A. Johnsen, Gräphische Ableitung etc.

321

Original-Mitteilungen an die Redaktion.

Graphische Ableitung der beiden optischen Achsen trikliner Kristalle aus den Auslöschungsrichtungen von fünf Flächen.

Von A. Johnsen in Kiel.

Mit einer Figurenbeilage.

I. Einleitung.

Die von A. FRESSEL¹ gefundene Beziehung zwischen den zwei Polarisationsebenen einer Wellennormale und den beiden optischen Achsen nimmt für senkrechten Einfall homogener Strahlen gegen eine planparallele Kristallplatte bei gekreuzten Nicols eine besondere Form an. Diese läßt sich, wenn man die Nicolhauptschnitte in der Auslöschungslage der Platte als deren Auslöschungsebenen bezeichnet, folgendermaßen ausdrücken: Die zwei Auslöschungsebenen S und <u>S</u> halbieren die Winkel der beiden durch Plattennormale und je eine der optischen Achsen ϱ und $\underline{\varrho}$ gelegten Ebenen T und T'.

Als analytischen Ausdruck dieses Satzes findet man, wenn

$$\begin{split} \mathbf{S} &= (\mathbf{s}_{11} \, \mathbf{s}_{12} \, \mathbf{s}_{13}), \ \ \underline{S} &= (\mathbf{s}_{21} \, \mathbf{s}_{22} \, \mathbf{s}_{23}), \ \ \varrho = [\varrho_{11} \, \varrho_{12} \, \varrho_{13}], \ \ \underline{\varrho} = [\varrho_{21} \, \varrho_{22} \, \varrho_{23}], \\ \frac{\mathbf{s}_{11}}{\mathbf{s}_{13}} &= \mathbf{s}_{1}, \ \ \frac{\mathbf{s}_{12}}{\mathbf{s}_{13}} &= \mathbf{s}_{11}, \ \ \frac{\mathbf{s}_{21}}{\mathbf{s}_{23}} &= \underline{\mathbf{s}}_{1}, \ \ \frac{\mathbf{s}_{22}}{\mathbf{s}_{23}} &= \underline{\mathbf{s}}_{11}, \\ \frac{\varrho_{11}}{\varrho_{13}} &= \varrho_{1}, \ \ \frac{\varrho_{13}}{\varrho_{13}} &= \varrho_{11}, \ \ \frac{\varrho_{23}}{\varrho_{23}} &= \underline{\varrho}_{1} \ \text{und} \ \ \frac{\varrho_{23}}{\varrho_{23}} &= \underline{\varrho}_{11} \end{split}$$

gesetzt wird,

(I) . .

$$\cdots \frac{\mathbf{s}_{\mathrm{I}} \, \varrho_{\mathrm{I}} + \mathbf{s}_{\mathrm{II}} \, \varrho_{\mathrm{II}} + 1}{\mathbf{s}_{\mathrm{II}} \, \varrho_{\mathrm{I}} + \mathbf{s}_{\mathrm{II}} \, \varrho_{\mathrm{II}} + 1} = - \frac{\mathbf{s}_{\mathrm{I}} \, \underline{\varrho}_{\mathrm{I}} + \mathbf{s}_{\mathrm{II}} \, \underline{\varrho}_{\mathrm{II}} + 1}{\mathbf{s}_{\mathrm{II}} \, \underline{\varrho}_{\mathrm{II}} + \mathbf{s}_{\mathrm{II}} \, \underline{\varrho}_{\mathrm{II}} + 1} \,.$$

Die Relation (I) veranlaßte A. BEER² zu dem Versuch, die vier unbekannten Indizes ϱ_{I} , ϱ_{II} , $\underline{\varrho}_{I}$ und $\underline{\varrho}_{II}$ der optischen Achsen ϱ und $\underline{\varrho}$ aus den Auslöschungsebenen S und S von vier Flächenstellungen F zu berechnen: es ergaben sich aber neun Achsenpaare statt eines einzigen.

Später zeigte TH. LIEBISCH³, daß fünf Gleichungen (I) statt vier zur eindeutigen Lösung der Aufgabe notwendig und hinreichend sind.

¹ A. FRESNEL, POGGEND. Ann. 23. 541-543, 1831.

² A. BEER, ebenda. 91. 281-282. 1854.

³ TH. LIEBISCH, N. Jahrb. f. Min. etc. 1886. I. 157-161. Centralblatt f. Mineralogie etc. 1919.

322

A. Johnsen.

Da die Ableitung der dreißig irrationalen Indizes von fünf Paaren empirisch ermittelter Auslöschungsebenen S und <u>S</u> sowie die Auflösung der Gleichungen (I) ziemlich zeitraubend ist, so wird das folgende graphische Verfahren, obwohl es naturgemäß weniger genaue Werte als der Kalkül liefert, außer methodischem Interesse vielleicht auch praktische Bedeutung besitzen. Dieses Verfahren beruht auf stereographischer Projektion und wird durch das WULFF'sche Netz erleichtert.

II. Stereographische Methode.

Zu jeder Fläche F gehören zwei auf ihr senkrechte Auslöschungsebenen S und <u>S</u>; die beiden optischen Achsen ϱ und $\underline{\varrho}$ liegen nach FRESNEL stets in zwei Ebenen T und T', die normal zu F und sowohl in bezug auf S als auch in bezug auf <u>S</u> symmetrisch gerichtet sind. Diese für T und T' geforderte Stellung eignet aber unendlich vielen Ebenenpaaren, nämlich T₁ und T₁', T₂ und T₂', ..., T_n und T_n'. Alle diese Ebenenpaare einschließlich der beiden Grenzfälle S und <u>S</u> bilden einen Büschel oder eine irrationale Zone, und eines derselben, etwa T_r und T_r', enthält die optischen Achsen ϱ und ϱ .

Wir haben für jede von fünt beliebigen Flächen F_a , F_e , F_i , F_o und F_u irgendeine ihrer beiden Auslöschungsebenen S und <u>S</u> empirisch ermittelt und nennen dieselbe der Reihe nach S_a , S_e , S_i , S_o und S_a ; die zugehörigen Ebenenpaare T nad T' seien bezeichnet als a_1 und a_1' , a_2 und a_2' , ..., e_1 und e_1' , e_2 und e_2' , ..., i_1 und i_1' , i_2 und i_2' , ..., o_1 und o_1' , o_2 und o_2' , ..., n_1 und u_1' , u_2 und u_2' , Liegt nun die eine optische Achse, ρ , in den fünf Ebenen a_1 oder a_1' , e_m oder e_m' , i_n oder i_n' , o_p oder o_p' und u_q oder u_q' , so liegt die andere optische Achse, ρ , in den zu jenen fünf Ebenen in bezug auf S_a , S_e , S_i , S_o und S_u symmetrischen Ebenen a_i oder a_i , e_m' oder e_m , i_n' oder o_p und u_q' oder u_q .

Wir projizieren jetzt stereographisch (Figur) auf eine beliebige Ebene¹ über dem Wulfr'schen Netz den Zonenkreis der Ebenen a nebst S_a und ebenso die Zonenkreise der Ebenen e nebst S_e. i nebst S_i, o nebst S_o und u nebst S_u. Diese fünf Zonenkreise, deren Zonenpole offenbar identisch mit den Flächenpolen F_a, F_e, F_i, F_o und F_u sind, mögen Z_a, Z_e, Z_i, Z_o und Z_u heißen. Auf jedem dieser fünf Zonenkreise werden diejenigen Pole markiert, die von dem Pole S um 10⁰, 20⁰,, 90^o entfernt sind, so daß beispielsweise a₁ S_a = a₁' S_a = 10⁰, a₂ S_a = a₂' S_a = 20^o etc. ist; indem wir zwischen diesen achtzehn Polen jedes Zonenkreises gradweise interpolieren, nennen wir z. B. die zwischen a₆ und a₇ be-

¹ Die Spezialisierung der Projektionsebene unserer Figur ist prinzipiell belanglos und wird auf p. 324 begründet werden.

A. Johnsen: Graphische Ableitung der beiden optischen Achsen trikliner Kristalle aus den Auslöschungsrichtungen von fünf Flächen.

© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/;www.zobodat.at

Graphische Ableitung der beiden optischen Achsen etc. 323

findlichen Pole $a_{6,1}$, $a_{6,2}$, ..., $a_{6,9}$, da sie mit S_a Bogen von 61° , 62° , ..., 69° bilden. Demnach sind S_a und a_9 , S_e nnd e_9 , S_1 und i_9 , S_{\circ} und o_9 , S_u und u_9 die Auslöschungsebenen der Flächen F_a , F_e , F_i , F_o , F_u ; daher liegen beispielsweise a_1 und a_1' , a_2 und a_2' etc. symmetrisch zueinander sowohl in bezug auf S_a als auch in bezug auf a_9 .

Schneidet nun der zu dem Pole einer optischen Achse, o, zugehörige Zonenkreis Zo die fünf Zonenkreise Za, Ze, Zi, Zo und Zu in den Polen al oder al', em oder em', in oder in', op oder op' und ug oder ug', so muß sich auch durch die zu jenen fünf Polen symmetrischen Pole al' oder al, em' oder em, in' oder in, op' oder op und ug' oder ug ein Großkreis legen lassen, den wir wegen dieser Eigenschaften als symmetrisch zu Zo bezeichnen; er stellt den Zonenkreis Zo der optischen Achse o dar. Hiermit haben wir ein Kriterium für den Pol einer optischen Achse o. Hieraufhin prüft anan daher systematisch zunächst solche Punkte, deren geographische Länge und Breite ganzzahlige Multipla von 10⁰ darstellen, wobei als Nullmeridian zweckmäßig der geradlinige Meridian des WELFFschen Netzes betrachtet wird (Figur). Ist ein Pol gefunden, zu dessen Zonenkreis sich ein annähernd symmetrischer Großkreis ziehen läßt, so mustert man seine nähere Umgebung nach demjenigen Pole ø ab, der dieser Forderung möglichst genau entspricht: der zu seinem Zonenkreis Zo symmetrische Großkreis Zo liefert den Zonenpol ϱ , so daß ϱ und ϱ die gesuchten optischen Achsen sind.

In der beistehenden Figur geht der zu o gehörende Zonenkreis Zo durch die fünf Flächenpole a0,6, e'1,8, i'5, o'1,6 und u'4,8 und es läßt sich ihm ein symmetrischer Großkreis Zo zuordnen, der infolge der unvermeidlichen Fehler durch die Pole a'0,5, e2, $i_{5,2}$, $o_{4,8}$ und $u_{1,9}$ verläuft; also ist dessen Pol ϱ die eine optische Achse, o die andere. Würden wir außer den fünf in der Figur eingetragenen Zonenkreisen Za, Ze, Zi, Zo und Zu noch einen beliebigen andern, Zj, konstruieren, so müßte auch dieser von jenen Z ϱ und Z ϱ in zwei in bezug auf S_j (und j_q) symmetrischen Punkten jr und jr' oder jr' und jr geschnitten werden. Aus der Eindeutigkeit des Gleichungensystems von Liebisch¹ folgt nämlich. daß die in bezug auf fünf beliebige Zonenkreise symmetrischen Kreise Zo und Zo auch in bezug auf die Gesamtheit der unendlich vielen andern Zonenkreise symmetrisch sind; aus demselben Grunde existiert nur ein einziges solches Kreispaar Zg und Zg und sind dessen Pole q und q mit den optischen Achsen ident.

Fixieren wir statt ϱ oder $\underline{\varrho}$ irgend einen audern Pol, etwa π in der Figur, so läßt sich zu seinem Zonenkreis Z_{π} (nicht ab-

¹ TH. LIEBISCH, I. C.

324

A. Johnsen.

gebildet) kein symmetrischer Großkreis Z_{π} konstruieren. Der Zonenkreis Z_{τ} geht durch a'₃, e_{4,5}, i'_{7,8}, o'_{6,9} und u'_{6,4}; legt man num durch die zu a₃' und e_{4,5} symmetrischen Pole a₃ und e'_{4,5} einen Großkreis, so schneidet derselbe den Pol i'_{4,4} statt i_{7,8}, o'_{5,3} statt o_{6,9} und u'₆ statt u_{6,4}. Die beiden Zonenkreise, die man aus π gewinnt, sind also nur in bezug auf zwei statt fünf Zonenkreise symmetrisch. Außer den unendlich vielen Polen vou der Art π existieren unendlich viele Pole, die zu je dreien der fünf Zonenkreise Z_a bis Z_u symmetrische Kreispaare liefern. Endlich kann man neun Pole ausfindig machen, welche je zwei Kreise ergeben, die in bezug auf vier Zonenkreise, etwa Z_a, Z_e, Z_i und Z_o, symmetrisch verlaufen, so daß die neun BEER'schen Achsenpaare resultieren ¹.

Die beiden optischen Achsenpole g und g haben noch eineweitere Eigentümlichkeit. Legt man durch o einerseits und den Zonenpol Fa, Fe, Fi, Fo oder Fu, beispielsweise Fo, anderseitseinen Großkreis, gFo, und ebenso durch g einerseits und Fo anderseits den Großkreis gFo, so schneiden die beiden Großkreise gFo und ρF_{o} den Zonenkreis Z_o in zwei in bezug auf S_o (und o₀) symmetrischen Punkten og und og oder og nnd og. Da uämlich die Großkreisebenen oFo und oFo offenbar durch die Normale der Fläche Fo und je eine optische Achse gehen, so muß ihr Winkel nach FRESNEL von der Auslöschungsebene So (und og) halbiert werden. Damit diese Beziehung in der Figur deutlich hervortrete, ist einer der Pole Sa, Se, Si, So und Sa, nämlich Sa, in das Zentrum des Grundkreises gelegt; daher stellt der unterste Punkt desletzteren, Fa, den Pol des Zoneukreises Za dar. Weil nun die Großkreise gFa und gFa den Zonenkreis Za symmetrisch in bezugauf Sa schneiden sollen und Sa auf dem Nullmeridian liegt, somüssen die Meridiane oFa und oFa symmetrische Lage zum Nullmeridian besitzen. In der Tat hat von den beiden optischen Achsenpolen g und g der eine ebensoviel westliche Länge als der andere östliche Länge aufweist, nämlich 85°.

Die Figur würde die in diesem Kapitel dargelegten Gesetzmäßigkeiten uaturgemäß nicht zeigen, wenn die ihr zugrundgelegten Auslöschungsschiefen ϑ bestimmter Flächenstellungen F_a bis F_n nicht miteinander verträglich wären. Sie ist daher mittels empirischer Daten, und zwar solcher des Albit konstruiert worden; iufolgedessen kann man ferner die graphisch ermittelten Richtungen ϱ und $\underline{\varrho}$ mit der bekannten Lage der optischen Achsen jenes Minerales vergleichen. Es ist $F_a = (100), F_e = (010), F_i = (001), F_o = (021)$ und $F_u = (\overline{111})$. Die benutzten Auslöschungsschiefen $\vartheta_{100} = \pm 15^{\circ}$, $\vartheta_{010} = \pm 18^{\circ}$. $\vartheta_{001} = \pm 4^{\circ}$, $\vartheta_{021} = \pm 8^{\circ}$ und $\vartheta_{TT1} = \pm \frac{1}{2}^{\circ}$ be-

¹ A. BEER. I. C.

Graphische Ableitung der beiden optischen Achsen etc. 325

ziehen sich mit Ausnahme von \mathcal{P}_{010} , das auf die Spur von (001) bezogen ist, auf die Trace von (010) und sind einem von E. A. WUL-TING¹ für Albit von Amelia Co (Virginia) konstruierten Diagramm entnommen. Der Winkel der optischen Achsen ϱ und $\underline{\varrho}$ sowie deren Einfallen gegen die Flächen $F_a = (100)$, $F_e = (010)$ und $F_i = (001)$ läßt sich aus der Projektion leicht ablesen, da deren Grundkreis den gleichen Durchmesser wie die üblichen WULFF'schen Netze, nämlich 20 cm, besitzt, so daß die Figur durchgepaust und auf solchem Netze gedreht werden kann.

In der folgenden Tabelle sind die graphisch ermittelten Größen mit den von F. BECKE² am Albit von Amelia im Natriumlicht empirisch erhaltenen Werten verglichen.

ę (100)	ę (010)	Q (001)	<u>ę ę</u>	Autor
$54^{0}5'$ $53\frac{1}{2}^{0}$	$40^{\circ} 30' \\ 411^{10}_{2}$	86º 27' 87'	77° 39′ 78°	Becke Johnsen
<u>e</u> (100)	<u>e</u> (010)	<u>e</u> (001)		Autor
$48^{\circ} 49' \\471^{\circ}$	42° 6' 43°	$\begin{array}{c} 68^{\circ} \hspace{0.1 cm} 45^{\prime} \\ 68^{\circ} \end{array}$		Becke Johnsen

Tal	bell	e.
-----	------	----

III. Schluß.

Da aus den optischen Achsen ϱ und $\underline{\varrho}$ die Lage der drei optischen Symmetrieachsen folgt, so können nunmehr Platten oder Prismen geschliffen werden, welche die elastischen Hauptvektoren a, b, c ohne Konvergenzsysteme zu ermitteln gestatten. Man vermag also im parallelstrahligen Licht alle diejenigen Konstanten zu bestimmen, deren die heutige Theorie zur Ableitung von Reflexion, Brechung, Polarisation und Interferenz eines absorptionsfreien und inaktiven Kristalles bedarf. Hierin liegt die methodische Bedeutung der Gleichungen von LIEBISCH³, auf denen unser graphisches Verfahren fußt. Dieses vereinfacht sich, wie jene Gleichungen leicht erkennen lassen, in hohem Grade beim Übergang zu monoklinen und rhombischen Kristallen.

¹ E. A. WÜLFING in ROSENBUSCH-WÜLFING, Mikrosk. Physiogr. d. petr. wicht. Mineralien. H. Taf. XIV, 1905.

² F. BECKE, Min. Mitt. 19. 329. 1900.

³ Тн. Liebisch, l. c.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Centralblatt für Mineralogie, Geologie und</u> <u>Paläontologie</u>

Jahr/Year: 1919

Band/Volume: 1919

Autor(en)/Author(s): Johnsen Arrien

Artikel/Article: <u>Graphische Ableitung der beiden optischen</u> Achsen trikliner Kristalle aus den Auslöschungsrichtungen von fünf Flächen. 321-325