed presumptive loci, 19 did evidence some intra- and/or interspecific polymorphism, whereas 13 showed no electrophoretic variation (Ak-1, Ck-1 & -2, Got-2, Gpd, Hk-1, Ldh-1, Mdh-1 & -2, Prot-x, Sod-3, and Xdh-1 & -2). Table 3 indicates the observed allelic frequences at all polymorphic loci. An intra-specific polymorphism for *Suncus dayi* does exist at the two most variable loci (Ada and Est-1), but only two heterozygotes were observed, namely alleles 65 and 87 at locus Ada for specimens V-543 and V-563. The genetic distances (based on all 32 loci) were computed by using the indices of Rogers (1972) and of Nei (1978) (Table 4), which indicate a clearcut biochemical (genetical) differentiation between all samples (minimum value of ca. 0.28 for Nei's distance and 0.26 for Rogers' distance). Interestingly, Suncus murinus is roughly equally divergent from S. dayi as from C. fuliginosa, and these are the smallest distances in the matrix of Table 4. According to both kinds of genetic distances, S. dayi is however slightly more related to Suncus murinus than to any other crocidurine shrew so far tested. These relationships are tentatively represented on the dendrograms derived from two clustering methods which do not depend upon the hypothesis of rate-uniformity (Neighbor-Joining and Wagner) neither of which take into account the standard-deviation of branch lengths estimates. Both tree-reconstruction methods indicate strong differences in rates of biochemical change, with for example C. russula having accumulated more changes than the other taxa. Moreover, as illustrated by Figure 7, the two branching patterns conflict with regard to the position of the two species of Suncus relative to the Eurasian Crocidura. This is not astonishing, as a casual inspection of the half matrices of Table 4 indicates that there is no strong genetic discontinuity between these crocidurine shrews, as all taxa appear to split off at about the same genetic level of differentiation (at a genetic distance of ca. 0.3). Thus, the branching patterns derived from both clustering procedures suggest the paraphyly of the genus Suncus and/or of the genus Crocidura. ### **Ecology** Suncus dayi has recently been collected from tropical evergreen forest (with Rattus satarae Hinton, 1918, Rattus rattus [Linnaeus, 1758], Mus famulus Bonhote, 1898 and Suncus murinus) in the Nilgiri Hills at 1500—2150 m and is also recorded in the Fig. 7: Phenograms derived from the Neighbor-Joining (above) and Wagner (below) procedures on Rogers (1972) genetic distances. Both networks were arbitrarily rooted at midpoint of longest path. The branch lengths are a good approximation of the observed distances (of Table 4), as indicated by the values of the percent standard deviation (2.87 % and 6.16 %) and of the cophenetic correlation (0.984 and 0.968) for the Neighbor-Joining and Wagner trees, respectively. The bar (scale) is 0.05 units of genetic distance. literature from the Palni Hills (Lindsay 1927). There is doubt about the collection locality of the holotype, as Dobson (1888) stated that the exact locality was unknown but gave the habitat as the Madras Presidency, India. Blanford (1888: 240) surmised that this specimen was probably obtained from the Palni or Travancore Hills in the Madras Presidency; subsequently Blanford (1891: 602) explained that the specimen had been brought to the donor, Dr. F. Day, from Trichur, Cochin. All of these localities are in southern India; the vegetation consists of tropical, high altitude evergreen rain forests. Both Nilgiri and Palni are hill forests, isolated from each other by the surrounding lower lying country which consists of a mixture of secondary forests (most of which are cultivated by man) and cleared, cultivated land (mainly tea and potatoes) and scrub. Heim de Balsac & Lamotte (1957) stated that *Sylvisorex* and *Suncus* ecologically differ in Africa, *Suncus* occurring in semi-arid savanna, while *Sylvisorex* inhabits wetter forests (although one species, *S. megalura* — which has clear scansorial adaptations [Vogel 1974, Hutterer 1985] —, has been recorded in grassland). The combination of features such as a long tail, elongated feet with elongated, well-spaced cheiridia, were interpreted as adaptations to a scansorial way of life (Hutterer 1985) and are characteristic of *Sylvisorex megalura*, *Suncus mertensi* Kock, 1974 and of some Indomalayan *Crocidura* such as *C. miya*, *C. paradoxura* and *C. elongata*. The implication is that *S. dayi* is also scansorial and therefore probably occupies a different ecological niche to the sympatric pigmy, *S. etruscus*, and the ## P. Jenkins et al. Table 3: Allelic frequences observed at 19 polymorphic loci among five studied species. N: sample size.. | Locus/A | llele | Suncus
dayi
N=7 | Suncus
murinus
N=8 | Crocidura
olivieri
N=3 | Crocidura
fuliginosa
N=3 | Crocidura
russula
N=5 | |---------|-------------------|-----------------------|--------------------------|------------------------------|--------------------------------|-----------------------------| | Ada: | 211
173
138 | | .375
.625 | | .167 | | | | 119
100 | | | .833 | .833 | .375 | | | 83 | .714 | | | | .625 | | | 75
64 | .286 | | .167 | | | | | | .200 | | | | | | Adh: | .100
73 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Ak-2: | 125 | | | | | 1.000 | | | 100
70 | 1.000 | 1.000 | 1.000 | 1.000 | | | Alb: | 103 | .071 | 1 000 | | | | | | 100
96 | .929 | 1.000 | 1.000 | | | | | 94 | | | | 1.000 | 1.000 | | | 91 | | | | | 1.000 | | Est-1: | 135
112 | .857
.143 | 1.000 | | | 1.000 | | | 100 | .143 | | 1.000 | | | | | 82 | | | | 1.000 | | | Got-1: | 200 | | | | 1.000 | | | | 100 | 1.000 | 1.000 | 1.000 | | 1.000 | | G-6-pd: | 123 | 4 000 | | | 1.000 | | | | 112
100 | 1.000 | 1.000 | .500
.500 | | 1.000 | | T.11. 1 | | 1 000 | 1 000 | | 1 000 | 1 000 | | Idh-1: | 150
100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Idh-2: | 120 | | 1.000 | | | | | run-2. | 100 | 1.000 | 1.000 | 1.000 | 1.000 | | | | 75 | | | | | 1.000 | | Lap: | 100 | | | 1.000 | | | | | 96 | 1.000 | 1.000 | | 1.000 | 1.000 | | Ldh-2: | 110 | 1.000 | 1.000 | 4 600 | 1.000 | 1.000 | | | 100 | | | 1.000 | | | | Mod: | 100 | 1.000 | | 1.000 | | | | | 85
74 | 1.000 | .313 | | 1.000 | | | | 70 | | | | | 1.000 | | | 26 | | .687 | | | | ### Biochemical and morphological investigation of Suncus dayi Table 3: continued | Locus/A | llele | Suncus
dayi
N=7 | Suncus
murinus
N=8 | Crocidura
olivieri
N=3 | Crocidura
fuliginosa
N=3 | Crocidura
russula
N=5 | |---------|-------------------------|-----------------------|--------------------------|------------------------------|--------------------------------|-----------------------------| | Mpi: | 132
100
70 | 1.000 | 1.000 | .500
.500 | 1.000 | .500
.500 | | Pa: | 100
80 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | 6-Pgd: | 140
100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Pgi: | 200
100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | Pgm: | 150
117
100
78 | 1.000 | .063
.938 | 1.000 | .278
.722 | 1.000 | | Sod-1: | 115
100
84 | 1.000 | .625
.375 | 1.000 | 1.000 | 1.000 | | Sod-2: | 100
30 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | giant, S. murinus,
species. Regrettably there are no detailed observations to support these hypotheses. #### Discussion Species currently assigned to the genus *Sylvisorex* are confined to Africa. There is some controversy over the number of species recognised as belonging to the genus *Suncus*, which is found in Asia, Africa and Europe. Following Hutterer (1993) only four species are endemic to Africa, whereas nine occur in Asia and a tenth — *S. murinus* — is Asian in origin and believed to be a recent introduction to Africa (Heim de Balsac & Lamotte 1957, Hutterer & Tranier 1990). The area of greatest species diversity is generally accepted as the most probable site of origin of the group which, in the case of *Suncus*, is likely to be Asia. ## Morphological results Heim de Balsac & Lamotte (1957) suggested that *Sylvisorex* is ancestral to *Suncus*, the former possessing a greater number of primitive, and the latter a greater number of derived characters. These authors briefly alluded to the resemblance noted by Ellerman et al. (1953) between the African *S. lixus* and the Asian *S. stoliczkanus*. It was Butler (1978), Butler & Greenwood (1979) and Butler et al. (1989) who produced #### P. Jenkins et al. Table 4: Genetic distances measured between five species of Crocidurinae. Below diagonal: Rogers (1972) genetic distance; above diagonal: Nei (1978) unbiased genetic distance. S.: Suncus; C.: Crocidura. | | Suncus
dayi | Suncus
murinus | Crocidura
olivieri | Crocidura
fuliginosa | Crocidura
russula | |------------------------------|----------------|-------------------|-----------------------|-------------------------|----------------------| | S. dayi
S. murinus | 000
.261 | .281 | .432
.377 | .303 | .400
.378 | | C. olivieri
C. fuliginosa | .366
.269 | .332 | .347 | .407
000 | .572
.517 | | C. russula | .342 | .323 | .439 | .412 | 000 | evidence of the possible derivation of African species of Suncus from Sylvisorex and furthermore, suggested that if this did not occur in Africa it might have done so from a Sylvisorex-like ancestral form in Asia which subsequently extended its range into Africa. They suggested that the fossil species of Suncus may have entered Africa rather late and that the main source of the immigrants was the Indomalayan region. They also demonstrated that Suncus lixus is dissimilar to the other African species of Suncus; it shares derived characters with two species of Sylvisorex, the fossil S. olduvaiensis Butler & Greenwood, 1979 and the Recent S. johnstoni (Dobson, 1888b) and could have been derived from a related species of Sylvisorex and, if it did not originate from Sylvisorex in Africa, it must be presumed to be an immigrant from Asia. Butler et al. (1989) cited the primitive characters, reminiscent of Sylvisorex found in some species of Asian Suncus, such as S. fellowesgordoni. It is therefore interesting to note that their view is further supported by another Asian species, S. dayi which shows an even higher proportion of primitive characters, so much so that it groups more readily with species of Sylvisorex than with those of Suncus. Butler et al. (1989) observed that Sylvisorex is definable only by primitive characters. These authors noted that Suncus was much more advanced than Sylvisorex and could feasibly be related to the Sylvisorex granti group (defined by these authors to include the species granti, megalura, howelli Jenkins, 1984, johnstoni and olduvaiensis). Table 1 shows that S. dayi has many primitive (plesiomorphic) features in common with Sylvisorex, but fewer with Suncus, which exhibits many more derived (apomorphic) character states. The results show that Suncus dayi is synapomorphic in only four characters, whereas S. fellowesgordoni is synapomorphic with Suncus in ten characters. This suggests that S. fellowesgordoni has a closer relationship with other species of the genus Suncus than does S. dayi. Suncus dayi, however, retains many plesiomorphic features common to Sylvisorex, shows few synapomorphies with either Sylvisorex or Suncus, and exhibits such a close resemblance to Sylvisorex that it could feasibly be reassigned to this genus. However, as shown in the next section discussing electrophoretic data, the lack of shared derived alleles between S. dayi (this paper) and Sylvisorex (Maddalena et al. 1990a, b) is a strong argument for preferring the conservative decision to continue to assign S. dayi to the genus Suncus. Based on the interpretation of characters listed in Table 1, the problem remains as to whether *S. dayi* is a relict species, differing only in a few apomorphic features from the *Sylvisorex*-like ancestral form of *Suncus*, as postulated by Butler et al. (1989); or one of convergent evolution due to adaptation to a similar ecological niche, as suggested by Hutterer (1985) who pointed out that convergent evolution may have occurred several times in scansorial shrews. Additional experiments with genetic markers (DNA sequencing, protein electrophoresis) are needed to understand the relationships of Asian and African whitetoothed shrews of the genera *Suncus*, *Sylvisorex* and *Crocidura*. Furthermore, our comparative morphological analysis should be extended to include Indomalayan scansorial species of *Crocidura* such as *C. miya* from Sri Lanka, *C. paradoxura* from Sumatra and *C. elongata* from Sulawesi in order to test for morphological convergence. # Electrophoretic results The endemic South Indian Suncus dayi appears to be genetically well differentiated from the sympatric species Suncus murinus (Fig. 7). However, S. murinus is almost as divergent from S. dayi as from the Indomalayan C. fuliginosa (Nei's distances of ca. 0.28: Table 4). This observation, as well as the conflicting topologies derived from the two phenetic reconstructions, suggest that all taxa analysed here might have diverged from each other at about the same time. Table 4 also reveals that the genetic distances measured in inter-generic comparisons are quite low by crocidurine standards: for example, Maddalena (1990b) has measured an average Nei's distance of 0.72 (SD 0.12, range 0.50-0.92) between Suncus etruscus and 20 species of African and European Crocidura. When Indomalayan representatives of Suncus and Crocidura are compared (Figure 11), the apparent paraphyletic placement of Crocidura is reminiscent of the finding of Maddalena (1990b), and this is in agreement with some traditional morphological studies (Heim de Balsac & Lamotte 1957, Butler et al. 1989). As Sylvisorex could not be included in this electrophoretic study, its genetic relationship with S. dayi cannot be directly assessed. Nevertheless, as Maddalena (1990a, b) used the same standard (Crocidura olivieri) for naming the different alleles, some comparison is possible for a subset of loci. In the cladogram proposed by Maddalena (1990b: 301), Sylvisorex megalura and S. lunaris (which were considered as an outgroup relative to Crocidura) shared two synapomorphic alleles: Ldh-2¹⁷⁰ and Mdh-2⁸⁴. Neither of these alleles has been found among our Asian samples, thus suggesting no direct link between S. dayi and these two species of Sylvisorex. On the contrary, allele Idh-1150 in Maddalena (1990a, b) is shared by most other crocidurine shrews, and it is also observed in S. murinus, S. dayi and C. fuliginosa. Several synapomorphies (AK-1100, Est-1110, Ldh-2100, Mdh-2100, and Pgi¹⁰⁰) link our Asian samples with most species of Crocidura analysed by Maddalena (1990a, b), and not with Sylvisorex. These few genetic comparisons all indicate that Suncus dayi (and, by extension, the other Asian taxa analysed here) is not closely related to the African Sylvisorex, but instead shares several derived genetic characters with other shrews of the genera Crocidura and Suncus. The genetic affinities of Suncus dayi within a cluster containing Suncus murinus as well as some species of Crocidura indicate polyphyly for one or both genera. In conclusion, the genetic results, although still preliminary, do not support a close relationship between *S. dayi* and *Sylvisorex*, but rather suggest parallelism for the cranial similarities and convergence for the external scansorial adaptation. # Acknowledgements We thank the federal, state and regional agencies in India (New Dehli, Madras, and Ootacamund) for delivering collecting permits in different areas of the Nilgiris Mountains, Tamil Nadu State. The hospitality, kindness, and efficient help of Claude Caratini and his colleagues at the Institut Français de Pondichery were very much appreciated. Funding of the expedition through NIH-NIAID grant AI29834 attributed to F. Bonhomme, Montpellier. MR thanks Prof. Peter Vogel for laboratory facilities at the Institute of Zoology and Animal Ecology of the University of Lausanne. This is contribution 1996—040 of the Institut des Sciences de l'Evolution (UMR 5554) de Montpellier. # Zusammenfassung Biochemische und morphologische Untersuchungen von Suncus dayi (Dobson, 1888) und die Diskussion der Verwandtschaft von Suncus, Crocidura und Sylvisorex (Insectivora: Soricidae). — Während einer Feldexpedition in den immergrünen Bergregenwald von Südindien konnten im Nilgiri Gebirge 7 Exemplare von Suncus dayi (Dobson, 1888), einer wenig bekannten Weißzahn-Spitzmaus, erbeutet werden. Die äußere Morphologie sowie Schädel- und Zahnmerkmale dieser Spezies wurden in einer vergleichenden Studie mit wenigen Arten der Gattungen Suncus (z. B. S. stoliczkanus, S. fellowesgordoni), Sylvisorex (z. B. S. morio, S. granti Gruppe) und Crocidura (z. B. C. attenuata) betrachtet. Eine biochemische Untersuchung der Isoenzymvariation an 32 Genloci erlaubt die Abschätzung der genetischen Differenzierung zwischen S. dayi und vier weiteren Weißzahn-Spitzmäusen: Suncus murinus, Crocidura olivieri, C. fuliginosa und C. russula. In der Schädel- und Zahnmorphologie teilt Suncus dayi viele plesiomorphe Merkmale mit einigen Vertretern der afrikanischen
Gattung Sylvisorex, wohingegen andere Arten der Gattung Suncus in diesen Merkmalen apomorphe Muster aufweisen. Eine elektrophoretische Untersuchung zeigt Übereinstimmung in abgeleiteten Merkmalen zwischen Crocidura und Suncus, aber nicht zwischen Sylvisorex und Suncus. Insgesamt kann diese Studie nicht ausschließen, daß die eigentümliche Merkmalsverteilung bei Suncus dayi ein Ergebnis konvergenter Entwicklung in Verbindung mit kletternder Lebensweise ist. #### Literature Anderson, J. (1877): Description of some new and little known Asiatic shrews in the Indian Museum, Calcutta. — J. Asiatic Soc. Bengal 46: 261–283. Blanford, W. T. (1888): The fauna of British India, including Ceylon and Burma. Part 1. — Taylor and Francis, London. Blanford, W. T. (1891): The fauna of British India, including Ceylon and Burma. Part 2. — Taylor and Francis, London. Blyth, E. (1855): Proceedings of the Asiatic Society of Bengal for May 1855. — J. Asiatic Soc. Bengal 24: 354—364. Bonhote, J. L. (1898): Description of a new species of *Mus* from southern India. — J. Bombay Nat. Hist. Soc. 12: 99—100. Butler, P. M. (1978): Insectivores and Chiroptera. — In: Maglio, V. J. & H. B. Cooke: Evolution of African mammals., Harvard University Press, Cambridge. Butler, P. M. & M. Greenwood (1979): Soricidae (Mammalia) from the early Pleistocene of Olduvai Gorge, Tanzania. — Zool. J. Linn. Soc. 67: 329—379. Butler, P. M., R. S. Thorpe & M. Greenwood (1989): Interspecific relations of African crocidurine shrews (Mammalia: Soricidae) based on multivariate analysis of mandibular data. — Zool. J. Linn. Soc. 96: 373—412. - Catzeflis, F. M., T. Maddalena, S. Hellwing & P. Vogel (1985): Unexpected findings on the taxonomic status of East Mediterranean *Crocidura russula* auct. (Mammalia, Insectivora). Z. Säugetierk. 50: 185—201. - Corbet, G. B. & J. E. Hill (1992): The mammals of the Indomalayan region: a systematic review. Oxford University Press, Oxford. - Dobson, G. E. (1887): Description of new species of Soricidae in the collection of the Genoa Civic Museum. Ann. Museo Civico Storia Nat. Giacomo Doria, Genova 4: 564—567. - Dobson, G. E. (1888a): Description of two new species of Indian Soricidae. Ann. Mag. Nat. Hist. 6: 427—429. - Dobson, G. E. (1888b): On the genus *Myosorex*, with descriptions of a new species from the Rio del Rey (Cameroons) district. Proc. Zool. Soc. London 4: 575-578. - Dobson, G. E. (1890): A monograph of the Insectivora, systematic and anatomical. Part 1. John van Voorst, London. - Eisenberg, J. F. & G. M. McKay (1970): An annotated checklist of the recent mammals of Ceylon with keys to the species. Ceylon J. Sci., Biol. Sci. 8: 69—99. - Ellerman, J. R. & T. C. S. Morrison-Scott (1966): Checklist of Palaearctic and Indian mammals, 1758 to 1946 British Museum (Natural History), 2nd edition. London. - Ellerman, J. R., T. C. S. Morrison-Scott & R. W. Hayman (1953): Southern African Mammals 1758 to 1951: A reclassification British Museum (Natural History). London. - George, S. B. (1986): Evolution and historical biogeography of soricine shrews. Syst. Zool. 35: 153-162. - Gray, J. E. (1862): List of Mammalia from the Camaroon (sic) Mountains, collected by Capt. Burton, H. M. Consul, Fernando Po. Proc. Zool. Soc. London 2: 180—181. - Heim de Balsac, H. & M. Lamotte (1957): Evolution et phylogénie des Soricidés africains. II. La lignée *Sylvisorex Suncus Crocidura*. Mammalia 21: 15-49. - Hemprich, F. W. & C. G. Ehrenberg (1833): Symbolae physicae seu icones et descriptiones mammalium. 2. Berolini. - Hermann, J. H. (1780) In: Zimmermann, E. A. W.: Geographische Geschichte des Menschen, 2. Leipzig. - Hinton, M. A. C. (1918): Scientific results from the mammal survey, n° XVIII. J. Bombay Nat. Hist. Soc. 26: 59—88. - Hutterer, R. (1985): Anatomical adaptations of shrews. Mammal Rev. 15: 43-55. - Hutterer, R. (1993): Order Insectivora. In: Wilson, D. E. & D. M. Reeder: Mammal species of the world. A taxonomic and geographic reference, 69—130. Smithsonian Institution Press, Washington and London. - Hutterer, R. & M. Tranier (1990): The immigration of Asian house shrew (Suncus murinus) into Africa and Madagascar. In: Peters, G. & R. Hutterer: Vertebrates in the tropics, 309—320. Museum Alexander Koenig, Bonn. - Jenkins, P. D. (1984): Description of a new species of *Sylvisorex* (Insectivora: Soricidae) from Tanzania. Bull. Br. Mus. nat. Hist. (Zool.) 47: 65-76. - Jentink, F. A. (1888): Note 1. Zoological researches in Liberia, a list of mammals collected by J. Büttikofer, C. F. Sala und F. X. Stampfli. Notes Leyden Mus. 10: 1-58. - Kock, D. (1974): Eine neue *Suncus*-Art von Flores, Kleine Sunda-Inseln (Mammalia, Insectivora). Senckenberg. biol. 55: 197—203. - Lesson, R. P. (1827): Manuel de mammalogie, ou histoire naturelle des mammifères. Paris. - Linds ay, H. (1927): Bombay Natural History Society's mammal survey of India, Burma and Ceylon. Report n° 43. Nelliampathy and Palni Hills. J. Bombay Nat. Hist. Soc. 31: 591—597. - Lindsay, H. (1929): Scientific results from the mammal survey, n° XLVIII. Indian shrews. J. Bombay Nat. Hist. Soc. 33: 326—340. - Linnaeus, C. (1758): Systema naturae. 10th edition. Holmiae. - Linnaeus, C. (1766): Systema naturae per regna tria naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 12th edition. Holmiae. Maddalena, T. (1990a): Systematics and biogeography of Afrotropical and Palaearctic shrews of the genus *Crocidura* (Insectivora: Soricidae): An electrophoretic approach. — In: Peters, G. & R. Hutterer: Vertebrates in the tropics, 297—308. Museum Alexander Koenig, Bonn. Maddalena, T. (1990b): Systématique, évolution et biogéographie des musaraignes afrotropicales et paléarctiques de la sous-famille des Crocidurinae: une approche génétique. PhD, Université de Lausanne, Suisse. Miller, G. S. & N. Hollister (1921): Twenty new mammals collected by H. C. Raven in Celebes. — Proc. Biol. Soc. Washington 34: 93—104. Milne-Edwards, A. (1872): Recherches pour servir à l'histoire naturelle des Mammifères. — Paris. Nei, M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics 89: 583-590. Phillips, W. W. A. (1929): New and rare Ceylon shrews. — Spolia Zeylanica 15: 113—118. Phillips, W. W. A. (1932): Additions to the fauna of Ceylon. No 3. A new pigmy shrew from the mountains of central Ceylon. — Ceylon J. Sci. (B) 17: 123—126. Rogers, J. S. (1972): Measures of genetic similarity and genetic distance. — Univ. Texas Stud. Genetics 7: 145—153. Ruedi, M., T. Maddalena, P. Vogel & Y. Obara (1993): Systematic and biogeographic relationship of the Japanese white-toothed shrew (*Crocidura dsinezumi*). — J. Mamm. 74: 535-543. Ruedi, M., T. Maddalena, H.-S. Yong & P. Vogel (1990): The *Crocidura fuliginosa* species complex (Mammalia: Insectivora) in peninsular Malaysia: biological, caryological and genetical evidence. — Biochem. Syst. Ecol. 18: 573-581. Saitou, N. & M. Nei (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Mol. Biol. Evol. 4: 406—425. Savi, P. (1822): Osservazioni sopra il mustietto o mustiolo, nuova specie di toporagno Toscano *Sorex etruscus*. — Nuovo Giorn. Letter., Pisa 1: 60-71. Sélys-Longchamps, E. de (1839): Etudes de micromammalogie. Paris. Swindler, D. R. (1976): Dentition of living primates. — Academic Press, London. Swofford, D. L. & R. B. Selander (1981): BIOSYS-1: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. — J. Heredity 72: 281—283. Thomas, [M. R.] O. (1898): On the mammals obtained by Mr A. Whyte in Nyasaland, and presented to the British Museum by Sir H. H. Johnston, K. C. B.; being a fifth contribution to the mammalfauna of Nyasaland. — Proc. Zool. Soc. Lond.: 925—939. Thomas, [M. R.] O. (1904): — Abstr. Proc. zool. Soc. Lond. (10): 12. Thomas, [M. R.] O. (1907): On further new mammals obtained by the Ruwenzori Expedition. — Ann. Mag. Nat. Hist. 7: 118-123. Thomas, [M. R.] O. (1912): New species of *Crocidura* and *Petaurista* from Yunnan. — Ann. Mag. Nat. Hist. 8: 686—688. Tomes, R. F. (1856): In Blyth, E. Memoir on the Indian species of shrews. — Ann. Mag. Nat. Hist. 2: 11–28. Vogel, P. (1974): Note sur le comportement arboricole de *Sylvisorex megalura* (Soricidae, Insectivora). — Mammalia 38: 171–176. Wagler, [J.] (1832): In Oken, [L.] Isis. 3. Leipzig. Paulina Jenkins, The Natural History Museum, Mammal Group, Cromwell Road, London SW7 5 BD, United Kingdom; Manuel Ruedi, Institut de Zoologie et Ecologie Animale, Université de Lausanne, Batiment de Biologie, CH-1015 Lausanne, Switzerland; François M. Catzeflis, Institut des Sciences de l'Evolution, UMR 5554 CNRS, Case 064, Université Montpellier II, 34095 Montpellier, France. # ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: <u>Bonn zoological Bulletin - früher Bonner Zoologische</u> <u>Beiträge.</u> Jahr/Year: 1997/1998 Band/Volume: 47 Autor(en)/Author(s): Jenkins Paulina D., Ruedi Manuel, Catzeflis Francois M. Artikel/Article: A biochemical and morphological investigation of Suncus dayi (Dobson, 1888) and discussion of relationships in Suncus Hemprich & Ehrenberg, 1833, Crocidura Wagler, 1832, and Sylvisorex Thomas, 1904 (Insectivora: Soricidae) 257-276