UNTERSUCHUNGEN

ÜBER DIE

BEWEGUNGSVERHÄLTNISSE DES SYSTEMS 70 OPHIUCHI

VON

DR. ADALBERT PREY,

ADJUNCT AM K. K. GRADMESSENGSBUREAU.

VORGELEGT IN DER SITZUNG AM 11 JULI 1901.

Das System 70 Ophiuchi, welches nun schon seit mehr als hundert Jahren bekannt ist, hat allen Versuchen einer Bahnbestimmung seit jeher die größten Hindernisse in den Weg gelegt. Die bedeutende Helligkeit der beiden Componenten (4^m und 6^m), sowie die rasche Eigenbewegung von 1°2 im Jahre ließ auf eine geringe Entfernung des Systems schließen, was auch durch die Parallaxenmessungen bestätigt wurde, und so hatte man die Hoffnung gelegt, gerade bei diesem System eine besonders genaue Bahnbestimmung durchführen zu können. Diese Hoffnung wurde aber getäuscht, und keine der vielen berechneten Bahnen reichte hin, die Bewegungsverhältnisse dieses interessanten Sternpaares darzustellen. Als Schur seine ersten Untersuchungen darüber durchführte, konnte er bereits ein Verzeichnis von 14 Bahnbestimmungen zusammenstellen (Astron. Nachr., Bd. 71). Seither hat sich diese Zahl noch bedeutend vermehrt. Ich lasse hier ein Verzeichnis folgen, welches aus dem von Schur und dem von See (Astron. Journal, vol. XV) publicierten sombiniert ist. Es wurde nur noch die letzte Bahnbestimmung von Doolittle hinzugefügt. (Verzeichnis der Bahnbestimmungen siehe nächste Seite.)

Der Vergleich der einzelnen Elemente lässt sofort erkennen, was für bedeutende Unterschiede sich namentlich bei den älteren Bahnen finden. Die Beobachtungen der Jahre 1818 bis 1823 und 1823 bis 1827 zeigen ein so verschiedenes Verhalten, dass, je nachdem auf die ersteren oder die letzteren das größere Gewicht gelegt wird, die Elemente sehr verschieden ausfallen. Mit dem Hinzukommen der späteren Beobachtungen tritt natürlich das Gewicht der früheren mehr und mehr zurück, und die Elementensysteme werden ähnlicher. In den Umlaufszeiten aber bleibt ein auffallender Gang.

Da infolge dieser merkwürdigen Erscheinungen 70 Ophiuchi ein Gegenstand der aufmerksamsten ununterbrochenen Beobachtung war, so konnte Schur, als er seine zweiten Untersuchungen begann, über die stattliche Anzahl von 333 Jahresmitteln verschiedener Beobachter verfügen. Unter diesen Umständen

Verzeichnis der Bahnbestimmung.

-				-					-															
Publication 	50	dto.	Mem. R. A. S vol. VII, p. 217.	A. N. 289.	A. N. 444	dto.	M. N. XV, p. 42.	Historial and descript, notes. (Bishop's observ, 18091851)	M. N. IX, p. 145.	C. R. XXXII, p. 51	Mens, micr. ('XLI.	dto.	M. N. XV, p. 228	A. N. 1135.	A. N. 1682.	C. R. LXXXIX, p. 1248.	Flam. Cat. et doubl., p. 166.	Oxtonobs. I. p. 63.	M. N. NEWIJI, Nr. 5.	Sid. Mess. Nov. 4890.	A. N. 3220 21	Astron, u. Astroph. Juni 1893.	A. J. vol. XVI, p. 18.	A. J. vol. XVII. p. 124.
	1830	1830	1833	1835	1842	1842	1855		1849	1881	1851	1851	1857	1858	1868	1874	13/10/2	1878	1888	0681	1893	1893	1895	1890
Berechner	Encke	A	Herschel	Mädler	A	A	Baden Powell	Jacob	Hind	Villarceau		92 148.43 600 1168.4	Soon Jacob	Kliffagriues	Schur Thing	Flammarion Who	Tisserand	Pritchard	Gore	Mann	Schur	Burnham	See	Doolittle
12	125.37	68.011	145.11	145.73	181.37	129.68	172.52	156.32	01.801	Origin 143.48	149493	148.43 nom	159.53	100.54	155.74	0.691	109.72	151.65	171.75	174.92	108.3	7.691	101.75	85.991
1000	+10.42	2.10	48.1	42.87	18.44	08.40	46.63	51.5	470063	02.17	88.10	01 92	55.27	57.35	57.93	0.70	0.00	\$8.08	58.47	57.0	80.00	58.3	28.42	50.72
1- 9	1 t t c c c c c c c c c c c c c c c c c	128-15	138.52	133.8	112.27	126.91	Support	75 128.55 ⁽¹⁾ (e) 51.5	122.23	158.41	127.30	128.2	124.53	123.14	125.30	0.221	127.37	127.38	120.08	120.8	121.31	123.5	125.7	120.05
p		5.5538	4.365	4.3159	Je July July	0.4438 1 (5.429), My	4.48	\$20.4		2166.11	4.9057	0.20.5			4.7039	88.+	4.770	062.4	4.50	4.45	09.+	4.56	4.248	4. 5227
:	05+.0	Harry 0.34737	84607	0.477155	0.0105	0.4438	0.240	0.4820	0.4973	556++.0	0.11140	0.44873	1681.0	0.49353	6+16+.0	6.3859	0.47280	0.4072	0.4912	+66+.0	0.4751	0.220	0.20	8661.0
T	1808/sh27 0.430	1814.155 %	1807.00	1800.740	1805.104	1812.73	1800.92	1807.60	84.7081	\$61.1181	1810.071	1810.367	1808.12	1808.270	162.8081	6.2081	19.6081	06.8081	1807.65	1807.24	1808.0707	1807.85	1807.88	1808.851
.7		160.62	80.340	80.01	90.739	698.26	041.86	87.52	88.48	92.875	92.338	126.16	03.10	996.56	94.370	92.17	64.63	++.46	87.84	\$8.04	88.3954	87.75	18.10	0090.08

musste es natürlich Wunder nehmen, dass auch diese Bahnbestimmung, welche auf ein so umfassendes Material gegründet war, schon nach wenigen Jahren bedeutende und unerklärliche Abweichungen im Positionswinkel zeigte.

Es war daher sehr naheliegend, hier den störenden Einfluss einer dritten, unsichtbaren Masse zu vermuthen, worüber sich schon bei Mädler eine Äußerung findet (Astron. Nachr., Bd. XlX). Wenn es auch nicht bezweifelt werden kann, dass eine neue Bahnbestimmung nach dem Kepler'schen Gesetze wieder die großen Differenzen verschwinden lassen würde, so ist doch damit nicht erklärt, warum die früheren Bestimmungen, speciell die Schur'sche, dies nicht auch leistet, nachdem doch das Bewachtungsmaterial nach gewöhnlichem Maßstabe weitaus ausreichend wäre.

Der erste, der den Versuch machte, die Bewegungsverhältnisse einer dritten Masse in diesem System festzustellen, war Jacob (Monthly not., vol. XV), doch wurde damals wenig Gewicht darauf gelegt. Erst in neuester Zeit, als sich die Abweichungen von der Schur'schen Bahn gezeigte hatten, griff See wieder auf diese Hypothese zurück. Danach soll die dritte Masse in einer engen Bahn um den Hauptstern kreisen mit einer Umlaufszeit von 36 Jahren.

Die osculierenden Elemente, von denen See ausging, waren durch einen Anschluss an die Distanzen allein gewonnen worden (Astron. Journal, vol. XVI). Doolittie, der die nöthigen numerischen Rechnungen durchführte, machte einen zweiten Versuch, indem er die osculierenden Elemente aus Distanzen und Positionswinkel gleichmäßig herleitete. Er fand so für den dritten Körper eine etwas längere Periode.

Nach den Untersuchungen von Moulton (Astron, Journal vol. XX) ist aber die Stabilität dieses Systems stark in Frage gestellt, da sich die lange Umlaufszeit mit der großen Masse, die der dritte Körper haben muss, nicht vereinbaren lässt.

Burnham hat auch bei seinen Nachforschungen mit dem 18zölligen Dearborn- und dem großen Lick-Refractor von einem dritten Stern in der Nähe der besten anderen nichts entdecken können.

Es soll nun im Folgenden abermals versucht werden, die Anomalien der Bewegung an diesem System durch den Einfluss einer dritten Masse zu erklären, doch soll eine andere Configuration des Systems vorausgesetzt werden.

Die dritte Masse soll nicht um eine der Componenten, sondern um den Schwerpunkt beider eine Bahn von sehr großem Radius beschreiben. Wir wollen die Distanz sogar so groß voraussetzen, dass die Ortsveränderung des Körpers weiter nicht in Betracht kommt; die obige Periode, welche ungefähr die Hälfte der Hauptperiode ist, wäre dann als eine periodische Störung abhängig von der doppelten und mehrfachen mittleren Anomalie aufzufassen, während die Periode des dritten Körpers gar nicht in die Rechnung eintritt, weil sie zu lang ist.

Wir haben es also hier mit einem ähnlichen Störungsproblem zu thun, wie es bei Cancri aufgetreten ist (Seeliger: Denksch, der kais, Akad, der Wiss., mathem.-naturw. Cl., Wien, 1882 und Abhandl, der kön, bayr. Akad, der Wiss., mathem.-naturw. Cl. 1888), nur ist es noch complicierter, da die 3. Componente nicht sichtbar ist.

Nachdem dort festgestelt war, dass man ohne Nachtheil die Bahn des dritten Sternes in die Projectionsebene legen kann und sich gleichzeitig ein Massenwert für denselben ergeben hatte, war es möglich, die Störungen vollständig zu berechnen, dieselben von den Beobachtungen abzuziehen und die Reste nach dem Kepler'schen Gesetze auszugleichen. Hier aber, wo von der dritten Masse gar nichts bekannt ist, bleibt nichts übrig als die Elemente desselben gleichzeitig mit denen der sichtbaren Componenten in die Gleichungen aufzunehmen, wodurch die Rechnungen bedeutend umfangreicher werden.

Natürlich werden auch die erhaltenen Resultate nicht sehr sicher sein, da, um die Rechnung überhaupt bewältigen zu können, vereinfachende Bedingungen eingeführt werden mussten, von denen es schließlich zweifelhaft erschien, ob sie für die in Betracht kommenden Zeiträume aufrecht erhalten werden können. Es kann daher das folgende nur zu einer Orientierung dienen, ob die durch die Beobachtungen constatierten Abweichungen von dem Kepler'schen Gesetze von der Art sind, dass sie sich durch ähnliche

A. Prey,

Störungen, wie die hier betrachteten erklären lassen. Diese Frage muss auf Grund der folgenden Untersuchungen entschieden bejaht werden und ich halte in dieser Hinsicht die Übereinstimmung der für das Verhältnis zur Masse zur dritten Potenz der Entfernung des unbekannten Körpers gefundenen Werte für wichtiger als die Darstellung.

Eine wichtige Stütze erhielt die Hypothese aber dadurch, dass es gelungen ist, das Vorhandensein eines Sternes elfter Größe zu constatieren, der der Größe und Richtung nach dieselbe Eigenbewegung besitzt, wie 70 Ophiuchi.

Es ist kein Zweifel, dass unter den so gewonnenen Gesichtspunkten die Rechnungen zu wiederholen wären. Dazu ist jedoch der Zeitpunkt jetzt nicht günstig. Die Bewegung in Positionswinkel ist gerade jetzt auffällig groß und daher gerade jetzt die Zeit, wo sich die Anomalien der Bewegung am deutlichsten äußern, weil der Positionswinkel für jede kleine Änderung in den Elementen ungeheuer empfindlich ist. Es soll daher mit weiteren Untersuchungen dieser Art gewartet werden, bis diese kritische Zeit vorüber ist.

Aufstellung der Differentialgleichungen.

Wir gehen von der Annahme aus, dass das System der beiden sichtbaren Componenten, deren Massen m_1 und m_2 sein sollen, in einer bestimmten Richtung eine Beschleunigung erfahre, welche von einer dritten, unbekannten Masse m_3 herrühre.

Auf Grund der Voraussetzung, dass dieser dritte Körper sehr weit von den beiden anderen entfernt ist, können wir annehmen, dass die Richtung der Beschleunigung für m_1 und m_2 annähernd dieselbe ist.

Legen wir den Anfangspunkt eines sonst beliebigen rechtwinkeligen Coordinatensystems in den gemeinsamen Schwerpunkt von m_1 und m_2 und bezeichnen die Entfernung von m_3 vom Anfangspunkte mit D, die Richtungswinkel der durch m_3 erzeugten Beschleunigung λ p, ν_1 so sind nach unserer Voraussetzung die Größen λ p, ν und D als constant zu betrachten. Es kommt dies darauf hinaus, dass M ein sehr kleines Stück einer Kreisbahn beschreibt.

Bezeichnen wir ferner mit r_1 und r_2 die Entfernung von m_1 , respective m_2 vom Anfangspunkte, mit r die gegenseitige Entfernung der beiden, so ist

$$r = r_1 + r_2$$
 $r_1 = \frac{m_2}{m_1 + m_2}$ $r = p_1 r$ $r_2 = \frac{m_1}{m_1 + m_2}$ $r = p_2 r$ 1

und

$$m_1 \mu_1 - m_2 \mu_2 = \mathfrak{C}$$

Ist endlich ϑ der Winkel zwischen D und r, so erhalten wir für die Beschleunigung von m_1 und m_2 in der Richtung λ , μ , ν die Werte

$$\frac{k^2 \, m_1 \, m_3}{(D - r_1 \cos \vartheta)^2} \, \lim_{\delta \to \infty} \frac{k^2 \, m_2 \, m_3}{(D + r_2 \cos \vartheta)^2}$$

Diese Beschleunigungen charakterisieren den störenden Einfluss von m_3 . Es entspricht ihnen eine Störungsfunction von der Form

$$R = \frac{k^2 m_3^2 m_3}{D - \mathcal{F}_1 \cos \vartheta} + \frac{k^2 m_2 m_3}{D + r_2 \cos \vartheta}.$$

Wir wolfen nun im folgenden genau der Jacobi'schen Integrationsmethode folgen, welche nach Integration der ungestörten Bewegung sofort die Differentialgleichungen der gestörten hinzuschreiben erlaubt. (Über diejenigen Probleme der Mechanik, in welchen eine Kräftefunction existiert und über die Theorie der Störungen: C. G. J. Jacobis gesammelte Werke, Bd. V. S. 355 A.N., Bd. 111.) Daselbst lindet sich für das Integral der Hamilton-Jacobischen Differentialgleichung der Ausdruck:

$$W = \sqrt{\frac{m_1 m_2}{m_1 + y_2^2}} \left[\sqrt{\frac{2k^2 m_1 m_2}{r}} - 2\alpha - \frac{2\beta}{r^2} dr + \int \sqrt{2\beta - \frac{2\gamma}{\sin^2 \varphi}} d\varphi + \sqrt{2\gamma \psi} \right]$$
 (1)

r, z und z sind die Polarcoordinaten der einen Masse in Bezug auf die andere, so dass

$$x = \sqrt[3]{\sin \varphi \cos \psi}$$
 $y = r \sin \varphi \sin \psi$ $z = r \cos \varphi$

 α , β und γ sind die Integrationsconstanten.

Daraus ergeben sich die Integrafgleichungen

$$\frac{\partial \Pi'}{\partial \alpha} = \alpha'$$
 $\frac{\partial \Pi'}{\partial \overline{\beta}} = \beta'$ $\frac{\partial \Pi'}{\partial \gamma} = \gamma'.$

wo $\alpha' \beta' \gamma'$ drei neue Constante sind.

A. Prev,

Die Bedeutung dieser sechs Größen ist nach Jacobi

$$\alpha = \frac{k^2 m_1 m_2}{2a} \qquad \alpha' \equiv l_0
\beta = \frac{k^2 m_1 m_2}{2} a (1 - c^2) \qquad \beta' \equiv \sqrt{\frac{m_1 m_2}{m_1 + m_2} \sqrt{2\beta}} (\omega - 90)
\gamma = \frac{k^2 m_1 m_2}{2} a (1 - c^2) \cos^2 i \qquad \gamma' \equiv \sqrt{\frac{m_1 m_2}{m_1 + m_2} \sqrt{2\gamma}} (\omega - 90),$$
5)

oder umgekehrt:

Die halbe große Achse der Bahn:

$$a = \frac{k^2 m_1 m_2}{2\pi},$$

die Excentricität:

$$e = \sqrt{1 - \frac{4\alpha_1^2}{k^1 m_1^2 m_2^2}}$$

der Cosinus der Neigung:

$$\cos i = \sqrt{\frac{7}{\beta}} \cdot \sqrt{\frac{8}{\beta}} \tag{6}$$

der Winkel zwischen Perihel (Periastron) und dem Knoten:

$$\omega = \sqrt{\frac{m_1 + m_2}{m_1 m_2}} \sqrt{\frac{2\beta + 90}{2\beta + 90}},$$

die Länge des Knotens:

$$\tau_{\rm e} = \sqrt{\frac{m_1 + m_2}{m_1 m_2}} \gamma' \sqrt{2\gamma} = 00,$$

die Epoche:

$$t_0 = \alpha'$$

Mit Hilfe unserer Störungsfunction Rerhalten wir nun sofort die Differentialgleichungen für die gestörte Bewegung

$$\frac{d\alpha}{dt} = \frac{\partial R}{\partial \alpha}$$

$$\frac{d\alpha'}{dt} = -\frac{\partial R}{\partial \alpha}$$

$$\frac{d\beta'}{dt} = \frac{\partial R}{\partial \beta}$$

$$\frac{d\gamma}{dt} = \frac{\partial R}{\partial \gamma'}$$

$$\frac{\partial \gamma'}{\partial t} = \frac{\partial R}{\partial \gamma'}$$

Diese Differentialgeichungen sind nun zu integrieren Zu diesem Zwecke muss die Storungsfunction R in eine entsprechende Form gesetzt werden.

Entwicklung der Störungsfunction.

Wir haben gefunden

$$R = \frac{k^2 m_1 m_3}{D - r_1 \cos \vartheta} + \frac{k^2 m_2 m_3}{D + r_2 \cos \vartheta}$$

$$= \frac{k^2 m_1 m_3}{D} \left[1 + \frac{r_1}{D} \cos \vartheta + \left(\frac{r_1}{D} \right)^2 \cos^2 \vartheta + \dots \right]$$

$$+ \frac{k^2 m_2 m_3}{D} \left[1 - \frac{r_2}{D} \cos \vartheta + \left(\frac{r_2}{D} \right)^2 \cos^2 \vartheta + \dots \right]$$

Da R immer nur nach den Größen α , β , γ , α' β' γ' differentiiert escheint, so können wir das constante Glied

$$\frac{k^2}{D} \frac{m_3}{m_1} \cdot (m_1 + m_2)$$

von vornherein weglassen.

Da nach Gleichung 2

$$m_1 r_1 - m_2 r_2 = (m_1 \mu_1 - m_2 \Re_2) r = 0$$

ist, so fallen die zweiten Glieder der beiden Ausdrücke ebemäalls weg. Die Entwicklung beginnt daher mit Gliedern, welche den Factor $\frac{m_3}{D^3}$ enthalten. Wir wollen uns mit diesen begnügen und die weiteren Glieder, welche $\frac{m_3}{D^4}$ u. s. w. enthalten, vernachlässigen.

Es verbleibt somit der Ausdruck

$$R = \frac{k^2 m_3}{D^3} \left[m_1 r_1^2 + m_2 r_2^2 \right] \sqrt[8]{8} \sqrt[8]{8} \vartheta = \frac{k^2 m_3}{D^3} \left(m_1 \mu_1^2 + m_2 \mu_2^2 \right) r^2 \cos^2 \vartheta,$$

in welchen wir de Bahnelemente einzuführen haben.

Bezeichnen wir mit l, m, n die Richaugswinkel von r, so ist:

$$\cos l = \cos \mathcal{L} \cos (\omega + v) - \sin \mathcal{L} \sin (\omega + v) \cos i$$

$$\cos m = \sin \mathcal{L} \cos (\omega + v) + \cos \mathcal{L} \sin (\omega + v) \cos i$$

$$\cos n = \sin \mathcal{L} \cos (\omega + v) \sin i,$$

wo v die wahre Anomalie bedeutet, oder wenn wir

$$\sqrt[3]{r}\cos v = \xi \qquad \qquad r\sin v = \eta$$

setzen

$$r\cos l = \xi (\cos \Re \cos \omega - \sin \Re \sin \omega \cos i) + \eta (-\cos \Re \sin \omega - \sin \Re \cos \omega \cos i) = \xi p_1 + \eta q_1$$

$$r\cos m = \xi (\sin \Re \cos \omega + \cos \Re \sin \omega \cos i) + \eta (-\sin \Re \sin \omega + \cos \Re \cos \omega \cos i) = \xi p_1 + \eta q_2$$

$$r\cos n = \xi \sin \omega \sin i + \eta \cos \omega \sin i$$

$$= \xi p_3 + \eta q_3$$

Da nun

$$\cos \vartheta = \cos l \cos \lambda + \cos m \cos \mu + \cos n \cos \nu$$

ist, so folgt für r cos 9 der Ausdruck

$$r\cos\vartheta = \xi(p_1\cos\lambda + p_2\cos\mu + p_3\cos\nu) + \eta(q_1\cos\lambda + q_2\cos\mu + q_3\cos\nu).$$

181 A. Prey.

Führen wir zur Abkürzung für die Klammerausdrücke die Bezeichnung A und B ein, so lautet nun die Störungsfunction:

$$R \equiv \frac{k^2 \, m_3}{D^3} \, (m_1 p_1^2 + m_2 p_2^2) \, (\xi A + \eta B)^2 \equiv \frac{k^2 \, m_3}{D^3} \, \frac{m_1 m_2}{m_1 + m_2} \, (\xi A + \eta B)^2. \tag{8}$$

Wir führen nun noch eine Vereinfachung durch: Wir setzen voraus, dass die drei Massen m_1 m_2 und m_3 sich in derselben Ebene bewegen. Dann ist gleichzeitig

$$i = 0$$
 $y = 90^{\circ}$ und $p = 90 - \lambda$,

und es wird

$$p_1 = \cos(\Omega + \omega) \qquad q_1 = -\sin(\Omega + \omega)$$

$$p_2 = \sin(\Omega + \omega) \qquad q_2 = \cos(\Omega + \omega)$$

$$p_3 = 0 \qquad q_3 = 0.$$

Das Element Ω verliert seine Bedeutung und wir können $\Omega + \psi = \pi$ setzen, indem wir unter π die Länge des Periastrons von einem beliebigen Nullpunkt gezählt verstehen.

Dann folgt

$$A = \cos (\lambda - \pi)$$
$$B = \sin (\lambda - \pi)$$

und

$$R = \frac{k^2 m_3}{D^3} \frac{m_1 m_2}{m_1 + m_2} [\xi \cos(\lambda - \pi) + \eta \sin(\lambda - \pi)]^2.$$
 9)

Die säcularen Störungen.

Indem wir den Entwicklungen von ξ und η nach Potenzen der Excentricität nur jene Glieder entnehmen, welche die mittlere Anomalie nicht enthalten, ergeben sich aus 7) die Differentialgleichungen für die säcularen Störungen.

Es ist also:

$$\xi^2 = \frac{a^2}{2} (1 + 4c_s^2) \qquad \qquad \xi \eta = 0 \qquad \qquad \eta^2 = \frac{a^2}{2} (1 - \epsilon^2)$$

zu nehmen und daher

$$R = \frac{k^2 m_3 m_1 m_2}{D_s^2 m_1 + m_2} \cdot \frac{d^2}{2} \left[(1 + 4e^2) \cos^2(\lambda - \pi) + (1 - e^2) \sin^2(\lambda - \pi) \right], \tag{10}$$

welcher Ausdruck in 7) einzuführen ist.

Da R die Zeit nichtenthält, somit

$$\frac{\partial R}{\partial \alpha'} = \frac{\partial R}{\partial t_0} = 0$$

ist, so folgt unmittelbar

$$\alpha = \text{eonst.},$$

und da a nur von dem einzigen Element a abhängt, so ist auch

$$a = \text{const.}$$
 1)

Wir behandeln nun zunächst die beiden Gleichungen für β und β' welche eine Beziehung zwischen c und π liefern.

Bezeichnen wir den Ausdruck:

$$(1+4c^2)\cos^2(\lambda-\pi)+(1-\epsilon^2)\sin^2(\lambda-\pi)$$

mit S, so folgt aus den Gleichungen

$$\frac{d\beta}{dt} = \frac{\partial R}{\partial \beta'}$$
 und $\frac{\partial \beta'}{\partial t} = -\frac{\partial R}{\partial \beta}$,

unter Benützung von 5, wo jetzt ω durch π ersetzt ist:

$$\frac{d\beta}{dt} = -k^{2}m_{1}m_{2}ac.\frac{dc}{dt} = \frac{k^{2}m_{3}}{D^{3}} \frac{m_{1}m_{2}}{m_{1}+m_{2}} \frac{a^{2}}{2} \cdot \frac{\delta S}{\delta \beta},$$

$$\frac{d\beta'}{dt} = \sqrt{\frac{m_{1}m_{2}}{m_{1}+m_{2}}} \frac{1}{\sqrt{2\beta}} \frac{d\pi}{dt} \frac{1}{(\sqrt{2\beta})^{3}} \cdot \beta' \sqrt{2\beta} \cdot \frac{d\beta}{dt} = -\frac{k^{2}m_{3}}{D^{3}} \frac{m_{1}m_{2}}{m_{1}+m_{2}} \cdot \frac{a^{2}}{2} \cdot \frac{\delta S}{\delta \beta}$$
11)

S ist nur Function der Größen e und m; daher

$$\frac{\partial S}{\partial \overline{\beta}} = \frac{\partial S}{\partial c} \cdot \frac{\partial c}{\partial \beta} + \frac{\partial S}{\partial \pi} \cdot \frac{\partial \pi}{\partial \overline{\beta}}$$

$$\frac{\partial S}{\partial \overline{\beta}} = \frac{\partial S}{\partial c} \cdot \frac{\partial c}{\partial \beta'} + \frac{\partial S}{\partial \pi} \cdot \frac{\partial \pi}{\partial \overline{\beta}}$$

$$\frac{\partial S}{\partial \overline{\beta}} = \frac{\partial S}{\partial c} \cdot \frac{\partial c}{\partial \beta'} + \frac{\partial S}{\partial \pi} \cdot \frac{\partial \pi}{\partial \overline{\beta}}$$

$$12)$$

Ferner ist

$$\frac{\partial c}{\partial \beta} = -\frac{2\alpha}{k^4 m_1^2 m_2^2} \frac{\delta c}{c}$$

$$\frac{\partial c}{\partial \beta'} = 0$$

$$\frac{\partial c}{\partial \beta'} = 0$$

$$\frac{\partial c}{\partial \beta'} = \frac{m_1 + m_2}{2} \frac{\beta'}{\beta'}$$

$$\frac{\partial \pi}{\partial \beta} = \sqrt{\frac{m_1 + m_2}{m_1 m_2}} - \frac{\beta'}{2\beta}$$

$$\frac{\partial \pi}{\partial \beta'} = \sqrt{\frac{m_1 + m_2}{m_1 m_2}} \sqrt{2\beta} .$$
13

Werden nun 12 und 13 m 11 substituiert, so folgt:

$$\begin{split} \frac{d \mathfrak{F}}{d l} &= -k^2 m_1 m_2 \, a \, c \, \frac{d \, c}{d t} = \frac{k^2 \, m_3}{D^3} \, \frac{m_1 m_2 \, \delta \, a^2}{m_1 + m_2} \, 2 \, \cdot \sqrt{\frac{m_1 + m_2}{m_1 m_2}} \sqrt{\frac{2 \, \mathfrak{F}}{2 \, \mathfrak{F}}} \cdot \frac{\delta \, S}{\delta \, \pi} \\ \frac{d \, \mathfrak{F}}{d l} &= \sqrt{\frac{m_1 m_2}{m_1 + m_2}} \frac{1}{\sqrt{2 \, \mathfrak{F}}} \cdot \frac{d \, \pi}{d \, l} - \frac{\mathfrak{F}}{2 \, \mathfrak{F}} \frac{d \, \mathfrak{F}}{d \, l} = -\frac{k^2 \, m_3}{D^3} \, \frac{m_1 m_2}{m_1 + m_2} \frac{a^2}{2} \left[-\frac{2 \, \alpha}{k^4 \, m_1^2 \, m_2^2} + \frac{1}{c} \cdot \frac{\delta \, S}{\delta \, c} + \right. \\ &+ \sqrt{\frac{m_1 + m_2}{m_1 m_2}} \cdot \frac{\mathfrak{F}'}{\sqrt{2 \, \mathfrak{F}}} \cdot \frac{\delta \, S}{\delta \, \pi} \right] \cdot \quad 14) \end{split}$$

In der zweiten Gleichung 14 fällt das zweite Glied rechts und links vom Gleichheitszeichen zufolge der ersten Gleichung weg, und es folgt nun unter Beiziehung von 5:

$$\begin{split} \frac{dc}{dl} &= -\frac{km_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} \frac{\sqrt{1 - e^2}}{c} \cdot \frac{a^{\frac{3}{2}}}{2} \frac{\partial S}{\partial \pi} \\ \frac{d\pi}{dt} &= +\frac{km_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} \cdot \frac{\sqrt{1 - e^2}}{c} \cdot \frac{a^{\frac{3}{2}}}{2} \frac{\partial S}{\partial c}, \end{split}$$
(15)

186 A. Prev,

so dass die Factoren, mit welchen $\frac{\delta S}{\delta \pi}$ und $\frac{\delta S}{\delta c}$ multipliciert erscheinen, sich nur durch das Vorzeichen voneinander unterscheiden.

Bilden wir das totale Differential $\frac{dS}{dt}$, so ergibt sich

$$\frac{dS}{dt} = \frac{\partial S}{\partial e} \cdot \frac{de}{dt} + \frac{\partial S}{\partial \pi} \cdot \frac{\partial \pi}{dt} = 0,$$

daher

S = const. = c

oder

$$(1+4e^2)\cos^2(\lambda-\pi)+(1-e^2)\sin^2(\lambda-\pi)=c.$$

Aus dieser Gleichung können wir e als Function von π bestimmen und in die zweite Gleichung 15 einsetzen.

Es wird

$$e^{2} = \frac{1 - c}{1 - 5 \cos^{2}(\lambda - \pi)}$$

$$1 - e^{2} = \frac{c - 5 \cos^{2}(\lambda - \pi)}{1 - 5 \cos^{2}(\lambda - \pi)}$$

$$\frac{1 - e^{2}}{e} = \sqrt{\frac{c - 5 \cos^{2}(\lambda - \pi)}{e - c}}$$

und

$$\frac{\partial S}{\partial e} = 2e[5\cos^2(\lambda - \pi) - 1],$$

daher

$$\frac{d\pi}{dt} = \frac{km_3}{D^3} \frac{1}{\sum_{m_1 + m_2}^{\infty} \frac{3}{2} \sqrt[3]{|c - 5\cos^2(\lambda - \pi)| |1 - 5\cos^2(\lambda - \pi)|}}.$$

Da wir $c = \sin \varphi$ setzen können, wo φ einen Winkel bedeutet, der für elliptische Bahnen immer im ersten Quadranten liegt, so ist bei den auftretenden Wurzeln überall das positive Vorzeichen zu nehmen.

$$\int_{0}^{\infty} \frac{km_3}{D^3} \cdot \sqrt{\frac{1}{m_1 + m_2}} \cdot a^{\frac{3}{2}}$$

ist eine Constante gleich q, so dass wir setzen können

$$\frac{d(\lambda - \pi)}{\sqrt{\left[c - 5\cos^2(\lambda - \pi)\right] \left[1 - 5\cos^2(\lambda - \pi)\right]}} = qdI.$$
 (7)

Führen wir $y = tg(k-\pi)$ ein, so geht 17 über in:

$$\sqrt{4(5-c)}\sqrt{\left(1-\frac{c}{5-c}y^2\right)\left(1-\frac{1}{4}y^2\right)} = q dt.$$

c > 1

Wir müssen nun zwei Fälle unterscheiden:

lst

$$z = \sqrt{\frac{c}{5 - c}} \cdot y$$
 18)

und erhalten:

$$q dt = \frac{dz}{\sqrt{4c}\sqrt{(1-z^2)[1-\frac{5-c}{4c}.z^2]}}.$$

Dahei ist

$$\frac{5-c}{4c} < 1.$$

Ist dagegen

so substituieren wir

$$z=\frac{N}{2}$$

und erhalten

$$a.dt = \frac{dz}{\sqrt{5 - c} \sqrt{\left(1 - \frac{4c}{5 - c}z^2\right)(1 - z^2)}},$$

in welchem Falle nun $\frac{4c}{5-c} < 1$ ist.

Setzen wir für den ersten Fall

$$\frac{5-c}{4c} = k^2 \quad \text{und} \quad \sqrt{4c} \cdot \sqrt{4c} = q'$$
 20)

und für den zweiten Fall

$$\frac{4c}{5-c} = k^2 \quad \text{und} \quad \sqrt{g} - c \cdot q = q', \tag{21}$$

so erhalten wir in beiden Fällen die Form:

$$q'dt = \frac{dz}{\sqrt{z^2 - z^2}}$$

oder das elliptische Integral

$$q'(t-t_0) = \int_{z_0}^{\infty} \int_{z_0}^{z_0} \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}},$$

welches zusammen mit 18 und 20 oder 19 und 21 die Beziehung zwischen π und / darstellt.

Bezeichnen wir das Integral zwischen den Grenzen 0 und z_0 , welches eine Constante ist, mit A, so ist

$$q'(t-t_0) = \int_{0}^{z} \sqrt{\frac{dz}{(1-z^2)(1-k^2z^2)}} - \int_{0}^{z_0} \sqrt{\frac{dz}{(1-z^2)(1-k^2z^2)}} = \int_{0}^{z} \sqrt{\frac{dz}{(1-z^2)(1-k^2z^2)}} - A.$$

mithin:

$$z = \sin am \left[A + q' \left(t - t_0 \right) \right]$$

oder

1. Fall:
$$\sqrt{\frac{c}{5-c}} \operatorname{tg}(\lambda - \pi) = \sin am \left[A + \frac{km_3}{D^3} \cdot \frac{\sqrt{4c}}{\sqrt{m_1 + m_2}} \frac{3}{a^2} (t - t_0) \right],$$
2. Fall:
$$\frac{1}{2} \operatorname{tg}(\lambda - \pi) = \sin am \left[A + \frac{km_3}{D^3} \frac{\sqrt{5-c}}{m_1 + m_2} \cdot \frac{3}{a^2} (t - t_0) \right].$$

Jedem Wert von π entspricht ein Wert von e, der sich aus Gleichung 16 ergibt

$$c = \sqrt{\frac{1 - c}{1 - 5\cos^2(\lambda - \pi)}}.$$
 III)

Die Integration der beiden Gleichungen für β und β' ist damit beendet.

Es sei hier auf eine besondere Eigenschaft der Bewegung des Periastrons hingewiesen, welche sich aus Gleichung 17 ergibt.

Es war

$$\frac{d(\lambda - \pi)}{dt} := q \sqrt{|c - 5\cos^2(\lambda - \pi)|} |1 - 5\cos^2(\lambda - \pi)|$$

und

$$(1+4e^2)\cos^2(\lambda-\pi)+(1-e^2)\sin^2(\lambda-\pi)$$

 $\lambda - \pi$ oder der Winkel zwischen dem Periastron und der Richtung nach m_3 ändert sich periodisch mit der Zeit. Es kann nämlich der Fall eintreten, dass $\frac{d(\lambda-\pi)}{dt}$ () wird, und zwar sowohl für

$$c = 5 \cos^2(\lambda - \pi)$$
 als für $1 = 5 \cos^2(\lambda - \pi)$

oder

$$\cos(\lambda - \pi) = \pm \sqrt{\frac{c}{5}} \qquad \text{cos}(\lambda - \pi) = \pm \sqrt{\frac{1}{5}}.$$

Es sei

I. zur Zeit

$$t = t_0$$
 $\lambda = \pi$ wild $\cos^2(\lambda - \pi) = 1$, $\sin^2(\lambda - \pi) \equiv 0$.

dann ist

$$c = 1 + 4c^2 \text{ und}$$

$$5 > c > 1$$

daher

$$c \to 5 \cos^2(\lambda - \pi) = c - 5 < 0$$

$$1 - 5 \cos^2(\lambda - \pi) = 1 - 5 < 0$$

$$\frac{d(\lambda - \pi)}{dt} \text{ reell.}$$

Das Maximum von λ-π trift ein für

$$\cos\left(\lambda - \pi\right) = \pm \sqrt{\frac{c}{5}} \,.$$

da $\sqrt{\frac{c}{5}} > \sqrt{\frac{1}{5}}$ ist und sos $(\lambda = \pi)$ zu Beginn seinen größten Wert hatte und abnehmen musste.

II. Es sei für
$$t = t_0 \qquad \lambda - \pi = 90 \qquad \cos^2(\lambda - \pi) = 0, \sin^2(\lambda - \pi) = 1,$$

dann ist

$$c = 1 - c^2$$

$$1 > c > 0$$

daher

$$c-5\cos^2(\lambda-\pi) = c > 0$$

$$1-5\cos^2(\lambda-\pi) = 1 > 0$$

$$\frac{d(\lambda-\pi)}{dt} \text{ reell}$$

Das Minimum von $\lambda - \pi$ tritt wieder ein für

$$\cos(\lambda - \pi) = \pm \sqrt{\frac{c}{5}}$$

da jetzt $\sqrt{\frac{c}{5}} < \sqrt{\frac{1}{5}}$ ist und $\cos{(\lambda - \pi)}$ von seinem kleinsten Werte an zunimmt.

Es folgt daher: Hat die Größe $\lambda-\pi$ einen derartigen Wert, dass $\cos{(\lambda-\pi)}>\sqrt{\frac{c}{5}}$ ist, so vollführt das Periastron eine schwingende Bewegung um die Richtung nach m_3 ; ist dagegen $\cos{(\lambda-\pi)}<\sqrt{\frac{c}{5}}$ so erfolgt die Schwingung um die darauf senkrechte Richtung.

Es mass noch darauf hingewiesen werden, dass gleichzeitig mit

$$\frac{d(\lambda - \pi)}{dt} = 0$$

ımmer auch e = 1 werden muss, so dass die Bahn für diesen Augenblick in eine Gerade übergeht. Die Quadratwurzel ändert nun das Vorzeichen und die Excentricität ist dann im zweiten Quadranten zu nehmen.

Für 70 Ophiuchi ergibt sich aus dem später folgenden Zahlenmateriale:

Für

$$I_0 = 1807 \cdot 93 \text{ ist } \lambda - \pi = \sqrt{4^{\circ} \cdot 692}$$

$$\varphi = 29^{\circ} \cdot 372 \sqrt{9 \cdot 6909}$$

$$\log e = \log \sin \varphi = 9 \cdot 6909$$

findet man

und $\log \sqrt{\frac{c}{5}} = 9.6200$, während $\log \cos \alpha$ ≈ 9.4216 ist.

Es ist also

$$\cos(\lambda - \pi) < \sqrt{5}$$

und wir haben den zweiten Fall vor uns:

$$k^{2} = \frac{4e^{2}}{5e^{2} c} = 0.8414,$$

$$q' = \frac{km_{3}}{D^{3}} \cdot \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \sqrt{5 - c} = 0.0008714$$

Die Schwingungsdauer ergibt sieh aus der Periode der sinam.

Wenn

$$K = \int_{0}^{1} \frac{dz}{\sqrt{(1 - k^2 z^2)}} = 2 \cdot 3633$$

ist, so finden wir für die Periode eine Dauer von

$$4 K \pm 10850 \text{ Jahre.}$$

190 A. Prev,

Die größte Elongation dieser Schwingung, welche für $\cos{(\lambda-\pi)} = \sqrt{\frac{c}{5}}$, d. i. für $\lambda-\pi=65^{\circ}$ 36 eintritt, während jetzt $\lambda-\pi=74^{\circ}69$ ist, findet statt für

$$t - t_0 = \frac{1}{q'} \int_{\frac{-74}{65/20}}^{\frac{74\cdot60}{7}} \frac{dz}{(1 - z^2)(1 - k^2 z^2)} = 370 \text{ Jahre.}$$

Kommt der Masse m_3 eine Bewegung um den Schwerpunkt von m_1 und m_2 in der Richtung der Zählung der Positionswinkel zu, so kann der Eintritt der größten Elongation sich verzögern, eventuell ganz unterbleiben; ist jedoch m_3 rückläufig wie m_2 , so verfrüht sich dieser Moment. Es wäre dann schon im nächsten Apastron ein bedeutendes Anwachsen der Distanzen zu erwagten.

Es erübrigt noch die Integration der Differentialgleichung für t_0 . Wenn wir bedenken, dass nur die Elemente a und e von α abhängig sind, so geht die Gleichung

$$\frac{dt_0}{dt} = -\frac{\partial R}{\partial \alpha}$$

über in

$$\frac{dt_0}{dt} = -\frac{\partial R}{\partial a} \cdot \frac{\partial a}{\partial \alpha} - \frac{\partial R}{\partial \alpha} \frac{\partial c}{\partial \alpha}.$$
 23)

Bezeichnen wir die mittlere Anomalie zur Zeit t_0 mat M_0 und die mittlere Bewegung mit μ

$$p = \sqrt{\frac{k^2 (m_1 + m_2)}{a^3}},$$

so ist

$$\frac{dM_0}{dt} = \mu \frac{dt_0}{dt} = \mu \frac{\partial R}{\partial a} \cdot \frac{\partial a}{\partial \alpha} \frac{\partial R}{\partial c} \cdot \frac{\partial e}{\partial \alpha}$$

$$= -\frac{2km_3}{D^3} \cdot \frac{1}{m_1 + m_2} \cdot \frac{a^{\frac{3}{2}}c + \frac{km_3}{D^3}}{m_1 + m_2} \frac{1}{m_1 + m_2} \frac{a^{\frac{3}{2}}[c - 5\cos^2(\lambda - \pi)]}{m_1 + m_2}, \quad (\lambda - \pi)$$

wo c die frühere Bedeutung hat:

$$c = (1+4c^2)\cos^2(\lambda-\pi) + (1-c^2)\sin^2(\lambda-\pi).$$

Schließlich

$$\frac{dM_0}{dt} = \sqrt[3]{\frac{km_3}{D^3}} \frac{1}{\sqrt{m_1 + m_2}} \cdot a^{\frac{3}{2}}c - \frac{5km_3}{D^3} \cdot \frac{1}{\sqrt{m_1 + m_2}} \cdot a^{\frac{3}{2}}\cos^2{(\lambda - \pi)}$$

und $M_{\rm o}$ (für eine beließige Zeit t) — $M_{\rm o}$ (für die Zeit $t_{\rm o}$)

$$=\frac{\frac{3}{8}km_3}{D^3} \cdot \frac{1}{\sqrt{m_1 + m_2}} \cdot \frac{3}{a^2} c(t - t_0) - \frac{5km_3}{D^3} \cdot \frac{1}{\sqrt{m_1 + m_2}} \cdot \frac{3}{a^2} \int_{t_0}^{t} \cos^2(\lambda - \pi) dt.$$
 IV)

Damit ist die Integration der Differentialgleichungen 7 durchgeführt.

Für kleinere Zeiträume ist es praktischer, statt mit den complicierten Integralen nur mit den Differentialen zu rechnen. Wir gehen zu diesem Zwecke auf die Gleichungen 15 und 24 zurück.

Nach 16 ist, wenn wir den Cosinus des doppelten Winkels einführen:

$$S = c = \frac{2 + 3e^2}{2} + \frac{5e^2}{2}\cos 2(\lambda - \pi)$$

und

$$\frac{\partial S}{\partial c} = c[3 + 5\cos 2(\lambda - \pi)]$$

$$\frac{\partial S}{\partial \pi} = 5e^2 \sin 2 (\lambda - \pi).$$

Führen wir diese Relationen in 15 und 24 ein, so stellen sich die säcularen Anderungen der Elemente während der Zeit $t-t_0$ in folgender Form dar:

$$\begin{split} \Delta a &= 0 \\ \Delta c &= -\frac{5}{2} \frac{k m_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} \cdot a^{\frac{3}{2}} e \sqrt{1 - e^2 \sin 2 (\lambda - \pi)} \cdot e^{\frac{1}{2} t_0} \\ \Delta \pi &= \frac{k m_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} \cdot a^{\frac{3}{2}} \sqrt{1 - e^2} \left[\frac{3}{2} + \frac{5}{2} \cos 2 (k - \pi) \right] (t - t_0) \\ \Delta M_0 &= \frac{k m_3}{D^3} \cdot \frac{1}{\sqrt{m_1 + m_2}} a^{\frac{3}{2}} \left[-\frac{1}{2} (7 + 3e^2) - \frac{5}{2} (1 + e^2) \cos 2 (\lambda - \pi) \right] (t - t_0). \end{split}$$

Die periodischen Störungen.

Um die Ausdrücke für die periodischen Störungen zu erhalten, haben wir in R (Gl. 8) für ξ und η jene Glieder ihrer Entwicklungen nach Potenzen von e und Vielfachen der mittleren Anomalie einzuführen welche von der letzteren abhängig sind.

Setzen wir zur Abkürzung

$$\left(\frac{1}{a}A + \frac{\eta_1}{a} \cdot B\right)^2 = F,$$

wo für ‡ und η bereits die Reihen gesetzt sein sollen, und

$$\frac{k^2 m_3}{D^3} \cdot \frac{m_1 m_2}{m_1 + m_2} = g,$$

so ist jetzt

$$R = ga^2 F. 25)$$

Die zu integrierenden Differentialgleichungen lauten:

$$\frac{d\alpha}{dt} = \frac{\partial R}{\partial \alpha'} = \frac{\partial R}{\partial t_0} \qquad \qquad \frac{d\alpha'}{dt} = -\frac{\partial R}{\partial \alpha} = -\frac{\partial R}{\partial \alpha} \cdot \frac{\partial \alpha}{\partial \alpha} \qquad \frac{\partial R}{\partial c} \cdot \frac{\partial c}{\partial \alpha}
\frac{d\beta}{dt} = \frac{\partial R}{\partial \beta'} = \frac{\partial R}{\partial \pi} \cdot \frac{\partial \pi}{\partial \beta'} \qquad \frac{d\beta'}{dt} = -\frac{\partial R}{\partial \beta} = -\frac{\partial R}{\partial c} \cdot \frac{\partial c}{\partial \beta} - \frac{\partial R}{\partial \pi} \cdot \frac{\partial \pi}{\partial \beta}.$$
26)

Es ist

$$\frac{d\alpha}{dt} = ga^2 \cdot \frac{\partial F}{\partial t_0}$$

oder

$$\frac{da}{dt} = -\frac{2ga^4}{k^2m_1m_2} \cdot \frac{\partial F}{\partial t_0}$$

und die Störung der großen Achse, wenn wir wieder für kleine Zeitintervalle die Elemente als constant voraussetzen

$$\Delta a = -2 \frac{k^2 m_3}{D^3} \frac{m_1 m_2}{m_1 + m_2} \cdot \frac{a^4}{k^2 m_1 m_2} \int_{t_0}^{t} \frac{\partial F}{\partial t_0} dt = \frac{2 m_3 a_1^{4/2}}{D^3 (m_1 + m_2)} F. \tag{V1}$$

Die Integrationscontanten vereinigen sich hinlänglich genau mit den Ausgangselementen.

Die Gleichungen für β und β' werden wieder gemeinsam behandel. Mit Rücksicht auf die Gleichungen 5, 6 und 13 findet sich

$$\begin{split} \frac{d\,\beta}{d\,t} &= \frac{k^2\,m_1\,m_2}{2} \left[(1-e^2)\,\frac{da}{d\,t} - 2\,e\,a\,\frac{de}{d\,t} \right] = g\,a^2\,\frac{\partial\,F}{\partial\,\pi} \sqrt{\frac{m_1+m_2}{m_1m_2}}/2\,\beta \\ \frac{d\,\beta'}{d\,t} &= \sqrt{\frac{m_1m_2}{m_1+m_2}} \frac{1}{\sqrt{2\,\beta}} \cdot \frac{d\,\pi}{d\,t} - \frac{\beta'}{2\,\beta} \cdot \frac{d\,\beta}{d\,t} = -g\,a^2 \cdot \frac{\partial\,F}{\partial\,\pi} \sqrt{\frac{m_1+m_2}{m_1m_2}} \sqrt{\frac{\beta'}{2\,\beta}} + g\,a^2\frac{\partial\,F}{\partial\,e} \cdot \frac{2\,\alpha}{k^4\,m_1^2\,m_2^2} \cdot \frac{1}{e} \end{split}$$

Bildet man mit Hilfe der ersten Gleichung den Ausdruck

$$-\frac{\beta'}{2\beta} \cdot \frac{d\beta}{dt},$$

$$-\frac{\beta'}{2\beta} \cdot \frac{d\beta}{dt} = -\frac{\beta'}{2\beta} \frac{\partial F}{\partial \pi} \cdot \sqrt{\frac{m_1 + m_2}{m_1 m_2}} \cdot \frac{\beta'}{\sqrt{2\beta}}$$

so ist

Mithin sallen diese beiden Glieder insder zweiten Gleichung sort und es bleibt

$$\frac{1}{\sqrt{2\,\beta}} \cdot \sqrt{\frac{m_1 m_2}{m_1 + m_2}} \cdot \frac{d\pi}{d\,t} = g\,a^2 \frac{\delta F}{\delta\,\epsilon} \cdot \frac{2\,a}{k^1 m_1^2 m_2^2} \cdot \frac{1}{\epsilon} \cdot$$

Wir bestimmen nun $\frac{dc}{dt}$ und $\frac{da}{dt}$, indem wir gleichzeitig α und β nach δ durch die Elemente ersetzen und finden

$$\begin{split} \frac{d\,c}{d\,t} &= \frac{1-c^2}{2\,e\,a} \sqrt[8]{d\,t} - \frac{k^2\,m_3}{D^3} \cdot \frac{m_1m_2}{m_1+m_2}, a^2 \cdot \frac{\delta\,F}{\delta\,\pi} \cdot \sqrt{k^2(m_1+m_2)\,a\,(1-c^2)} \cdot \frac{1}{k^2m_1m_2\,c\,a} \\ \frac{d\pi}{dt} &= \frac{k^2\,n_{\rm e3}}{D^3} \cdot \frac{m_1m_2}{m_1+m_2}\,a^2 \cdot \frac{\delta\,F}{\delta\,e} \cdot \frac{1}{k^2\,m_1m_2\,a\,c} \cdot \sqrt{k^2(m_1+m_2)\,a\,(1-c^2)} \end{split}$$

und schließlich næh Durchführung der einfachen Reductionen

$$\frac{de}{dt} = \frac{1 - e^2}{2ea} \cdot \frac{da}{dt} - \frac{km_3}{D^3} \cdot \frac{\frac{3}{a^2}}{\sqrt{m_1 + m_2}} \cdot \frac{\sqrt{1 - e^2}}{e} \frac{\partial F}{\partial \pi}$$

$$\frac{d\pi}{dt} = \frac{km_3}{D^3} \cdot \frac{\frac{3}{a^2}}{\sqrt{m_1 + m_2}} \cdot \frac{\sqrt{1 - e^2}}{e} \frac{\partial F}{\partial e}.$$

Daraus erhält man durch Integration unter Anwendung der Gleichung VI:

$$\begin{split} \Delta \, e &= \frac{1 - e^2}{e} \cdot \frac{a^3}{D^3} \cdot \frac{m_3}{m_1 + m_3} \cdot F - \frac{k m_3}{D^3} \cdot \frac{a^{\frac{3}{2}}}{\sqrt{m_1 + m_2}} \cdot \sqrt{\frac{1 - e^2}{e} \int_{l_0}^{t} \frac{\partial F}{\partial \pi}} \, dt \\ \Delta \pi &= \frac{k m_3}{D^3} \cdot \frac{a^{\frac{3}{2}}}{\sqrt{m_1 + m_2}} \cdot \sqrt{\frac{1 - e^2}{e} \int_{l_0}^{t} \frac{\partial F}{\partial e} \, dt} \end{split}$$

Nun ist noch ΔM_0 zu berechnen; die entsprechende Gleichung lautet:

$$\frac{d\alpha'}{dt} = -\frac{\partial R}{\partial \alpha} = \frac{\partial R}{\partial \alpha} \cdot \frac{\partial \alpha}{\partial \alpha} - \frac{\partial R}{\partial \beta} \cdot \frac{\partial \beta}{\partial \alpha},$$

wobei zu berücksichtigen ist, dass a in R sowohl explicit, als implicit in deg mittleren Bewegung μ enthalten ist.

Daher:

$$\begin{split} \frac{dM_0}{dt} &= -\mu \frac{dt_0}{dt} = \mu \frac{\partial R}{\partial a} \cdot \frac{\partial a}{\partial \alpha} + \mu \frac{\partial R}{\partial c} \cdot \frac{\partial c}{\partial \alpha} \\ &= \mu \cdot 2gaF \cdot \frac{\partial a}{\partial \alpha} + \mu ga^2 \cdot \frac{\partial F}{\partial a} \cdot \frac{\partial a}{\partial \alpha} + \frac{\partial C}{\partial \alpha} \cdot \frac{\partial C}{\partial \alpha} \\ &= \mu \cdot 2gaF \cdot \frac{\partial a}{\partial \alpha} + \mu ga^2 \cdot \frac{\partial F}{\partial M} \cdot \frac{\partial a}{\partial \alpha} \cdot \frac{\partial a}{\partial \alpha} \cdot (t - t_0) + \mu \cdot \frac{\partial R}{\partial c} \cdot \frac{\partial c}{\partial \alpha}, \end{split}$$

da

und

 $\frac{\partial F}{\partial \mu} = \frac{\partial F}{\partial M} \cdot \frac{\partial M}{\partial \mu} = \frac{\partial F}{\partial M} (t - l_0)$

 $M = g_{\bullet}(t - \tilde{\beta}_{0})$

ist.

Mit Hilfe von

 $\sqrt{\frac{k^2(m_1+m_2)}{a^3}}$

folgt:

$$\begin{split} \frac{d\,M_0}{d\,t} &= -\,2\,\frac{k^2\,m_3}{D^3} \cdot \frac{m_1 m_2}{m_1 + m_2} \overset{\$}{\sqrt{}} \,\frac{k^2\,(m_1 + m_2)}{a^3} \cdot a \cdot F \cdot \frac{2\,a^2}{k^2\,m_1 m_2} \\ &\quad + \frac{k^2 m_3}{D^3} \cdot \frac{m_1 m_2}{m_1 + m_2} \cdot \sqrt{\frac{k^2\,(m_1 + m_2)}{a^3} \cdot a^2 \frac{\delta\,F}{\delta\,M}} \cdot \frac{3}{2} \sqrt{\frac{k^2\,(m_1 + m_2)}{a^5} \cdot \frac{2\,a^2}{k^2\,m_1 m_2}} (t - t_0) \\ &\quad - \frac{k^2 m_3}{D^3} \cdot \frac{m_1 m_2}{m_1 + m_2} \cdot \sqrt{\frac{k^2\,(m_1 + m_2)}{a^3} \cdot \frac{\delta\,F}{\delta\,c} \cdot \frac{1}{2\,c} \cdot \frac{4}{k^4\,m_1^2\,m_2^2} \cdot \frac{k^2\,m_1 m_2}{2} a \cdot 1 - c^2)}, \end{split}$$

oder nach einfacher Reduction:

$$\frac{dM_0}{dt} = -\frac{4km_3}{D^3} \sqrt{\frac{1}{m_0 + m_2}} \frac{a^{\frac{3}{2}}F + \frac{3k^2m_3}{D^3} \frac{\delta F}{\delta M}} (t - t_0) - \frac{km_3}{D^3} \frac{1}{\sqrt{m_0 + m_2}} \frac{a^{\frac{3}{2}} 1 - c^2}{\epsilon} \cdot \frac{\delta F}{\delta c}$$

und

$$\Delta M_{0} = -\frac{4k\,m_{3}}{D^{3}} \cdot \sqrt{\frac{1}{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} F dt + \frac{3\,k^{2}\,m_{3}}{D^{3}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \frac{1}{c} \int_{t_{0}}^{c^{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \frac{1}{c} \int_{t_{0}}^{c^{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} - \frac{1}{\sqrt{m_{1} + m_{2}}} \cdot a^{\frac{3}{2}} \int_{t_{0}}^{t} \partial F (t - t_{0}) dt - \frac{km_{3}}{D^{3}} -$$

191 A. Prey,

Es erübrigt nun nur noch die Größen

$$F = \int F dt = \int \frac{\partial F}{\partial M} (t - t_0) dt = \int \frac{\partial F}{\partial c} dt = \int \frac{\partial F}{\partial \overline{c}} dt$$

zu berechnen: ξ und η lassen sich in folgender Form schreiben:

$$\frac{\xi}{a} = c_0 + 2c_1 \cos M + 2c_2 \cos 2M + \dots$$

$$\frac{\eta}{a} = 2s_1 \sin M + 2s_2 \sin 2M + \dots$$

Die Coefficienten $c_1 c_2 \ldots s_1 s_2 \ldots$ sind dann durch Bessel'sche Kinctionen darzustellen, welche von der Excentricität und ihren Vielfachen abhängen. Es ist

$$c_{i} = \frac{1}{i e} I'_{i} - \frac{1}{i} I^{i+1}_{ie} = \frac{1}{i e} \left[I'_{ie} - \frac{1}{i e} I^{i+1}_{ie} \right]$$

$$s_{i} = \frac{\sqrt{1 - e^{2}}}{i e} I'_{i}.$$
27)

(Bessel: Untersuchung desjenigen Theiles der planetarischen Störungen, welcher aus der Bewegung der Sonne entstehl.)

Es wurde diese Form der Darstellung gewählt, weiß sie F in einer Form liefert, welche die Integration nach der Zeit bedeutend vereinfacht.

Bildet man die Größen

und setzt die gefundenen Ausdrücke in ...

$$F = \frac{\xi^2}{a^2} \cos^2(\lambda^8 \pi) + 2 \frac{\xi \eta}{a^2} \cos(\lambda - \pi) \sin(\lambda - \pi) + \frac{\eta^2}{a^2} \sin^2(\lambda - \pi)$$
 28)

ein, so ergibt sich F in der Form:

$$\begin{split} F &= a_0 + a_1 \cos M + a_2 \cos 2M + \dots \\ &+ |b_0 + b_{11} \cos M + b_{12} \cos 2M + \dots|\cos 2(\lambda - \pi) \\ &+ |b_{21} \sin M + b_{22} \sin 2M + \dots|\sin 2(\lambda - \pi). \end{split}$$

 a_0 und b_0 brauchen nicht weiter berücksichtigt zu werden, da sie den säcularen Theil darstellen, der für sich betrachtet wurde.

Bei den nun ausguführenden Integrationen nach der Zeit tritt in jedem Gliede der Factor und auf, welchen wir gleich voraussetzen können.

Es findet sich

$$\int F dt \stackrel{2}{=} \frac{1}{9} \left[a_1 \sin M + \frac{1}{2} a_2 \sin 2M + \frac{1}{3} a_3 \sin 3M + \dots \right]$$

$$+ (b_{11} \sin M + \frac{1}{2} b_{12} \sin 2M + \frac{1}{3} b_{13} \sin 3M + \dots) \cos 2(\lambda - \pi)$$

$$- (b_{21} \cos M + \frac{1}{2} b_{22} \cos 2M + \frac{1}{3} b_{23} \cos 3M + \dots) \sin 2(\lambda - \pi) \right] = \frac{1}{9} .F_1.$$

$$(29)$$

31)

$$\frac{\partial F}{\partial M} = -a_1 \sin M - 2a_2 \sin 2M - 3a_3 \sin 3M \dots$$

$$= (b_{11} \sin M + 2b_{12} \sin 2M + 3b_{13} \sin 3M + \dots) \cos 2(\lambda - \pi)$$

$$+ (b_{21} \cos M + 2b_{22} \cos 2M + 3b_{23} \cos 3M + \dots) \sin 2(\lambda - \pi)$$
(29)

Die Integration

$$\int \frac{\delta F}{\delta M} (t - t_0) dt$$

geschieht nach der Formel:

$$\int \sin ax \cdot x dx = -\frac{x}{a} \cos ax + \frac{1}{a^2} \sin ax$$

$$\int \cos ax \cdot x dx = +\frac{x}{a} \sin ax + \frac{1}{a^2} \cos ax.$$

$$\int \frac{\partial F}{\partial M} (t - t_0) dt = (t - t_0) \frac{1}{\mu} \left[a_1 \cos M + a_2 \cos 2M + a_3 \cos 3M + \dots \right] \cos 2(\lambda - \pi)$$

$$+ (b_{11} \cos M + b_{12} \cos 2M + b_{13} \cos 3M + \dots) \cos 2(\lambda - \pi) \right]$$

$$+ (b_{21} \sin M + b_{22} \sin 2M + b_{23} \sin 3M + \dots) \sin 2(\lambda - \pi) \left[$$

$$+ \frac{1}{\mu^2} \left[-a_1 \sin M - \frac{a_2}{2} \sin 2M - \frac{a_3}{3} \sin 3M + \dots \right]$$

$$- (b_{11} \sin M + \frac{1}{2} b_{12} \sin 2M + \frac{1}{3} b_{13} \sin 3M + \dots) \cos 2(\lambda - \pi)$$

$$+ (b_{21} \cos M + \frac{1}{2} b_{22} \cos 2M + \frac{1}{3} b_{23} \cos 3M + \dots) \sin 2(\lambda - \pi) \right]. \quad 30)$$

$$- \frac{1}{\mu} F_2 = \frac{1}{\mu} F(\theta - t_0) - \frac{1}{\mu^2} F_1.$$

$$\int \frac{\partial F}{\partial \pi} \cdot dt = \frac{2}{\mu} \left[\left(b_{11} \sin M + \frac{1}{2} b_{12} \sin M + \frac{1}{3} b_{13} \cos 3M + \dots \right) \sin 2(\lambda - \pi) \right]$$

 $+ \left[b_{21} \cos M + \frac{1}{2} b_{22} \cos 2M + \frac{1}{3} b_{23} \sin 3M + \dots \right] \cos 2(\lambda - \pi) = \frac{1}{4} F_4$

Schließlich

$$\frac{\partial F}{\partial c} = \frac{\partial a_1}{\partial c} \cos M + \frac{\partial a_2}{\partial c} \cos 2M + \frac{\partial a_3}{\partial c} \cos 3M + \dots$$

$$+ \left(\frac{\partial b_{11}}{\partial c} \cos M + \frac{\partial b_{12}}{\partial c} \cos 2M + \frac{\partial b_{13}}{\partial c} \cos 3M + \dots\right) \cos 2(\lambda - \pi)$$

$$+ \left(\frac{\partial b_1}{\partial c} \sin M + \frac{\partial b_{22}}{\partial c} \sin 2M + \frac{\partial b_{23}}{\partial c} \sin 3M + \dots\right) \sin 2(\lambda - \pi).$$

$$\int \frac{\partial F}{\partial c} dt = \frac{1}{2} \left[\frac{\partial a_1}{\partial c} \sin M + \frac{1}{2} \frac{\partial a_2}{\partial c} \sin 2M + \frac{1}{3} \frac{\partial a_3}{\partial c} \sin 3M + \dots \right]$$

$$+ \frac{\partial b_{11}}{\partial c} \sin M + \frac{1}{2} \frac{\partial b_{12}}{\partial c} \sin 2M + \frac{1}{3} \frac{\partial b_{13}}{\partial c} \sin 3M + \dots \right] \cos 2(\lambda - \pi)$$

$$= \frac{\partial b_{21}}{\partial c} \cos M + \frac{1}{2} \frac{\partial b_{22}}{\partial c} \cos 2M + \frac{1}{3} \frac{\partial b_{23}}{\partial c} \sin 3M + \dots \right] \sin 2(\lambda - \pi) = \frac{1}{2} F_3. \tag{32}$$

196 A. Prev.

Die Coefficienten von $\frac{\partial F}{\partial c}$ verlangen die Kenntnis der Ausdrücke für $\frac{\partial \xi}{\partial c}$ und $\frac{\partial \eta}{\partial c}$

$$\frac{\delta \xi}{\delta c} = \frac{\delta c_0}{\delta c} + \frac{\delta c_1}{\delta c} \cos M + \frac{\delta c_2}{\delta c} \cos 2M + \dots$$

$$\frac{\partial \gamma}{\partial e} = \frac{\partial s_1}{\partial e} \sin M + \frac{\partial s_2}{\partial e} \sin 2M + \dots$$

Die Coefficienten dieser Reihen werden berechnet mit den Formeln

$$\frac{\partial s}{\partial e} = -\frac{1}{e(1-e^2)} s_i + \frac{\sqrt{1-e^2}}{e} \frac{\partial I_{ie}^i}{\partial (ie)}$$

$$\frac{\partial c_i}{\partial e} = \frac{e}{\sqrt{(1-e^2)^3}} s_i + \frac{1}{\sqrt{1-e^2}} \frac{\partial s_i}{\partial e} \frac{\partial s_i}{\partial e}$$

und

$$\frac{\partial I_{ei}^{i}}{\partial (ei)} = \frac{1}{c} I_{ei}^{i} - I_{ei}^{i+1}$$

Sind auf diese Weise $\frac{\partial \xi}{\partial c}$ und $\frac{\partial \eta}{\partial c}$ bestimmt, so ist weiter

$$\frac{\partial F}{\partial e} = \frac{\partial}{\partial e} \left[\xi \cos(\lambda - \pi) + \eta \sin(\lambda - \pi) \right]^{2}$$

$$= 2 \left[\xi \cos(\lambda - \pi) + \eta \sin(\lambda - \pi) \right] \left[\frac{\partial \xi}{\partial e} \cos(\lambda - \pi) + \frac{\partial \eta}{\partial e} \cos(\lambda - \pi) \right]$$

$$= 2 \left[\xi \frac{\partial \xi}{\partial e} \cos^{2}(\lambda - \pi) + \eta \frac{\partial \eta}{\partial e} \sin^{2}(\lambda - \pi) + \left[\xi \frac{\partial \eta}{\partial e} + \eta \frac{\partial \xi}{\partial e} \right] \sin(\lambda - \pi) \cos(\lambda - \pi) \right]$$

$$= \left[\xi \frac{\partial \xi}{\partial e} + \eta \frac{\partial \eta}{\partial e} \right] + \left[\xi \frac{\partial \xi}{\partial e} - \eta \frac{\partial \eta}{\partial e} \right] \cos 2(\lambda - \pi) + \left[\xi \frac{\partial \eta}{\partial e} - \eta \frac{\partial \xi}{\partial e} \right] \sin 2(\lambda - \pi), \quad (33)$$

wodurch $\frac{\partial F}{\partial C}$ auf die verlangte Form gebracht ist.

Nun haben wir noch die Größen F_1, F_3 und F_4 in die Ausdrücke für die Störungen einzuführen, wobei wir gleichzeitig p durch $\sqrt{k^2(m_1+m_2)}$ ersetzen.

Wir kommen dann zu den Ausdrücken:

$$\begin{split} \Delta a &= \frac{2 \, m_3}{D^3} \cdot a^4 \over m_1 + m_2} \cdot F \\ \Delta e &= \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} \cdot \frac{1 - c^2}{c} \, a^3 \, F - \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} \cdot \frac{\sqrt{1 - c^2}}{c} \cdot a^3 \cdot F_4 \\ \Delta \pi &= \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} \cdot \frac{\sqrt{1 - e^2}}{c} \cdot a^3 \cdot F_3 \\ \Delta M_0 &= -7 \, \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} a^3 \, F_1 \cdot \frac{m_3}{D^3} \frac{1}{m_1 + m_2} \frac{1 - c^2}{c} \cdot a^3 \cdot F_3 + 3 k \, \frac{m_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} a^3 \, F(t - t_0). \end{split}$$

Fügen wir diese Ausdrücke zu denen hinzu, welche wir für die säcularen Störungen erhalten haben, und ersetzen überdies die Größe Δc durch das in der Rechnung bequemere $\Delta \varphi$ nach der Relation

$$de = \cos \varphi \, d\varphi$$
$$d\varphi = \frac{de}{\cos \varphi}$$

so erhalten wir schließlich die vollständigen Ausdrücke für die Störungen:

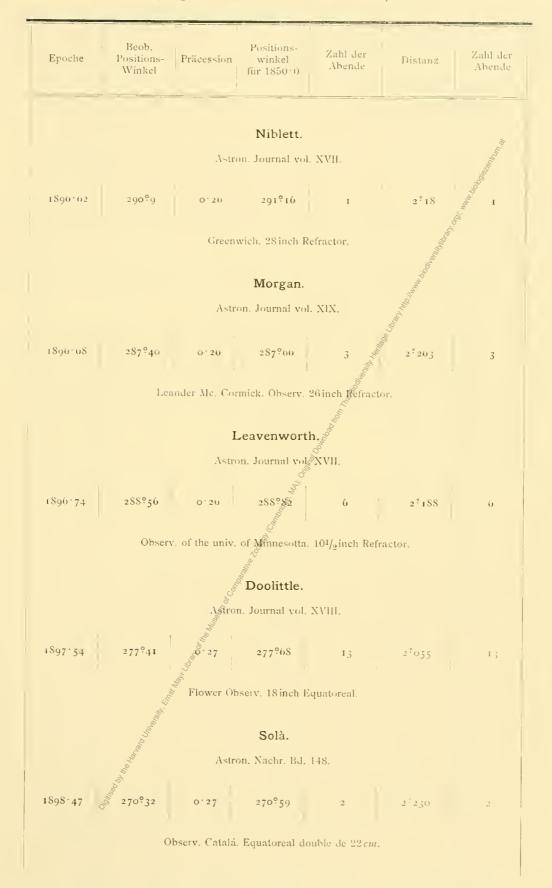
$$\begin{split} \Delta a &= 2\frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} a^4 F \\ \Delta \varphi &= -\frac{5}{2} \frac{k m_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} a^{\frac{3}{2}} \cdot c \sin 2 \left(\lambda - \pi \right) (t - t_0) \\ &+ \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} a^{\frac{3}{2}} \frac{\sqrt{1 - c^2}}{c} \cdot F - \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} a^{\frac{3}{2}} \cdot \frac{1}{c} \cdot F_1 \\ \Delta \pi &= \frac{k m_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} a^{\frac{3}{2}} \sqrt{1 - c^2} \left[\frac{3}{2} + \frac{5}{2} \cos 2 \left(\lambda - \pi \right) \right] (t - t_0) \\ &+ \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} a^{\frac{3}{2}} \sqrt{1 - c^2} \cdot F_3 \\ \Delta M_0 &= \frac{k m_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} a^{\frac{3}{2}} \left[-\frac{1}{2} \left(\overline{\tau} + 3 c^2 \right) - \frac{5}{2} \left(1 + c^2 \right) \cos 2 \left(\lambda - \overline{\varphi} \right) \right] (t - t_0) + \frac{3k m_3}{D^3} \frac{1}{\sqrt{m_1 + m_2}} a^{\frac{3}{2}} F (t - t_0) \\ &- \overline{\tau} \frac{m_3}{D^3} \cdot \frac{1}{m_1 + m_2} a F^3_1 - \frac{m_3}{D^3} \frac{1}{m_1 + m_2} a^{\frac{3}{2}} \frac{1 - c^2}{c} F_3. \end{split}$$

Auf Grund dieser Formeln soll nun eine Bahabestimmung des Systems 70 Ophiuchi versucht werden.

Zusammenstellung der Beobachtungen.

Das von Schur (Astr. Nachr. Bd. 135) gegebene Verzeichnis der Beobachtungen des Systems 70 Ophiuchi, welches 333 Jahresmittel enthält, ist auch den hier folgenden Rechnungen zugrunde gelegt, und wurde nur durch Beobachtungen, welche seither publiciert wurden, ergänzt, so dass jetzt 410 Jahresmittel zur Verfügung stehen.

Ich lasse hier ein Verzeichnis der von mir gesammelten Beobachtungen folgen:


Epoche	Beob. Positions- Winkel	Präcession	Positions- winkel für 1850+0	Zahl der Abende	Distanz	Zahl der Abende				
			Bigourdan		6,60%					
		Bul	l. Astr. 1895, p		N.					
1890.71	335°58	0.23	335°81	10 %	2 192	18				
91:60	333 3	3	200 01	2/19/2	2.254	8				
91.67	320.60	0.23	320:92	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
92.61			.,	A Die	2:300	3				
92.02	319.01	0.24	319.25	5						
94:78				100	2.323	5				
94.79	303,11	0.52	302.30	5						
Paris, Refractor von 305 mm.										
			Wellmann							
. Astr Nachr., B. 135.										
41	0.	9	100		- U					
1890.01	336°65	0.55	336987	1	2 10	I				
lærlin, Doppelbildmikrometer.										
		S	Knorre.							
		\$ A. N	. Bd. 1 3 5, 138	, 140.						
	Á		1		1					
1891.59	325°988	0.53	326°21	7	2*328	6				
02:42	310.64	0.53	319.87	0	2:420	5				
93.02	31 6 28	0.54	311.22	1	_					
94 ' 59	4	_	_	-	2.383	1 1				
44.00	\$304.65	0.52	304.00	1 2	—utr	-				
3	Wallmann'.	Donnalbil.Im	ikrometer am g	reakan Rafruat	or in Parlin					
To Hay	, weimann's	торреници	iktometer am g	groben Kenaca	or in Bettiin,					
100			Collins.							
		Astron. Jo	ournal vol. XII,	XIII, XVI.						
DOMES OF THE PROPERTY OF THE P						2				
1891-50	329°10	0.53	329°33	2	2 435	-				
		0.23	3 ² 9 [°] 33 3 ² 0 · 73	2 2	2:435	2				
1891-50	329°10									
1891-50	329°10	0.53	320.73	2	2.36	2				

Epoche	Beob. Positions- Winkel	Präcession	Positions- winkel für 1850+0	Zahl der Abende	Distanz	Zahl der Ahende				
			Searle.							
Astron, Journal vol. XIII.										
	0-	0.23	321°73	,		entum				
1892141	321°5	0.53	321:73	3	2 51	3				
Washington, cathol. univers., Doppelbildmikrometer.										
Maw.										
Maw. Astron, Journal voi. XVI; The observatory XIII—XIX.										
		1 1			1000					
1892:49	32197	0.53	321993	1	25 23	1				
93 ' 47	313.8	0.34	314.04	3	2.55	3				
94.24	307*4	0.52	307.05	3	2.50	.3				
95.28	296.9	0.30	297.10	4	2 20	4				
Ginch Refractor v. Cooke & Sons. Privatsternwarte London.										
Comstock.										
Publ. of the Washburn Observ. of the univers. of Wisconsin vol. X, part I.										
1892:57	321°28	0.21	321952	5	2"195	4				
93.62	312.00	0.24	312.900	5	2:344	5				
94.75	302.48	0.52	302.78	+	2:303	1 4				
95.01	290.20	0.30	290 70	3	2.190	3				
90.03	287.72	0.50	287.98	4	2.553	4				
		1 40	cng Clark-Refrac	itor.		1				
			Mel							
			Gledhill.							
		.1 Ar. 1	Nachr. Bd. 135,	p. 103.						
1893.45	31188	Q 24	312°04	7	2 * 25	4				
	Ctonussanuto	6	c, Halifax, Refra		l- 01 1 1					
	Steritwarte	&	c, Hainax, Kena	ictor voll (noi	ke a _a men.					
	184		Lewis.							
	Menth	ly Not. Bd. 1	894, 1896, Astr	on, Journ, vol.	XVII.					
1893:09	308°0	0.24	309°14	1	2 * 34	1				
95:09	295.0	0.50	290 10	I	2:05	ı				
90.05	\$ 290.08	0*20	290.34	5	2:080	5				
Ċ	SIIIS	Grann	vich, 28inch Re	fractor						
		(Aleell)		ment,						
			Wilson.	3/3*1						
		Astr	on, Journal Bd.	XVI.						
1893.09	309°2	0.54	309°44	1	2 5 2 2	I				
		Goodsel	l Obs. Northfield	d Minn.						

Epoche	Beob. Positions- Winkel	Präcession	Positions- winkel für 1850 0	Zahl der Abende	Distanz	Zahl der Abende				
			Schiaparell	i.						
		As	str. Jour. vol. N	CVI.		#e:u,				
1893.70	31293	0.24	312°54	f 1	2°21 00	11				
94:77	303.5	0.52	303.45	()	2.51%	6				
					in.					
		Osserv. d	li Brera, 18 zöll	. Refractor.	Whay.					
			Ebell.							
		Ast	ron, Nachr. Bd.	. 135						
1894:40	309°27	0.54	309°51	S. A. William	2 556	5				
94.21	311:27	0.52	311.25	10/2	5.350	3				
				T Tellis						
Berlin, Refractor von 2445mm.										
Glasenapp										
Beob. in Abastouman (Retersburg 1894).										
Beob. in St. Petersburg und Domkino Petersburg 1895); (Petersburg 1897).										
1894:51	306°15	0.25	300°40	6	2 1 072	1				
95.20	298:20	0.50	\$298.40	2	2.2.535	4 2				
97.55	281.04	0.20	281.30	I	2.032	I				
98.51	272.01	0 '27	271'28	1	2 * 120	1				
	ı	Refractorer	yon 240, 160	und 107 mm.						
		el alivo								
			Schur.							
	<u>,</u>	Astron. Na	ehr. Bd. 139, 1	42, 145, 148.						
1894.00	300°386	0.22	300°00	4	2 203	+				
95.21	301 : 62	0.50	301.88	5	2:308	5				
96.66	289.14	0:20	287.40	9	2:121	9				
97.58	\$83.72	0.54	283.99	13	2.000	13				
98.20	272.14	0.52	272.41	9	1,010	9				
99.57	263.17	0.58	203.45	6	1.775	1)				
Ollised by the Hange		Göttingen, He	eliometer von 1	' 62 <i>mm</i> Öffnung.						
2000										
Digital		1	Callandrea Bull, Astron, 18							
		1	out. Astron. 18	1	(
1894.78	301°28	0.52	301953	5	2 450	5				
				(

Epoche	Beob. Positions- Winkel	Präcession	Positions- winkel für 1850 0	Zahl der Abende	Distanz	Zahl de Abende
			See.			
		Astron. J	ournal vol XV,	XVI, XVII.		rum.at
1895:32	298°03	0.22	298°88	3	2 . 223	3
95.70	290.0	0.30	296.30	5	2.01	30 5
95.72	295.85	0.30	290.11	4	2.058	§ 4
90.01	287 : 94	0.50	288.30	S	2.133	8
97 '41	283.15	0.50	283.41	Ü	3.053	U
	1	895: 40 cm R	efractor des Wa	shburn Observ	·· · · · · · · · · · · · · · · · · · ·	
		1896 und 18	397: Lowell Ob	serv., 24 inch.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
			Hough.	ď	198 LIB	
	Ast	ron. Journal v	rol. XVI. Astro	on, Nachr. Ba.	149.	
1895 - 62	295 ⁹ 02	0.50	295°28		2"238	5
1095 02	293.02	0 20	293.20	Part Res	30	3
		Dearbon, C	Observ. $181/_2$ zö	ll. Kefractor.		
			Moulton			•
		Astr	on, Journal vol	. XV.		
			, 60°, 1			
1895:72	290°2	0.50	296.40	3	2 2 1	1
		40 cm Refra	nctor des Washl	ourn Observ.		
			We say			
) 5 1 : 4: 1	Hussey.	VVIII		
			Odiii. Voi, 20011	, 12 , 1111,		
189u+39	292927	8 · 20	292°53	0	2 190	Ü
97:67	380.30	60.27	280.03	8	2.020	8
	Ž.	Tick Observ	36 inch und 12	inch Refractor		
		DICK COBSCIA:		men nen accor.		
	ard Univ		Aitken.			
	Ástr. Na	ichr. Bd. 142,	145, 150. Ast	ron, Journal vo	ol. XVIII.	
1896.21	291°27	0.50	291°53	3	2:397	3
96*80	289.43	0.30	289.69	4	2:052	-1
97.40	283.52	0.50	283.78	3	2.057	3
97.83	270.07	0.27	276.04	3	1.030	3
98.44	273.22	0.74	273.49	3	1.893	3

Epoche	Beob. Positions- Winkel	Präcession	Positions- winkel für 1850:0	Zahl der Abende	Distanz	Zahl der Abende							
	Pritschett. Astron. Journ. vol. XVIII.												
1890:58	289°24 276°58	0.50	289°50 276°85	5	2.180	5							
	Morrison Observ. $12^{1}/_{2}$ inch Refractor.												
	Bowyer. Astron. Journal vol. XVII.												
1890.59	288°08	0.26	288°34 wich. 28 inch I	e drantor	2.333	()							
			Wagner	ON O									
1896:59	289 ⁹ 87	Ast	ron. Journ. Fol	3 3	2"327	3							
	Obser	rv. of the uni	pigur Pingur	1. $10\sqrt{2}$ inch Refr	actor.								
		Asti	Soulé. ron. Journal vo	a. XVIII.									
1890.59	288°07	o · 26	288°33	3 a. 10 ¹ / ₂ inch Ref	2"423 ractor.	3							
	Ohs&		Dyson.										
1890:01	289°5	0.20	289°70	1	2,53	1 1							
065 Ho Ho Ho		Gree	nwich. 28 inch Cogshal										
		Astro	on. Journal vol.										
1890:02	288°17 283°22	0.50	288°43 283°48	3 4	2 · 095	3 4							
		Lowell	Observ. 24 inc	ch Refractor.	Lowell Observ. 24 inch Refractor.								

Als Näherungswerte für die Elemente wurde dasselbe System gewählt, welches Schur benützt hat (Astr. Nachr., Bd. 135, S. 65) und welches lautet:

204 A. Prey,

Durchgangszeit durch das Periastron	$t_0 = 1807.93$.
Positionswinkel der Knotenlinie	$\Omega \equiv 122^{\circ} 35/5$.
Neigung der Bahn gegen die Himmelskugel	$i = 61^{\circ} 14'4.$
Winkel zwischen der Apsiden- und der Knotenlinie	$\pi = 166^{\circ} 21'7.$
Excentricitätswinkel	$\varphi = 28^{\circ} 41'0.$
Excentricität	e = 0.47996.
Mittlere jährliche Bewegung	$\mu = -4^{\circ} 0744.$
Umlaufszeit in Jahren	U = 88 356 Jahre
Halbe große Achse	a = 486870.

Die Annahme dieses Systems bietet den Vortheil, dass die von Schur aufgestellten Bedingungsgleichungen unmittelbar benützt werden konnten, was eine erhebliche lechenersparnis bedeutet. Von den Schur'schen Normalorten wurden die mit 1 bis 20 bezeichneten, welche die Beobachtungen bis 1889 enthalten, direct herüber genommen (abgesehen von den Orten 7 und 9; siehe a. a. O. S. 69). Die dem Orte 21 zugrunde liegenden Beobachtungen wurden durch andere ergänzt, und die sämmtlichen neu hinzugekommenen Jahresmittel mit dem obigen Elementensystem verglichen. Das Resultat dieses Vergleiches findet sich in der folgenden Tabelle:

324 1890 42 338 70 335 04 + 3 72 2 400 2 107 + 0 233 1 Glasenapp. 325 50 330 03 333 92 + 2 11 2 134 2 182 - 0 048 2 Hall. 320 01 330 87 333 52 + 3 23 2 20 2 187 - 0 177 1 Maw. 327 01 330 87 333 52 + 3 35 2 10 2 187 - 0 027 1 Wellmann. 328 06 334 30 333 13 + 1 23 2 20 2 193 + 0 027 1 Tarrant. 329 70 334 80 332 82 + 1 98 2023 2 199 + 0 077 4 Bigourdan. 331 1891 50 328 75 320 81 + 1 94 2 071 2 287 + 0 384 3 Sec. 332 53 328 58 320 59 + 1 40 2 20 2 291 + 0 34 3 Sec. 332 53 328	hter	Beobachter	Gew.	BR.	Rechar.	Beob.	BR.	Rechn.	Beob.	Epoche	Nr.
320		Glasenapp.	I	+ 0.533	£2·107	2 400	+ 3.72	335.04	338.70	1890.42	324
320		Hall.	2	- 0.048	£ 2.182	2.134	+ 2.11	333.92	330.03	50	325
327		Maw.	I	- 0.177	2.187	2'01	+ 3.53	333.52	336.75	0.1	326
328		Wellmann,	1	- 0.027	2.187	2.10	+ 3.35			01	327
329		Tarrant.	I	+ 0.027	2.193	- E	+ 1:23			06	328
331 1891 50 328 75 320 81 + 1 04 2 07 1 2 287 + 0 384 3 Sec. 332 53 328 05 320 59 + 1 40 2 20 2 2291 - 0 031 1 Tarrant. 333 54 328 58 320 52 + 2 00 2 11 2 2292 - 0 182 1 Maw. 334 50 329 33 320 37 + 2 90 2 435 2 294 + 0 141 1 Collins 335 50 327 78 320 37 1 141 2 228 2 2294 - 0 000 2 Hall. 336 58 329 10 326 23 + 2 87 2 105 2 290 - 0 131 2 Schur. 337 59 326 21 326 10 3 + 0 05 2 328 2 297 + 0 031 2 Knorre. 338 04 327 47 325 86 + 1 07 2 375 2 302 + 0 073 1 Sec. 339 07 320 92 325 59 + 1 33 2 2254 2 304 - 0 050 2 Bigourdan. 340 1892 37 322 10 320 40 + 1 24 2 51 2 377 + 0 133 1 Searle. 341 41 321 73 320 40 + 1 24 2 51 2 377 - 0 017 1 Collins. 342 41 320 73 320 40 + 0 24 2 36 2 377 - 0 017 1 Collins. 343 42 319 87 320 40 + 0 24 2 36 2 377 - 0 017 1 Collins. 344 49 321 93 319 90 + 1 07 2 23 2 384 - 0 015 1 Maw. 345 57 310 52 319 43 + 2 09 2 1195 2 391 - 0 0190 1 Comstock. 340 01 2 300 2 394 - 0 094 1 Bigourdan.		Schur.	2	- 0.175	2.198	25023	+ 1.98	332.82		70	329
332 53 328·05 320·59 + 1·40 2·20 2·291 - 0·031 1 Maw. 333 54 328·58 320·52 + 2·00 2·11 2·292 - 0·182 1 Maw. 334 50 329·33 320·37 + 2·290 2·435 2·294 + 0·141 1 Collins 335 50 327·78 320·37 + 1·41 2·228 2·294 - 0·006 2 Hall. 336 58 329·10 320·23 + 2·87 2·105 2·290 - 0·131 2 Schur. 337 59 320·21 320·10 + 0·05 2·328 2·297 + 0·031 2 Knorre. 338 64 327·47 325·86 + 1·67 2·375 2·302 + 0·073 1 See. 339 67 320·92 325·59 + 1·33 2·254 2·304 - 0·050 2 Bigourdan. 340 1892·37 322·10 320·40 + 0·24 2·36 2·377 + 0·133 1 Searle. 341 41 321·73 320·49 + 1·24 2·51 2·377 + 0·133 1 Searle. 342 41 320·73 320·40 + 0·24 2·36 2·377 - 0·017 1 Collins. 343 42 319·87 320·42 - 0·55 2·420 2·378 + 0·048 2 Knorre. 344 49 328·93 319·96 + 1·97 2·23 2·384 - 0·154 1 Maw. 345 57 321·52 319·43 + 2·09 2·195 2·391 - 0·190 1 Comstock. 340 01		Bigourdan-	4	- 0.007	2.199	\$2.105	+ 3.07	332.74	335.81	71	330
332 53 328·05 320·59 + 1·40 2·20 2·291 - 0·031 1 Maw. 333 54 328·58 320·52 + 2·00 2·11 2·292 - 0·182 1 Maw. 334 50 329·33 320·37 + 2·290 2·435 2·294 + 0·141 1 Collins 335 50 327·78 320·37 + 1·41 2·228 2·294 - 0·006 2 Hall. 336 58 329·10 320·23 + 2·87 2·105 2·290 - 0·131 2 Schur. 337 59 320·21 320·10 + 0·05 2·328 2·297 + 0·031 2 Knorre. 338 64 327·47 325·86 + 1·67 2·375 2·302 + 0·073 1 See. 339 67 320·92 325·59 + 1·33 2·254 2·304 - 0·050 2 Bigourdan. 340 1892·37 322·10 320·40 + 0·24 2·36 2·377 + 0·133 1 Searle. 341 41 321·73 320·49 + 1·24 2·51 2·377 + 0·133 1 Searle. 342 41 320·73 320·40 + 0·24 2·36 2·377 - 0·017 1 Collins. 343 42 319·87 320·42 - 0·55 2·420 2·378 + 0·048 2 Knorre. 344 49 328·93 319·96 + 1·97 2·23 2·384 - 0·154 1 Maw. 345 57 321·52 319·43 + 2·09 2·195 2·391 - 0·190 1 Comstock. 340 01						Times					
333		Sec.	3	+ 0.384	2:287	2 071	+ 1.040	326.81	328.75	1891.50	331
334		Tarrant.	I	- 0.031	2.291	2:20	+ 1:48	320.59	328.05	53	332
335 50 327.78 320.37 34 1.41 2.228 2.294 -0.006 2 Hall.		Maw.	1	- 0.183	2.292	2 ' 1 1	+ 200	320.52	328.58	54	333
335 50 327.78 320.37 34 1.41 2.228 2.294 -0.006 2 Hall.		Collins	I	+ 0.141	2:294	2.435	- to 2.00	320.37	329.33	50	334
337 59 320·21 326·10·8 + 0·05 2·328 2·297 + 0·031 2 Knorre. 338 64 327·47 325·86 + 1·67 2·375 2·302 + 0·073 1 See. 339 07 320·92 325·59 + 1·33 2·254 2·304 - 0·050 2 Bigourdan. 340 1892·37 322·10 320·70 + 1·40 1 Burnham. 341 41 321·73 320·49 + 1·24 2·51 2·377 + 0·133 1 Searle. 342 41 320·73 320·49 + 0·24 2·36 2·377 - 0·017 1 Collins. 343 42 319·87 320·42 - 0·55 2·420 2·378 + 0·048 2 Knorre. 344 49 328·93 319·90 + 1·97 2·23 2·384 - 0·154 1 Maw. 345 57 331·52 319·43 + 2·09 2·195 2·391 - 0·190 1 Comstock. 346 61 2·300 2·394 - 0·094 1 Bigourdan. 62 319·25 319·10 + 0·15 2 Bigourdan.		Hall.	2	- 0.000	2:294	2.228	A- 1.41	320:37	327.78	50	335
338 04 327.47 325.86 + 1.67 2.375 2.302 + 0.073 1 See. 339 07 320.92 325.39 + 1.33 2.254 2.304 - 0.050 2 Bigourdan. 340 1892.37 322.10 320.40 + 1.40 I Burnham. 341 41 321.73 320.49 + 1.24 2.51 2.377 + 0.133 I Searle. 342 41 320.73 320.40 + 0.24 2.36 2.377 - 0.017 I Collins. 343 42 310.87 320.42 - 0.55 2.420 2.378 + 0.048 2 Knorre. 344 49 32.99 3 319.90 + 1.97 2.23 2.384 - 0.154 I Maw. 345 57 321.52 319.43 + 2.09 2.195 2.391 - 0.190 I Comstock. 346 01 2.300 2.394 - 0.094 I Bigourdan. 62 319.25 319.10 + 0.15 2 Bigourdan.		Schur.	2	- 0.131	2.290	2:105	+ 2.87	326.23	329.10	58	336
339 07 320·92 325/59 + 1·33 2·254 2·304 - 0·050 2 Bigourdan. 340 1892·37 322·10 320·70 + 1·40 - -		Knorre.	2	+ 0.031	2:297	2.328	+ 0.05	320.100	320.21	59	337
340 1892·37 322·10 320·70 + 1·40 - - -		See.	I	+ 0.073	2.305	2:375	+ 1.67	325.85	327:47	64	338
341 41 321 73 320 49 + 1 24 2 51 2 377 + 0 133 I Searle. 342 41 320 73 320 49 + 0 24 2 36 2 377 - 0 017 I Collins. 343 42 319 87 320 42 - 0 55 2 420 2 378 + 0 048 2 Knorre. 344 49 32 93 319 90 + 1 97 2 23 2 384 - 0 154 I Maw. 345 57 321 52 319 43 + 2 09 2 195 2 391 - 0 190 I Comstock. 346 01 2 300 2 394 - 0 094 I Bigourdan. 62 319 25 319 10 + 0 15 2 Bigourdan.		Bigourdan.	2	- 0.050	2:304	2.254	+ 1.33	325059	320.92	07	339
341 41 321 73 320 49 + 1 24 2 51 2 377 + 0 133 I Searle. 342 41 320 73 320 49 + 0 24 2 36 2 377 - 0 017 I Collins. 343 42 319 87 320 42 - 0 55 2 420 2 378 + 0 048 2 Knorre. 344 49 32 93 319 90 + 1 97 2 23 2 384 - 0 154 I Maw. 345 57 321 52 319 43 + 2 09 2 195 2 391 - 0 190 I Comstock. 346 01 2 300 2 394 - 0 094 I Bigourdan. 62 319 25 319 10 + 0 15 2 Bigourdan.								FINST			
342 41 320·73 320·49 + 0·24 2·36 2 377 - 0·017 1 Collins. 343 42 319·87 320·42 - 0·55 2·420 2·378 + 0·048 2 Knorre. 344 49 328·93 319·96 + 1·97 2·23 2·384 - 0·154 1 Maw. 345 57 351·52 319·43 + 2·09 2·195 2·391 - 0·190 1 Comstock. 346 01 - - 2·300 2·394 - 0·094 1 Bigourdan. 62 319·25 319·10 + 0·15 - - - 2 Bigourdan.		Burnham.	ī		_	_	+ 1.40	\$320.70	322.10	1892:37	340
343 42 319.87 320.42 — 0.55 2.420 2.378 + 0.048 2 Knorre. 344 49 328.93 319.90 + 1.97 2.23 2.384 — 0.154 1 Maw. 345 57 31.52 319.43 + 2.09 2.195 2.391 — 0.190 1 Comstock. 346 61 — — 2.300 2.394 — 0.094 1 Bigourdan. 62 319.25 319.10 + 0.15 — — 2 Bigourdan.		Searle.	1	+ 0.133	2:377	2.21	+ 1.54	320.49	321.73	41	341
344 49 32 93 319 90 + 1 97 2 23 2 384 - 0 154 1 Maw. 345 57 351 52 319 43 + 2 00 2 195 2 391 - 0 190 1 Comstock. 340 01 - 2 300 2 394 - 0 094 1 Bigourdan. 02 319 25 319 10 + 0 15 2 Bigourdan.		Collins.	I	- 0.012	2 377	2:36	+ 0.34	320.49	320.73	41	342
345 57 319.43 + 2.09 2.195 2.391 - 0.190 1 Comstock. 346 61 - 2.300 2.394 - 0.094 1 Bigourdan. 62 319.25 319.10 + 0.15 2 Bigourdan.		Knorre.	2	+ 0.048	2.378	2,420	- 0.22	320.42	319.87	42	343
346 61 — — 2·300 2·394 — 0·094 I Bigourdan. 62 319·25 319·10 + 0·15 — — 2 Bigourdan.		Maw.	I	- 0.124	2.384	2.53	+ 1.97	319.90	3210 93	49	344
02 319·25 319·10 + 0·15 2 Bigourdan.		Comstock.	1	- 0.100	2.391	2.192	+ 2.00	319.43	391.52	57	345
		Bigourdan.	I	- 0.004	2:394	2,300	_	-		0.1	340
347 63 321.41 319.03 + 2.38 2.30 2.395 - 0.035 t Tarrant.		Bigourdan.	2		_	-	+ 0.12	319.10	319.25	02	
		Tarrant.	1	- 0.032	2.395	2.30	+ 2.38	319.03	321'41	63	347
348 64 320.99 318.90 $+ 2.03$ 2.237 2.396 $- 0.159$ 2 Schur.		Schur.	2	- 0.129	2.396	2.237	+ 2.03	318.90	320.99	64	348
349 68 317.77 318.70 + 0.93 1.955 2.400 - 0.445 1 Glasenapp.		Glasenapp.	I	- 0.445	2.100	1.955	+ 0.93	318.70	317.77	68	349

۲r.	Fpoche	Beob.	Rechn.	BR.	Beob.	Rechn.	ВК.	Gew.	Beobachter
350	1893.45	312.04	313.77	- 1.73	2.52	2.450	- 0.500	2, 1	Gledhill.
35 i	47	314.05	313.03	+ 0.30	2.22	2.451	- 0.531	1	Maw.
352	50	313.74	313.07	+ 0.07	2.310	2.455	- 0.142	1	Collins.
353	58	313.04	312.94	+ 0.40	2.41	2.450	0.040	1	Tucker.
354	02	312*90	312 09	+ 0.51	2.344	2.458	- 0.114	2	Comstock.
355	.02	313.02	312.09	+ 0.93	2.253	2:458	- 0.302	I	Schur,
350	02	311:52	312.09	- 1:17	_			I	Knogre.
357	09	309:14	312:20	- 3.12	2:34	2:461	- 0.131	I	Lewis.
358	09	309.44	312.50	— 2·S2	2 ' 2 2	2.401	- 0.241	I	Wilson.
359	70	312.24	312.19	+ 0.35	2 . 2 1	2:401	0'251	3/1/6	Schiaparelli.
300	1894.49	309.21	307.31	+ 2:20	2 ' 550	2:470	+ 0.080	\$1009	Ebell.
301	5 1	306.40	307.18	— o·78	2:672	2:470	+ 0.100	2, 1	Glasenapp.
302	5 1	311.52	307:18	+ 4.34	2.320	2.470	— 0·15@	I	Ebell.
303	54	307:05	307.00	+ 0.05	2.39	2.470	- 0.180	I	Maw.
30.1	59		_		2.383	2.470	— g\$093	3	Knorre.
	00	304.90	300.03	- 1.73		_	14	3	Knorre.
365	00	300°60	300.03	- 0.03	2:203	2.470	0.213	1	Schur.
366	75	302.73	305.40	2.97	2.303	2.474 %	0.141	I	Comstock.
367	77	303.45	305.28	- 2:13	2.31	2.474	- 0.304	2	Schiaparelli.
36S	78	_	-	_	2:323	2.124	— o·151	2	Bigourdan.
309	78	301.23	305.22	- 3.99	2.450	2:474	0.054	2	Callandreau.
	79	302.30	305.46	3.10	-	Oighigh		2	Bigourdan.
370	1895.32	298.88	302.17	— 3·29	2.553	2.457	- 0.534	ĭ	Sec.
371	50	298:46	301.03	— 2·57	2.235	2.448	+ 0.087	I	Glasenapp.
372	51	301.88	300.97	+ 0.01	2.308	2:447	- 0.139	2	Schur,
373	58	297:10	300.23	- 3:37	2,826	2 443	- 0.183	1	Maw.
374	58	290.00	300.23	- 4:47	£ . 54	2.443	+ 0.097	I	Collins.
375	61	290.76	300.34	— 3·58	2.100	2.441	- 0.521	ı	Comstock.
376	02	295.28	300.58	- 2.00°		2.440	— 0·202		Hongh.
377	69	290.10	299.83	- 3.64	2.65	2:430	+ 0.514	I	Lewis.
37S	70	296.26	299.77	- 3051	5.01	2.434	- 0.424	2	Sec.
379	72	290-11	299.04	-53.23	2.058	2.434	— 0·400	I	See.
380	72	296.46	299.64	3.18	3.31	2.434	- 0.224	I	Moulton.
81	1896.39	292-53	295 · 27	- 2.74	2.190	2.375	— o.185	2	Hussey.
3S2	51	291.53	294.44	- 2.93	2.397	2.301	+ 0.030	ı	Aitken.
383	58	289.50	293.598	- 4.48	2.180	2.353	- 0.167	2	Pritchett.
384	59	288-34	293.91	— 5·57	2.333	2.352	= 0.010	2	Bowyer.
385	59	290.13	\$93.91	— 3·78	2:327	2.325	v·025	ı	Wagner.
386	59	288.33	293.91	— 5·58	2.423	2.352	+ 0.041	ĭ	Soulé.
387	10	288.20	293.78	- 5·58	2.133	2.320	- 0.512	2	Sec.
388	61	289.76	293.78	- 4.02	2.53	2.320	— 0·120	I	Dyson.
389	02	288.43	293.71	- 5.38	2.130	2:349	- 0.510	ī	Cogshall.
		13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 3 3		377			

Nr.	Epoche	Beob.	Rechn.	BR.	Beob.	Rechn.	BR.	Gew.	Beobachter
390	1890.02	201:10	293.71	— 2·55	2.18	2:340	- 0.100	I	Niblett.
391	63	287.98	293.64	- 5.00	2.553	2:347	0.124	i	Comstock.
392	65	290'34	293.50	- 3.16	2.080	2:345	- 0.302	2	Lewis.
393	00	287:40	293.43	- 6.03	2.151	2:345	- 0.224	2	Schur.
394	68	287:00	293:30	- 5.04	2.263	2:341	- 0.078	I	Morgan.
395	7.4	288.82	292.88	- 4.00	2.188	2:334	- 0.140	2	Leavenworth.
396	So	289.69	292.46	— 2·77	2.052	2.320	- 0'274	1 8	Aitken.
397	1897 - 40	283.48	288.12	- 4.04	2.095	2.545	- 0.147	WWW. Sio	Cogshall.
398	41	283.41	288.05	- 4.04	2.025	2°240	- 0.318	1 2 2 E	See.
399	46	283.76	287.67	3.91	2.057	2.535	- 0.175	1	Aitken.
400	54	277.08	287.00	- 9.38	2.052	2.550	- 0.102	3	Doolittle.
401	55	281.30	286.98	- 5.08	2.032	2.518	- 0.983	ī	Glasenapp.
402	58	283.99	286.75	- 2.76	2.009	2.514	— g ² 145	3	Schur.
403	59	270.85	286.07	9.82	2:025	2.515	0.184	1	Pritchett.
101	67	280.03	286.05	— 5·42	2.020	2.199	0.140	2	Hussey.
405	83	276.94	284.79	7.85	1.930	2.172 8	- 0.545	Į.	Aitken.
						T SOLIT			
400	1898:44	273.49	279.65	- 6.16	1.893	2 . 604	- 0.141	2	Aitken.
107	47	270.59	279.38	- S·79	2.530	2059	+ 0.171	I	Solå.
408	51	271.28	279.03	- 7.75	2.120	2.051	+ 0.000	I	Glasenapp.
409	50	272.41	278.57	- 6.10	1.910	2.015	- 0.120	2	Schur.
410	1899.57	263.45	268.48	- 5.03	1.775	1.852	- 0.077	2	Schur.

Aus den hier gegebenen Unterschieden Rumden 7 neue Normalorte mit den Nummern 21 bis 27 gebildet.

Die Gewichtsbestimmung erfolgte ebenfalls genau wie bei Schur nach dem Schema:

Mitte	l füg	§ 1—	4 Abende	Gewicht	1
>>	See In	5	9 »	>>	2
			>>	*	3 u. s. w.

Auf die Weise wurde für jedes Jahr ein Mittel gebildet und diese, wenn nöthig, nach demselben Gesetze weiter vereinigt.

Das System der Normalorte lautet nun:

Epoche	Zeitraum	Δ_P	Gew.	$\Delta \rho$	Gew.
1. ½780·75		—12°91	1		
2 \$ 1802 · 26		+ 2.36	1		
§ 1804·42		+ 0.57	1		_
4. 1821 88	1820-23	+ 1.89	1	+0.66	1
5. 1827 · 25	1825 - 29	÷ 2.70	2	+0.10	2
6. 1832 · 47	1830-34	+ 0.38	2	+0.51	2
7. 1837 · 44	1835—39	- 0.10	2	+0.16	2
8. 1842.28	1840-44	- 0.56	3	-0.10	2
9. 1847 · 27	184549	- 0.30	2	-0.14	2

Epoche	Zeitraum	$\Delta_{f'}$	Gew,	$\Delta_{\mathcal{S}}$	Gew.
10. 1852 - 77	1850—54	- 0.47	3	0.23	2
11. 1857 · 43	1855 - 59	- 0.54	3	-0.17	2
12 1862 · 73	1860-64	-0.75	2	-0.04	2
13. 1867 42	186569	- 0.37	3	-0.04	2
14. 1872 · 45	1870—74	- 0.61	2	-0.06	2
15. 1877 · 51	1875 - 79	+ 0.44	9	+0.04	3,7
16. 1880.81	1880-81	+ 1.04	1	+0.10	O. T. C.
17. 1883 · 11	1882—83	+ 1.90	2	+0.16	, ³⁸ 1
18. 1885 · 00	1884—85	+ 3.38	2	+0.21	1 1 m
19. 1886 · 96	1886—87	+ 2.80	1	+0.06	1
20. 1889 · 16	1888—89	+ 3.05	2	-0.0%	1
21. 1891.57	1890-91	+ 2.67	2	+0;\$1	2
22. 1892 · 53 (5	4) 1892	+ 0.90	1	<i>—</i> ®. 09	1
23. 1893 · 61 (6	2) 1893	- 0.46	1	<u> </u>	1
24. 1894 · 64 (6	5) 1894	- 1:11	1	0.10	1
25. 1895.60	1895	- 3.06	1 8	_0·10 _0·17	1
26. 1896 · 61	1896	- 4.42	2	<u>-0.15</u>	2
27. 1898 · 11	1897—99	— 6·07		-0.13	2

Die bei den Orten 22 bis 24 in Klammern beigesetzten Zahlen bedeuten, dass der Normalort aus den Distanzen für eine um 0.01 Jahr spätere Zeit gilt, woraal bei der Rechnung Rücksicht genommen wurde.

Wegen der raschen Änderung der Positionswinkel könnten von 1892 abnur immer die Beobachtungen eines Jahres zu einem Normalorte vereinigt werden. Eine Ausnahme macht nur der letzte, was in der geringen Zahl der zur Verfügung stehenden Beobachtungen begründet ist: aus dem Jahre 1898 stammen nämlich nur 4, aus 1899 nur 1 Jahresmittel.

Die für diese Normalorte abzuleitenden Bedingungsgleichungen werden nun außer den Correctionen für die Elemente noch die Größen $\frac{m_3}{D^3}$ und χ als Unbekannte enthalten, und zwar werden diese nur in den Verbindungen

$$\frac{m_3}{D_3}$$
; $\frac{m_3}{D_3}$ cos 2 (λ - π) und $\frac{m_3}{D_3}$ sin 2(λ - π)

auftreten. Wir erhalten somit drei Größen, die aber nicht unabhängig voneinander sind. Bestimmen wir also diese drei Größen, die alle sehr klein sein werden, als unabhängige Variable, so wird es als Stütze für unsere Hypothese gelten können, wenn der direct gefundene mit dem aus

$$\frac{m_3}{D_3} \sin^2 2$$
 ($\lambda - \pi$) und $\frac{m_3}{D_3} \cos 2$ ($\lambda - \pi$) folgenden Wert von $\frac{m_3}{D^3}$

wenigstens der Größengasse nach übereinstimmt.

Es soll auch hier wieder das Hauptgewicht auf die Darstellung der Positionswinkel gelegt und die Distanzen nur insoweit berücksichtigt werden, als es unumgänglich nöthig ist. Sind doch gerade bei dem in Rede stehenden Doppelstern systematische Unterschiede in der Distanzmessung constatiert worden, welche bereits jene Grenzen übersteigen, die für eine gute Darstellung erlaubt sind. (Bessel: Über den Doppelstern 70 Ophiuchi, Astr. Nachr., Bd. XV.)

Wir betrachten also vorerst die Bedingungsgleichungen für die Positionswinkel allein.

Vor allem mussten die Coefficientenreihen der Correctionen der Elemente für die neuen Normalorte ergänzt werden. Hierauf wurde an die Berechnung der Störungen gegangen. Der große Wert der Excentricität ($c \equiv 0.5$) hat eine äußerst langsame Convergenz aller auftretenden Reihenentwicklungen zur Folge. Um daher eine ausreichende Genauigkeit zu erhalten, musste bei den Reihen für ξ und η bis zu Gliedern gegangen werden, welche die sechsfache mittlere Anomalie enthalten.

Die zur Bestimmung der Coefficienten in \u00e4 und ihrer Differentialquotienten nach \u03b4 n\u00f6thigen Bessels'chen Functionen haben folgende Werte.

Damit finden sich folgende Reihen für $\xi, \eta, \frac{\partial \xi}{\partial e}$ und $\frac{\partial \eta}{\partial e}$, in welchen die Coefficienten logarithmisch angesetzt sind:

$$\frac{\xi}{a} = 9.85729 + 2[9.66037\cos M + 9.01005\cos 2M + 8.53897\cos 3M + 8.14051\cos 4M + 7.38462\cos 5M + 7.45637\cos 6M]$$

$$\frac{1}{a}\frac{\partial \xi}{\partial e} = 0_{n}17609 + 2[9_{n}24138\cos M + 9\cdot 15467\cos^{2}M + 9\cdot 04250\cos 3M + 8\cdot 84073\cos 4M + 8\cdot 61972\cos 5M + 8\cdot 39287\cos 6M]$$

$$\frac{1}{a} \cdot \frac{\partial \eta}{\partial c} = 2[9.50160 \sin M + 9.04293 \sin 2M + 8.99704 \sin 3M + 8.81184 \sin 4M + 8.59824 \sin 5M + 8.37548 \sin 6M]. 35)$$

Durch Multiplication dieser Reiherssind die Ausdrücke

$$=\frac{\xi^2}{a^2}, \quad \frac{\eta^2}{a^2}, \quad \frac{\xi\eta}{a^2},$$

sowie

$$\frac{1}{a^2} \left(\xi \frac{\partial \xi}{\partial c} + \eta \frac{\partial \eta}{\partial c} \right), \qquad \frac{1}{a^2} \left(\xi \frac{\partial \xi}{\partial c} - \eta \frac{\partial \eta}{\partial c} \right) \text{ und } \frac{1}{a^2} \left(\xi \frac{\partial \eta}{\partial c} - \eta \frac{\partial \xi}{\partial c} \right)$$

zu bilden, durch deren Substitution in 28) und 33) sich die Reihen für F und $\frac{\partial F}{\partial c}$ ergeben.

 $F = 0.67275 - 0.46624 \cos M - 0.05334 \cos 2M - 0.01224 \cos 3M - 0.00390 \cos 4M - 0.00196 \cos 5M - 0.00331 \cos 6M + [0.28793 - 0.64744 \cos M + 0.24700 \cos 2M + 0.12828 \cos 3M + 0.06052 \cos 4M + 0.02908 \cos 5M + 0.01425 \cos 6M] \cos 2(\lambda - \pi)$

 $+1 = 0.61158 \sin M + 0.25064 \sin 2M + 0.12904 \sin 3M + 0.06070 \sin 4M +$

$$\pm 0.02914 \sin 5M \pm 0.01434 \sin 6M \sin 2 (\lambda - \pi)$$

$$= c + a_0 + a_1 \cos 2(\lambda - \pi) + a_1 \cos 2(\lambda - \pi), \tag{36}$$

wo a_0 , a_1 , a_2 Abkürzungen für obige Reihen sind und c seine frühere Bedeutung hat. Es stellt den säcularen Theil vor, der selbständig berechnet wird.

$$\begin{array}{c} F_{0c} = -0.91542\cos M - 0.20536\cos 2M - 0.07052\cos 3M - 0.03104\cos 4M - 0.02064\cos 5M - \\ -0.03466\cos 6M \\ + | -1.05190\cos M - 0.91428\cos 2M - 0.12188\cos 3M + 0.06818\cos 4M + 0.08936\cos 5M + \\ +0.06982\cos 6M | \cos 2(\lambda - \pi) \\ + | -0.81024\sin M - 0.88232\sin 2M - 0.11414\sin 3M + 0.07160\sin 4M + 0.09044\sin 5M + \\ +0.07176\sin 6M | \sin 2(\lambda - \pi) \\ +0.07176\sin 6M | \sin 2(\lambda - \pi) \\ -0.00055\sin 6M \\ + | -0.46624\sin M - 0.02667\sin 2M - 0.00408\sin 3M + 0.01513\sin 4M + 0.0039\sin 5M - \\ -0.00055\sin 6M \\ + | -0.46624\sin M + 0.12350\sin 2M + 0.04276\sin 3M + 0.01513\sin 4M + 0.00582\sin 5M + \\ +0.00238\sin 6M | \cos (\lambda - \pi) \\ + | -0.61158\cos M - 0.12532\cos 2M - 0.04301\cos 3M - 0.01518\cos 4M - 0.00583\cos 5M - \\ -0.00239\cos 6M | \sin 2(\lambda - \pi) \\ -0.00239\cos 6M | \sin 2(\lambda - \pi) \\ + | -0.00578\sin 6M \\ + | -1.05190\sin M - 0.45714\sin 2M - 0.04063\sin 3M + 0.01712\sin 4M + 0.00413\sin 5M - \\ -0.00578\sin 6M \\ + | -1.05190\cos M + 0.41716\cos 2M + 0.04063\sin 3M + 0.01712\sin 4M + 0.01787\sin 5M + \\ +0.01164\sin 6M | \cos 2(\lambda - \pi) \\ + | -0.01196\cos 6M | \sin 2(\lambda - \pi) \\ -0.00238\sin 6M | \sin 2(\lambda - \pi) \\ -0.00238\cos 6M | \sin 2(\lambda - \pi) \\ -0.00239\cos 6M | \cos 2(\lambda - \pi) - 0.00239\cos 6M | \cos 2(\lambda - \pi) \\ -0.00239\cos 6M | \cos 2(\lambda - \pi) - 0.00239\cos 6M | \sin 2(\lambda - \pi) - 0.00239\cos 6M | \cos 2(\lambda - \pi) - 0.00$$

 $= -2b_{s}\cos 2(\lambda - \pi) + 2b_{1}\sin 2(\lambda - \pi)$ $= -2b_{s}\cos 2(\lambda - \pi) + 2b_{1}\sin 2(\lambda - \pi)$ = 39

Noch mehr Glieder zu entwickeln würde wohl dem Charakter unseres Problems nicht entsprechen. Es erscheint unter allen Umständen die zweite Decimale als vollständig gesichert. Dass die Rechnung in der Folge mehrstellig (vierstellig) geführt wurde, hat den Zweck, Fehleranhäufungen zu vermeiden.

Durch Einsetzen der Wegte von M für die einzelnen Normalorte unter Anwendung von $\mu = -4^{\circ}0744$ ergeben sich die folgenden Werte von a_0 , a_1 , a_2 , b_0 , b_1 , b_2 , c_0 , c_1 und c_2 .

	a ₀	a_1 $x = a_2$	b_0 b_1	b ₂	c_0	c_1	C.,
1	-1 0.1938	- 0·1419 0·7500	- 0.4108 - 0.6955	0.1284	0.7789	0.0588	0.2221
2	0.4665	0.1050 + 0.1280	- 0·2078 0·1030	+ 0.4055	0.4706	0.7397	1- 1:0815
3	-= 0.2102	= 0·2734 + 0·1490	- 0.1352 - 0.0211	+ 0.4407	0.3072	0.4034	1.1840
4	0.2220	- 0.0003 0.3388	+ 0.4141 + 0.4394	+ 0.4339	o·8520	1.3396	+ 0.2249
5	- 0.0382	-0.3640 + 0.0244	+ 0.4040 + 0.0583	+ 0:2447	+ 0.0100	+ 1:1740	- 0.3933
6	+ 0.1221	-0.0388 + 0.7545	+ 0.4470 + 0.4056	0.0122	+ 0.8488	1 0.8322	0.2301
7	-1- 0:2485	+ 0.3018 + 0.4179	+ 0 3802 + 0.0584	- 0.5810	+ 0.7049	1 0.2123	0.2814

Denkschriften der mathem,-naturw, Cl. LXXII Bd.

210 .1 Prey.

		·10	1,0		b_0	b_1	b_2	c_0	c_1	C-2
	8	+ 0.3121	+ 0.5000	+ 0.271	+ 0:2773	0.2063	0.2012	0.2001	+ 0.3030	0.2102
	9		-	+ 0.5880				+ 0.2504	+ 0.1000	0.4420
	10		+ 0.8104		- 0.0108		0.7047	- 0.0348	- 0.0142	= 5.4193
	11	0.4010	+ 0.7307				- 0.0420	0.2808	0.1202	- o·4473
	12		+ 0.2290				- 0.4092	- 0.2423	ĕ— 0°2974	0.2336
İ	1.3			- 0.7324			- 0.2478	- 0.7268	5	- 0.5825
	14			0.7459	0.4526		+ 0.0510	- 0.804	0.8787	0.2102
	15		- 0.3942			- 0.0135	+ 0.2685	- 0.03.07	1.1940	- 0.2539
	16	- 0'1711	— o·5199	- 0.4372	- 0.4354	- 0.5018	0·3917	038806	- 1:3258	+ 0.0200
	17	0'2479	- 0.0178		0.4013		+ 0.4511	\$6.8311	- 1.3318	+ 0.3148
	18	0.3082	- 0.0313	- 0.1437	0.3038		+ 0.4800	0.7072	- 1.2670	+ 0.2448
	19	— o·3678		- 0.0027		0.5323	+ 0.4899	5 - 0.0832	I · I 320	+ 0.7712
	20	- 0.4297	- 0.4938	+ 0.1173	0.5242		+ 0.48013	90	0'9124	+ 0.0781
	21	- 0.4791		+ 0.1638		0.0879	+ 0.45%	- 0.4314	- 0.0708	+ 1:1134
	22	- 0.2004	0.2872			0.0200	+ 0.4435	- o:3275	- 0.4958	+ 1:1752
	23	- 0.5229	0.5310			- 0.0303	+- 004320	0.5383	0.3540	+ 1.3080
	24	0.5340				0.0308	+-50.4240	0.1484	0'2179	+ 1:2292
	25	0.5398	- 0.1728		0.0202	- 0.0083	0.4208	= 0.0023	0.0000	+ 1:2392
	26	0.5399	- 0.1718		+ 0.0530		%-I- 0'4207	0.0204	+ 0.0822	+ 1 2398
	27	0.2320	- 0.1980			+ 0.0534	+ 0.4258	+ 0.1038	+ 0.2400	+ 1:2204
						To To The Total of				
1						e o mulos	1			

Für die weiteren Berechnungen ist die Kemtnis der Größen k und m_1+m_2 nothwendig. Da für das System 70 Ophiuchi Parallaxenbestimmungen existieren (Krueger und Schur, Astr. Nachr., Bd. 51, 59, 135), so könnte man sich unter Einführung der Gaußschen Constante für unser Sonnensystem einen Wert von m_1+m_2 ableiten. Allein, abgesehen von der Unsicherheit, die solchen Parallaxenmessungen anhaftet, ist es jedenfalls besser, von den Verhältnissen in unserem Sonnensystem unabhängig zu bleiben und die Constante k aus dem Sternsystem selbst abzuleiten, indem man die Masseneinheit gleich m_1+m_2 nimmt.

Mit den gegebenen Werten von u und a findet sich dann, aus

$$p = \sqrt{\frac{k^2(m_1 + m_2)}{a^3}} = \sqrt{\frac{k^2}{a^3}}$$

$$\log k = 9_n 8584$$
Wir finden weiter:
$$\log \frac{5}{2} cka^{\frac{3}{2}} = 0.9440 \qquad \log \frac{1 - c^2}{c} a^3 = 2 \cdot 2178$$

$$\log \frac{3}{2} \sqrt{1 - c^2ka^{\frac{3}{2}}} = 0.9841 \qquad \log \frac{\sqrt{1 - c^2}}{c} a^3 = 2 \cdot 2747$$

$$\log \frac{5}{2} \sqrt{1 - c^2ka^{\frac{3}{2}}} = 1.2060 \qquad \log 3ka^{\frac{3}{2}} = 1.3419$$

$$\log \frac{1}{2} (7 + c^2)ka^{\frac{3}{2}} = 1.4498 \qquad \log 7a^3 = 2 \cdot 8578$$

$$\log \frac{5}{2} (1 + c^2)ka^{\frac{3}{2}} = 1.3529 \qquad \log \frac{2a^3}{c} = 2 \cdot 6325.$$

Damit erhalten nun $\Delta \varphi$, Δz und ΔM die folgenden Werte, wobei wir von nun an die Großen $\frac{m_3}{D^3}$,

 $\frac{m_3}{D^3}\cos 2$ $(\lambda - \pi)$ und $\frac{m_3}{D^3}\sin 2$ $(\lambda - \pi)$ mit x, y und z bezeichnen.

```
1. \Delta \varphi = + 36.483x - 40.692y
                                     82 9332
                                                     \Delta z = +115.43x
                                                                       + 312.77 v -108.275z
                                                                           48 - 105
                                     + 24:089
                                                           -- 33:92
                                                                                      +203:57
            87 - 820
                       +123 \cdot 510
                       +137.587
                                     + 19:245
                                                           - 24 05
                                                                            30.840
                                                                                      +222.89
 3.
             96 - 100
                                     - 2:146
                                                                            27 - 980
 -1.
             41.900
                       + 73:167
                                                           + 25:97
                                                                                      + 42:336
                                                                            89.8330
                                                                                      -55.213
                       + 36:371
                                     +17.823
                                                           -13.15
             7 \cdot 192
                                                                          234-73
                                     + 54 953
                                                           - 76.84
                                                                                      - 99.800
         + 23.550
                       -14.039
 6.
                                                                           377.79
 \tilde{i} .
         +46789
                       = 63.754
                                     +112:010
                                                           -151.85
                                                                                      -109.450
 8.
         + 64.957
                                     +187 800
                                                             235:40
                                                                          § 502 · 51
                                                                                      - 97 800
                       -108.650
                                                                          612 - 19
                                                                                      -- 83:200
9.
         + 76:150
                       =140 \cdot 237
                                     +284.68
                                                           -330.98
         + 78.980
                                     +402 \cdot 56
                                                           -438·85
                                                                          723:40
                                                                                      -78.920
                       --149.827
10,
                                                                                      -84 \cdot 200
         + 75.480
                                     \pm 501 \cdot 20
                                                           -530.08
                                                                          818.08
11.
                       -138 \cdot 157
                                                            630 9
                                                                          936 • 59
                                                                                      100.440
         +62.357
                       =101.870
                                     +602:96
12.
                                                            710 23
                                                                                      109.650
         + 44.022
                       = 57.414
                                     +672.96
                                                                        --1059 · 67
13.
                                                             784.67
                                                                                       -96 100
1-1.
         +19.785
                       -- 6.925
                                     +728.03
                                                                          1202 · 18
                                                           — §43 98
                                                                                      -47.789
                                                                        -1343 \cdot 20
                       + 41.000
                                    +761.43
15.
         -10.748
                                                                                      + 9 526
                                                           §869·44
                                                                         1420 \cdot 53
16.
            32 \cdot 208
                       + 64.547
                                    +773.56
                                                                         -1458:67
                                                                                      + 59.814
17
            46.667
                       -t 77:250
                                    +781.45
                                                            881:30
                                                                                      +103 100
            58:025
                       + 87:075
                                     +788.38
                                                             887 - 40
                                                                        --- }-]77·()()
18.
                                                                                      +145.167
            69 \cdot 233
                       + '98:365
                                    +795:11
                                                            890.37
                                                                         1483:05
19.
20
            80.900
                       +113.010
                                     +80048
                                                            889.85
                                                                       --1477:42
                                                                                      +184.100
                                                                         1463:77
                                                                                      ÷209.62
21.
            90.180
                       +127:417
                                     +800.22
                                                           -883 \cdot 60
22
                       +136 237
                                     +796.82
                                                            877 - 24
                                                                        =1453 00
                                                                                      +221.20
            95 \cdot 325
23.
            98 \cdot 425
                       +141.950
                                     +792.43
                                                            870.86
                                                                       -1443.63
                                                                                      +227.53
                                    +786.928
                                                                       -1434 \cdot 35
                                                                                      +231.42
24
          -100 \cdot 500
                      +145.933
                                                            -863 - 93
                                                                                      +233:28
25.
          -- 101 - 600
                       +148.027
                                     +781 98
                                                                        -1426:11
                                                            -856 • 93
                                    +770807
                                                                        = 1409 · 53
                                                                                      +233:33
26.
           101.625
                      +148 \cdot 162
                                                           -841.18
           100 250
                       +145.317
                                    +765.46
                                                            838:57
                                                                         1403.66
                                                                                      +230.84
27.
                       \Delta M_0 \equiv
                                  22,$ 03 x
                                                    84·120r
                                                                   — 242 · 85 ≈
                                                     18.091
                                                                      491-50
                   2.
                               + $9.638
                   3.
                                   8.030
                                                    176:607
                                                                      501.62
                                  21 \cdot 906
                                                     39.447
                                                                   - 453 - 76
                   4.
                                                     56.683
                                                                     393:09
                                  74.174
                   õ.
                   G.
                              + 161.546
                                                     71.976
                                                                      308:05
                   7.
                               + 279.86
                                                     89.700
                                                                     166:92
                               ÷ 423·34
                                                     61:420
                                                                      31.28
                                                                   + 294.93
                   9.
                               + 613:16
                                                     32:397
                  10.9
                               + 869.95
                                                 +242.07
                                                                   + 619.50
                                                                   + 890.39
                               +1117.60
                                                 + 554:53
                  11.
                  12.
                              +1448.73
                                                 +1034 \cdot 24
                                                                   +1126 \cdot 06
                                                                   \pm 1231.98
                               +1771.96
                                                 +1575.95
                  13.
```

+2228.13

+2810.69

+3103:66

 $+2137 \cdot 43$

+2517.81

+2787.16

14.

15.

16.

 $+1126 \cdot 02$

+ 769.87

+ 109:43

+ 92.053 ≈	-192.980	- 475.74	=716.93	- 814.52	- 801 34	27.842	669 · 19	- 578.10	-443.65	- 327.31
+3227 45 1	+3246.98	+3169.00	+2970.97	+2726.70	+2562.89	+-2452-22	+2373 65	+2329.91	$+2314 \cdot 29$	+2360.53
17. $\Delta M_0 = +2953.91 \text{ r}$	+3081.92	+3206.02	+3332.55	+3428.43	+3480.68	+3511·11	+3530.28	+3539.39	+-3523.66	+3518.64
17.	18.	19.	20.	21.	60	23.	Mother 24.	25.	Finst 26.	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Multipliciert man diese Ausdrücke mit den Coefficienten von dp, d= und dMo der Bedingungsgleichungen, um den Einfluss der Störungen auf die Positionswinkel zu erhalten und zieht die Gließen mit x, y, z respective zusammen, so resultieren schließlich die Coesficienten für x, y und in den Bedingungsgleichungen.

	der Störungen	0	2.067	+ 0.177	+ 1.322	+ 0 747	+ 0 557	+ 0.693	+ 0.834	+ 1.003	+ 1.235	+ 1.403	+ 1.591	+ 1.656	+ 1.620	+ 1.175	+ 0.782	061.0 +
		=236.6 z	$= 739 \cdot 2$	6.020 —	- 406.1	7 260 7	- 180.2	- 132.3	83.4	- 13.5	9.86	+ 235 0	+ 461.5	+ 742.1	+1316·0	+2030.6	+2834.6	+3275.7
		r + 198.6 y	_ 262 S	148.0	151.7	- 130.5	- 132.8	- 184.1	8 655 vergilling	15 - 27 mg	324.2	-345.0	- 333.6	244.3	+ 80 5	+ 885.2	+2249.9	+3830.6
		$d\mu + 14.3$	+-702 —	-109.5	+ 127.9	0.18 + 37.0	8.94/1944	900 LG	- 40 8	C-2+ -	- 44.0	- 26.4	+ 28.1	+ 132.8	+ 450.7	+1155.8	+2433.1	+3949.4
		$I_0 = 0.110.100 d\mu + 14.3 x + 198.6 y$	²⁶ 600 0 0 113	0 W. J.	+0 139 Posign	+0 100	+0 074	+0.068	+0.071	+0.077	760.0+	+0.111	+0.150	+0.207	+0.351	+0.617	+1.038	+1.491
ò	y (Cambridge, M.	1794.0+0+ "	+1.999	+1.608	966.0+	+0.517	+0.303	+0.230	+0 207	+0.198	+0.504	<u> </u>	+12-0+	2+8.0+	+0.244	188.0+	+1.424	+1.983
		p 989.0+99p 00	+0.962	+0.602	066.0+	+69.0+	+0.554	+0.493	+0.485	+0.485	+0.510	+0.212	0.620	+0.715	+0.935	+1.253	+1.659	+1.963
gen.	ständig:	$-12.91 = +0.838 d \varphi + 0.677 di + 1.000 d z + 0.635 d \pi + 0.4089 d M_{\odot}$	-0.836	-0.481	0.849	-0.619	0.353	0.159	-0.035	+0.093	+0.241	+0.363	+0.513	+0.644	+0.822	+0.910	+0.807	+0.471
in den bedingsmigsbielennigen.	Diese lauten nun vollständig:	P 888.0+:	+2 210	+1.123	1 915	-1.076	-0.593	-0.357	-0.231	-0 111	+0.031	+0.161	+0.357	+0.584	+1.090	+1.849	+5.880	+3.808
	Diese lau	1 12.91 =	2. + 2.36	3. + 0.57	4. + 1.89	5. + 2.70	6. + 0.38	7 0.10	8 0.26	90.30	10 0.47	11 0.54	12 0.75	130.37	14. — 0.61	15. + 0.44	16. + 1.04	17. + 1.90

+ 0 714	+ 2.163	+ 4.467	+ 6.019	+ 6.949	+ 7.646	+ 8.409	+ 9.268	+10.386	+12.900
+3159.5 %	+3347.6	+1040.6	9.86 +	219.5	384.7	507.6	- 617.8	6-202	-1088.9
1 5.1815+	+6483.0 +5988.1 +3347.6	+5312.2 +1040.6	+4044.6 + 93.6	+3433 6	+3114.6	+5865.5	+5866.6	+3141.3	+3820.5
) du +5374·3 n	+6483.0	+6328·1	+5410.4	+5009.5	0.848++	+4871.6	+5067.5	9.4642+	+ 6743.4
+1.865.10	+2.078	888.1+	+1.524	+1.377	+1.316	+1.313	+1 364	+1.490	+1.853
## 15.450 AM	+2.629	+2.825	+1.832	+1.628	+1.535	+1.51+	+1.555	+1.680	+2.055
18. $+$ 3·38=+4·330 $d\varphi$ =0·018 di +1·000 d_{sk} +2·067 $d\pi$ +2·420 dM +1·865.100 $d\psi$ +5374·3 x +5181·5 y +3159·5 z	+1.859	+1.316	+0.805	+0.619	+0.531	+0.488	+0.484	+0.518	+0.670
-0.018 di+1.0	0.631	-0.912	-0.913	0.561	0.326	-0.120	+0.070	148.288	+0.60%
:++.330 de	+4.185	+3.080	+1 771	+1.189	+0.812	+0.498	+0 21000	0.108	9+2.0
18. + 3.38=	19. + 2.80 + 4.185	20. + 3.05	21. + 2.11	22. + 0.90	23. 0.46	24 1.111	25. = 3.06	26 4·42	27 6.07 0.746 +0.68%

Nach Multiplication mit den Quadrawurzeln der Gewichte wurde jede Colonne durch den größten darin enthaltenen Coefficienten dividiert.

Hierauf ergaben sich folgende Normalgleschungen:

	= +1.7050	= -2.0787	1866.0+=	= +1.3047	= +0 8808	= +0.3965	= +0.1161	= +0.7730	= +1.5980
	1997r+3·2801 c	-0.6569 -0.9572 +1.6505 = -2.0787	+ 5.6883 + 5.0270 +3.1613	+ 3.8276 + 3.8970 + 3.3716	+ 5.5883 + 5.4575 +2.5231	+5.9116 + 5.7110 + 2.5497	+5.2315 +1.7608	+ 5.2315 $+$ 5.2802 $+$ 2.2672	$\frac{8}{2}$ 1.7608 + 2.2672 + 3.7463 = +1.5980
	x + 3.	3.0	+ 5.6	+ 3.5	+ 5.0	15 +	+	10 +	+
	$d\mu + 3.0555$	-0.6269	+ 5.6883	+ 3.8276	+ 5.5883	+ 5.9116	228+.6 +	+ 5.2315	305/10-1-7608
	+ 3.7108.100	-0.2166	+ 6.6428	+ 4.7488	8702.4 6.2673	# 40.5381	+ 5.9146	+ 5.7110 94 494	, 2.5497 +
	$3.9545 \ d\varphi + 0.1987 \ di + 3.8998 \ d_3 + 3.8998 \ d_5 + 3.9373 \ dM + 3.7108.100 \ d\mu + 3.0555 \ x + 3.4997 \ y + 3.2801 \ z = +1.7050$	0.7629	-4c-8-0161	9 min +	+ 6 776" CON +	+ 6.2678	+ 5.5883	4 5.4575	+ 2.5231
"USON"	+ 3°6660 1	+ 0.7039% - 0.7629	6826-2 +	+ 5.8175	+ 5.2776 +	+ 1.7488	+ 3.8276	+ 3.8970	+ 3.3716
	3.8998 43	+ 1.0851	+ 15.6539	6826.1 +	+ 8.0161	6.9428	5.6883	5.0270	+ 3.1613
	+ !!	+	+	+	+	+	+	+	+
	\$ + 0.1987 c	+ 6.1006	+ 1.0851	+ 0.7039	-0.7629	-0.2166	-0.6969	-0.9572	+ 1.6505
	3.9545 4	0.1987	8.8998	3.6760	8.6873	8012.8	3 0555	3.4997	3.2801

Hiebei wurde so wie auch fernerhin der erste Normalort weggelassen, da er die sehr zweifelhalte genhachtung von 1781 enthält.

Die Auflösung dieser Gleichungen gibt folgendes Resultat:

für x, y und z:

$$x = \frac{m_3}{D^3}$$

$$y = \frac{m_3}{D^3} \cos 2(\lambda - \pi) = -0.005913$$

$$z = \frac{m_3}{D^3} \sin 2(\lambda - \pi) = -0.000012$$

Aus 1 und 2 folgt

$$2 (\lambda = \pi) = 480^{\circ}119$$

шь

$$\frac{m_3}{D^3} = 0.005913$$

Die beiden Werte von $\frac{m_3}{D^3}$ sind zwar dem absoluten Betrage nach stark verschieden, aber doch von derselben Größenordnung. Eine bessere Übereinstimmung war wohl nach der Natur des Problems nicht zu erwarten. Es könnte den Anschein haben, dass die Größen x,y und z nur Rechnungsgrößen ohne reelle Bedeutung sind, allein es wäre doch ein unwahrscheinlicher Zufall, dass für $\frac{m_3}{D^3}$ ein positiver Wert folgt, der überdies mit einem zweiten Werte vergleichbar ist.

Es wurde nun aus den beiden Werten von $\frac{m_3}{D^3}$ das Mittel genommen, die so erhaltenen Werte

$$\lg x = \lg \frac{m_3}{D^3} = 7.614 - 10$$

$$\lg y = \lg \frac{m_3}{D^3} \cos 2 (\lambda - \pi) = 7 g 6444 - 10$$

$$\lg z = \lg \frac{m_3}{D^3} \sin 2 (\lambda - \pi) = 4 \frac{1}{8} 4_n \cdot 9624 - 10$$

in die Bedingungsgleichungen zurücksubstituiert und für jeden Normalort die Summe der von den Störungen abhängigen Glieder gebildet. Da die Coefficienten alle reine Zahlen sind, während die rechte Seite der Gleichungen in Graden ausgedrückt ist, so sind schließlich alle Unbekannten und die oben erwähnten, von den Störungen abhängigen Summer in Graden ausgedrückt. Um den richtigen Wert von $\frac{m_3}{10^3}$ zu erhalten, wäre der oben gefundene daher noch durch $57 \cdot 296$ zu dividieren.

Die so gebildeten Summen stellen den Gesammtbetrag der Störungen im Positionswinkel dar; sie bilden die letzte Colonne auf S. 36 u. 37 [212 u. 213]. Dieselben mit den linken Seiten der Bedingungsgleichungen vereinigt, liefern neue Bedingungsgleichungen, welche nur mehr die Correctionen der Elemente als Unbekannte enthalten.

Es ist interessant, zu bemerken, welche riesigen Werte die Störungen annehmen; sie erreichen mehr als 13° im Positionswinkel, also bedeutend mehr, als die auszugleichenden Unterschiede zwischen Beobachtung und Rechnung betragen. Sie sind aber viel kleiner als bei \(\xi\) Cancri.

Die Auflösung der neuen Bedingungsgleichungen führt zu folgendem Resultate:

$$d\varphi = \pm 1^{\circ}574$$

$$di = -4 \cdot 801$$

$$d\Omega = -3 \cdot 495$$

$$d\lambda = \pm 8 \cdot 068$$

$$dM_0 = -3 \cdot 686$$

$$dy = -0 \cdot 04829$$

Damit folgtstas neue Elementensystem:

$$\varphi = 30^{\circ}259
i = 56 \cdot 439
\mathfrak{L} = 119 \cdot 097
\lambda = 174 \cdot 430
M_0 = - 3 \cdot 686
\mu = - 4 \cdot 12269.$$
XI)

Substituiert man die obigen Correctionen in die Bedingungsgleichungen, so bleiben folgende Reste:

Es ist somit gelungen, den Bedingungsgleichungen in ausreichender Weise genügezuleisten. Anders stellt sich aber die Sache, wenn wir die Positionswinkel nach der Formelaus den neuen Elementen zurückberechnen. Die Correctionen der Elemente sind nämlich zu groß, als dass die linearen Gleichungen schon eine hinreichende Näherung vorstellen könnten.

Um die neuen Reste im Sinne Beobachtung — Rechnung zu finden, müssen vor allem die Störungen der Elemente bestimmt werden, da es nothwendig ist, wegen der großen Werte derselben für jeden einzelnen Normalort bereits die gestörten Elemente einzuführen. Zu diesem Zwecke setzen wir die gefundenen Werte von x, y und z in die Gleichungen S. 35, 211 In der folgenden Zusammenstellung finden sich die Werte der Störungen für φ, π und M_0 , sowie die für die einzelnen Normalorte geltenden Elemente.

		Δ :9	$\Delta \pi$	ΔM_0	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<u> </u>	M_0	dp
	1	+ 0.341	- o·809	- 1.343	30° 400	173.261	- 5.029	+11.77
	2	- 0.932	+ 0.001	- 0.033	290327	174.491	- 3.419	- 0.45
	3	1.031	+ 0.029	+ 0.819	29.228	174.459	2.8071	— o·82
	4	0.202	- 0.009	+ 0.275	\$ 29.752	174.421	- 3.411	+ 0.40
	5	— 0·192	+ 0.330	+ 0.281	\$ 30.007	174.700	- 3.105	- o·78
	Ú	+ 0.102	+ 0.410	+ 1.033	30.424	175.140	- 2:053	+ 1.80
	7	+ 0.486	+ 0.997	+ 1.031	30.745	175.427	- 2.055	+ 0.93
	S	+ 0.764	+ 1.179	+ 2.13%	31.033	175.609	1.249	+ o·80
	9	+ 0.952	+ 1.241	+ 2.558	31.511	175.671	— I.I38	+ 0.01
	10	+ 1.002	+ 1.250	+ 28703	31.204	175.086	0.923	+ 0.00
1	17	+ 0.937	+ 1.271	+\$2.475	31.100	175.701	- 1.511	+ 0.22
	12	+ 0.419	+ 1.349	1.817	30.978	175.779	1 · 869	+ 0.04
	13	+ 0.441	+ 1.542	* + o.853	30.400	175.972	2.833	+ 0.18
	14	+ 0.111	+ 1.842	0.410	30.370	170.272	4.000	= 0.07
	15	- 0.532	+ 2.305	- 1.298	30.024	170.032	- 4.984	- o·73
	16	- 0.434	+ 2.43	- I.400	29.825	170.801	5.080	- 0.94
	17	0.554	+ 2 340	- 1.200	29.705	170-970	4.892	- 1.29
	18	- 0.647	+ 3.599	- 0.726	29.012	177.029	- 4:412	- 2.81
	19	- 0.747	± 2.015	+ 0.108	29.212	177.042	- 3.218	- 3.21
	20	- o·802	2.289	+ 1.001	29.397	177.019	- 2.085	3.42
	21	0.907	+ 2.220	+ 3.103	29.292	170.986	0.284	- 1.00
	22	- 1.020	+ 2.537	+ 4.024	29.230	170.007	+ 0.308	1.30
	23	1.007	+ 2.24	+ 4.077	29:192	170.954	+ 0.991	— o·62
1	2.4	- 1.095	+ 2.214	+ 5.100	29.107	170.944	+ 1:420	- 0.73
	25	-= 1.108	+ 2.208	+ 5.335	29:151	176.938	4 1.040	+ 0.44
	20	- 1.109	+ 2.491	+ 5.338	29.150	170.921	-1- 1:052	4- 0.07
	27	- 1.000	+ 2.489	+ 5.070	29.100	170.919	-1- 1-384	+ 1.28

¹ Ther wurde ein Fehler gefunden, der aber in den späteren Rechnungen corrigiert wurde

216 A. Prev.

Werden mit diesen die Positionswinkel zurückberechnet, so bleiben die in der letzten Columne stehenden Reste im Sinne Beobachtung — Rechnung. Die großen Differenzen gegen Ende der Beobachtungreihe sind nun zwar verschwunden, doch sind die starken Abweichungen der Normalorte 17 bis 21 ziemlich unverändert geblieben, und es zeigt sich ein sehr stark ausgesprochener Gang der Differenzen.

Da diese schlechte Darstellung auf die großen Correctionen der Elemente geschoben werden muss, weil die Bedingungsgleichungen gut dargestellt sind, so steht zu erwarten, dass ein zweiter Ausgleich ein besseres Resultat liefern wird.

Anlässlich dieser Neurechnung mussten aber einige Änderungen im Rechnungsmechanismus vorgenommen werden, wie sich überhaupt auch im folgenden mancher Schritt, der gemacht wurde, im Laufe der späteren Rechnungen als unzweckmäßig oder überflüssig herausgestellt hat.

Die Rechnung begann wieder mit der Berechnung der Störungen unter Zugrundelegung der neuen Elemente. Die mit der neuen Excentricität berechneten Bessel'schen Funktionen führten nun auf folgende Reihen für ξ und η und ihre Differentialquotienten:

```
\xi = 9.87852 + 2[9.65630\cos M + 9.02387\cos 2M + 8.57019\cos 9M £8.19117\cos 4M +
                                                              % + 7.85309 \cos 5M + 7.54238 \cos 6M
             2|9|62148 \sin M + 8.99957 \sin 2M + 8.55133 \sin 3M + 8.17580 \sin 4M +
                                                     \pm 7.84011 \sin 5M \pm 7.52148 \sin 6M
  =0,17609+2|9,26104 cos M+9·12304 cos 2M+9·03838 cos 3M+8·85661 cos 4M+
                                                               +8.65485\cos 5M + 8.44700\cos 6M
87 =
               2[9.52617 \sin M + 8.98417 \sin 2M + 8.98399 \sin 3M + 8.82392 \sin 4M +
                                                       + 8.63063 \sin 4M + 8.42781 \sin 6M.
     Indem man beachtet, dass nun cos 2(\lambda - \pi)^6 = -1, \lg \sin 2(\lambda - \pi) = 7\pi 3180 zu setzen ist, findet
F = 0.18400 \cos M = 0.28318 \cos 2M = 0.13884 \cos 3M = 0.06666 \cos 4M = 0.03364 \cos 5M
                                                                        = 0.02010 \cos 6M
    +0.00131 \sin M = 0.00018 \sin 2M   6.00026 \sin 3M   0.00013 \sin 4M = 0.00006 \sin 5M
\frac{\partial F}{\partial c} = 0.10036 \cos M + 0.71912 \cos 2M + 0.08896 \cos 3M - 0.07776 \cos 4M - 0.10320 \cos 5M
                                                                       -0.10832 \cos 6M
                                                                                                 -11)
    +0.00153 \sin M + 0.00186 \sin 2M + 0.00032 \sin 3M - 0.00009 \sin 4M - -0.00017 \sin 5M
                                                                       -0.00014 \sin 6M
F_{\rm c} = 0.18400 \sin M - 0.14139 \sin 2M - 0.04628 \sin 3M - 0.01667 \sin 4M - 0.00673 \sin 5M
                                                                       -0.00335 \sin 6M
                                                                                                 42)
      +0.00001\cos 6M
F_3 = 0.10036 \sin M = 0.35956 \sin 2M + 0.02965 \sin 3M - 0.01944 \sin 4M - 0.02064 \sin 5M
                                                                        -0.01805 \sin 6M
      0.00153\cos^2 M = 0.00093\cos^2 M = 0.00011\cos^2 M + 0.00002\cos^2 M + 0.00003\cos^2 M + 0.00003\cos^2 M
                                                                        +0.00002\cos 6M
                                                                                                 43)
F_4 = 2[0.00140 \sin M - 0.00024 \sin 2M - 0.00009 \sin 3M - 0.00003 \sin 4M - 0.00001 \sin 5M]
                                                                       -0.00001 \sin 6M
```

 $+2[0.63016\cos M - 0.11466\cos 2M - 0.01192\cos 3M - 0.01554\cos 4M - 0.00624\cos 5M]$

 $-0.00267 \cos 6M$].

-1-1)

Nachdem mit diesen Reihen und den gefundenen Elementen die Störungen neu berechnet waren ergab sich das überraschende Resultat, dass sich die Darstellung der Normalorte wesentlich gebessert hatte.

Es ist nun

Die großen negativen Abweichungen der Normalorte 17 bis 22 sind verschwunden und theilweise in positive übergegangen. Immerhin bleibt die Darstellung noch ungenügene. zumal als die Distanzen nur eine sehr schlechte Übereinstimmung zeigen.

Der Vergleich derselben mit der Rechnung gestaltet sich wie folgt:

Es ergibt sich somit die Nothwendigkeit, auch den Distanzen einige Aufmerksamkeit zuzuwenden In der That hat auch der Wert der großen Achse einen bedeutenden Einfluss auf die Störungen und somit auch auf die Positionswinkel. Es musste daher der Coefficient berechnet werden, mit welchem da in den Bedingungsgleichungen auftritt. Zu diesem Zwecke wurden die Differentialquotienten der Störungen nach der großen Achse

$$\frac{\partial \Delta \pi}{\partial a}$$
, $\frac{\partial \Delta \pi}{\partial a}$ und $\frac{\partial \Delta M}{\partial a}$

berechnet und dieselben mit den entsprechenden Coefficienten der Bedingungsgleichungen multipliciert; es hat dann der Coefficient von das nach den Gleichungen für die Positionswinkel die Form:

$$\frac{\partial \Delta \varphi}{\partial a} \cdot \frac{\partial p}{\partial \varphi} + \frac{\partial \Delta \pi}{\partial a} \cdot \frac{\partial p}{\partial \pi} + \frac{\partial \Delta M_0}{\partial a} \cdot \frac{\partial p}{\partial M_0};$$

für die Distanzen hat man die Form:

$$\frac{\partial \rho}{\partial a} + \frac{\partial \Delta \varphi}{\partial a} \cdot \frac{\partial \rho}{\partial \varphi} + \frac{\partial \Delta \pi}{\partial a} \cdot \frac{\partial \rho}{\partial \pi} + \frac{\partial \Delta M}{\partial a} \cdot \frac{\partial \rho}{\partial M}$$

so dass also rücksichtlich der großen Achse Störungen zweiter Ordnung berechnet wurden.

Aus diesen zuletzt bestimmten Coefficienten und der obigen Darstellung der Distanzen ergab sich vorerst ohne Rücksicht auf die übrigen Elemente als Correction der großen Axe

$$da = -0''1569$$
,

so dass der neue Wert nun lautet:

$$a = 4''5301.$$

218 A. Prey,

Dieser Versuch der Bestimmung der großen Achse war in der Hoffnung unternommen worden, dadurch vielleicht einen zweiten Ausgleich vermeiden zu können; allein diese Hoffnung hat sich als trügerisch erwiesen, indem die Darstellung der Positionswinkel dadurch nicht verbessert wurde.

Ein Versuch, mit der großen Achse gleichzeitig die Excentricität zu ändern, ist misslungen.

Es blieb somit nichts übrig, als mit dem neuen Werte der Achse die Störungen zum drittenmale zu berechnen und mit den so gefundenen Werten der Elemente für die einzelnen Normalorte einerseits wieder die Positionswinkel zurückzuberechnen, anderseits die Coefficienten der Bedingungsgleichungen zu bestimmen. Dabei konnten jetzt noch zwei Correctionen angebracht werden, näuflich der Einfluss der Störung Δa

$$\Delta a = 2 a^4 \frac{m_3}{D^3} F$$

und der Einfluss der Störung $\Delta \varphi$ auf die periodischen Störungen, während bis jetzt in den Größen F, F_1 , F_3 und F_4 nur constantes φ angewendet wurde. Es konnten nämlich aus den Reihen 36 bis 39 und 41 bis 44 mit Hilfe der beiden zugehörigen Excentricitäten die Differentialquotienten der Coefficienten berechnet werden, so dass sich Reihen ergaben für

$$\frac{\partial F}{\partial e}$$
, $\frac{\partial F_1}{\partial c}$, $\frac{\partial F_3}{\partial c}$ und $\frac{\partial F_3}{\partial c}$.

welche nun mit den den einzelnen Normalorten entsprechenden $\Delta c = \Delta \varphi \cos \varphi$ multipliciert wurden; so ergab sich der Einfluss von $\Delta \varphi$ auf die Ausdrücke F, F_1 , F_3 und F_4 .

		$\frac{\partial F}{\partial c}$. dc	$\frac{\partial F_1}{\partial c} \cdot dc$	$\frac{\partial}{\partial \mathcal{E}} \frac{\partial F_3}{\partial \mathcal{E}} . d \mathcal{E}$	$\frac{1}{2} \frac{\partial F_1}{\partial c} . dc$
		1			
	I	0.0012	- o.%0001	- 0.0021	0'0017
	2	- 0.0100	- 50035	- 0.0040	- 0.0123
	3	- 0.0100	-20.0021	0.0045	- 0.0181
	.1	+ 0.0032	£ 0.0030	0.0092	- 0.0008
	5	4- 0.0018	+ 0.0001	- 0.0042	+ 0.0008
	6	- 0.001	+ 0.0005	+ 0.0040	0.0013
	7	= 0.00kg	+ 0.0010	+ 0.0000	0.0030
	S	+ 0.0017	+ 0.0050	+ 0.0078	- 0.0047
	9	+ 6.0053	+ 0.0010	+ 0.0032	- 0.0048
	10	-Fg 0.0022	0.0002	- 0.0000	- 0.0048
	1.1	2+ 0.0012	- 0.0017	0.0020	- 0.0047
	12	- 0.0001	0.0022	- 0°00S2	0.0045
	13	- 0.0018	- 0.0007	0.0002	- 0.0053
	145	-+ 0.0002	0,0000	+ 0.0014	+ 0.0003
	45	+ 0.0045	- 0.0018	+ 0.0008	+ 0.0004
	\$10	+ 0.0029	0.0037	+ 0.0003	- 0.0018
	5 17	0.0002	- 0.0047	+ 0.0028	- 0.0047
	18	- 0.0043	- 0.0020	+ 0.0053	- 0.0075
To K	19	- 0.0070	- 0.0048	- 0.0011	- 0.0100
1900	20	- 0.0103	- 0.0011	0.0040	- 0.0140
Silis	21	- 0.0100	- 0.0031	- 0.0049	- 0.0102
	22	0.0108	- 0.0022	0.0044	- 0.0181
	23	- 0.0102	- 0.0012	- 0.0034	- 0.0100
	24	- 0.0103	- 0.0008	0.0010	- 0.0100
	25	0.0100	0.0001	0.0003	- 0.0108
	26	- 0.0101	+ 0.0000	+ 0.0012	- 0.0100
	27	- 0.0102	+ 0.0018	+ 0.0038	- 0.018n

Der Gesammteinfluss dieser Glieder, sowie der von Δa auf den Positionswinkel und die Distanzen findet sich in der folgenden Zusammenstellung, in welcher die entsprechenden Columnen mit Δa und $\Delta \phi$ überschrieben sind.

Positionswinkel:

Distanzen:

Das von $\Delta \gamma$ herrührende Glied kann bei den Distanzen ganz vernachlässigt werden, während dies bei den anderen Gliedern namentlich gegen Schluss ger Reihe offenbar unzulässig wäre. Die obigen Beträge wurden mit verkehrtem Zeichen an der Darsfellung der Normalorte angebracht.

Es stellte sich nun auch die Nothwendigkeit heraus, die Werte von $\frac{m_3}{D^3}$ und $2(\lambda-\pi)=\omega$ zu verbessern, zu welchem Zwecke statt $\frac{m_3}{D^3}:\frac{m_3}{D^3}(1\sqrt[3]{\delta})$ und statt $\omega:\omega+d$ ω gesetzt wurde.

Als Coefficient von δ tritt die Summe Als Coefficient von δ tritten von δ tritt

Die Coeflicienten von dω ergebest sich nach folgender Formel:

Bei der Berechnung wurden die Glieder mit sin ω vernachlässigt, während $\cos \omega = -1$ gesetzt wurde. Es kam daher von den Reihen für F, F_1, F_2 und F_4 nur die letzte Zeile in Rechnung, doch mussten auch hier die Werte von $\frac{\partial F}{\partial \omega} \frac{\partial F_1}{\partial \omega} \frac{\partial F_3}{\partial \omega}$ und $\frac{1}{2} \frac{\partial F_4}{\partial \omega}$ wegen der veränderlichen Excentricität verbessert werden.

Wir haben somit für den zweiten Ausgleich folgende Änderungen getroffen, welche wir hier nochmals zusammenfassen: 1. Die Aufnahme der Correction da in die Bedingungsgleichungen. 2. Die Einführung des variablen Wertes von φ in die Ausdrücke F, F_1 , F_3 , F_4 und 3. Die Einführung der Unbekannten δ und $d\omega$ für x, y und z.

A. Prey,

Als Resultat ergab sich das folgende System der Bedingungsgleichungen für die Positionswinkel, dem wir gleich das Entsprechende für die Distanzen anfügen.

sich nun nach Einfül

1. 0.0495 Am	י בפנים מאר	9290-0	0.5172	0 2003	0.0145	9.8971	9.7505	9.4829	2010"2	9,,6884	0,0233	0,2735	02210	0.,6780	0.,8800	0.,9958	1,0302	8986″0	0,8150		9.8228	0.2567	0.3840	0.4639	0.5305	0.6050	D-7511
80108.0 1 78.0	$9.7214di + 0.0000dg + 9.8644d\pi + 9.5559dM_0 + 8.9902.100dy + 9.89104 + 9.8454dq$	0.2828	9566.6	0.0402	9.8476	9.8228	9 8785	9.9315	9.9917	0.0546	0.0896	0.1225	0.1183	0.0438	9.8325	0.4548	9.6821	97 0.2258	8603.6038	2	0.9168	0 8450	0.9628	0.9820	1.0054	1.0364	00000-1
d: yr - 0.0009 10	$V_0 + S_0 SSOZ \cdot IC$	9,1275	8,8379	9 1038	8.9677	8.9034	8.8819	8.8867	8.9140	8698 8	9 0401	9 1522	9.2880	6061-6	900 LIDE 19-77-41	680000	0.1808	0.2955	0.3565	0.3419	0 2812	0.2385	0.2141	0.2043	0.2104	0.2352	6
Zahlen sind logarithmisch angesetzt. Bedingungsgleichungen für die Positionswinkel	TP699994	0.3739	0.2926	9.9592	9.6817	9.5135	9.4119	9.3507	$9 \cdot 3192$	9.3181	9.3455	9.4134	9415.9840	9 6842	9.9316	0.1463	0.3042	0.4086	0.4587	0.4321	0.3609	0.3111	0.2812	0.2662	0.2675	0.2874	1 (
n für die Po	+ 8 8644 <i>d</i> =	8966.6	9.8206	0.0166	9.8814	9.8094	9.77.10	9.7510	9 7428	8912 6	806,608	9.7918eg	9.8376	9.9164	0 0428	0.1536	0.2274	0.2578	0.2266	0.1040	0.9470	09+8-6	9.7838	06+2-6	9.7446	9+22-6	
gsgleichunge	೮100000.0 +							Wile >	100 Mg.	, 100 high																	
zt. Bedingun	+ 9.7214di-	9,8568	9,6269	97,8657	#8+16	2485 May 2042	1. 4 1. (d.	9.1389	8,3827	8-9928	9.3124	9.5272	9.6692	9-7929	9.8739	9.8419	9.6465	8.6020	9,,6521	9,8726	9,8228	8.789.6	068+"6	9880″6	8.8275	9-4487	
iisch angeset	1,0755 0489,4849 da + 9.8219 de +	0.3408	0.0152	0%2633	0:00176	9.7916	0.5987	9.3771	9,0115	8.5891	9.2264	9.5452	9.7642	9.9928	0.2482	0.4332	0.5516	0.6107	0.5976	0.4698	0.2585	0.0617	9.8484	9.5072	8 (5555	9_6481	- 11
nd logarithm	pp6+8+"68#		9.7626 Uni	9.8093 0%,8533	9.5370	9.4257	9.4381	9.4713	9.5212	0.5780	8909.6	9 6249	9 - 5941	9 4268	8,2304	0.282.6	9.6916	9,4252	9.6542	0.1799	0.3506	0.4129	0.4519	0.4877	0.5246	0.5684	
Alle Zahlen sin	1,0755%	9.5441	0.3747	9.8129		6,293	9.9395 9.0395	9.8261	9,6721	9_6128	9.5315	9:6128	9 0792	0.000.0	9-9638	9.9823	0.0212	0.1271	1224.6	9.6128	0.0170	0.0864	9-9956	0.1584	9.8692	9.8692	

Bedingungsgleichungen für die Distanzen

9.7356 = 9.8485 da + 0.6951 d	+	+ 0.30354=+	$-0.5355dM_{\rm 0}$	$0.,2829di + 0.,3035d\pi + 0.,5355dM_0 + 9.,6781100d\mu + 8.,5911\delta +$	1 + 8,59118 +	
	0,0521	0,3241	0,,4610	0.7-170	8,5563	9,1492
	9,7814	0,2533	0,3439	9,7338	8,5563	9,1528
	0,4414	0,,1183	0,1933	8899″.6	8,5441	9,,1038
	8,9219	9,8783	9,9781	9,,5141	8,3010	9,0414
	7,4205	9,,1366	9,5366	9,,1314	7 - 7782	0,0294
		9.7483	9.5019	9-1536	8.6628	9,,1004
		0.0543	9.9466	9.6412	8.9138	0,2405
	0.1427	0.2356	0.1878	9-9266	9.0212	97,4166
		0.3274	0.3293	0 · 1037	8.9956	9,,5502
25	°M, 0,1689	0.3687	0.4380	22+6.0	8.8129	9,,6263
	5055,39 m	0.3252	0 4968	0.3393	!	9,5821
	~ 1 1 3 60 × 0	0.1863	0.4757	0.3383	8.2553	97,3927
	0,4793	20195	0.3822	0.2583	7,9542	8,9912
	0.4712	8.84.05	0 · 1789	0.0658	7.8451	8-4771
	0,31012	1,8409 90 gina	9.4360	9.8838	0669 - 2	0.1072
	0,2166	0,,0747	028830	8968.6	8,4914	0.2355
	9,9178	209010	0,15-1900	0,0752	8,8062	9.2504
	9,5803	0,,9487	7960".0	184 Q. 0237	8,7634	9 - 2648
	9,1697	977640	0,9195	9.8525 	8,3979	9 - 2023
	8,3406	9,3612	0901".6	9.3441 Mayne	8 · 462.1	9 · 32 43
	7,8417	9-1125	9.5737	9.5166	8.9731	9.3508
	9,,0583	9.7087	0.0087	9 - 9565	2006.6	5-3892
	9,7332	9-9965	0.2151	0.1702	9.3483mo	9.4031

Was die Einheiten anbelangt, in denen die Correctionen ausgedrückt sind, so gilt Folgendes

System 1. da in Bogensecunden, $d\varphi$, di, $d\varphi$, $d\pi$, $d\pi$, $d\eta$, $d\varphi$ in Graden; δ : unbenannte Zahl, $d\omega$ in absoluten Einheiten (1 = 57°296). System II. da in Bogensecunden $d\varphi$, di, $d\pi$, dM, $d\varphi$, $d\omega$ in absoluten Einheiten; 3: unbenannte Zahl. Da die beiden Systeme gleichzeitig behandelt werden sollen, so müssen sie auch die Unbekannten in denselben Einheiten liefern: Es müssen daher die Coefficienten aus $d\varphi$, di, $d\pi$, dM und $d\mu$ in H. noch durch $57 \cdot 296$ dividiert werden. Da dadurch die Coefficienten im zweiten System erheblich kleiner werden als die im ersten, so tritt das zweite mit viel geringerem Gewichte in die Normalgleichungen ein, und es wurde daher angenommen, dass damit der geringeren Verlässlichkeit der Distanzen Rechnung getragen sei. Größeren Einfluss gewinnt nur der Coefficient von da, der für die Darstellung der Distanzen der wichtigste ist.

Nachdem nun mit den Quadratwurzeln der Gewichte multipliciert war, wurde jede Colonne durch den größten in derselben vorkommenden Coefficienten, beide Systeme zusammengenommen, dividiert, und hierauf die Normalgleichungen gebildet.

anzen zuers	=+2.7568	-1.1377	+2.2041	+2.24+	+1.1968	+4.0843	+3.2826	+4.8180	+4.3612	=-0.0086	+0.0186	-0.1141	-0.0084	0.0022	-0.0269	-0.0210	-0.0117	= +2·7482	-1.1191	+2.0800	+2.5360	+1.1946	+4.0843	+3.2557	+4.7970	+4.3405
Um diese Verhältnisse überblicken zu können, sind im folgenden die Normalgleichungen für die Positionswinkel und die Distanzen zuers	$+3.9315 dM_0 + +.1914.100 d\mu = +2.7568$	-1.4408	+3 3500	+3.2826	0.2063	+6.9206	+4.9758	+6.3468	+6.4360	$+0.0008 d M_0 + 0.0006.100 d \mu =$	0.0019	+0.0122	+0.0011	-0.0025	+0.0020	+0.0019	0 + 0 · 0015	$+3.9323 dM_0 + 4.7820.100 dp.$		+3.3622	+3.2837	-0.2088	+6.9206	++.0778	+6.3487	+6.4375
ir die Positions		-1.4372	+3.0202	+3.7052	-0.8783	+8.1824	6242.6+	+7.0873	+6.3468	T P 8000 0+ 2	0.0020	+0.0061	+0.0007	2500-0-025	+000031	+0.00.0+	+0.0019	π +3.6323 d.ll	-1.4392	+3.0263	+3.7059	-0.8805	+8.1824	+5.7510	+7.0902	+6.3487
Igleichungen fü	2 +2.5118 dM	-2.9334	+1.7610	+3.6632	+0.3523	+8.1779	+6.2812	45.7479	8226.7+	+0.0010 4	" -0.0028	8600 John	+0.0042	-0.0016	+0.0036	+0.0031	+0.0050	+2.5128 d	-2.9362	+1.7708	+3.6644	+0.3507	+9.1779	+6.2848	+5.7510	+4.9778
den die Norma	i ++·7781 dg	-2.5042	+3.8318	+3.70+0	+0.4211	+15.9857	+9.1779	+8.1824	50 10 10 10 10 10 10 10 10 10 10 10 10 10	di nghaloung	1990 FO							i + 4.7781 dg	-2.5042	+ 3.8318	+ 3.7040	+ 0.4211	+15 9857	+ 9.1779	+ 8.1824	+ 6.9206
sind im folgen	tutgeführt. 1º ==0°1870 d	+0.8057 + 4.2710 + 19824 -3.2400 -2.1206	-0.0205	+0.2580	+6.0034	com +0.4211	#W 3523	-0.8783	0.2063	p 2000.0- \$ p	+0.00+2	-0 0566	0.0028	+0.0119	-0 0016	-0.0022	-0.0052	1 p -0.1872 di	-2.1161	0.0771	+0.2552	+6.0153	+0.4211	+0.3507	-0.8805	-0.2088
n zu können,	getrennt und dann in wag, System zusammengezogen aufgeführt $+3.8563$ $\delta+0.8057$ d $\phi_{+}=3.4287$ $da=+0.6008$ d $\varphi=-0.18$	-3.2400	+3.1604/2 -0.0071	5860 Table	0806.0+	- 0+02.8+	+3.6632	+3.7052	+3 2826	0.0001	-0.0071	+0.0535	9900.0+	-0.0028	+0.0012	2000.0→	+0.0011	la +0.6907 d	3.2471	+0.0464	+4.1001	+0.2552	+3.7040	+3.6644	+3.7059	+3.2837
sse überblicke	System zusan "dong 3·4287 a	+ Mess24	+3·1604×n	-0.0071	-0.0205	+3.8318	+1.7610	+3.0202	+3.3500	-0.0001 d + 0.0008 d a	-0.0505	+1 0695	+0.0535	-0.0566	8600.0+	+0.0061	+0.0122	+0.8056 d \omega +3.4385 da +0.6907	+1.1319	+4.2299	+0 0464	-0.0771	+3.8318	+1.7708	+3.0263	+3.3622
ese Veyhältni	ر ربعة النا تالية ا 1 +0-8057 أل	+4.2710	+1.1824	3-2400	-2.1206	-2.5042	$-2 \cdot 9334$	-1.4372	-1.4408		+0.0088	-0.0505	-0.0071	+0.0045	-0.0028	0-0050	-0.0019	b 9508.0+ 3	+4.2799	+1.1319	-3.5471	-2.1161	-2 5042	-2.9362	1.4392	-1.4427
Um di	getrennt unc +3·8563	+0.8057	+3.4287	8039.0+	0.1870	+4.7781	+2.5118	+3.9315	+4.1914	+0.00078	0.0001	+0.0098	-0.0001	0.0003	+0 0010	\$000.00÷	9000.0+	+3.85708	+0.8056	+3.4385	2009-0-	-0.1872	+4.7781	+2.5128	+3.9323	+4.1920

Das Resultat des Ausgleiches ist folgendes:

$$\begin{array}{lll} \delta \equiv - & 0 & 2758 & & \lg \frac{m_3}{D^3} \equiv 7 \cdot 5042 = 10 \\ d \omega \equiv -36^{\circ} 567 & & 2 & (\lambda - \pi) \equiv 143^{\circ} 552^{\circ} \\ d a \equiv - & 0'' 0301 & & a \equiv 4'' 5000 \\ d \varphi \equiv - & 1^{\circ} 333 & & \varphi \equiv 28^{\circ} 926 \\ d i \equiv + & 0 & 137 & & i \equiv 56 \cdot 576 \\ d \omega \equiv + & 2 \cdot 689 & & \omega \equiv 121 \cdot 786 \\ d \pi \equiv - & 6 \cdot 963 & & \pi \equiv 167 \cdot 467 \\ d M_0 \equiv + & 3 \cdot 922 & & M_0 \equiv 0^{\circ} 236 \\ d \omega \equiv + & 0 \cdot 00195 & & \omega \equiv -4 \cdot 12074 \\ \end{array}$$

Während den Bedingungsgleichungen wieder in ausreichender Weise genügt ist, gestaltet sich der Vergleich der Normalorte mit der directen Rechnung nun folgendermaßen:

	dp	dę		dp	dρ		дņ	de All		dp	dp
2	+ 0.82	+ o [©] Ú20	9 10 11 12	+ 0.15 + 0.29 + 0.45 + 0.45	+ 0°089 + 0°039 - 0°097 0°102 0°009 0°154	16 17 18	+ 0.02 + 0.10% - 0.61 - 889	+ 0.080	23 24 25 26	- 2 47 - 2 24 3 28 3 06	+ 0.003 + 0.003 - 0.004
7		+ 0.334					1.~	+ 0.140		3 30	0 033

Die Darstellung der Distanzen ist erheblich besser geworden, die der Positionswinkel ist aber noch immer unbrauchbar. Die langsame Convergenz des Ausgleichsverfahrens haftet überhaupt dem Problem an. Sie ist begründet in dem großen Werte der Excentricität und dem der Neigung, infolge deren jede Anderung der Elemente in ungeheuer vergrößertem Maßstabe auf die Positionswinkel übergeht, daher die linearen Bedingungsgleichungen noch immer nicht volle Geltung haben. In dem Falle des letzten Ausgleiches ist überdies zu bemerken, dass sich der Winkel $2(\lambda-\pi)$ um mehr als 36° geändert hat. Die Größe des Wertes ist nicht auffallend, da die Richtung nach m_3 selbstverständlich sehr unsicher bleibt; dass aber dieser Wert in den Bedingungsgleichungen als Differential auftritt, begründet wohl hinlänglich die Abweichung von der directen Rechnung. Der Ausgleich muss daher noch einmal wiederholt werden.

Rücksichtlich der Berechnung der letzten Darstellung sei bemerkt, dass das Rechnungsverfahren bei der Berechnung der Störungen wie er etwas geändert war. Um nämlich die zeitraubende Auswertung der Reihen 28 bis 32 für die neue Excentricität zu vermeiden, wurde auf die Werte S. 33 [209] zurückgegangen, welche mit dem ersten Werte der Excentricität berechnet sind. Dieselben wurden wegen des neuen Wertes und der Störungen von $\mathfrak P$ nach der S. 42 [218] erwähnten Methode verbessert, und mit den so gewonnenen Werten die Störungen neue berechnet. Diese letzteren gelten dann für dieselben mittleren Anomalien, wie die Zahlen S. 33 [209]; für die neuen Werte der mittleren Anomalie wurden die Störungen graphisch interpoliert, dann an die neuen Elemente angebracht und hierauf p und p nach den gewöhnlichen Formeln berechnet.

Dieses Verfahren wurde auch weiterhin festgehalten.

Es ergab sich noch eine zweimalige Wiederholung des Ausgleiches als nothwendig, doch erschien es überflüssig, alle Coefficienten neu zu berechnen; nur die von δ und $d\omega$ mussten wegen der starken Änderungen erneuert werden.

Das Resultat dieser Rechnungen ist das folgende:

1. Ausgleich.

$$\begin{array}{llll} \delta = +0.3782 & \log \frac{m_3}{D^3} = & 7.6435 - 10 \\ d\omega = +3.699 & 2 (\lambda - \pi) = & 147.251 \\ d\alpha = -0.0190 & \alpha = & 4.4810 \\ d\varphi = +0.621 & \varphi = & 29.547 \\ di = -0.265 & i = & 56.311 \\ d\Omega = -0.271 & \Omega = & 121.515 \\ d\pi = +1.115 & \pi = & 168.582 \\ dM_0 = -0.391 & M_0 = - & 0.185 \\ d\varrho = -0.02919 & \varrho = - & 4.614993 \\ \end{array}$$

Die Darstellung der Normalorte:

	dp	dp		dp	do		dp	ogg inn		dp	do
1		_	8	— o·24	+ 0.045	15	+ 0.51	0.218	22	- 0.30	+ 0.132
2	- 1.57	_	9	- 0.03	- 0.001	16	- 0.25%	- 0.118	23	— o·57	+ 0.041
3	— o·77	_	10	+ 0.03	- 0.134	17	- 0.27	+ 0.004	24	- 0.04	+ 0.195
4	0.46	+ 0.545	11	+ 0.01	0.145	1 S	+ 9 19	+ 0.133	25	- 0.73	+ 0.079
5	+ 1.16	o.o84	1.2	- 0.11	- O'122	19	0.79	+ 0.050	26	- 0.47	+ 0.000
6	- 0.43	+ 0.270	13	- 0.52	- 0.53	20	0.34	+ 0.053	27	+ 1.13	+ 0.075
7	- 0.43	+ 0.273	14	+ 0.78	- 0.131	216	- 0.55	+ 0.100			

Der große positive Wert des letzten Normalorges ließ darauf schließen, dass spätere Beobachtungen gegen diese Elemente starke positive Abweichungen zeigen werden. In der That hat der Vergleich zweier später publicierter Beobachtungen der Jahre 1899 und 1900 dies bestätigt. Deshalb wurde der Ausgleich noch einmal wiederholt; diesmal unter Beibelaltung aller Coefficienten:

Er lieferte folgendes Resultat:

2. Ausgleich.

Da diese Elemente als die definitiven angesehen wurden, so sollen hier noch die bei Berechnung der Darstellung verwendeten Werte der Störungen, welche sich aus diesen Elementen ergeben, Platz finden. Dabei ist zu bemerken, dass das Glied von ΔM_0

$$-\left[\frac{7}{2} + \frac{5}{2}\cos 2(\lambda - \pi)\right] \cdot ka^{\frac{3}{2}} \frac{m_3}{D^3}(t - t_0) = 0 \cdot 03313(t - t^0)$$

als völlständig der Zeit proportional mit p vereinigt wurde. Es ist dann

$$u' = -4^{\circ}10250$$
,

mit welchem Werte die mittleren Anomalien berechnet wurden.

	7 ἁ	∠ 2≈	ΔM_0	å	Ť.	M_0
ī	+ 0.0%	0.685	0.497	29:448	109.086	1,520
2	0.018	+ 0.301	- 0.077	28.754	170.132	- 1:439
3	0.080	+ 0.382	- o·750	28.086	170.153	- 1.518
4	- 0.337	+ 0.074	- 1.024	29.035	169.845	- 1·7S6
5	0.000	+ 0.137	- 0.855	29:300	109.908	1:617
()	+ 0.544	+ 0.585	- o·557	29.016	170.053	1.319
7	+ 0.207	+ 0.417	0.040	29.939	170.188	- 0.802 S
S	+ 0.884	+ 0.212	o·505	30.250	170.283	0.52
9	+ 1:170	+ 0.232	+ 1.000	30.245	170.303	+ 0.328
10	+ 1.404	+ 0.202	+ 1.702	30.776	170.270	+ 8 940
I 1	+ 1.233	+ 0.471	+ 1.923	30.905	170.242	1.101
1.2	+ 1.503	+ 0.440	+ 1.917	30.935	170.311	1.155
13	+ 1.507	+ 0.204	+ 1.212	30.879	170.275	+ 0.753
14	+ 1.372	+ 0.605	+ 0.238	30.744	170:436	- 0.224
15	+ 1 177	+ 0.945	- 0.046	30.249	178.716	- 1.408
16	+ 1.047	+ 1 179	- 1:342	30.410	\$70.950	- 2.104
17	+ 0.975	+ 1.333	1:710	30:347	2 171.104	- 2.478
18	+ 0.051	+ 1:424	-= 1.811	30.293	171.195	- 2.573
19	+ 0.800	+ 1.485	- 1.570	30,50	171.256	- 2,332
20	+ 0.780	+ 1.231	— o.898	30,8152	171.302	- 1.000
2.1	+ 0.731	+ 1.221	- 0.149	38.103	171.322	- 0.311
22	+ 0.080	+ 1.201	+ 0.420	30.058	171.332	- 0.330
23	+ 0.003	+ 1.568	+ 0.700	30.035	171.339	+ 0.007
2.4	+ 0.041	+ 1.223	+ 1.685	30.013	171.344	+ 0.320
25	+ 0.029	+ 1.577	+ 18327	30.001	171.348	+ 0.202
20	+ 0.019	+ 1:570	+ 21.380	20.991	171.347	+ 0.024
27	+ 0.027	+ 1.264	1.258		171.335	+ 0.490
			00			

Mit diesen Werten ergab sich folgende Darstellung:

		dp	do		The Market	dρ		dp	dş		<i>dp</i>	dş
I		10983	_	8	00:19	+ 0"053	15	+ 0.22	o" 198	22 -	- o°44	+ 0,111
2		0.39		9,5	+ 0.03	0.000	10	0.1½	0.092	23 -	+ 0.10	+ 0.040
3	4.	0.33		180	+ 0.00	- 0.159	17	0.30	+ 0.055	24 -	+ 0.2	+ 0.153
4		0.02	+ 0 5	10,811	+ 0.08	0.174	18	+ 0.30	+ 0.144	25	- 0.45	1- 0.032
5	+	1:17	+ 0.1	£ 12	0.00	0.148	19	0.07	+ 0.001	20 -	- 0:38	1- 0:042
0		0.40	+ 03	21 13	+ 0.31	- 0.338	20	+ 0.14	0.050	27 -	+ 0.20	0.023
7		0.38	+ \$ 30	oS 14	+ 0.77	0.189	21	+ 0.22	+ 0.184			

Die Darstellung der Positionswinkel kann als genügend bezeichnet werden. Abgesehen von dem ersten Normalorte, übersteigen die Differenzen nicht das zulässige Maß, und auch die Anzahl der Zeichen wechsel ist hinlänglich.

Es wurden nun mit den oben gegebenen Werten der Störungen, die Werte derselben für jeden Jahresanfang graphisch interpoliert und hierauf die nachfolgende Ephemeride berechnet, welche auch die Werte des Positionswinkels und der Distanzen bis zum Jahre 1910 enthält. Für die letzten zehn Jahre wurden die Störungen direct berechnet.

226 A. Prey,

Der Vergleich sämmtlicher beobachteter Positionswinkel mit der Rechnung findet sich in der folgenden Zusammenstellung:

Ephemeride für 70 Ophiuchi.

-									
I	Epoche	p	?	Epoche	P'	۶	Epoche	Į,	۶
	1819.0	172°02	2 510	1850.0	117.51	0.737	1881.0	₩ 02·75	2"670
	20.0	105.97	2:708	21.0	110.37	6.727	82.0	\$ 50.57	2:472
	21.6	101.30	3.052	52.0	115.52	0.710	83.0	49.33	2.290
	22.0	157.11	3.585	53.0	114.07	6.685	84.0 %	41.04	2:120
	23.0	153.29	3.535	54.0	113.81	6.052	85.00	31.75	1.994
	24.0	150.23	3.481	55.0	112.94	6.610	8000	21.03	1.912
	25.0	147.84	4.018	50.0	112.00	6.200	7.0	11.03	ı · SSo
п	26.0	145.44	4.248	57.0	111.12	6.203	\$ 8S.0	0.46	1.884
	27.0	143.59	4.404	58.0	110.53	6.438	30 89.0	350.38	1.922
1	28.0	141.35	4.073	59.0	109.29	6.303	30.0	340.01	1.988
0	29.0	139.58	4.872	60.0	108.32	6. 280	01.0	332.15	2.000
	30.0	137.94	5.028	01.0	107.32	6.188	92.0	324.17	2 144
	31.0	136.42	5.234	62.0	100.39	6.087	93.0	310.01	2.510
	32.0	135.00	5.401	03.0	105.22	\$2979	94.0	309.33	2 ' 249
	33.0	133.67	5 . 5 5 7	64.0	104.10	5 802	95.0	305,51	2.521
	34.0	132.43	5.405	05.0	102.93	5.730	90.0	294.71	2.310
	35.0	131.54	5.830	66.0	101.72	5.000	97.0	286.21	2.151
	30.0	130.11	5.959	67.0	100.42	5 ' 457	98.0	277.00	1.993
	37.0	129.02	6.075	08.0	39.08	5.308	99.0	265 58	1.847
	38.0	127.97	0.181	69.0	97:50	5.149	1900.0	251.74	1.717
	39.0	126.96	6.277	70.0	£0.02	4.979	01.0	235.23	1:644
	40.0	125'99	0.303	71.0	\$94.32	4.790	02.0	218.23	1.667
	41.0	125.04	0.441	72.0	92.48	4.011	03.0	202:28	1.794
	42.0	124:12	0.200	73.0	90.47	4,412	04.0	188.88	2.002
	43.0	123.52	0.262	74.0 %	SS · 27	4.511	05.0	178.55	2:265
	44.0	122.34	0.010	75.8	85.85	4.000	00.0	170.28	2.248
	45.0	121.46	6.657	760	83.15	3.785	07.0	164.37	2.834
	46.0	120.29	6.690	\$7.0	So·05	3.264	08.0	159.42	3,110
	47.0	119.74	6.715	78.0	70.58	3.339	09.0	155.35	3.392
	48.0	118.89	0.730	£ 79.0	72.01	3.112	10.0	151.03	3.662
	49.0	118.05	0.738	80.0	68.05	2.892			
			14						

X2 .	D. a.	Positionswinkel		2.11	n n	
Nr.	Epoche	Beobachtung Rechnung		Zahl	B-R	Beobachter
1	1770.76	89.01	97.35	I	- 7:74	W. Herschel.
2	80.50	_	_			39
3	80·50 8	80°39 98°85	94.53	_	- 13·84 + 4·62	,
4	1802.30	335.80	330.48	_	- 0.35	
5	04.41	317:70	318.28		0.25	>
0	01.42	310:32	318:20		I . O()	Þ

		Position	iswinkel	1		
Nr.	Epoche	Beobachtung	Rechnung	Zahl	B - R	Beobachter
7	1819.04	108.31	107.97	5	+ 0.3	4 W. Struwe.
8	20.77	160.08	162.19	2	- 2:1	(»
9	21.30	155.91	159.90	2	- 3.9	9 Herschel und South _s
10	7-4	157:49	158.10	5	— o.n	W. Struve.
1.1	22.42	_	155.20			Herschel und Swith.
I 2	49	154.96	155.32		= 0.3	
13	04	153.72	154.79	3	- 1.0	
14	23.32	153.27	152.57	-	+ 0.4	Herschel and South.
15	25.20	148.00	140.40	ΞÚ	+ 1.00	South
10	57	148.08	140.43	1.4	+ 1.0	W.Struve.
17	20.76	140.27	143.79	I	+ 2:48	7
18	27.02	145.02	143.25	2	- 1.77	7 Ag. »
19	28.28	140.21	140.30	3	+ 0.31	
20	7 1	140.10	140.07	4	+ 0.0	W. Struve.
2 1	29.59	137.97	138.59	0	- 000	2 >
22	00	140.40	138.28	i	+ 3 1 . 88	J. Herschel.
23	30.40	138-17	137:32	9	£+ 0.85	>
2.4	50	135.41	137:17	10	% - 1.40	Bessel.
25	57	137.22	137.06	3 50 80 80 80 80 80 80 80 80 80 80 80 80 80	+ 0.10	Dawes.
20	8.4	135.04	130.65	2100	- 1.01	W. Struve
27	31.23	130.40	135.00	SZ.	+ 0.4	J. Herschel,
28	5.3	133-85	135.00	8 7	1 · S 1	Bessel.
29	68	134.00	135.44	5	- 0.84	. W. Struve
30	32.25	133.88	134120	5	- 0.38	Dawes.
31	57	135.27	134.53	4	+ 1.01	J. Herschel.
32	09	132.88	134.07	5	- 1.10	
3.3	75	133.87	133.60	3	- 0.13	W. Struve.
34	33.43	132.71	133513	3	0'42	
35	0.4	133.94	132.87	10	+ 1.07	
30	77	132.41	\$ 32.72	I	- 0.01	
37	34.47	131.00	131.Su	4	— o·8o	
38	57	130.05	131174	7	1.00	
39	() [132.39	131,69	I	+ 0.70	
40	0.1	130.00	131.69	7	1.00	Bessel.
41	35.20	130.25	130.01		- 0.00	Smyth.
42	00	a 30 · u8	130.20	5	+ 0.13	W. Struve.
43	30.21	129.02	129.55	I	0.23	Galle.
44	52	127.00	120:54	4	- 1.88	Encke.
45	52	129:47	129:54	5	0.02	Bessel.
40	05	129.17	129:40	2	0.23	J. Herschel.
47	00	129.45	129:39	8	+ 0.00	W. Struve.
48	37.05	127:66	128:97	3	- 1.31	
4)	47	128:16	128.21	5	0.35	Encke.

		Positions	swinkel				
Nr.	Epoche	Beobachtung	Rechnung	Zahl	В-	- R	Beobachter
50	1837.48	129:01	128:50	1	+	1.11	J. Herschel.
51	09	128.58	128.27	10	+	0.01	Bessel.
52	72	127:98	128:24	4		0:20	W Struye
53	38.21	120.43	127:45			1.02	Smyth.
54	57	120.22	127 39	7		0.84	Smyth. Galle. Mädler
55	39.23	125.19	120.45	2		1:20	* %
50	00	_	120.38	_		_	Mädler
57	65	125.82	126.33	2		0.21	Dawes.
,		2				_	E. G.
58	40.32	127:91	125.00	1	+	2:25	Maiser.
59	43	125.92	125.28	10	+	0.34	O. Struve.
60	59	124.82	125 43	4		0.042	Dawes.
61	41.44	125.38	124.04	S	+	0,274	Mädler.
02	00	123:35	124.43	0	_	₹°0S	Kaiser.
υз	68	123:37	124.41	4	- 10	1.01	Dawes.
64	70	124.55	124:40	5	3/4	0.18	Bessel.
65	76	123.20	124.34	11	- No.	0.84	Schlüter.
66	42.18	124.60	123.96	8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	0.70	O. Struve.
67	53	123.31	123.04	3 4		0.33	Dawes.
68	5.5	122.35	123.02	who ac	-	1.27	Smyth.
69	56	124.23	123.02	007	+	0.01	Mädler.
70	59	122.22	123.20	1 22 0 22		1.04	Kaiser.
71	00	123.43	123.28	源 20		0.12	Schlüter.
7.2	43.47	121.98	155.81	S I		0.83	Dawes.
7.3	53	131.00	122.75	3	1	1.09	Encke.
7-4	57	133.00	155.28	17	+	0.54	Mädler.
75	44.30	120.09	122 702	5		1.33	Eneke.
76	57	133.00	134.84	5	+	0,10	Mädler.
77	45.43	120.80	£ 121.09	q		0.29	Hind.
78	48	121,12	121.04	5	+	0.11	Q. Struve
79	54	120.80 8	150.00	17	_	0.10	Mädler.
So	81	120.5%	120.76	-	_	0.49	Jacob.
18	40.51	120318	120:41		_	0.53	π
82	40	139.13	120.30	7	_	0 07	Hind.
83	58	\$10.83	120.10	10		0.27	Mädler.
84	47:25	3 120.08	119.23	4	+	1.12	O. Struve.
85	48	110.00	119.33	_	+	0.30	Smyth.
So	59,0	120 '20	119.54	5	-+-	1.02	Micheell.
87	48 59 ₂ 2 (2)	118.38	110.51	8		0.83	Mädler.
88	48812	110 02	118.79	3	+	0.03	Dawes.
89	50	118.30	118.47	4	_	0.52	Mädler.
00	52	118.00	118.45	5	_	0.30	Bond sen.
91	52	117:79	118.45	5	_	0.00	Bond jun.
92	49.39	118:40	117.72	5	+	0.14	O. Strave.

		Position	swinkel				
Nt.	Epoche	Beobachtung	Rechnung	Zahl	B-1	K 	Beobachter
93	1850.42	116.85	110.86	8	- (0.01	Mam.
94	57	110.10	110.73	_		0.63	Jacob.
95	04	110.00	110.07	4		10.0	Mädler.
90	66	117.02	110.00	+	+ 0	5.30	Fletcher.
97	51.47	115.40	115.97	11		5.57	Madler.
98	58	110,11	115.88	8		0.23	Fletcher.
99	04	116.18	115.83	1	+ 0	35	Miller.
100	υ7	115.21	115.80	5	— c	0.30	O. Struve
101	52.44	114.01	115.15	-	_ c	0.24	Smyth.
102	ыз	110.03	114.98	6	+ 1	1.01	Fletcher.
103	07	115.14	114.95	5	+ 0	0.10	O. Struve.
104	7 1	114.35	114.92	11	c	57	Mädler.
105	7 I	115.22	114.92	I	+ 0	0.30	Miller.
100	75	114.07	114.88		— c	.8°	Jacob.
107	53.55	113.00	114:20	ŋ) . Bo	B. Powell.
108	55	110.49	114.20	6		29	Dembowski.
109	00	114.08	114.12	7	+500	5.23	Dawes.
110	oS	4-05-F	114.09	• =	TO CE	- 1	>
111	77	113.20	114.01	5	E- 0	0.72	Mädler.
112	54 · 24	113.05	113.00		000 0	55	Jacob.
113	2.4	113.48	113.00	0 0	+ 0	0.18	O. Struve.
114	62	4-700	113.28	—ionio	-	_	Fletcher.
115	04	113:42	113.52	May Olympia	+ c	0.17	Dembowski.
110	68	113.31	113:22	01		0.09	Mädler.
117	73	113.4	113.17	19 t	+ 0	57	Dawes.
118	78	112.01	113.13	3	— c	. 22	B. Powell.
			^				
119	55.03	115:30	112.91	3	+ 2	3.45	Luther.
120	45	111.00	112.2	3	- 0	0.04	Secchi.
121	0.5	112.73	112837	5	+ 0	0.30	Mädler.
122	119	113.30	142.33	2	+ 0	97	Dawes.
123	75	112:41	\$112.58	7	+ 0	0.13	B. Powell.
124	50.08	111.94	£ 111.00	5	- 0	0.02	O. Struve.
125	37	111.49	111.45	7	- 0	. 23	Jacob.
120	50	112.075	111.00	8	+ 1	.07	Winnecke.
127	51	111.23	111.00	3	- 0	0.03	Mädler.
128	55	111529	111.20	3	0	27	Seechi.
120	63	141.84	111.49	θ	+ 0	35	Dembowski.
130	88	\$113.20	111.50	3	+ 2	: 33	Förster und Tietjen.
131	57-13	110.00	111.04	3	0	.38	Jacob.
132	41	112.20	110.22	1	+ 1	82	Winnecke.
133	51	110.49	110.08	4	0	0.10	Secchi.
134	58	110.31	110.02	4	0	31	>
135	64	109.24	110.20	+	— 1	. 02	Dembowski.
136	67	110.50	110.23	2	- 0	. 24	Morton.
137	ug	110.55	110.25	4	0	.30	O. Struve.
						1	

Nr.	Epoche	Position	swinkel	Zahl	. B.	- R	Beobachter
		Beobachtung	Rechnung		1		
138	1858-12	109:77	110'12	3		0.32	Jacob.
139	40	108.68	109.85	2		1.12	Morton.
140	44	109:35	109.82	4		0.47	Dembowski.
141	64	109.04	106.63	()		0.29	Mädler.
142	59:30	109.12	100.00	5	+	0.13	O. Struve.
143	72	109.39	108,29	4	+	0.80	Dawes.
144	7.5	100,00	108.20	5	+	0.20	Auwersz
145	77	107 '91	108:54	5		0.03	B. Powell.
146	81	107.02	108.20	I		1.48	Mägler.
147	60.01	100.33	107.71	3		1:38	Secchi.
148	7.4	109.04	107.58		+	1.462	Luther.
149	76	100.74	107:56	5		0 \$2	Auwers.
150	01:46	107.12	100.85	, I	+	8·27	Main.
151	67	100.00	100.63	8	-	80.03	Mädler.
152	74	100.05	100.20	7	12	0.21	Auwers.
153	81	105.47	100.49	3	1,60 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.03	B. Powell.
154	02:40	105.00	105.87	3 4	- Bi	0.27	O. Struve.
155	62	105.28	105.04	3 9 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	_	0.00	Dembowski.
150	72	105.54	105.23	100 O		0.29	Mädler.
157	63.47	104.09	104.70	81		0.01	Adolph,
158	51	104.50	104.06	18/10/0		0.37	Dembowski.
159	51	104.12	104.60	2 N		0.41	Secchi
100	5.5	104.01	104.01	\$ 5		0.00	Romberg.
101	03.55	100.18	104.01	I	+	1.57	Winnecke.
162	64	105.80	104.219	5	+	1.35	Hall.
163	04.00	103.04	103.44	4		0.53	Dembowski.
104	05:30	102.00	162.24	8	+	0.00	Engelmann.
165	51	102.38	£105.35	9	+	0.00	Dembowski.
166	5 2	102.48	102.31	4	+	0.47	Secchi.
167	55	104.03	102.27	2	+	1.70	Talmage.
168	56	100.05	102:20	1.1		1.31	Kaiser.
169	68	100.42	103.11	G.		1.00	3
170	00.30	100 71	101:26	5		0.22	O. Struve.
171	49	FOI . SS	101.00	0	+	0.79	Talmage.
172	50	3 102.09	101.07	I	+	I . O 2	Scarle.
173	50	\$ 103.30	101.04	2	+	2.55	Winlock.
174	52	101.59	101.02	2	+	0.54	30°
175	5300 681	101.08	101.04	8	+	0.04	Dembowski.
176	(F)	101.55	100.02	3	+	0.30	Secchi.
177	65	97109	100.88	3		3.79	Winlock.
178	07.41	98.23	99.87	I	_	1.04	Main.
179	44	99.91	99:83	2	+	0.08	Knott.
180	53	98.70	00. ½ I	10		1.01	Searle.
181	57	100.47	99.65	7	+	0.82	Dembowski.

Nr. Epoche		Positions	nswinkel Zahi		B R		Daubaahtan	
Ar.	Epoche	Beobachtung	Rechnung	Zani	<i>B</i>	K .	Beobachter	
182	1807:05	100,40	99:55	5	+	0.85	Winlock.	
183	08:47	98150	98:38	7	+-	0.12	Dembowski.	
184	50	98.59	98.25	2	+	0.34	Knott. ≈	
185	58	100,01	98:22	7	+	1:79	Main.	
180	59	100.81	98.21	2	+	2.00	Talmage.	
187	72	98170	98.02	2	+	0.08	O. Struve.	
188	72	97:07	98.02	4		0.35	Knott. Main. Talmage. O. Struve.	
189	90	98.11	97.75	, 5	+	0.30	Brünnow.	
190	09.01	96.01	90.05	8		0.04	Demboyeki.	
191	09	97.01	90.22	3	+	0.49	Dunér	
192	7.3	98.31	96,40	5	+	1.75	Peiree.	
193	70.21	94.53	95.10	8		0.53	Dembowski.	
194	51	94.00	95.16	2		1.103	Gledhill.	
195	58	95.41	95.04	-1	+	0.6	Main.	
196	86	95.31	94.20	3	+	ge 75	Talmage.	
197	71:49	95.00	93.44	2	+ 3	50	Main.	
198	49	92.77	93144	2	The B	0.07	Wilson u. Seabroke.	
199	51	90.92	93.40	10	unloso from 7	2.48	Peiree.	
200	53	92.72	93:36	8		0.04	Dembowski.	
201	59	95.03	93:25	3 %	+	1.78	Knott.	
202	0.4	92.82	93:16	3 1846 306		0.34	Gledhill.	
203	7.2	92.72	93.01	1 2 2		0.59	Dunér.	
204	72:47	91.97	91.56	2	1	0.41	Brünnow.	
205	49	90.86	91.22	9		0.00	Dembowski.	
200	49	91.63	91.22	3	+	0.11	Ferrari.	
207	49	90.94	91.25	Ŋ 2	_	0.28	Main.	
208	5 1	91.00	91.47	3	+	0.13	Wilson u. Seabroke	
209	00	93.13	91.50	4	+	1 · 84	O. Struve.	
210	73.21	89.03	89.587	1	+	0.50	Gledhill.	
211	51	88.93	\$5.37	S	-	0.44	Dembowski.	
212	57	88.78	589.20	2		0.48	Wilson u. Seabroke.	
213	63	88.98	\$ 89.10	3		0,15	Main.	
214	74.07	86.80	88.11	2		1.31	Talmage.	
215	47	88.96	87.16	+	+	1.80	Main.	
210	57	86.2	80.92	S		0.09	Dembowski.	
217	09	87520 87.03	80.02	3	+	0.28	O. Struve.	
218	73	27 '03	80.25	I	+	1.11	Gledhill.	
219	75.52	83·86	84:47	9		0.01	Dembowski,	
220	Ú2 (84.30	84.30	8	4-	0.10	Schiaparelli.	
221	68	4.92	84.02	4	+-	0.00	Main.	
222	70.28	82.12	82.50	3		0.14	Wilson u. Seabroke.	
223	48	82.22	81:69	5	+	0.23	Schur.	
224	52	79.00	81.20	3		2.20	Doberck.	
225	5.4	81.04	81.20	ĩ		0.40	Dembowski.	

	=======================================	Position	swinkel			
Nr.	Epoche	Beobachtung	Rechnung	Zahl	B-R	Beobachter
220	1870.57	83.73	81.41	2	+ 2.32	Winneeke.
227	59	81.43	81.35	()	+ 0.08	Schiaparelli.
228	64	81.08	81:20	3	0.13	Hall. ₩
229	04	81.21	81.30	4	+ 0.21	Jedrzejewicz.
230	66	79.95	81.13	5	- 1.18	Waldo,
231	7.4	81.18	80.88	4	+ 0.30	O. Struve.
232	77.51	77.75	78.33	8	- 0.28	Dembowski.
2,33	5 1	78.20	78.33		- 0.07	Flammarion.
234	52	77.73	78.30	3	— o·57	Doherck.
235	5.5	75.98	78.19	4	2:21	Hall.
230	58	79.28	78.09	10	+ 1.49	Jedrzejewicz.
237	61	77.50	77.98	10	+ 2·18	
238	67	79.96	77.77	4	2	Winnecke.
239	68	78.60	77.73	4	+ 0593	Stone. Sehur.
240	68	79.71	77 ' 73	5	+ 1 98	
241	93	76.49	76.83	3	0.34	O. Struve. Dembowski.
2.12	78.51	74.09	74.02	7	+ 0.03	Wilson u. Scabroke.
243	54	75.43	74.50	2 + 100 10	+ 1.13	Doberck.
244	54	75.63	74·50 73·89	+ 10,00	+ 1.13	Winnecke.
245	09	70.21	73 77	Sum's	- 1·74	Goldney.
240	72	09.37	70.80) eu	= 1.43	Mitchell.
247 248	79:41	70.00	70.40	io 10	- 0.40	Schiaparelli.
249	53	09.37	70.30	10. —	- 0.89	O. Stone.
250	53	68.77	70.30	900	- 1.49	>
251	59	71.49	n9.99 8	5	+ 1.20	Hall.
252	114	68.07	09.75	_	1.70	Mitchell.
253	65	70.20	09.72	-}	+ 0.48	Wilson u. Seabroke.
254	60	68.75	(89 ³ · 07	5	- 0.92	Jedrzejewicz.
255	71	70.07	\$60.43	1	+ 1'24	Burnham.
34			Museum			
250	So · 47	05.96	65.04	.3	+ 0.35	Doberek.
257	49	02.27	65.23	5	- 3.56	Franz.
258	53	08 · 80	05:32	5	+ 3.24	Main.
259	58	05504	05.00	U	0.28	Hall.
260	1)2	63.10	04 · 84	5	- 1.02	Frisby.
261	00	\$ 65.05	04.02	10	+ 0.43	Schiaparelli.
202	()()	02.97	04.02	()	- 1.05	Jedrzejewicz.
203	74	02.87	04.18	2	- 1.31	Wilson u. Scabroke
264	81.549	01.03	01.27	2	+ 0.00	Doberck
2015	74 % S1·24%	00.84	20.21	5	+ 1.33	Hall.
200	27	,	59.51	1	3'23	Frisby.
207	77	59.21	58.00	.3	+ 1.45	Wilson u. Seabroke.
						(

Nr. 208 269 270 271 272 273 274 275 270 277 278 279 280 281 282	1882:49 53 57 61 61 62 69 72 83:49 57 60 62 64 65 68	52.48 55.92 50.34 52.01 48.93 48.96 47.00 51.41 51.80 45.77 43.79 47.90 43.90 40.39 42.39	8 53.15 52.80 52.57 52.28 52.28 52.21 52.21 51.08 51.47 45.40 44.73 44.49 44.31 44.14	Zahl 2 2 7 9 2 4 6 4 4 4 2 8	_	0.67 3.00 3.77 0.27 3.35 3.35 4.55 0.27 0.33 0.37 0.94 3.47	Cincinnati. Doberek. Hall. Schiaparelli. O. Struve. Jedrzjewicze. Frishy. Wilson u Seabroke. Engelmann. Perrofin. Frishy.
269 270 271 272 273 274 275 270 277 278 279 280 281	53 57 61 61 62 69 72 83 · 49 57 60 62 69 72 83 · 49 57 60 62 63 64 65 65	55 · 92 50 · 34 52 · 01 48 · 93 48 · 96 47 · 00 51 · 41 51 · 80 45 · 77 43 · 79 47 · 90 43 · 90 40 · 39 42 · 39	52.80 52.57 52.28 52.21 52.21 51.08 51.47 45.40 44.73 44.49 44.31 44.14	2 7 9 2 4 6 4 4 4 2 8	+	3.00 3.77 0.27 3.35 3.35 4.55 0.27 0.33 0.37	Doberck. Hall. Schiaparelli. O. Struve. Jedrzjewicze. Frisby. Wilson u Seabroke. Engelmann. Perrogin. Frisby.
269 270 271 272 273 274 275 270 277 278 279 280 281	53 57 61 61 62 69 72 83 · 49 57 60 62 69 72 83 · 49 57 60 62 63 64 65 65	55 · 92 50 · 34 52 · 01 48 · 93 48 · 96 47 · 00 51 · 41 51 · 80 45 · 77 43 · 79 47 · 90 43 · 90 40 · 39 42 · 39	52.80 52.57 52.28 52.21 52.21 51.08 51.47 45.40 44.73 44.49 44.31 44.14	2 7 9 2 4 6 4 4 4 2 8	+	3.00 3.77 0.27 3.35 3.35 4.55 0.27 0.33 0.37	Doberck. Hall. Schiaparelli. O. Struve. Jedrzjewicze. Frisby. Wilson u Seabroke. Engelmann. Perrogin. Frisby.
270 271 272 273 274 275 270 277 278 279 280 281	57 01 02 02 09 72 83:49 57 00 02 04 05	50°34 52°01 48°93 48°96 47°00 51°41 51°80 45°77 43°79 47°90 43°90 40°39 42°39	52°57 52°28 52°28 52°21 52°21 51°68 51°47 45°40 44°73 44°49 44°31 44°14	9 2 4 6 4 4 4 2 8	+	3.77 0.27 3.35 3.35 4.55 0.27 0.33 0.37	Schiaparelli, O. Struve, Jedrzjewicze, Frishy, Wilson u Seabroke, Engelmann, Perrofin, Frishy,
271 272 273 274 275 270 277 278 279 280 281	01 02 02 09 72 83 · 49 57 00 02 04 05	52.01 48.93 48.96 47.00 51.41 51.80 45.77 43.79 47.90 43.90 40.39 42.39	52°28 52°28 52°21 52°21 51°68 51°47 45°40 44°73 44°49 44°31 44°14	9 2 4 6 4 4 4 2 8	+	0·27 3·35 3·35 4·55 0·27 0·33 0·37 0·94	Schiaparelli, O. Struve, Jedrzjewicze, Frishy, Wilson u Seabroke, Engelmann, Perrofin, Frishy,
272 273 274 275 270 277 278 279 280 281	62 69 72 83·49 57 60 62 64 65	48.93 48.96 47.00 51.41 51.80 45.77 43.79 47.90 43.90 40.39 42.39	52°28 52°21 52°21 51°08 51°47 45°40 44°73 44°49 44°31 44°14	4 6 4 4 4 2 8	+	3.35 4.55 0.27 0.33 0.37 0.94	O. Struve. Jedrzjewicze. Frisby. Wilson u Seabroke. Engelmann. Perrofin. Frisby.
274 275 270 277 278 279 280 281	02 69 72 83·49 57 00 02 64 05	48.96 47.00 51.41 51.80 45.77 43.79 47.90 43.90 40.39 42.39	52°21 51°08 51°47 45°40 44°73 44°49 44°31 44°14	6 4 4 4 2 8	+	3.35 4.55 0.27 0.33 0.37 0.94	Jedrzjewicze Frishy. Wilson u Seabroke. Engelmann. Perrodin. Frishy.
274 275 270 277 278 279 280 281	69 72 83:49 57 00 02 04 05	51.41 51.80 45.77 43.79 47.90 43.90 40.39 42.39	51.68 51.47 45.40 44.73 44.49 44.31 44.14	4 4 4 2 8	+	0·27 0·33 0·37 0·94	Wilson u Seabroke. Engelmann. Perrofin. Frisby.
270 277 278 279 280 281	72 83·49 57 00 02 04 05	51·80 45·77 43·79 47·90 43·90 40·39 42·39	51'47 45'40 44'73 44'49 44'31 44'14	4 4 2 8	+	0·33 0·37 0·94	Engelngann. Perrogin. Frishy.
277 278 279 280 281	83·49 57 00 02 04 05	45 '77 43 '79 47 '90 43 '90 40 '39 42 '39	45°40 44°73 44°49 44°31 44°14	4 2 8	+	0.37	Perrodin. Frishy.
278 279 280 281	57 00 02 04 05	43.79 47.90 43.90 40.39 42.39	44.73 44.49 44.31 44.14	2 8	_	0.01	Frighy.
279 280 281	00 02 04 05	47.90 43.90 40.39 42.39	44°49 44°14	S	+		2
280 281	02 04 05 05	43.90 40.39 42.39	44°31 44°14		+	3:47	Mall.
281	04 05 05	40°39 42°39	44.14	15			50
	05	42.39				0.41	Schiaparelli.
282	05			2	_	3.75	Hall jun.
202		12.6.	44.00	υ		1367	Jedrzejewicz.
283	68	42.64	44.06	2		A . 42	O. Struve.
284		45.40	43.80	4	+0%	1.00	Küstner.
285	08	44.02	43.80	5	12	0.52	Wilson u. Seabroke.
286	72	43.81	43*47	6	+++	0.34	Engelmann.
287	84.41	40.98	37:30	I MAN AND AND AND AND AND AND AND AND AND A	+	3.02	Glasenapp.
288	41	37.79	37:30	30	+	0.43	Cincinnati.
289	50	34.21	35.97	7	_	1.50	Perrotin.
290	59	37.79	35.69	50 7	+	2.10	Hall.
291	02	35.46	35.41	8	+	0.02	Schiaparelli.
292	69	30 39	34.75	2		4.30	O. Struve.
293	09	35.45	34.75	5	+	0.40	Engelmann.
294	70	35.06	34.00%	3	+	0.40	Wilson u. Scabroke.
295	85.20	26.22	20.82	4		0,00	Perrotin.
290	56	25.33	26 21	4		0.88	Wilson u. Seabroke.
297	57	29.74	\$6.11	7	+	3.63	Hall.
298	59	24.00	\$ 25.01	2		1,31	Hepperger u. Holletschek.
299	0.4	24 · 49 5	25.40	ò		0.01	Engelmann.
300	05	23.28	25.29	2	+	1.40	Schiaparelli.
301	72	23 585	24.24	3		0.99	Jedrzejewicz.
302	80.53	13.97	10.10	7		2.13	Hall.
303	50	A 5 · 49	15.88	7		0.30	Perrotin.
304	67	10.05	14.01	4	+	1,44	Wilson u. Seabroke.
305	67	13.89	14.01	7		0.72	Jedrzejewicz.
300	07	15.00	14.61	7	+	0.45	Engelmann.
307	87.55	359.81	5.53	1	_	5 ' 42	Wilson u. Scabroke.
308	02	3.79	4:49	0		0.70	Hall.
309	81	3.70	2 ' 40	4	+	1:21	Tarrant.

Struck	Nr. Epoche Positionswinkel		7.11	ħ	– R	Daybaabtar		
311	Nr.	Epoche	Beobachtung	Rechnung	Zahl	<i>B</i> –	- K	Beobachter
311	310	1888*41	352191	356:28	. 2		3:37	Comstock.
312					6			Tarrant.
313					6			Maw.
314					b		1,00	Hall.
315					1		0.02	Leavenworth
310					2	+	1,43	
317					2	_	0.20	Wilson w. Seubroke.
318					2	+	3.28	Glasenapp.
319		51			5		0.44	Comstock.
320 58 344 '77 344 '83 6 — 0 '06 Hall. 321 04 340 '06 344 '20 5 + 2 '40 Maw. O. Struve. 322 71 345 '32 343 '05 4 + 0 '52 Schur. 323 77 343 '57 343 '05 4 + 0 '52 Schur. 324 90 '42 338 '76 337 '14 2 + 1 '02 Hall. 320 01 330 '87 335 '49 3 + 1 '26 Maw. 327 01 330 '87 335 '49 3 + 1 '26 Maw. 328 60 334 '80 334 '71 4 0 '09 Schur. 330 71 335 '81 334 '02 10 + 1 '19 Bigourdan. 331 91 '50 328 '75 328 '04 3 + 0 '21 Bigourdan. 333 54 328 '85 327 '75 327 '80 3 + 0 '22 Hall. 334 <td></td> <td>51</td> <td></td> <td></td> <td>6</td> <td>_</td> <td>0.58</td> <td>Tarrant.</td>		51			6	_	0.58	Tarrant.
321					6	_	0.00	Aall.
322	321				5	+	2.40/3	Maw.
323						+	1.24	O. Struve.
324 90·42 338·76 337·14 2 1·02 Glasenapp. 325 50 336·03 335·91 7			1		4		0 52	Schur.
325 50 336·03 335·91 7 4+ 0·12 Hall. 320 61 330·87 335·49 3 + 1·26 Maw. 327 61 330·87 335·49 1 + 1·38 Wellmann. 328 60 334·36 335·51 6 + 0·09 Schur. 330 71 335·81 334·62 16 + 1·19 Bigourdan. 331 91·50 328·55 327·80 3 + 0·25 Tarrant. 332 53 328·05 327·80 3 + 0·25 Tarrant. 334 50 329·33 327·72 4 + 0·85 Maw. 335 50 329·33 327·78 2 + 1·77 Collins. 336 58 329·10 322·40 0 + 1·70 Schur. 337 59 320·21 320·31 4 + 0·54 Sec. 339 07 320·92 320·93 <t< td=""><td>324</td><td>90.42</td><td>338.76</td><td>337.14</td><td>2</td><td>+</td><td></td><td>Glasenapp.</td></t<>	324	90.42	338.76	337.14	2	+		Glasenapp.
320					7	18-	0.13	Hall.
327						~ + (A)	1:20	Maw.
330		10			1 8	+	1,38	Wellmann,
330		66			1080		0.69	Tarrant.
330		70			S. S	+	0.09	Schur.
332 53 328 05 327 80 3 + 0 25 Tarrant. 333 54 328 58 327 72 4 + 0 80 Maw. 334 50 329 33 327 50 0 + 0 22 Hall. 335 50 327 78 327 50 0 + 1 70 Schur. 336 58 329 10 327 40 0 + 1 70 Schur. 337 59 320 21 327 33 7 - 1 12 Knorre. 338 04 327 47 320 93 2 + 0 54 See. 339 67 320 92 320 09 9 + 0 23 Bigourdan. 340 92 37 322 10 321 31 4 + 0 85 Burnham. 341 41 321 73 321 01 3 + 0 72 Scarle 342 41 320 73 321 01 2 - 0 28 Collins. 343 42 349 87 320 93 0 - 1 00 Knorre. 344 49 321 93 320 41 1 + 1 52 Maw. 345 57 321 52 319 80 4 + 1 72 Comstock 340 02 319 25 319 42 5 0 17 Bigourdan. 347 633 321 41 319 35 4 + 2 00 Tarrant. 348 24 320 99 319 27 0 + 1 72 Schur.					\$ 16		1.19	Bigourdan.
332 53 328 05 327 80 3 + 0 25 Tarrant. 333 54 328 58 327 72 4 + 0 80 Maw. 334 50 329 33 327 50 0 + 0 22 Hall. 335 50 327 78 327 40 0 + 0 22 Hall. 336 58 329 10 327 40 0 + 1 70 Schur. 337 59 320 21 327 33 7 - 1 12 Knorre. 338 04 327 47 320 93 2 + 0 54 Sec. 339 07 320 92 320 09 9 + 0 23 Bigourdan. 340 92 37 32 10 321 31 4 + 0 85 Burnham. 341 41 320 73 321 01 3 + 0 72 Scarle 342 41 320 73 320 93 0 - 1 00 Knorre. 343 42 349 87 320 93 0 - 1 00 Knorre. 344 49 321 93 320 41					§. 10	+	0.71	See.
333					8 3	+	0.25	Tarrant.
334 50 329 33 327 50 0 + 1 77 Collins. 335 50 327 78 327 50 0 + 0 22 Hall. 336 58 329 10 327 40 0 + 1 70 Schur. 337 59 320 21 327 33 7 - 1 12 Knorre. 338 04 327 47 320 93 2 + 0 54 Sec. 339 67 320 92 320 09 9 + 0 23 Bigourdan. 340 92 37 321 93 321 01 3 + 0 72 Scarle 341 41 321 3 321 01 3 + 0 72 Scarle 342 41 320 73 321 01 2 - 0 28 Collins. 343 42 349 87 320 93 0 - 1 00 Knorre. 344 49 321 93 320 41 1 + 1 52 Maw. 345 57 321 52 319 80 4 + 1 72 Comstock 346 02 319 25 319 42 5 0 17 Bigourdan. 347 033 321 41 319 35 4 + 2 00 Tarrant. 348 34 320 99 319 27 0 + 1 72 Schur.	333	54	328.58	327.72	15	+	0.80	Maw.
335	334		329.33		2	+	1.77	Collins.
336 58 329·10 327·40 0 + 1·70 Schur. 337 59 320·21 327·33 7 - 1·12 Knorre. 338 04 327·47 320·93 2 + 0·54 Sec. 339 07 320·92 320·09 9 + 0·23 Bigourdan. 340 92·37 322·10 321·31 4 + 0·85 Burnham. 341 41 321·73 321·01 3 + 0·72 Scarle 342 41 320·73 321·01 2 - 0·28 Collins. 343 42 349·87 320·93 0 1·06 Knorre. 344 49 321·93 320·41 1 + 1·52 Maw. 345 57 321·52 319·80 4 + 1·72 Comstock 340 02 319·25 319·42 5 0·17 Bigourdan. 347 03 320·99 319·27 0 + 1·72 Schur.	335	50	327.78		b	+	0.55	Hall.
338 339 64 327.47 320.92 320.09 9 + 0.23 Bigourdan. 340 92.37 322.10 321.31 4 + 0.85 Burnham. 341 41 321.73 321.01 32.10 321.01 321.0	336	58	329.10		b	+	1.70	Schur,
339 67 320.09 9 + 0.23 Bigourdan. 340 92.37 322.10 321.31 4 + 0.85 Burnham. 341 41 321.73 321.01 3 + 0.72 Searle 342 41 329.73 321.01 2 - 0.28 Collins. 343 42 349.87 320.93 6 - 1.06 Knorre. 344 49 321.93 320.41 1 + 1.52 Maw. 345 57 321.52 319.80 4 + 1.72 Comstock. 346 62 319.25 319.42 5 0.17 Bigourdan. 347 63 321.41 319.35 4 + 2.06 Tarrant. 348 84 320.99 319.27 6 + 1.72 Schur.	337	59	320.51	3.57.33	7		1 1 2	Knorre.
339 67 320.92 320.09 9 + 0.23 Bigourdan. 340 92.37 322.10 321.31 4 + 0.85 Burnham. 341 41 321.73 321.01 3 + 0.72 Scarle 342 41 329.73 321.01 2 - 0.28 Collins. 343 42 349.87 320.93 6 - 1.06 Knorre. 344 49 321.93 320.41 1 + 1.52 Maw. 345 57 321.52 319.80 4 + 1.72 Comstock. 346 62 319.25 319.42 5 0.17 Bigourdan. 347 63 321.41 319.35 4 + 2.06 Tarrant. 348 320.99 319.27 6 + 1.72 Schur.	338	04	327:47	\$320.93	2	+	0.24	Sec.
341 41 321·73 321·01 3 + 0·72 Scarle 342 41 320·73 321·01 2 - 0·28 Collins. 343 42 349·87 320·93 6 - 1·06 Knorre. 344 49 321·93 320·41 1 + 1·52 Maw. 345 57 321·52 319·80 4 + 1·72 Comstock. 340 62 319·25 319·42 5 6·17 Bigourdan. 347 63 321·41 319·35 4 + 2·06 Tarrant. 348 4 320·99 319·27 6 + 1·72 Schur.	339	67	320.92	20	9	+	0.23	Bigourdan.
341 41 321·73 321·01 3 + 0·72 Scarle 342 41 320·73 321·01 2 - 0·28 Collins. 343 42 349·87 320·93 6 - 1·06 Knorre. 344 49 321·93 320·41 1 + 1·52 Maw. 345 57 321·52 319·80 4 + 1·72 Comstock. 340 62 319·25 319·42 5 6·17 Bigourdan. 347 63 321·41 319·35 4 + 2·06 Tarrant. 348 4 320·99 319·27 6 + 1·72 Schur.	340	92.37	322,10%	321.31	4	+	0.85	Burnham.
342 41 320.73 321.01 2 - 0.28 Collins. 343 42 340.87 320.93 6 - 1.00 Knorre. 344 49 321.93 320.41 1 + 1.52 Maw. 345 57 321.52 319.80 4 + 1.72 Comstock. 340 62 319.25 319.42 5 6.17 Bigourdan. 347 63 321.41 319.35 4 + 2.06 Tarrant. 348 4 320.99 319.27 6 + 1.72 Schur.	341				3	+	0.45	Scarle
343	342	41			2		0.28	Collins.
344 49 321.93 320.41 1 + 1.52 Maw. 345 57 321.52 319.80 4 + 1.72 Comstock. 340 52 319.25 319.42 5 0.17 Bigourdan. 347 63 321.41 319.35 4 + 2.06 Tarrant. 348 320.99 319.27 6 + 1.72 Schur.	343	42	\ \\\\	320.93	0		1,00	Knorre.
345 57 321.52 319.80 4 + 1.72 Comstock. 340 02 319.25 319.42 5 0.17 Bigourdan. 347 03 321.41 319.35 4 + 2.00 Tarrant. 348 320.99 319.27 0 + 1.72 Schur.	344	49	321.93	320,41	I	+	1.25	Maw.
346 62 319·25 319·42 5 0·17 Bigourdan. 347 63 321·41 319·35 4 + 2·06 Tarrant. 348 84 320·99 319·27 6 + 1·72 Schur.	345	57	1 2	319.80	4	+	1.72	Comstock
347 638 321.41 319.35 4 + 2.06 Tarrant. 348 349 68 317.77 318.97 2 - 1.20 Glasenapp.	340	02	319.25	319,42	5		0.12	Bigourdan.
348 349 08 317.77 318.97 0 + 1.72 Schur. - 1.20 Glasenapp.	347	630	321.41	319.35	4	+-	2.00	Tarrant.
349 08 317·77 318·97 2 — 1·20 Glasenapp.	348	84	320.99	319:27	6	+	1 . 7 2	Schur.
	349	08	317.77	318.97	2	_	1.20	Glasenapp.

Vr Enache		Positionswinkel Zahl			Do to take		
Sr.	Epoche	Beobachtung	Rechnung	Zahl	B-R	Beobachter	
350	1893.45	312.04	313.58	7	- 1.24	Gledhift.	
351	47	314.02	313.14	3	+ 0.88	Maw.	
352	56	313.74	312.49	2	+ 1.25	Collins.	
353	58	313.64	312.35	3	+ 1.29	Collins. Tucker. Comstock. Schur. Knorre.	
354	02	312.90	312.00	5	+ 0.84	Comstock.	
355	02	313.62	312.00	4	+ 1.50	Schur.	
350	62	311.22	312.00	Ī	- 0.24	Knorre.	
357	69	309:14	311.25	1	- 2'41	Lewis. o	
358	09	309:44	311.55	I	2:11	Wilson	
359	70	312.24	311.47	I i	+ 1.07	Schiagarelli.	
340	0.1*10	200.11	305.79	-	+ 3.72	Janell.	
300	94.49	300.40		5 0		Glasenapp.	
361	51		305.05		Į.		
302	5 1	311.22	305.44	3	+ 5.8%	Maw.	
303	54	304.90	302.01	3	- %.11 - 5%.11	Knorre.	
365	00	300.60	302.01		+8 1.59	Schur.	
300 300		302.73	303.84	4	1.31	Comstock.	
307	75 77	303.45	303.81	4	\$ - 0.30	Schiaparelli.	
308	78	301.23	303.74		8	Callandreau.	
300	79	305.30	303.67	3 /m	- 1.31	Bigourdan.	
309	19	302 30	3-3 -7	Jeuig	. 3.	, signature.	
370	95.32	298.88	299.83	5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.95	Sec.	
371	50	298.46	298:49	% 2	0.03	Glasenapp.	
372	51	301.88	298.40	jugue, 5	+ 3.48	Schur.	
373	58	297:16	297 - 88	\$ 4	- 0.72	Maw.	
374	58	290.00	297·88 V	2	— I.83	Collins.	
375	01	296.76	297.65	3	= o·89	Comstock.	
376	62	295 · 28	297 \$7	5	- 2.29	Hough.	
377	69	290.10	295,05	I	0.89		
378	70	296.26	\$96.98	5	- 0.72	See	
379	72	296:11	\$ 296.83	4	0.72	>	
38o	72	290.46	296.83	3	0.37	Moulton.	
		71/6					
381	90.39	292.53	291.22	0	+ 0.08	Hussey.	
382	51	291 💥 3	290.28	3	+ 0.95	Aitken.	
383	58	289.50	290.00	5	0.20	Pritchett.	
384 .	59	\$88.34	289.91	b	— I · 57	Bowyer.	
385	59	2 290.13	289.91	3	+ 0'22	Wagner.	
386	59	\$ 288.33	289.91	3	1.28	Soulé.	
387	61	288.30	289.75	8	1.22	See.	
388	61	289.70	289.75	1	+ 0.01	Dyson.	
389	02	288.43	289 67	3	- 1124	Cogshall.	
390	62	291.10	289.07	Ĭ	+ 1.49	Nihlett.	
391	03	287.98	289.58	4	- 1.60	Comstock.	

		Positions	winkel		D 71	Beobachter	
Nr.	Epoche	Beobachtung	Rechnung	Zahl	B-R	Beobacitei	
	- 0 - / /-		-2		1104	Schur.	
393	1890.00	287.40	289.34	9	1.94		
394	68	287.00	289.17	3	1.21	Morgan.	
395	74	288.82	288.08	0	+ 0.14	Leavenworth.	
390	So	289.69	288.18	4	+ 1,21	Aitken.	
397	97:40	283.48	282.83	4	+ 0.05	Cogshall.	
398	41	283:41	282.73	()	+ 0.08	Sec. z	
399	46	283.76	282.20	3	+ 1.50	Aitkens	
400	54	277.08	281.49	13	3.81	Doolfitle.	
401	5.5	281:30	281.40	I	- 0.10	, Glasenapp.	
402	58	283.99	281.11	13	+ 2.88	Schur.	
403	59	270.85	281.02	4	4.17	Pritchett.	
404	67	280.03	280.12	8	+ 0.42	Hussey.	
405	83	270.94	278.68	3	1674	Ailken.	
400	98.44	273*49	272:18	0	+ 81.31	>	
407	47	270.59	271.84	2	F 1.25	Soló,	
408	51	271.01	271.39	1	1674 + 61.31 - 1.25 - 0.38 + 1.01 + 5.45	Glasenapp.	
409	56	272:41	270.80	Ó	\$ + 1.01	Schur.	
410	99.57	263.45	258.00	0 6	+ 5.45	>	

Unerklärt bleiben die großen Differenzen bei den Beobachtungen der Jahre 1779 bis 1781. Wenn man sich an den Wortlaut der Herschel'schen Originalbeobachtung hält, welche für 1781:73 den Wert 99°23 gibt, so ist allerdings kein Gang vorhanden, aber die Beobachtungen an sich erscheinen nicht sehr zuverlässig. Die andere Lesart 80:77 stimmt zwar dem Sinne der Bewegung nach mit der Position von 1779, aber untereinander herrscht auch keine erhebliche bessere Übereinstimmung. Es ist daher wahrscheinlich, dass die Beobachtungen misskungen sind, da irgend ein äußerer Einfluss, der im Laufe von zwei Jahren auf 6 bis 12° anwächst, doch kaum denkbar ist, zumal zu dieser Zeit die Distanzen ziemlich groß (4") und die Positionswinkel daher minder empfindlich waren.

Der Vergleich mit neuen Beobachtungen, die noch nicht verwendet wurden, stellt sich folgendermußen:

	So La	Beobachteter	Po	ositionswinkel		
	Spoche	Positionswinkel	Praecession	für 1850	Rechnung	В—К
Sec	#899·52	261.7	0.28	$261 \cdot 98$	258.68	+3.30
Aitken	§ 1899÷37	262.2	0.28	$262 \cdot 48$	260.74	+1.74
	1899 · 42	$262 \cdot 33$	0.28	$262 \cdot 61$	260.07	+2.54
Doherck	1900 · 59	244.10	0.28	$244 \cdot 38$	$242 \cdot 35$	+2.03
Sola	1900.68	$243 \cdot 93$	0.28	$244 \cdot 21$	240.80	+3.41

Die Größe der Differenzen ist nicht auffallend, da die Distanzen jetzt wieder sehr klein sind; dass aber alle positiv sind, kann möglicherweise doch principiell sein, obwohl sich bis jetzt noch kein Gang zeigt. Bei der hohen Empfindlichkeit der Positionswinkel wäre übrigens eine geringe Änderung der Elemente hinreichend, um auch diese Unterschiede verschwinden zu machen. Doch soll mit dem Einbeziehen der neuen Beobachtungen lieber gewartet werden, bis sich die Verhältnisse geklärt haben, was in etwa 10 Jahren mit dem Eintreten langsamerer Bewegung im Positionswinkel der Fall sein dürfte.

Jedenfalls ist es gelungen, die beobachteten Positionswinkel hinreichend darzustellen, und selbst die enorme Abnahme derselben von 1899 auf 1900 von nahe 20° spiegelt sich in der Rechnung wieder.

Was nun die Distanzen betrifft, so bleibt in der Darstellung ein unzweifelhafter Gang zurück. Auf die ersten großen positiven Reste ist allerdings wenig Gewicht zu legen; hier scheinen in der That die persönlichen Fehler ausschlaggebend zu sein; während nämlich Herschel, Bessel, Encke und andere starke positive Reste lassen, ergeben die Beobachtungen von W. Struve sehr kleine Reste, die zum Theil negativ sind und sogar eher den umgekehrten Gang zeigen, wie die anderen.

Seit 1850 aber zeigt sich ein Gang, der unter keinen Umständen auf rein persögliche Fehler zurückgeführt werden kann. Um dies zu constatieren, müssen alle längeren Beobachtungsreihen, welche immer den Einfluss persönlicher Fehler verstärken, ausgeschieden werden, so dass man eine Reihe von möglichst verschiedenen Beobachtern erhält. Diese, im folgenden wiedergegeben, zeigt ebenfalls deutlich den obenerwähnten Gang, obwohl die Regelmäßigkeit immerhin noch ab und zu durch einen Zeichenwechsel unterbrochen wird.

Worin dieser Gang begründet ist, lässt sich nicht feststellen. Möglicherweise entsteht er aus der Verschiedenheit der Beobachtungsmethode bei großen und kleinen Distanzen, worauf schon Besselhingewiesen. Dafür mag auch der Umstand sprechen, dass trotz der Stark geänderten Voraussetzungen doch die Differenzen Beobachtung – Rechnung nahezu dieselben sind wie bei Schur.

				Ze .	
Datum	Beobachter	B-R	Datum 👸	Beobachter	B-R
			L E		
1779.76	W. Herschel	- 1.00	1873 49	Ferrari	— o 215
80.20	>	- 0.78	\$72.21	Wilson u. Seabroke	- 0.310
1845.43	Hind	+ 0.041	73.57		- 0.285
40.46		0.262	76.58	Þ	0.594
48.22	Bond sen.	+ 0.105	76.00	Waldo	+ 0.080
48.52	» jun.	+ 0.00%	77.51	Flammarion	0.230
51.04	Miller	- 0.360	77.68	O. Stone	- 0.391
52.71	>	- 2227	78.24	Wilson u. 'eabroke	0.128
57.67	Morton	— 🐒 309	78.72	Goldney	0.050
58.40	>	0.324	79:53	O. Stone	- 0.107
03.22	Romberg	0.122	79:05	Wilson u. Seabroke	+ 0.073
66.20	Searle	- 0.139	79.71	Burnham	0.797
00.20	Winlock	+ 0.401	80.74	Wilson u. Seabroke	0.120
00.25	" " " " " " " " " " " " " " " " " " "	+ 0.893	81.77	>	0.003
00.65	Komberg Searle Winlock Knott Searle Winlock Knott Duner	- 1.228	82:49	Wilson (Cinc.)	+ 0.249
67:44	Knott	0.172	82.09	Wilson u. Seabroke	+ 0.010
07.53	Searle &	0.010	83*49	Perrotin	+ 0.040
07.65	Winlock	0.771	83.04	Hall jun.	+ 0.414
68.26	Knott &	·-· 0°242	83.08	Küstner	l- 0.333
08.72	Duner &	0.328	83.08	Wilson u. Seabroke	+ o.150
08.90	Brünnow	0.245	84.41	Wilson (Cine.	+ 0.531
09.69	Dunér	0.440	84.50	Perrotin	+- 0.030
09.73	Peirce	+ 0.004	84.40	Wilson u. Seabroke	+ 0.23
71.49	Wilson u. Scabroke	0.108	85.20	Perrotin.	+ 0.131
71.21	Peirce	0.089	85.59	Hopp u. Holl	+ 0.200
71.55	Knott	- 0.391	80.50	Perrotin	-+ 0.084
71.72	Dunér	= 0.405	80:07	Wilson u. Scabroke	+ 0.150
72.47	Brünnow	0.330	88:05	Leavenworth	0.245

238 A. Prey,

Datum	Beobachter	B-R	Datum	Beobachter	B-R
1889.30	Burnham	+ 0.555	1896.28	Pritchett	+ 0.022
89.48	Wilson u. Scabroke	- 0.348	96.29	Bowyer	-l- 0°170
90.01	Wellmann	+ 0.126	96.29	Wagner	+ 0.104
92:37	Burnham	+ 0.113	96.29	Soulé	+ 0.500
92:41	Scarle	+ 0.339	90.01	Dyson	+ 0.008
93.58	Tucker	+ 0.175	96.62	Cogshall	- 0.031
93.69	Lewis	+ 0.101	90.02	Niblett	+ 0,010
93.69	Wilson	- 0.019	96.65	Soule Dyson Cogshall Niblett Lewis Morgan	— oʻo78
94.49	Ebell	+ 0.301	90.68	Morgan	+ 0.110
94.51	>>	+ 0.002	96.74	Leavenworth	+ 0.040
94.48	Callandreau	-l- 0:196	97.40	Cogshal	+ 0.019
95.62	Hongh	+ 0.000	97.54	Doolitue	- 0.003
95.69	Lewis	+ 0.421	97 ' 59	Pritagelt	- 0.026
95.72	Moulton	- 0.017	97.67	Hussey	+ 0.011
90.30	Hussey	+ 0.010	98.47	Solá	+ 0.303

In der That wird sich kaum ein zweites Object finden welches so crasse Verhältnisse bietet, wie 70 Ophiuchi. Vielleicht ist auch die große Helligkeit von ginigem Einfluss.

Jedenfalls entzieht sich aber unter diesen Verhältnissen die Darstellung der Distanzen der Beurtheilung. Sollten jedoch die Abweichungen that sachlich reell sein, so könnte man daraus zweierlei folgern: entweder ist die hier vertretene Hypothese falsch und die Räthsel des Systems bleiben noch immer ungelöst, oder es sind die von uns eingeführten Vernachlässigungen und Vereinfachungen, welche sich in dieser Weise geltend machen. In dieser Hinsicht käme in Betracht die Convergenz der Anziehungen nach der Masse m_3 , die Bewegung derselben und eine Störung der Neigung, welche in dem Falle eintritt, als m_3 nicht in der Bahnebene von m_4 und m_2 liegt.

Zum Schlusse sei noch die Bedeutling unserer Resultate über die dritte Masse discutiert.

Wir fanden

$$\log \frac{m_3}{D^3} = 7.5727 - 10$$
$$2 (\lambda - \pi) = 149.384$$

Da $\frac{m_3}{D^3}$, wie erwährt, im Gradmaß ausgedrückt ist, so haben wir noch durch $57\cdot296$ zu dividieren und erhalten

$$\log \frac{m_3}{D^3} = 5.8146 - 10$$

$$\frac{m_3}{D^3} = 0.00006526$$

Für m_3 können wir verschiedene Werte annehmen und dazu die entsprechenden D berechnen; es sollen dabei auch sehr große Werte für m_3 substituiert werden, da gerade für diese die Bedingungen unserer Hypothese am besten erfüllt sein werden.

Es ist für

Die Größen Δ sind die Projectionen von D auf die Sphäre, also die scheinbaren Distanzen von m_3 .

Es muss nun untersucht werden, welche Ortsveränderung m_3 unter Finfluss der wechselseitigen Anziehung zeigen muss, da die Unveränderlichkeit der Richtung D nur Fine Näherung sein sollte. Es findet sich nach der Formel:

$$\frac{g_1}{g} = \sqrt{1 + m_3} \sqrt{\frac{a^3}{a_1^3}}$$

für die mittlere Bewegung in einem Jahre

$$m_3 = \frac{1}{2}$$
 $p_4 = 0^{\circ} 3^{\circ} 5^{\circ}$
 $p_5 = 0^{\circ} 3^{\circ} 5^{\circ}$
 $p_6 = 0^{\circ} 3^{\circ} 5^{\circ}$
 $p_7 = 0^{\circ} 3^{\circ} 5^{\circ}$

Diese Werte von rund 40° im Jahrhundert scheinen auf den ersten Blick sehr groß; wenn wir uns aber erinnern, dass bei einem der Ausgleiche für den doppelten Richtungswinkel eine Correction von 36° resultierte, so sehen wir, dass diese Richtung selbst nicht viel sicherer bestimmt ist, und dass wir daher nicht von einer wesentlichen Richtungsänderung von D sprechen können. Überdies sind die μ_1 mittlere Bewegungen, von denen die wahren erheblich abweichen können.

Speciell auf den Positionswinkel hat die Änderung von λ wenig Einfluss; stärker dagegen wirkt sie auf die Distanzen. Führen wir in unsere Störungsfunction R (Gleichung 10) für λ ein:

 $\lambda = \lambda_0 + \mu_1 (t - t_0)$

$$\frac{d\alpha}{dt} = \frac{\partial R}{\partial t_0}$$

$$\frac{d\alpha}{dt} = \frac{\partial R}{\partial t_0}$$

$$\frac{d\alpha}{2 a^2} \cdot \frac{da}{dt} = \frac{k^2 m_3}{D^3} \cdot \frac{m_1 m_2}{m_1 + m_2} \cdot \frac{a^2}{2} \cdot 5 e^2 \sin 2(\lambda - \pi) \cdot \mu_1$$

$$\frac{da}{dt} = -\frac{m_3}{D^3} \cdot a^4 \cdot 5 e^2 \sin (\lambda - \pi) \cdot \mu_1$$

$$= -0.01636 \text{ m}.$$

oder

Für einen Wert $\mu_1 \equiv -0.4$ folgt für a während der letzten 50 Jahre eine Zunahme von 0.327 welche ungefähr den Resten in der Darstellung der Distanzen entspricht.

240 A. Prev,

Für die Richtung, in der m, zu suchen ist, ergibt sich aus

$$2 (\lambda - \pi) = 149 \cdot 384$$

 $\lambda - \pi = 74^{\circ}692$

oder

$$= 74.692 + 180 = 254.692$$

so dass zwei entgegengesetzte Richtungen möglich sind.

Unter Einführung von

$$\pi = 169.771$$
 $s = 120.867$
 $i = 56.788$

finden wir für den Positionswinkel von D

$$\lambda = 349.767$$
 oder 169.767

Es wurde wiederholt gleichzeitig mit dem System 70 Ophiuchishoch ein Anhaltstern beobachtet, um eventuelle Änderungen in der Bewegung des Hauptsternes zu konstatieren. Die Positionswinkel und Distanzen, welche diese Beobachtungen ergaben, sind die folgenden:

1878 · 84	197°8	71"38 🔊	Hall
82.79	197.8	65 · 60	Hall
86.52	200.4	62 50	Hall
89.30	$203 \cdot 3$	5g 45	Burnham
97 · 44	208.3	\$3·86	See
99 · 43	209.7	51.95	See
	9		
1856.63	215 18	87:57	Secchi
97:51	218 Å	98.68	Doolittle

Es wurden aber offenbar von den verschiedenen Beobachtern verschiedene Sterne verwendet und mit C bezeichnet, weshalb obige Beobachtungen in zwei Gruppen getheilt wurden.

Bringt man die Eigenbewegung win 70 Ophiuchi mit

$$d\alpha = +0^{\circ}0131 = +0^{\circ}1965$$

$$d\delta = -1^{\circ}109$$

in Rechnung, so erhält man aus der ersten Gruppe folgende Positionen von C bezogen auf den Ort des Hauptsternes von $1856\cdot63$:

Assolution of the state of the	1878 · 84	190.69	94 " 1
	82.79	189 - 26	92 - 7
194	86.52	189.84	93 · 1
400	89+30	190.66	92.5
	97 - 44	190 · 79	94.4
	99 · 43	190.81	95.1

Lässt sich in diesen Zahlen ein Gang erkennen, so rührt er jedenfalls nur von der Bewegung des Hauptsternes um den Schwerpunkt der beiden sichtbaren Componenten her. Auf diesen Stern bezieht sich also mit vollem Recht die See'sche Bemerkung: ohne physischen Zusammenhang mit 70 Ophiuchi.

Betrachten wir aber die andere Gruppe und beziehen die letzte Beobachtung wieder auf den Ort von 1856:63, so erhalten wir folgendes Resultat:

1856 · 63	215°1	87	11	57
97:51	203 · 1	22) .	9

woraus für diesen Stern eine Eigenbewegung folgt von

$$d\alpha = -0.0043$$

 $d\delta = -1.253$

Diese Eigenbewegung ist nicht nur sehr groß, sondern auch nahezu gleich der des Systems 70 Ophiuchi.

Die Abweichungen der Positionswinkel von unserer berechneten Richtung (170°) liegen wohl noch innerhalb der Unsicherheitsgrenze; denn dass schließlich diese Richtung scheinbar auf wenige Grade genau erhalten wurde, ist doch nur Rechnungsresultat.

Es ist also nicht unwahrscheinlich, dass der von Secchi und Deolittle beobachtete und mit C bezeichnete Stern die dritte Componente des Systems ist, und dass die Differenz der Eigenbewegung. soweit sie reell ist, von der Bewegung um den gemeinsamen Schwegunkt herrührt.

Die nächste Aufgabe bestünde somit darin, durch Eigenbewegungs- und Parallaxenbestimmungen festzustellen, ob der Stern C in der That zum System gehört oder ob noch weitere Sternverwechslungen vorliegen. Sollte sich das letztere herausstellen, so wären die Rechnungen unter Einführung von neuen Variablen, welche die unbekannte Bewegung der unsichtbaren Masse genauer definieren, als bisher geschehen, zu wiederholen. Sollte aber die dritte Masse in der That gefunden sein, so wäre das Problem nun in ähnlicher Weise zu behandeln, wie im Falle von Generi. Vielleicht gelingt es dann endlich, jene Übereinstimmung von Beobachtung und Rechnung berbeizuführen, welche in allen astronomischen Problemen verlangt wird.

Herr Prof. Schiaparelli hatte die besondere Freundlichkeit, mir seine Beobachtungsreihe aus den letzten Jahren zu übersenden. Ich vergleiche die elbe hier noch mit meiner Bahn gleichzeitig mit einigen anderen Beobachtungen, die mir erst später bekannt geworden sind.

Die Positionswinkel sind bereits auf 1850.0 reduciert.

Datum	Beobachter	Rechn.	Solve R	Beob.	Rechn.	B- R	Zahl der Abende	Beobachter
1893.00	311°34 304.85	311878 308.01	-0.10	2"23	2"238 2:254	+0.04n	3 5	Coleman Coleman
95°55 02 90°47	299°02 297°30 292°19	298.10 297.57 290.91	+0.92 -0.51 +1.58	2.139 2.25 2.080	2°235 2°232 2°175	+0.318 -0.000	7 2	Schiaparelli Coleman Schiaparelli
01 77	289°26 289°07	289.75	-0.49 +1.54	1.084	2°102 2°140	+0.148	3 4	Maw Schiaparelli
97°50 55 98°50 55	282.42 279.978 272.68 270.97	281.87 281.40 271.50 270.02	+0.22 -1.43 +1.48 +0.02	1.396 1.20 1.401	2:003 2:057 1:024 1:017		2 4 2	Schiaparelli Maw Schiaparelli Maw

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Denkschriften der Akademie der Wissenschaften.Math.Natw.Kl. Frueher:</u> <u>Denkschr.der Kaiserlichen Akad. der Wissenschaften. Fortgesetzt:</u> <u>Denkschr.oest.Akad.Wiss.Mathem.Naturw.Klasse.</u>

Jahr/Year: 1902

Band/Volume: 72

Autor(en)/Author(s): Prey Adalbert

Artikel/Article: <u>Untersuchungen über die Bewegungsverhältnisse des Systems 70 Ophiuchi.</u>

<u>177-241</u>