Ein einfacher Beweis eines allgemeinen Gesetzes von F. E. Wright für den Durchgang des Lichtes durch eine Kristallplatte.

Von Fr. Schwietring in Celle (Hannover).

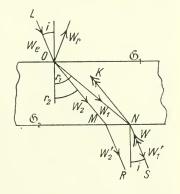
Mit 1 Textfigur.

F. E. Wright ¹ hat kürzlich ein allgemeines Gesetz für den Durchgang des Lichtes durch eine durchsichtige inaktive Kristallplatte aufgestellt, die sich in einem einfachbrechenden Medium befindet. Es falle auf die obere Grenzebene \mathfrak{G}_1 der Platte eine ebene Welle W_e geradlinig polarisierten oder natürlichen Lichtes, der Einfallswinkel sei i, die uniradialen Polarisationsazimute in der einfallenden Wellenebene seien ε_1 , ε_2 . Die reflektierte Welle heiße W_r , die beiden gebrochenen Wellen W_1 , W_2 in der Platte

mögen die Brechungswinkel r_1 , r_2 besitzen. Die durch Brechung an der unteren Grenzebene \mathfrak{G}_2 entstehenden Wellen W_1 ' und W_2 ' haben beide denselben Normalenwinkel i wie die einfallende Welle W_e , ihre Polarisationsazimute seien δ_1 , δ_2 . Dann lautet das allgemeine Gesetz:

$$\delta_1 = \epsilon_2 + 90^\circ, \ \delta_2 = \epsilon_1 + 90^\circ.$$

Die Polarisationsazimute δ_1 , δ_2 der beiden aus der Platte austretenden Wellen W_1 ', W_2 ' unterscheiden sich um 90° von



den uniradialen Polarisationsazimuten ε_2 , ε_1 der einfallenden Welle W_e . Die Herleitung dieser Beziehung erfolgt bei Wright durch eine längere Rechnung, die sich hauptsächlich auf die Grenzbedingungen der elektromagnetischen Lichtheorie und auf die Potier'schen Relationen 2 stützt.

Wright vergleicht sein durch 1 dargestelltes allgemeines Gesetz mit einem Satze von A. Potier 3 , der formal ganz ähnlich gebaut ist. Nach diesem Satze ist δ_1 um 90° von dem uniradialen Polarisationsazimut \mathbf{e}_2 verschieden, für das bei umgekehrtem Strahlengang eine in der Richtung SN einfallende Welle W nur eine gebrochene Welle in der zu MO parallelen Richtung NK erzeugt. Ähnlich ist δ_2 um 90° von dem uniradialen Polarisationsazimut \mathbf{e}_1 verschieden, für das eine in der Richtung RM einfallende Welle

¹ F. E. Wright, Min.-petr. Mitt. 30. p. 194, 1911.

² Vergl. F. Schwietring, Inaug.-Diss. Göttingen. 1908. N. Jahrb. f. Min. etc. Beil.-Bd. XXVI. p. 306. 1908.

³ A. Potier, Journ. d. Phys. (2.) 10. p. 354. 1891.

340 H. Reck,

nur eine gebrochene Welle in der zu NO parallelen Richtung erzeugt. Also ist nach Potier:

$$\delta_1 = e_2 + 90^\circ, \ \delta_2 = e_1 + 90^\circ.$$
 2.

Es sei nun darauf hingewiesen, daß die Gleichungen 1 sehr leicht aus 2 folgen. Nach der Formel für das uniradiale Polarisationsazimut ist ε_1 nämlich nur eine Funktion von den Polarisationskonstanten des Kristalls und von i. e_1 ist aber dieselbe Funktion von i und auch von denselben Polarisationskonstanten, weil die optischen Symmetrieachsen gegen \mathfrak{G}_1 und gegen \mathfrak{G}_2 dieselbe Lage aufweisen. Folglich müssen ε_1 und e_1 übereinstimmen und entsprechend auch ε_2 und e_2 :

$$\epsilon_1 = e_1, \ \epsilon_2 = e_9.$$
 3.

Auf Grund von 3 gehen die Gleichungen 2 aber in der Tat in 1 über. Die von F. E. Wright aufgestellte allgemeine Beziehung 1 folgt also sofort aus der Potter'schen Beziehung 2 und ist ihrem Inhalt nach im wesentlichen mit der letzteren identisch.

Der analytische Beweis von 1 mit Hilfe der Grenzbedingungen und der Potier'schen Relationen läßt sich übrigens einfacher und übersichtlicher führen als bei Wright. Eine genaue Ausrechnung von δ_1 , δ_2 ist dazu nicht erforderlich. Bildet man z. B. die Grenzbedingungen für eine mit dem uniradialen Polarisationsazimut ε_2 auf die Grenzebene \mathfrak{G}_1 fallende Welle W_e und für die auf \mathfrak{G}_2 fallende Welle W_1 , so ergibt sich bei geeigneter Multiplikation von je zwei der acht Gleichungen und darauf folgender Addition bei Berücksichtigung von drei Potier'schen Relationen: $\delta_1 = \varepsilon_2 + 90^\circ$. Der allgemeine Gang der Rechnung ist dabei ganz derselbe wie für die früher von mir angegebene Herleitung der Potier'schen Gleichungen δ_1

Zur Altersfrage des Donaubruchrandes.

Von Hans Reck in Berlin.

E. Fraas ³ neueste interessante Arbeit über den Donauabbruch gab mir im Vergleich mit meinen eigenen morphologischen Studien über das Gebiet ⁴ die Anregung zu den folgenden Zeilen.

Als das wichtigste Resultat der Fraas'schen Schrift dürfte wohl der durch die neuen Bohrungen bei Langenau nunmehr un-

¹ Vergl. F. Schwietring, a. a. O. p. 307.

² F. Schwietring, a. a. O. p. 328.

³ E. Fraas, Die Tertiärbildungen am Albrand in der Ulmer Gegend. Jahresh. 1911, p. 535 ff.

⁴ H. Reck, Die morphologische Entwicklung der süddeutschen Schichtstufenlandschaft im Lichte der Davis'schen Cyklustheorie. Zeitschr. d. deutsch, geol. Gesellsch. 1912.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Centralblatt für Mineralogie, Geologie und

<u>Paläontologie</u>

Jahr/Year: 1912

Band/Volume: 1912

Autor(en)/Author(s): Schwietring Fr.

Artikel/Article: Ein einfacher Beweis eines allgemeinen Gesetzes von F. E. Wright für den Durchgang des Lichtes durch eine Kristallplatte. 339-

<u>340</u>