STEINFLIEGEN

Bearbeiter: W. Graf

PLECOPTERA (STEINFLIEGEN)

Die Steinfliegen oder Plecoptera bilden eine stammesgeschichtlich alte Insektenordnung, die bereits im Perm auftritt und deren urtümliche Gestalt sich seither kaum verändert hat. Die Imagines besitzen vielgliedrige Fühler, drei Stirnaugen zwischen den Komplexaugen, vier häutige, stark geaderte Flügel, die in Ruhe flach über dem Hinterleib zusammengelegt werden, drei homonome Schreitbeinpaare und zwei Cerci am Hinterleibsende. Die meisten einheimischen Arten sind klein und unscheinbar, einige wenige Arten erreichen eine beträchtliche Körpergröße von bis zu 5 cm. Die Larven der Steinfliegen entwickeln sich ausschließlich im Wasser. Das letzte Larvenstadium häutet sich an Land zur geschlechtsreifen Imago.

Die Adulttiere zeigen eine geringe Flugaktivität und führen insgesamt eine verborgene Lebensweise, meist halten sie sich auf Steinen bzw. auf der Ufervegetation unweit der Wohngewässer der Larven auf. Die Paare finden sich – soweit bekannt – durch Klopfsignale beider Geschlechtspartner. Die Larven der meisten Arten benötigen kühle und sauerstoffreiche Fließgewässer und zeigen oft eine enge Bindung an bestimmte Gewässerstrukturen. Viele Arten reagieren empfindlich auf chemische und physikalische Veränderungen im Gewässer, sie sind daher als Bioindikatoren hervorragend geeignet (z. B. GRAF et al. 1995).

Die großen strukturellen Veränderungen der Flusslandschaften und die allgemeine Gewässergüteverschlechterung bis in die 1980er-Jahre führten zu einer Verarmung der ursprünglichen Plecopterenfauna. Dies betrifft vor allem die großen Fließgewässer sowie kleinere Bäche der dichter besiedelten Gegenden außerhalb der Alpen, die besonders durch bauliche Maßnahmen ihre typische Habitatvielfalt und -charakteristik sowie ihre hydrologische Dynamik weitgehend verloren haben. Ehemals charakteristische Flussorganismen in Europa wie *Brachyptera trifasciata* (heute nur noch aus dem Alpenrhein an der Grenze zu Liechtenstein bekannt), *Isogenus nubecula* und *Agnetina elegantula* (Lafnitz-Raab-System), *Isoperla obscura* (Drau, Donau) oder *Xanthoperla apicalis* (Donau bei Wien) sind rezent in Österreich und in Mitteleuropa nur noch in isolierten Restpopulationen zu finden (RAUŠER 1957, RAVIZZA & ZWICK 1981, ZWICK 1992, GRAF 1997).

METHODEN

Mitte des 19. Jahrhunderts bis zu Beginn des 20. Jahrhunderts wurde die Erforschung der Steinfliegen Mitteleuropas wesentlich von österreichischen Entomologen wie Brauer, Kempny und Kühtreiber beeinflusst. 1958 führte Pomeisl den Stand des Wissens zu einer Artenliste Österreichs zusammen und publizierte 1961 weitere Funddaten aus Ostösterreich. In den Jahren 1974 bis 1976 publizierten Theischinger und Humpesch die Ergebnisse ihrer intensiven Untersuchung der Steinfliegenfauna Oberösterreichs. Etwa 20 Jahre später wurde mit der Fauna Aquatica Austriaca (GRAF et al. 1995) die Artenliste Österreichs aktualisiert. Das relativ detaillierte Wissen über die Gruppe wurde von GRAF (1999) zu einer regionalisierten Checkliste zusammengefasst. Aus Österreich sind demnach inklusive weiterer Nachträge bislang 126 Arten und eine Unterart bekannt (GRAF & HUTTER 2002, GRAF et al. 2002, SIVEC & GRAF 2002, GRASSER & GRAF 2003, Kovács et al. 2004), von denen die charakteristische Flussart *Oemopteryx loewii* (Albarda, 1889) als verschollen gilt.

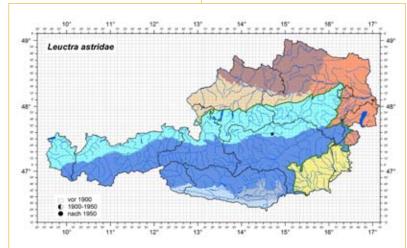
Insgesamt kann der Erforschungsgrad der Steinfliegen in Österreich als relativ gut bezeichnet werden, wenngleich der steile Artenzuwachs der letzten Jahre das Vorkommen von weiteren Taxa in weniger gut untersuchten Gebirgsregionen wahrscheinlich erscheinen lässt (Graf & Weinzierl 1999, 2003, Graf & Hutter 2002, Graf et al. 2002, Graf 2005). Die Erforschung der alpinen Steinfliegen hat zwar eine lange Tradition, es werden jedoch laufend neue Arten aus den West- und Südalpen beschrieben (z. B. Ravizza & Vincon 1989, 1991, 1994, 2003, Vincon et al. 1995). Da Steinfliegen vor allem in Gebirgsbächen artenreich auftreten, weisen die Bundesländer mit hohem Alpenanteil die höchsten Artenzahlen auf, wobei Salzburg noch vergleichsweise ungenügend untersucht erscheint. Trotz österreichweiter, intensiver Analysen aquatischer Zönosen im Rahmen angewandter Gewässerbeurteilungen werden dabei kaum Erkenntnisse zur Verbreitung der Arten gewonnen, da die larvale Taxonomie weitgehend unklar ist. Die Bearbeitungsintensität der Gruppe in Österreich ist durch den eingeschränkten Kreis von Interessierten gegenwärtig gering bis mäßig einzustufen.

Ein wesentlicher Fortschritt zur Klärung der verwirrenden Verhältnisse im Fall der Gattung *Perla* konnte erst kürzlich durch Untersuchungen der Eimorphologie durch Sivec & Stark (2002) erzielt werden. Problematisch hingegen bleiben die Arten der *Leuctra inermis-*Gruppe und der *Nemoura marginata-*Gruppe sowie Arten der Gattung *Isoperla*, bei denen dringend notwendige Revisionen noch ausständig sind. Die Larvaltaxonomie ist in etlichen Gattungen ungenügend bekannt, wodurch detaillierte Kenntnisse der Autökologie einzelner Arten fehlen. Für viele der besprochenen Arten liegen ausschließlich Funddaten der Imagines vor. Deutsche Namen fehlen für die hier behandelten Arten. Keine Art wird in entsprechenden Naturschutzrichtlinien oder -gesetzen genannt.

Als Datengrundlage zur Verbreitung sowie Klassifizierung zu Endemietypen werden Angaben in der Literatur, eigene Funde, die Datenbank des Nationalparks Kalkalpen sowie die Datensammlung des Oberösterreichischen Landesmuseums ZOBODAT in Linz herangezogen. In vorliegender Studie wird eine Zuordnung zu Endemietypen definitionsgemäß über den Anteil ihrer nationalen Areale getroffen. Da nicht immer exakte Fundortangaben sowie nicht alle lokalen Nachweise publiziert sind, kann die fachliche Einschätzung des österreichischen Anteils am Gesamtareal fehlerhaft sein, da ein peripherer Nachweis bei kleinräumig verbreiteten Arten die Klassifizierung grundlegend verändern kann. Arten mit vermutlich größerer Verbreitung als bisher bekannt (Pseudoendemiten) werden deshalb in der Diskussion besprochen.

ARTENSTECKBRIEFE

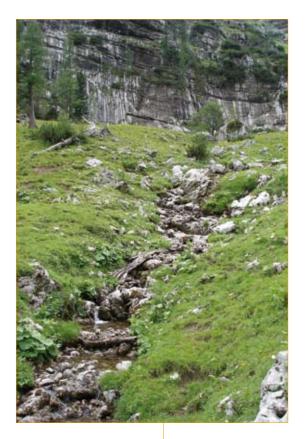
Leuctra astridae GRAF, 2005


Locus typicus: Ennstaler Alpen, Gesäuse, Quellbereiche nahe Sulzkarsee, Steiermark Gesamtareal: Nordalpen

Vorkommen: Leuctra astridae steht der kleinräumig westalpin (Aosta-Tal und Wallis) verbreiteten L. festai Aubert, 1954 nahe und wurde erst kürzlich beschrieben. Sie ist bisher nur aus den Ennstaler Alpen aus wenigen Quellen bekannt. Ein weiteres Vorkommen

Familie: Plecoptera, Leuctridae

Endemietyp: Endemit Kritische Taxa: – Datenqualität: mäßig Bundesländer: St


entlang des Alpenbogens in hoch gelegenen Quellgebieten in den Kalkalpen wird angenommen, aber ein Überwiegen des österreichischen Arealanteils ist zu erwarten. Auch die eingeschränkte Ausbreitungskapazität als Folge der Flügelreduktion, die häufig bei krenophilen Hochgebirgsarten zu beobachten ist, spricht für eine kleinräumige Verbreitung der Art.

Höhenvorkommen: subalpin; 1.570 m Seehöhe

Biotopbindung: Krenal (Quellregion)

Biologie: Beide Geschlechter sind kurzflügelig und wurden im August gefunden. Die einheitlich dunkelbraun gefärbten Tiere sind 5,5–6,9 mm groß und wurden in wenigen Exemplaren in einem steilen Quellbach sowie häufig in einer Limnokrene nachgewiesen.

▲ Leuctra astridae GRAF, 2005. Foto: W. Graf & A. Schmidt-Kloiber 588 STEINFLIEGEN

Gefährdungsgrad: unbekannt

Gefährdungsursachen: Leuctra astridae – wie auch die meisten anderen kleinräumig verbreiteten Quellelemente höherer Lagen – hat meist eine geringe Ausbreitungskapazität und ist daher vor allem durch Habitatzerstörung wie Quellfassungen und Wasserableitungen zur Trinkwassergewinnung gefährdet. Intensive Almwirtschaft kann durch Überweidung und Kuhvertritt ebenfalls lokal negative Auswirkung auf die Habitatstruktur haben. Wie bei den Köcherfliegen kann auch der Ausbau der Forststraßen in den Alpen zur Gefährdung der Art führen.

Anmerkungen: GRAF (2005) vermutet, dass es sich bei *L. astridae*

und *L. festai* um vikariierende Arten handelt.

Literatur: GRAF (2005).

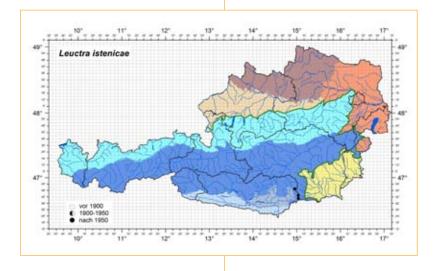
◄ Quellbach im Gesäuse.
Fundort von Leuctra
astridae GRAF, 2005.
Foto: W. Graf & A.
Schmidt-Kloiber

Familie: Plecoptera, Leuctridae

Endemietyp: Subendemit

Kritische Taxa: –

Datenqualität: mäßig


Bundesländer: St, K

Leuctra istenicae Sivec, 1982

Locus typicus: Pesek, Pohorje, Slowenien Gesamtareal: Zentralalpen; Slowenien

Vorkommen: Leuctra istenicae ist kleinräumig auf der Koralpe (Hipfelhütte), der Soboth (St.

Vinzenz) und dem Bachergebirge (Črnjave, Kladje; Bistrica, Smreč) verbreitet.

▲ ► Leuctra istenicae SIVEC, 1982. Foto: W. Graf & A. Schmidt-Kloiber

Höhenvorkommen: montan; 1.083–1.486 m Seehöhe

Biotopbindung: Eukrenal kleinster Quellen

Biologie: Über die Lebensweise der Herbstart (September, Oktober) ist praktisch nichts bekannt. Die Tiere weisen – wie auch andere westalpine Quellorganismen der *L. prima*-Gruppe – starke Flügelreduktionen auf. Ihr Vorkommen in den südlichen Ostalpen unterstreicht die Bedeutung dieser Region als glaziales Refugium.

Gefährdungsgrad: Kärnten: vom Aussterben bedroht (1) (GRAF & KONAR 1999).

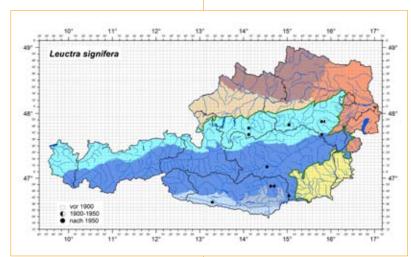
Gefährdungsursachen: siehe unter *L. astridae* **Literatur:** GRAF & WEINZIERL (1999), SIVEC (1982).

Leuctra signifera KEMPNY, 1899

Locus typicus: Urgesbach bei Gutenstein (600 m Seehöhe), Clausgraben (Schneeberg), Niederösterreich

Gesamtareal: Nordalpen, Zentralalpen, Südalpen; Ungarn

Vorkommen: Leuctra signifera ist von den östlichen Kalkalpen (Lunz, Schreierbach, Zobodat; Höllensteingraben, Prein/Rax; Dambach bei Hengstbach, Hinterstoder, Weißenbachmündung in die Steyr, Teichlbach bei Wurzeralmseilbahn, Theischinger 1976) und den Südostalpen (Möschitzgraben bei Judenburg; Krumbach, Kreuzbach im Sobothgebiet; Saualpe, Wagnerhütte, Ladinger Alm, Zobodat) sowie den Südalpen (Guggenberg, westl.


Familie: Plecoptera, Leuctridae Synonyme: *Leuctra austriaca* Au-

BERT, 1954

Endemietyp: Subendemit

Kritische Taxa: – Datenqualität: mäßig Bundesländer: N, O, St, K

Hermagor, 1.137 m Seehöhe, Zobodat) zwischen etwa 500 bis 1.700 m Seehöhe bekannt. Sie wird auch aus den Soproner Bergen gemeldet (Hidegvíz-völgy; Kovács 2006).

Höhenvorkommen: submontan bis subalpin; 490–1.700 m Seehöhe

Biotopbindung: Quellbäche (Hypokrenal) bis mittelgroße Bäche (Metarhithral)

Biologie: Flugzeit September bis Oktober

Gefährdungsgrad: unbekannt

Gefährdungsursachen: siehe *L. astridae*

Literatur: Aubert (1954), Graf & Weinzierl (1999), Kempny (1899), Kovács (2006), Thei-

SCHINGER (1976).

▲ Leuctra signifera KEMPNY, 1899. Foto: W. Graf & A. Schmidt-Kloiber

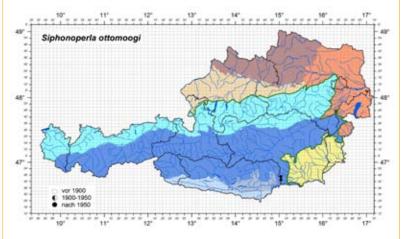
Familie: Plecoptera, Chloroperlidae

Endemietyp: Endemit

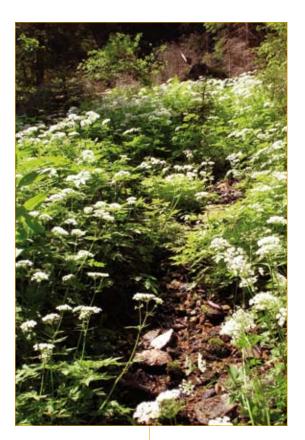
Siphonoperla ottomoogi GRAF, 2008

Locus typicus: Krummbachquellen (Soboth), Steiermark

Gesamtareal: Zentralalpen


Vorkommen: Die kürzlich beschriebene Art liegt bislang nur vom locus typicus vor.

Höhenvorkommen: montan; 1.092 m Seehöhe


▲ Siphonoperla ottomoogi GRAF, 2008. Foto: W. Graf & A. Schmidt-Kloiber

Vom locus typicus vor.

Kritische Taxa: —
Datenqualität: mäßig
Bundesländer: St

590 STEINFLIEGEN

Biotopbindung: Larven der Chloroperlidae werden aufgrund ihrer schlanken Gestalt und ihrer schwach ausgeprägten Pigmentierung oft als Interstitialbewohner angesehen. Untersuchungen dazu fehlen jedoch hinsichtlich der vorliegenden Gattung. Biologie: Die im Mai auftretenden Imagines wurden ausschließlich und relativ häufig in kleinen Rieselquellen an der Ufervegetation gekeschert.

Gefährdungsgrad: unbekannt

Gefährdungsursachen: siehe *L. astridae*

Anmerkungen: Bei *S. ottomoogi* scheint es sich um einen Stenoendemiten der Steirischen Randgebirge zu handeln, bislang wurde die Art nur in Quellrinnsalen im steirischen Sobothgebiet gefunden (im slowenischen Bacher-Gebirge konnte bislang nur *S. montana* (PICTET, 1841) nachgewiesen werden). Die Art ist auch genetisch im Rahmen einer Diplomarbeit gut untersucht (STRADNER 2008). Adulte der Art sind habituell der ebenfalls in Alpenquellen lebenden Art *S. montana* ähnlich.

Literatur: GRAF et al. (2008), STRADNER (2008).

◆ Quelle auf der Soboth. Fundort von Siphonoperla ottomoogi GRAF, 2008. Foto: W. Graf & A. Schmidt-Kloiber

DISKUSSION

Zwar wurden etliche Steinfliegenarten aus Österreich beschrieben (z. B. Kempny 1899, Theischinger 1974, 1976), dennoch weisen nur wenige Endemiten- oder Subendemitenstatus auf: In der vorliegenden Arbeit werden zwei Subendemiten und zwei Endemiten für Österreich genannt. Leuctra signifera, aus der Nähe Gutensteins in Niederösterreich beschrieben und bisher selten in den Ostalpen gefunden, wird nun auch an der ungarisch-österreichischen Grenze gemeldet (Kovács 2006). Von L. istenicae liegen nur wenige Fundorte vor, ihr relativ kurzes Auftreten im Adultstadium und ihr stenökes Vorkommen in Quellen erfordert jedoch eine gezielte Nachsuche. Das Areal dieses Stenoendemiten umfasst nach jetzigem Kenntnisstand die Koralpe, die Soboth und das slowenische Bachergebirge (Pohorje). Die Verbreitung kürzlich beschriebener Arten wie Leuctra astridae oder Siphonoperla ottomoogi ist naturgemäß schlecht bekannt. Beide werden hier vorerst als Endemiten geführt. Die folgenden Arten werden hingegen als Pseudoendemiten behandelt, für die eine weitere Verbreitung angenommen wird:

Protonemura julia Nicolai, 1983 (Nemouridae)

Diese Art wurde aus den Julischen Alpen in Italien beschrieben und in Österreich erstmals südlich von Ferlach nachgewiesen (GRAF & HUTTER 2002). Es liegen insgesamt nur wenige Fundorte der Art vor, die auch aus dem Alpenteil Sloweniens (Sivec mündl. Mitt.) bekannt ist. Ferner wurde kürzlich ein isoliertes Vorkommen an der Grenze zwischen Slowenien und Kroatien (Fluss Čabranka) entdeckt. Der Status der Art als Subendemit gemäß vorgegebener Definition hängt weitgehend von der Anzahl der Fundorte in den jeweiligen Ländern ab und kann zurzeit nicht eindeutig abgeschätzt werden. Die Art lebt submontan in Bächen und fliegt von Mai bis Juni (NICOLAI 1983, FOCHETTI 1995, GRAF & HUTTER 2002).

Nemoura illiesi Mendl, 1968 (Nemouridae)

Die Art zeigt die typische Verbreitung eines Südalpenendemiten mit Nachweisen aus Kärnten (locus typicus: Feistritz im Rosental, Hajnzgraben bei Zell Pfarre, Rabensberg, Loiblbach), Norditalien (Fochetti et al. 1998) und Slowenien (Vrsic im Triglav Nationalpark), allerdings ist auch ein unüberprüfter Nachweis der kaum zu verwechselnden Art aus Mazedonien gemeldet worden (Ikonomov 1986). Die Art lebt zwischen 500–800 m

Seehöhe in Quellen und Quellbächen und fliegt von Mai bis August (MENDL 1968, FOCHETTI 1995, GRAF & HUTTER 2002).

Leuctra malickyi Braasch & Joost, 1976 (Leuctridae)

Diese Art wurde nach einem (möglicherweise missgebildeten) Männchen beschrieben. Bislang sind nur der Holotypus aus Weissenbach bei Ybbs in Niederösterreich (Braasch & Joost 1976) sowie ein Exemplar aus Slowenien (Sivec schriftl. Mitt.) bekannt.

Perla carantana Sivec & GRAF, 2002 (Perlidae)

Aufgrund der verwirrenden Taxonomie der Gattung *Perla* ist die tatsächliche Verbreitung der einzelnen Arten ungenügend bekannt und revisionsbedürftig (Sivec & Stark 2002). *Perla carantana* Sivec & Graf, 2002 dürfte eine weitere Verbreitung haben und wurde vermutlich oftmals missgedeutet. Sie ist durch die Morphologie der Eier klar von *Perla abdominalis* Burmeister, 1839 unterscheidbar und kommt neben den slowenischen Funden (locus typicus: Fluss Iška bei Laibach) in Kärnten (Klagenfurter Becken), Niederösterreich (Nordalpen, Nördliches Alpenvorland) und Wien vor. Sie wurde in unterschiedlichen Gewässern (austrocknende Quellbäche des Wienerwaldes bis zu kleineren, sommerwarmen Flüssen) in Tieflagen (250–450 m Seehöhe) festgestellt (Sivec & Graf 2002, Sivec & Stark 2002, Konar 2002). Sie fliegt zwischen April und Mai und dürfte aufgrund der Larvennachweise einen univoltinen Lebenszyklus haben. Die Art ist keinesfalls ein Endemit Österreichs, ihr bisher bekanntes Areal liegt jedoch mehrheitlich in Österreich, was einen Subendemitenstatus rechtfertigen würde. Allerdings ist aufgrund der oben genannten Gründe eine weitere Verbreitung anzunehmen.

Bis auf letztere Art sind alle genannten Steinfliegenarten Bewohner von Quellen und Quellbächen. Insgesamt zeichnet sich somit eine ähnliche Verbreitung der (sub)endemischen Plecoptera Österreichs wie bei den Trichoptera ab: es handelt sich um Ostalpenarten sowie Arten mit Refugialzentren in den Südalpen und den Steirischen Randgebirgen. Eine genauere Erforschung der Quell(bach)regionen dieser Gebiete wäre wünschenswert.

LITERATURVERZEICHNIS PLECOPTERA

- Aubert, J. (1954): Contribution a l'etude du genre *Leuctra* Stephens et description de quelques especes nouvelles de ce genre. Mitt. schweiz. ent. Ges. 27(2): 124–136.
- Braasch, D. & Joost, W. (1976): *Leuctra malickyi* n. sp. eine neue Plecoptere aus Österreich. Ent. Nachr. 2: 30–32.
- FOCHETTI, R. (1995): Plecoptera. In: MINELLI, A.; RUFFO, S. & LA POSTA, S. (eds): Checklist delle specie della Fauna Italiana. Ministero dell'Ambiente e Comitato Scientifico per la Fauna d'Italia. Fascicolo 37: 1–6.
- Fochetti, R.; De Biase, A.; Belfiore, C. & Audisio, P. (1998): Faunistica e biogeografia regione dei plecotteri italiani. Mem. Soc. Entomol. Ital. 76: 3–19.
- GRAF, W. (1997): A new record of the perlid stonefly *Agnetina elegantula* (Klapalek, 1905) in Europe. In: LANDOLT, P. & SARTORI, M. (eds.): Ephemeroptera & Plecoptera, Biology-Ecology-Systematics, Fribourg/Switzerland, pp. 205–208.
- Graf, W. (1999): Checkliste der Steinfliegen (Plecoptera) Österreichs. Lauterbornia 37: 35–46.
- GRAF, W. (2005): *Leuctra astridae*, a New Species of Plecoptera from the Austrian Alps. Illiesia 1(8): 47–51.
- Graf, W. & Hutter, G. (2002): Neue Daten zur Steinfliegenfauna Österreichs (Insecta, Plecoptera). Linzer biol. Beitr. 34/2: 1085–1090.
- Graf, W. & Konar, M. (1999): Rote Liste der Steinfliegen Kärntens (Insecta: Plecoptera). In: Rottenburg, T.; Wieser, C.; Mildner, P. & Holzinger, W.E. (Red.): Rote Listen gefährdeter Tiere Kärntens. Naturschutz in Kärnten 15: 489–496.
- Graf, W. & Weinzierl, A. (1999): Bemerkenswerte Arten der *Leuctra prima*-Untergruppe (Insecta: Plecoptera) aus den Ostalpen. Lauterbornia 37: 31–34.
- Graf, W. & Weinzierl, A. (2003): Distribution of *Brachyptera starmachi* and *Capnia vidua rilensis*. In: Gaino, E. (Ed.): Research Update on Ephemeroptera & Plecoptera, Perugia, pp. 309–313.
- Graf, W.; Grasser, U. & Weinzierl, A. (1995): Plecoptera. In: Moog, O. (Hrsg.): Fauna Aquatica Austriaca, Lieferung Mai/95, Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Wien.

- Graf, W.; Sivec, I. & Kovács, T. (2002): Perla pallida Guerin, 1838, in Österreich, Slowenien und Ungarn. Lauterbornia 47: 33–41.
- GRAF, W.; STRADNER, D. & WEISS, S. (2008): A new *Siphonoperla* species from the Eastern Alps (Plecoptera: Chloroperlidae), with comments on the genus. Zootaxa 1891: 31–38.
- Grasser, U. & Graf, W. (2003): Erste Erfahrungen mit dem Potamon-Typie-Index (Schöll & Haybach, 2001) in Österreich. Lauterbornia 47: 153–173.
- Ikonomov, P. (1986): Plécopteres de Macédoine (Insecta: Plecoptera). Taxonomie et distribution. Acta Mus. Macedonici Sci. Nat. 18: 81–121.
- Kempny, P. (1899): Zur Kenntnis der Plecopteren.II. Neue und ungenügend bekannte *Leuctra*-Arten. III. Theil (Schluss). Verh. Zool.-Bot. Ges. Wien 49: 269–279.
- KONAR, M. (2002): Zur Verbreitung ausgewählter benthischer Invertebraten in Kärnten (Plecoptera, Trichoptera: Rhyacophila s.str.) unter besonderer Berücksichtigung von Determinationsproblemen. Dissertation Universität Graz, 183 pp.
- Kovács, T. (2006): Data to the Hungarian distribution of Plecoptera. Folia Historico Naturalia Musei Matraensis 30: 181–188.
- Kovács, T.; Graf, W. & Ambrus, A. (2004): Besdolus ventralis (Pictet, 1841) and Isogenus nubecula Newman, 1833 from the Austrian reaches of the Lafnitz river (Plecoptera: Perlodidae). Folia ent. hung. 65: 33–36.
- MENDL, H. (1968): Plecopteren aus Österreich. Gewässer und Abwässer 47: 61–73.
- NICOLAI, P. (1983): A new species of *Protonemura* from the Italian Julian Alps (Plecoptera, Nemouridae). Aquatic Insects 5(3): 173–176.
- RAUŠER, J. (1957): Zur Kenntnis der Steinfliegenfauna (Plecoptera) der Donau. Zoologicke Listy, Folia Zoologica, Rocnik, 6(20), 3: 257–282.
- RAVIZZA, C. & VINÇON, G. (1989): Leuctra marinettae n. sp., Plecoptere nouveau des Alpes francaises. Boll. Soc. entomol. ital. 121(1): 19–23.
- RAVIZZA, C. & VINÇON, G. (1991): Une nouvelle espece de Plecoptere des Prealpes francaises: Leuctra zwicki n. sp. (Plecoptera, Leuctridae). Nouv. Revue Ent. (N.S.) 8(1): 61–65.
- RAVIZZA, E. & VINÇON, G. (1994): *Leuctra ravizzai*, an orophilic new species of *Leuctra* from the Western Alps (Plecoptera). Aquatic Insects 16(2): 91–94.
- RAVIZZA, C. & VINÇON, G. (2003): Leuctra queyarassiana orsiera, a new sub-

592 LIBELLEN

species of *Leuctra* from the Cottion Alps, Italy (Plecoptera, Leuctridae). Boll. Soc. entomol. ital. 135(1): 19–23.

RAVIZZA, C. & ZWICK, P. (1981): Un dimenticato Opuscolo ottocentesco della Letteratura entomologica italiana. Natura – Soc. ital. Sci. nat., Museo civ. Stor. nat. e Acqurio civ., Milano, 72(1-2): 119–124.

SIVEC, I. (1982): A new apterous species of *Leuctra* (Plecoptera: Leuctridae) from Slovenia, Yugoslavia. Aquatic Insects 4(2): 89–92.

SIVEC, I. & GRAF, W. (2002): Perla carantana — a new species of the genus Perla (Plecoptera: Perlidae) from Austria and Slovenia. Natura Sloveniae 4(1): 31–38.

SIVEC, I. & STARK, B.P. (2002): The species of *Perla* (Plecoptera: Perlidae): Evidence from Egg Morphology. Scopolia 49: 1–33.

STRADNER, D. (2008): Molecular systematics, evolution and zoogeography of the stonefly genus *Siphonoperla* Zwick, 1967 (Plecoptera, Chloroperlidae). Diplomarbeit Univ. Graz, 69 pp.

Bearbeiter: A. Chovanec

THEISCHINGER, G. (1974): Plecoptera (Insecta) aus Oberösterreich, I. Rhabdiopteryx navicula spec. nov. (Taenioterygidae) aus dem Innviertel. Naturkdl. Jb. Linz 1974: 185–194.

Theischinger, G. (1976): Plecoptera (Insecta) aus Oberösterreich, III. Linzer biol. Beitr. 8/1: 161–177.

VINÇON, G.; RAVIZZA, C. & AUBERT, J. (1995): Leuctra subalpina, a new species of Leuctridae (Insecta, Plecoptera) from the western Alps and the Apennines. Aquatic Insects 17(3): 181–186.

ZWICK, P. (1992): Stream habitat fragmentation – a threat to biodiversity. Biodiversity and Conservation 1: 80–97.

ODONATA (LIBELLEN)

Innerhalb der Insekten repräsentieren die Libellen mit weltweit etwa 6.000 Arten eine verhältnismäßig kleine Ordnung. In Europa sind zwei der drei Unterordnungen vertreten: Zygoptera (Kleinlibellen) und Anisoptera (Großlibellen). In Österreich sind 77 Libellenarten nachgewiesen (Zygoptera: 27 Arten, Anisoptera: 50 Arten). Eine umfassende Übersicht über Verbreitung und Biologie der Arten wird von RAAB et al. (2006; Berücksichtigung der Daten bis 2003) gegeben. Die Nachweise von Einzelfunden der Östlichen Weidenjungfer

(*Lestes parvidens*) im Burgenland im Jahr 2005 seien an dieser Stelle vermerkt (OLIAS 2005; vgl. dazu auch die Diskussion über die Differenzierung zwischen der Weidenjungfer (*Lestes viridis*) und *L. parvidens*, z. B. JÖDICKE 1997).

Der Wissensstand zu Taxonomie und Biologie der heimischen Arten ist hoch und die Zahl von Bearbeitern in Österreich ist verhältnismäßig groß. Daher ist die Datenlage zur Verbreitung der Libellen in Österreich als gut zu bezeichnen. Nicht zuletzt deshalb werden Libellen auch oft als Bioindikatoren im Rahmen wasserwirtschaftlicher und naturschutzfachlicher Studien herangezogen (z. B. Chovanec & Waringer 2001).

In der für Österreich veröffentlichten Roten Liste (RAAB et al. 2006) sind 19 Arten als vom Aussterben bedroht, neun Arten als stark gefährdet und 16

Arten als gefährdet eingestuft. Bei acht Arten droht Gefährdung, 25 Arten wurden als nicht gefährdet beurteilt. Somit sind 52 der in Österreich vorkommenden Arten (68 %) in unterschiedlichen Gefährdungsstufen angeführt. Die große Zahl von gefährdeten Libellenarten basiert auf den Auswirkungen anthropogener Eingriffe, die zu einer österreichweiten ökologischen Degradierung unterschiedlicher Gewässertypen führten. In diesem Zusammenhang sind insbesondere Regulierungen und andere schutzwasserbauliche Maßnahmen, energiewirtschaftliche Nutzungen von Flusssystemen, Verlust von Überflutungsflächen und flächenhafte Entwässerungen zu nennen.

Trotz des hohen Flugvermögens und der Ausbreitungsfähigkeit von Libellen ist das Auftreten endemischer Arten auf Inseln nicht selten, beispielsweise sind 85 % der Kleinlibellen- und 36 % der Großlibellenarten der Philippinen endemisch (Corbet 1999). Die postglaziale Besiedlungsgeschichte der mitteleuropäischen Libellenfauna wurde von Sternberg (1998) zusammengefasst. Für Mitteleuropa und Österreich können keine endemischen Libellenarten angeführt werden. Eine faunistische Besonderheit stellt aber die Sibirische Azurjungfer (Coenagrion hylas) dar. Diese Art kommt in Österreich und ganz Europa aktuell nur in Nordtirol (Lechtal und Oberinntal) vor (RAAB et al. 2006).

Coenagrion hylas (Trybom, 1889) Sibirische Azurjungfer (Zygoptera)

Diese Art gilt als mandschurisches Faunenelement mit postglazialer Disjunktion in Europa und im nordöstlichen Uralgebiet. Das Hauptverbreitungsgebiet in Asien reicht etwa von Kamtschatka und Hokkaido im Osten bis an den Oberlauf des Ob im Westen.

▲ Coenagrion hylas (TRYBOM, 1889). Foto: J. Müller

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Carinthia II - Sonderhefte

Jahr/Year: 2009

Band/Volume: Endemiten

Autor(en)/Author(s): Graf Wolfram

Artikel/Article: Plecoptera (Steinfliegen) 586-592