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Abstract

The genus Notiophilus Duméril, 1806 is a distinctive taxon of small, diurnal and mor-
phologically similar beetles exhibiting large eyes and widened second elytral intervals. In 
this study we analysed the effectiveness of DNA barcodes to discriminate 67 specimens 
that represent 8 species of Notiophilus from Central Europe. Interspecific K2P distanc-
es below 2.2% were found for N. biguttatus (Fabricius, 1779) and N. quadripunctatus 
Dejean, 1826, whereas intraspecific distances with values > 2.2% were revealed for N. 
rufipes Curtis, 1829. An additional phylogenetic analysis of all available species revealed 
a close relationship of N. directus Casey, 1920, N. semistriatus Say, 1823, N. simulator 
Fall, 1906 and N. sylvaticus Dejean, 1831, possibly indicating a radiation of these species 
in North America. Low support values of most other nodes, however, do not allow addi-
tional phylogenetic conclusions.
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Introduction
The Carabidae or ground beetles are a huge cosmopoli-
tan family with an estimated number of more than 40,000 
species worldwide (Lindroth 1985, Lorenz 2005). As part 
of its subfamily Nebriinae, the tribe Notiophilini Mot-
schulsky 1850 is a relatively small taxon that includes 
only one genus: Notiophilus Duméril, 1806. Neverthe-
less, this genus is one of the more distinctive genera of 
Carabidae. With a body length of less than 7 mm, spe-
cies of Notiophilus are small carabids that can be easi-
ly recognised by the enormous eyes and furrowed frons, 
their extremely uniform general habitus with narrow, 
parallel-sided elytra, as well as by the characteristic di-
lated second elytral interval (“Spiegelfeld”) that can be 
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broad as the 3rd plus 4th interval or broader (Fig. 1) (e.g. 
Lindroth 1961–1969). Many species exhibit wing dimor-
phism with macropterous (long-winged) and brachypter-
ous (short-winged) morphs (Lindroth 1986, Chapman 
et al. 2005). Typically, beetles of this genus are diurnal, 
sun-loving insects and very rapid in their movements. 
They are visual carabids, preying upon mites, springtails 
and other small arthropods (e.g. Anderson 1972, Bauer 
1981, Ernsting and Mulder 1981, Ernsting et al. 1992). To 
date, 57 species have been described from the Palearctic, 
Oriental, Nearctic and Neotropical regions (Barševskis 
2011, Bousquet 2012, Löbl and Löbl 2017). For Europe, 
14 species are recorded (Barševskis 2007), whereas 9 are 
known from Germany and Central Europe (Müller-Mot-
zfeld 2006, Trautner et al. 2014). Thanks to the thorough 
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studies of Arvīds Barševskis (Latvia), our knowledge 
about the biogeography and taxonomy of this genus has 
increased significantly in recent years (e.g. Barševskis 
2001, 2007, 2009, 2011, 2012). Based on the fact that the 
largest diversity of species and the highest number of en-
demics are found in Asia, the central part of this continent 
is hypothesised as the centre of origin of Notiophilus, 
followed by a subsequent colonisation of Europe, North 
Africa and North America (Barševskis 2007). In terms 
of the phylogeny of this genus, however, no analysis has 
been performed to date.

As noted, species of Notiophilus are remarkably similar 
in habitus and display a considerable individual variation, 
making identification difficult (e.g. Lindroth 1961–1969, 
Hannig 2005, Heijermann and Aukema 2014). Conse-
quently, molecular methods may represent another useful 
alternative for correct specimen identification. Recently, 
the analysis of DNA sequence data, in particular the use 
of an approx. 660 base pair (bp) fragment of the mito-
chondrial cytochrome c oxidase subu nit 1 (COI), has been 
proposed as the marker of choice, as a so-called “DNA 
barcode”, for specimen identification (Hebert et al. 2003a, 
Hebert et al. 2003b). DNA barcoding relies on the as-
sumption that the observed interspecific genetic variation 
exceeds the intraspecific variation to such a proportion 
that a clear gap exists. As a consequence, unidentified in-
dividuals can be assigned correctly to their species (He-
bert et al. 2003a, Hebert et al. 2003b). Not surprisingly, 
DNA barcoding has been criticised from its beginning, 
for example for the inappropriate use of neighbour-join-
ing trees for analysis or the application of fixed distance 
thresholds (Will and Rubinoff 2004, Goldstein and DeSal-
le 2010, Collins and Cruickshank 2013). Nevertheless, nu-

merous studies clearly demonstrate the usefulness of DNA 
barcoding, in particular for insects (e.g. Hausmann et al. 
2011, Park et al. 2011, Morinière et al. 2014, Schmidt et 
al. 2015, Havemann et al. 2018). Thus, the compilation of 
comprehensive and representative DNA barcode libraries 
represents an essential step for subsequent studies, for ex-
ample, biodiversity assessment studies via metabar coding 
based on modern high-throughput sequencing technolo-
gies (e.g. Yu et al. 2012, Cristescu 2014, Brandon-Mong 
et al. 2015, Porter and Hajibabaei 2018). Despite the high 
number of described species, however, the number of stud-
ies that tested the efficiency of DNA barcodes for species 
identification of ground beetles is still low (Greenstone et 
al. 2005, Maddison 2008, Raupach et al. 2010, Woodcock 
et al. 2013, Pentinsaari et al. 2014, Hendrich et al. 2015, 
Raupach et al. 2016, Raupach et al. 2018).

As part of our efforts in building a comprehensive 
DNA barcode library of ground beetles of Germany, we 
analysed the quality of DNA barcodes to discriminate 
Central European species of the carabid genus Notio-
philus. Furthermore, we reconstructed the phylogeny of 
this small but charismatic carabid genus for the first time, 
with a focus on the zoogeographic distribution of the an-
alysed species.

Material and methods

Sampling of specimens

All analysed ground beetles were collected between 2005 
and 2017 using various classical sampling methods (i.e. 
hand collecting, pitfall traps) and stored in ethanol (96%). 
The analysed specimens were identified by two of the au-
thors (KH, MJR) using the key provided in Müller-Mot-
zfeld (2006). In total, 35 new barcodes were generated. 
For our analysis, we also included 32 DNA barcodes of 
a previous study (Hendrich et al. 2015). As a result, the 
complete dataset consisted of 67 DNA barcodes. Most 
beetles were collected in Germany (n = 61, 91%), but for 
comparison, some specimens were also included from 
Austria (n = 3, 4%), Belgium (n = 2, 3%) and Slovenia 
(n = 1, 2%). Our analysis covers eight of the nine species 
recorded from Germany (88.9%): Notiophilus aestuans 
Dejean, 1826, N. aquaticus (Linnaeus, 1758), N. bigut-
tatus (Fabricius, 1779), N. germinyi Fauvel in Grenier, 
1863, N. palustris (Duftschmid, 1812), N. quadripunca-
tus Dejean, 1826, N. rufipes Curtis, 1829 and N. substria-
tus Waterhouse, 1833. Only specimens of the rare species 
N. laticollis Chaudoir, 1850 were missing (see Trautner et 
al. 2014). The number of analysed specimens per species 
ranged from a minimum of 3 (N. quadripunctatus) to a 
maximum of 16 (N. biguttatus).

DNA barcode amplification, sequencing and data 
depository

Laboratory operations were carried out, following stan-
dardised protocols for COI amplification and sequencing 

Figure 1. Two representative species of the genus Notiophilus 
amongst those analysed in this study: A: Notiophilus germi-
nyi Fauvel in Grenier, 1863 and B: Notiophilus rufipes Curtis, 
1829. Note the characteristic different size of the second el-
ytral intervals (“Spiegelfeld”) for both beetle species. Scale 
bars = 1 mm. Source of photos: http://www.eurocarabidae.de/ 
(access date: 2019–01–15).
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(Ivanova et al. 2006, deWaard et al. 2008), at the Ca nadian 
Center for DNA Barcoding (CCDB), University of Guelph, 
the molecular labs of the Zoologisches Forschungsmuseum 
Alexander Koenig in Bonn and/or the working group Sys-
tematics and Evolutionary Biology at the Carl von Ossietz-
ky University Oldenburg, Germany. Representative photos 
from each studied beetle were taken before molecular work 
was performed. One or two legs of one body side were 
removed for the subsequent DNA extraction which was 
performed using NucleoSpin Tissue Kit (Macherey-Nagel, 
Düren, Germany), following the extraction protocol.

Detailed information about used primers, PCR ampli-
fication, and sequencing proto cols can be found in a pre-
vious publication (see Raupach et al. 2016). All purified 
PCR prod ucts were cycle-sequenced and sequenced in 
both directions at a contract sequencing facili ty (GATC, 
Konstanz, Germany), using the same primers as used in 
PCR. Double stranded sequences were assembled and 
checked for mitochondrial pseudogenes (numts) by ana-
lysing the presence of stop codons, frameshifts, as well as 
double peaks in chromatograms with the Geneious version 
8.1.9 programme package (Biomatters, Auckland, New 
Zealand) (Kearse et al. 2012). Routinely, BLAST searches 
(nBLAST, search set: others, programme selection: mega-
blast) were performed to confirm the identity of all new se-
quences as ground beetle barcodes, based on already pub-
lished sequences (high identity values, very low E-values).

Comprehensive voucher information, taxonomic clas-
sifications, photos, DNA bar code sequences, primer pairs 
used and trace files (including their quality) are public-
ly accessible through the public dataset “DS-BANOT” 
(Dataset ID: dx.doi.org/10.5883/DS-BANOT) on the 
Barcode of Life Data Systems (BOLD; www.boldsys-
tems.org) (Ratnasingham and Hebert 2007). All new 
barcode data have been deposited in GenBank (accession 
numbers: MK567377-MK567411).

DNA Barcode analysis: Species identification

The analysis tools of the BOLD workbench were em-
ployed to calculate the nucleo tide composition of the 
sequences and distributions of Kimura-2-parameter dis-
tances (K2P; Kimura 1980) within and between species 
(align sequences: BOLD aligner; am biguous base/gap 
handling: pairwise deletion). All barcode sequences be-
came subject of the Barcode Index Number (BIN) anal-
ysis system, implemented in BOLD that clusters DNA 
barcodes in order to produce operational taxonomic units 
that typically closely corre spond to species (Ratnasing-
ham and Hebert 2013). A threshold of 2.2% was applied 
for a rough differentiation between intraspecific and in-
terspecific distances based on Ratnasingham and Hebert 
(2013). These BIN assignments on BOLD are constant-
ly updated as new sequences are added, splitting and/or 
merging individual BINs in light of new data (Ratnasing-
ham and Hebert 2013).

In addition, all sequences were aligned using MUS-
CLE (Edgar 2004) and analysed using a neighbour-join-

ing cluster analysis (NJ; Saitou and Nei 1987) based 
on K2P distances with MEGA X (Kumar et al. 2018) 
in order to visualise the DNA barcode divergences and 
species cluster. As outgroup taxa we used three barcode 
sequences of Nebria brevicollis (Fabricius, 1792) (ac-
cession numbers: KM451780, KM452043, KM452651). 
Non-parametric bootstrap sup port values were obtained 
by re-sampling and analysing 1,000 replicates (Felsen-
stein 1985) implemented in MEGA X. For species pairs 
with interspecific distances < 2.2%, maximum parsimony 
networks were constructed with TCS 1.21, based on de-
fault settings (Clement et al. 2000) as part of the software 
package PopART v.1.7 (Leigh and Bryant 2015) after an 
alignment using MUSCLE (Edgar 2004). Such networks 
allow the identi fication of possible haplotype sharing be-
tween species as a consequence of recent speciation or 
on-going hybridisation processes.

DNA Barcode analysis: Phylogenetic applicability

As part of our phylogenetic study, we used one represen-
tative sequence per analysed species, namely a sequence 
of the most abundant haplotype. Furthermore, we added 
sequences of all additional species available at BOLD 
with a length of at least 500 base pairs (bp), following 
the same procedure if more than one sequence was giv-
en: Notiophilus aeneus (Herbst, 1806), N. borealis Har-
ris, 1869, N. directus Casey, 1920, N. reitteri Spaeth, 
1900, N. semistriatus Say, 1823, N. simulator Fall, 1906 
and N. sylvaticus Dejean, 1831. Five CO1 sequence of 
the genus Nebria Latreille, 1802 (N. brevicollis (Fabri-
cius, 1792) (KM451780), N. frigida R.F. Sahlberg, 1844 
(KU875532), N. metallica Fischer von Waldheim, 1822 
(KU875541), N. nivalis Paykull, 1790 (KU875543) and 
N. salina Fairmaire & Laboulbène, 1854 (KM444378)) 
were used as outgroup taxa. In total, this dataset consisted 
of 20 sequences. All sequences were aligned using MUS-
CLE with default settings (Edgar 2004).

The accuracy of phylogenetic reconstructions depends 
on various factors, e.g. sequence quality, the correct iden-
tification of homologous sites, the absence of heterotachy 
or, in particular, substitution saturation (Xia 2009). In the 
extreme case that sequences have experienced full substi-
tution saturation, the given similarity between the sequenc-
es will depend entirely on the similarity in nucleotide 
frequencies and often do not reflect their phylogenetic rela-
tionships (e.g. Steel et al. 1993, Xia et al. 2003). As a con-
sequence, fast evolving protein coding genes, such as COI, 
cannot be used for phylogenetic analysis that focus on deep 
and old branches (e.g. Wetzer 2002, Goetze 2003, Maddi-
son et al. 2014), but can be useful for the study of more 
recent phylogenetic events on species level (e.g. Klopfstein 
et al. 2010, Matzen da Silva et al. 2011, Dai et al. 2012). 
Therefore, DAMBE 7.0.28 (Xia 2018) was used to check 
if the COI dataset of Notiophilus was subject to saturation 
following the Xia approach (Xia 2009). Saturation plots 
were made using the number of transitions and transver-
sions plotted against patristic distances (p-distances).
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Phylogenetic relationships were analysed under the 
maximum likelihood criterion using IQ-TREE 1.6.8 
(Nguyen et al. 2015). The best model nucleotide substitu-
tion was determined based on the Bayesian Information 
Criterion (BIC) with Modelfinder (Kalyaanamoorthy et 
al. 2017). In order to assess nodal support, 10,000 ultra-
fast bootstrap replicates (Hoang et al. 2018) and 10,000 
replicates of a SH-aLRT test (Guindon et al. 2010) were 
performed. Ultrafast bootstrapping (UFBoot) has been 
demonstrated to be largely unbiased compared to stan-
dard or alternative bootstrapping, whereas SH-aLRT 
values have been shown to be as conservative as stan-
dard non-parametric bootstrap values (Minh et al. 2013). 
Typically, nodes with support values of UFBoot ≥ 95 and 
SH-aLRT ≥ 90 were considered as very robust and values 
≥ 80% as robust (Minh et al. 2013, Hoang et al. 2018). 
Following Barševskis (2007), we added biogeographic 
information for each analysed species.

Results

DNA Barcode analysis: Species identification

Overall, 67 DNA barcode sequences were analysed for 
eight of the nine species of the genus Notiophilus from 
Germany. Fragment lengths of the analysed DNA bar-
code fragments ranged from 549 to 658 bp. As is typically 
known for arthropods, a high AT-content was found for the 
DNA barcode region: the mean sequence compositions 
were A = 28%, C = 16.3%, G = 17.3% and T = 38.4%. 
Intraspecific K2P distances within a genus ranged from 
zero to a maximum of 3.62% (N. rufipes), whereas inter-
specific distances within the analysed genus had values 
between 0.62 and 10.22% (Table 1). The lowest interspe-
cific distances of distinct barcode clusters were found for 
N. biguttatus and N. quadripunctatus with values ranging 
from 0.49% to 0.82% (Table 1). As a result, both species 
became subject to the same BIN (AAO0964). In contrast 
to this, maximum intraspecific pairwise distances > 2.2% 

were found for N. rufipes (3.62%), resulting in two BINs 
(AAX5571, AAC7024) for this species (Table 1). Unique 
BINs were identified for the remaining five species (63%).

The NJ analyses, based on K2P distances, revealed 
non-overlapping clusters with bootstrap support values of 
100% for six species (75%). Nodal support values below 
85% were found for N. biguttatus and N. quadripunctatus 
(Fig. 2). A detailed topology is presented in the supporting 
information (Suppl. material 1). Our statistical maximum 
parsimony analysis indicated closely related haplotypes 
for the studied specimen of N. biguttatus (n = 16) and N. 
quadripunctatus (n = 3) (Fig. 3). We identified three dif-
ferent haplotypes with one dominant haplotype (h1) for N. 
biguttatus (Fig. 3), whereas only one haplotype (h1*) was 
found for all analysed beetles of N. quadripunctatus (n = 
3). However, this haplotype is separated from haplotype 
h1 and h2 of N. biguttatus only by five additional muta-
tional steps (Fig. 3). Two distinct monophyletic lineages, in 
combination with high distances, were found for N. rufipes 
(Figs 2, 4, Table 1).

DNA Barcode analysis: Phylogenetic applicability

The test of substitution saturation revealed that the ob-
served index of substitution saturation (Iss: 0.22) for the 
alignment was significantly lower than the corresponding 
critical index substitution saturation (Iss.c (symmetrical 
tree): 0.74; Iss.c (asymmetrical tree): 0.54), indicating 
that there was no or little saturation in the dataset (Suppl. 
material 2).

Modelfinder revealed the GTR+F+R3 model as the op-
timal nucleotide substitution model for our dataset with 
the following rate parameters: nucleotide frequencies A: 
0.29, C: 0.16, G: 0.17, T: 0.38; substitution rates RAC: 
0.01, RAG: 40.39, RAT: 21.52, RCG: 1.45, RCT: 98.02, 
RGT: 1; model of rate heterogeneity: FreeRate with 3 cat-
egories: category 1 with a relative rate = 0.06 and a pro-
portion of 0.69, category 2 with a relative rate = 2.02 and 
a proportion of 0.27 and category 3 with a relative rate = 
12.74 and a proportion of 0.03).

Table 1. Molecular distances based on the Kimura 2-parameter model of the analysed specimens and species of the genus Notio-
philus. Divergence values were calculated for all studied sequences, using the Nearest Neighbour Summary implemented in the 
Barcode Gap Analysis tool provided by the Barcode of Life Data System (BOLD). Align sequencing option: BOLD aligner (amino 
acid based HMM), ambiguous base/gap handling: pairwise deletion. ISD = intraspecific distance. BINs are based on the barcode 
analysis from 18–11–2018. Species with maximum intraspecific distances > 2.2% and species pairs with interspecific distances < 
2.2% are marked in bold.

Species n Mean ISD Max ISD BIN Nearest Species Distance to NN
Notiophilus aestuans Dejean, 1826 4 0.24 0.48 ACB8850 N. aquaticus 7.04
Notiophilus aquaticus (Linnaeus, 1758) 10 0.58 1.12 AAY5028 N. aestuans 7.04
Notiophilus biguttatus (Fabricius, 1779) 16 0.22 0.77 AAO0964 N. quadripunctatus 0.62
Notiophilus germinyi Fauvel in Grenier, 1863 5 0.43 0.92 AAY5659 N. rufipes 10.22
Notiophilus palustris (Duftschmid, 1812) 10 0.26 1.11 AAX5556 N. aquaticus 9.17
Notiophilus quadripunctatus Dejean, 1826 3 0 0 AAO0964 N. biguttatus 0.62
Notiophilus rufipes Curtis, 1829 8 1.55 3.62 AAX5571, AAC7024 N. palustris 9.24
Notiophilus substriatus Waterhouse, 1833 11 0.08 0.31 ACC3407 N. aquaticus 7.73
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The results of the phylogenetic analysis are visualised 
in Figure 5. High nodal support > 90% was found for five 
nodes only, whereas medium support (SH-aLRT: 80–90%; 
UFBoot: 80–90%) was revealed for two nodes. All other 
nodes had support values < 80%, indicating low support. 
High nodal support values revealed that N. aeneus rep-
resents the sister taxon to all other analysed Notiophilus 

species. All other taxa are part of two clades: one clade in-
cluded N. biguttatus and N. quadripunctatus (100%/100%); 
all other species were found in a second clade with medi-
um support (87.4%/85%). Furthermore, high nodal support 
was found for a clade with N. directus, N. semistriatus, N. 
simulator and N. sylvaticus (97.5%/95%) and a clade with 
N. germinyi, N. rufipes and N. palustris (99.1%/97%).

Figure 2. Neighbour joining (NJ) topology of the analysed ground beetle species of Notiophilus, based on Kimura 2-parameter dis-
tances. Numbers next to nodes represent non-parametric bootstrap values > 90% (1,000 replicates). Source of photos: http://www.
eurocarabidae.de/ (access date: 2019–01–15).
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Discussion

For many decades, ground beetles have been used reg-
ularly as indicators of biodiversity and habitat quality 
(e.g. Goulet 2003, Koivula 2011, Kotze et al. 2011, Li et 
al. 2017). Consequently, their correct identification rep-

resents a pivotal component for ecological studies and 
conservation planning. Our species delineation analysis 
demonstrated that most (n = 7, 87.5%) of the analysed 
species of Notiophilus from Germany and Central Europe 
can be successfully identified by using DNA barcode 
sequence data and the BIN approach. This result cor-
relates with previous barcoding studies of ground beetles 
(Raupach et al. 2010, Raupach et al. 2011, Pentinsaari 
et al. 2014, Hendrich et al. 2015, Raupach et al. 2018). 
Nevertheless, our analysis revealed low interspecific dis-
tances, as well as high intraspecific variability that are 
worthy of discussion.

Low interspecific distances were found for N. biguttatus 
and N. quadripunctatus (0.62%) (Fig. 3). Based on their 
very similar morphology, a close relationship has been pre-
viously hypothesised (e.g. Hemmann and Trautner 2002). 
Both species can appear sympatric. However, only com-
prehensive analysis of i) more specimens sampled from 
various localities, ii) other faster evolving, in particular 
nuclear markers as microsatellites or RAD-Seqs, and iii) 
comprehensive morphological and morphometric studies 
will help to clarify if two closely related but distinct spe-
cies exist or hybridisation still takes place.

In contrast to this, maximum intraspecific pairwise 
distances with values between 1.5 and 3.6% were found 
between two distinct monophyletic lineages of N. rufipes 
(Fig. 4). The collection sites of both lineages A (n = 6) 
and B (n = 2) revealed no specific geographical pattern 
(Fig. 4). We also found no differences in their male gen-
italic characters. Based on the low number of studied 
specimens and the mitochondrial marker used, we are 
currently unable to identify factors that generate the ob-
served variability. Examples of such factors may include: 
i) phylogeographic events as reported for other carabids 
(e.g. Zhang et al. 2006, Faille et al. 2015, Weng et al. 
2016), ii) the presence of the maternally inherited endo-
symbionts such as Wolbachia (e.g. Roehrdanz and Lev-
itan 2007, Duron et al. 2008, Werren et al. 2008, Gerth 
et al. 2011), or iii) the existence of cryptic species (e.g. 
Faille et al. 2013, Liebherr 2015, Sproul and Maddison 
2017). Additional specimens from different locations 
have to be carefully analysed using morphological and 
molecular data to answer these results.

Despite the fact that only few nodes had high support 
values, the phylogenetic analysis revealed some import-
ant results: i) N. aeneus represents the sister taxon to 
all other analysed N. species, ii) all other taxa are part 
of two clades: one clade includes N. biguttatus and N. 
quadripunctatus with maximum support (100%/100%); 
all other species are found in a second clade with me-
dium support (87.4%/85%), iii) high nodal support is 
shown for a clade with the closely related species of N. 
directus, N. semistriatus, N. simulator and N. sylvaticus 
and iv) high nodal support is revealed for clade with N. 
germinyi, N. rufipes and N. palustris (Fig. 5). The close 
relationship of N. directus, N. semistriatus, N. simulator 
and N. sylvaticus and the low distance values between 
these species (1.8 to 6.4%) give evidence for a possible 

Figure 3. Maximum statistical parsimony network of Notioph-
ilus biguttatus (Fabricius, 1779) and Notiophilus quadripuncta-
tus Dejean, 1828. Parameters used included default settings for 
connection steps, gaps being treated as fifth state. Each line rep-
resents a single mutational change, whereas small black dots in-
dicate missing haplotypes. The numbers of analysed specimens 
(n) are listed and the diameter of the circles is proportional to 
the number of specimens for each haplotypes (see given open 
half circles with numbers). Scale bars = 1 mm. Source of pho-
tos: http://www.eurocarabidae.de/ (access date: 2019–01–15).

Figure 4. Subtree of the neighbour joining topology, based on 
Kimura 2-parameter distances of all ana lysed specimens of No-
tiophilus rufipes Curtis, 1829. Branches with specimen ID-num-
ber from BOLD, species names and sample localities. Numbers 
next to internal nodes are non-parametric bootstrap values (in 
%). Source of photo: http://www.eurocarabidae.de/ (access 
date: 2019–01–15).
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Figure 5. Maximum likelihood phylogeny inferred in IQ-TREE, based on the CO1 barcode fragment for the genus Notiophilus. The 
model of nucleotide substitution used was selected with Modelfinder as part of the IQ-TREE work package. The tree was rooted with five 
Nebria species as outgroup. Nodal support was calculated with SH-aLRT (above) and UFBoot (below) values. Black dots indicate very 
robust nodes with very high values (SH-aLRT ≥ 90%, UFBoot ≥ 95%), grey dots indicate moderately robust nodes (SH-aLRT ≥ 80%, 
UFBoot ≥ 80%) and white dots indicate weak nodes (SH-aLRT < 80%, UFBoot < 80%) (see Material and Methods for details). Conti-
nent silhouettes indicate the biogeographic distribution of the analysed taxa (from left to right: Africa, Europe, Asia and North America).
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radiation of these four species in North America (Fig. 5). 
If Asia represents the real hypothetical centre of origin of 
Notiophilus (Barševskis 2007), North America has been 
colonised at least two times. Interestingly, both species 
that were documented for Africa, are closely related. The 
low support values of most nodes, however, do not allow 
additional suggestions concerning the colonisation pat-
terns of other regions by this genus.

Conclusions

The assessment of biodiversity using molecular tools 
represents an essential aspect of modern biological sci-
ences. In this context, our dataset represents another step 
in building a comprehensive DNA barcoding library for 
carabids in Germany and Central Europe. Furthermore, 
a first phylogenetic analysis of this genus is presented. 
Although the present dataset included sequences of only 
15 of the 57 known species of Notiophilus and, in partic-
ular, endemic species from Central Asia are missing, our 
analysis reveals some important insights into the phylog-
eny of this genus, including a well-supported clade of N. 
directus, N. semistriatus, N. simulator and N. sylvaticus 
that gives some evidence for a possible radiation of these 
species in North America, as well as a close relationship 
of N. germinyi, N. palustris and N. rufipes.
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