Ueber die Siedepuncte

Dies weekte Absertanitt college voll

es mir möglich war, die Angaben verschiedener Heobachter von Siedepuncten des Alkohola zusammen-

stellte, um dieselben els Genndlage einer Scale für den Kochapparat zu benützen. Bei der Verglei-

ebang der verselliedenen Kombewarte fund leb aber. dass dieselben wenig übereinstimmen, so dass mir

mehrerer

alkoholhältiger Flüssigkeiten und die darauf gegründeten Verfahren, den Alkoholgehalt derselben zu chemisch-technischen Zwecken zu bestimmen.

Von J. J. Pohl,

Assistenten der Lehrkanzel der Chemie und Supplenten der speciellen technischen Chemie am k. k. polytechn. Institute in Wien.

(Vorgelegt in der Sitzung der mathematisch-naturwissenschaftlichen Classe am 15. März 1850.)

Einleitung.

Wenige Körper sind so vielfältig Gegenstand der Forschung gewesen wie der Weingeist, und wenige sind dadurch für die Theorie und für die Praxis wichtiger geworden, als eben derselbe. Verfolgt man die Geschichte dieses Körpers, so lässt sich nicht verkennen, dass die chemischen Beziehungen weit gründlicher studirt wurden als die physikalischen, dass daher die ersteren viel genauer und mehr im Detail bekannt sind. Die gründliche Kenntniss der physikalischen Eigenschaften sowohl des Weingeistes von verschiedener Dichte als des absoluten Alkohols, ist aber gerade für die Gährungschemie unerlässlich, wenn diese auf einer wirklich wissenschaftlichen Basis ruhen soll. Wie wäre eine Vorausberechnung der zu erzielenden Resultate, eine richtige Beurtheilung der Leistungsfähigkeit und Construction der in dieses Gebieth gehörigen Vorrichtungen und Apparate, die Aufstellung eines praktischen Verfahrens zur Erkennung der Alkohol-Gehalte von verschiedenen Flüssigkeiten möglich, wenn der Zusammenhang der physikalischen Eigenschaften mit dem Gehalte dieser Flüssigkeiten an absoluten Alkohol nicht ganz genau bekannt ist? Von dieser Ueberzeugung ausgehend hat man die optischen Eigenschaften, die Ausdehnung durch die Wärme, die Siedepuncte, combinirt mit den Dichten, mehr oder minder gründlichen Untersuchungen unterworfen. Die vortrefflichen Arbeiten Steinheil's über die ersteren Beziehungen haben gezeigt, wie weit man hierin gehen könne. Weniger genaue und umfassende Untersuchungen besitzen wir auch über die beiden andern Eigenschaften. Ich war anfangs Willens, die Ausdehnung alkoholhältiger Flüssigkeiten zur Bestimmung ihrer Bestandtheile zu gebrauchen, auf ähnliche Weise wie diess bereits von Silbermann geschah, gab jedoch diesen Plan bald auf, da der hiezu nöthige Apparat zu gebrechlich im Gebrauche ist und auch keine sehr genauen Angaben liefern kann. Weit bessere Resultate schien aber die Bestimmung des Kochpunctes der alkoholhältigen Flüssigkeit zur Ermittlung ihrer Zusammensetzung zu gewähren, wesswegen ich, so weit

Denkschriften d. math. naturw. Cl. Abhandl. v. Nichtmitgl. II. Bd.

es mir möglich war, die Angaben verschiedener Beobachter von Siedepuncten des Alkohols zusammenstellte, um dieselben als Grundlage einer Scale für den Kochapparat zu benützen. Bei der Vergleichung der verschiedenen Kochpuncte fand ich aber, dass dieselben wenig übereinstimmen, so dass mir nichts anderes übrig blieb, als selbst Versuche über die Siedepuncte der gerade für mich wichtigsten Mischungen des Alkohols mit Wasser vorzunehmen, welche ich in dem ersten Abschnitte zusammengestellt habe und die ich, sobald es mir meine Zeit erlaubt, auch noch auf die übrigen Mischungen des Alkohols mit Wasser ausdehnen werde.

Der zweite Abschnitt enthält:

- a. Die Beschreibung des von mir gebrauchten Apparates zur Bestimmung des Kochpunctes alhoholhältiger Flüssigkeiten.
- b. Die Anwendung desselben bei der Weinbereitung und zur Untersuchung der Weine.
- c. Seine Verwendung in der Branntweinbrennerei und Liqueur-Fabrikation.
- d. Endlich die Benutzung des Apparates in den Brauereien und zur chemisch-technischen Prüfung der Biere.

Als: Ersten Anhang, füge ich ein Verfahren bei, um den Kohlensäure-Gehalt der Biere zu bestimmen, welches, so viel mir bekannt, noch nicht in Anwendung gebracht wurde, einfach in der Ausführung ist, und genaue Resultate liefert.

Der: Zweite Anhang enthält, nebst einer Zusammenstellung der wichtigsten, in den früheren Abschnitten angeführten Tabellen, noch mehrere neue, die zur Erleichterung der bei den verschiedenen Proben vorkommenden Berechnungen dienen.

Es sei mir hier noch gestattet, meinem verehrten Lehrer, dem Herrn Professor Schrötter, welcher mich zu dieser Arbeit aufforderte, für die mir hiebei reichlich gegebenen Rathschläge meinen innigsten Dank auszudrücken.

2 9 1 1 1 1 1 1 1 1 1

grippe ban integrinity and sin appropria ther franchese amedorate and bust-arroad villation as bais record order in

end dadureb für die Themis van für die Praxis wiebtliger gewanden, als eben derschlie Ver-

Less monaging fair genetiers will realist wast , real-sills/literate with a restraint tribute and literature and state and literature an

the state of the s

espendiele der su envisientenden dein eine eine eine eine fenden der der der bestehung der Leistungs-

tion and the state of the state

ted headeness gargeersolell sessib new Ytai housded nearing aming laderly beloweds as natival

freiten, mehr oder grändlichen Untersachungen unterwerten. Die vortiellichen sehren Blein-

hail's Ober die ersteren Beziehnneen baben renter wie wiel wan hierin rechen körne. Weelen re-

ational and profit personal alicebraic all and residential and alicebraic and the Arabitation and Arabitation

that the self-rend deer blees and a deer blees and a deer blees and a produced by the blees are the blees and a produced by the blees and a produced by the blees are the blees and a produced by the blees are the blees and a produced by the blees are the

new that ambastespegill ambas nebied oth radii done the sextised appropriate followers but ourse

ngh tim Prinidaren Eligenechaften, die Australe die Wärmen die Bigdepuncte, combinist mit den

Besti

mittelt menste

G

¹) Pog

Erster Abschnitt.

Bestimmung der Siedepuncte von Mischungen des Alkohols mit Wasser, welche O bis 12 Gewichts-Procente Alkohol enthalten.

§. 1. Bevor ich zu meinen eigenen Versuchen übergehe, will ich im Folgenden die bis jetzt ermittelten und mir bekannten Siedepuncte des Alkohols, sowie seiner Mischungen mit Wasser, zusammenstellen und zu zeigen versuchen, wie wenig dieselben übereinstimmen.

Der Siedepunct des absoluten Alkohols wurde in neuerer Zeit von Kopp sehr genau bestimmt 1) und für einen Barometerstand von 760 Millimetern gleich 78°4 Celsius gefunden.

Gröning gibt folgende Siedepunct-Tabelle: 2)

Tabelle 1.

Siedepuncte von Mischungen des Alkohols mit Wasser nach Gröning in Graden Celsius.

Weingeist- Procente	Siedepunct	Weingeist- Procente	Siedepunct	Weingeist- Procente	Siedepunct
5	96.3	40	84.1	75	8093
10	92.9	45	83.4	80	79.7
15	91.0	50	83.1	85	79.4
20	89.1	55	82.2	90	79.0
25	87.5	60	81.9	95	78.4
30	86.2	65	81.5		A SESSION
35	85.0	70	80.9		2510.0

Diese Tabelle dürste für einen Normal-Barometerstand von 28 Pariser Zoll gleich 758 Millimeter gelten, auch scheinen die Weingeist-Procente, Volumprocente nach Tralles zu sein.

igsten Mi-

u bestim-

Ausfüh-

eren Ab-

r, wel-

meinen

1 *

¹⁾ Poggendorff's Annalen, 72. Band. Seite 62.

²⁾ Annals of Philosophy.

Eine zweite, ebenfalls von Gröning herrührende Tabelle ist folgende 1).

Tabelle 2.

Siedepuncte in Graden Celsius von Mischungen des Alkohols mit Wasser, nach Gröning.

Alkohol- Procente	Siedepuncte	Alkohol- Procente	Siedepuncte	Alkohol- Procente	Siedepunct
0	10000	15	90000	65	80.00
1	98.75	18	88.75	70	79.50
2	97.50	20	87.50	75	78.75
3	96.25	25	86.25	80	78.15
5	95.00	30	85.00	85	77.81
7	93.75	35	83.75	90	77.50
10	92.50	40	82.50	92	77.25
12	91.25	50	81.25		District the last

Auch diese Tabelle dürfte für einen Barometerstand von 28 Pariser Zoll und für Alkoholprocente nach Tralles gelten. Vergleicht man aber die in derselben enthaltenen Daten mit jenen der Tabelle 1, so findet man bedeutende Unterschiede in den Angaben der Siedepuncte.

Ye lin veröffentlichte ²) ebenfalls mehrere Siedepunct-Bestimmungen von Gemischen des Alkohols mit Wasser, welche für einen Barometerstand von 26" 7".19 gelten, jedoch nur höhere Procentgehalte umfassen.

Tabelle 3.

Siedepuncte in Graden Celsius, wässriger Mischungen des Alkohols, nach Yelin.

	Weingeist- Procente	Siedepuncte	Weingeist- Procente	Siedepuncte
	94	76.97	98	76.85
Name and Address of the Parket	95	76.99	99	76.90
	96	76.92	100	77.02
	97	76.85	odati	

Nach Dalton siedet Weingeist von 43 Volumprocenten Gehalt, bei 84°C., und nach Gay-Lussac³) Weingeist von 6.25 Gewichtsprocenten, bei 93.5 Graden Celsius.

In neuerer Zeit hat Casoria Siedepuncte bestimmt '), welche in nachstehender Tabelle enthalten sind:

Tabelle 4.

Siedepuncte in Graden Celsius, von Mischungen des Alkohols mit Wasser, nach Casoria.

Dichten	Siedepuncte	Dichten	Siedepuncte	Dichten	Siedepuncte
0.9335	940	0.8765	84.0	0.8265	7890
0.9234	92.8	0.8631	82.8	0.8194	76.1
0.9126	91.7	0.8518	81.7	0.8118	75.8
0.9013	90.0	0.8458	80.5	0.8034	75.5
0.8892	87.8	0.8397	79.4	0.7939	75.8
0.8875	86.1	0.8332	78.6	1671 Hania	101 001101

¹⁾ Liebig, Poggendorff und Wöhler, Handwörterbuch der Chemie. I. Band. Seite 213.

²) Kastner, Archiv für die gesammte Naturlehre. II. Band. Seite 340.

³⁾ Annales de Chimie et de Physique. T. XVIII. pag. 383.

⁴⁾ Journal de Chimie médicale. 1846. pag. 467.

Den Dichten-Bestimmungen dieser Tabelle liegen die Tafeln von Tralles zu Grunde, übrigens scheinen die Siedepuncte für einen Barometerstand von 760 Millimeter zu gelten.

A. Ure publicirte endlich 1) folgende Siedepuncte der Mischungen von Alkohol mit Wasser:

Tabelle 5. Siedepuncte in Graden Fahrenheit nach A. Ur e.

Dichten bei 15.5 C.	Siedepuncte	Dichten bei 15.5 C.	Siedepuncte
0.9920	202000	0.9600	183940
0.9850	196.40	0.9516	182.00
0.9786	191.80	0.9420	180.40
0.9729	189.00	0.9321	179.75
0.9665	185.60	0.9200	178.60

Wurden die Angaben dieser Tabelle bei einem Barometerstande von 750 Millimeter gemacht, und bringt man dieselbe auf einen Normal-Barometerstand von 758 Millimeter, nach der Formel

$$T=t+0.323,$$

in welcher t der Siedepunct bei 750 Mm., T hingegen jener bei 758 Mm. ist, während die Constante 0·323 aus der Annahme folgt, dass für eine Aenderung von 2·474 Mm. im Barometerstand, der Siedepunct der Flüssigkeit um 0·01 C. sich ändere; so ergibt sich nach Umwandlung der Dichten in Volumprocente und der Grade Fahrenheit in Grade Celsius, die

Tabelle 6.

Nach Ure.

Volumprocente bei 15.5 C.	Siedepuncte in ⁰ Celsius	Volumprocente bei 15.5 C.	Siedepuncte in ⁰ Celsius
4.9285	94.767	33.6923	84.434
10.5833	91.656	39.6250	83.656
16.5000	89.100	45.3888	82.711
22.1818	88.100	50.7000	82.406
28 - 2727	85.656	56.6190	81.767

Bei Vergleichung der in den eben angeführten Tabellen enthaltenen Siedepuncte unter einander, findet man keine Uebereinstimmung, selbst wenn, so weit es aus den vorhandenen Angaben oder der Analogie nach möglich ist, auf gleiche Procente, Temperaturen und Barometerstände reducirt wird, wie folgende Beispiele zeigen:

Angenommen, dass Gröning's Tabellen für einen Barometerstand von 758 Millimeter gelten, die Tabelle von Ure aber für einen Barometerstand von 750 Millimeter, so ist der Siedepunct einer Flüssigkeit, welche 5 Volumprocente Alkohol enthält, bei 758 Mm:

Hier beträgt die Differenz zwischen Gröning's Angaben 1.03 Celsius, und jene von Gröning's und Ure's Siedepuncten 1.06 und 0.03 Celsius.

Wasser gelten. So awark-

lprocente

abelle 1.

cohols mit

halte um-

-Lussac3)

Tabelle ent-

¹⁾ Pharmaceutical-Journal and Transactions VII. p. 166.

Gelten Casoria's Siedepuncte für 760 Millimeter Barometerstand, so kocht 50 volumprocentiger Weingeist bei 758 Mm:

nach Gröning's Tabelle 1 bei 83.010

" Tabelle 2 bei 81.025

" Ure's Tabelle 6 bei 82.033

" Casoria's Tabelle 4 bei 94.007

In diesem Beispiele ist der Unterschied zwischen Gröning's Angaben 1.085, zwischen Ure und Gröning 0.077, dann 1.008; der Unterschied zwischen Gröning und Casoria steigt auf 10.097 und 11.082; ferner findet zwischen Ure und Casoria der Unterschied von 11.074 Statt.

Endlich für Alkohol von 95 Volumprocenten Gehalt ist der Siedepunct bei 758 Mm:

nach Gröning's Tabelle 1 gleich 78.º40 "Casoria's "4 "75.º92 "Yelin's "3 "78.º20

Gröning's und Yelin's Angaben differiren in diesem Falle nur um 0.2, jene von Casoria und Gröning um 2.48, ebenso die Kochpuncte von Casoria und Yelin um 2.28 Celsius.

§. 2. Um meine Siedepunct-Bestimmungen vornehmen zu können, suchte ich mir vor Allem einen Alkohol von genau bekannter Dichte zu verschaffen. Zu diesem Behufe wurde käuflicher Franzbranntwein zuerst für sich destillirt, hierauf mehrere Tage mit frisch geschmolzenem Chlorcalcium digerirt, dann davon abgegossen und in einer Retorte mit aufsteigendem Halse, ebenfalls über Chlorcalcium destillirt. Da das Destillat hiebei einen unangenehmen Geruch angenommen hatte, so wurde es einer nochmaligen Rectification über frisch ausgeglühten Holzkohlen unterworfen und als Destillationsproduct ein Alkohol von sehr angenehmen Geruche erhalten, welcher am Platinblech verdampft keine Spur eines Rückstandes hinterliess, auch frei von Fuselöl und anderen flüchtigen Körpern war. Um die Dichte des so erhaltenen Alkohols und seinen Procentgehalt an wasserfreiem Alkohol zu bestimmen, blieben zwei wesentlich von einander verschiedene Wege offen. Der eine bestand in einer Elementar-Analyse des Alkohols; der zweite in einer Dichten-Bestimmung desselben und Vergleichung der erhaltenen Dichte mit den Angaben, welche für die Dichte des absoluten Alkohols und seiner Gemische mit Wasser gelten. So zweckmässig auch für den ersten Anblick eine Elementar-Analyse zu sein scheint, so stellt sich doch dieselbe bei genauerer Ueberlegung als unzureichend heraus, denn die Unsicherheit in der Wasserstoff-Bestimmung beträgt bei derselben im günstigsten Falle 0.04 Procent, denen aber 0.45 Procente Wasser entsprechen, ein Fehler, welcher für den vorliegenden Fall viel zu gross ist. Es wurde daher die Dichten-Bestimmung vorgezogen und dabei die Dichte des Wassers bei 15° Celsius gleich Eins gesetzt, wornach jene des absoluten Alkohols die Zahl 0.7951 erhält.

Die Dichten-Bestimmung wurde mittelst einer zugeschmolzenen etwas Quecksilber enthaltenden Glaskugel, welche mehr als einen Zoll im Durchmesser hatte, auf die gewöhnliche Art vorgenommen, und vorausgesetzt, dass für die Temperatur, bei welcher die Wägungen Statt fanden, die Dichte des Wassers gleich Eins sei. Die benützte Wage gab bei 25 Grammen Belastung auf jeder Schale noch 0.0002 Gramm deutlichen Ausschlag, und die bei der Dichten-Bestimmung erhaltenen Daten waren folgende:

Gewichtsbestimmung der Kugel mit dem Haare im Wasser bei 15° C.

ind Grö-

d 11.082:

soria und

einen Al-

ranntwein

irt, dann

destillirt.

hmaligen

Alkohol

kstandes

s so er-

wesent-

lkohols;

den An-

zweck-

dieselbe

-Bestim-

te Was-

rde daher

is gesetzt,

nthaltenden

genommen, Dichte des

chale noch

waren fol-

Erste	Einstellung					o ei	2.2491	Gramr
Zweite	99						2.2491	99
Dritte	99					tella	2.2491	99
Vierte	99						2.2491	99

Nimmt man auf den eingetauchten Theil des Haares keine Rücksicht, weil er nur etwa ½0tel der Totallänge betrug und auch nahezu derselbe im Alkohol war, so folgt:

Erste	Einstellung		6.5158	dramm.
Zweite	27	General Gowlett in	6.5169	29
Dritte	99		6.5178	22.
Vierte	99		6.5180	99
Fünfte	22		6.5182	99
Sechste	27		6.5158	99
Siebente			6.5150	99
Achte	99		6.5155	99

Es folgt hienach die Dichte des dargestellten Alkohols bei 15° Celsius zu 0·8010, jene des Wassers bei dieser Temperatur gleich Eins gesetzt. Dieser Dichte von 0·8010 entspricht ein Volum-Procentgehalt von 98·7826 bei 15° Celsius, sowie ein Gewichts-Procentgehalt von 98·0516.

Es frägt sich nun, welches der wahrscheinliche Fehler bei dieser Dichten-Bestimmung ist.

Wird der Fehler bei der Bestimmung des absoluten Gewichtes der Glaskugel, sowie ihres Gewichtsverlustes in Wasser gleich Null gesetzt, ferner der wahrscheinliche Fehler des arithmetischen Mittels der Wägungen im Alkohol zu

$$\pm 0.000165^{2}),$$

so hat man als wahrscheinlichen Fehler, welcher bei der eigentlichen Dichten-Bestimmung begangen wurde

 $\pm 0.000007.$

1) Für genaue Einhaltung dieser Temperatur waren alle nöthigen Vorsichten getroffen, das benützte Thermometer war mit einem Normal-Thermometer verglichen und von 0.2 zu 0.2 Grad Celsius getheilt.

²) Sind nämlich die Werthe der einzelnen Einstellungen $x_1, x_2, x_3, \ldots x_8$, ist ferner X das arithmetische Mittel aller acht Einstellungen, dann

 $X-x_1=\varepsilon_1; X-x_2=\varepsilon_2....X-x_8=\varepsilon_8;$

 $\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \cdots + \varepsilon_8^2 = \Sigma \varepsilon_1^2$

welches $\Sigma \varepsilon^2 = 0.00001109$ im vorliegenden Falle ist, so hat man bekanntlich als Gewicht der gemachten Bestimmungen P, den Ausdruck

$$P = \frac{n^2}{2 \; \Sigma \; \varepsilon^2} = \; 2885482 \cdot 416$$

worin n die Anzahl der gemachten Einstellungen bedeutet. Der wahrscheinliche Fehler \(\psi \) ergibt sich aber aus folgender Gleichung:

endlich

 $\psi = \pm \frac{1}{2\sqrt{P}} = \pm \frac{0.282095}{\sqrt{P}} = \pm 0.000165$

Rechnet man hiezu noch die andern kleinen Fehlerquellen wegen geringer Temperatur-Unterschiede, ferner jenen, der entsteht, weil die erhaltenen Daten nicht auf den leeren Raum reducirt sind, welcher Fehler gewiss ±0.0001 nicht übersteigt, so kann behauptet werden, dass der bei obiger Dichten-Bestimmung begangene wahrscheinliche Totalfehler, nicht mehr als:

±0.00011.

betrage.

§. 3. Mittelst dieses Alkohols von 98.0516 Gewichts-Procentgehalt wurden die in nachstehender Tabelle 7 angeführten Flüssigkeiten bereitet.

Tabelle 7.

Nummer der	Genommenes	Gewichts-Pro- centgehalt der erhaltenen		
Flüssigkeit	Alkohol Wasser		Flüssigkeit	
I.	4.079	395.920	1	
II.	8.159	391 · 841	2	
III.	16.317	383.682	4	
IV.	24.478	375.521	6	
V.	32.635	367.365	8	
VI.	40.796	359 · 204	10	
VII.	48.957	351.043	12	

Die Bereitung dieser Flüssigkeiten geschah mit möglichster Sorgfalt, mittelst einer Wage, welche bei 800 Gramm Belastung auf jeder Wagschale, noch 0.0015 Gramm deutlichen Ausschlag gab. Eine einfache Ueberlegung zeigt, dass wenn bei der Wägung selbst der sehr unwahrscheinliche Fehler von ± 0.006 Gramm begangen worden wäre, nach Hinzurechnung des wahrscheinlichen Fehlers bei der Dichten-Bestimmung, die Procentgehalte der erhaltenen Flüssigkeiten, von den in Tabelle 7 angegebenen, nur um höchstens ± 0.0005 Gewichtsprocente differiren können, welcher Unterschied so klein ist, dass die nach obiger Tabelle bereiteten Mischungen von Alkohol und Wasser mit völliger Beruhigung zu Siedepunct-Bestimmungen benutzt werden konnten.

§. 4. Der zu den Kochpunct-Bestimmungen gebrauchte Apparat war dem Wesen nach derselbe, welcher in §. 12 ausführlich beschrieben ist, nur mit dem Unterschiede, dass das eigentliche Siedegefäss um vier Linien mehr im Durchmesser hatte; die Scale war ferner in Grade Celsius jeder etwa von 3·5 Linien Länge, von 89 bis zu 100° getheilt, so dass ich 0·°1 direct ablesen und 0·°01 abschätzen konnte; endlich wurde die bei den Versuchen nöthige Correction wegen dem Barometerstande, unmittelbar durch Ablesen desselben, statt mittelst der verschiebbaren Scale, angebracht.

Eigentliche Bestimmungen der Siedepuncte.

§. 5. Das Siedegefäss wurde bis zu ungefähr zwei Linien vom Auschnitte desselben mit der zu untersuchenden Flüssigkeit gefüllt, dann der Deckel mit dem Thermometer aufgesetzt und mittelst einer Weingeistlampe, deren Docht nur wenig herausgezogen war, zum Sieden erhitzt, was bei beiläufig 146 Gramm Flüssigkeit in 15 bis 22 Minuten erfolgte. Das Thermometer, welches vom 89ten Grade an, von wo aus man seinen Gang erst gut beurtheilen konnte, rasch stieg, blieb sobald die Flüssigkeit kochte, was aus dem beim Sieden jedesmal eintretenden eigenthümlichen Geräusche und dem Entweichen von Dampf aus dem Siedegefässe erkennbar ist, plötzlich ungefähr durch 1 bis 3 Secunden unverändert stehen; die Quecksilbersäule fing dann wieder langsam zu steigen an und er-

Steigen, un mometer was chaulich

Es ents
punct anzusel
als der erste,
lich immer h
Weingeistlam
Es wurd
gleich der Ba

liefert die Tal

)enkschriften

reichte in kurzer Zeit einen zweiten Stillstand, welcher 4—16 Secunden, je nach der Grösse der Flamme der Spirituslampe anhielt; dann begann das Quecksilber wieder zu steigen und setzte dieses Steigen, unter mehreren kurzen Stillständen, bis zur völligen Austreibung des Alkohols fort, wo das Thermometer wieder einen stationären Stand einnahm, welcher dem herrschenden Barometerstande entsprach.

Die nachstehende Tabelle 8 mag beispielsweise einige beobachtete Stillstände beim Kochpuncte veranschaulichen (reducirt auf 760 Millimeter, Barometerstand).

Tabelle 8.

Flüssigkeit	Erster Stillstand	Zweiter Stillstand
I.	98.660	98.700
	98.641	98.691
II.	97.580	97.731
	97.547	97.751
III.	95.644	95.854
	95.726	95.827
IV.	94.167	94.017
	94.165	94.090
V,	92.470	92.680
	92.597	92.668
VI.	91.268	91.388
	91.210	91.383
VII.	90.110	90.258
	90.156	90.247

Es entsteht nun die Frage, ob man den ersten oder zweiten Stillstand als eigentlichen Siedepunct anzusehen habe. Ich habe mich für den zweiten Stillstandspunct entschieden, weil er länger andauert als der erste, bei mehreren Versuchen mit ein und derselben Flüssigkeit besser übereinstimmt, und endlich immer beobachtet werden kann, während der erste, bei einer einigermassen grossen Flamme der Weingeistlampe so kurze Zeit dauert, dass man ihn leicht gänzlich übersieht.

Es wurde daher bei den meisten Bestimmungen nur der zweite Stillstand notirt und dann sogleich der Barometerstand abgelesen. Die erhaltenen Resultate mit den beobachteten Barometerständen
liefert die Tabelle 9.

Tabelle 9.

	Beobachteter Siede-	Barometerstand	Thermometer	Auf 00 Celsius
Flüssigkeit	punct in Graden	in	am	reducirter
	Celsius	Millimetern	Barometer	Barometerstand
I.	98.82	763.90	6.80	762.97
	98.80	763.70	7.20	762.71
	98.80	763.70	7.20	762.71
	98.73	762 · 10	8.80	760.90
	97.87	740.60	10.75	739 - 17
	97.85	740.60	10.75	739 · 17
II.	97.82	763.40	8.20	762.27
	97.81	763 · 40	8.60	762.22
	97.83	763.30	8.90	762.08
	96.92	740.60	10.78	739.20
	96.90	740.60	10.78	739.20
III.	95.92	762.75	8.10	761.64
	95.88	762.60	9.30	761.33
	95.86	762 · 17	9.60	760.86
	94.95	739.30	10.15	737.95
	95.89	762 · 60	8.75	761.40
IV.	94.20	762 · 17	9.80	760.83
	94.19	762.00	9.90	760.65
	94.18	761.60	9.90	760.25
	93.25	738.80	9.90	737.49
	93.25	738 · 80	9.90	737.49

Denkschriften d. math. naturw. Cl. Abhandl. v. Nichtmitgl. II. Bd.

-Unter-

irt sind,

obiger

, welche

ag gab.

che Feh-

Fehlers

Tabelle 7

schied so

t völliger

nach der-

as eigent-

de Celsius

ect ablesen

vegen dem

angebracht.

mit der zu

mittelst einer

vom 89ten

ald die Flüs-

1 bis 3 Se-

an und er-

Flüssigkeit	Beobachteter Siede- punct in Graden Celsius	Barometerstand in Millimetern	Thermometer am Barometer	Auf 00 Celsius reducirter Barometerstand
v.	92.64	760-20	8.00	759.11
The board are many	92.64	760.45	8.50	759.29
	92.00	738 · 40	9.80	737.10
	92.91	767.31	5.00	766.62
	92.16	748.50	6.20	747.63
VI.	91.34	760 · 10	9.50	758.80
	91.30	759.80	9.50	758.50
	91.30	759.20	9.30	757.93
	90.70	737.90	9.80	736.60
VII.	90.15	759.10	9.20	757.85
	90.14	758.30	9.10	757.06
	90.12	758.20	9.90	756.85
	89.30	737.60	10.00	736.28
	700-00			

Werden diese Beobachtungen auf den Normal-Barometerstand von 760 Millimeter reducirt, indem man an jeder derselben eine Correction C, nach der Gleichung

$$C = (760 - B') 0.0404$$

anbringt, in welcher B' den auf 0° reducirten Barometerstand bei der Beobachtung bedeutet, so erhält man für die Siedepuncte obiger Flüssigkeiten folgende Angaben:

Tabelle 10.

		Tabelle 10.		
Flüssigkeit	Correction wegen dem Barometerstand	Siedepunct bei 760 Millimeter	Grösste Differenz der einzelnen Daten	Siedepunct bei 760 Millimeter, im Mittel
	-0.120 -0.109 -0.036	98.700 98.691 98.691 98.694		
	+0.841	98·711 98·691	0020	98:696
II.		97·731 97·721 97·750 97·760 97·740	00039	97.740
III.	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95·854 95·827 95·826 95·841		
IV.	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95·833 94·167 94·165	0.028	95.836
		94·170 94·159 94·159	00011	949164
V.	+0.040 $+0.028$ $+0.925$ -0.291 $+0.500$	92.680 92.668 92.665 92.625 92.666	00055	929660
VI.	+0.048 +0.060 +0.083 +0.941	91·388 91·360 91·383 91·381	0.028	919378
VII.	$ \begin{array}{r} + 0.086 \\ + 0.118 \\ + 0.127 \\ + 0.958 \end{array} $	90·236 90·258 90·247 90·258	0.022	90°249

g. 6. lauf den Klin der Flüs

Vergleistehen, so
stehen, so
mehr abweich
im Kochgefä
g. 7. V
ganze Therr
eigentlichen
der Körper d
selben zu n
Siedepuncte
dem angeste
dass die Kug

Was die manchmal se tische Mittel Die Tal

§. 6. Um zu erfahren, welchen Einfluss eckige Körper, wenn sie in das Siedegefäss gebracht werden, auf den Kochpunct ausüben, wurden mehrere Siedepuncte bestimmt, während Abschnitzel von Platinblech in der Flüssigkeit waren; die erhaltenen Resultate enthält die Tabelle 11.

Tabelle 11.

Flüssigkeit	Beobachteter Kochpunct	Barometer- stand m. m.	Thermometer am Barometer	Corrigirter Barometer- stand	Correction wegen dem Ba- rometerstand	Siedepunct bei 760 Millimete
I.	98.150	748.0	11.15	746.50	+0.545	98.695
	98.150	748.0	11.30	746.48	+0.547	98.697
III.	95.296	747.9	11.60	746.34	+0.552	95.842
	95.265	747.9	11.80	746.31	+0.553	95.818
V.	92.110	747.7	11.90	746.10	+0.561	92.671
	92.120	747.7	11.90	745.10	+0.561	92.681

Vergleicht man die in dieser Tabelle enthaltenen Kochpuncte mit jenen, welche in der vorhergehenden stehen, so wird ersichtlich, dass die hierin enthaltenen Zahlen von denen der Tabelle 10 nicht mehr abweichen als die dort gegebenen Siedepuncte unter einander; die Anwesenheit von Platinschnitzeln im Kochgefässe hatte also keinen merklichen Einfluss bei der Bestimmung der Siedepuncte.

§. 7. Wie aus dem vorher Gesagten erhellt, war bei den Bestimmungen der Siedepuncte nicht das ganze Thermometer in die kochende Flüssigkeit eingetaucht, sondern bei Weitem der grösste Theil des eigentlichen Thermometerrohrs stand aus derselben heraus, hatte daher eine niedrigere Temperatur als der Körper des Instrumentes, welcher Umstand von Einfluss auf die Angaben der Kochpuncte ist und dieselben zu niedrig erscheinen lässt. Um wenigstens annähernd die auch in dieser Beziehung corrigirten Siedepuncte zu erfahren, wurde das von Kopp angewandte Verfahren in Anwendung gebracht. Bei jedem angestellten Versuche war dicht an dem Thermometerrohre ein zweites Thermometer so befestiget, dass die Kugel desselben die Länge des aus dem Kochgefässe herausragenden Quecksilberfadens halbirte, wodurch ich nahezu die mittlere Temperatur der herausstehenden Quecksilbersäule erhielt.

Ist nun T die Angabe des in der Flüssigkeit befindlichen Thermometers,

N in Graden ausgedrückt, die Länge des aus dem Kochgefässe herausstehenden Quecksilberfadens,

t die mittlere Temperatur desselben, endlich 0.000154 der Coëfficient für die scheinbare Ausdehnung des Quecksilbers im Glase, so ist der corrigirte Siedepunct:

Corr:
$$S: = T + N(T-t) \cdot 0.000154$$
.

Was die Bestimmung von t anbelangt, so differiren bei ein und derselben Flüssigkeit die Angaben manchmal selbst um 6 Grade, es wurde daher zur Vornahme der Correction nur immer das arithmetische Mittel aller Einzelablesungen benutzt.

Die Tab. 12 enthält die Werthe von Nund tim Mittel, so wie die corrigirten Siedepuncte der Tab. 10.

Tabelle 12.

Flüssigkeit	t.	N.	Correction +	Corrigirter
Wasser	4703	13.27	0.01029	1000000
I.	48.0	11.97	0.0934	98.789
II.	48.8	11.01	0.0829	97.823
III.	49.5	9.11	0.0650	95.901
IV.	51.8	7.43	0.0485	94.212
v.	53.4	5.93	0.0358	92.696
VI.	53.6	4.65	0.0270	91 · 405
VII.	56.4	3.52	0.0183	90.267

¹⁾ Poggendorff's Annalen 72. Band, pag. 27.

acirt, indem

so erhält

§. 8. Die beiden Tabellen 13 und 14 enthalten endlich die Siedepuncte von Mischungen des Alkohols mit Wasser, bei einem Barometerstande von 760 Millimeter, wie dieselben aus den vorhergehenden Tabellen durch Interpolation gefunden werden¹). Die Tabelle 13 gibt die Siedepuncte ohne der im §. 7 ermittelten Correction, während Tabelle 14 die vollständig corrigirten Siedepuncte darstellt.

Tabelle 13.

Alkohol- Procentgehalt	Dichte bei 150 C.	Siedepunct	Differenz
0	1.0000	99.90	
1	0.9982	98.70	120
2	0.9964	97.74	96
3	0.9947	96.78	96
4	0.9930	95.84	94
5	0.9913	94.96	88
6	0.9898	94.16	80
7	0.9883	93.39	77
8	0.9868	92.66	73
9	0.9854	92.00	66
10	0.9840	91.38	62
11	0.9827	90.80	58
12	0.9814	90.25	55

Tabelle 14.

Siedepuncte von Mischungen des Alkohols mit Wasser bei 760 Millimeter Barometerstand.

Procentgehalt an Alkohol	Dichte bei 150 C.	Corrigirter Siedepunct	Differenz
buominant		on H man had	e neb en
0	1.0000	100000	121
1	0.9982	98.79	97
2	0.9964	97.82	
3	0.9947	96.85	97
4	0.9930	95.90	95
5	0.9913	95.02	88
6	0.9898	94 21	81
7	0.9883	93.43	78
8	0.9868		73
		92.70	67
9	0.9854	92.03	63
10	0.9840	91.40	57
11	0.9827	90.83	56
12	0.9814	90.27	30.

¹⁾ An diesen Zahlen wäre noch eine Correction wegen der Ausdehnung der Metall-Scale durch die Wärme anzubringen, dieselbe ist aber so klein, dass sie innerhalb die Grenzen der Beobachtungs-Fehler fällt und daher gänzlich vernachlässigt werden kann.

Die Siede

geistiger F
ihm vorgese
Werken un
Methode de
Alkohol noc
in letzterer
welcher zien
Conaty ve
Siedepunctentwarf. Se
Nach U
besserung,

Temperatu Versu angestellt

als Prüfungs

Bedford A with The order to be

1) The Pa

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Denkschriften der Akademie der Wissenschaften.Math.Natw.Kl. Frueher:

Denkschr.der Kaiserlichen Akad. der Wissenschaften. Fortgesetzt:

Denkschr.oest.Akad.Wiss.Mathem.Naturw.Klasse.

Jahr/Year: 1851

Band/Volume: 2_2

Autor(en)/Author(s): Pohl Josef J.

Artikel/Article: Ueber die Siedepuncte mehrerer alkoholhältiger Flüssigkeiten und die darauf gegründeten Verfahren, den Alkoholgehalt derselben zu chemisch-technischen Zwecken zu Bestimmen.

Erster Abschnitt. (Mit Tabellen 1-14) 1-12