

This work is licensed under a Creative Commons Attribution License (CC BY 4.0).

Monograph

urn:lsid:zoobank.org:pub:390ED50A-A0D5-45B0-B9C4-BA4EE7F619B3

New World genera of Galerucinae Latreille, 1802 (tribes Galerucini Latreille, 1802, Metacyclini Chapuis, 1875, and Luperini Gistel, 1848): an annotated list and identification key (Coleoptera: Chrysomelidae)

Keezhpattillam VISWAJYOTHI^{1,*} & Shawn M. CLARK²

^{1,2}Monte L. Bean Life Science Museum, Brigham Young University, Provo, Utah 84602, USA.
 ¹Kerala Agricultural University, Department of Agricultural Entomology, College of Agriculture, Vellayani, Trivandrum, Kerala, 695522, India.

*Corresponding author: viswajyothi14@gmail.com ²Email: shawn_clark@byu.edu

¹urn:lsid:zoobank.org:author:D4086923-B29E-40C6-BB48-0E6D3E83E7EE ²urn:lsid:zoobank.org:author:48F459D7-6E57-4CD4-85DA-84365725C81F

Abstract. An annotated list, including information on type species, distribution, and number of species, is provided for all of the non-flea-beetle galerucine genera known to occur in the New World (tribes Galerucini, Metacyclini, and Luperini). A diagnostic key to the genera is provided. Habitus illustrations are provided for most genera. The following new genera are proposed: Amplioluperus gen. nov., Cornuventer gen. nov., Geethaluperus gen. nov., Megarhabda gen. nov., Mexiluperus gen. nov., Monoaster gen. nov., Pvesexora gen. nov., Texiluperus gen. nov., Trachvelvtron gen. nov. and Yingabruxia gen. nov. The following new taxonomic placements are proposed: Microbrotica Jacoby, 1887 is transferred from the tribe Metacyclini to the section Diabroticites Chapuis, 1875 (tribe Luperini, subtribe Diabroticina Chapuis, 1875); Pteleon Jacoby, 1888 is transferred from the section Exosomites Wilcox, 1973 (tribe Luperini, subtribe Luperina Gistel, 1848) to the section Scelidites Chapuis, 1875 (subtribe Luperina). The following new combinations are proposed: Luperodes histrio Horn, 1895, Luperus maculicollis LeConte, 1884, and Scelolyperus cyanellus Horn, 1895 are transferred from Pseudoluperus Beller & Hatch, 1932 to Amplioluperus; Luperodes tuberculatus Blake, 1942 is transferred from Pseudoluperus to Cornuventer; Luperus flavofemoratus Jacoby, 1888 is transferred from Pseudoluperus to Geethaluperus; Trirhabda obscurovittata Jacoby, 1886 is transferred from Trirhabda LeConte, 1865 to Megarhabda; Cneorane nigripes Allard, 1889 is transferred from Scelida Chapuis, 1875 to Metacycla Baly, 1861; Luperodes wickhami Horn, 1893 and Luperus dissimilis Jacoby, 1888 are transferred from Pseudoluperus to Mexiluperus; Scelolyperus tenuimarginatus Bowditch, 1925, is transferred from Scelida to Mimastra Baly, 1865 and is synonymized with Mimastra semimarginata Jacoby, 1886 syn. nov.; Pseudoluperus fulgidus Wilcox, 1965 and Pseudoluperus linus Wilcox, 1965 are transferred from Pseudoluperus to Monoaster; Crioceris detrita detrita Fabricius, 1801, Malacosoma detrita laevicollis Jacoby, 1887, Pyesia detrita meridionalis Bechyné, 1958, Pyesia elytropleuralis elytropleuralis Bechyné, 1958, and Pyesia elytropleuralis subalutacea Bechyné, 1958 are transferred from Pyesia Clark, 1865 to Pyesexora; Luperodes spretus Horn, 1893 and Luperodes texanus Horn, 1893 are transferred from *Pseudoluperus* to *Texiluperus*; *Chthoneis smaragdipennis* Jacoby, 1888 is transferred from Platymorpha Jacoby, 1888 to Trachyelytron; Luperus albomarginatus Jacoby, 1888 is

transferred from *Pseudoluperus* to *Trichobrotica* Bechyné, 1956; and *Galleruca sordida* LeConte, 1858, *Monoxia apicalis* Blake, 1939, *Monoxia batisia* Blatchley, 1917, and *Monoxia brisleyi* Blake, 1939 are transferred from *Monoxia* LeConte, 1865 to *Yingabruxia*; all comb. nov. *Pseudoluperus decipiens* (Horn, 1893), originally described in *Scelolyperus* Crotch, 1874, is reduced to a junior synonym of *Pseudoluperus longulus* (LeConte, 1857), syn. nov. *Trachyscelida dichroma* Viswajyothi & Clark is proposed as a nom. nov. for *Racenisa bicolor* Bechyné, 1958 (not *Agelastica bicolor* LeConte, 1884), as both species are currently placed in the genus *Trachyscelida* Horn, 1893.

Keywords. Distribution, new combinations, synonym, taxonomy, type species.

Viswajyothi K. & Clark S.M. 2022. New World genera of Galerucinae Latreille, 1802 (tribes Galerucini Latreille, 1802, Metacyclini Chapuis, 1875, and Luperini Gistel, 1848): an annotated list and identification key (Coleoptera: Chrysomelidae). *European Journal of Taxonomy* 842: 1–102. https://doi.org/10.5852/ejt.2022.842.1945

Introduction

Although galerucine classification is in a state of flux, with the validity of some of the historically recognized groupings being doubtful, the prevailing arrangement still largely follows the catalogues of Wilcox (1971, 1972, 1973) and is reflected in the subsequent list of genera by Seeno & Wilcox (1982). The subfamily is divided into tribes (-ini endings), which are subdivided into subtribes (-ina endings) and further into sections (-ites endings). Oddly, the subtribal rank is sometimes omitted, the tribes being directly divided into sections. Unfortunately, some of the taxa are very inadequately differentiated from each other. With the relatively recent addition of Alticini Newman, 1835 (formerly regarded as a separate subfamily), six tribes are recognized. These are Oidini Chapuis, 1875, an exclusively Old World tropical tribe, with approximately 183 species in seven genera; Galerucini, with approximately 1013 species in 123 genera in five sections; Metacyclini, with approximately 259 species within 37 genera; Hylaspini Chapuis, 1875, with approximately 394 species in 49 genera in six loosely arranged sections; Luperini, with approximately 3953 species in 272 genera in 18 sections within three subtribes; and Alticini, which is not treated in the present investigation (Wilcox 1971, 1972, 1973; Seeno & Wilcox 1982). These numbers are all approximate, since additional taxa have been proposed subsequent to the publications mentioned above. Nie et al. (2017) reported 543 total genera and 7145 total species for non-alticine Galerucinae. However, we believe a more accurate count to be 544 genera and 7318 species.

Numerous studies deal with the phylogeny of Galerucinae (e.g., Eben & Monteros 2003a, 2003b, 2008, 2013; Gillespie et al. 2003, 2004, 2008; Kim et al. 2003; Duckett et al. 2004; Nokkala & Nokkala 2004; Swigoňová & Kjer 2004; Bünnige et al. 2008; Ge et al. 2011, 2012; Eben 2012; Hua et al. 2014; Song et al. 2018; Nie et al. 2020). The abovementioned classification is largely supported by these studies, but there are many exceptions. For instance, Oidini and Hylaspini should probably be combined with Luperini (Duckett et al. 2004; Gillespie et al. 2004, 2008; Nie et al. 2020). Additionally, some studies place Metacyclini as the sister to Galerucini (e.g., Gillespie et al. 2003, 2004). In contrast, some studies do not recover Metacyclini as monophyletic (e.g., Duckett et al. 2004). Indeed, Beenen (2013) synonymized Metacyclini with Galerucini. Further investigation may be needed before this synonymy is widely accepted. Moreover, note that some genera that have been regarded as metacyclines, such as Hecataeus Jacoby, 1888 and Masurius Jacoby, 1888, may not be closely related to the other metacyclines (Gillespie et al. 2008; Nie et al. 2020). Below the level of tribes, some of the sections are strongly recovered, but not all of them. For instance, Phyllobroticites Chapuis, 1875 may be paraphyletic (Gillespie et al. 2008). At the genus level, there are also many problems. For instance, genera such as Gynandrobrotica Bechyné, 1955 and Isotes Weise, 1922 are probably not monophyletic (Eben & Monteros 2003a, 2003b, 2008, 2013, 2015; Gillespie et al. 2004, 2008; Eben 2012). In spite of major advances in the understanding of phylogeny, many of the questions have not been adequately answered. Future studies, involving larger taxon sampling, are warranted (Gillespie *et al.* 2008).

The subfamily Galerucinae in the New World is poorly studied. In large part, this is because the taxonomic literature is widely scattered. Would-be galerucine taxonomists are often discouraged due to the near absence of identification keys, even to the level of genus. Actually, keys to genera are published for some areas (e.g., Wilcox 1965; Bechyné & Bechyné 1969; Bechyné 1997; Riley *et al.* 2002a). Additionally, some keys facilitate identification of genera within taxonomic subgroups of Galerucinae (e.g., Bechyné 1957, 1958; Blake 1958, 1966a, 1966b; Smith & Lawrence 1967; Bechyné & Bechyné 1968; Moura 2010; Derunkov *et al.* 2015). However, there are no published keys that treat all galerucine genera for the entire New World. We here provide such a comprehensive key. With the notable exception of Alticini, which hopefully will be treated by flea beetle specialists, this key includes all galerucine genera known to occur in the New World. Being the first such published attempt, the key surely includes some problems and errors. Even so, we believe that it achieves the goal of facilitating correct generic identification of most specimens.

Material and methods

All specimens studied were in the adult stage. They were examined using Wild M5A and Olympus SZ61 stereo microscopes. Microphotography employed an Olympus SZX12 dissecting microscope equipped with an Olympus DP70 camera. Image montage employed Olympus cellSens software. Images were later retouched with Adobe Photoshop.

The annotated list of genera is arranged according to recent classifications. Notwithstanding, we recognize that some of the subtribes (-ina endings) and especially sections (-ites endings) are probably unnatural (Gillespie *et al.* 2008). In fact, even some of the tribes may not be valid. For instance, Beenen (2013) recommended combining Metacyclini with Galerucini.

The following keys incorporate elements from the above-mentioned publications, as well as from extensive unpublished notes left behind by the late John A. Wilcox (now in possession of Shawn Clark). They also incorporate many novel characters observed during our own examinations of beetles but not previously reported. At present, several of the galerucine genera are heterogeneous with regards to the included species. Future study will undoubtedly result in the descriptions of many new genera and revised generic placements of many species. However, only a few taxonomic changes are formalized in this publication. Instead, the following key to genera accounts for much of the generic heterogeneity, allowing identification of most of the species into the genera in which they are currently classified. Also, in some instances, the characters of a particular genus are variable or intermediate between the options employed in the key, or the characters are easily misinterpreted. With these considerations in mind, some genera appear in multiple places in the key. In just a few instances, the key will allow for identification of only the type species and its close relatives, not for some of the anomalous species that are currently included in the genus. In such instances, explanations are usually given in the Annotated List of Genera preceding the key.

We have provided habitus illustrations of most of the genera, as well as illustrations of many diagnostic characters. However, the illustrations are not to scale; thus, the size of the beetles should not be interpreted based on the illustrations.

Results

Class Insecta Linnaeus, 1758 Order Coleoptera Linnaeus, 1758 Family Chrysomelidae Latrielle, 1802

Subfamily Galerucinae Latreille, 1802

Annotated list of genera

Tribe Galerucini Latreille, 1802 Section Coelomerites Chapuis, 1875

Genus Apteroyinga Viswajyothi & Clark, 2020

Apteroyinga Viswajyothi & Clark, 2020b: 228 (type species *Apteroyinga andrewsi* Viswajyothi & Clark, 2020, by original designation).

Remarks

This genus contains just one described species, *A. andrewsi* from Costa Rica. See Fig. 21 for a habitus illustration. Although distinctive in some of its features, this genus is probably closely related to *Socorroita* Bechyné, 1956.

Genus Austrochorina Bechyné, 1963

Austrochorina Bechyné, 1963: 236 (type species Monocesta consularis Clark, 1865, by monotypy).

Remarks

This genus includes just one described species, *A. consularis* (Clark, 1865) from Brazil. See Fig. 3 for a habitus illustration.

Genus Caraguata Bechyné, 1954

Caraguata Bechyné, 1954: 123 (type species Monocesta sublimbata Baly, 1879, by original designation).

Remarks

This genus contains 38 described species, occurring from Mexico through much of South America. See Figs 6 and 223. See Bechyné (1958) for a key including several of the species.

Genus Chorina Baly, 1866

Chorina Baly, 1866: 471 (type species Monocesta cincta Clark, 1865, by original designation).

Remarks

This genus includes three described species, all of which occur in Brazil. See Fig. 8 for a habitus illustration.

Genus Coelomera Chevrolat in Dejean, 1836

Coelomera Chevrolat in Dejean, 1836: 375 (type species *Chrysomela cajennensis* Fabricius, 1787, by subsequent designation of Weise 1924).

This genus contains 32 described species. They are distributed from Guatemala through much of South America. See Fig. 7 for a habitus illustration.

Genus Coraia Clark, 1865

Coraia Clark, 1865: 323 (type species Coraia maculicollis Clark, 1865, by monotypy).

Remarks

This genus includes four described species, which occur from Texas to Guatemala. See Figs 4–5 for habitus illustrations.

Genus Derospidea Blake, 1931

Derospidea Blake, 1931: 32 (type species Trirhabda brevicollis LeConte, 1865, by original designation).

Remarks

This genus includes three described species, which occur from Canada to Mexico. See Fig. 12 for a habitus illustration.

Genus Dicoelotrachelus Blake, 1941

Dicoelotrachelus Blake, 1941: 171 (type species *Dicoelotrachelus darlingtoni* Blake, 1941, by original designation).

Remarks

This genus includes five described species. See Fig. 13 for a habitus illustration. The genus occurs in Cuba and Hispaniola.

Genus Dircema Clark, 1865

Dircema Clark, 1865: 262 (type species *Galleruca nigripennis* Fabricius, 1792, by subsequent designation of Dallas 1866).

Remarks

This genus includes 25 described species, all from South America. See Figs 10 and 186 for a habitus illustration and morphological details. See Bechyné (1951) for a key that includes most of the species.

Genus Gonaives Clark, 1987

Gonaives Clark, 1987a: 167 (type species Gonaives buenae Clark, 1987, by original designation).

Remarks

This genus contains just one described species, G. buenae from Haiti. See Fig. 45 for a habitus illustration.

Genus *Megarhabda* gen. nov. urn:lsid:zoobank.org:act:1A56949E-BD82-4D21-969D-0374649544B6

Type species

Trirhabda obscurovittata Jacoby, 1886, by present designation.

Diagnosis

This genus is quite different from *Trirhabda* LeConte, 1865 (the genus in which the single named species of *Megarhabda* gen. nov. was previously placed). Among other things, the pronotum of *Megarhabda* is very short (about 2.5 times as broad as long). In this respect, the new genus is similar to *Derospidea*, but differs in the larger pronotal depressions and the more broadly explanate lateral pronotal margins (Fig. 192). See the following key for additional diagnostic characters.

Etymology

The genus name '*Megarhabda*' suggests a relationship to *Trirhabda*, but with unusually large size. It should be treated as a female noun.

Remarks

This genus includes a single named species, *M. obscurovittata* (Jacoby, 1886), which occurs from Guatemala to Panama, but an undescribed species from Guatemala and Mexico also belongs here. See Fig. 14 for a habitus photograph.

Genus Miraces Jacoby, 1888

Miraces Jacoby, 1888: 611 (type species *Miraces aeneipennis* Jacoby, 1888, by monotypy). *Halticidea* Horn, 1893: 61 (type species *Halticidea delata* Horn, 1893, by subsequent designation of Wilcox 1965).

Remarks

This genus contains five described species. They are distributed from the southern United States through Guatemala, and in West Indies. Other species, apparently undescribed, occur throughout much of Latin America, including South America. See Fig. 18 for a habitus illustration. See Wilcox (1965) for a key to the species occurring in the United States.

Genus Monocesta Clark, 1865

Monocesta Clark, 1865: 264 (type species *Monocesta imperialis* Clark, 1865, by subsequent designation of Weise 1924).

Remarks

Although the elytra in this genus are pubescent, the setae are easily overlooked in some species. The key allows for correct identification, even if the elytra are interpreted as being asetose. The genus includes 28 described species, occurring in the United States through much of South America, and in West Indies. See Figs 1, 146, and 195.

Genus Narichona Kirsch, 1883

Narichona Kirsch, 1883: 203 (type species *Narichona haroldi* Kirsch, 1883, by subsequent designation of Wilcox 1971).

Remarks

This genus contains three described species, occurring in Colombia and Peru.

Genus Neophaestus Hincks, 1949

Phaestus Jacoby, 1887: 570 (type species *Phaestus chiriquensis* Jacoby, 1887, by monotypy). *Neophaestus* Hincks, 1949: 617 (replacement name for *Phaestus* Jacoby, 1887).

This genus currently includes a single species, *N. chiriquensis* (Jacoby, 1887) from Panama. See Fig. 11 for a habitus illustration. Some characteristics, such as the narrow epipleuron, suggest a close relationship with *Apteroyinga* and *Socorroita* Bechyné, 1956.

Genus Nestinus Clark, 1865

Nestinus Clark, 1865: 324 (type species *Nestinus bimaculatus* Clark, 1865, by subsequent designation of Barber in Blake 1931).

Monotia Jacoby, 1879: 787 (type species Monotia viridis Jacoby, 1879, by monotypy).

Remarks

This genus includes seven described species, occurring in Mexico and Guatemala. See Fig. 19 for a habitus illustration. The genus also includes *N. incertus* Clark, 1865, from Brazil, but the generic placement of this species is extremely doubtful.

Genus Platycesta Viswajyothi & Clark, 2021

Platycesta Viswajyothi & Clark, 2021b: 474 (type species *Monocesta depressa* Clark, 1865, by original designation).

Remarks

This genus includes just one described species, *P. depressa* (Clark, 1865), which is distributed in Central America and northwestern South America. Although it has been reported from the United States (Kim *et al.* 2003), this was surely in error. See Figs 2 and 152 for a habitus illustration and details of morphology.

Genus Socorroita Bechyné, 1956

Socorroita Bechyné, 1956a: 286 (type species Monocesta carinipennis Bowditch, 1923, by original designation).

Remarks

This genus includes only two described species, both from Colombia. See Figs 16–17, 183–184, and 218–219 for illustrations. In some aspects, such as the narrow epipleura, it is similar to *Neophaestus*. Even so, the type species of the two genera are very different from each other, based on various other characteristics. However, we are aware of ten apparently undescribed species that seem to be closely related to these genera (Costa Rica, Panama, Colombia, Ecuador; all in the Brigham Young University collection). Some of the undescribed species are intermediate between the two genera. We do not suggest that the two genera are synonymous. Rather, new genera should probably be erected to accommodate the intermediate species.

Genus Syphaxia Baly, 1866

Syphaxia Baly, 1866: 471 (type species Monocesta spectanda Clark, 1865, by original designation).

Remarks

This genus includes just two described species, one in Peru and the other in French Guiana. See Figs 9 and 144.

Genus Trirhabda LeConte, 1865

Trirhabda LeConte, 1865: 219 (type species *Trirhabda nitidicollis* LeConte, 1865, by subsequent designation of Barber in Blake 1931).

Remarks

This genus contains 29 described species, occurring from Canada to Guatemala. Although the elytra are publication, the setae are easily overlooked in some species. The following key allows for correct identification of the genus, even if the elytra are interpreted as being asetose. See Fig. 15 for a habitus illustration. Blake (1931), Wilcox (1965), and Hogue (1970) each provided useful keys for species identification, although a few species were missing in each instance.

Tribe Galerucini Latreille, 1802 Section Atysites Chapuis, 1875

Genus Diorhabda Weise, 1883

Diorhabda Weise, 1883: 316 (type species Galeruca elongata Brullé, 1832, by original designation).

Remarks

Four Palearctic species from North America (United States and Mexico), where they have intentionally been released for the biological control of *Tamarix* L. (Tamaricaceae). See Figs 20, 147, and 220 for a habitus illustration and morphological details. See Tracy & Robbins (2009) for a key to the species.

Genus Galerucella Crotch, 1873

Galerucella Crotch, 1873: 55.

Subgenus Galerucella Crotch, 1873

- *Galerucella* Crotch, 1873: 55 (type species *Chrysomela nymphaeae* Linnaeus, 1758, by subsequent designation of Maulik 1936).
- *Hydrogaleruca* Laboissière, 1922: 33 (type species *Chrysomela nymphaeae* Linnaeus, 1758, by original designation).

Subgenus Neogalerucella Chûjô, 1962

Neogalerucella Chûjô, 1962: 38 (type species *Chrysomela tenella* Linnaeus, 1761, by original designation).

Remarks

See Manguin *et al.* (1993) for a key to the species occurring in the New World. The subgenus *Galerucella* is represented in Canada and the United States by a single species, *G. nymphaeae* (Linnaeus, 1758), which also occurs in the Palearctic Region. The subgenus *Neogalerucella* includes two species that are native to Canada and the northern United States. It also includes two Palearctic species that have intentionally been introduced to Canada and the United States for biological control of the invasive plant *Lythrum salicaria* L. (Lythraceae). See Figs 25 and 153 for a habitus illustration and morphological details.

Genus Pyrrhalta Joannis, 1865

Pyrrhalta Joannis, 1865: 82 (type species Galeruca viburni Paykull, 1778, by monotypy).

- Hoplostines Blackburn, 1890: 361 (type species Hoplostines viridipennis Blackburn, 1890, by monotypy).
- *Decoomanius* Laboissière, 1927: 55 (type species *Decoomanius limbatus* Laboissière, 1927, by original designation).
- *Chapalia* Laboissière, 1929: 269 (type species *Chapalia jeanvoinei* Laboissière, 1929, by original designation).

Remarks

Pyrrhalta viburni (Paykull, 1778), a Palearctic species, has been accidentally introduced to Canada and the United States. See Fig. 23 for a habitus illustration.

Genus Tricholochmaea Laboissière, 1932

Tricholochmaea Laboissière, 1932: 963 (type species *Galerucella semifulva* Jacoby, 1885, by original designation).

Remarks

Riley *et al.* (2003) listed 13 Nearctic species for this Holarctic genus, occurring in both Canada and the United States. Some of the species are subdivided into subspecies, which might more properly be regarded as valid species. Beyond this, several undescribed Nearctic species also belong in this genus (Ward 1982). Lee & Bezděk (2021) treated *Tricholochmaea* as a synonym of *Pyrrhalta*. However, we defer acceptance of this taxonomic change until further evidence is available. See Fig. 22 for a habitus illustration of *Tricholochmaea*. See Wilcox (1965) and Ward (1982) for keys to the Nearctic species.

Genus Xanthogaleruca Laboissière, 1934

Xanthogaleruca Laboissière, 1934: 67 (type species Chrysomela luteola Müller, 1766, by monotypy).

Remarks

One species, *X. luteola* (Müller, 1766), is native to the Palearctic Region but has been accidentally introduced to both North and South America. See Fig. 24 for a habitus illustration. Nie *et al.* (2013) treated *Xanthogaleruca* as a synonym of *Pyrrhalta*. However, Lee & Bezděk (2021) regarded *Xanthogaleruca* to be a valid genus, separate from *Pyrrhalta*. At least until additional evidence is available, we also treat *Xanthogaleruca* as a separate genus.

Tribe Galerucini Latreille, 1802 Section Schematizites Chapuis, 1875

Genus Brucita Wilcox, 1965

Brucita Wilcox, 1965: 42 (type species Galerucella marmorata Jacoby, 1886, by original designation).

Remarks

Only a single species, *B. marmorata* (Jacoby, 1886), occurring from south Texas to Guatemala, is currently placed in this genus. See Figs 32 and 204 for a habitus illustration and morphological details. However, some undescribed species or species currently placed in *Yingaresca* Bechyné, 1956 might properly belong here.

Genus Chlorolochmaea Bechyné & Bechyné, 1969

Chlorolochmaea Bechyné & Bechyné, 1969: 16 (type species *Monocesta parallela* Bowditch, 1923, by monotypy).

Remarks

This genus contains a single described species, *C. parallela* (Bowditch, 1923) from South America (Fig. 43). See Moura (1998a) for a detailed description of the species.

Genus Erynephala Blake, 1936

Erynephala Blake, 1936: 425 (type species *Galeruca maritima* LeConte, 1865, by original designation). *Sarigueia* Bechyné, 1956a: 302 (type species *Galerucella subvittata* Demay, 1838, by original designation).

Remarks

This genus contains six described species, distributed from Canada to Argentina. The tarsal claws are bifid in males and simple in females. The elytra are covered with short setae, but these are sparse and inconspicuous in some species. Our key enables correct identification, even if the elytra are interpreted to be asetose. See Figs 34 and 151 for a habitus illustration and morphological details. See Groll *et al.* (2022) for a cladistic analysis and a key to the described species.

Genus Itaitubana Bechyné, 1963

Itaitubana Bechyné, 1963: 238 (type species Galerucella spinipennis Bowditch, 1923, by monotypy).

Remarks

This genus currently contains nine species, distributed from Mexico through much of South America. See Figs 26–27 and 222 for habitus illustrations and morphological details. However, the species are heterogeneous. Among other things, the tarsal claws are reported to be either bifid or appendiculate. Future investigation will likely reveal that some species need to be transferred to other genera. Beyond the claws, the relative lengths of the antennomeres also vary. Some workers have used the very long third antennomere as a diagnostic character for *Itaitubana* (e.g., Bechyné & Bechyné 1969). Indeed, we have employed this character in the following key. However, species such as *I. alternata* (Jacoby, 1886) do not have this characteristic. Future study may prove that they would be better placed in *Caraguata*.

Genus Iucetima Moura, 1998

Iucetima Moura, 1998b: 76 (type species *Neolochmaea quadrilineata minor* Bechyné, 1954, by original designation).

Remarks

This genus contains three described species. They occur in Argentina, Brazil, and Paraguay. See Figs 42, 215, and 224. See Moura (1998b) for a key to the species.

Genus Metrogaleruca Bechyné & Bechyné, 1969

Metrogaleruca Bechyné & Bechyné, 1969: 24 (type species *Chrysomela obscura* DeGeer, 1775, by original designation).

This genus currently includes only five species, distributed from Mexico through much of South America, as well as in the Lesser Antilles. However, some species currently placed in *Schematiza* Chevrolat, 1836, *Yingaresca*, or *Ophraea* Jacoby, 1886 might properly belong in *Metrogaleruca*. See Figs 31 and 221 for illustrations of *Metrogaleruca*.

Genus Monoxia LeConte, 1865

Monoxia LeConte, 1865: 221 (type species *Galleruca angularis* LeConte, 1859, by subsequent designation of Blake 1939).

Remarks

This genus contains 15 described species, distributed from Canada to Guatemala. See Fig. 35 for a habitus illustration. See Blake (1939) for a key to the species. However, realize that one species from Texas has been named subsequent to that key, and the generic placement of the old species from Guatemala warrants reevaluation (Riley 2020). All species of *Monoxia* are rather similar to each other, although easily separating into two groups, those with slender, dorsoventrally flattened aedeagi, and those with more robust aedeagi. Whereas most of the species have bifid claws in the male and simple claws in the female, the anomalous species *M. schizonycha* Blake, 1939 has bifid claws in both genders. Four species formerly included in the genus are herein transferred to *Yingabruxia* gen. nov.

Genus Neolochmaea Laboissière, 1939

Neolochmaea Laboissière, 1939: 153 (type species *Lochmaea tropica* Jacoby, 1889, by original designation).

Remarks

This genus contains three described species, distributed in Florida, the West Indies, Central America, and South America. See Fig. 41 for a habitus illustration. See Moura (1998c) for a key to the species.

Genus Ophraea Jacoby, 1886

Ophraea Jacoby, 1886: 492 (type species *Ophraea rugosa* Jacoby, 1886, by subsequent designation of Wilcox 1965).

Remarks

This genus currently contains twelve species, distributed from Arizona to Costa Rica. See Figs 40, 154, and 188 for a habitus illustration and morphological details. See Bechyné (1950) for a key that includes some, but certainly not all, of the species currently placed in the genus. However, be aware that *Ophraea*, as currently constituted, is heterogeneous. Some species should probably be transferred to other genera, such as *Metrogaleruca*. The following key to genera reflects the characteristics of the type species, but not necessarily those of all the species currently included in the *Ophraea*.

Genus Ophraella Wilcox, 1965

Ophraella Wilcox, 1965: 43 (type species Galleruca notata Fabricius, 1801, by original designation).

Remarks

This genus contains 14 described species, occurring from Canada to Mexico. See Figs 37–39 for habitus illustrations. See LeSage (1986) for a key to the species. However, realize that two additional species

have been named subsequent to that key (Futuyma 1990, 1991). Another species, *O. godmani* (Jacoby, 1886), occurring in Mexico and Guatemala, is also included in the genus, but this generic placement is extremely questionable. Several South American species have also been included in the genus (Bechyné 1997), but we also doubt this placement.

Genus Platynocera Blanchard, 1842

Platynocera Blanchard, 1842: 212 (type species *Platynocera murina* Blanchard, 1842, by monotypy). *Corynocesta* Bechyné, 1956a: 291 (type species *Corynocesta peruviana* Bechyné, 1956, by monotypy).

Remarks

This genus contains three described species, all from South America. See Figs 33, 208, and 229.

Genus Schematiza Chevrolat in Dejean 1836

Schematiza Chevrolat in Dejean 1836: 377 (type species *Lycus laevigatus* Fabricius, 1801, by subsequent designation of Barber 1947b).

Remarks

This genus currently contains 37 described species, distributed from Mexico through much of South America. See Fig. 28 for a habitus illustration. However, some of these species are very similar to those currently in *Metrogaleruca*. The characteristics of other species currently in *Schematiza* are intermediate between the two genera. Likely, careful investigation will either reveal the need for synonymizing the two putative genera, or the investigation will lead to the transferal of some species from *Schematiza* to *Metrogaleruca*.

Genus *Yingabruxia* gen. nov. urn:lsid:zoobank.org:act:80E0FCE4-B2DE-4000-9CBF-5762AFA93C9E

Type species

Galleruca sordida LeConte, 1858, by present designation.

Diagnosis

Although the species included in this genus were formerly placed in *Monoxia*, the two genera are significantly different. The tarsal claws in *Yingabruxia* gen. nov. are always bifid, while those of most species (one exception) of *Monoxia* are bifid in the male and simple in the female. In *Yingabruxia*, the prothorax is usually more than twice as wide as long, and the lateral third of the pronotum is almost entirely occupied by a large depression. In contrast, the pronotum of *Monoxia* is usually not more than twice as wide as long, and the lateral third of the pronotum is partially occupied by a convex elevation. See the following key for additional diagnostic characters.

Etymology

The genus name '*Yingabruxia*' is a conglomeration, suggesting similarities to *Yingaresca*, *Brucita*, and *Monoxia*. It should be treated as a female noun.

Remarks

Four species previously included in *Monoxia* [*M. apicalis* Blake, 1939; *M. batisia* Blatchley, 1917; *M. brisleyi* Blake, 1939; and *M. sordida* (LeConte, 1858)] are here transferred to this new genus, all comb. nov. The distribution of *Yingabruxia* gen. nov. is from Canada to Mexico.

The food plants of *Yingabruxia* gen. nov. are often Solanaceae, while those of *Monoxia* are often Asteraceae. Both genera are in some instances associated with Amaranthaceae. The general appearance of *Yingabruxia* is similar to that of *Yingaresca* and *Brucita*, while the appearance of *Monoxia* is more similar to *Ophraella*. See Fig. 36 for a habitus illustration of *Yingabruxia*. See Blake (1939) and Wilcox (1965) for keys to the species (treated as part of *Monoxia*).

Genus Yingaresca Bechyné, 1956a

Yingaresca Bechyné, 1956a: 298 (type species *Galerucella difficilis* Bowditch, 1923, by original designation).

Remarks

As currently constituted, approximately 50 species of this genus occur from Mexico through much of South America, as well as in West Indies. See Figs 29–30 for habitus illustrations. However, the genus includes a rather heterogeneous assemblage of species. Future study will likely show that some species are better placed in other genera (for instance *Brucita* or *Metrogaleruca*). Also, new genera will likely need to be described to accommodate some of the species.

Tribe Galerucini Latreille, 1802 Section Galerucites Latreille, 1802

Genus Galeruca Geoffroy, 1762

Galeruca Geoffroy, 1762: 251.

Subgenus Galeruca Geoffroy, 1762

Galeruca Geoffroy, 1762: 251 (conserved name, ICZN Opinion 1754 [1994]; type species *Chrysomela tanaceti* Linnaeus, 1758, by subsequent designation of Latreille 1810).

Adimonia Laicharting, 1781: 190 (type species Chrysomela tanaceti Linnaeus, 1758, by subsequent designation of Beenen 2010)

Subgenus Emarhopa Weise, 1886

Emarhopa Weise, 1886: 657 (extralimital; type species Galeruca rufa Germar, 1823, by monotypy).

Subgenus Haptoscelis Weise, 1886

Haptoscelis Weise, 1886: 658 (extralimital; type species *Galeruca melanocephala* Ponza, 1805, by monotypy).

Subgenus Galerima Reitter, 1903

Galerima Reitter, 1903: 133 (extralimital; type species *Galeruca monticola* Kiesenwetter, 1850, by monotypy).

Subgenus Galerotoma Reitter, 1903

Galerotoma Reitter, 1903: 139 (extralimital; type species Adimonia haagi Joannis, 1865, by monotypy).

Subgenus Fassatia Havelka, 1955

Fassatia Havelka, 1955: 115 (extralimital; type species *Galeruca microptera* Havelka, 1955, by original designation).

Subgenus *Rhabdotilla* Jacobson, 1911

Rhabdotilla Jacobson, 1911: pl. 59 (extralimital; type species *Rhabdotilla rosti* Jacobson, 1911, by monotypy [= *Galeruca sexcostata* Jacoby, 1904]).

Galemira Beenen, 2003: 2 (type species Galeruca sexcostata Jacoby, 1904, by original designation).

Remarks

This Holarctic genus is represented in Canada and the United States by five species. They all belong to the subgenus *Galeruca*. See Figs 44 and 150 for a habitus illustration and morphological details. See Blake (1945) and Wilcox (1965) for keys to the New World species.

Tribe Galerucini Latreille, 1802 Section Apophyliites Chapuis, 1875

Genus Metalepta Baly, 1861

Metalepta Baly, 1861: 205 (type species Metalepta tuberculata Baly, 1861, by original designation).

Remarks

This genus includes three described species, distributed in Ecuador and Peru. See Fig. 50 for a habitus illustration. Beenen (2013) reported the front coxal cavities to be posteriorly closed. However, they appear to be open in material we have examined. Perhaps, this character is variable among the species. Regarding this genus, we have not used this character in the following key. The placement in the principally Old World section Apophyliites is quite doubtful.

Tribe Metacyclini Chapuis, 1875

Genus Byblitea Baly, 1864

Byblitea Baly, 1864: 136 (type species Byblitea deyrollei Baly, 1864, by original designation).

Remarks

As currently constituted, this genus contains six described species, all from South America. It is distinguished from most other metacycline genera by having bifid, rather than appendiculate, tarsal claws. However, some species currently placed in *Chthoneis* Baly, 1864 (but not the type species) are extremely similar to some species currently in *Byblitea*, although possessing appendiculate claws. Perhaps, such species should be transferred to *Byblitea*. Alternatively, a new genus may need to be erected, with some members possessing bifid claws and others appendiculate claws. Further taxonomic investigation is warranted. See Figs 59 and 157.

Genus Chthoneis Baly, 1864

Chthoneis Baly, 1864: 135 (type species Chthoneis apicicornis Baly, 1864, by monotypy).

Remarks

This genus contains 28 described species. See Fig. 65 for a habitus illustration. They occur from Mexico through much of South America. Numerous undescribed species also belong in the genus.

Genus Elyces Jacoby, 1888

Elyces Jacoby, 1888: 612 (type species *Elyces quadrimaculatus* Jacoby, 1888, by subsequent designation of Wilcox 1971).

Remarks

This genus contains six described species, plus numerous apparently undescribed species from Guatemala to Peru. See Figs 58 and 161.

Genus Exora Chevrolat in Dejean 1836

Exora Chevrolat in Dejean 1836: 379 (type species *Crioceris olivacea* Fabricius, 1801, by subsequent designation of Hincks 1949).

Remarks

This genus currently contains 14 described species, but some of these should probably be transferred to *Trigonexora* Bechyné & Bechyné. True *Exora* occurs from Mexico through much of South America, and in the Lesser Antilles. See Fig. 56 for a habitus illustration. See Bechyné (1958) for a key to distinguish some of the species and subspecies. As with most Metacyclini, the larval habits of *Exora* are largely unknown. However, in unpublished notes from the late John A. Wilcox (currently in the possession of Shawn M. Clark), he recorded the following correspondence that he received from Jan Bechyné (dated 16 May 1970): "I have received important information from F. Fernández Yépez: The larvae of *Pyesia* Clark, 1865 or *Exora* have been collected in the FRUITS of Inga (Leguminosae-tree) and the adults have been obtained in laboratory ex larvae. I am unable to find the corresponding material now (may be in alcohol)."

Genus Hecataeus Jacoby, 1888

Hecataeus Jacoby, 1888: 612 (type species Hecataeus nigricollis Jacoby, 1888, by monotypy).

Remarks

This genus contains three described species, occurring in Panama and Brazil. See Fig. 46 for a habitus illustration. The inclusion in Metacyclini may not be correct (Nie *et al.* 2020).

Genus Malacorhinus Jacoby, 1887

Malacorhinus Jacoby, 1887: 582 (type species *Diabrotica foveipennis* Jacoby, 1879, by original designation).

Remarks

This genus occurs from the United States to Panama, as well as in South America (Bolivia and Venezuela). See Figs 61, 187, and 226 for illustrations. It contains 24 described species. Numerous undescribed species also belong here. The males of some species are immediately recognizable by the odd depression located laterally, near the mid-length of each elytron. In some species, there is an intricate structure within the depression, but this is missing in others. Unfortunately, some species, as well as from the females of all species. In these instances, less conspicuous features must be employed for identification. Similar elytral depressions are present in other genera, but rather than being near mid-length, they are near the apicolateral angle or the apex.

Genus Masurius Jacoby, 1888

Masurius Jacoby, 1888: 614 (type species *Masurius bifasciatus* Jacoby, 1888, by subsequent designation of Wilcox 1971).

Remarks

Wilcox (1971) listed only one species for this genus from Panama. However, see the comments below, regarding the genus *Zepherina* Bechyné, 1958. See Figs 57 and 185 for illustrations of specimens possessing the characters *Masurius*, but differing in color from the type species.

Genus Metacycla Baly, 1861

Metacycla Baly, 1861: 206 (type species *Metacycla sallei* Baly, 1861, by original designation). *Gastrogyna* LeConte, 1865: 210 (type species *Diabrotica insolita* LeConte, 1861, by monotypy).

Remarks

This genus includes eight described species, plus several undescribed species. See Fig. 49 for a habitus illustration. They occur in Mexico and Guatemala (also doubtfully recorded from Peru). Whereas the larvae of most Metacyclini are unknown, those of *Metacycla* are clearly leaf-feeders (Andrews & Gilbert 2005). This suggests a closer relationship of Metacyclini with Galerucini (leaf-feeding larvae) than with Luperini (root-feeding larvae). It is noteworthy that, based on the morphology of *Metacycla*, Beenen (2013) advocated the synonymy of Metacyclini with Galerucini. Although *Cneorane nigripes* Allard, 1889 has most recently been classified in *Scelida* Chapuis, 1875, examination of the male holotype (Museum national d'histoire naturelle, Paris) reveals that this species properly belongs in the genus *Metacycla* as comb. nov.

Genus Nyctiplanctus Blake, 1963

Nyctiplanctus Blake, 1963: 15 (type species Nyctiplanctus farri Blake, 1963, by original designation).

Remarks

This genus contains eight described species, all from the West Indies. See Figs 47–48 for habitus illustrations.

Genus *Pyesexora* gen. nov. urn:lsid:zoobank.org:act:6EA58217-4FF6-471D-BD61-01C244A63265

Type species

Crioceris detrita Fabricius, 1801, by present designation.

Diagnosis

All of the named species in this genus were most recently placed in *Pyesia* Clark, 1865, but they dramatically differ from true members of that genus. Among other things, the aedeagus of *Pyesexora* gen. nov. is symmetrical in dorsal view, while that of *Pyesia* is strongly asymmetrical. See the following key for additional diagnostic characters.

Etymology

The name 'Pyesexora' is a combination of Pyesia and Exora. It should be treated as a female noun.

This new genus occurs from Mexico through much of South America, as well as in the Lesser Antilles. It includes *P. detrita detrita* (Fabricius, 1801) [originally named in *Crioceris* Geoffroy, 1762], *P. detrita laevicollis* (Jacoby, 1887) [originally named in *Malacosoma* Chevrolat, 1837], *P. detrita meridionalis* (Bechyné, 1958) [originally named in *Pyesia*], *P. elytropleuralis elytropleuralis* (Bechyné, 1958) [originally named in *Pyesia*], *P. elytropleuralis elytropleuralis* (Bechyné, 1958) [originally named in *Pyesia*], and *P. elytropleuralis subalutacea* (Bechyné, 1958) [originally named in *Pyesia*], all comb. nov. The genus is in need of taxonomic revision. Our examinations show that there are numerous species, markedly differing from each other in aedeagal shape. Some of the differences we have seen may correspond to the named subspecies, and, if so, these should be elevated to species rank. Other aedeagal differences surely correspond to unnamed species. See Figs 63, 145, 148, 156, 189, and 196 for a habitus illustration and morphological details. See Bechyné (1958) for a key to distinguish some of the putative species and subspecies (cited as *Pyesia*).

Genus Pyesia Clark, 1865

Pyesia Clark, 1865: 260 (type species Galeruca laticornis Germar, 1823, by monotypy).

Remarks

After our transferal of two species to *Pyesexora* gen. nov., *Pyesia* now contains 13 described species. See Fig. 64 for a habitus illustration. However, *Pyesia* continues to be a heterogeneous assemblage of species. The following key will enable some of them to be identified as this genus, but perhaps not all of them. Future taxonomic investigation will probably lead to additional species being removed from *Pyesia* and transferred to other genera (some likely to *Uaupesia* Bechyné, 1957).

Genus Sonyadora Bechyné, 1958

Sonyadora Bechyné, 1958: 594 (type species Malacosoma quadripustulatum Bowditch, 1925, by original designation).

Remarks

This genus currently includes eleven described species, distributed in Central and South America. See Fig. 60 for a habitus illustration. However, they are rather heterogeneous. Possibly, the following key will not identify some of them as *Sonyadora*. Future investigation will probably necessitate the transferal of some species to other genera.

Genus Trigonexora Bechyné & Bechyné, 1969

Trigonexora Bechyné & Bechyné, 1969: 90 (type species *Exora stilodina* Bechyné & Bechyné, 1962, by original designation).

Remarks

This genus currently contains only four described species, but some of the species currently in *Exora* probably belong here. Numerous apparently undescribed species also belong in *Trigonexora*. The males of some species have a curious, slender appendage on the abdomen, but the males of other species do not. The genus occurs in South America. See Figs 62 and 200.

Genus Uaupesia Bechyné, 1957

Uaupesia Bechyné, 1957: 139 (type species Uaupesia romani Bechyné, 1957, by monotypy).

This genus contains eight described species, all from South America. See Figs 69 and 197.

Genus Zepherina Bechyné, 1958

Zepherina Bechyné, 1958: 590 (type species Malacosoma bellum Bowditch, 1925, by original designation).

Remarks

This genus is reported to occur in Central and South America. An undescribed species from the Bahamas may also belong here. However, the genus is composed of a heterogeneous mixture of species. Most notably, the aedeagi vary dramatically in form. The beetles are also very heterogeneous in their externally visible characters (hence, the numerous places the genus appears in the key). Future systematic study will surely result in the genus being subdivided into numerous smaller genera. The following key accounts for much of the heterogeneity, but may not allow for identification of all of the species currently in the genus. Moreover, minimal characters differentiate *Zepherina* from *Masurius*. Some of the species currently placed in *Zepherina* might more properly belong in *Masurius*. Together, the two genera currently contain approximately 60 named species. See Figs 52–55 and 155 for illustrations of *Zepherina*.

Tribe Luperini Gistel, 1848 Subtribe Diabroticina Chapuis, 1875 Section Diabroticites Chapuis, 1875

Genus Acalymma Barber, 1947

Acalymma Barber, 1947a: 154 (type species Acalymma gouldi Barber, 1947, by original designation).

Remarks

This genus contains about 80 described species. They are distributed from Canada through much of South America, as well as in West Indies. See Figs 77–78 for habitus illustrations. See Bechyné (1958), Bechyné & Bechyné (1968), Munroe & Smith (1980), and Cabrera (1999) for keys to many of the species. Some of the smaller beetles are very similar to some of the small *Isotes*, and their generic placements warrant reevaluation.

Genus Amphelasma Barber, 1947

Amphelasma Barber, 1947a: 158 (type species Galeruca cava Say, 1835, by original designation).

Remarks

This genus currently contains only eleven described species, distributed from the United States to northern South America. However, some species currently placed in other genera may properly belong here. On the other hand, *A. nigrolineata* (Jacoby, 1878), a species from Mexico and Central America, might more properly belong in *Diabrotica* Chevrolat, 1836. See Figs 73 and 181 for illustrations of *Amphelasma*.

Genus Anisobrotica Bechyné & Bechyné, 1969

Anisobrotica Bechyné & Bechyné, 1969: 30 (type species *Diabrotica donckieri* Baly, 1889, by original designation).

This genus includes five described species. They occur from Brazil to Argentina. See Figs 74 and 191.

Genus Aristobrotica Bechyné, 1956

Aristobrotica Bechyné, 1956a: 285 (type species Galeruca decemguttata Olivier, 1808, by original designation).

Remarks

This genus contains 17 described species (Moura 2011). They occur in Panama and much of South America. See Figs 91 and 205.

Genus Buckibrotica Bechyné & Bechyné, 1969

Buckibrotica Bechyné & Bechyné, 1969: 29 (type species *Diabrotica cinctipennis* Baly, 1886, by original designation).

Remarks

This genus contains only one described species, *B. cinctipennis* (Baly, 1886) from South America. See Fig. 83 for a habitus illustration.

Genus Cochabamba Bechyné, 1955

Cochabamba Bechyné, 1955b: 6 (type species Diabrotica marginata Harold, 1875, by original designation).

Remarks

This genus contains about ten described species, all from South America. See Figs 66, 182, 190, and 230.

Genus Cornubrotica Bechyné & Bechyné, 1969

Cornubrotica Bechyné & Bechyné, 1969: 29 (type species *Diabrotica dilaticornis* Baly, 1879, by original designation).

Remarks

This genus contains only two described species from Venezuela, Brazil and French Guiana. See Figs 81 and 209.

Genus Diabrotica Chevrolat in Dejean 1836

Diabrotica Chevrolat in Dejean 1836: 380 (type species *Crioceris fucata* Fabricius, 1787, by subsequent designation of Barber 1947a).

Remarks

This is a very large genus, with nearly 400 described species from the New World and includes some of the most agriculturally damaging pests on Earth. Species from North and Central America have recently been treated by Derunkov *et al.* (2020). However, although there are studies of local faunas and of certain species groups, there is no modern, comprehensive treatment for the species from South America. See Fig. 67 for a habitus illustration.

Genus Ensiforma Jacoby, 1876

Ensiforma Jacoby, 1876: 817 (type species Ensiforma caerulea Jacoby, 1876, by original designation).

Remarks

Ensiforma occurs in much of South America. See Fig. 79 for a habitus illustration. The genus currently contains just nine described species. However, numerous other species belong here, but they are currently undescribed or perhaps misplaced in genera such as *Isotes*.

Genus Gynandrobrotica Bechyné, 1955

Gynandrobrotica Bechyné, 1955a: 9 (type species *Diabrotica xanthoptera* Baly, 1886, by original designation).

Remarks

Wilcox (1972) listed 32 species for this genus. They occur from Mexico through much of South America. However, the genus apparently does not form a monophyletic clade, some species being nested within Diabroticites and others within Cerotomites Chapuis, 1875 (Gillespie *et al.* 2008). See Figs 82 and 158–160.

Genus Isotes Weise, 1922

Isotes Weise, 1922: 64 (type species *Isotes quadrimaculata* Weise, 1922, by monotypy). *Synbrotica* Bechyné, 1956a: 243 (type species *Diabrotica borrei* Baly, 1889, by original designation).

Remarks

This is a large genus, containing about 200 described species, occurring in Mexico, Central America, South America, and the West Indies. See Figs 84–88 for habitus illustrations. The included species are rather heterogeneous, and the relationships to various other genera, such as *Acalymma* and *Ensiforma*, are currently unclear. Future investigation will probably result in *Isotes* being subdivided into numerous smaller genera.

Genus Microbrotica Jacoby, 1887

Microbrotica Jacoby, 1887: 569 (type species Microbrotica subglabrata Jacoby, 1887, by monotypy).

Remarks

Smith & Lawrence (1967) "tentatively" assigned this genus to the tribe Metacyclini. However, we find very little similarity with other metacylines. We here transfer the genus to the section Diabroticites (Luperini: Diabroticina), **new taxonomic placement**. This genus contains a single described species, *M. subglabrata*, which occurs in Panama (Fig. 72).

Genus Palmaria Bechyné, 1956

Palmaria Bechyné, 1956a: 284 (type species Palmaria tibialis Bechyné, 1956, by monotypy).

Remarks

This genus contains a single species, *P. tibialis* from Bolivia and Peru.

Genus Paranapiacaba Bechyné, 1958

Paranapiacaba Bechyné, 1958: 562 (type species *Diabrotica decemverrucata* Gahan, 1891, by original designation).

Remarks

This genus contains 58 described species. They occur from the United States through much of South America, and in West Indies. See Figs 70–71 for habitus illustrations.

Genus Paratriarius Schaeffer, 1906

Paratriarius Schaeffer, 1906: 243 (type species Galeruca dorsata Say, 1824, by original designation). Chanchamayia Bechyné, 1956a: 243 (type species Diabrotica flavolimbata Erichson, 1847, by original designation).

Remarks

Wilcox (1972) listed 51 species for this genus. They occur in North, Central, and South America. See Figs 75–76, and 227.

Genus Platybrotica Cabrera & Walsh, 2004

Platybrotica Cabrera & Walsh, 2004: 7 (type species *Platybrotica misionensis* Cabrera & Walsh, 2004, by original designation).

Remarks

This genus contains a single species, *P. misionensis*. Externally, it is very similar to *Diabrotica*, except the male antennae are enlarged and modified. The species occurs in Argentina.

Genus Prathapanius Viswajyothi & Clark, 2020a

Prathapanius Viswajyothi & Clark, 2020a: 113 (type species *Prathapanius fortis* Viswajyothi & Clark, 2020, by original designation).

Remarks

This genus contains a single described species, P. fortis from Ecuador. See Figs 90, 180, and 207.

Genus *Pseudodiabrotica* Jacoby, 1892

Pseudodiabrotica Jacoby, 1892: 334 (type species *Pseudodiabrotica metallica* Jacoby, 1892, by monotypy).

Remarks

This genus contains a single species, P. metallica (Figs 80, 228) from Mexico.

Genus Zischkaita Bechyné, 1956

Zischkaita Bechyné, 1956a: 263 (type species Zischkaita boliviensis Bechyné, 1956, by monotypy).

Remarks

This genus contains nine described species. They occur in Bolivia, Brazil, and Peru. See Fig. 68 for a habitus illustration.

Tribe Luperini Gistel, 1848 Subtribe Diabroticina Chapuis, 1875 Section Cerotomites Chapuis, 1875

Genus Cerotoma Chevrolat in Dejean 1836

Cerotoma Chevrolat in Dejean 1836: 379 (type species *Crioceris caminea* Fabricius, 1801, by subsequent designation of Chapuis 1875).

Andrector Horn, 1872: 152 (type species Andrector sexpunctatus Horn, 1872, by monotypy).

Remarks

This genus contains 16 described species. They occur from Canada through much of South America, as well as in West Indies. See Figs 97, 165, 166, and 210.

Genus Cyclotrypema Blake, 1966

Cyclotrypema Blake, 1966b: 354 (type species Galeruca furcata Olivier, 1808, by original designation).

Remarks

This genus contains a single described species, *C. furcata* (Olivier, 1808) from Texas and Mexico. See Figs 102, 164, and 194.

Genus Eccoptopsis Blake, 1966

Eccoptopsis Blake, 1966b: 339 (type species *Neobrotica denticornis* Jacoby, 1887, by original designation).

Remarks

This genus contains twelve described species. They occur from Mexico through much of South America. See Figs 101, 170, 171, and 211 for a habitus illustration and morphological details. See Blake (1966b) for a key to most of the species.

Genus Eucerotoma Laboissière, 1939

Eucerotoma Laboissière, 1939: 155 (type species *Cerotoma heterocera* Baly, 1866, by original designation).

Remarks

This genus contains 20 described species. They are all from South America. See Figs 99 and 167–169.

Genus Hyperbrotica Bechyné & Bechyné, 1968

Hyperbrotica Bechyné & Bechyné, 1968: 26 (type species *Crioceris ebraea* Fabricius, 1787, by original designation).

Remarks

This genus contains a single species, *H. ebraea* (Fabricius, 1787), with two named subspecies. The distribution is in northern South America. The tarsal claws are bifid in males. However, the inner claw lobe on the hind leg is slightly broader than the inner lobe on the front and middle legs. Females have appendiculate tarsal claws. See Fig. 92 for a habitus illustration.

Genus Hystiopsis Blake, 1966

Hystiopsis Blake, 1966b: 324 (type species Crioceris marginalis Fabricius, 1801, by original designation).

Remarks

This genus contains 19 described species. They occur throughout much of South America. Most of them were treated in a key by Blake (1966b). See Fig. 93 for a habitus illustration.

Genus Interbrotica Bechyné & Bechyné, 1965

Interbrotica Bechyné & Bechyné, 1965: 14 (type species *Interbrotica desiderata* Bechyné & Bechyné, 1965, by monotypy).

Remarks

This genus contains a single described species, I. desiderata from northeastern Brazil.

Genus Metrobrotica Bechyné, 1958

Metrobrotica Bechyné, 1958: 596 (type species Cerotoma geometrica Erichson, 1847, by original designation).

Remarks

This genus contains a single described species, *M. geometrica* (Erichson, 1847) from Bolivia, Ecuador, and Peru. See Figs 94, 162, 163, 193, and 212.

Genus Neobrotica Jacoby, 1887

Neobrotica Jacoby, 1887: 571 (type species *Neobrotica variabilis* Jacoby, 1887, by subsequent designation of Weise 1924).

Remarks

This genus contains 64 described species. They occur from the southern United States through much of South America. See Fig. 96 for a habitus illustration. See Blake (1966b) for keys to the species.

Genus Potamobrotica Blake, 1966

Potamobrotica Blake, 1966b: 351 (type species *Potamobrotica trifasciata* Blake, 1966, by original designation).

Remarks

This genus contains three described species. They occur in Brazil and Venezuela. See Fig. 98 for a habitus illustration.

The Palearctic species *Sermylassa halensis* (Linnaeus, 1767), belonging to the tribe Hylaspini Chapuis, 1875, has been reported from several localities in North America, but these reports are extremely doubtful (Wilcox 1965). Since *Sermylassa* Reitter, 1913 probably does not occur on the American continents, we have excluded this genus from the following key. However, if specimens were to be discovered, they would probably be keyed to couplet 107, although the inner lobes of the tarsal claws are more pointed than in many other genera with appendiculate claws. The uniformly metallic green elytra of *Sermylassa* easily distinguish this genus from the two genera diagnosed in couplet 107, *Potamobrotica* and *Coronabrotica* Moura, 2010.

Genus Rachicephala Blake, 1966

Rachicephala Blake, 1966b: 353 (type species *Neobrotica vittatipennis* Jacoby, 1887, by original designation).

Remarks

This genus contains a single described species, *R. vittatipennis* (Jacoby, 1887) from Mexico. See Fig. 95 for a habitus illustration.

Tribe Luperini Gistel, 1848 Subtribe Diabroticina Chapuis, 1875 Section Phyllecthrites Horn, 1892

Genus Coronabrotica Moura, 2010

Coronabrotica Moura, 2010: 27 (type species *Coronabrotica amazonensis* Moura, 2010, by original designation).

Remarks

This genus includes a single species, *C. amazonensis* (Figs 114, 178–179) from Brazil. For comments about this genus, in conjunction with the Palearctic genus *Sermylassa* Reitter, 1913, see our explanation under *Potamobrotica*, section Cerotomites.

Genus Deinocladus Blake, 1966

Deinocladus Blake, 1966a: 259 (type species *Diabrotica pectinicornis* Baly, 1889, by original designation).

Remarks

This genus contains three described species. They occur in Costa Rica, Colombia, Peru, and Bolivia. See Figs 113, 217, and 231.

Genus Ectmesopus Blake, 1940

Ectmesopus Blake, 1940: 96 (type species Ectmesopus darlingtoni Blake, 1940, by original designation).

Remarks

This genus contains 16 described species. They are all from the Greater Antilles. See Fig. 104 for a habitus illustration. See Blake (1958) for a key that includes most of the described species. However, realize that four species have been named subsequent to that key (Blake 1959, 1966a; Zayas 1988).

Genus Heterochele Viswajyothi & Clark, 2021

Heterochele Viswajyothi & Clark, 2021a: 3105 (type species *Heterochele actias* Viswajyothi & Clark, 2021, by original designation).

Remarks

This genus contains two described species, occurring in Costa Rica and Panama. It is tentatively placed in the section Phyllecthrites, because the preapical, ventral portion of the male middle tibia is concave. However, the concavity is slight and not forming a deep notch as in most other genera of Phyllecthrites.

The setae along the lateral margin of the pronotum (easily abraded) are suggestive of a relationship with *Acalymma* (section Diabroticites). The deep incision at the apex of the male abdomen and the tarsal claws (bifid in males, appendiculate in females) are both remarkable, as well as somewhat confusing with regards to classification. See Fig. 89 for a habitus illustration.

Genus Leptonesiotes Blake, 1958

Leptonesiotes Blake, 1958: 75 (type species *Diabrotica cyanospila* Suffrian, 1867, by original designation).

Remarks

This genus contains three extant species, all from Cuba. See Figs 108 and 202 for a habitus illustration and morphological details. A fossil species is known from Dominican amber (Santiago-Blay *et al.* 1996).

Genus Luperosoma Jacoby, 1891

Luperosoma Jacoby, 1891: 87 (type species Luperosoma marginata Jacoby, 1891, by original designation).

Deuterobrotica Bechyné, 1958: 596 (type species *Diabrotica amplicornis* Baly, 1886, by original designation).

Remarks

This genus includes 13 described species, occurring from the southern United States through much of South America. See Fig. 111 for a habitus illustration. See Blake (1958) for a key that includes some, but not all, of the species. Females are hardly distinguishable from females of some species of *Trichobrotica* Bechyné, 1956.

Genus Oroetes Jacoby, 1888

Oroetes Jacoby, 1888: 600 (type species Oroetes flavicollis Jacoby, 1888, by monotypy).

Remarks

This genus contains four described species. They occur in Mexico, Nicaragua, Panama, and Bolivia. See Figs 105, 172, and 216 for a habitus illustration and morphological details. See Niño-Maldonado & Clark (2020b) for a key to species.

Genus Parabrotica Bechyné & Bechyné, 1961

Parabrotica Bechyné & Bechyné, 1961: 23 (type species *Parabrotica decolor* Bechyné & Bechyné, 1961, by monotypy).

Neotrichota Blake, 1966a: 241 (type species *Neotrichota flavipennis* Blake, 1966, by original designation).

Remarks

This genus contains three described species. They occur in northern South America. See Fig. 109 for a habitus illustration.

Genus Phyllecthris Dejean, 1836

Phyllecthris Dejean, 1836: 382 (type species *Galeruca dorsalis* Olivier, 1808, by monotypy). *Myocera* Dejean, 1836: 382 (nomen nudum).

This genus contains three described species, all from the eastern United States. Each antenna is composed of ten antennomeres in males and eleven antennomeres in females. See Fig. 100 for a habitus illustration. See Blake (1958) and Wilcox (1965) for keys to the species.

Genus Platymorpha Jacoby, 1888

Platymorpha Jacoby, 1888: 602 (type species *Platymorpha variegata* Jacoby, 1888, by original designation).

Remarks

This genus includes three described species. They occur in Mexico and Central America. See Figs 106, 176, and 177 for habitus illustrations and morphological details. The preapical notch of the male middle tibia, characteristic of the section Phyllecthrites, is very small or absent in some species of this genus. The following key enables correct identification, whether or not the notch is interpreted to be present. *Chthoneis smaragdipennis* Jacoby, 1888, formerly included in *Platymorpha*, is herein transferred to *Trachyelytron* gen. nov.

Genus Porechontes Blake, 1966

Porechontes Blake, 1966a: 251 (type species Porechontes wilcoxi Blake, 1966, by original designation).

Remarks

This genus contains three described species. They occur in Panama, Peru, and Brazil. See Figs 103 and 173.

Genus Romanita Bechyné, 1957

Romanita Bechyné, 1957: 136 (type species Romanita amazonica Bechyné, 1957, by original designation).

Remarks

This genus contains five described species. They occur in Brazil and Colombia.

Genus Simopsis Blake, 1966

Simopsis Blake, 1966a: 253 (type species Simopsis neobroticoides Blake, 1966, by original designation).

Remarks

This genus contains just one described species, S. neobroticoides from Brazil.

Genus *Trachyelytron* gen. nov. urn:lsid:zoobank.org:act:359BFF29-9AAE-4A1B-94A5-6D5BE20F675C

Type species

Chthoneis smaragdipennis Jacoby, 1888, by present designation.

Diagnosis

The single named species in this genus was formerly placed in *Platymorpha*, but the two genera have very little in common. Among other things, males of *Trachyelytron* gen. nov. lack a mesal spine or spine-

like tuft of setae on the clypeus, as well as enlarged foretibiae that are characteristic of *Platymorpha*. The coarse elytral punctation (Fig. 107) is also characteristic of the new genus. See the following key for additional diagnostic characters.

Etymology

The name 'Trachyelytron' is Greek for 'rough sheath', and it refers to the coarsely punctate elytra.

Remarks

This genus is erected to accommodate a single described species, *T. smaragdipennis* (Jacoby, 1888) comb. nov., which occurs in Guatemala. Specimens we have seen from Nicaragua probably belong to the same species, although the elytra are metallic purple, rather than metallic green. See Fig. 107 for a habitus illustration.

Genus Trichobrotica Bechyné, 1956

Trichobrotica Bechyné, 1956b: 969 (type species *Diabrotica sexplagiata* Jacoby, 1878, by original designation).

Iceloceras Blake, 1958: 76 (type species Diabrotica sexplagiata Jacoby, 1878, by original designation).

Remarks

This genus includes 22 described species, occurring from Mexico through much of South America. See Fig. 110 for a habitus illustration. See Blake (1958) for a key that includes some, but not all, of the species (as *Iceloceras*). Also, realize that the genus should probably be split to form multiple genera. Blake (1966a) stated that the species with a relatively short third antennomere might eventually be removed from the genus. Additional variability involves the elytral punctures, which are exceptionally coarse in some species, while being extremely minute in others. The different genal lengths among the species are also noteworthy. Females of some species of *Trichobrotica* are hardly distinguishable from females of *Luperosoma*. A species described from Guatemala, *Luperus albomarginatus* Jacoby, 1888, has most recently been classified in the genus *Pseudoluperus* Beller & Hatch, 1932. However, our examination of the type specimen (British Museum of Natural History) reveals that it instead belongs in *Trichobrotica*. Hence, we propose a new combination, *Trichobrotica albomarginata* (Jacoby, 1888) comb. nov. This species is very similar to *T. nymphaea* (Jacoby, 1887) but differs in having a dark occiput. Perhaps, the two are synonyms, but this requires further study.

Tribe Luperini Gistel, 1848 Subtribe Diabroticina Chapuis, 1875 Section Trachyscelidites Wilcox, 1972

Genus Trachyscelida Horn, 1893

Trachyscelida Horn, 1893: 107 (type species Agelastica bicolor LeConte, 1884, by monotypy).

Racenisa Bechyné, 1958: 604 (type species Racenisa venezuelensis Bechyné, 1958, by original designation).

Remarks

This genus contains seven described species. They occur from the United States (Arizona) through much of South America. See Fig. 115 for a habitus illustration. See Bechyné (1958) for a key that includes most of the species. *Agelastica bicolor* LeConte, 1884, and *Racenisa bicolor* Bechyné, 1958, are both currently included in *Trachyscelida*. We here propose *Trachyscelida dichroma* **nom. nov**., as a replacement name for *R. bicolor* Bechyné, 1958.

The Palearctic species *Agelastica alni* (Linnaeus, 1758), belonging to the tribe Hylaspini Chapuis, 1875, has been reported from eastern Canada and the northeastern United States, but this species is not thought to be established in North America (Riley *et al.* 2003). Since *Agelastica* Chevrolat, 1836 probably does not occur on the American continents, we have excluded this genus from the following key. However, if specimens were to be discovered, they would key to couplet 134, along with *Trachyscelida*, which shares a similar, broadly ovate body form. The two genera are easily distinguished by the pronotal color, that of *Agelastica* being concolorous with the dark elytra, while that of *Trachyscelida* is pale, strongly contrasting with the dark elytra.

Tribe Luperini Gistel, 1848 Subtribe Luperina Gistel, 1848 Section Scelidites Chapuis, 1875

Genus *Amplioluperus* gen. nov. urn:lsid:zoobank.org:act:E1537450-57C4-4683-84EE-2F679D6242DD

Type species

Luperus maculicollis LeConte, 1884, by present designation.

Diagnosis

In this genus, the antennae extend to near the middle of the elytra, the third antennomere is less than twice as long as the second, the base of the pronotum is margined by a fine bead, and tibial spurs are present on at least the hind legs. The aedeagus is symmetrical, and the aedeagal orifice lacks a sclerotized covering. Males lack the extraordinary modifications found in some other genera of Scelidites (greatly swollen antennomeres, large apicolateral fovea on the elytra, large apical extension to the metatibia, unusually enlarged tarsi on the middle or hind legs, abdominal appendages). See the following key for additional diagnostic characters.

Etymology

The genus name *Amplioluperus*, refers to the large size of the type species, in comparison to beetles in related genera. It should be treated as a male noun.

Remarks

Amplioluperus gen. nov. includes three named species, all of which are here transferred from the genus *Pseudoluperus*: *Amplioluperus maculicollis* (LeConte, 1884) [originally named in *Luperus* Geoffroy, 1762] comb. nov., *A. cyanellus* (Horn, 1895) [originally named in *Scelolyperus* Crotch, 1874] comb. nov., and *A. histrio* (Horn, 1895) [originally named in *Luperodes* Motschulsky, 1858] comb. nov. Further investigation will likely prove that the pale form of "*Pseudoluperus cyanellus*" from Arizona is an undescribed species. True *A. cyanellus* is a darkly colored species occurring in the Baja California peninsula. This new genus is known only from the southwestern United States and northwestern Mexico (including the Baja California peninsula). See Fig. 120 for a habitus illustration.

It is noteworthy that *Scelolyperus cyanellus* Horn, 1895 (here transferred to *Amplioluperus* gen. nov.) is a homonym of *Luperus cyanellus* LeConte, 1865 (currently placed in *Scelolyperus*). However, no replacement name is needed (ICZN article 59.2).

Genus Androlyperus Crotch, 1873

Androlyperus Crotch, 1873: 55 (type species *Androlyperus fulvus* Crotch, 1873, by monotypy). *Malacamerus* Wilcox, 1951: 93 (type species *Androlyperus maculatus* LeConte, by original designation).

This genus includes six described species. They occur in the southwestern United States and northwestern Mexico. See Figs 128 and 232 for a habitus illustration and morphological details. See Clark (2001) for a key to species. In contrast to the male modification of some species of *Malacorhinus*, the male modification in *Androlyperus* is at the apicolateral angle of the elytron, rather than near the mid-length of the elytron.

Genus Carpiradialis Niño-Maldonado & Clark, 2020a

Carpiradialis Niño-Maldonado & Clark, 2020a: 564 (type species *Carpiradialis pueblensis* Niño-Maldonado & Clark, 2020, by original designation).

Remarks

This genus includes two described species, both from Mexico. See Figs 112 and 206 for a habitus illustration and morphological details. The diagnostic key to the genera of Scelidites by Clark (1998) emphasized the presence or absence of a bead along the posterior margin of the pronotum. However, this character varies in *Carpiradialis*, being very fine yet discernable in one species and missing in the other. Even so, we believe that the two species are closely related and should be classified in the same genus. See Niño-Maldonado & Clark (2020a) for a key to the species of *Carpiradialis*.

Genus *Cornuventer* gen. nov. urn:lsid:zoobank.org:act:66B597D1-E741-42AC-A86E-5654078DB5D5

Type species

Luperodes tuberculatus Blake, 1942, by present designation.

Diagnosis

In this genus, the anterior margin of the pronotum is fringed by a row of short setae, the basal margin of the pronotum is equipped with a fine bead, and the second abdominal ventrite of the male is equipped with two short horns (Fig. 201). See the following key for additional diagnostic characters.

Etymology

The name '*Cornuventer*' is Latin for 'horn belly', and it refers to the abdominal appendages of the male. It should be treated as a male noun.

Remarks

The single species included in this genus is *C. tuberculatus* (Blake, 1942) comb. nov. It was originally named in *Luperodes* and most recently placed in *Pseudoluperus* from California. See Fig. 122 for a habitus photograph.

Genus *Geethaluperus* gen. nov. urn:lsid:zoobank.org:act:D8D6888A-CDA6-4370-9528-8DC8EABA3438

Type species

Luperus flavofemoratus Jacoby, 1888, by present designation.

Diagnosis

In this genus, the genal length is less than the width of the basal antennomere, the antennal fossae are separated from each other by a distance much less than the diameter of each fossa, the base of the

pronotum has a fine yet distinct bead, the tarsal claws are bluntly appendiculate, the rectangular lobe at the apex of the male abdomen is much less than half as long as wide, and the aedeagus is symmetrical and lacks a sclerotized covering to the orifice. However, the most remarkable character is the mesal appendage that extends posteriorly from the posterior margin of second abdominal sternite of the male. This appendage is single at the base but separates into two divergent lobes in the distal half.

Etymology

The name of the genus should be treated as a male noun, and it honors Geetha, the mother of the first author.

Remarks

Although male abdominal appendages are present in some other Scelidites (*Cornuventer tuberculatus* comb. nov., *Androlyperus fulvus*, some species of *Scelida*), the morphology is quite different. See Figs 117 and 174 for a habitus illustration and morphological details of *Geethaluperus* gen. nov. The single described species included in this genus is *G. flavofemoratus* (Jacoby, 1888) comb. nov. This species is pale brown, except for the antennae and legs. Most recently, it was included in *Pseudoluperus*, but it was quite out of place there. An undescribed species from Mexico is very similar in color and morphology (including the abdominal appendage), but the eyes are much smaller (in *G. flavofemoratus*, the width of the head across the eyes if fully twice as great as the interocular distance, and the genal length is less than the diameter of an ommatidium).

Genus Inbioluperus Clark, 1993

Inbioluperus Clark, 1993: 215 (type species Inbioluperus flowersi Clark, 1993, by original designation).

Remarks

This genus contains two described species. They are both from Costa Rica. See Fig. 129 for a habitus illustration. See Clark (1993) for a key to the species.

Genus Keitheatus Wilcox, 1965

Keitheatus Wilcox, 1965: 163 (type species Scelolyperus blakeae White, 1944, by original designation).

Remarks

This genus contains only a single described species, *K. blakeae* (White, 1944), which occurs in Texas and Mexico. See Figs 125 and 203 for a habitus illustration and morphological details. *Luperodes histrio*, which was transferred to *Keitheatus* by Wilcox (1973) and later to *Pseudoluperus* by Andrews & Gilbert (2005), is here transferred to *Amplioluperus* gen. nov.

Genus Lygistus Wilcox, 1965

Lygistus Wilcox, 1965: 160 (type species Lygistus streptophallus Wilcox, 1965, by original designation).

Remarks

This genus contains a single described species, *L. streptophallus* (Fig. 131) from Arizona and nearby areas of Mexico.

Genus Metacoryna Jacoby, 1888

Metacoryna Jacoby, 1888: 605 (type species *Metacoryna fulvicollis* Jacoby, 1888, by original designation).

Cyphotarsis Jacoby, 1892: 339 (type species Cyphotarsis niger Jacoby, 1892, by monotypy).

Remarks

This genus contains eight described species. Numerous undescribed species also belong here (Clark 1987b). They occur in Mexico and Central America. See Figs 126 and 214 for a habitus illustration and morphological details. See Clark (1987b) for a key to the species.

Genus *Mexiluperus* gen. nov. urn:lsid:zoobank.org:act:F3061F04-546A-409E-B089-AE430CE5BAEE

Type species

Luperus dissimilis Jacoby, 1888, by present designation.

Diagnosis

In this genus, the distance between the antennal fossae equals less than twice the diameter of a fossa, the third antennomere is less than half as long as the second, the pronotum is equipped with a fine basal bead, the elytra lack a transverse impression at the basal third, the elytral punctation is conspicuous, and the apical lobe of the male abdomen is less than half as long as broad. Males lack the extraordinary modifications found in some other genera of Scelidites (greatly swollen antennomeres, large apicolateral fovea on the elytra, large apical extension to the metatibia, unusually enlarged tarsi on the middle or hind legs, abdominal appendages). The aedeagus (which may be either symmetrical or asymmetrical) lacks a sclerotized covering to the orifice. See the following key for additional diagnostic characters.

Etymology

The name of this new genus refers to the geographic distribution, which is principally in Mexico. It should be treated as a male noun.

Remarks

Mexiluperus gen. nov. includes two described species, both of which are here transferred from the genus *Pseudoluperus*: *M. dissimilis* (Jacoby, 1888) [originally named in *Luperus*] comb. nov., and *M. wickhami* (Horn, 1893) [originally named in *Luperodes*] comb. nov. See Clark (1987b) for a key to the species, including numerous undescribed species (as part of *Pseudoluperus*). See Fig. 119 for a habitus illustration. The genus occurs in Arizona and Mexico.

Genus Microscelida Clark, 1998

Microscelida Clark, 1998: 195 (type species *Microscelida viridipennis* Clark, 1998, by original designation).

Remarks

This genus includes eleven described species, all from Mexico. See Clark (1998) for a key to species. See Fig. 133 for a habitus illustration.

Genus *Monoaster* gen. nov. urn:lsid:zoobank.org:act:2597C0FD-8DB4-431B-A90C-4121E00F1ADD

Type species

Pseudoluperus fulgidus Wilcox, 1965, by present designation.

Diagnosis

This genus is quite distinctive in the form of the supracallinal sulcus, that is, the sulcus delimiting the posterior edge of the antennal calli (= frontal tubercles). This sulcus extends obliquely from the meson to a point over the inner extreme of the antennal fossa. It then bends abruptly downward, at an angle of about 90°. It continues for a short distance and abruptly bends again. Finally, it extends laterally to the orbit. *Mexiluperus wickhami* (Horn, 1893), a species from Arizona, has a similar sulcus but differs in the more coarsely punctate elytra. See the following key for additional characters defining *Monoaster* gen. nov.

Etymology

The name '*Monoaster*' is Greek for 'single star'. The two included species are both from Texas, nicknamed The Lone Star State. The name should be treated as a male noun.

Remarks

This genus includes two species, both of which were originally named in the genus *Pseudoluperus*: *M. fulgidus* (Wilcox, 1965) comb. nov, and *M. linus* (Wilcox, 1965) et comb. nov. See Figs 118 and 121 for habitus illustrations. See Wilcox (1965) for a key that includes the two species (as part of *Pseudoluperus*). Edward G. Riley (personal communication) has on several occasions collected *M. fulgidus* from *Colubrina texensis* (Torr. & A. Gray) A. Gray (Rhamnaceae), and *M. linus* by beating *Cercocarpus montanus* Raf. (Rosaceae). In the case of *C. texensis*, the plants were in bloom, but the beetles were not clearly associated with the blossoms, and none of the beetles were found on nearby plant species, including some that were in bloom.

Genus Pseudoluperus Beller & Hatch, 1932

Pseudoluperus Beller & Hatch, 1932: 115 (type species *Pseudoluperus* Beller & Hatch, 1932, by monotypy).

Remarks

In the catalogue of Wilcox (1973), *Pseudoluperus* constituted a heterogeneous assemblage of all sorts of Scelidites (and even a species from another section). Subsequent to that catalogue, Andrews & Gilbert (2005) added one more species to the genus, transferring Luperodes histrio from the genus Keitheatus. Some of the species formerly included in Pseudoluperus have already been transferred to other genera [P. subcostatus (Jacoby, 1888), P. subglabratus (Jacoby, 1888), and P. viridis (Jacoby, 1892) to Microscelida by Clark (1998); P. lecontii (Crotch, 1873) to Scelolyperus by Clark (1996); P. wallacei Wilcox, 1965 to Synetocephalus Fall, 1910 by Riley et al. (2002b)]. In this publication, we transfer most of the remaining species to other genera: Pseudoluperus cyanellus, P. histrio, and P. maculicollis to Amplioluperus gen. nov., P. tuberculatus to Cornuventer gen. nov., P. flavofemoratus to Geethaluperus gen. nov., P. dissimilis and P. wickhami to Mexiluperus gen. nov., P. fulgidus and P. linus to Monoaster gen. nov., P. spretus (Horn, 1893) and P. texanus (Horn, 1893) to Texiluperus gen. nov., and P. albomarginatus Jacoby, 1888 to Trichobrotica. As a result of the aforementioned taxonomic changes, Pseudoluperus now contains only P. bakeri [originally named in Pseudoluperus], P. decipiens (Horn, 1893) [originally named in Scelolyperus], and P. longulus (LeConte, 1857) [originally named in Luperus]. However, P. bakeri was reduced to a synonym of P. longulus by Wilcox (1965). Here, we agree with this synonymy and also reduce P. decipiens to a junior synonym of P. longulus syn. nov. In some male specimens of this species, the more distal antennomeres are enlarged and distinctly flattened (or even concave) on one side. In other males (especially those from the more southern part of the range) and in all females, the antennae are slender and unmodified. This difference has been employed to distinguish the putative species. However, the male antennae of some specimens are intermediate. We believe the difference to be clinal and not diagnostic of different species. We have examined the male holotype of *Luperus longulus* (Museum of Comparative Zoology, Harvard University), the male holotype of *Scelolyperus decipiens* (Museum of Comparative Zoology, Harvard University), and the male holotype of *P. bakeri* (National Museum of Natural History, Washington, DC). In all three specimens, the antennae are at least moderately enlarged. Minor differences also exist in the aedeagi, but these are not correlated with other characters, and we interpret them as mere intraspecific variability. See Figs 123 and 213 for illustrations of *Pseudoluperus*.

Genus Pteleon Jacoby, 1888

Pteleon Jacoby, 1888: 603 (type species *Pteleon semicaeruleus* Jacoby, 1888, by original designation), **new taxonomic placement** (in Scelidites).

Remarks

This genus was formerly classified in the section Exosomites Wilcox, 1973. However, Gillespie *et al.* (2008) provided evidence indicating that it is nested within Scelidites. We here formally make the taxonomic change. The genus contains three described species. They occur in the southwestern United States and in Mexico. See Fig. 137 for a habitus illustration.

Genus Scelida Chapuis, 1875

Scelida Chapuis, 1875: 184 (type species Scelida elegans Chapuis, 1875, by monotypy).

Remarks

This genus contains eleven described species. Numerous undescribed species also belong here (Clark 1987b). They occur from the southwestern United States to Panama. Most of them have appendiculate tarsal claws, but one species, *S. metallica* Jacoby, 1888, has bifid claws. In some species, the males have curious appendages on the ventral side of the abdomen, but these are lacking in other species. See Clark (1987b) for a key to the species. See Fig. 127 for a habitus illustration. As noted in the preceding discussion of *Metacycla*, the species *Cneorane nigripes* does not belong in *Scelida*, although it has been classified in this genus. Additionally, in recent classifications, *Scelolyperus tenuimarginatus* Bowditch, 1925, has been included in *Scelida*. However, examination of the male holotype (Museum of Comparative Zoology, Harvard University) reveals that this species properly belongs in *Mimastra* Baly, 1865 as a comb. nov. Furthermore, we believe the specimen matches *Mimastra semimarginata* Jacoby, 1886, a species occurring in Indonesia. Syntype photographs from the Genoa Museum support this (photographs shared by one of the reviewers). Thus, we synonymize these two names, syn. nov. The locality label "Brasil" for *S. tenuimarginatus* is probably in error.

Genus Scelidacne Clark, 1998

Scelidacne Clark, 1998: 192 (type species Scelidacne andrewi Clark, 1998, by original designation).

Remarks

This genus contains a single described species, S. andrewi (Fig. 135) from Mexico.

Genus Scelolyperus Crotch, 1874

Scelolyperus Crotch, 1874: 79 (type species Scelolyperus tejonicus Crotch, 1874, by monotypy).
Eugalera Brancsik, 1899: 103 (type species Eugalera reitteri Brancsik, 1899, by monotypy).
Tuomuria Chen & Jiang in Huang et al. 1985: 107 (type species Tuomuria tibialis Chen & Jiang, 1985, by original designation).

/

This genus occurs from Canada to Mexico, as well as in the Palearctic Region. In the New World, there are 28 described species. See Figs 130, 149, and 175 for a habitus illustration and morphological details. See Clark (1996) for a key to most of the North American species. Only one New World species has been described subsequent to that publication (Gilbert & Andrews 1999). The Palearctic species were revised by Bezděk (2015).

Genus Synetocephalus Fall, 1910

Synetocephalus Fall, 1910: 146 (type species Synetocephalus autumnalis Fall, 1910, by monotypy).

Remarks

This genus contains eleven described species. They occur in the western United States and northwestern Mexico. See Fig. 116 for a habitus illustration. See Wilcox (1965) for a key that includes most of the described species. Only two species are missing from that key: *S. wallacei* (Wilcox, 1965) that was transferred from *Pseudoluperus* by Riley *et al.* 2002b), and a new species was described by Gilbert & Clark (2012).

Genus *Texiluperus* gen. nov. urn:lsid:zoobank.org:act:5EF4CB1E-8079-498D-A945-B92290EF2357

Type species

Luperodes spretus Horn, 1893, by present designation.

Diagnosis

The antennae of this genus are unusual among the Scelidites, the third antennomere being fully twice as long as the second. See the following key for additional diagnostic characters.

Etymology

The name '*Texiluperus*' suggests that the genus occurs in Texas, which is the case for both described species. The name should be treated as a male noun.

Remarks

This genus includes two putative species, both of which were originally named in *Luperodes* and most recently placed in *Pseudoluperus*: *T. spretus* (Horn, 1893) comb. nov. and *T. texanus* (Horn, 1893) comb. nov. Future study might show that they are mere color forms of a single variable species. See Wilcox (1965) for a key that includes the two putative species (as part of *Pseudoluperus*).

Genus *Triariodes* Clark & Anderson, 2019

Triariodes Clark & Anderson, 2019: 344 (type species *Malacosoma vittipenne* Horn, 1893, by original designation).

Remarks

This genus includes three described species. They occur in the southern United States and Mexico. See Fig. 136 for a habitus illustration. See Clark & Anderson (2019) for a key to species.

Genus Triarius Jacoby, 1887

Triarius Jacoby, 1887: 571 (type species Triarius mexicanus Jacoby, 1887, by monotypy).

Remarks

This genus includes seven described species. They occur in the southern United States and in Mexico. Depending on the species, the tarsal claws are either bifid or appendiculate. See Figs 124 and 198 for a habitus illustration and morphological details. See Clark & Anderson (2019) for a key to the species.

Tribe Luperini Gistel, 1848 Subtribe Luperina Gistel, 1848 Section Phyllobroticites Chapuis, 1875

Genus Phyllobrotica Chevrolat in Dejean, 1836

Phyllobrotica Chevrolat in Dejean, 1836: 381 (type species Chrysomela quadrimaculata Linnaeus, 1758, by subsequent designation of Thomson 1859).
Stachysivora Farrell & Mitter, 1990: 1391 (nomen nudum).

Remarks

This Holarctic genus includes 18 described species in the New World, all from Canada and the United States. See Figs 132, 134, 199, and 225 for a habitus illustration and morphological details. See Wilcox (1965) for a key that includes most of the Nearctic species. However, realize that three species have been named subsequent to that key (Hatch 1971; Riley 1979; Gilbert 2008), and an undescribed species was recognized in an unpublished thesis (Farrell 1985).

Tribe Luperini Gistel, 1848 Subtribe Luperina Gistel, 1848

Section Monoleptites Chapuis, 1875

Remarks

The taxonomic rank and relationships of this group have varied quite dramatically. The group is sometimes viewed as a subtribe within the tribe Luperini (e.g., Wilcox 1965), while other times it is treated as a section within the subtribe Luperina (e.g., Seeno & Wilcox 1982). However, in spite of the superficial similarity with the luperines, we concur with Nie *et al.* (2018) that the group is quite distinct. Perhaps, it should be treated as a section of Galerucinae. Even so, until greater consensus is achieved, we continue to list it as a section of Luperina.

Genus Eusattodera Schaeffer, 1906

Eusattodera Schaeffer, 1906: 244 (type species Eusattodera pini Schaeffer, 1906, by original designation).

Remarks

As currently constituted, this genus contains six described species. However, the New World representatives of the section Monoleptites are in desperate need of taxonomic revision. The differences among the genera are very poorly defined. At present, the generic placements of many of the species are probably incorrect. The confusion is perpetuated in the following key. With regards to *Eusattodera*, the type species (type locality in Arizona), as well as some of its close relatives, are relatively distinctive.

See Fig. 138 for a habitus illustration. However, other species currently in the genus probably belong elsewhere.

Genus Halinella Bechyné, 1956a

Halinella Bechyné, 1956a: 323 (type species Halinella malachioides Bechyné, 1956, by original designation).

Remarks

This genus contains nine described species, all from South America. Compared to other New World genera of Monoleptites, *Halinella* is rather distinctive, the beetles being more elongate and dorsoventrally flattened than many of those in other genera (Fig. 140).

Genus Lilophaea Bechyné, 1958

Lilophaea Bechyné, 1958: 601 (type species *Luperodes brasiliensis* Jacoby, 1888, by original designation).

Remarks

Only 19 species are currently placed in this genus (Groll & Moura 2016). However, they hardly differ from many of those currently placed in other genera of Monoleptites reported to occur in the New World, especially from species in *Luperodes*, *Metrioidea* Fairmaire, 1882, and *Monolepta* Chevrolat, 1836. The generic placements seem to be almost random, except that all species currently in *Lilophaea* are from South America. Upon naming the genus, Bechyné (1958) probably intended that many other New World species should eventually be transferred to *Lilophaea*, including some from north of South America. See Fig. 143 for a habitus illustration.

Genus Luperodes Motschulsky, 1858

Luperodes Motschulsky, 1858: 102 (type species *Luperodes alboplagiatus* Motschulsky, 1858, by subsequent designation of Weise 1924).

Remarks

Wilcox (1973) listed 53 extant New World species for this genus, occurring from Mexico through the northern half of South America. He also listed one fossil species from Colorado. However, future taxonomic revision of the Monoleptites may eventually show that true *Luperodes* does not occur in the New World. Wagner & Bieneck (2012) studied the type species of *Luperodes* and made some notes on the genus. They seem to agree with the conclusion that the New World species are probably misplaced. The genus was originally named from Sri Lanka. The New World species currently included in the genus are hardly distinguishable from those currently in *Lilophaea*, *Metrioidea*, and *Monolepta*. See Fig. 141 for a habitus illustration of one of the New World species currently included in *Luperodes*.

Genus Metrioidea Fairmaire, 1882

Metrioidea Fairmaire, 1882: 489 (type species Metrioidea signatipennis Fairmaire, 1882, by monotypy).

Remarks

Wilcox (1973) listed 14 New World species for this genus, distributed from the United States through Peru. However, similar to the situation with *Luperodes*, future taxonomic revision may eventually show that true *Metrioidea* does not occur in the New World. The genus was originally named from Fiji. The

New World species currently included in the genus are hardly distinguishable from those currently in *Lilophaea*, *Luperodes*, and *Monolepta*. See Fig. 139 for a habitus illustration of one of the New World species currently placed in *Metrioidea*.

Genus Monolepta Chevrolat in Dejean, 1836

Monolepta Chevrolat in Dejean, 1836: 383 (type species *Crioceris bioculata* Fabricius, 1781, by subsequent designation of Chevrolat 1845).

Damais Jacoby, 1903: 118 (type species Damais humeralis Jacoby, 1903, by monotypy).

Chimporia Laboissière, 1931: 413 (type species *Chimporia monardi* Laboissière, 1931, by original designation).

Aemulaphthona Scherer, 1969: 89 (type species Aphthona ochracea Weise, 1922, by original designation).

Remarks

Wilcox (1973) listed 19 New World species for this genus, distributed from Mexico to Panama. However, similar to the situation with *Luperodes* and *Metrioidea*, future taxonomic study may eventually show that true *Monolepta* does not occur in the New World. The genus was originally named from Africa. Wagner (2007) re-described the type species of *Monolepta* and made some notes on the Afrotropical fauna. The New World species currently included in the genus are hardly distinguishable from those currently in *Lilophaea*, *Luperodes*, and *Metrioidea*. The genus *Monolepta* is sometimes reported to differ from the others by having closed anterior coxal cavities, and this character is employed in the key below. Even so, the character is not very useful for the New World fauna. Many of the current generic placements are not correlated with this character. Moreover, some species appear to have open cavities in some individuals and closed cavities in others. This variability may be true in some instances. However, in other instances the apparent difference may be a result of the flimsy nature of the very thin strip of sclerotized cuticle behind the coxae. Possibly, the strip is sometimes present, but withdrawn into the thorax, such that the coxal cavities appear to be open. See Fig. 142 for a habitus illustration of one of the New World species currently included in *Monolepta*.

Key to the tribes, subtribes, and sections of New World Galerucinae Latreille, 1802

(Modified from Riley et al. 2002a)

- Basal spurs of aedeagus small or absent (Fig. 149); male abdomen variable, sometimes with lobe at apex; antennae usually inserted higher, nearer middle of eyes; larvae, where known, feeding on roots.
 4 (Tribe Luperini Gistel, 1848)

European Journal of Taxonomy 842: 1–102 (2022)

Tribe Galerucini Latreille, 1802: Sections Apophyliites Chapuis, 1875, Atysites Chapuis, 1875, Coelomerites Chapuis, 1875, Galerucites Latreille, 1802, Schematizites Chapuis, 1875 Posterior-most ventrite of male abdomen without distinct impression, although sometimes flattened; tibiae usually with terminal spurs; tarsal claws of most genera appendiculate, with broad, blunt lobe (Fig. 145); larvae unknown for most genera, but feeding on leaves in at least one genus	3.	Posterior-most ventrite of male abdomen usually with median, apical, semicircular depression; abdominal apex sometimes emarginate behind impression; tarsal claws of most genera either simple (Fig. 144) or bifid with narrow, sharply pointed appendage (Fig. 146); anterior and posterior tibiae usually without terminal spurs; larvae feeding on leaves
 flattened; tibiae usually with terminal spurs; tarsal claws of most genera appendiculate, with broad, blunt lobe (Fig. 145); larvae unknown for most genera, but feeding on leaves in at least one genus		Tribe Galerucini Latreille, 1802: Sections Apophyliites Chapuis, 1875, Atysites Chapuis, 1875, Coelomerites Chapuis, 1875, Galerucites Latreille, 1802, Schematizites Chapuis, 1875
 genus	_	flattened; tibiae usually with terminal spurs; tarsal claws of most genera appendiculate, with
5 (Subtribe Luperina Gistel, 1848) Last ventrite of male apically rounded or slightly truncate, without lobe 7 (Subtribe Diabroticina Chapuis, 1875) 5. Elytral epipleura extremely narrow, indistinct Section Phyllobroticites Chapuis, 1875 6. Tarsomere 1 of hind leg distinctly longer than 2 and 3 combined; apical lobe of last ventrite of male abdomen large, nearly square (as in Fig. 198); aedeagal orifice covered by sclerotized plate. Section Monoleptites Chapuis, 1875 7 Tarsomere 1 of hind leg usually shorter than 2 and 3 combined; apical lobe of male abdomen usually much wider than long (as in Fig. 199); aedeagal orifice variable, but usually without sclerotized covering 7. Mesotibia of male with deep, inner, subapical notch (Fig. 201) Section Phyllecthrites Horn, 1892 9. Mesotibia of male without subapical notch 9. Elytra entirely dark, with distinct transverse impression near basal third 9. Elytra entirely dark, without transverse impression across basal third		
 Last ventrite of male apically rounded or slightly truncate, without lobe	4.	
 7 (Subtribe Diabroticina Chapuis, 1875) 5. Elytral epipleura extremely narrow, indistinct		
 5. Elytral epipleura extremely narrow, indistinct	_	
 Elytral epipleura normal, comparatively broad at least basally		/ (Subtribe Diabroticina Chapuis, 18/3)
 6. Tarsomere 1 of hind leg distinctly longer than 2 and 3 combined; apical lobe of last ventrite of male abdomen large, nearly square (as in Fig. 198); aedeagal orifice covered by sclerotized plate	5.	Elytral epipleura extremely narrow, indistinct
 male abdomen large, nearly square (as in Fig. 198); aedeagal orifice covered by sclerotized plate	_	Elytral epipleura normal, comparatively broad at least basally
 Tarsomere 1 of hind leg usually shorter than 2 and 3 combined; apical lobe of male abdomen usually much wider than long (as in Fig. 199); aedeagal orifice variable, but usually without sclerotized covering	6.	male abdomen large, nearly square (as in Fig. 198); aedeagal orifice covered by sclerotized
 Mesotibia of male without subapical notch	-	Tarsomere 1 of hind leg usually shorter than 2 and 3 combined; apical lobe of male abdomen usually much wider than long (as in Fig. 199); aedeagal orifice variable, but usually without sclerotized
 8. Tarsal claws bifid, with narrow, sharply pointed inner lobe (as in Fig. 146)	7.	Mesotibia of male with deep, inner, subapical notch (Fig. 201) Section Phyllecthrites Horn, 1892
 Fig. 146)	-	Mesotibia of male without subapical notch
 9. Elytra entirely dark, with distinct transverse impression near basal third	8.	
 Section Trachyscelidites Wilcox, 1972 Elytra often colored otherwise, without transverse impression across basal third 	_	Tarsal claws appendiculate, with comparatively broad, blunt inner lobe (as in Fig. 145)
	9.	
	_	

Key to the genera of adult Galerucinae Latreille, 1802 of the New World

The following key does not deal with the genera of Alticini. See Scherer (1962, 1983) for keys that enable identification of most of those genera. It is not necessary to know the tribe etc. before using the following key to genera. As evidenced by the preceding key, galerucine classification is largely based on male features, especially those found on the aedeagus. The following key to genera partially reflects this, in that some of the couplets mention only male characteristics. Indeed, users will occasionally be frustrated in their attempts at identification, if only female specimens are available for examination. However, such instances are less frequent than in previously published keys. The principal objective of our key is to facilitate identification, rather than follow phylogeny. In an effort to enable identification of females, as well as males, we usually use characters that are present in either gender. Some of these characteristics are of very little value in classification. Accordingly, genera that key out close to each other might be quite distantly related. Moreover, the superficial characters (such as color) may not always allow for proper generic placement of undescribed species.

1.	Hind femora clearly enlarged, except rarely; extensor apodeme present inside hind femur; front coxae of most genera clearly separated from each other by posterior process of prosternum
_	Hind femora not abnormally enlarged (except in <i>Leptonesiotes</i> , an anomalous genus from Cuba, Fig. 202); extensor apodeme absent from inside hind femur; front coxae of most genera contiguous or very narrowly separated
2.	Epipleuron extremely narrow along entire length, narrower than width of second antennomere (Fig. 225)
-	Epipleuron wider, at least near base
3.	Tarsal claws appendiculate, with inner appendage broad and apically blunt (Fig. 145); male with terminal abdominal ventrite impressed, with rectangular lobe at apex (Fig. 199); habitus as in Figs 132, 134; distribution in Canada and United States
_	Tarsal claws bifid, with inner appendage apically pointed (Figs 146–147); male with terminal abdominal ventrite semicircularly incised (Figs 195, 197), but without median rectangular lobe at apex
4.	Metasternum shorter than basal abdominal ventrite; both pronotum and elytra with well-developed tubercles (Fig. 21); distribution in Costa Rica
5.	Elytron with strongly developed carina, beginning at humerus and extending most of elytral length, simulating edge of extremely broad epipleuron (Figs 218–219); elytra with numerous long, erect, comparatively sparse setae, without short, dense, appressed setae (Figs 16–17); distribution in northern South America and perhaps Central America
	Neophaestus Hincks, 1949
6.	Elytra with dense, short, subappressed setae, in most species covering entire disc, in some species evident only in basolateral area; in some species, elytral surface obscured by dense setae; basal spurs of aedeagus well developed in most species (Fig. 148)
_	Elytral setae, when present, rather sparse, long, and erect; elytral surface clearly visible, even when sparsely pubescent; basal spurs of aedeagus either present (Fig. 148) or absent (Fig. 149)
7. _	Tarsal claws appendiculate; inner appendage of claw broad and apically blunt
8.	Body larger than 10 mm long; male with distal five antennomeres enlarged, wider than preceding
_	antennomeres; habitus as in Fig. 3; distribution in Brazil
9.	Tarsal claws simple, without inner appendage (Fig. 144)
-	Tarsal claws bifid, with sharply pointed inner appendage (Figs 146–147) 13

European Journal of Taxonomy 842: 1–102 (2022)

 10. Antennomeres 6–10 more elongate than described below; each elytron dark with pale, transverse or oblique band across middle; habitus as in Fig. 8; distribution in Brazil
 11. Pronotal punctures much smaller than those of elytra; body more than 10 mm long; gender either male or female; habitus as in Fig. 9; distribution in Peru and French Guiana <i>Syphaxia</i> Baly, 1866 Pronotal punctures as large as, or much larger than, those of elytra; body less than 10 mm long; gender female (males with bifid claws)
12. Pronotal punctures much larger than those of elytra; body length usually larger than 6.0 mm; habitus as in Fig. 34; distribution from Canada to Argentina
 <i>Erynephala</i> Blake, 1936 [in part; see couplets 15, 47] Pronotal punctures similar in size to those of elytra; body length usually less than 6.0 mm; habitus as in Fig. 35; distribution from Canada to Guatemala
13. Pronotal punctures much larger than those of elytra
- Pronotal punctures not larger than those of elytra, or only slightly larger
14. Eyes separated from each other by distance greater than length of basal antennomere; pronotum pale, with two dark spots; elytra dark, with sutural, median, and lateral pale vittae; habitus as in Fig. 45; distribution in Hispaniola
 Eyes separated from each other by distance less than length of basal antennomere; color not as above
15. Basal margin of pronotum gently curved from meson to posterolateral pronotal angle; posterolateral angle only slightly more anterior than most posterior part of prothorax; males only (females with simple tarsal claws); aedeagus extraordinarily long, C-shaped, forming complete semicircle in lateral view; habitus as in Fig. 34; distribution from Canada to Argentina
 Basal margin of pronotum very strongly bisinuate from meson to posterolateral pronotal angle; posterolateral angle positioned far anterior to most posterior part of pronotum (Fig. 188); gender either male or female; aedeagus not as above; habitus as in Fig. 40; distribution from Arizona to Costa Rica
16. Elytropleuron (lateral area of elytron, just before epipleural ridge) distinctly swollen, in some species
 coalescing with epipleural ridge and together forming broad, rounded, single costa (Fig. 223) 17 Elytropleuron concave, not or only vaguely swollen; epipleural ridge narrow, normally acutely carinate, although less commonly forming narrowly rounded costa
17. Antennomeres 3–7 compressed or dilated; body depressed; habitus as in Fig. 28; distribution from
Mexico through much of South America
 In many species, elytral pubescence directed in various directions, forming mottled pattern; if elytral pubescence otherwise, then elytra tuberculate, in addition to standard humeral and basal callosities
- Elytral pubescence not swirling in various directions; elytra not unusually tuberculate

VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

19.	Proximal male tarsomere of front leg with small ventral tubercle at base (visible only when tarsus bent dorsally, Fig. 204); body of single included species 5–6 mm long (but undescribed or misplaced species may be smaller); habitus as in Fig. 32; distribution from Texas to Guatemala
_	<i>Brucita</i> Wilcox, 1965 Male without tubercle at base of proximal tarsomere; body of most species smaller than 5 mm; habitus as in Figs 29–30; distribution from Mexico through much of South America, as well as in West Indies
20.	Seventh antennomere with tuberculate protuberance on distal edge (Fig. 215), distinct in males, obsolete in some females; pronotum at least twice as wide as long
_	Seventh antennomere without apical tubercle; pronotum in many (but not all) species less than twice as wide as long
21.	Elytra green with yellow lateral margins; discal elytral costae absent; habitus as in Fig. 43; distribution in South America
	Liyuu dark, with pale, singhtly elevated, disear vitue
22.	Each elytron dark with suture, lateral margin, and two discal vittae pale; habitus as in Fig. 41; distribution in Florida, West Indies, Central America, and South America
	Neolochmaea Laboissière, 1939
_	Each elytron dark with suture, lateral margin, and three discal vittae pale (Fig. 224); habitus as in Fig. 42; distribution in Argentina, Brazil, and Paraguay
23.	Pronotum and elytra uniformly reddish; habitus as in Fig. 22; distribution in Canada and United States
_	Color usually otherwise; distribution in Latin America
24.	Pronotum entirely pale, or dark with pale lateral margins; elytra either entirely dark metallic blue or violet, or dark red with narrow black lateral margin; body 7.5–9.0 mm long; distribution in Colombia and Peru
_	Color otherwise
25.	Third antennomere distinctly longer than fourth; elytra pale, often with green and yellow vittae (Fig. 222); habitus as in Figs 26–27; distribution from Mexico through much of South
_	America <i>Itaitubana</i> Bechyné, 1963 [in part; see couplet 8] Third antennomere usually shorter than fourth; if third antennomere longer than fourth, then elytra entirely dark
26.	Body at least twice as long as broad, usually dorsoventrally flattened; habitus as in Fig. 31; distribution from Mexico through much of South America, as well as in Lesser
	Antilles
-	Body less than twice as long as broad, oval, with dorsum usually distinctly convex, not flattened; habitus as in Fig. 6; distribution from Mexico through much of South America
27.	Basal margin of pronotum very strongly bisinuate from meson to posterolateral pronotal angle (Fig. 188); posterolateral angle positioned far anterior to most posterior part of pronotum; elytra uniformly dark; habitus as in Fig. 40; distribution from Arizona to Costa Rica

European Journal of Taxonomy 842: 1–102 (2022)

-	Third and fourth antennomeres nearly equal in length; each elytron yellow, with long, broad, sublateral, black vitta extending from base, over humerus, to shortly before elytral apex; most specimens also with short, black, basal vitta positioned midway between scutellum and sublateral vitta; yellow areas of elytra with greenish tint in some specimens; habitus as in Fig. 24; Palearctic species, adventive in North and South America
29. -	Third antennomere shorter than fourth. 30 Third antennomere longer than fourth, in some species only slightly so 33
30. -	Pronotum short and broad, at least 2.5 times as wide as long
31. _	Depression on each side of pronotum large, extending to anterolateral and posterolateral corners of pronotum (Fig. 192); due to large depressions, pronotum broadly explanate laterally; habitus as in Fig. 14; distribution from Guatemala to Panama
-	Elytral surface rough, but punctation usually not visible without magnification; elytra vittate in many species, but varying from entirely pale to entirely dark; aedeagus with dorsal, thinly chitinized groove extending medially for most of aedeagal length; body 4–12 mm long; habitus as in Fig. 15; distribution from Canada to Guatemala
33. _	Both male and female with antennomeres 7–11 strongly broadened and flattened, with each antennomere shorter than wide (Fig. 208); elytra with callosities near mid-length (Fig. 229); habitus as in Fig. 33; distribution in South America
34. -	Body length 10.0 mm or more
35. _	Third antennomere equal to or longer than fourth to sixth antennomeres combined; fifth to ninth antennomeres short, each not more than twice as long as wide; habitus as in Fig. 7; distribution from Guatemala through much of South America
	Pronotum distinctly broader in distal half than in basal half, with lateral margins strongly sinuate (Fig. 186); third antennomere distinctly longer than fourth antennomere, more than three times as long as second antennomere; habitus as in Fig. 10; distribution in South America

- 37. Epipleuron more than twice as wide as second antennomere length, wider than apical portion of foretibia; elytra broadly explanate in dorsal view; habitus as in Fig. 2; distribution in Central America
- Epipleuron not more than two times as wide as second antennomere length, not distinctly wider than _
- 38. Pronotum at least twice as wide as long; lateral carina of pronotum well developed, narrowly explanate; habitus as in Fig. 1; distribution from United States through much of South America, and
- Pronotum less than twice as wide as long; lateral pronotal carina weakly developed, especially _ anteriorly; habitus as in Figs 4-5; distribution from Texas to Guatemala...... Coraia Clark, 1865
- 39. Elytral pubescence nearly absent, but usually noticeable laterally; weak carina present behind humerus, extending most of elytral length (Fig. 220); habitus as in Fig. 20; Palearctic species, introduced to North America (United States and Mexico) Diorhabda Weise, 1883
- Elytral pubescence dense in most species; if elytral pubescence nearly absent, then elytra not
- 40. Elvtra pale brown, in most species with darker speckles, which often coalesce to form irregular blotches; elytral vittae, if present, usually short and irregular; antennae short, not or barely reaching
- Elytral coloration varying from entirely pale to entirely black; dark elytral markings not forming speckles or irregular blotches, sometimes forming long, regular vittae; antennae usually longer,
- 41. Lateral third of pronotum almost entirely occupied by large depression; prothorax usually more than twice as wide as long; gender either male or female; habitus as in Fig. 36; distribution from Canada
- Lateral third of pronotum partially occupied by convex elevation; pronotum usually not distinctly more than twice as wide as long; gender usually male (female claws simple, except in one anomalous species with bifid claws); habitus as in Fig. 35; distribution from Canada to
- 42. Front coxae narrowly but distinctly separated from each other by posterior extension of prosternum; middle coxae separated from each other by distance subequal to half coxal width (Fig. 153); pronotum polished and nearly impunctate, except in depressions; all tibiae lacking apical spurs in both male and female; habitus as in Fig. 25; distribution in Canada and United Front coxae not separated by prosternum; middle coxae closely approximate but rarely in actual
- distribution 43. Elytra dark with distinct. vittae (Figs 37–38); from Canada to
- 44. Fourth antennomere distinctly longer than second; outer margin of epipleuron (marginal bead between disc of elytron and epipleuron) sometimes becoming obscure near apex, but inner margin
- Second and fourth antennomeres nearly equal in length; inner margin of epipleuron remaining distant from outer margin, ending rather abruptly before apex; distribution in Canada and United

55. -	Third antennomere longer than fourth; habitus as in Figs 37–39; distribution from Canada to Mexico
56. -	Tibiae with easily visible apical spurs; habitus as in Fig. 124; distribution in United States and Mexico
57.	Third antennomere not more than 1.5 times as long as second antennomere; habitus as in Fig. 67; distribution from Canada through much of South America, as well as in West Indies
_	Third antennomere more than 1.5 times as long as second antennomere
58. _	Both anterior and posterior margins of pronotum with fine bead; elytra, upon close inspection, with numerous appressed setae; apex of male abdomen arcuately incised; habitus as in Fig. 15; distribution from Canada to Guatemala
	a few erect setae, especially towards apex, but without appressed setae; apex of male abdomen with rectangular lobe; habitus as in Fig. 127; distribution from United States to Panama
	Elytra strongly tuberculate; pronotum and elytra coarsely punctate
60. -	Body less than twice as long as broad (Figs 29–30); distribution from Mexico through much of South America, as well as in West Indies
61. _	Both male and female with third, fourth, and fifth antennomeres elongate, subequal in length, each distinctly longer than sixth antennomere (1.5 or more times longer); mesotibia in many males with emargination on flexor margin, modified into clasping organ (Fig. 205); mesofemur of some species expanded apically; habitus as in Fig. 91; distribution in Panama and northern South America
	in most genera, preapical emargination of male mesotibiae absent; if male with preapical tibial emargination, then tibia not modified to form clasping organ
62.	Genal distance (distance from eye margin to external edge of mouth, before base of mandible) large, equal to at least half maximum diameter of eye (Fig. 180); eye small, with maximum diameter not more than three-fourths interocular distance, usually two-thirds or less
_	Genal distance small, less than half-maximum diameter of eye (Figs 181–182); eyes small to large
63.	Antenna inserted at or below middle level of eyes; face flat, not excavated; ventral surface of proximal three tarsomeres of male front leg uniformly covered with truncate setae, forming adhesive patch
_	Antenna inserted above midline of eyes (sometimes at midline in female), widely separated from eyes (space between antennal fossa and eye equal to half diameter of antennal fossa); proximal three tarsomeres of male foreleg densely setose ventrally, but without patch of truncate adhesive setae; males of most species with face excavated (Figs 158–160); habitus as in Fig. 82; distribution from Mexico through much of South America

- 67. Elytra with numerous, long, erect setae; male mesotibia with preapical, ventral notch; habitus as in Fig. 109; distribution in northern South America.....

- 69. Seventh and especially ninth antennomeres of male much wider than other antennomeres and somewhat pointed laterally; elytra metallic green or blue, with yellow lateral and distal areas; elytral punctation dense, with punctures separated by distance less than their diameters; habitus as in Fig. 83; distribution in South America..... *Buckibrotica* Bechyné & Bechyné, 1969 [in part; see couplet 88]

73. -	Third antennomere 2.5–3.5 times as long as second antennomere
74.	Elytra with numerous erect setae; male mesotibia with preapical notch; habitus as in Fig. 109; distribution in northern South America
_	<i>Parabrotica</i> Bechyné & Bechyné, 1961 [in part; see couplet 67] Elytra lacking numerous erect setae; male mesotibia with or without preapical emargination 75
75. -	Mesotibia emarginate before apex; distribution in Peru and Bolivia <i>Palmaria</i> Bechyné, 1956 Mesotibia not emarginate before apex
76.	Inner lobe of tarsal claw only about half as long as outer lobe; gender male (female with appendiculate tarsal claws); habitus as in Fig. 92; distribution in northern South America <i>Hyperbrotica</i> Bechyné & Bechyné, 1968 [in part; see couplet 121] Inner lobe of tarsal claw three-fourths or more times as long as outer lobe; gender either male or female; habitus as in Figs 70–71; distribution from United States through much of South America, as well as in West Indies <i>Paranapiacaba</i> Bechyné, 1958 [in part; see couplets 88, 92]
77.	Third antennomere, at least in males, slightly shorter than second antennomere, together usually considerably shorter than fourth antennomere
78.	Fourth antennomere about as long as first, second, and third antennomeres combined (Fig. 231); male with ninth antennomere, and sometimes others also, greatly enlarged (Fig. 217); middle tibia of male with distinct, preapical, ventral notch; habitus as in Fig. 113; distribution from Costa Rica to Bolivia
	Metepisternum and adjacent metasternum with patch of long, silky, golden or silvery, overlapping setae (Fig. 230)
80. –	Elytron with two transverse depressions on disc, one behind basal callus, one behind mid-length; distribution Central America <i>Diabrotica</i> Chevrolat, 1836 [in part; see couplets 57, 78, 81–82] Elytron without two transverse depressions; pronotum as in Fig. 190; habitus as in Fig. 66; distribution in South America
81. —	Elytral surface even, not longitudinally sulcate, although sometimes with one or two short plicae in posthumeral area
82.	Sixth to tenth antennomeres of male enlarged and ventrally excavated; distribution in Argentina

European Journal of Taxonomy 842: 1–102 (2022)

87. Elytra in male often dilated posteriorly, but without raised areas, excavations, or depressions...... 88

- 88. Seventh and especially ninth antennomeres of male much wider than other antennomeres and somewhat pointed laterally; elytra metallic green or blue, with yellow lateral and distal areas; elytral punctation dense, with punctures separated by distance less than their diameters; habitus as in Fig. 83; distribution in South America..... *Buckibrotica* Bechyné & Bechyné, 1969 [in part; see couplet 69]
- Not as above; habitus as in Figs 71–72; distribution from United States through much of South America, as well as in West Indies *Paranapiacaba* Bechyné, 1958 [in part; see couplets 76, 92]

90. Elytra largely asetose, irregularly punctate, sometimes with scattered setae in apical third or	on
margins	91
- Elytral disc with erect or suberect setae, often arranged in rows	
	~ ~
91. Elytra without vittae	
- Elytra vittate; maximum diameter of eye equaling two-thirds to three-fourths interocular distance	e;
habitus as in Fig. 73; distribution from United States to northern South America	•••
	47

- 92. Elytra faintly striate; habitus as in Figs 70–71; distribution from United States through much of South America, as well as in West Indies *Paranapiacaba* Bechyné, 1958 [in part; see couplets 76, 88]

VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

 93. Elytra with erect or suberect setae scattered on disc, not arranged in rows; habitus as in Fig. 68 distribution in Peru, Bolivia, and Brazil
94. Apex of abdomen deeply incised; gender male (females with appendiculate claws); habitus as ir Fig. 89; distribution in Costa Rica and Panama
 Heterochele Viswajyothi & Clark, 2021 [in part; see couplet 133] Apex of male abdomen not deeply incised; gender either male or female; habitus as in Figs 77–78; distribution from Canada through much of South America, as well as in Wes Indies
95. Terminal ventrite of male abdomen with large, nearly square, apical lobe; aedeagal orifice with sclerotized covering; hind leg with basitarsus usually (but not always) longer than tarsomeres 2–5 combined; tibiae with apical spurs conspicuous, much longer than nearby setae
 Apical lobe of male abdomen either absent or much wider than long; aedeagal orifice of most species lacking sclerotized covering; hind leg with basitarsus usually (but not always) shorter than tarsomeres 2–5 combined; tibial spurs often (but not always) only slightly longer than nearby setae often more or less hidden among nearby setae, sometimes absent
96. Front coxal cavities closed behind (Fig. 150).97- Front coxal cavities open behind (Fig. 151).98
97. New World species usually testaceous, orange, or yellow (brown to black in a few species); dark elytral markings usually faint, irregular, or absent; many species with dark markings on pronotum body usually elongate oval; dorsum usually less convex than in <i>Monolepta</i> ; habitus as in Fig. 139 reported distribution from United States through Peru
 Color various, but usually not as described above; dorsum usually more convex than in <i>Metrioidea</i> habitus as in Fig. 142; reported distribution from Mexico to Panama <i>Monolepta</i> Chevrolat, 1836
 98. Hind leg with basal tarsomere shorter than or equal to all following tarsomeres combined
99. Dorsum somewhat flattened; habitus as in Fig. 140; distribution in South America
 Dorsum more convex; habitus as in Fig. 138; distribution in United States and Mexico <i>Eusattodera</i> Schaeffer, 1906 [in part; see couplet 101]
100. New World species usually testaceous, orange, or yellow (brown to black in a few species); dark elytral markings usually faint, irregular, or absent; many species with dark markings on pronotum body usually elongate oval, dorsally convex; habitus as in Fig. 139; reported distribution from United States through Peru
- Color often otherwise; distribution from United States through much of South America 101
101. Body of most species rather elongate; elytra entirely black, sometimes with blue luster; habitus as in Fig. 138; distribution in United States and Mexico
 Body of most species less elongate, with dorsum more convex; elytral color of some species entirely black, but of many species otherwise; distribution south of United States
 102. Reported distribution in South America; habitus as in Fig. 143Lilophaea Bechyné, 1958 Reported distribution from United States through much of South America; habitus as in Fig. 141. Luperodes Motschulsky, 1858

103. _	Pronotum lacking lateral carina (Figs 193–194)
104. _	Elytra black with suture and lateral margins pale, without transverse band near mid-length; antennae of male and female filiform, unmodified; head of male with small, median, round hole distal to antennal insertions (Fig. 164); habitus as in Fig. 102; distribution in Texas and Mexico
105. _	Front coxal cavities closed behind
106. —	Antennae filiform, with third antennomere equal to or shorter than fourth
107.	Elytral punctures confused; middle tibia of male with preapical, ventral notch; pronotum with pore, as illustrated in Fig. 179; habitus as in Fig. 114; distribution in Brazil
_	<i>Coronabrotica</i> Moura, 2010 Elytral punctures arranged in irregular rows; middle tibia of male lacking preapical notch; pronotum without such pore; habitus as in Fig. 98; distribution in Venezuela and Brazil
108. _	Third and fourth antennomeres greatly enlarged and modified (Fig. 210); area below antennal insertions deeply excavated (Figs 165–166); gender male; habitus as in Fig. 97; distribution from Canada through much of South America, as well as in West Indies
109. -	Female with area just anterior to antennal insertions shallowly, transversely depressed; body more elongate oval than in <i>Cerotoma</i> ; distribution in Brazil <i>Interbrotica</i> Bechyné & Bechyné, 1965 Female without transverse impression just anterior to antennal insertions; body less elongate; habitus as in Fig. 97; distribution from Canada through much of South America, as well as in West Indies
- -	Mesepisternum densely pubescent; anterior margin of prothorax without bead and without fringe of short setae; male without rectangular lobe at abdominal apex; males of some genera with preapical notch on flexor side of middle tibia; aedeagus without basal spurs
111. -	Hind femur greatly swollen, as in many genera of tribe Alticini; middle tibia of male with preapical notch on flexor side (Fig. 202); color yellow, with head and two spots on each elytron dark; habitus as in Fig. 108; distribution in Cuba

VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

112.	Posterior margin of pronotum with complete, uninterrupted bead; male with eighth or ninth antennomere distinctly enlarged (Fig. 214); other male antennomeres also enlarged in some species; female of most species also with some antennomeres enlarged, but not as much as in males; middle tibia of male without preapical notch; elytra entirely dark; pronotum usually pale; if pronotum dark, then both front and middle legs of male with basal tarsomeres greatly enlarged; habitus as in Fig. 126; distribution in Mexico and Central America
_	<i>Metacoryna</i> Jacoby, 1888 [in part; see couplet 131] Posterior margin of pronotum often with poorly formed bead in lateral portion, but usually without well-formed, uninterrupted bead; male antennae of some species modified, with some antennomeres enlarged, but usually not as above; female antennae of all species filiform, without enlarged antennomeres; middle tibia of male with or without preapical notch; color often different than described above
113.	Pronotal disc convex, not at all impressed; habitus as in Fig. 104; distribution in West Indies <i>Ectmesopus</i> Blake, 1940
-	Pronotal disc distinctly impressed in most species; distribution in continental areas, not including West Indies
114.	Eye very small, with diameter less than distance from eye margin to mandibular base; third male antennomere much widened and irregularly incised at middle; male with head deeply excavated beyond antennal insertions; elytra vittate; habitus as in Fig. 95; distribution in Mexico
_	Rachicephala Blake, 1966 Eye usually larger; if third male antennomere enlarged, then not incised, or incised only apically; male head excavated or not; elytra vittate or not
115. _	Elytral disc with numerous, longitudinal costae
116.	Elytral costae moderately to strongly developed; male head of some species deeply excavated beyond antennal insertions
_	Elytral costae weakly developed; head not excavated
117.	Frons similar in both sexes, slightly depressed, with mesal carina indistinct; habitus as in Fig. 93; distribution in South America
_	Frons deeply excavated in male, unmodified in female (Figs 167–171)118
118.	Elytral costae strong; transverse pronotal impression very deep; third antennomere of female equal to or shorter than fourth, never longer; habitus as in Fig. 99; distribution in South America
-	America <i>Eucerotoma</i> Laboissière, 1939 Elytral costae moderate; pronotal impression more shallow (as in <i>Neobrotica</i>); third antennomere of female equal to or longer than fourth, never shorter (Fig. 211); habitus as in Fig. 101; distribution from Mexico through much of South America <i>Eccoptopsis</i> Blake, 1966
119.	Third antennomere less than twice as long as second; middle tibia of male with deep, preapical notch; habitus as in Fig. 111; distribution from United States through much of South America
_	Third antennomere more than twice as long as second; middle tibia of male without preapical notch; habitus as in Fig. 96; distribution from United States through much of South America

- 121. Each elytron pale brown, with 5–6 elongate maculae, one extending posteriorly from humerus to beyond middle of elytron (sometimes divided to form two smaller maculae), two near suture in basal half (one behind the other), two near distal declivity (one near suture, the other slightly more posterior, near apicolateral angle); gender female (males with bifid claws); habitus as in Fig. 92; distribution in northern South America........*Hyperbrotica* Bechyné & Bechyné, 1968 [in part; see couplet 76]

Trichobrotica Bechyné, 1956 [in part; see couplet 133]

- 132. Elytral disc with numerous erect setae133-Elytral disc asetose or nearly so.134

- Body usually more elongate; color variable, but often different than described above 135

- without appendages; if elytra vittate, then head dark, strongly contrasting with pale pronotum 147

- Tibial spurs present, at least on hind legs; body of many (but not all) species shorter than 5.0 mm; pronotum variable, either pale, dark, or bicolored; male abdomen without ventral appendages
 153

- 158. Lateral fovea located near mid-length of elytron (Fig. 226); abdomen without rectangular lobe at apex; habitus as in Fig. 61; distribution from United States to Panama, as well as in South America (Venezuela and Bolivia)......*Malacorhinus* Jacoby, 1887 [in part; see couplets 167, 174, 180]

VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

163.	Distribution in Greater Antilles (Cuba, Jamaica, Hispaniola); habitus as in Figs 47-48	
		963
_	Distribution in Lesser Antilles or in continental areas	164

- -	Male antennae either longer than body, or modified (fourth through eleventh antennomeres wider than more basal antennomeres, or some antennomeres with longitudinal, asetose carina); female antennae usually nearly as long as body; aedeagus strongly asymmetrical, with orifice directed laterally; habitus as in Fig. 65; distribution from Mexico through much of South America
166. _	Body 7.0–11.0 mm long; distal maxillary palpomere relatively narrow, nearly parallel sided for much of length (Fig. 156); elytra pale with darker vittae, or entirely pale; in dorsal view, aedeagus symmetrical; habitus as in Fig. 63; distribution from Mexico through much of South America, as well as in Lesser Antilles
	(Fig. 155); elytral coloration often otherwise; aedeagus either symmetrical or not; habitus as in Figs 51–55; distribution in Central and South America
167. _	Third antennomere much longer and broader than fourth; gender male; habitus as in Fig. 61; distribution from United States to Panama, as well as in South America (Venezuela and Bolivia) <i>Malacorhinus</i> Jacoby, 1887 [in part; see couplets 158, 174, 180] Third antennomere equal to or shorter than fourth; gender male or female
168. -	Third antennomere similar in length to second, much shorter than fourth
169. -	Terminal maxillary palpomere at least twice as long as broad, usually nearly parallel-sided in basal half (Fig. 175)
170. -	Apex of male abdomen clearly truncate, usually with short, rectangular lobe; aedeagus without basal spurs (Fig. 149); elytra entirely dark, often metallic; habitus as in Fig. 130; distribution in Canada, United States, and northwestern Mexico <i>Scelolyperus</i> Crotch, 1874 [in part; see couplet 162] Male abdomen indistinctly truncate, without rectangular lobe; aedeagus with basal spurs; elytral color variable, often not as above; distribution in Central and South America
171. -	Fifth to tenth antennomeres each only about twice as long as broad, broader than basal antennomere; habitus as in Fig. 46; distribution from Panama to Brazil
172. _	Male antennae either longer than body or modified (fourth through eleventh antennomeres wider than more basal antennomeres, or some antennomeres with longitudinal, asetose carina); female antennae usually nearly as long as body; aedeagus strongly asymmetrical, with orifice directed laterally; habitus as in Fig. 65; distribution from Mexico through much of South America

173.	Pronotum wider in anterior half than in posterior half, with lateral margins sinuate	174
_	Pronotum not wider anteriorly; lateral margins of pronotum rounded (Fig. 185)	176

VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

- 175. Vertex black; elytra testaceous with black markings forming broad, transverse band at base and another black band beyond middle; sutural and apical margins of elytra also black; body 5.0–6.4 mm long; body shape as in Fig. 57; distribution in Panama.....

- Pronotum often distinctly less than twice as wide as long; male antennae of some (but not all) species extending beyond elytral apex; female abdomen not incised at apex; habitus as in Fig. 60; distribution in Central and South America

- habitus as in Fig. 61; distribution from United States to Panama, as well as in South America (Venezuela and Bolivia)......*Malacorhinus* Jacoby, 1887 [in part; see couplets 158, 167, 174]
- 181. Apex of male abdomen with short, rectangular, often impressed lobe; aedeagus lacking basal spurs; terminal maxillary palpomere distinctly longer than broad, nearly parallel-sided for much of length, usually comparatively narrow.
 182

- 185. Third antennomere short, less than 1.5 times as long as second; habitus as in Figs 51–55; distribution in Central and South America.......*Zepherina* Bechyné, 1958 [in part; see couplets 166, 171, 175]

Discussion

In this study, we recognize 130 New World genera of Galerucinae, 10 of these being newly named. However, we are confident than many undescribed genera are yet to be discovered. Surely, the numbers will substantially increase upon future study. The key we provide is the first of its kind. That is, it is the first modern key to include all of the New World, non-alticine genera of Galerucinae. However, we certainly do not believe it to be unequivocally authoritative. To the contrary, it undoubtedly includes errors. We present it as a first attempt, hopefully to be corrected and improved upon by future workers. We hope that our study will stimulate interest and facilitate future taxonomic investigations of this woefully understudied group of important beetles.

Acknowledgments

Over the course of many years, we have studied specimens from numerous collections, and we greatly appreciate the assistance of curatorial staff for hosting our visits or loaning specimens. We are particularly indebted to Michael Geiser (Natural History Museum, United Kingdom), Jan Bezděk (Mendel University, Czech Republic), Edward Riley (Texas A&M University, USA), Brian Farrell (Museum of Comparative Zoology, USA), and Alexander Konstantinov (National Museum of Natural History, USA). Additionally, we thank Zhi-Qiang Zhang (*Zootaxa* editor) and Luciano de A. Moura (author) for permission to reproduce illustrations of *Coronabrotica* from Moura (2010). We appreciate the support of the Kerala Agricultural University and Brigham Young University. We are especially grateful to the Fulbright-Nehru Doctoral Research Fellowship Program that provided funding to the

senior author while visiting in the United States. The senior author is also grateful to Dr K.D. Prathapan for his mentorship and the INSPIRE Fellowship of the Department of Science and Technology, New Delhi for funding her Doctoral program.

References

Andrews F.G. & Gilbert A.J. 2005. A preliminary annotated checklist and evaluation of the diversity of the Chrysomelidae (Coleoptera) of the Baja California peninsula, Mexico. *Insecta Mundi* 19 (1–2): 89–116.

Baly J.S. 1861. Descriptions of new genera and species of Phytophaga. *Journal of Entomology* 1: 193–206, 275–302.

Baly J.S. 1864. Descriptions of some uncharacterized genera of Phytophaga. *The Entomologist's Monthly Magazine* 1: 133–136.

Baly J.S. 1866. New genera and species of Gallerucidae. *The Transactions of the Entomological Society of London (3rd Series)* 2: 471–478. https://doi.org/10.1111/j.1365-2311.1865.tb00121.x

Barber H.S. 1947a. *Diabrotica* and two new genera (Coleoptera, Chrysomelidae). *Proceedings of The Entomological Society of Washington* 49 (6): 151–161.

Barber H.S. 1947b. A new *Schematiza* on *Cordia* in Trinidad (Coleoptera: Chrysomelidae). *Journal of the Washington Academy of Sciences* 37 (7): 242–243.

Bechyné J. 1950. Notes sur les Chrysomeloidea de l'Amérique du Sud et du Centre (Col. Phytoph.). *Entomologische Arbeiten aus dem Museum G. Frey* 1: 237–270.

Bechyné J. 1951. Chrysomeloidea américains nouveaux ou peu connus (Coleoptera). *Revista Chilena de Entomología* 1: 75–112.

Bechyné J. 1954. Über die in Matto Grosso von F. Plaumann gesammelten Chrysomeloidea (Col. Phytophaga). *Entomologische Arbeiten aus dem Museum G. Frey* 5 (1): 116–133.

Bechyné J. 1955a. Troisième note sur les Chrysomeloidea néotropicaux des collections de l'Institut royal des Sciences naturelles de Belgique (Col. Phytophaga). *Bulletin de l'Institut royal des Sciences naturelles de Belgique* 31 (5): 1–23.

Bechyné J. 1955b. Quatrième note sur les Chrysomeloidea néotropicaux des collections de l'Institut royal des Sciences naturelles de Belgique. *Bulletin de l'Institut royal des Sciences naturelles de Belgique* 31 (74): 1–12.

Bechyné J. 1956a. Reise des Herrn G. Frey in Südamerika: Galerucidae (Col. Phytophaga). *Entomologische Arbeiten aus dem Museum G. Frey* 7 (1): 241–358.

Bechyné J. 1956b. Beiträge zur Kenntnis der neotropischen Alticiden und Galeruciden. *Entomologische Arbeiten aus dem Museum G. Frey* 7 (3): 969–1071.

Bechyné J. 1957. Voyage de M. le Dr. A. Roman au Brésil (1914–1915). Eumolpides, Galerucides et Alticides (Col. Phytophaga). *Arkiv för Zoologi* 11 (10): 133–152.

Bechyné J. 1958. Notizen zu den neotropischen Chrysomeloidea (Col. Phytophaga). *Entomologische Arbeiten aus dem Museum G. Frey* 9: 478–706.

Bechyné J. 1963. Notes sur quelques Chrysomeloidea néotropicaux nouveaux ou peu connus (Col. Phytophaga). *Bulletin mensuel de la Société linnéenne de Lyon* 32 (8): 235–239. https://doi.org/10.3406/linly.1963.7170 Bechyné J. 1997. Evaluación de los datos sobre los Phytophaga dañinos en Venezuela (Coleoptera), parte II. *Boletín de Entomología Venezolana, Serie Monografías* 1: 279–459.

Bechyné J. & Bechyné B.S.de. 1961. Notas sôbre Chrysomeloidea neotropicais. *Boletim do Museu Paraense Emílio Goeldi, Novo Série, Zoologia* 33: 1–50.

Bechyné J. & Bechyné B.S.de. 1965. Notes sur les Chrysomeloidea capturés par le Dr. W. A. Egler au Rio Jari (Brésil: Pará/Amapá) en 1961 (Col. Phytophaga). *Boletim do Museu Paraense Emílio Goeldi, Novo Série, Zoologia* 53: 1–44.

Bechyné J. & Bechyné B.S.de. 1968. Notas sobre el género *Acalymma* Barber (Col.: Phytophaga, Galerucidae). *Revista de la Facultad de Agronomía, Universidad Central de Venezuela* 4 (4): 24–50.

Bechyné J. & Bechyné B.S.de. 1969. Die Galerucidengattungen in Südbrasilien. *Iheringia, Série Zoologia* 36: 1–110.

Beenen R. 2003. *Galeruca (Galemira* n. subgen.) *subcostata* n. sp. from Pakistan (Coleoptera: Chrysomelidae). *Stuttgarter Beiträge zur Naturkunde, Serie A (Biologie)* 648: 1–9.

Beenen R. 2010. Chrysomelidae: Galerucinae. *In*: Löbl I. & Smetana A. (eds) *Catalogue of Palaearctic Coleoptera, Volume 6, Chrysomeloidea*: 74. Apollo Books, Stenstrup, Denmark.

Beenen R. 2013. New species and a new genus of brachelypterous Galerucinae (Coleoptera: Chrysomelidae). *Entomologische Zeitschrift* 123 (4): 173–183.

Beller S. & Hatch M.H. 1932. Coleoptera of Washington: Chrysomelidae. *University of Washington Publications in Biology* 1 (2): 65–144.

Bezděk J. 2015. A review of Palaearctic *Scelolyperus* (Coleoptera: Chrysomelidae: Galerucinae), with description of *S. perreus* sp. nov. from Turkey. *Annales Zoologici* 65: 21–39. https://doi.org/10.3161/00034541ANZ2015.65.1.003

Blackburn T. 1890. Notes on Australian Coleoptera, with descriptions of new species. Part VII. *The Proceeding of the Linnean Society of New South Wales (Second Series)* 5: 303–366. https://doi.org/10.5962/bhl.part.18641

Blake D.H. 1931. Revision of the species of the beetles of the genus *Trirhabda* north of Mexico. *Proceedings of the United States National Museum* 79 (2): 1–36. https://doi.org/10.5479/si.00963801.79-2868.1

Blake D.H. 1936. A redisposition of *Monoxia puncticollis* and allied species. *Journal of the Washington Academy of Sciences* 26 (10): 423–430.

Blake D.H. 1939. A study of LeConte's types of the beetles in the genus *Monoxia*, with descriptions of new species. *Proceedings of the United States National Museum* 87 (3072): 145–171. https://doi.org/10.5479/si.00963801.87-3072.145

Blake D.H. 1940. A new genus of Galerucinae (Coleoptera) from the West Indies. *Proceedings of the Entomological Society of Washington* 42 (5): 95–104.

Blake D.H. 1941. New species of *Chaetocnema* and other chrysomelids (Coleoptera) from the West Indies. *Proceedings of the Entomological Society of Washington* 43 (8): 171–180.

Blake D.H. 1945. The genus *Galeruca* in North America (Coleoptera: Galerucinae). *Proceedings of the Entomological Society of Washington* 47 (3): 53–63.

Blake D.H. 1958. A review of some galerucine beetles with excised middle tibiae in the male. *Proceedings* of the United States National Museum 108 (3395): 59–101. https://doi.org/10.5479/si.00963801.108-3395.59 Blake D.H. 1959. Seven new galerucid beetles from the West Indies. *Journal of the Washington Academy of Sciences* 48 (6): 178–182.

Blake D.H. 1963. Eight new chrysomelid beetles from the West Indies (Coleoptera). *Proceedings of the Entomological Society of Washington* 65 (1): 14–20.

Blake D.H. 1966a. More new galerucine beetles with excised middle tibiae in the male. *Proceedings of the United States National Museum* 118 (3528): 233–266. https://doi.org/10.5479/si.00963801.118-3528.233

Blake D.H. 1966b. A review of the beetles of the genus *Neobrotica* and some closely related genera. *Proceedings of the United States National Museum* 118(3529): 267–372. https://doi.org/10.5479/si.00963801.118-3529.267

Blanchard C.E. 1842 [Plate 24]. Insectes de l'Amérique méridionale. Recueillis par Alcide d'Orbigny et décrits par Emile Blanchard et Auguste Brullé. Voyage dans l'Amérique méridionale (le Brésil, la République orientale de l'Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivie, la République du Pérou), exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833 par Alcide d'Orbigny. Tome sixième. 2.^e Partie: Insectes [1837-1843]: 57–222. P. Bertrand, Paris [&] V. Levrault, Strasbourg.

Brancsik C. 1899. Aliquot Coleoptera nova Russiae asiaticae. *Jahresheft des Naturwissenschaftlichen Vereins der Trencsiner Komitats* 21–22: 97–105.

Bünnige M., Hilker M. & Dobler S. 2008. Convergent evolution of chemical defence in galerucine larvae. *Biological Journal of the Linnean Society* 93: 165–175. https://doi.org/10.1111/j.1095-8312.2007.00912.x

Cabrera N. 1999. Contribución para el conocimiento del género *Acalymma* en la Argentina (Coleoptera: Chrysomelidae). *Revista de la Sociedad Entomológica Argentina* 58 (3–4): 91–105.

Cabrera N. & Walsh G.C. 2004. *Platybrotica misionensis* a new genus and species of Luperini (Coleoptera: Chrysomelidae: Galerucinae) from Argentina. *Annals of the Entomological Society of America* 97 (1): 6–14. https://doi.org/10.1603/0013-8746(2004)097[0006:PMANGA]2.0.CO;2

Chapuis F. 1875. Famille LXIX. Phytophages, vol. 11. *In:* Lacordaire T. & Chapuis F. (eds) *Histoire Naturelle des Insectes. Genera des Coléoptères*: 1–420. La Librairie encylopédique de Roret, Paris.

Chevrolat L.A.A. 1836. *In*: Dejean P.F.M.A. (ed.) *Catalogue des Coléoptères de la Collection de M. le Comte Dejean, Deuxième edition, Livraison 5*: 361–442. Méquignon-Marvis Père et Fils, Paris.

Chevrolat L.A.A. 1845. In: D'Orbigny C.V.D. (ed.) Dictionnaire Universel d'Histoire naturelle Résumant et Complétant tous les Faits Présentés par les Encyclopédies, les Anciens Dictionnaires Scientifiques, les Oeuvres Complètes de Buffon, et les Meilleurs Traités Spéciaux sur les Diverses Branches des Sciences Naturelles; Donnant la Description des Êtres et des Divers Phénomènes de la Nature, l'Étymologie et la Définition des Noms Scientifiques, les Principales Applications des Corps Organiques et Inorganiques, à l'Agricuture, à la Médicine, aux Arts Industriels, etc.; Dirigé par M. Charles d'Orbigne, et Enrichi d'un Magnifique Atlas de 288 Planches Gravées sur Acier. Tome Sixième: 776. Renard, Martinet et C^{ie}., Paris.

Chûjô M. 1962. A taxonomic study on the Chrysomelidae (Insecta, Coleoptera) from Formosa, Pt. XI. Subfamily Galerucinae. *Philippine Journal of Science* 91 (1–2): 1–239.

Clark H. 1865. An examination of the Dejeanian genus *Coelomera* (Coleoptera Phytophaga) and its affinities. *The Annals and Magazine of Natural History* (ser. 3) 16: 256–268, 315–325. https://doi.org/10.1080/00222936508679436 Clark S.M. 1987a. An unusual new genus and species of galerucine beetle from Haiti (Coleoptera: Chrysomelidae). *The Coleopterists Bulletin* 41: 167–170.

Clark S.M. 1987b. A Revision of the Section Scelidites in the Western Hemisphere (Coleoptera: Chrysomelidae): 397. Ph.D. thesis. The Ohio State University, Columbus, Ohio.

Clark S.M. 1993. A new genus and two new species of Luperini (Coleoptera: Chrysomelidae: Galerucinae) from Costa Rica. *Insecta Mundi* 7: 215–218.

Clark S.M. 1996. The genus *Scelolyperus* Crotch in North America (Coleoptera: Chrysomelidae: Galerucinae). *Insecta Mundi* 10: 261–280.

Clark S.M. 1998. Descriptions of new luperine genera and species from Mexico, with keys to related taxa (Coleoptera: Chrysomelidae: Galerucinae). *Insecta Mundi* 12: 189–206.

Clark S.M. 2001. The western North American genus *Androlyperus* Crotch, 1873 (Coleoptera: Chrysomelidae: Galerucinae). *Insecta Mundi* 13: 217–227.

Clark S.M. & Anderson E.R. 2019. A review of *Triarius* Jacoby, 1887 (Coleoptera: Chrysomelidae: Galerucinae: Luperini), with descriptions of a new genus and four new species. *The Coleopterists Bulletin* 73 (2): 343–357. https://doi.org/10.1649/0010-065X-73.2.343

Crotch G.R. 1873. Materials for the study of the Phytophaga of the United States. *Proceedings of the Academy of Natural Sciences of Philadelphia* 25: 19–83.

Crotch G.R. 1874. Descriptions of new species of Coleoptera from the Pacific coast of the United States. *Transactions of the American Entomological Society* 5: 73–80. https://doi.org/10.2307/25076288

Dallas W.S. 1866. Insecta. *In*: Günther A.C.L.G. (ed.) *The Record of Zoological Literature*, 1865, *Volume Second*: 381–710. John Van Voorst, London. Available from

https://ia601200.us.archive.org/23/items/zoologicalrecord21865zool/zoologicalrecord21865zool.pdf [accessed 22 Sep. 2022].

Dejean P.F.M.A. 1836. *Catalogue des Coléoptères de la Collection de M. le Comte Dejean. Deuxième édition. Livraison 5*: 361-443. Méquignon-Marvis Père et Fils, Paris. https://doi.org/10.5962/t.173109

Derunkov A., Prado L.R., Tishechkin A.K. & Konstantinov A.S. 2015. New species of *Diabrotica* Chevrolat (Coleoptera: Chrysomelidae: Galerucinae) and a key to *Diabrotica* and related genera: results of a synopsis of North and Central American *Diabrotica* species. *Journal of Insect Biodiversity* 3 (2): 1–55. https://doi.org/10.12976/jib/2015.3.2

Derunkov A., Konstantinov A.S., Tishechkin A., Hartje L. & Redford A.J. 2020. *Diabrotica ID: Identification of Diabrotica species (Coleoptera: Chrysomelidae) from North and Central America.* USDA APHIS PPQ Center for Plant Health Science and Technology, USDA Agricultural Research Service, University of Maryland, and Louisiana State University.

Available from https://idtools.org/id/beetles/diabrotica/ [accessed 20 Dec. 2020].

Duckett C.N., Gillespie J.J. & Kjer K.M. 2004. Relationships among the subfamilies of Chrysomelidae inferred from small subunit ribosomal DNA and morphology, with special emphasis on the relationship among the flea beetles and the Galerucinae. *In*: Jolivet P., Santiago-Blay J.A. & Schmitt M. (eds) *New Developments on the Biology of Chrysomelidae*: 3–18. SPB Publishing, The Hague, The Netherlands. https://doi.org/10.1163/9789004475335_005

Eben A. 2012. ¿Por qué armargarse la vida? La asociación de los escarabajos Diabroticina (Coleóptera: Chrysomelidae) con plantas de la familia Cucurbitaceae. *In*: Rojas J.C. & Malo E.A. (eds) *Temas Selectos en Ecología Química de Insectos*: 193–216. El Colegio de la Frontera Sur, México.

Eben A. & Monteros A.E.de.los. 2003a. Ideas on the systematics of the genus *Diabrotica* Wilcox [sic] and other related beetles. *In*: Jolivet P., Santiago-Blay J.A. & Schmitt M. (eds) *New Developments on the Biology of Chrysomelidae*: 59–53. SPB Publishing, The Hague, The Netherlands. https://doi.org/10.1163/9789004475335_008

Eben A. & Monteros A.E.de.los. 2003b. Evolution and host plant breadth in Diabroticites (Coleoptera: Chrysomelidae). *In*: Furth D.G. (ed.) *Special Topics in Leaf Beetle Biology. Proceedings of the Fifth International Symposium on the Chrysomelidae, 25–27 August 2000, Iguassu Falls, Brazil, XXI International Congress of Entomology*: 175–182. Pensoft, Sofia-Moscow.

Eben A. & Monteros A.E.de.los. 2008. Speciation is not a dead end: further evidence from Diabroticina beetles. *In*: Jolivet P., Santiago-Blay J. & Schmitt M. (eds) *Research on Chrysomelidae, Volume 1*: 40–58, 372–375. Brill Publishers, Leiden-Boston.

Eben A. & Monteros A.E.de.los. 2013. Tempo and mode of evolutionary radiation in Diabroticina beetles (genera *Acalymma*, *Cerotoma*, and *Diabrotica*). *ZooKeys* 332: 207–231. https://doi.org/10.3897/zookeys.332.5220

Eben A. & Monteros A.E.de.los 2015. Trophic interaction network and the evolutionary history of Diabroticina beetles (Chrysomelidae: Galerucinae). *Journal of Applied Entomology* 139: 468–477. https://doi.org/10.1111/jen.12239

Fall H.C. 1910. Miscellaneous notes and descriptions of North American Coleoptera. *Transactions of the American Entomological Society* 36: 89–197.

Fairmaire M.L. 1882. Essai sur les coléoptères des iles Viti (Fidgi). *Annales de la Société entomologique de France* 1882: 461–492.

Farrell B.D. 1985. *A Biosystematic and Evolutionary Study of Phyllobrotica (Coleoptera: Chrysomelidae)*: 94. MS Thesis. University of Maryland, College Park, Maryland.

Farrell B.D. & Mitter C. 1990. Phylogenesis of insect/plant interactions: Have *Phyllobrotica* leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel? *Evolution* 44 (6): 1389–1403. https://doi.org/10.1111/j.1558-5646.1990.tb03834.x

Futuyma D.J. 1990. Observations on the taxonomy and natural history of *Ophraella* Wilcox (Coleoptera: Chrysomelidae), with a description of a new species. *Journal of the New York Entomological Society* 98 (2): 163–186.

Futuyma D.J. 1991. A new species of *Ophraella* Wilcox (Coleoptera: Chrysomelidae) from the southeastern United States. *Journal of the New York Entomological Society* 99 (4): 643–653.

Ge D., Chesters D., Gómez-Zurita J., Zhang L., Yang X. & Vogler A.P. 2011. Anti-predator defence drives parallel morphological evolution in flea beetles. *Proceedings of the Royal Society, B* 278: 2133–2141. https://doi.org/10.1098/rspb.2010.1500

Ge D., Gómez-Zurita J., Chesters D., Yang X. & Vogler A.P. 2012. Suprageneric systematics of flea beetles (Chrysomelidae: Alticinae) inferred from multilocus sequence data. *Molecular Phylogenetics and Evolution* 62: 793–805. https://doi.org/10.1016/j.ympev.2011.11.028

Geoffroy E.L. 1762. *Histoire abrégée des insectes qui se trouvent aux environs de Paris; dans laquelle ces animaux sont rangés suivant un ordre méthodique. Vol. 1*: 523. Paris. https://doi.org/10.5962/bhl.title.154842

Gilbert A.J. 2008. A new species of *Phyllobrotica* Chevrolat, 1836 (Coleoptera: Chrysomelidae) from California, USA, with notes on the western United States species. *The Pan-Pacific Entomologist* 84 (4): 269–279. https://doi.org/10.3956/2008-04.1

Gilbert A.J. & Andrews F.G. 1999. Studies on the Chrysomelidae (Coleoptera) of the Baja California peninsula: a new species of *Scelolyperus* (Galerucinae), with notes on the genus in Baja California. *The Pan-Pacific Entomologist* 75 (1): 8–12.

Gilbert A.J. & Clark S.M. 2012. *Synetocephalus penrosei* Gilbert & Clark (Chrysomelidae: Galerucinae: Luperini), a new species from California, U.S.A. *The Pan-Pacific Entomologist* 83 (4): 289–295. https://doi.org/10.3956/0031-0603-88.2.122

Gillespie J.J., Kjer K.M., Duckett C.N. & Tallamy D.W. 2003. Convergent evolution of cucurbitacin feeding in spatially isolated rootworm taxa (Coleoptera: Chrysomelidae; Galerucinae, Luperini). *Molecular Phylogenetics and Evolution* 29: 161–175. https://doi.org/10.1016/S1055-7903(03)00256-2

Gillespie J.J., Kjer K.M., Riley E.G. & Tallamy D.W. 2004. The evolution of cucurbitacin pharmacophagy in rootworms: insight from Luperini paraphyly. *In*: Jolivet P., Santiago-Blay J.A. & Schmitt M. (eds) *New Developments on the Biology of Chrysomelidae*: 37–57. SPB Publishing, The Hague, The Netherlands. https://doi.org/10.1163/9789004475335_007

Gillespie J.J., Tallamy D.W., Riley E.G. & Cognato A.I. 2008. Molecular phylogeny of rootworms and related galerucine beetles (Coleoptera: Chrysomelidae). *Zoologica Scripta* 37: 195–222. https://doi.org/10.1111/j.1463-6409.2007.00320.x

Groll E.von & Moura L.de.A. 2016. A new species of *Lilophaea* Bechyné (Coleoptera, Chrysomelidae, Galerucinae) with a historical background and a checklist of the genus. *Zootaxa* 4168 (1): 195–200. https://doi.org/10.11646/zootaxa.4168.1.12

Groll E.von, Moura L.de.A. & Carvalho G.S. 2022. Revision, morphometry and cladistics of *Erynephala* (Coleoptera: Chrysomelidae: Galerucinae: Galerucini). *Zoologischer Anzeiger* 296: 1–32. https://doi.org/10.1016/j.jcz.2021.11.001

Hatch M.H. 1971. The beetles of the Pacific Northwest. Part V: Rhipiceroidea, Sternoxi, Phytophaga, Rhynchophora, and Lamellicornia. *University of Washington Publications in Biology* 16: 1–662.

Havelka J. 1955. Beitrag zur Kenntnis der Gattung *Galeruca* Geoffroy (Col., Galerucidae). *Acta Societatis Entomologicae Cechosloveniae* 51: 115–118.

Hincks W.D. 1949. Some nomenclatural notes on Chrysomelidae (Col.). No. 1, Galerucinae. *Annals and Magazine of Natural History* 12 (2): 607–622. https://doi.org/10.1080/00222934908654009

Hogue S.M. 1970. *Biosystematics of the Genus Trirhabda LeConte of America North of Mexico (Chrysomelidae: Coleoptera)*: 212. PhD Thesis, University of Idaho, Moscow, Idaho, United States.

Horn G.H. 1872. Descriptions of some new North American Coleoptera. *Transactions of the American Entomological Society* 4: 143–152. https://doi.org/10.2307/25076271

Horn G.H. 1893. The Galerucini of boreal America. *Transactions of the American Entomological Society* 20: 57–136.

Hua Y., Beutel R.G., Ge S., Nie R. & Yang X. 2014. The morphology of galerucine and alticine larvae (Coleoptera: Chrysomelidae) and its phylogenetic implications. *Arthropod Systematics & Phylogeny* 72 (2): 75–94.

Huang D.S., Han Y. & Zhang X. 1985. The insect fauna of the Mt. Tuomuer areas in Tianshan. *In*: The Mountain Climbing Scientific Expedition Team of Chinese Academy of Sciences (ed.) *Dengshan Kexue Kaochadui (= Biota of Tuomuer Region, Tianshan)*: 53–165. Xinjiang People's Press, Beijing.

International Commission on Zoological Nomenclature. 1994. Opinion 1754. Histoire abrégée des insectes qui se trouvent aux environs de Paris (Geoffroy, 1762): some generic names conserved (Crustacea, Insecta). *Bulletin of Zoological Nomenclature* 51 (1): 58–70.

Jacobson G.G. 1911. Fasc. 9, plate 59. *In*: Jacobson G.G. (ed.) *Zhuki Rossii i Zapadnoy Evropy*. *Rukovodstvo k opredeleniyu zhukov [Beetles of Russia and Western Europe. Guide to the determination of beetles]* 1905–1915: 1–1024. St Petersburg, A.F. Devrient. [In Russian.]

Jacoby M. 1876. Descriptions of new genera and species of phytophagous Coleoptera. *Proceedings of the Zoological Society of London* 1876: 807–817. https://doi.org/10.1111/j.1096-3642.1876.tb02617.x

Jacoby M. 1879. Descriptions of new species of phytophagous Coleoptera. *Proceedings of the Zoological Society of London* 1879: 773–793. https://doi.org/10.1111/j.1096-3642.1879.tb02716.x

Jacoby M. 1886. Biologia Centrali-Americana, Insecta, Coleoptera, Galerucidae. Volume 6, Part 1: 409–496. London.

Jacoby M. 1887. Biologia Centrali-Americana, Insecta, Coleoptera, Galerucidae. Volume 6, Part 1: 497–584. London.

Jacoby M. 1888. *Biologia Centrali-Americana, Insecta, Coleoptera, Galerucidae. Volume 6, Part 1:* 585–625. London.

Jacoby M. 1891. [Families Eumolpidae, Chrysomelidae, Halticidae and Galerucidae]. *In*: Whymper E. (ed.) *Supplementary Appendix to Travels Amongst the Great Andes of the Equator*: 82–88. J. Murray, London.

Jacoby M. 1892. *Biologia Centrali-Americana, Insecta, Coleoptera, Supplement to Phytophaga. Volume 6, Part 1*: 313–348. London.

Jacoby M. 1903. Descriptions of the new genera and species of phytophagous Coleoptera obtained by Mr H.-L. Andrewes and Mr T.-R. Bell at the Nilgiri Hills and Kanara. *Annales de la Société entomologique de Belgique* 47: 80–128.

Joannis M.L.de. 1865. Gallerucides, tribu de la famille de Phytophages, ou Chrysomélines. *L'Abeille* 3: 1–168.

Kim S.J., Kjer K.M. & Duckett C.N. 2003. Comparison between molecular and morphological-based phylogenies of galerucine/alticine leaf beetles (Coleoptera: Chrysomelidae). *Insect Systematics & Evolution* 34: 53–64. https://doi.org/10.1163/187631203788964890

Kirsch T. 1883. Neue südamerikanische Käfer. Berliner Entomologische Zeitschrift 27: 187–213.

Laboissière V. 1922. Étude des Galerucini de la Collection du Musée du Congo Belge. *Revue zoologique africaine* 10: 1–44, 219–271.

Laboissière V. 1927. Contribution a l'étude des Galerucini de l'Indochine et du Yunnan avec descriptions de nouveaux genres et espèces (Col. Chrysomelidae). *Annales de la Sociéte entomologique de France* 96: 37–62.

Laboissière V. 1929. Observations sur les Galerucini asiatiques principalement du Tonkin et du Yunnan et descriptions de nouveaux genres et espèces. *Annales de la Sociéte entomologique de France* 98: 251–288.

Laboissière V. 1931. Galerucini (Coleoptera Chrysomelidae) d'Angola. *Revue suisse de Zoologie* 38: 405–418. https://doi.org/10.5962/bhl.part.117646

Laboissière V. 1932. Galerucini de la collection du Muséum national d'histoire naturelle recueillis dans l'Himalaya par le Dr. J. Harmand. *Bulletin du Museum d'histoire naturelle (ser. 2)* 4 (8): 960–970.

Laboissière V. 1934. Galerucinae de la faune française (coléoptères). *Annales de la Société entomologique de France* 103: 1–108.

Laboissière V. 1939. Resultats scientifiques des croisières du navire-école belge Mercator. XIII, Chrysomelidae, Galerucinae (Coleoptera). *Mémoires du Musée royal d'Histoire naturelle de Belgique (ser. 2)* 15: 153–158.

Laicharting J.N.von. 1781. Verzeichniss und Beschreibung der Tyroler Insecten. *I Theil Käferartige Insecten*: 248. I Band. Füessly, Zurich. https://doi.org/10.5962/bhl.title.149834

Latreille P.A. 1810. Considérations générales sur l'ordre naturel des animaux composant les classes des crustacés, des arachnides et des insectes; avec un tableau méthodique de leurs genres, disposés en familles: 444. Schoell, Paris. https://doi.org/10.5962/bhl.title.39620

LeConte J.L. 1865. On the species of *Galeruca* and allied genera inhabiting North America. *Proceedings* of the Academy of Natural Sciences of Philadelphia 18: 204–222.

Lee C. & Bezděk J. 2021. Revision of the genera *Xanthogaleruca* Laboissiere, 1932 and *Pyrrhalta* Joannis 1865 (Coleoptera, Chrysomelidae, Galerucinae) of Taiwan, with type designation of *Galerucella lineatipes* Takei. *ZooKeys* 1039: 1–108. https://doi.org/10.3897/zookeys.1039.64740

LeSage L. 1986. A taxonomic monograph of the Nearctic galerucine genus *Ophraella* Wilcox (Coleoptera: Chrysomelidae). *Memoirs of the Entomological Society of Canada* 133: 1–75. https://doi.org/10.4039/entm118133fv

Manguin S., White R., Blossey B. & Hight S.D. 1993. Genetics, taxonomy, and ecology of certain species of *Galerucella* (Coleoptera: Chrysomelidae). *Annals of the Entomological Society of America* 86 (4): 397–410. https://doi.org/10.1093/aesa/86.4.397

Maulik S. 1936. Coleoptera. Chrysomelidae. (Galerucinae). *The Fauna of British India Including Ceylon and Burma*: 648. Taylor and Francis, London.

Motschulsky V.de. 1858. Insectes des Indes orientales 1^{ière} serie. Études entomologiques 7: 20–122.

Moura L.de.A. 1998a. Novo status de *Chlorolochmaea* (Coleoptera, Chrysomelidae, Galerucinae, Galerucini). *Iheringia, Zoologia* 84: 145–152.

Moura L.de.A. 1998b. *Iucetima*, gênero novo de Galerucini da Região Neotropical (Coleoptera, Chrysomelidae, Galerucinae). *Iheringia, Zoologia* 85: 75–88.

Moura L.de.A. 1998c. Revisão do gênero *Neolochmaea* (Coleoptera, Chrysomelidae, Galerucinae). *Iheringia, Zoologia* 85: 169–188.

Moura L.de.A. 2010. *Coronabrotica*, a new genus and species of Luperini, and a key to genera of Section Phyllecthrites (Coleoptera, Chrysomelidae, Galerucinae). *Zootaxa* 2675: 26–32. https://doi.org/10.11646/zootaxa.2675.1.2

Moura L.de.A. 2011. A new species of *Aristobrotica* Bechyné and a checklist of the genus (Coleoptera, Chrysomelidae, Galerucinae). *Revista Brasileira de Entomologia* 55 (1): 27–30. https://doi.org/10.1590/S0085-56262011000100005

Munroe D.D. & Smith R.F. 1980. A revision of the systematics of *Acalymma sensu stricto* Barber (Coleoptera: Chrysomelidae) from North America including Mexico. *Memoirs of the Entomological Society of Canada* 112: 1–92. https://doi.org/10.4039/entm112112fv

Nie R., Zhou D., Xue H. & Yang X. 2013. Notes on black elytron species of *Pyrrhalta* Joannis and the description of a new species from China (Coleoptera, Chrysomelidae, Galerucinae). *ZooKeys* 289: 41–56. https://doi.org/10.3897/zookeys.289.4266

Nie R., Bezděk J. & Yang X. 2017. How many genera and species of Galerucinae s. str. do we know? Updated statistics (Coleoptera, Chrysomelidae). *ZooKeys* 720: 91–102. https://doi.org/10.3897/zookeys.720.13517 Nie R., Breeschoten T., Timmermans M.J.T.N., Nadein K., Xue H., Bai M., Huang Y., Yang X. & Vogler A.P. 2018. The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the performance of mitochondrial genomes in phylogenetic inference compared to nuclear rRNA genes. *Cladistics* 34: 113–130. https://doi.org/10.1111/cla.12196

Nie R., Andújar C., Gómez-Rodríguez C., Bai M., Xue H., Tang M., Yang C., Tang P., Yang X. & Vogler A.P. 2020. The phylogeny of leaf beetles (Chrysomelidae) inferred from mitochondrial genomes. *Systematic Entomology* 45 (1): 188–204. https://doi.org/10.1111/syen.12387

Niño-Maldonado S. & Clark S.M. 2020a. *Carpiradialis*, new genus, and two new species from Mexico (Coleoptera: Chrysomelidae: Galerucinae). *The Coleopterists Bulletin* 74 (3): 563–571. https://doi.org/10.1649/0010-065X-74.3.563

Niño-Maldonado S. & Clark S.M. 2020b. The first report of *Oroetes* Jacoby, 1888 from Mexico, with descriptions of two new species (Coleoptera: Chrysomelidae: Galerucinae). *The Coleopterists Bulletin* 74 (4): 813–820. https://doi.org/10.1649/0010-065X-74.4.813

Nokkala C. & Nokkala S. 2004. Molecular phylogeny and systematics of *Galerucella* and related taxa. *In*: Jolivet P., Santiago-Blay J.A. & Schmitt M. (eds) *New Developments on the Biology of Chrysomelidae*: 125–130. SPB Publishing, The Hague, The Netherlands. https://doi.org/10.1163/9789004475335_014

Reitter E. 1903. Übersicht der mir bekannten Coleoptera-Arten der Gattung *Galeruca* Geoffr. *Wiener Entomologische Zeitung* 22 (4–5): 133–139. https://doi.org/10.5962/bhl.part.9745

Riley E.G. 1979. A new species of *Phyllobrotica* Chevrolat (Coleoptera: Chrysomelidae) from the prairies of southwestern Missouri. *The Coleopterists Bulletin* 33 (3): 331–335.

Riley E.G. 2020. A new species of *Monoxia* LeConte, 1865 (Coleoptera: Chrysomelidae: Galerucinae: Galerucini) from the coast of southern Texas, USA. *The Pan-Pacific Entomologist* 96 (3): 189–196. https://doi.org/10.3956/2020-96.3.189

Riley E.G., Clark S.M., Flowers R.W. & Gilbert A.J. 2002a. Chrysomelidae Latreille 1802. *In*: Arnett R.H., Thomas M.C., Skelley P.E. & Frank J.H. (eds) *American Beetles. Volume 2. Polyphaga: Scarabaeoidea through Curculionoidea*: 617–691. CRC Press, Boca Raton, Florida.

Riley E.G., Clark S.M. & Gilbert A.J. 2002b. New records, nomenclatural changes, and taxonomic notes for select North American leaf beetles (Coleoptera: Chrysomelidae). *Insecta Mundi* 15: 1–17. [Dated 2001, but actually published in 2002.]

Riley E.G., Clark S.M. & Seeno T.N. 2003. *Catalog of the Leaf Beetles of America North of Mexico (Coleoptera: Megalopodidae, Orsodacnidae and Chrysomelidae, Excluding Bruchinae)*: 1–290. Coleopterists Society, Special Publication 1, Sacramento, California.

Santiago-Blay J.A., Poinar G.O. & Craig P.R. 1996. Dominican and Mexican amber chrysomelids, with descriptions of two new species. *In*: Jolivet P.H.A. & Cox M.L. (eds) *Chrysomelidae Biology, Vol. 1: The Classification and Genetics*: 413–424. SPB Academic Publishing, Amsterdam.

Schaeffer C. 1906. On new and known genera and species of the family Chrysomelidae. *Brooklyn Institute Museum Science Bulletin* 1 (9): 221–253.

Scherer G. 1962. Bestimmungsschlüssel der neotropischen Alticinen-Genera (Col. Chrysom.). *Entomologische Arbeiten aus dem Museum G. Frey, Tutzing* 13 (2): 497–607.

Scherer G. 1969. Die Alticinae des indischen Subkontinentes (Coleoptera – Chrysomelidae). *Pacific Insects Monograph* 22: 1–251.

Scherer G. 1983. Diagnostic key for the Neotropical alticine genera (Coleoptera: Chrysomelidae: Alticinae). *Entomologische Arbeiten aus dem Museum G. Frey, Tutzing* 31/32: 1–89.

Seeno T.N. & Wilcox J.A. 1982. Leaf beetle genera (Coleoptera: Chrysomelidae). *Entomography* 1: 1–221.

Smith R.F. & Lawrence J.F. 1967. Clarification of the status of the type specimens of Diabroticites (Coleoptera, Chrysomelidae, Galerucinae). *University of California Publications in Entomology* 45: 1–174.

Song N., Yin X., Zhao X., Chen J. & Yin J. 2018. Reconstruction of mitogenomes by NGS and phylogenetic implications for leaf beetle. *Mitochondrial DNA (Part A)* 29 (7): 1041–1050. https://doi.org/10.1080/24701394.2017.1404044

Swigoňová Z. & Kjer K.M. 2004. Phylogeny and host-plant association in the leaf beetle genus *Trirhabda* LeConte (Coleoptera: Chrysomelidae). *Molecular Phylogenetics and Evolution* 32: 358–374. https://doi.org/10.1016/j.ympev.2004.02.010

Thomson C.G. 1859. *Skandinaviens Coleoptera, synoptiskt bearbetade*: 290. Tom. I. Berlingska Boktryckeriet, Lund. https://doi.org/10.5962/bhl.title.138677

Tracy J.L. & Robbins T.O. 2009. Taxonomic revision and biogeography of the *Tamarix*-feeding *Diorhabda elongata* (Brullé, 1832) species group (Coleoptera: Chrysomelidae: Galerucinae: Galerucini) and analysis of their potential in biological control of tamarisk. *Zootaxa* 2101 (1): 1–152. https://doi.org/10.11646/zootaxa.2101.1.1

Viswajyothi K. & Clark S.M. 2020a. *Prathapanius fortis*, a new genus and new species of Galerucinae from Ecuador (Coleoptera, Chrysomelidae). *ZooKeys* 968: 111–126. https://doi.org/10.3897/zookeys.968.54228

Viswajyothi K. & Clark S.M. 2020b. *Apteroyinga andrewsi* sp. nov. (Coleoptera: Chrysomelidae: Galerucinae: Galerucini), an anomalous new genus and new species of flightless beetle from Costa Rica. *The Pan-Pacific Entomologist* 96 (3): 227–237. https://doi.org/10.3956/2020-96.3.227

Viswajyothi K. & Clark S.M. 2021a. A new genus and two new species of Galerucinae from Costa Rica (Coleoptera: Chrysomelidae). *Journal of Natural History* 54 (47–48): 3103–3119. https://doi.org/10.1080/00222933.2021.1890849

Viswajyothi K. & Clark S.M. 2021b. A new genus to accommodate Central and South American beetles with broadly explanate elytra, formerly assigned to *Monocesta* Clark and *Coelomera* Chevrolat (Coleoptera: Chrysomelidae: Galerucinae: Galerucini). *The Coleopterists Bulletin* 75 (2): 473–484. https://doi.org/10.1649/0010-065X-75.2.473

Wagner T. 2007. *Monolepta* Chevrolat, 1837, the most speciose galerucine taxon: redescription of the type species *Monolepta bioculata* (Fabricius, 1781) and key to related genera from (Chrysomelidae, Coleoptera). *Journal of Natural History* 41 (1–4): 81–100. https://doi.org/10.1080/00222930601127384

Wagner T. & Bieneck S. 2012. Galerucine type material described by Victor Motschulsky in 1858 and 1866 from the Zoological Museum Moscow (Coleoptera: Chrysomelidae, Galerucinae). *Entomologische Zeitschrift (Stuttgart)* 122 (5): 205–216.

Ward D.R. 1982. *The Systematics, Distribution, and Biology of the Nearctic Species of Tricholochmaea Laboissière (Chrysomelidae: Galerucinae)*: 170. MS Thesis, Carleton University, Ottawa, Ontario.

Weise J. 1883. Ueber die mit *Galeruca* Geoffr. Verwandten Gattungen. *Deutsche Entomologische Zeitschrift* 27 (2): 315–316.

Weise J. 1886. Galerucinae. Lieferung 4. *In: Naturgeschichte der Insekten Deutschlands. Erste Abteilung Coleoptera. Sechster Band [1893]:* 569–768. Nicolaische Verlags-Buchhandlung, Berlin.

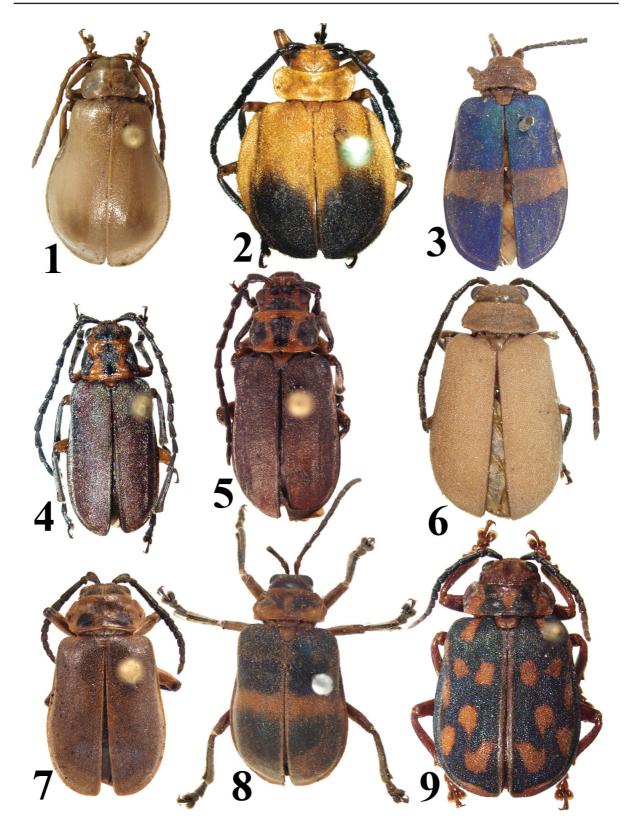
Weise J. 1922. Chrysomeliden der Indo-Malayischen Region. Tijdschrift voor Entomologie 65: 39-130.

Weise J. 1924. Chrysomelidae: 13 Galerucinae. *In*: Schenkling S. (ed.) *Coleopterorum Catalogus* 25 (Pars 78): 1–225. W. Junk, Berlin.

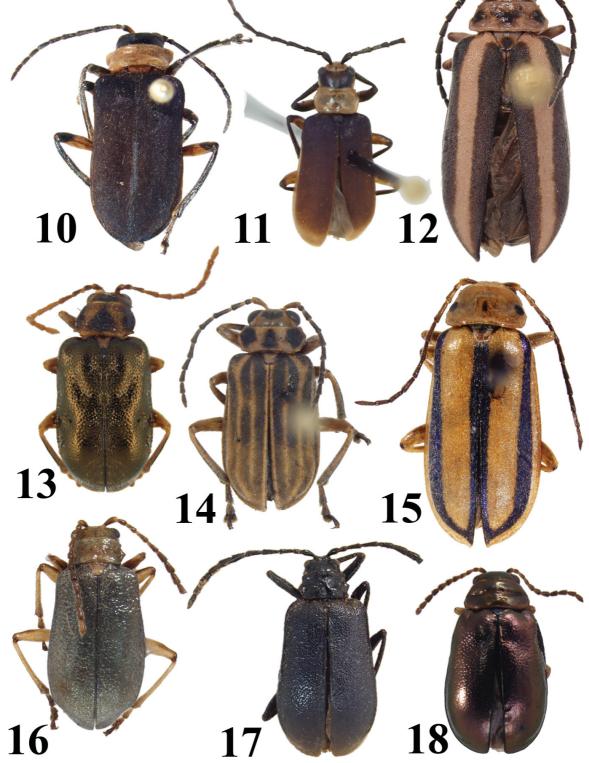
Wilcox J.A. 1951. A new species and new genus of Galerucinae (Chrysomelidae: Coleoptera). *The Ohio Journal of Science* 51 (2): 90–94.

Wilcox J.A. 1965. A synopsis of the North American Galerucinae (Coleoptera: Chrysomelidae). *New York State Museum and Science Service Bulletin* 400: 1–226.

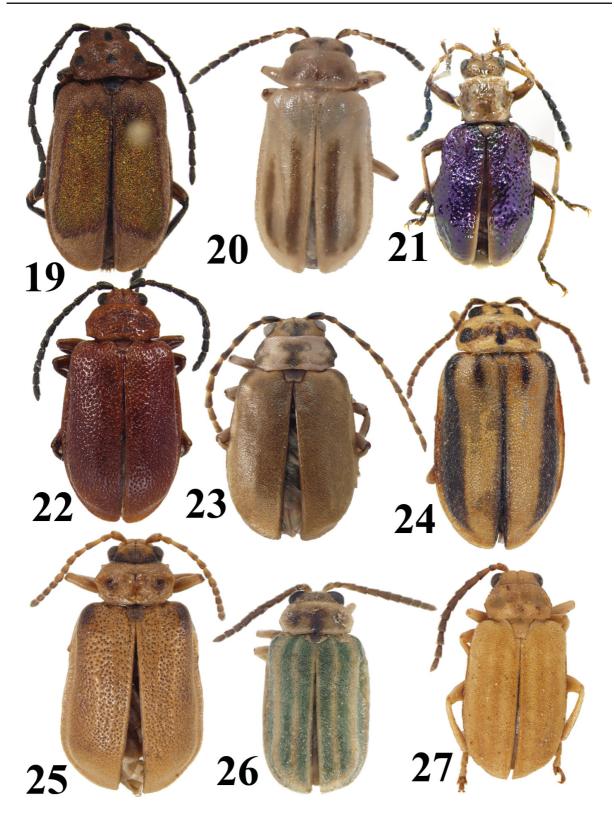
Wilcox J.A. 1971. Chrysomelidae: Galerucinae. Oidini, Galerucini, Metacyclini, Sermylini. Coleopterorum Catalogus, Supplementa. Pars 78, Fasc. 1, (Editio Seconda): 220. W. Junk, 's-Gravenhage.

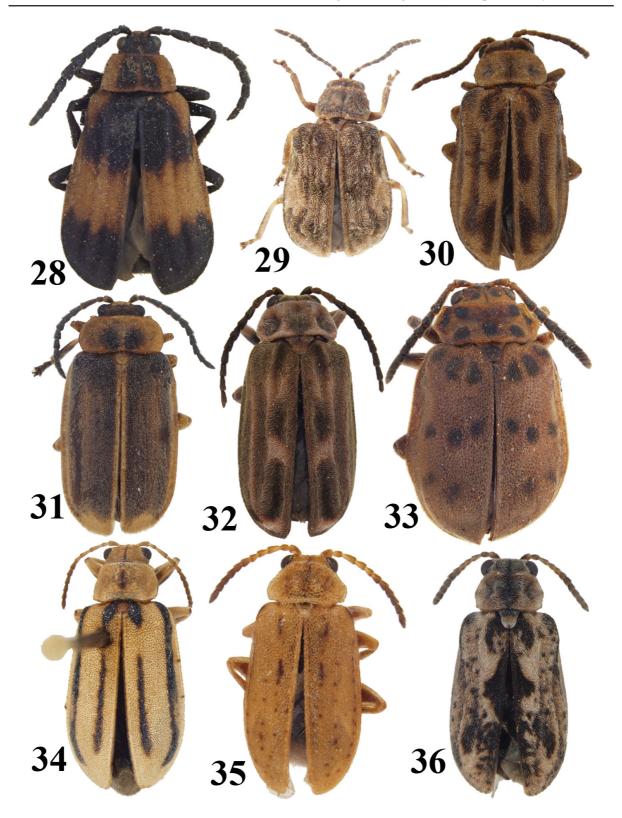

Wilcox J.A. 1972. *Chrysomelidae: Galerucinae. Luperini: Aulacphorina, Diabroticina. Coleopterorum Catalogus, Supplementa:* 296–431. Pars 78, Fasc. 2 (Editio seconda). W. Junk, 's-Gravenhage.

Wilcox J.A. 1973. Chrysomelidae: Galerucinae. Luperini: Luperina. Coleopterorum Catalogus, Supplementa: 433–664. Pars 78, Fasc. 3 (Editio seconda). W. Junk, 's-Gravenhage.


Zayas F.de. 1988. *Entomofauna Cubana. Orden Coleoptera. Separata Descripción de Nuevas Especies*: 212. Editorial Científico-Ténica, Habana.

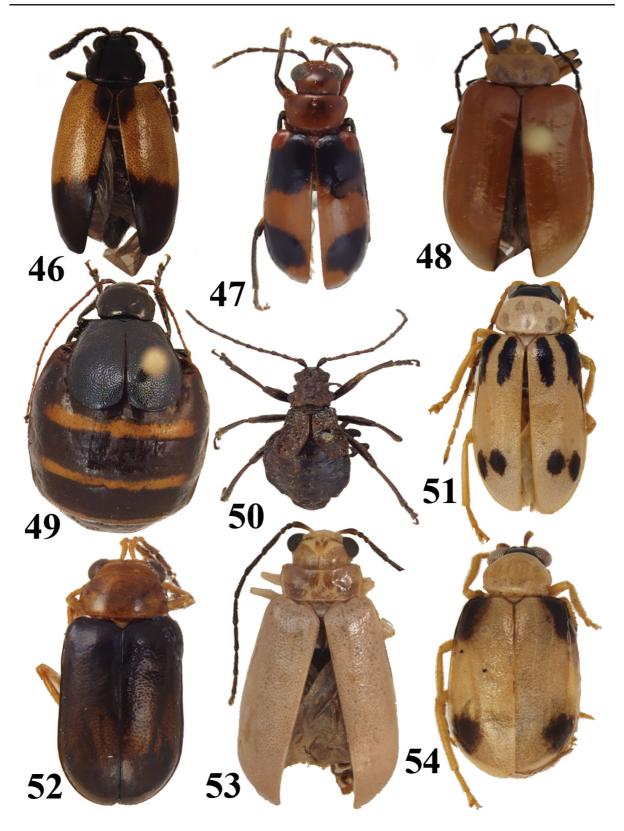
Manuscript received: 8 April 2022 Manuscript accepted: 18 July 2022 Published on: 14 October 2022 Topic editor: Tony Robillard Section editor: Max Barclay Desk editor: Kristiaan Hoedemakers


Printed versions of all papers are also deposited in the libraries of the institutes that are members of the *EJT* consortium: Muséum national d'histoire naturelle, Paris, France; Meise Botanic Garden, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands; Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; Leibniz Institute for the Analysis of Biodiversity Change, Bonn – Hamburg, Germany; National Museum, Prague, Czech Republic.


Figs 1–9. Dorsal views. 1. Monocesta coryli (Say, 1824). 2. Platycesta depressa (Clark, 1865).
3. Austrochorina consularis (Clark, 1865). 4. Coraia subcyanescens (Schaeffer, 1906). 5. Coraia maculicollis Clark, 1865. 6. Caraguata pallida (Jacoby, 1886). 7. Coelomera godmani Jacoby, 1879.
8. Chorina cincta (Clark, 1865). 9. Syphaxia maculata Jacoby, 1899.

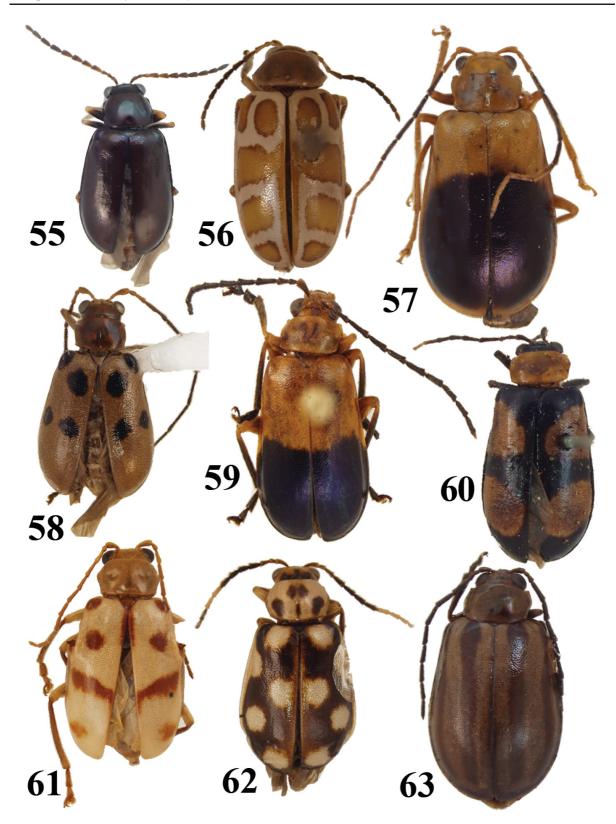
Figs 10–18. Dorsal views. 10. Dircema? nigripenne (Fabricius, 1792). 11. Neophaestus sp. 12. Derospidea brevicollis (LeConte, 1865). 13. Dicoelotrachelus sp. 14. Megarhabda sp. 15. Trirhabda nitidicollis LeConte, 1865. 16. Socorroita carinipennis (Bowditch, 1923). 17. Socorroita elvira Bechyné, 1956. 18. Miraces aeneipennis Jacoby, 1888.

Figs 19–27. Dorsal views. 19. Nestinus bimaculatus Clark, 1865. 20. Diorhabda carinulata (Desbrochers, 1870). 21. Apteroyinga andrewsi Viswajyothi & Clark, 2020. 22. Tricholochmaea cavicollis (LeConte, 1865). 23. Pyrrhalta viburni (Paykull, 1799). 24. Xanthogaleruca luteola (Müller, 1766). 25. Galerucella nymphaeae (Linnaeus, 1758). 26. Itaitubana lineatipennis (Jacoby, 1886). 27. Itaitubana alternata (Jacoby, 1886).

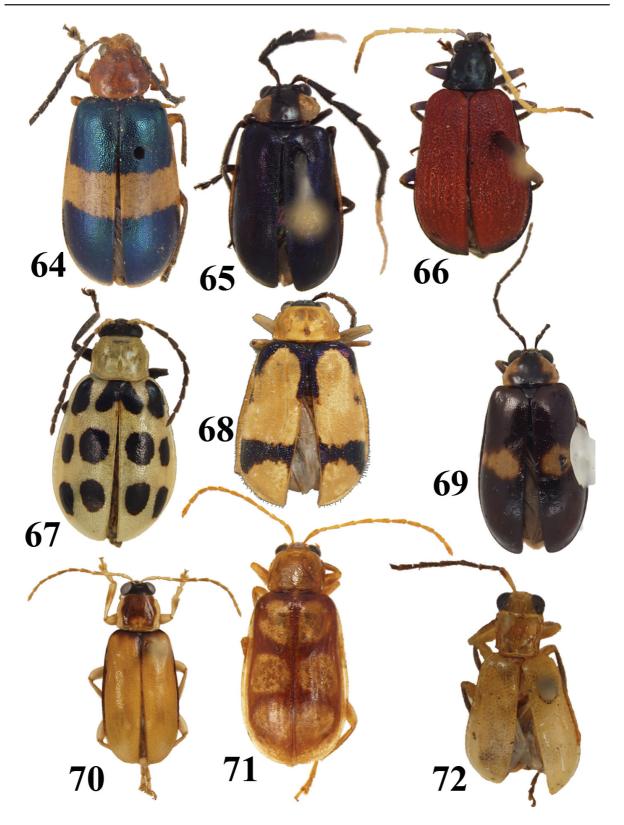


VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

Figs 28–36. Dorsal views. 28. Schematiza flavofasciata (Klug, 1829). 29. Yingaresca difficilis (Bowditch, 1923). 30. Yingaresca fuscomaculata (Jacoby, 1886). 31. Metrogaleruca obscura (Degeer, 1775). 32. Brucita marmorata (Jacoby, 1886). 33. Platynocera murina Blanchard, 1846. 34. Erynephala maritima (LeConte, 1865). 35. Monoxia angularis (LeConte, 1859). 36. Yingabruxia sordida (LeConte, 1858) comb. nov.

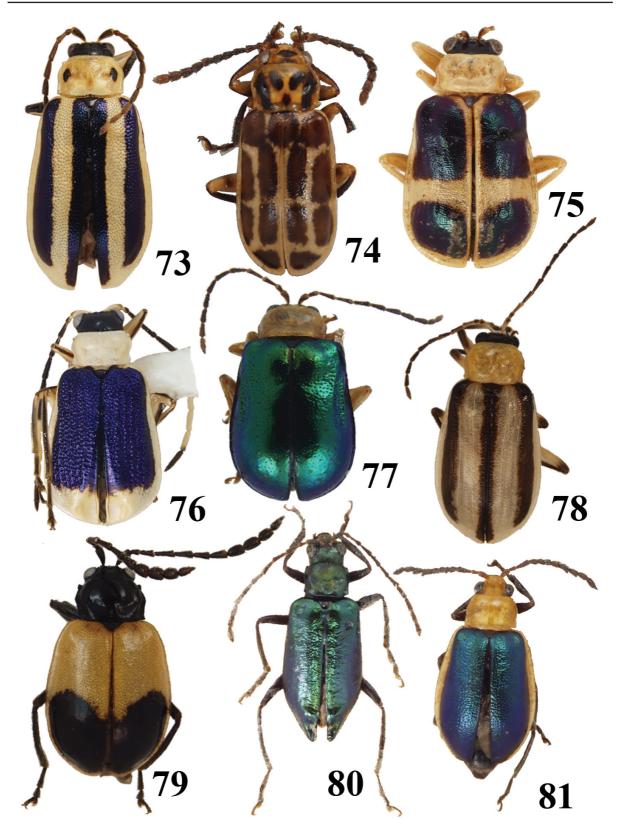


Figs 37–45. Dorsal views. 37. Ophraella americana (Fabricius, 1801). 38. Ophraella notata (Fabricius, 1801). 39. Ophraella cribrata (LeConte, 1865). 40. Ophraea rugosa Jacoby, 1886. 41. Neolochmaea obliterata (Olivier, 1808). 42. Iucetima minor (Bechyné, 1954). 43. Chlorolochmaea parallela (Bowditch, 1923). 44. Galeruca rudis LeConte, 1857. 45. Gonaives buenae Clark, 1987.



VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

Figs 46–54. Dorsal views. 46. Hecataeus nigricollis Jacoby, 1888. 47. Nyctiplanctus? farri Blake, 1963.
48. Nyctiplanctus ferrugineus (Blake, 1963). 49. Metacycla sallei Baly, 1861. 50. Metalepta degandii Baly, 1961. 51. Zepherina defensa (Bechyné, 1956). 52. Zepherina trinidadensis (Weise, 1929).
53. Zepherina brevicollis (Weise, 1921). 54. Zepherina parvicollis Bechyné & Bechyné, 1976.

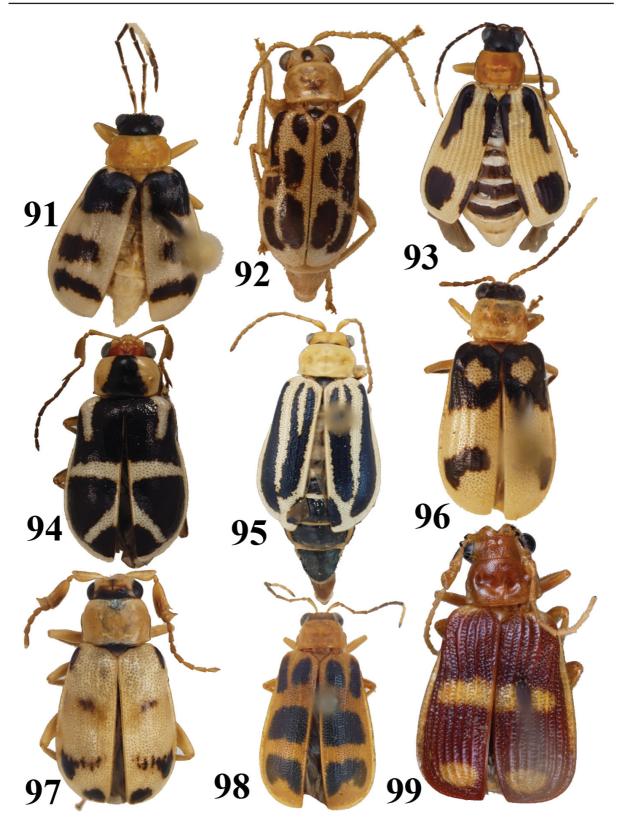


Figs 55–63. Dorsal views. 55. Zepherina variegata (Weise, 1921). 56. Exora olivacea (Fabricius, 1801). 57. Masurius sp. 58. Elyces ? quadrimaculatus Jacoby, 1888. 59. Byblitea jansoni (Jacoby, 1878). 60. Sonyadora quadripustulata (Bowditch, 1925). 61. Malacorhinus foveipennis (Jacoby, 1879). 62. Trigonexora diversemaculata (Bechyné, 1956). 63. Pyesexora sp.

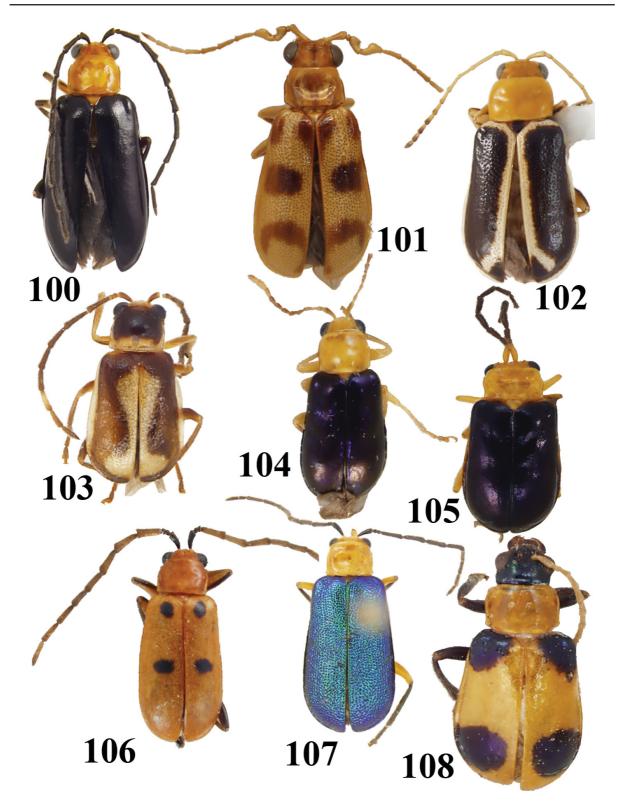


VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

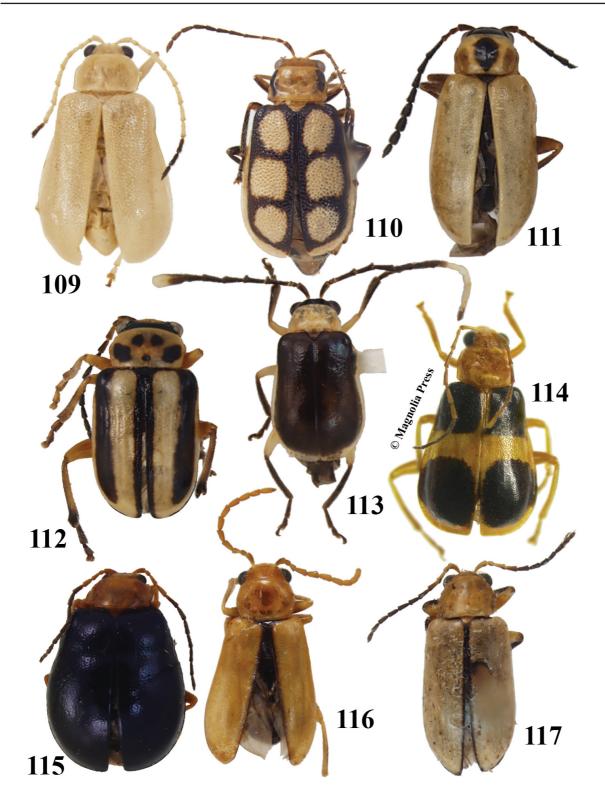
Figs 64–72. Dorsal views. 64. Pyesia laticornis (Germar, 1823). 65. Chthoneis marginicollis Jacoby, 1881. 66. Cochabamba chrysopleura (Harold, 1875). 67. Diabrotica undecimpunctata Mannerheim, 1843. 68. Zischkaita sp. 69. Uaupesia sp. 70. Paranapiacaba fuscomarginata (Jacoby, 1878). 71. Paranapiacaba dorsoplagiata (Jacoby, 1837). 72. Microbrotica subglabrata Jacoby, 1887.

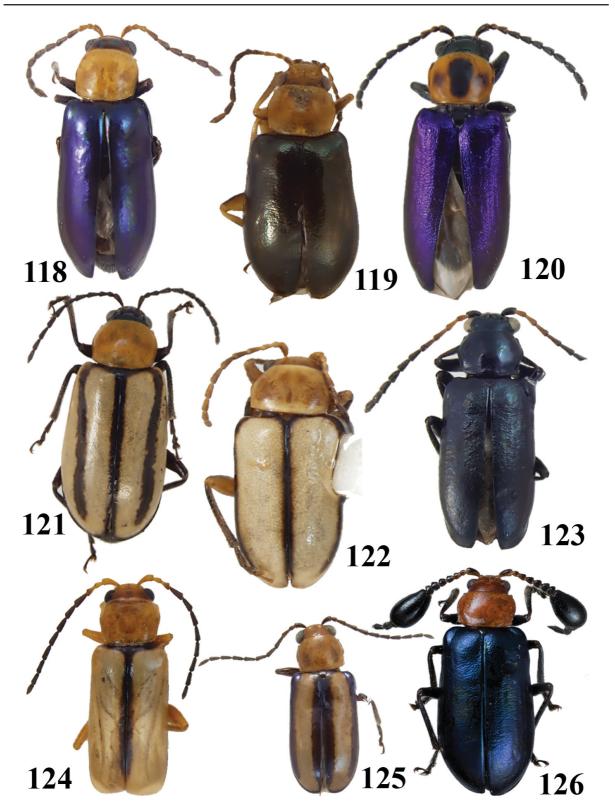


Figs 73–81. Dorsal views. 73. Amphelasma cavum (Say, 1835). 74. Anisobrotica sp. 75. Paratriarius cruciatus (Jacoby, 1887). 76. Paratriarius sp. 77. Acalymma mysticum (Jacoby, 1887). 78. Acalymma gouldi Barber, 1947. 79. Ensiforma inflaticornis (Bechyné, 1956). 80. Pseudodiabrotica metallica Jacoby, 1892. 81. Cornubrotica dilaticornis (Baly, 1879).

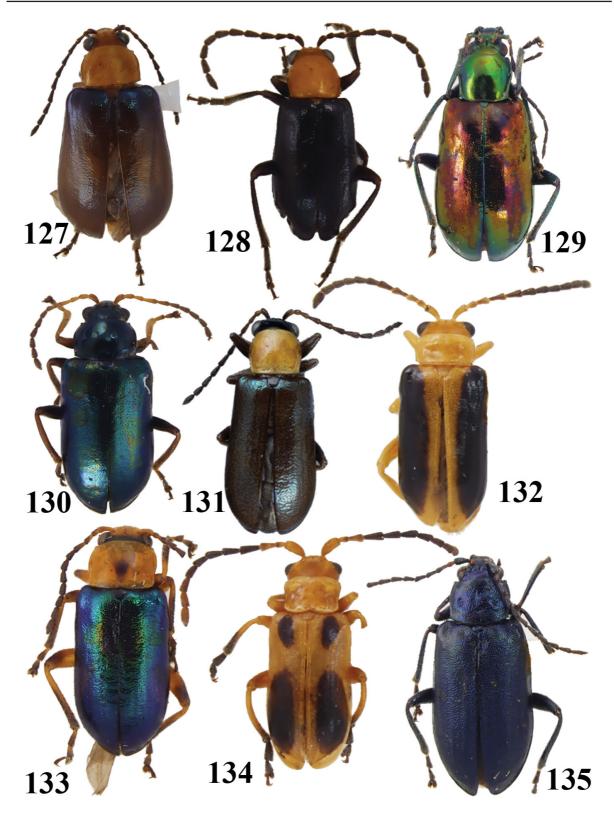


VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

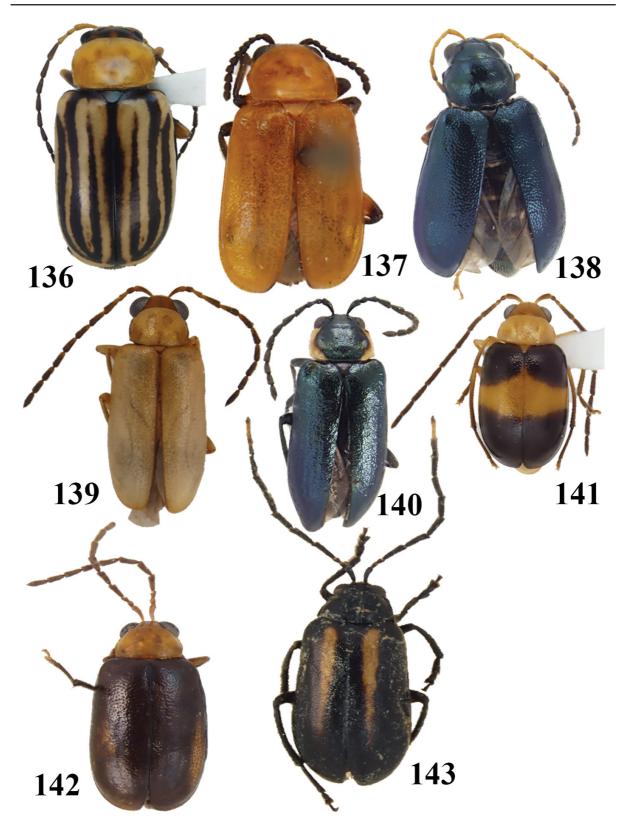

Figs 82–90. Dorsal views. 82. Gynandrobrotica ventricosa (Jacoby, 1878). 83. Buckibrotica cinctipennis (Baly, 1886). 84. Isotes delicula (Erichson, 1847). 85. Isotes dilatata (Jacoby, 1887). 86. Isotes gemmula (Jacoby, 1887). 87. Isotes multipunctata (Jacoby, 1878). 88. Isotes sexpunctata (Jacoby, 1878). 89. Heterochele actias Viswajyothi & Clark, 2021. 90. Prathapanius fortis Viswajyothi & Clark, 2020.


Figs 91–99. Dorsal views. 91. Aristobrotica allardi (Jacoby, 1887). 92. Hyperbrotica ebraea (Fabricius, 1787). 93. Hystiopsis beniensis Blake, 1966. 94. Metrobrotica geometrica (Erichson, 1847).
95. Rachicephala vittatipennis (Jacoby, 1887). 96. Neobrotica variabilis Jacoby, 1887. 97. Cerotoma arcuata (Olivier, 1791). 98. Potamobrotica trifasciata Blake, 1966, holotype. 99. Eucerotoma sp.

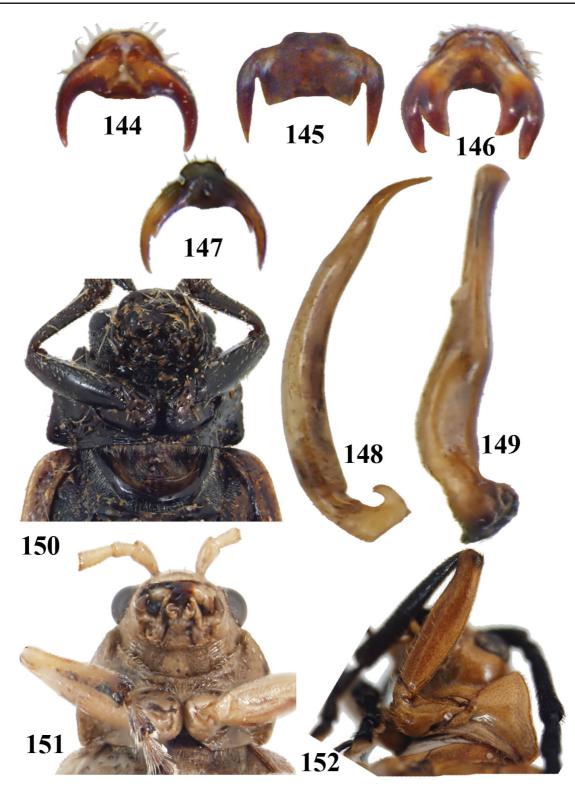
Figs 100–108. Dorsal views. 100. Phyllecthris dorsalis (Olivier, 1808). 101. Eccoptopsis costaricensis Blake, 1966. 102. Cyclotrypema furcata (Olivier, 1808). 103. Porechontes wilcoxi Blake, 1966. 104. Ectmesopus darlingtoni Blake, 1940. 105. Oroetes flavicollis Jacoby, 1888. 106. Platymorpha variegata Jacoby, 1888. 107. Trachyelytron smaragdipennis (Jacoby, 1888) comb. nov. 108. Leptonesiotes cyanospila (Suffrian, 1867).

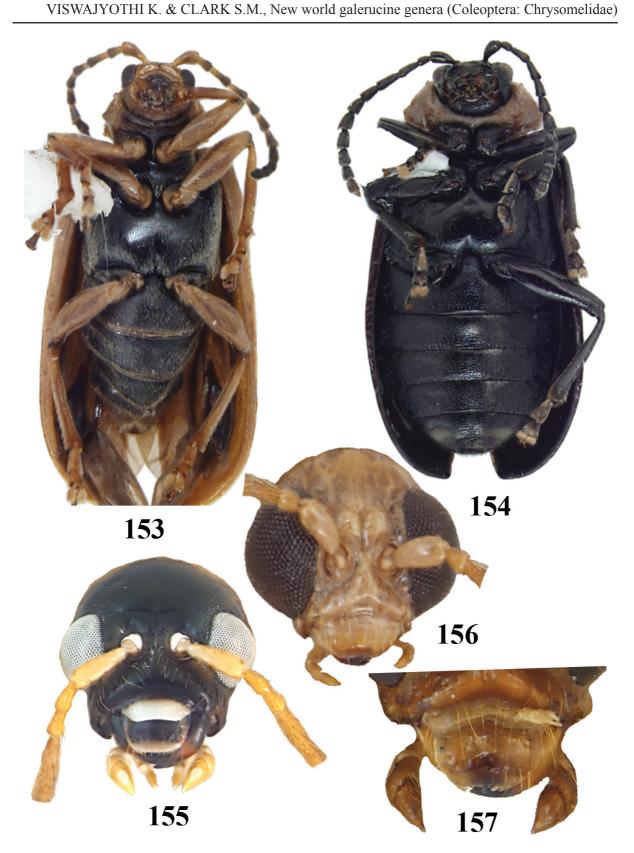


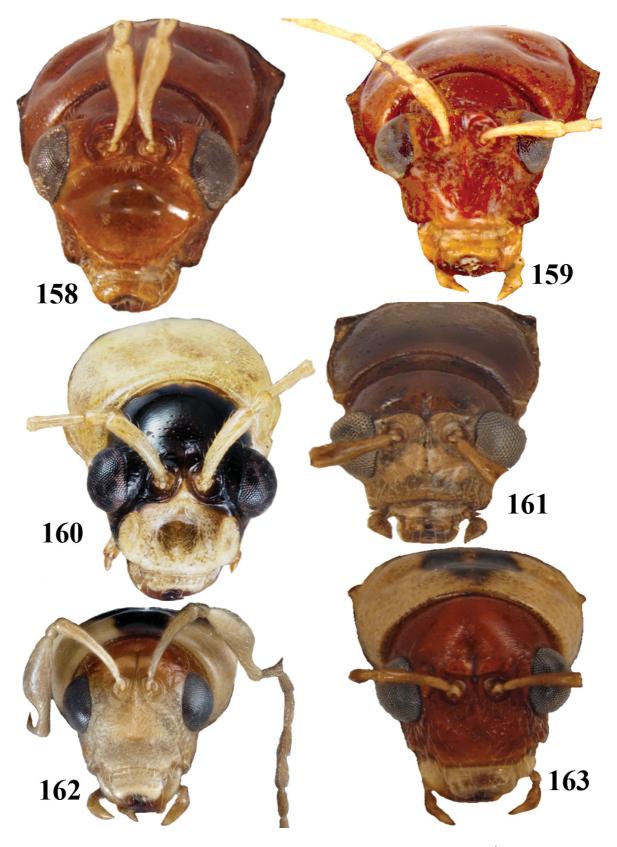
Figs 109–117. Dorsal views. 109. Parabrotica subtilis (Weise, 1921). 110. Trichobrotica sexplagiata (Jacoby, 1878). 111. Luperosoma marginatum Jacoby, 1891. 112. Carpiradialis pueblensis Niño-Maldonado & Clark, 2020. 113. Deinocladus sp. 114. Coronabrotica amazonensis Moura, 2010 [reproduced from Moura (2010), with permission from the copyright holder, Magnolia Press]. 115. Trachyscelida venezuelensis (Bechyné, 1956). 116. Synetocephalus penrosei Gilbert & Clark, 2012. 117. Geethaluperus flavofemoratus (Jacoby) comb. nov.

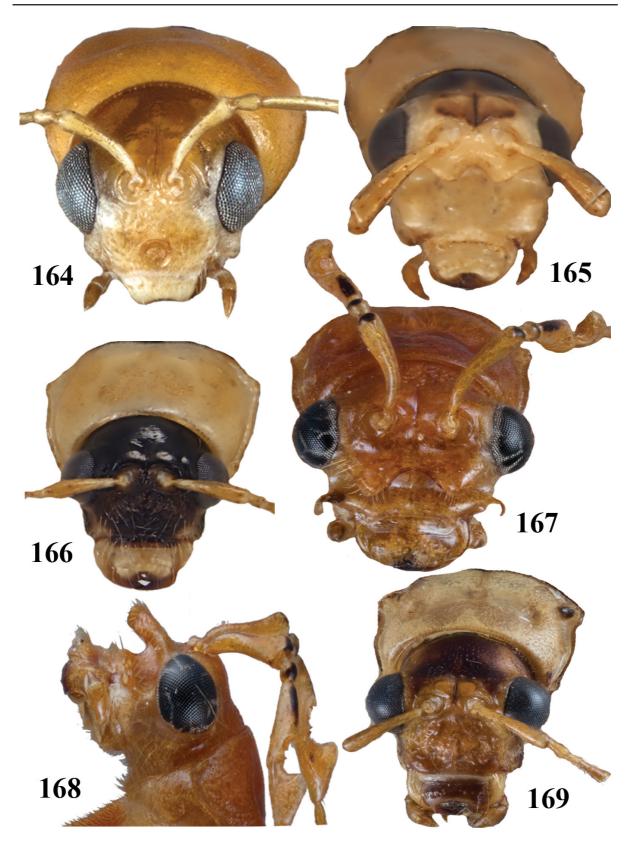


VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

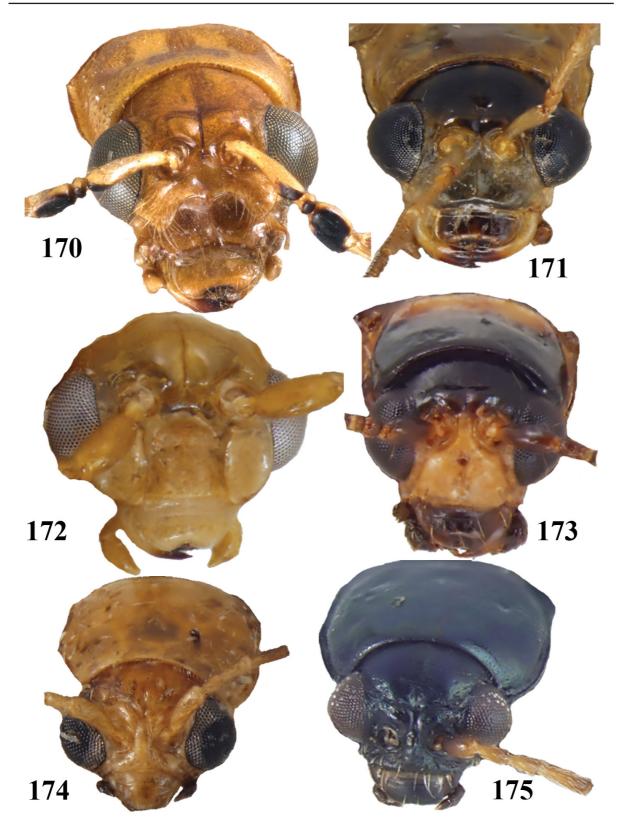

Figs 118–126. Dorsal views. 118. Monoaster fulgidus (Wilcox, 1965) comb. nov. 119. Mexiluperus sp. 120. Amplioluperus maculicollis (LeConte, 1884) comb. nov. 121. Monoaster linus (Wilcox, 1965) comb. nov. 122. Cornuventer tuberculatus (Blake, 1942) comb. nov. 123. Pseudoluperus longulus (LeConte, 1857). 124. Triarius lividus (LeConte, 1884). 125. Keitheatus blakeae (White, 1944). 126. Metacoryna fulvicollis Jacoby, 1888.


Figs 127–135. Dorsal views. 127. Scelida nigricornis (Jacoby, 1888). 128. Androlyperus incisus Schaeffer, 1906. 129. Inbioluperus flowersi Clark, 1993. 130. Scelolyperus cyanellus (LeConte, 1865). 131. Lygistus streptophallus Wilcox, 1965. 132. Phyllobrotica limbata (Fabricius, 1801). 133. Microscelida viridipennis Clark, 1998. 134. Phyllobrotica sororia Horn, 1896. 135. Scelidacne andrewi Clark, 1998.

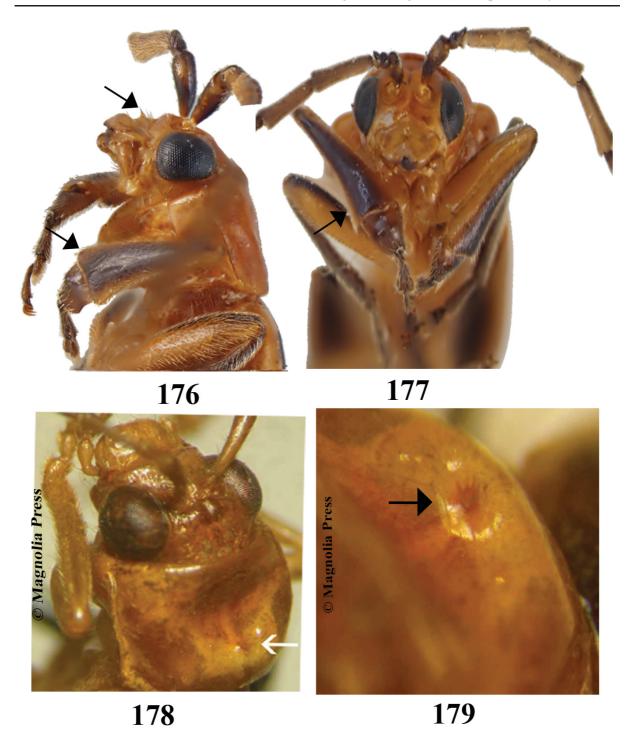

Figs 136–143. Dorsal views. 136. Triariodes vittipennis (Horn, 1893). 137. Pteleon brevicornis (Jacoby, 1887). 138. Eusattodera pini Schaeffer, 1906. 139. Metrioidea ocularis (Blake, 1942). 140. Halinella malachioides Bechyné, 1956. 141. Luperodes nigricornis Jacoby, 1888. 142. Monolepta violacea Jacoby, 1888. 143. Lilophaea brasiliensis (Jacoby, 1888).


Figs 144–152. 144. *Syphaxia maculata* Jacoby, 1899, simple claws. 145. *Pyesexora* sp., appendiculate claws. 146. *Monocesta coryli* (Say, 1824), bifid claws. 147. *Diorhabda carinulata* (Desbrochers des Loges, 1870), bifid claws. 148. *Pyesexora* sp., basal spur of aedeagus present. 149. *Scelolyperus cyanellus* (LeConte, 1865), basal spur of aedeagus absent. 150. *Galeruca costatissima* Blake, 1945, closed procoxal cavities. 151. *Erynephala puncticollis* (Say, 1824), open procoxal cavities. 152. *Platycesta depressa* (Viswajyothi & Clark, 2021), open procoxal cavities.

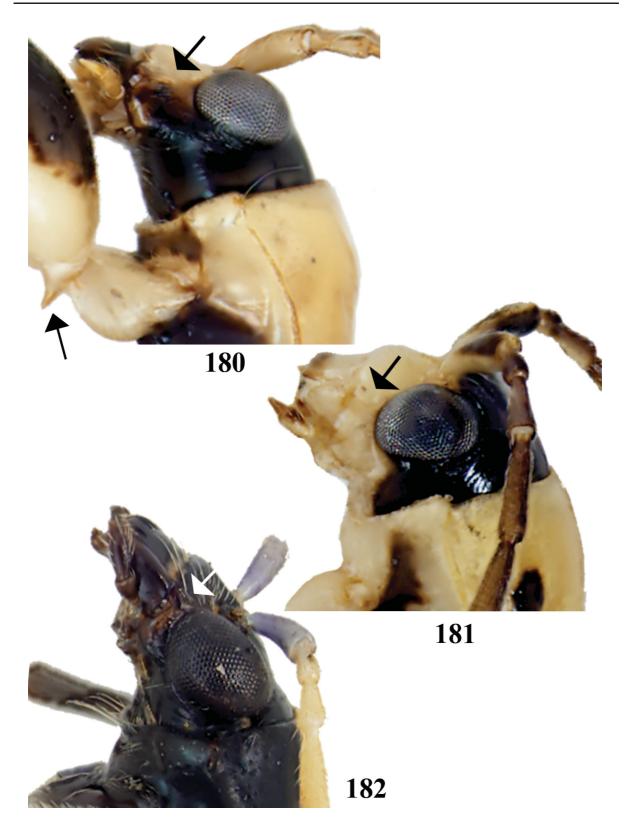
Figs 153–157. 153. *Galerucella nymphaeae* (Linnaeus, 1758), ventral view. 154. *Ophraea rugosa* Jacoby, 1886, ventral view. 155. *Zepherina defensa* (Bechyné, 1956), head, including maxillary palpi. 156. *Pyesexora* sp., head, including maxillary palpi. 157. *Byblitea* sp., lower portion of head, including maxillary palpi.

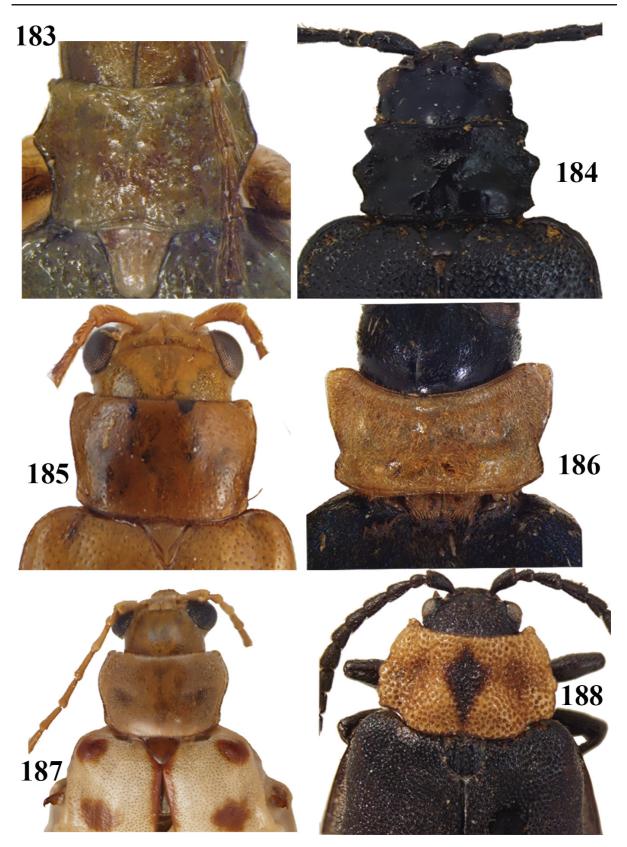


Figs 158–163. Heads, anterior views. **158**. *Gynandrobrotica ventricosa* (Jacoby, 1878), *∂*. **159**. *G. ventricosa*, **Q. 160**. *Gynandrobrotica nigrofasciata* (Jacoby, 1878), *∂*. **161**. *Elyces*? *quadrimaculatus* Jacoby, 1888. **162**. *Metrobrotica geometrica* (Erichson, 1847), *∂*. **163**. *M. geometrica*, **Q**.



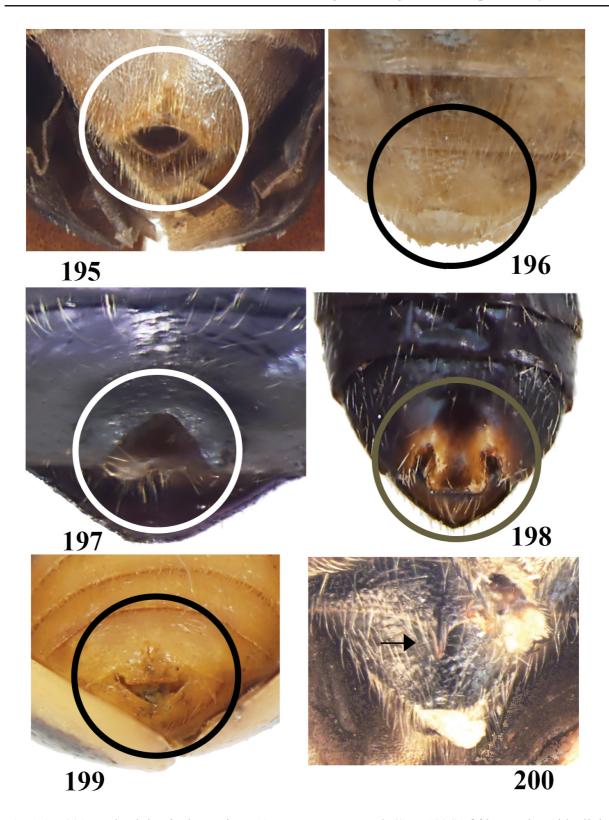
VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)


Figs 164–169. Heads. **164**. *Cyclotrypema furcata* (Olivier, 1308), \mathcal{S} , anterior view. **165**. *Cerotoma arcuata* (Olivier, 1791), \mathcal{S} , anterior view. **166**. *C. arcuata*, \mathcal{Q} , anterior view. **167**. *Eucerotoma* sp., \mathcal{S} , anterior view. **168**. *Eucerotoma* sp., \mathcal{S} , lateral view. **169**. *Eucerotoma* sp., \mathcal{Q} , anterior view.

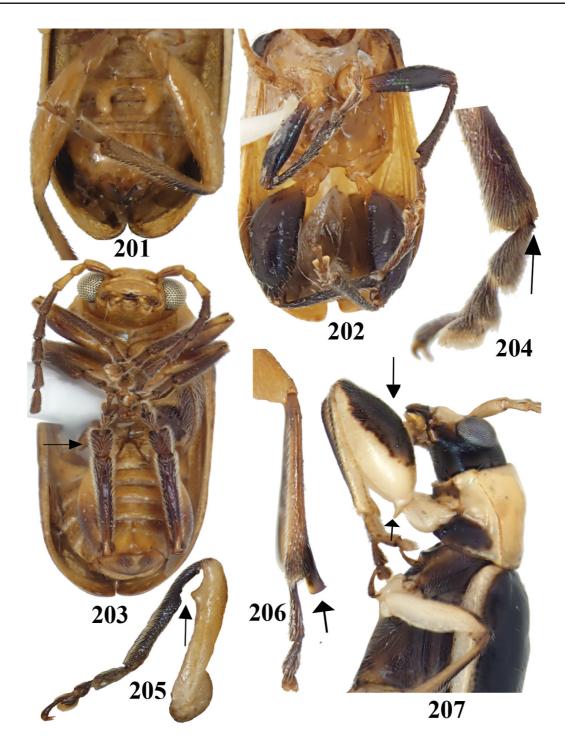

Figs 170–175. Heads, anterior views. **170**. *Eccoptopsis costaricensis* Blake, 1966, *∂*. **171**. *E. costaricensis*, *Q*. **172**. *Oroetes flavicollis* Jacoby, 1888, *∂*. **173**. *Porechontes wilcoxi* Blake, 1966. **174**. *Geethaluperus flavofemoratus* (Jacoby, 1888) comb. nov. **175**. *Scelolyperus cyanellus* (LeConte, 1865).

Figs 176–179. 176. *Platymorpha variegata* Jacoby, 1888, anterior portion of body, showing enlarged front tibia and bristly setae on face. **177**. *P. variegata*, anterior portion of body, showing enlarged front tibiae. **178**. *Coronabrotica amazonensis* Moura, 2010, pronotal depression. **179**. *C. amazonensis*, pore in pronotal depression. [Figures 178 and 179 are from Moura (2010), and they are reproduced with permission from the copyright holder, Magnolia Press.]

Figs 180–182. Anterior portion of bodies, lateral views. **180**. *Prathapanius fortis* Viswajyothi & Clark, 2020, showing large gena, enlarged front femur, and spine on trochanter. **181**. *Amphelasma cavum* (Say, 1835), showing medium-sized gena. **182**. *Cochabamba chrysopleura* (Harold, 1875), showing small gena.



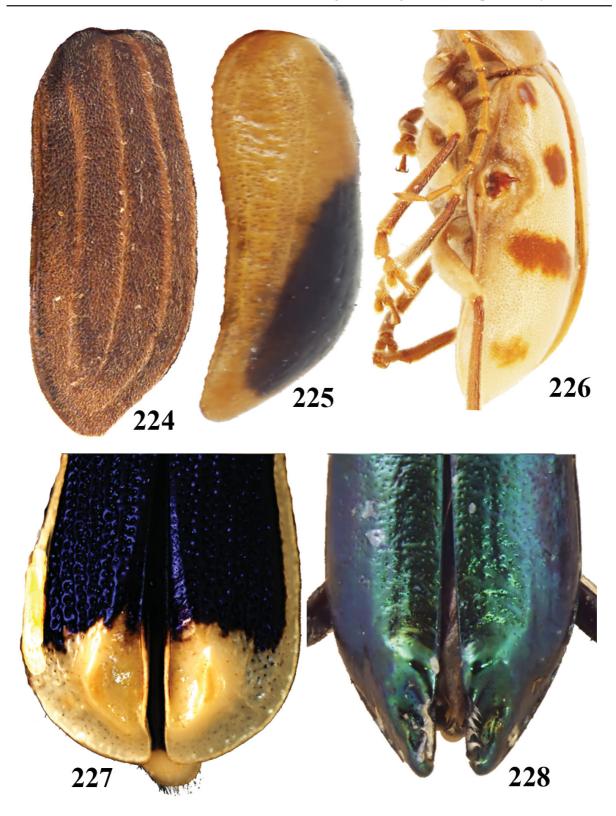
VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)


Figs 183–188. Pronotal shapes, dorsal views. 183. Socorroita carinipennis (Bowditch, 1923).
184. Socorroita elvira Bechyné, 1956. 185. Masurius sp. 186. Dircema? nigripenne (Fabricius, 1792).
187. Malacorhinus foveipennis (Jacoby, 1879). 188. Ophraea rugosa Jacoby, 1886.

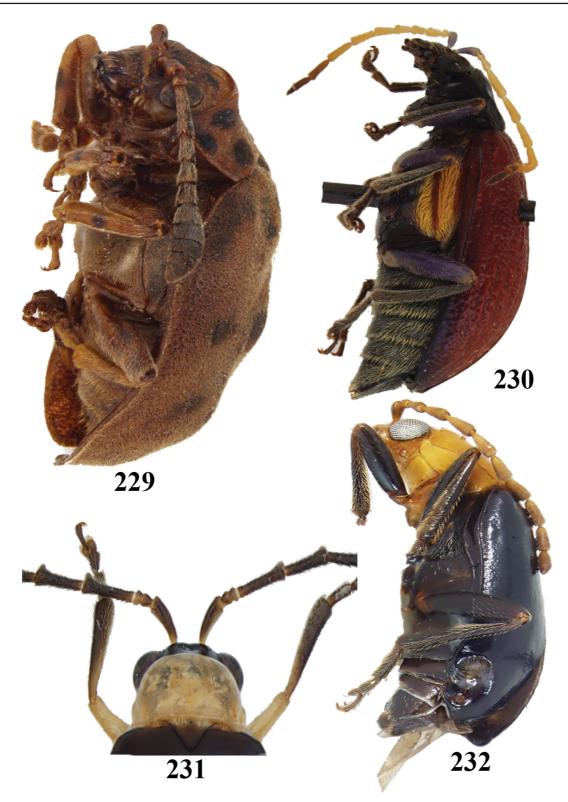
Figs 189–194. Anterior portions of bodies. 189. *Pyesexora* sp., dorsal view. 190. *Cochabamba chrysopleura* (Harold, 1875), dorsal view. 191. *Anisobrotica* sp., dorsal view. 192. *Megarhabda* sp., dorsal view. 193. *Metrobrotica geometrica* (Erichson, 1847), lateral view showing absence of lateral pronotal carina. 194. *Cyclotrypema furcata* (Olivier, 1308), lateral view showing absence of lateral pronotal carina.

Figs 195–200. Male abdominal ventrites. 195. *Monocesta coryli* (Say, 1824), fifth ventrite with slight depression. 196. *Pyesexora* sp., fifth ventrite entire. 197. *Uaupesia* (undescribed sp.), fifth ventrite excavated. 198. *Triarius lividus* (LeConte, 1884), fifth ventrite with quadrate lobe. 199. *Phyllobrotica sororia* Horn, 1896, fifth ventrite with rectangular lobe. 200. *Trigonexora spissa* (Bechyné, 1956), fourth ventrite with single, unpaired appendage.

Figs 201–207. 201. Cornuventer tuberculatus (Blake, 1942) comb. nov., abdomen, ventral view, showing paired abdominal appendages. 202. Leptonesiotes cyanospila (Suffrian, 1867), posterior portion of body, ventral view, showing enlarged hind femur and preapically notched middle tibia. 203. Keitheatus blakeae (White, 1944), ventral view showing flattened hind basitarsi. 204. Brucita sp., distal portion of male front leg, showing small tubercle at base of basitarsus. 205. Aristobrotica? belemea (Gahan, 1891), middle leg of male, showing clasping organ. 206. Carpiradialis pueblensis Niño-Maldonado & Clark, 2020, hind leg of male, showing modified distal portion of tibia. 207. Prathapanius fortis Viswajyothi & Clark, 2020, anterior portion of body, lateral view, showing enlarged forefemur and spine on front trochanter.



Figs 208–217. Male antennae. 208. *Platynocera murina* Blanchard, 1846. 209. *Cornubrotica dilaticornis* (Baly, 1879). 210. *Cerotoma arcuata* (Olivier, 1791). 211. *Eccoptopsis costaricensis* Blake, 1966. 212. *Metrobrotica geometrica* (Erichson, 1847). 213. *Pseudoluperus longulus* (LeConte, 1857). 214. *Metacoryna fulvicollis* Jacoby, 1888. 215. *Iucetima minor* (Bechyné, 1954). 216. *Oroetes flavicollis* Jacoby, 1888. 217. *Deinocladus* sp.



Figs 218–223. 218. Socorroita carinipennis (Bowditch, 1923), lateral view showing elytral carina. 219. Socorroita elvira Bechyné, 1956, lateral view showing elytral carina. 220. Diorhabda carinulata (Desbrochers des Loges, 1870), lateral view showing elytral costa. 221. Metrogaleruca sp., lateral view showing elytropleuron. 222. Itaitubana lineatipennis (Jacoby, 1886), lateral view. 223. Caraguata pallida (Jacoby, 1886), lateral view of elytron.

VISWAJYOTHI K. & CLARK S.M., New world galerucine genera (Coleoptera: Chrysomelidae)

Figs 224–228. Elytra. 224. *Iucetima minor* (Bechyné, 1954), showing elytral costae. 225. *Phyllobrotica sororia* Horn, 1896, showing extreme reduction of epipleuron. 226. *Malacorhinus foveipennis* (Jacoby, 1879), showing elytral fovea and modification. 227. *Paratriarius* sp., showing elytral modification. 228. *Pseudodiabrotica metallica* Jacoby, 1892, showing elytral modification.

Figs 229–232. 229. *Platynocera murina* Blanchard, 1846, lateral view, showing clubbed antenna and tuberculate elytron. 230. *Cochabamba chrysopleura* (Harold), 1875, lateral view, showing silky golden setae on metathorax. 231. *Deinocladus* sp., anterior portion of body, dorsal view, showing subequal lengths of second and third antennomeres. 232. *Androlyperus incisus* Schaeffer, 1906, lateral view, showing elytral modification.