- 3. St. v. Gaal: Bericht über meine stratigraphischen Untersuchungen im Siebenbürger Becken (ungarisch). 1911.
- 4. Die sarmatische Gastropodenfauna von Rákosd. (Mitteil. aus d. Jahrb. d. kgl. ungar, geol. R.-Anst.) Budapest 1911.
- 5. A. Koch: Die Tertiärbildungen des Beckens der siebenbürgischen Landesteile. II. Teil. Neogene Gruppe. Budapest 1900.
- 6. R. Lachmann: Der Salzauftrieb. Halle 1911.
- 7. L. v. Lóczy: Über die Petroleumgebiete Rumäniens im Vergleich mit dem neogenen Becken Siebenbürgens. (Földtani Közlöny 41. Bd.) Budapest 1911.
- 8. K. v. Papp: Über die staatliche Schürfung auf Kalisalz und Steinkohle. (Jahresber, d. kgl. ungar. geol. R.-Anst. für 1907.) Budapest 1909.
- 9. — Source de méthane à Kis-Sármás. (Földt. Közl. 40. Bd.) Budapest 1910.
- F. v. Pavay-Vajna: Die geolog, Verhältnisse der Umgebung von Oláh-Lapád. (Földt. Közlöny. 40. Band.) Budapest 1911.
- 11. O. Phleps: Geologische Beobachtungen über die im Becken Siebenbürgens beobachteten Vorkommen von Naturgasen mit besonderer Berücksichtigung der Möglichkeit des damit in Beziehung stehenden Petroleumvorkommens. Brassó 1906.
- 12. C. Schmidt: Geologisches Gutachten über das Vorkommen von Naturgasen und Erdöl in der Umgebung von Baassen bei Mediasch in Siebenbürgen. Brassó 1910.
- 13. Geologische Notizen über einige Vorkommen von Braunkohle in Siebenbürgen. (Földt. Közl. 41. Bd.) Budapest 1911.
- 14. L. Róth v. T.: Geologischer Bau des siebenbürgischen Beckens in der Umgebung von Balázsfalva. (Jahresb. d. kgl. ungar. geol. R.-Anst. für 1906.) Budapest 1907.
- 15. Geologischer Bau des Siebenbürger Beckens in der Umgebung von Zsidve, Felsöbajom und Asszonyfalva. (Jahresb. d. kgl. ungar. geol. R.-Anst. für 1907.) Budapest 1909.
- 16. K. Róth v. T.: Die geol. Verhältnisse der Umgebung von Köhalom (ungarisch). Budapest 1910.

Elastizität trockener und feuchter Gesteine.

Von Hans Hess.

Mit 1 Textfigur.

Die Erscheinungen des treibenden, druckhaften Gesteins und des Bergschlages in Stollen und Tunnels sowie der Versuch, auf das hiebei zu beobachtende Verhalten der Gesteine eine Erklärung der glazialen Erosion zu gründen, gaben mir Veranlassung, den Einfluß der Feuchtigkeit auf die Elastizität der Gesteine durch sorgfältige Messung zu studieren.

472 H. Hess,

Als Versuchsobjekt diente ein feinkörniger Sandstein aus dem Bruche der "Deutschen Steinwerke" in Zeil a. M., der in die Formation des Schilfsandsteines gehört.

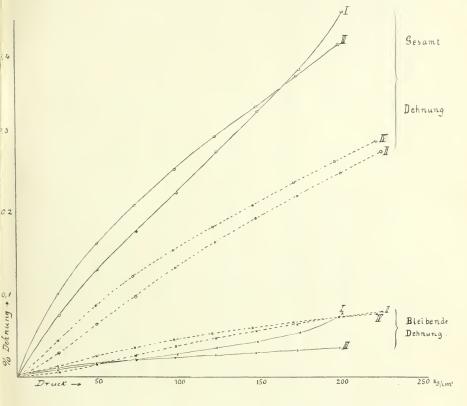
Die Versuche wurden im Materialprüfungsamt der bayr. Landesgewerbeanstalt nach meinen Angaben und mit meiner Beteiligung an der Laboratoriumsarbeit ausgeführt. Die nötigen Wägungen und die Durchtränkung der Probestücke unter der Luftpumpe habe ich im Laboratorium des Realgymnasiums Nürnberg gemacht.

Mit 15 Würfeln von ca. 5 cm Kantenlänge wurde zunächst die Druckfestigkeit des Materials ermittelt.

Es ergab sich:

- a) für vollkommen trockenes Material 481, 580, 618, 514 kg/cm^2 , im Mittel 548 kg/cm^2 ;
- b) für vollkommen feuchtes Material 275, 338, 432, 356, 317 kg/cm², im Mittel 344 kg/cm²;
 - c) für halbfeuchtes Material:

bei 4,38 Volumprozent Wasser 386 kg/cm^2 , 4,44 , 374 , 374 ,


, 11,30 , 348

In vollkommen feuchtem Zustande, bei dem die Sättigung mit Wasser unter der Luftpumpe stattfand, hatten die Würfel 16,0, 15,85, 16,18, 16,20, 16,20 Volumprozent Wasser.

Man bemerkt, daß die Druckfestigkeit mit zunehmendem Wassergehalt geringer wird und bei vollkommener Sättigung um rund 37% kleiner ist, als bei völlig trockenem Zustande des Sandsteins.

Für die Untersuchung der Druckelastizität wurden vier prismatische Säulen von fast genau quadratischem Querschnitt und ca. 20 cm Länge aus dem Sandsteinblock herausgeschnitten. Davon waren zwei annähernd parallel, zwei senkrecht zu der mutmaßlichen, nicht sicher erkennbaren Schichtung des Steins gelagert. Je eine dieser Säulen wurde in trockenem, die andere in völlig feuchtem Zustande (auch während der Versuche von Wasser umgeben) geprüft. Die Prismen waren an den Längsseiten mit 10, bezw. 5 cm langen Schienen armiert, deren Bewegungen auf Spiegel übertragen wurde, so daß im Fernrohr mit 500 facher Vergrößerung die Verschiebungen abgelesen werden konnten. In den folgenden Tabellen sind die Ablesungen von je zwei Gegenseiten des Prismas addiert und als s₁, s₂ bezw. r₁, r₂ angegeben; die s bedeuten die Gesamtdeformation, die r die bleibende Formänderung. Die Zahlen in der Reihe $\frac{s_1 + s_2}{2}$ und die unter $\frac{r_1 + r_2}{2}$ geben zehntausendstel Millimeter an. Um diese Beträge wurden bei den beigefügten Drucken die mittleren 10 cm der Säulenlänge gekürzt. Die Drucke wurden vor der Ablesung bei jeder Belastung zwei Minuten lang konstant gehalten, ebenso wurde auch erst zwei Minuten nach der Entlastung abgelesen, während der Versuche war die Temperatur fast unverändert.

Das Ergebnis der Tabellen ist in Fig. 1 zusammengefaßt.

Es zeigt sich: 1. Die Größen der Gesamtdeformation sind für die beiden trockenen Säulen annähernd gleich, aber wesentlich kleiner als für die nassen, für welche auch annähernd gleiche Werte bei den einzelnen Drucken erhalten wurden.

- 2. Die bleibende Deformation macht bei den trockenen Säulen im Durchschnitt $28,6\,^{\circ}/_{0}$ der Gesamtdeformation aus, bei den nassen dagegen nur $11,5\,^{\circ}/_{0}$; sie ist in letzterem Falle auch dem absoluten Werte nach kleiner als im ersteren.
- 3. Bei Wiederholung der Pressung zeigt sich für jede Druckstufe eine Zunahme der Gesamtdeformation. Diese Zunahme ist für die nassen Säulen viel größer als für die trockenen und wird mit Annäherung an die Druckgrenze sehr beträchtlich (vergl. No. 1 naß). Es ist also auch für dieses Material, wie für andere, bei lange Zeit konstant bleibendem Druck zunehmende Deformation zu erwarten.

474 H. Hess,

Sandsteinprisma No. 1, naß. Druckfläche 25,00 cm². Meßlänge 10 cm. Temp. 17,3 °.

Druck kg/cm²	S ₁	\mathbf{S}_2	$\frac{\mathbf{s_1} + \mathbf{s_2}}{2}$	$\mathbf{r_{1}}$	r ₂	$\frac{\mathbf{r_1} + \mathbf{r_2}}{2}$
25,5	743	743	743	85	86	85,5
	761	757	759	91	92	91,5
49,3	1275	1270	1272,5	144	143	143,5
	1293	1291	1292	157	157	157
	1314	1306	1310	165	163	164
73,5	1747	1743	1745	200	200	200
	1762	1758	1760	213	213	213
	1787	1782	1784,5	221	220	220,5
98,0	2202	2201	2201,5	262	262	262
	2241	2242	2241,5	279	281	280
	2262	2261	2261,5	290	292	291
123,0	2667	2675	2671	333	338	335,5
	2709	2718	2713,5	352	359	355,5
	2739	2750	2744,5	362	369	365,5
	2757	2770	2763,5	373	381	377
148,4	3136	3157	3146,5	415	427	421
	3175	3198	3176,5	435	449	442
	3222	3245	3233,5	442	457	449,5
174,0	3658	3658	3658	494	513	503,5
	3690	3734	3712	531	556	543,5
	3756	3807	3781,5	550	581	565,5
200,0	4230	4306	4268	622	666	644
	4396	4498	4447	684	743	743,5
	4548	4679	4613,5	725	803	764
	4701	4865	4783	761	863	812

Bruch bei 220,7 kg/cm².

Was zunächst die unter 2. berührte Tatsache betrifft, daß die bleibende Formänderung für die nassen Säulen kleiner als für die trockenen ist, so scheint mir, es sei diese auf teilweise Lösung des Bindemittels des Sandsteins zurückzuführen. Jedenfalls kann die mit wachsendem Wassergehalt abnehmende bleibende Formänderung nicht als Ursache der wachsenden Gesamtdeformation

475

Elastizität trockener und feuchter Gesteine.

Sandsteinprisma No. 2, trocken. Druckfläche 25,21 cm². Meßlänge für s_t 10 cm; für $\frac{s_2}{2}$ 5 cm. Temp. 17,5 °.

Druck kg/cm²	S ₁	\mathbf{S}_2	$\frac{\mathbf{s_1} + \mathbf{s_2}}{2}$	$\mathbf{r}_{_{1}}$	r_2	$\frac{\mathbf{r_1} + \mathbf{r_2}}{2}$
25,25	293	292	292,5	62	62	62
	292	290	291,0	63	62	62,5
49,0	630	634	632,0	156	162	159
	645	650	647,5	172	176	174
	653	662	657,5	181	184	182,5
72,9	971	978	974,5	268	268	268
	982	986	984	282	292	287
	991	998	994,5	290	296	293
97,2	1302	1314	1308	366	374	370
	1320	1330	1325	390	394	392
	1330	1336	1333	397	408	402,5
122,0	1610	1620	1615	460	466	463
	1629	1638	1633,5	480	490	485
	1635	1644	1639,5	492	498	495
	1639	1644	1641,5	497	502	499,5
147,1	1898	1910	1904	548	554	551
	1910	1918	1914	563	570	566,5
	1922	1926	1924	574	576	575
172,6	2175	2184	2179,5	623	626	624,5
	2192	2198	2195	646	652	649
	2202	2214	2208	655	660	657,5
198,2	2440	2452	2446	693	700	696,5
	2456	2464	2460	715	722	718,5
	2468	2478	2473	734	742	738
224,1	2702	2710	2706	773	782	777,5
	2716	2728	2722	797	806	801,5
	2729	2740	2734,5	812	824	818
-						

Bruch bei 472 kg/cm².

H. Hess,

Sandsteinprisma No. 3, naß. Druckfläche 25,25 cm². Meßlänge 10 cm. Temp. 17,1°.

Druck kg/cm ²	$\mathbf{s}_{\mathbf{i}}$	S ₂	$\frac{s_1 + s_s}{2}$	r,	r,	$\frac{\mathbf{r_1} + \mathbf{r_2}}{2}$
25,2	992	998	995	109	113	111
	998	1 014	1006	118	122	120
48,8	1601	1610	1605,5	164	170	167
	1610	1621	1615,5	173	177	175
	1620	1631	1625,5	178	182	180
72,7	2070	2080	2075	201	206	203,5
	2075	2095	2085	205	211	208
	2094	2104	2099	211	218	214,5
97	2491	2506	2498,5	230	237	233,5
	2501	2513	2507	239	246	242,5
	2519	2532	2525,5	240	247	243,5
122,0	2870	2884	2877	260	268	264
	2887	2904	2895,5	268	275	271,5
	2899	2918	2908,5	260	269	264,5
	2915	2934	2924,5	269	277	273
146,8	3235	3257	3246	280	288	284
	3261	3285	3273	284	295	289,5
	3279	3305	3292	290	301	295,5
172,2	3 5 97	3628	3612,5	304	317	301,5
	3630	3661	3645,5	313	328	320,5
	3650	3681	3665,5	313	328	320,5
198,0	3964	3999	3981,5	322	338	330
	4004	4041	4022,5	330	350	340
	4028	4068	4048	332	361	346,5

Bruch bei 355 kg/cm².

betrachtet werden. Es ist der elastische Teil der letzteren, der mit dem Wassergehalt des Gesteins zunimmt. Die Durchtränkung des Sandsteins bewirkt, daß die Druckausbreitung von den Preßplatten aus eine weit günstigere ist, als im trockenen Stein.

Nun sind die Ergebnisse, die hier mit einem Material gewonnen wurden, welches sehr viel Wasser aufnehmen kann, wohl

Sandsteinprisma No. 4, trocken. Druckfläche $5{,}046$. $5{,}066=25{,}56$ cm². Meßlänge 10 cm. Temp. 18° .

Druck kg/cm²	s_1	$\mathbf{S_2}$	$\frac{\mathbf{s_1} + \mathbf{s_2}}{2}$	$\mathbf{r_i}$	$\mathbf{r_2}$	$\frac{\mathbf{r_1} + \mathbf{r_2}}{2}$
25,0	432	432	432	115	117	116
	440	439	439,5	124	124	124
48,3	863	865	86 4	252	253	252,5
	877	875	876	269	271	270
	882	885	883,5	276	277	276,5
72,0	1212	1213	1212,5	356	356	356
	1228	1230	12 2 9	375	377	376
	1234	1234	1234	386	387	386,5
96,0	1525	1525	1525	448	449	448,5
	1533	1534	1535,5	461	462	461,5
	1543	1543	1543	471	473	472
120,5	1809	1810	1809,5	515	518	516,5
	1829	1829	1829	539	542	540,5
	1833	1832	1832,5	539	542	540,5
	1836	1838	1837	550	552	551
145,5	2086	2084	2085	585	588	586,5
	2095	2093	2094	602	605	603,5
	2103	2101	2102	613	614	613,5
170,6	2350	2344	2347	651	651	651
	2362	2358	2360	666	666	666
	2366	2361	2363,5	675	672	673,5
195,8	2592	2586	2589	710	706	708
	2609	2600	2604,5	722	717	719,5
	2623	2616	2619,5	737	732	734,5
221,5	2837	2831	2834	766	759	762,5
	2847	2840	2843,5	783	777	780
	2860	2852	2856	789	781	785

Bruch bei 572,5 kg/cm².

nicht ohne weiteres zu verallgemeinern. Ich hoffe auch späterhin ähnliche Versuche für andere Gesteine ausführen zu können. Aber was bisher über den Einfluß des Wassergehaltes auf die Druckfestigkeit bekannt ist 1, zeigt doch, daß diese für feuchtes Material kleiner ist als für trockenes. (Kalksteine geben durchschnittlich 15 ⁰/₀, gemengte kristalline Gesteine 9—12 ⁰/₀ [Basalt allerdings 0°/0], Trümmergesteine 15-36°/0 Abnahme.) Eine Verallgemeinerung des oben geschilderten Ergebnisses wird also wohl bis zu einem gewissen Grade zulässig sein. Dann darf man meines Erachtens so schließen: Im wasserhaltigen Gestein ist die Ausbreitung des Druckes eine wesentlich bessere als im trockenen: man hat deshalb für die Beurteilung der Druckhaftigkeit des Gebirges im Bohrloch oder im Stollen nicht nur mit der vertikalen Überlagerung der untersuchten Stelle, sondern auch mit beträchtlichen Seitendrucken zu rechnen, die unter Umständen den Vertikaldruck übertreffen können. In dem Stollen z. B., der 1911 für den Tunnel der Furkabahn getrieben wurde, gab es in talkigem Schiefer in etwa 80 m Entfernung vom Eingang, also bei höchstens 60 m Vertikaldruck (ca. 15 kg/cm²), derart starke Pressungen in dem sehr feuchten mürben Material, daß täglich Stützbalken von 35 cm Durchmesser erneuert werden mußten. Hier hat sicherlich ein beträchtlicher Seitendruck, der unter Vermittlung des Wassers übertragen wurde, die Druckhaftigkeit des Gesteins, das an sich geringe Druckfestigkeit hat, wesentlich gesteigert.

Die Erscheinungen des Bergschlages und des treibenden Gesteins, welche C. Schmidt in eingehender Weise schildert, ergeben sich nach dem Vorausgehenden als elastische Rückwirkung des gepreßten Gesteins nach der gegendruckfreien Stelle im Stollen, und ob das Gestein schlagend oder treibend ist, hängt im wesentlichen davon ab, wie nahe der Druck, unter dem es steht, an die Bruchgrenze des Materials heranreicht.

Noch in anderer Hinsicht läßt sich meines Erachtens das Ergebnis der Elastizitätsmessungen verwenden. Die Oberflächenschichte des Gebirges wird auch nach normalen Niederschlägen durch die bewegte Luft getrocknet und daher bis zu einer gewissen Tiefe fester sein als das tiefer liegende feuchte Gestein. Dieses ist von einem festen Mantel eingehüllt, durch dessen allseitigen Druck die Elastizitätsgrenze des Berginnern erhöht wird³. Daher werden für gewöhnlich selbst am Fuß sehr hoher und steiler Talwandungen die Erscheinungen des druckhaften Gebirges nicht

Vergl. hierzu: M. GARY, Mitteilungen a. d. k. techn. Versuchslaboratorium Berlin 1897, 1898, 1900.

² Vergl. C. Schmidt: Die Geologie des Simplongebirges und des Simplontunnels. Rektoratsprogramm, Basel 1908. S. 55 u. f., besonders S. 70.

³ Vergl. v. Karmán, Zeitschr. d. Ver. deutsch. Ing. 1911. p. 1792 ff.

beobachtet. Bei lang anhaltenden heftigen Regengüssen, die eine starke Durchtränkung des Gesteins mit Wasser herbeiführen, können aber Muhrbrüche und Bergstürze ausgelöst werden. In dem Zustande der Sättigung mit Wasser befindet sich nun aber das Gestein unter einer mächtigen Decke von Schnee und Eis; es wird bei entsprechend großer Erhebung über ein Gletscherbett im Bereiche des letzteren druckhaft und muß die Erosionsarbeit des Gletschers wesentlich begünstigen. Mir scheint, unter Beachtung dieser Verhältnisse wird es verständlich, warum die großen Eisströme, welche in den Haupttälern der Gebirge sicher kürzere Zeit lagerten als die Gletscher in den Nebentälern, doch imstande waren, die Übertiefung der großen Täler zu erzeugen. Im wasserhaltigen Gestein wird der Druck von den Bergrücken der Talwandungen her bis zum Gletscherbett übertragen, und da dieses in dem inhomogenen Gebirge durchaus nicht immer von Material der höchsten Widerstandsfähigkeit gebildet ist, sondern sehr häufig in Gestein von geringer Druckfestigkeit verläuft, so sind die Bedingungen für zerstörende Wirkungen, die der Gebirgsdruck veranlaßt, häufig gegeben. Wo aber, wie etwa am Rhoneknie bei Martigny, so festes Material wie die Ausläufer des Mt. Blanc-Massivs durchsetzt wird, da ist die erodierende Wirkung des Gletschers wegen der geringen Druckhaftigkeit des Gesteins stark reduziert obgleich die Gletschermasse mit gesteigerter Geschwindigkeit eine Talenge passieren muß. Für die erodierende Wirkung des Eises auf Hochflächen (Grönland etc.) kommt wohl nur die Frostverwitterung auf der Gletschersohle zur Erklärung in Betracht; aber schon in den Fjorden, durch welche das Inlandeis dem Meere zuströmt, dürfen die in dieser Mitteilung erörterten Druckwirkungen mit zur Erklärung herangezogen werden 1.

Berichtigung. Von Albrecht Spitz in Wien.

Auf p. 26 von Band 3 der "Geolog. Rundschau" hat O. Wilk-Kens meine Auffassung der Rhein-Rhonetalzone angegriffen. Gleichwohl antworte ich an dieser Stelle, da ich die folgenden, ursprünglich für die Geol. Rundschau bestimmten Zeilen auf Wunsch ihrer Redaktion (mit Rücksicht auf den beschränkten Raum) von dort zurükzog.

Ich bedauere, daß Wilckens mit einer Bemerkung das sachliche Gebiet zu verlassen beginnt. Ich werde ihm hierin nicht folgen, obwohl es mir nicht schwer fiele, die Lacher auf meine

¹ Vergl. z. B. Косн und Wegener, Die glaciologischen Beobachtungen der Danmark-Expedition. Kopenhagen 1911. p. 44.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Centralblatt für Mineralogie, Geologie und

<u>Paläontologie</u>

Jahr/Year: 1912

Band/Volume: 1912

Autor(en)/Author(s): Hess Hans

Artikel/Article: Elastizität trockener und feuchter Gesteine. 471-479