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Abstrac t. In this second part of the study, using a ‘clean’ dataset without very low precision landmarks 
and outliers, I describe how to compare mandibular size and shape using Procrustes methods in adult 
North American marmots. After demonstrating that sex differences are negligible, females and males 
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are pooled together with specimens of unknown sex and species are compared using a battery of tests, 
that estimate both statistical signifi cance and effect size. The importance of allometric variation and 
its potential effect on shape differences is also explored. Finally, to provide potential clues on founder 
effects, I compare the magnitude of variance in mandibular size and shape between the Vancouver Island 
marmot (VAN) and the hoary marmot, its sister species on the mainland. In almost all main analyses, 
I explore the sensitivity of results to heterogeneous sample size and small samples using subsamples 
and randomized selection experiments. For both size and shape, I fi nd a degree of overlap among 
species variation but, with very few exceptions, mean interspecifi c differences are well supported in 
all analyses. Shape, in particular, is an accurate predictor of taxonomic affi liation. Allometry in adults, 
however, explains a modest amount of within-species shape change. Yet, there is a degree of divergence 
in allometric trajectories that seems consistent with subgeneric separation. VAN is the most distinctive 
species for mandibular shape and mandibular morphology suggests a long history of reduced variation in 
this insular population. Geometric morphometrics (GMM) is a powerful tool to aid taxonomic research. 
Regardless of the effectiveness of this family of methods and the apparent robustness of results obtained 
with GMM, however, large samples and careful measurements remain essential for accuracy. Even with 
excellent data, morphometrics is important, but its fi ndings must be corroborated with an integrative 
approach that combines multiple lines of evidence to taxonomic assessment. The analytical protocol I 
suggest is described in detail, with a summary checklist, in the Appendix, not to miss important steps. 
All the analyses can be replicated using the entire dataset, which is freely available online. Beginners 
may follow all the steps, whereas more experienced researchers can focus on one specifi c aspect and 
read only the relevant chapter. There are limitations, but the protocol is fl exible and easy to improve or 
implement using a programming language such as R.

Keywords. Allometry, ANOVA, discriminant analysis, founder effect, interspecifi c variation, island 
population, mandible, North American marmots, group differences, sexual dimorphism.
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Int roduction
This brief section concludes the main introduction of part A. I focus, now, on the details of the study 
outline for the most important analyses, which are the group comparisons. As in A, after the Introduction 
and before some general considerations in the Conclusions, the methods, results and discussion specifi c to 
each research question are organized in separate ‘chapters’. I refer the reader to part A, and its Appendix, 
for more information on introductory topics, such as the study background; samples, digital images, 
and the landmark confi guration; power and sample size; statistical testing and common assumptions in 
group comparisons. As in A, most of the time I will be talking about species differences and interspecifi c 
analyses, but the reasoning is similar in within-species analyses (e.g., geographic populations) or in 
comparisons including different taxonomic levels (species, subspecies etc.), as it may happen when 
evolutionary boundaries are fuzzy and taxonomic status uncertain (Zachos 2016).

Sexu al dimorphism (SDM)
SDM is not a main aim in a taxonomic study. However, the assessment of SDM is necessary to decide 
whether or not to pool the data regardless of sex in the interspecifi c comparisons. Age variability is also 
important to consider, but, in this, as in most taxonomic studies, I assume that the researcher is using 
adults (see part A for the distinction between absolute and biological age). An age class other than adults 
can be used, if age discrimination in young is accurate and specimens are available. In fact, being able 
to run a taxonomic comparison at multiple levels (age groups, ontogenetic trajectories etc.) is desirable, 
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as it provides evidence that better represents the life history of a lineage. Yet, most of the time this 
is diffi cult, because adequate samples, accurately representing different age classes, are very hard to 
obtain. In marmots, as typical in mammals, ontogenetic changes are large, which makes controlling for 
age a compulsory choice to avoid a strong confounding factor when taxa are compared. However, if in 
doubt, as with sex, within-species age differences in size and shape can also be tested using age as a 
factor in a one-way analysis of variance (ANOVA or, if multivariate, MANOVA1). In the ANOVA, age 
can also be analysed together with taxon (e.g., Klenovšek & Kryštufek 2013) and sex (e.g., González 
et al. 2002), although this makes the multifactorial design (two- or three-way) defi nitely more complex. 
In all instances, based on the ANOVA results, a researcher will decide whether or not to pool within-
species subgroups (age, sex etc.).

The assessment of the magnitude and signifi cance of SDM is part of the preliminary analyses. It is 
another type of comparison of group mean differences, which mostly employs the same methods as 
for the interspecifi c comparisons. Also, whether SDM is small enough to be considered negligible, 
it is better verifi ed in relation to between species variation (Neff & Marcus 1980). For instance, if 
patterns of SDM are similar across species and the differences negligible in relation to interspecifi c 
variation, pooling sexes in taxonomic comparisons is unlikely to lead to inaccurate results, even if SDM 
is signifi cant. Pooling females and males in gonochoric animals, if done appropriately, has the advantage 
of increasing sample size and, therefore, statistical power.

As with other analyses (part A), unless specifi ed otherwise, all main tests of SDM (B1–2) and species 
differences (B2-3-4) will be done in parallel on centroid size (CS) and shape. For the assessment of 
SDM, specifi cally I will test:

B1) SDM within species. Sex differences are tested fi rst one species at a time. This is complimentary to 
B2, which examines SDM in relation to interspecifi c differences. The statistical model is simpler in B1 
than in B2. However, in B1 the same hypothesis is tested multiple times, potentially infl ating the rate of 
type I errors (i.e., false positives, where differences are claimed that are not present). Thus, B1 requires 
a cautious interpretation (see Methods and Discussion). B1 is somewhat optional, since SDM is also 
tested in B2. However, B1 provides details that are not in B2 (e.g., whether all species show SDM or just 
some) and might help especially with unbalanced samples (i.e., heterogeneous sample sizes) that make 
multifactorial ANOVAs more diffi cult to interpret and potentially less accurate.

B2) SDM in relation to species differences. The second and main test of SDM is a species by sex two-
way analysis of variance (ANOVA, for size, and, because it is multivariate, MANOVA for shape), testing 
the overall signifi cance of species and sex, but also the interaction of these two factors. The interaction 
represents the “dependence of the effect of one factor on the level of another factor” (Sokal & Rohlf 
2009: 195). More precisely, the species by sex interaction is assessing if SDM is similar (non-signifi cant 
interaction) in magnitude and direction across all marmot species. For instance, for size, if there is 
SDM, with males larger than females, a non-signifi cant interaction indicates that, on average, a male 
mandible is always larger than a female one by approximately the same amount (e.g., ~ 10% larger) in 
all species. In contrast, if SDM varies depending on the species (signifi cant interaction), pooling sexes 
in interspecifi c tests leads to likely inaccuracies, as sex and species differences might become mixed up 
in the comparisons.

1 In GMM, shape analyses are always multivariate and, thus, the ANOVA becomes a MANOVA. In part A, I made a very 
limited use of the word MANOVA, because the multivariate ANOVA was employed only in the context of shape ME using 
MorphoJ, where it is simply called Procrustes ANOVA. However, as briefl y said in A1, MorphoJ’s ANOVA is using all shape 
variables together and it is, therefore, a MANOVA. In this paper, for brevity, I will follow MorphoJ’s convention and use 
ANOVA as a general term, when I refer to both univariate and multivariate analyses run in parallel on CS or shape variables. 
In contrast, if a description is specifi c to shape, I will be using the term MANOVA. Regardless of this convention; however, 
I stress that all shape analyses are and must be multivariate. Shape is by defi nition multivariate and analysing shape variables 
one at a time is almost always meaningless (Rohlf 1998; Adams et al. 2011).
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Inter specifi c comparisons
The hierarchical ANOVA in part A and the two-way ANOVA in B2 have already tested the overall 
signifi cance of interspecifi c differences. However, the main aim of those ANOVAs was assessing ME 
(measurement error) and SDM, respectively. If ME is shown to be negligible (A1), after SDM is tested 
(B1–2) all further analyses can exclusively focus on taxonomic differences. Because in marmots SDM 
is negligible (see ME results in part A and results of sections B1 and B2 in this paper), interspecifi c 
analyses will use pooled-sex samples. If SDM was large and signifi cant, in contrast, the analyses would 
be the same, but should be run separately for females and males. All main tests will be done using all 
species and individuals (outliers excluded). However, to explore the sensitivity of results to small and 
heterogeneous samples, as well as to potentially unfavourable p / N ratios (with p being the number of 
variables and N the sample size), I will also replicate several analyses using subsamples or subsets of 
variables, as explained in the corresponding subsections.

Comparisons in this study follow an established design in taxonomic research using morphometrics. The 
rationale of the protocol is simple:

a) decide the taxonomic level of the comparison (species, in my case);

b) fi nd comparable, homogeneous groups within each taxon (e.g., adults or, when SDM is large, adults 
of the same sex);

c) test their overall differences using an ANOVA (MANOVA, for shape) or equivalent methods;

d) explore, describe and summarize the magnitude and patterns of these differences.

To this basic design, researchers may add further steps to investigate specifi c issues. Sometimes, one 
might want to explore the relationship between shape and size (allometry (Klingenberg 1998, 2016, 
2022)) to better understand its impact on taxonomic differences. Although less common than allometric 
analyses, comparisons of the amount of phenotypic variability (also called ‘within-species disparity’) in 
size and shape across taxa are also interesting in taxonomy. This type of disparity analysis may provide 
clues on population bottlenecks that have reduced genetic and, as a consequence, phenotypic variance. 
Disparity analyses have long been used in macroevolutionary studies, and especially in palaeontology, to 
quantify the magnitude of phenotypic evolutionary divergence (Foote 1997). Using the North American 
marmot mandibles, I will exemplify both allometric analyses and the test of differences in the magnitude 
of variance in size or shape between taxa.

As in part A, all shape analyses must be multivariate and use the entire block of shape variables together 
(all shape coordinates or all PCs of the Procrustes shape coordinates). Readers might fi nd papers, 
especially from the nineties and early 2000, where analyses are performed also on landmark shape 
coordinates one at a time or on partial warps/uniform components one by one or in subsets. This, as 
well as testing shape PCs one at a time, is a mistake. For ‘historical reasons’ (Rohlf 2015), however, 
this type of univariate analysis of partial warps is still part of the output of several of the programs of 
the TPS Series. None of these tests is meaningful, as explained in Rohlf (1998, 2015) and in simpler 
terms in several of my own papers (Viscosi & Cardini 2011; Cardini 2020a; Cardini & Verderame 
2022). Even just separating uniform and non-uniform shape variation rarely makes sense in biology. 
Uniform changes are “transformation for which parallel lines remain parallel”, such as, for example, 
squares transformed into parallelograms or “cubes into parallelopipeds” (Marcus et al. 1993: 532). Non-
uniform variation, quantifi ed by a full set of partial warps, in contrast, concerns localized differences, 
that vary in magnitude and pattern within a structure. I am not aware of any biological application 
where a sound, convincing explanation for using subsets of shape variables (with the exception of PCs 
– see below) is given. Thus, in the software (and in publications), one should not consider results of 
per-landmark analyses or tests of partial warps one at a time and the like. In contrast, the focus must be 
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on fully multivariate tests using all shape variables. These tests will produce identical outcomes using 
either all Procrustes shape coordinates or all partial warps, including the uniform component, or all 
shape PCs. Later, however, I will suggest to preferentially use PCs (all of them, if possible) especially 
in programs such as PAST, which are not specifi c to GMM and may have problems with matrices with 
highly collinear and, thus, redundant variables, like the Procrustes shape coordinates.

As an exception to the general rule of including all shape information in the statistical analysis of 
Procrustes shape data, dimensionality reduction using a subset of the fi rst PCs of shape can also be 
justifi ed sometimes. Analyses in a subspace of the total Procrustes shape space are usually done when 
p / N is large. However, prior to the test, a researcher should demonstrate that the chosen subspace (i.e., 
that specifi c number of fi rst PCs) captures the large majority of shape variation relevant to the study 
question. This is, nonetheless, a compromise that does not exclude the possibility of losing a small but 
interesting amount of information ‘hidden’ in the discarded higher order PCs. The need of reducing 
shape dimensionality is, in itself, an indication that p / N is large and, therefore, potentially problematic 
(Cardini et al. 2019; Rohlf 2021). On the relationship between dimensionality, PCs eigenvalues (i.e., 
variances) and informative content in geometric morphometric data, readers can fi nd a stimulating, but 
rather technical discussion in the context of information theory in O’Keefe et al. (2022).

Beginners must be aware also that the term ‘relative warp’ is still common in GMM in place of the simpler 
‘principal component’. Almost all the time in biological research, despite differences in computational 
details, a relative warp analysis (Rohlf 1993) is simply equivalent to a PCA on the Procrustes shape 
coordinates (Zelditch et al. 2004). In rare cases, a relative warp analysis becomes a modifi ed PCA that 
puts more or less weight on large or small scale changes, but this weighting is based on bending energy, 
a non-biological model used in morphometrics as “a metaphor borrowed ... from the mechanics of thin 
metal plates” (https://www.sbmorphometrics.org/glossary/gloss1.html). As with analyses of subsets of 
partial warps, it is hard to provide a justifi cation for this type of rescaling in biological applications. 
Thus, since the proliferation of redundant terminology creates confusion, I urge to completely avoid 
terms such as ‘relative warp’ or ‘relative warp analysis’ and opt for the simpler PCA.

With the caveats provided in these last two paragraphs (i.e., avoiding univariate or bivariate analyses 
of shape variables etc., and replacing redundant terminology), the design I follow to test taxonomic 
differences is largely taken from a series classical studies (Rohlf et al. 1996; Corti & Rohlf 2001; Frost 
et al. 2003), which inspired many other taxonomic papers in GMM (e.g., Cardini 2003, 2022; Amaral 
et al. 2009; Bogdanović et al. 2009; Cardini & Elton 2009; Schutz et al. 2009; Ivanović et al. 2009; 
Gidaszewski et al. 2009; Machado & Hingst-Zaher 2009; Herler et al. 2010; Elton et al. 2010; Berns & 
Adams 2013; Salvidio et al. 2015; de Moura Bubadué et al. 2016; Meloro et al. 2017). Specifi cal ly, the 
analyses I will perform on the marmot mandible Procrustes data are:

B3) Pairwise tests of species mean differences. Pairwise tests are complimentary to an ANOVA testing 
species differences. I do not perform the ANOVA, because a two-way species by sex ANOVA has 
already been done (B2). Pairwise comparisons, after simultaneously testing species with the ANOVA, 
represent a type of ‘post-hoc’ test, whose aim is to fi nd which pairs of species specifi cally differ and how 
much. It could be that all species differ, only some or even just one specifi c pair. As with B1, because 
the same hypothesis is tested multiple times, post-hoc tests should be interpreted with caution, as they 
might infl ate type I errors (i.e., the rate of ‘false positives’, in which differences are claimed which are 
in fact absent or negligible). In general, P values must be used wisely and always together with the 
corresponding estimates of effect size. In this study, as in A, the magnitude of the effect being tested 
is estimated with R square (Rsq), which is the amount of variance accounted for by a factor. Rsq, also 
known as the coeffi cient of determination, has some potential disadvantages (see A3 and B1), but it is 
easy to compute and interpret both for univariate and multivariate data.
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B4) Species discriminant analysis (DA). This analysis is also complimentary and in most respects 
equivalent (the signifi cance test is identical) to a multivariate ANOVA, but has a different focus. Its 
purpose is to estimate species classifi cation accuracy using a set of predictors: the larger the accuracy, 
the larger the differences. A DA must always be cross-validated (see Methods). Sometimes, this method 
is also called canonical variates analysis (CVA). A CVA can be used to draw scatterplots that maximize 
group differences (Sneath & Sokal 1973; Neff & Marcus 1980). However, for reasons I explain later, to 
this aim I will be using an alternative ordination method, the between group PCA (bgPCA – see Rohlf 
2021, and references therein). Although, in theory, a DA/CVA could be done using a single predictor, 
such as CS, it is regarded as a multivariate technique and implemented in most software so that one 
must have at least two variables to run the analysis. In GMM applied to taxonomic research, there is 
usually more interest in group predictions based on multivariate shape. CS, in contrast, is less frequently 
employed to predict groups. Indeed, size might be a poor predictor of taxonomic affi liation, because 
it is univariate (thus, contains less information) and often considered prone to change and homoplasy 
(e.g., Maurer et al. 1992; Marroig & Cheverud 2005; Millien 2006). Nonetheless, there seems to be 
little evidence, for now, to robustly claim that size varies more easily than shape because of plasticity, 
adaptation or both. Thus, whether size is less informative in taxonomic research cannot be assumed a 
priori. The importance of size differences should not be overlooked and a careful analysis of size is 
potentially as interesting as shape analysis. Therefore, to explore how well mandibular size differences 
predict species affi liation, I use, as explained in the Methods, an expedient to circumvent the limitation 
of the software that restricts a DA/CVA to multivariate data.

B5) Summary and visualization of species shape differences. If interspecifi c differences are found, it is 
important to understand what are the patterns of similarity (i.e., who is more similar to whom and how 
much). For univariate size, a graphical summary of variation is easily done using box-plots, which have 
already been introduced in part A. For shape, morphometricians employ mainly ordination methods (i.e., 
summaries based on scatterplots, such as PCAs and CVAs) and, somewhat less frequently, phenograms 
(i.e., tree-like representations of similarity). I will provide examples of shape ordinations using both all 
individuals and species, as well as the species mean shapes. Mean shapes will be also used to build a 
phenogram whose information is complimentary to the ordination. Graphical summaries of variation in 
Procrustes shape will be accompanied, as customary in GMM, by shape diagrams (Klingenberg 2013) 
that aid the interpretation of group differences, once these have been analytically demonstrated (using 
tests) and summarized (ordinations and phenograms).

B6) Relationship between shape and size within and across species. The evidence is not strong, as 
mentioned, but size is often considered more evolutionary labile than shape (Grossnickle 2020). Because 
differences in the size of a structure tend to change its proportions, a researcher might want to know if 
shape variation is infl uenced by size differences and whether this happens in similar ways across all taxa 
(Emerson & Bramble 1993; Gayon 2000). The covariation between shape and size is called allometry and, 
when it happens within a species in the same age group (adults, in my case), it is called static allometry 
(Klingenberg 1998). Allometry, if present, can be compared among species or statistically controlled 
for (see below). The comparison of interspecifi c allometric trajectories (evolutionary allometry) is in 
itself a potential source of taxonomic information, as closely related groups are expected to show less 
divergence in allometric patterns. I will fi rst test allometry within species using a series of multivariate 
regressions of shape on size (Klingenberg 2016, 2022). Later, I will test it again, simultaneously in all 
species, using a multivariate analysis of covariance (MANCOVA). The MANCOVA tests the overall 
signifi cance of static allometries but, more importantly, provides information on whether allometric 
trajectories are similar across species. Similar allometric trajectories imply that, within each marmot 
species, the changes in proportions of the different mandibular regions occur in a comparable fashion. 
For instance, if, say, larger individuals of hoary marmots tend to have longer angular processes, and 
interspecifi c allometric trajectories are similar, also in the other species larger marmots will typically 
have longer mandibular angles. If one can demonstrate that interspecifi c allometries are similar in 
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direction (i.e., statistically parallel), the MANCOVA can be repeated with a slightly different design 
(see B6 Methods) and used to test whether species differ in shape even when the effect of size on shape 
is statistically minimized. Thus, controlling for allometry in this way (i.e., ‘size-correcting’ shape), 
before testing groups, allows to investigate whether shape differences, if present, are purely related to 
interspecifi c changes in size.

B7) Species comparisons of the magnitude of size and shape variance. This last type of analysis is less 
common in taxonomic research, but can be informative and especially interesting in specifi c cases. One 
example is when one group consists of a small population with a limited geographic range. This could 
be an island population or any other type of small, isolated population, including endangered taxa and 
populations surviving in fragmented habitats. In these instances, if genetic data are not yet available, 
a researcher could use morphology as a proxy to preliminarily investigate the occurrence of a reduced 
phenotypic variability as an indication of genetic bottlenecks. Because the Vancouver Island marmot 
(VAN) survives in a tiny insular population, it is interesting to test whether variance in mandibular 
size and shape is similar to that of its continental sister species, the hoary marmot. The same question 
could be asked for the Olympic marmot, which has a larger population but is isolated on a peninsula. 
Unfortunately, the sample of the Olympic marmot is too small for accurate inferences. Thus, I will 
exemplify the comparison of variances only for VAN, but will also replicate the tests in subsamples 
of hoary marmots, and other marmot species, to explore the impact of sampling error on estimates of 
variance.

Material and metho ds
The information on the study samples is in part A (main text and table 2). However, as a reminder to aid 
readers, in Table 1, showing the tests of SDM one species at a time (B1), I replicated the list of scientifi c 
and common names, as well as the corresponding abbreviations. The methods of data collection are 
detailed in A, whereas in part B I describe only the techniques specifi c to group comparisons. As in 
A, in parallel with the theory, there will be tips to implement a specifi c analysis using one (or more) 
of the user-friendly programs I adopted for this study. Table 1 of part A can be used for suggestions on 
R packages that allow equivalent analyses. The convention of using italics for examples of commands 
to run the analyses in PAST, MorphoJ or the TPS Series is the same as in A. File extensions too are 
named as in A (e.g., *.nts or NTS). All analyses in B, however, are done using only the 12 landmarks 
confi guration with the 445 specimens left after excluding the potential outliers (see outlier detection in 
A). Alpha, the signifi cance threshold, is 0.005 (see A3 Methods).

Methods, results and discussion subdivided by study question
 B1) Sexual dimorphism within species
 Methods (B1)
Testing sample mean differences in size and shape with only two groups, as in the case of SDM, is 
straightforward. There are several options in terms of software. The test statistics and models might 
differ, but results are usually similar for ‘reasonable’ data. As in part A, I informally use the attribute 
‘reasonable’ for data with a small p / N ratio (more individuals than variables) and sample sizes that 
are not too highly heterogeneous (i.e., N may differ, but differences between groups are not very 
large). Sample size in tests of SDM (both in B1 and B2), however, could be smaller. This is because, 
as it happens in the marmot dataset, there might be individuals of unknown sex. These will have to be 
excluded from the tests of sex differences. In MorphoJ, to subset specimens, one might use different 
options from the menu Preliminaries (Include or Exclude Observations or Subdivide Dataset By using, 
in both instances, an appropriate classifi er). In PAST, one can use subsets built in MorphoJ (and, if 
necessary, edited in a spreadsheet) or, for shape, simply unselect unsexed specimens before running an 
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SDM test. Re-superimposing shape data in analyses of subsamples is an option, but generally makes a 
negligible difference in the results (see A2) 2.

Group mean differences in CS can be tested using Statistics, F and t test (two samples) in PAST. With 
only two groups, F and t are equivalent test statistics, as F equals t squared. However, if sample variance 
is not homogeneous, the t-test can be computed with a correction for heteroscedasticity. Any introductory 
statistical manual has descriptions of these tests (e.g., Moore & McCabe 2005; Howell 2013). The test 
is performed in PAST using both parametric and resampling methods. The result window in PAST 
also provides the Levene’s test for the assumption of homogeneity of variance. As all other analyses 
in the menu Statistics of PAST, the F and t test for two independent samples is specifi c to univariate 
data. However, PAST offers equivalent tests for multivariate data (Multivar, Discriminant/Hotelling or 
Multivar, Two-group permutation, for respectively parametric and resampling methods) and there is 
also the possibility of testing homoscedasticity by assessing the statistical equivalence of the covariance 
matrices of two multivariate samples (Multivar, Box’s M). For a brief discussion on the assessment of 
common statistical assumptions, however, I refer the reader to the Appendix A.

Table 1. Within-species 10 000 permutation tests for sex mean differences in CS or shape, performed in 
MorphoJ. As in part A, in this and other tables, species names are abbreviated using the fi rst three letters 
of the scientifi c names (shown again here, together with the common names, to aid readers); signifi cant 
P values (P < 0.005) are in italic; the most relevant results for the Discussion are emphasized with a light 
grey background.

Data Scientifi c Common Acronym P Rsq
CS M. (M.) broweri Alaskan bro 0.2731 20.5%

M. (P.) caligata hoary cal 0.3629 1.1%
M. (P.) fl aviventris yellow-bellied fl a 0.0039 6.0%

M. (M.) monax woodchuck mon 0.2543 1.5%
M. (P.) olympus Olympic oly 0.0368 32.8%

M. (P.) vancouverensis Vancouver Isl. marmot van 0.0463 20.8%
shape M. (M.) broweri Alaskan bro 0.3177 15.9%

M. (P.) caligata hoary cal 0.0193 2.8%
M. (P.) fl aviventris yellow-bellied fl a 0.0212 1.7%

M. (M.) monax woodchuck mon 0.0704 2.0%
M. (P.) olympus Olympic oly 0.6619 6.4%

M. (P.) vancouverensis Vancouver Isl. marmot van 0.7045 4.0%

2 Users, however, have to be careful if analyses are done after reducing the data dimensionality with a PCA. Dimensionality 
reduction is an operation that, as stressed multiple times, bears some risks and must be done rigorously and only when strictly 
necessary. Now, let us say, as a made-up example, that the researcher demonstrated that 10 PCs adequately summarize shape 
variation in the 445 marmot specimens. If he/she, later, needs to analyse a subsample, for instance for testing SDM in the 
Olympic marmot, this cannot be done by re-cycling the scores of the 10 PCs, obtained in a PCA of all 445 individuals, to 
analyse the 14 specimens of M. olympus. If for the Olympic marmot (or any other subsample of the total sample) one needs 
to reduce dimensionality, a new PCA will have to be done on the Procrustes shape coordinates in this sample and a number 
of the fi rst PCs computed, that is adequate for the specifi c case. Thus, the user might fi nd not only that less (or, even if 
unlikely, more) PCs are necessary for M. olympus, but also that inevitably the PCs scores are different from those obtained 
in the total sample and the sub-sample specifi c set of PCs has a better correspondence to the Procrustes shape distances (i.e., 
it is a more accurate summary) of this species.
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Using PAST for testing the mean differences of two samples is convenient and fast. Another option, 
which I favoured in this study, is regressing in MorphoJ size or shape onto a dummy variable (a covariate, 
in MorphoJ’s jargon) coding females as -1 (or 0) and males as 1 (or vice versa). The test, already briefl y 
mentioned in part A, employs Rsq (the variance explained by SDM) as a test statistics and estimates 
its P value with permutations (10 000 in my analysis). The advantage of using the regression approach 
in MorphoJ for testing group mean differences is that one obtains the estimate of the size of the effect 
being tested (the Rsq), as well as the corresponding P value. The test is simple and does not require 
normally distributed data because it is using a resampling method. Also, even if homoscedasticity is 
not tested, MorphoJ’s regression provides the equivalent of a univariate two-group jitter-plot in the 
Graphics window, which can, as a crude approximation, help to spot large differences in variance 
between females and males. The multivariate extension of the SDM regression test in MorphoJ is also 
very simple. As with univariate data, this procedure is analogous to testing the absolute mean difference 
between females and males using their Euclidean distance (i.e., the length of a straight line between 
the means in a univariate or multivariate space). The regression is specifi ed always in the same way 
(MorphoJ’s menu Covariation, Regression), but the user selects, as dependent variables, CS for size and 
the Procrustes coordinates for shape. The independent variable is the sex dummy covariate in both cases.

The regressions have to be done within each species. Tests in small samples are inevitably less accurate 
and powerful. Regardless of the type of test, testing SDM one species at a time potentially infl ates 
type I error rates. Caution in the interpretation of results and/or a correction for multiple tests are 
usually enough to avoid serious issues (Armstrong 2014; Krzywinski & Altman 2014). I will not use 
a correction, however. If I did, a sequential Bonferroni is a simple option, but has pros and cons and 
there are alternatives (Verhoeven et al. 2005). I have chosen a conservative alpha (0.005) which partly 
protects against false positives. Furthermore, I carefully interpret P values in relation to Rsq and sample 
size, as well as using graphical summaries to complement the tests. Yet, as discussed in part A, Rsq also 
must be interpreted with care, because it is a biased estimator, which tends to be infl ated (i.e., larger than 
true) in small samples.

In terms of graphical summaries for the within-species tests of SDM, the ‘two-group jitterplot’ in the 
Graphics, Scores window of MorphoJ gives a preliminary idea of the amount of overlap or separation 
of females and males. For CS, this plot is approximately equivalent to a jitter plot in PAST (see below), 
but, for shape, it only shows the component of multivariate shape variation that covaries with sex. Thus, 
the visual inspection of these multivariate regression scores, in MorphoJ, may suggest more separation 
than real in the full multivariate space.

Instead of using MorphoJ’s regression plot, for CS I prefer to draw box and jitter-plots, subdivided by 
species and sex, in PAST. Box and jitter-plots show the distribution of CS, but also the medians, quartiles 
and range, so that one can inspect overlap or separation between sexes across all species. In part A (see 
‘outliers: univariate size’), I have already described this type of univariate plots, how to obtain them in 
PAST and how to combine the two separate plots into a single one using a photo-editor.

For shape, summary scatterplots of multivariate variation can be helpful to explore sex differences. 
With a negligible SDM, within-species ordinations, such as a PCA, should show large overlap in the 
distribution of females and males along the main axes of shape variation (PC1, PC2, PC3 etc.). With 
an appreciable SDM, in contrast, sex differences in adults of monomorphic species generally dominate 
PC1, which should, therefore, suggest some degree of separation between females and males, plotted 
using different symbols and/or colours. The within-species PCA scatterplots are easily computed in 
PAST by selecting the Procrustes shape coordinates of a species, before using the command Multivar, 
Principal components, checking the Var-covar and Disregard Groups boxes. Females and males will 
have to be, fi rst, marked using different colours, as explained in part A. The same type of scatterplot 
can be done in MorphoJ, after splitting the sample by species. If all the species datasets are selected in 
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the MorphoJ’s project tree, the PCA is performed simultaneously for all species (see footnote 17 in the 
section ‘Outliers: multivariate shape’ in the Methods of A2). For exploring SDM in shape ordinations, 
specimens of unknown sex must be excluded, because they affect the computation of the axes on which 
individuals are projected and, thus, potentially confound sex differences.

Ordinations, which help to maximize group separation, instead of total variance regardless of groups as 
in a PCA, are also appropriate to explore SDM in shape. I will present an example using a bgPCA, but I 
defer a more detailed explanation of this method to the chapters B4-B5, where the DA/CVA and bgPCA 
are used more extensively. In the example, I will be focusing only on the three species with the largest 
samples (the woodchuck, hoary and yellow-bellied marmot), because samples of females and males in 
the other species are too small for robust results in ordinations.

 Results (B1)
Testing mean size and shape of females and males one species at a time suggests that sex differences 
range from modest to negligible (Table 1). Only CS in yellow-bellied marmots is signifi cant (P < 0.005). 
Olympic marmots and VAN, for CS, and hoary and yellow-bellied marmots, for shape, are just below 
a conventional 0.05 threshold 3. The average SDM Rsq is 14% for CS and 6% for shape. However, 
these averages are likely biased by the infl ated Rsq of the three species with smaller samples of sexed 
individuals (Alaskan, Olympic marmots and VAN, with an averaged Rsq of 25% for CS and 9% for 
shape). If only species with large samples of females and males are considered (i.e., woodchucks, hoary 
and yellow-bellied marmots), CS and shape average Rsq drop respectively to 3% and 2%. Thus, overall, 
within-species tests of SDM indicate largely negligible sex differences in mandibular morphology.

Box and jitter-plots (Fig. 1a) of CS with separate sexes show an almost complete overlap in the range 
of mandibular size variation of females and males within each species. Males, however, tend to be 
slightly larger than females, which is particularly evident and supported for yellow-bellied marmots. The 
variability, and asymmetry, of the box-plots of the smallest samples (Alaskan, Olympic and Vancourver 
Island marmots) suggest a large amount of sampling error in these groups. In the other three species, 
which have much larger samples, in contrast, box-plots of females and males are roughly symmetric 
and approximately similar within each species in terms of the size of the box and length of the whiskers, 
although the lower whisker of the woodchuck is longer in females compared to males.

Simple within-species PCA scatterplots of shape (not shown) suggest large and, sometimes, almost 
complete overlap between females and males. The small SDM in shape, however, becomes even more 
evident if data are summarized using both species and sex as groups. This type of plot is appropriate also 
for complementing the results of B2, but it is shown here in order to have a ‘counterpart’ of the species 
by sex box and jitter-plots (Fig. 1a). Thus, Fig. 2 shows the two main axes of separation for species and 
sex in the woodchuck, hoary and yellow-bellied marmots using a bgPCA. In this fi gure, species are 
well separated, whereas females and males almost completely overlap within each species. Therefore, 
as with CS, mandibular shape SDM looks totally negligible compared to species differences not only in 
the statistical tests but also in the data plots.

 Discussion (B1)
SDM in North American marmots mandibular size and shape is negligibly small. This is consistent 
with previous studies on mandibles (Cardini & Tongiorgi 2003; Cardini 2003; Nagorsen & Cardini 

3 As discussed in part A (power analysis), SDM in shape becomes signifi cant using the 0.005 threshold in hoary and yellow-
bellied marmots, when tested using parametric tests, such as those available in TPSRegr. Parametric tests are generally more 
powerful than resampling methods. However, even if signifi cant, the choice of parametric methods would not change the 
conclusion that the effect of SDM is several times smaller than interspecifi c differences. For instance, for shape in yellow-
bellied and hoary marmots, despite SDM P < 0.05 using permutation tests (Table 1) and < 0.005 with parametric tests (see 
Discussion in A3), the SDM Rsq is just 2-3% compared to ~ 20% for interspecifi c mean differences (see results of A1 and B2).
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2009). That average mandibular CS is just between 1% and 4% larger in males, compared to females, 
corresponds well with the observation of a generally very limited amount of male-biased SDM in 
marmots condylobasal and hind foot length, at most, on average respectively 7% and 3% longer in males 
(Matějů & Kratochvíl 2013). Also, as in other marmots and ground squirrels (Matějů & Kratochvíl 
2013), there seems to be no clear evidence that this modest amount of size SDM follows the prediction 
of the Rensch’s rule (Abouheif & Fairbairn 1997), that, when male is the larger sex, SDM should be more 
pronounced in larger species. For instance, if we focus on the largest, and thus more reliable, species 
samples, the estimate of the average male mandibular CS is 4% larger than in females in the yellow-
bellied marmot, which is the only species to reach signifi cance in the tests. However, the difference is 
only 1% in the woodchuck and hoary marmot, despite these species having a mandible on average ~ 
10–20% larger compared to yellow-bellied marmots.

SDM Rsq are modest for CS and very small for shape, when the differences between females and males 
of the smallest species samples (Alaskan, Olympic and Vancourver Island marmots) are not considered. 
We know that tests in small samples are problematic, because estimates of means and variances are 
inaccurate and statistical power is low. As explained in A (Discussion on power, in A3, and Appendix 
A), sample mean differences tend to be overestimated when sample size is small. Thus, in Alaskan and 
Olympic marmots, as well as in VAN (where the total N is large, but most specimens are of unknown 

Fig. 1. Box and jitter-plots of CS, for each species. a. Separate plots for females, males and unknown 
individuals. b. Plots with pooled sexes. As in part A, as well as shown in Table 1, species names in all 
fi gures are abbreviated using the fi rst three letters of the scientifi c name (e.g., caligata = cal) and F for 
female, M for male, and U for individuals of unknown sex.

CARDINI A., Taxonomic comparisons with geometric morphometrics

103



sex), one cannot really be confi dently about the estimates of mandibular SDM (non-signifi cant in all of 
them). Yet, given the general similarities in reproductive biology, ecology and morphology of marmots, 
it is a reasonable expectation that SDM in the mandibles of these three species is of similar magnitude, 
and thus minimal, as in the other species with much larger samples. Indeed, some marmot species are 
considered monomorphic (Tafani et al. 2013) and macroevolutionary studies suggest that sex differences 
in the sciurids in general, and more specifi cally in the Marmotini tribe (to which marmots belong), are 
small or absent (Hayssen 2008). For instance, the marmotine female to male body length ratio is 0.993 
and slopes and intercepts of interspecifi c regressions of body mass onto body length are also very similar 
in females and males (Hayssen 2008). Nevertheless, in the Marmotini, males tends to be slightly heavier 
(6%) than females (Hayssen 2008).

Why is SDM so small in marmots? In terms of reproductive strategy, marmots range from monogamous 
to moderately polygynous (Armitage 1999, 2000; Kyle et al. 2007). Even when polygynous, however, 
females of some species might have extra-pair matings (Goossens et al. 1998; Waterman et al. 2007; 
Maher & Duron 2010). In fact, in the only solitary marmot species, the woodchuck, multiple paternity 
is so common that its reproductive strategy can be described as promiscuous (Maher & Duron 2010). If 
there is monogamy or males have a limited control on female reproduction, sexual selection is unlikely 
to promote large differences in size (Ralls 1977; Lindenfors et al. 2007). In my study, however, yellow-

Fig. 2. Visualization of shape SDM in relation to interspecifi c differences using a bgPCA. In this, and 
other Figures, percentages of variance in the scatterplots of multivariate shape are shown in parentheses, 
below the label for the corresponding axis. On bgPC1–2, which together account for almost all between 
group variance (94%), there is a large overlap between females and males within each species, whereas, 
between species, the separation is clear.
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bellied marmots represent a small exception, in that they show signifi cantly larger mandibles in males, 
unlike other species. Their sample is the largest, and thus the test is more powerful, but hoary marmots 
and woodchucks have N only moderately smaller than yellow-bellied marmots and their CS SDM, which 
is even smaller in magnitude, is not signifi cant (Table 1). The relatively larger SDM of yellow-bellied 
marmots is supported by average differences in hind foot and condylobasal length, which are both 7% 
longer in males of yellow-bellied marmots compared to a difference of just 0.4–4% between males and 
females in woodchucks and hoary marmots, respectively (Matějů & Kratochvíl 2013). The appreciable, 
even if modest, dimorphism in mandibular size of M. fl aviventris seems, thus, genuine. SDM in shape, in 
contrast, is non-signifi cant in all North American species. Thus, overall, the within-species tests of SDM 
provide a fi rst line of evidence that mandibular SDM is mostly negligible and interspecifi c comparisons 
might be done with pooled-sex samples.

Assessing SDM one species at a time is the easiest approach, but has pros and cons. The main advantage 
is, besides simplicity, that it provides species-specifi c information. A disadvantage, however, is the 
potential infl ation of type I errors, because the same hypothesis is tested over and over. More importantly, 
unlike in the species by sex ANOVA, SDM is not ‘scaled’ in relation to the magnitude of interspecifi c 
differences. Finally, for shape SDM, when tested one species at a time, there is no explicit comparison 
of the direction of average sex differences. With direction, in a univariate analysis, one simply means 
which sex is larger. In a multivariate analysis, however, it means comparing the species SDM variance 
covariance structure or, at least, visualizing shape change to assess differences and similarities in SDM 
across species. For the visualization, one can use a wireframe, ‘lollipops’ or thin-plate spline diagrams 
(Klingenberg 2013) to describe the differences between the female and male mean shapes of each 
species. There was no motivation for doing it at this initial stage of the analysis, however, because SDM 
in marmot mandibular shape is so small.

The disadvantages I have listed in the previous paragraph for the within-species tests of SDM (B1) are 
less concerning when these tests, one species at a time, are complimentary to the species by sex ANOVA 
(B2). Also, the limitations of this approach can be, to some extent, overcome. In the chapter on pairwise 
comparisons (B3), I will say more on how to mitigate against potentially infl ated type I error rates in 
multiple tests. Furthermore, even when testing SDM one species at a time, we are not relying only on 
P values: Rsq are also carefully considered to assess the magnitude of SDM. And, to put these Rsq into 
context, one could calculate the Rsq of the interspecifi c comparisons using separate sexes, and then 
compare their magnitude with that of the SDM Rsq. I suggest, however, not to do it this way, because it 
is time-consuming, inelegant and less statistically powerful than the species by sex ANOVA (B2).

The ANOVA (B2) provides also a mean to compare patterns of shape SDM not only in terms of magnitude, 
but also direction. For instance, if SDM is signifi cant, a researcher might want to know if, say, having on 
average a deeper and relatively shorter mandible in males, compared to females, in one species is also a 
main feature of SDM in other species. The visualization of species-specifi c shape change between sexes 
is, as said, one way to qualitatively explore the answer to this question. However, the direction of shape 
SDM can be more accurately quantifi ed and compared. This is achieved by computing pairwise species 
angles between vectors of mean sex differences in shape. The vectors are simply the slope coeffi cients 
of the regressions of the Procrustes shape coordinates onto the sex dummy variable. The angle quantifi es 
the similarity in regression slopes between two species: a small angle implies SDM vectors pointing in 
similar directions and, thus, congruence in the patterns of shape change between the two species.

Angles are easily computed in MorphoJ: fi rst, one selects a species regression in the project tree – e.g., 
hoary marmot shape onto sex; then, one specifi es the shape SDM regression of the second species – for 
instance, the yellow-bellied marmot – using the lower box of the Comparison, Compare Vector Directions 
window; fi nally, he/she clicks on execute to run the test. If the angle (Results window) is relatively close 
to zero and signifi cantly smaller than expected from pairs of random vectors, the direction of shape 
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SDM is statistically similar. Otherwise, if power is adequate and both regressions were signifi cant, but 
their angle is not, that means that the two species likely differ in the pattern of shape SDM.

However, because the test of angles is done pairwise for all species, there is, again, the risk of infl ating 
the rate of type I errors. Also, assessing angles pairwise is more laborious than simultaneously testing 
species and sex differences in a two-way MANOVA (B2). Besides, as with other analyses, when N is 
small and heterogeneous, and maybe there is a large number of variables, estimates of angles may be 
inaccurate (Cardini & Elton 2007). For all these reasons, although the problem with p / N and small 
samples remains, I tend to prefer the species by sex MANOVA to assess the similarity of patterns of 
shape SDM. Nevertheless, exploring vector angles at least in the largest samples does provide useful 
information. For instance, one might check if angles support the fi ndings of the MANOVA: with a 
negligible species by sex interaction (see B2), the expectation is that angles of shape SDM regression 
vectors, at least using the more accurate estimates of the largest samples, should all be relatively close to 
zero. Testing, or at least computing, angles of shape SDM vectors is also a kind of post-hoc comparisons 
for the species by sex interaction of the MANOVA, because it allows to detect which species, if any, 
diverges more from a common pattern of sex differences in shape.

Patterns of variation between sexes can also be examined using summary plots for univariate or 
multivariate data. I discuss shape, fi rst and briefl y, as the outcome of the graphics is unambiguous. The 
bgPCA ordination fully supports the tests of shape SDM showing a very small effect of sex, except when 
Rsq are strongly biased by small N. That mean sex differences are almost certainly overestimated in 
small samples had already been shown in Appendix A (Fig. A1). This is why I left out the three species 
with the smallest samples of females and males (i.e., VAN, the Alaskan and the Olympic marmot) in 
the shape summary scatterplots of species and sex (Fig. 2). Thus, focusing on more accurate results 
obtained in the three largest species samples, one can readily see (Fig. 2) that females and males overlap 
almost completely, but species are very well separated. In fact, one can appreciate the dominant effect of 
species differences also by considering the distribution of the between group variance in the scatterplot. 
In a bgPCA, the number of axes is set by the number of groups minus one (see B4–B5 for more on group 
ordinations). Thus, we should have fi ve axes (three species by two sexes minus one) with non-zero 
variance. In contrast, it is as if there were almost only three groups and, thus, just two axes accounting 
for almost all (94%) between group shape variance. This happens because the effect of species (the 
three included in the ordination) dominates, with sex having such a vanishingly small impact on group 
structure that there is no sex separation on any bgPC (including bgPC3 and bgPC4, which are not 
shown). Indeed, in these three species, if the Procrustes distances between means, split by species and 
sex, are compared, interspecifi c distances turn out to be on average three times larger than within-
species distances between means of females and males.

The box and jitter-plots of mandibular CS, with samples split by species and sex (Fig. 1a), also indicate 
overlap between sexes and a degree of separation among species. The interspecifi c separation is, for some 
species (e.g., woodchucks compared to yellow-bellied marmots or hoary marmots compared to VAN) less 
striking than in the ordination of shape. Yet, it is evident and more pronounced that the tiny sex differences 
within species. The box and jitter-plots, however, show something else, which is worth being discussed. 
There are three apparent outliers, detected with the outlier option of the box-plot in PAST (see methods in 
A2). It seems, at a fi rst glance, worrying that none of them had been spotted in the preliminary search for 
outliers (also in A2). However, these ‘outliers’ are, in a sense, an artefact. All three are found in two of the 
smallest samples (female Alaskan marmots, N = 5, and unsexed yellow-bellied marmots, N = 12). When 
sexes are pooled, after demonstrating the negligible SDM in CS, all of them fall within the main range of 
variation for size in those two species. As explained in part A, outlier detection in small samples is hard 
or impossible and results from the application of methods based on rigid thresholds should be inspected 
with special care in small samples. In yellow-bellied marmots, the sample of individuals of unknown 
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sex, where two apparent outliers where found, is not very small. However, it is very heterogeneous in a 
species where there is a subtle size SDM and a large range of variation. In this unsexed sample, 10 out 
of 12 individuals are below the median CS of the total yellow-bellied marmot sample and, thus, have 
relatively small mandibles. The remaining two unsexed individuals would be just above or below the 
third quartile (i.e., the upper side of the box) in a box-plot with all 156 yellow-bellied marmots. Having, 
by chance, such an asymmetric distribution in the unsexed sample of yellow-bellied marmots, with many 
small to medium size individuals and just a couple of fairly large ones, pushes these two large individuals 
above the threshold for outliers. The plot is, thus, misleading and, after pooling sexes (Fig. 1b), there is no 
reason to exclude these specimens. Large inaccuracies due to sampling error in the smallest samples also 
likely explain why, in both the Alaskan and Olympic marmot, the range of variation in male mandibular 
CS is tiny: N is very small (3 and 7, respectively); and some of these few specimens could have also been 
positively autocorrelated 4, if they were members of the same colony, and thus likely relatives, and maybe 
had been collected in the same year.

To summarize, the fi rst step, exploring the potential impact of SDM on the taxonomic comparisons, indicates 
small sex differences, that are likely to be negligible in interspecifi c comparisons. The magnitude of SDM 
is likely to be similar, although appreciably larger in the mandibular size of yellow-bellied marmots, but 
probably spuriously larger in the three species (VAN, Alaskan and Olympic marmots) where few individuals 
are of known sex. The problem with small samples in tests of SDM had been anticipated by the prospective 
part of the power analysis (A3), that showed how testing SDM using small random subsamples of the 
largest species suggested serious issues with low statistical power. Randomized subsampling experiments 
(Appendix A) also demonstrated that mean shape differences between females and males are likely to be 
infl ated, which is consistent with the large SDM Rsq found in VAN, Olympic and Alaskan marmots, all of 
them with within sex N ≤ 11. This is a fi rst clear example of a well-known, almost obvious, problem, that 
affects many taxonomic studies and tends to be overlooked: with small differences, samples must be large 
for accuracy and power (Cardini et al. 2021).

B 2) Sexual dimorphism in relation to species differences
M ethods (B2)
The conventional GMM approach for testing sex differences across species in taxonomy is a species by 
sex ANOVA (e.g., Rohlf et al. 1996; Corti & Rohlf 2001; Frost et al. 2003). This approach was borrowed 
from multivariate traditional morphometrics (e.g., Campbell & Mahon 1974; Willig et al. 1986), but see 
also Neff & Marcus (1980) for an introduction). The species by sex ANOVA is a ‘two-way’ analysis, 
because there are two factors (species and sex). The ‘ME ANOVA’ was, instead, a three-way analysis 
using species and sex as main factors, but also taking into account duplicates by adding ‘individuals’ 
as a random factor. However, in the ‘ME ANOVA’, the interactions were assumed to be negligible (see 
Discussion). In contrast, in the species by sex ANOVA in part B, with each individual now represented 
by the average of its two digitizations 5, it becomes crucial to assess not only species and sex, but also 

4 I.e., observations that, like ‘pseudo-replicates’, are more similar than expected if truly independent.
5  Please, note that, as explained in part A, I can average the duplicate digitizations of an individual using its raw coordinates, 

because they represent replicate digitizations of the same image. In contrast, if I had taken multiple images, repositioning each 
specimen in order to take into account also this source of measurement error, then, having demonstrated a negligible ME, I 
should average the Procrustes shape coordinates (not the raw ones!) and CS of each individual, because the raw coordinates 
have positional differences. Averaging is easily done in MorphoJ using Preliminaries, Average Observations By individual 
(the classifi er uniquely identifying each specimen) and then selecting the appropriate variables in the window that will be 
opened. If needed for specifi c aims, one could later restore size in the averaged shape replicates by multiplying column-wise 
the average Procrustes shape coordinates of each individual by its averaged CS. For instance, this could be useful to save a 
new ‘clean’ dataset, without replicates, with a single fi le having both size and shape information that could be re-separated 
into CS and Procrustes shape coordinates by redoing the superimposition in another program (say, TPSSmall or TPSRegr).
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their interaction. The interaction, as anticipated in the Introduction, provides an estimate of whether 
patterns of sex differences across species are statistically similar. If the interaction is signifi cant, that 
indicates that SDM varies depending on the species; in this case, interspecifi c tests (B3 etc.) will have 
to be run separately for females and males. In contrast, with a non-signifi cant test and small Rsq for the 
species by sex interaction, one can focus on the main effects of species and sex (see below), and use 
the results to decide if females and males can be pooled. I stress the importance of a small Rsq for the 
interaction, because one can have a non-signifi cant interaction despite a large Rsq, especially when N is 
small and/or heterogeneous across groups. If N is small, power may be low and non-signifi cance might 
simply refl ect the large uncertainties due to poor sampling. This means that SDM may, in fact, vary 
depending on the species, but the effect is not detected by the ANOVA because of low power. Besides, 
with small samples, Rsq itself is inaccurate and potentially infl ated, which makes it less reliable. Thus, 
in general, with small samples, one cannot accurately test sex differences and confi dently assess whether 
patterns of SDM are similar or different across species. Exploratory graphical analyses, together with 
the relevant SDM information from the published literature, might be the best one can do to decide about 
sex differences when N is too small.

When sample size is large and the species by sex interaction is not signifi cant, and only in this case, 
the ANOVA is repeated after leaving out of the model the interaction. Most statistical software (unlike, 
unfortunately, PAST – see below) has an option to do this. For brevity, I refer to this second analysis, 
in which only species and sex are tested, as the ‘species plus sex’ ANOVA. Before discussing how to 
interpret its results to decide if SDM is negligible in taxonomic comparisons, I suggest a consideration 
that rephrases the meaning of ‘negligible interaction’ in a way that can help to make it clearer. The 
ANOVA including the interaction treats the interaction as a third predictor, besides species and sex. In 
this sense, it can be said that the ‘species plus sex’ ANOVA is using a reduced model (two predictors: 
 species and sex) compared to the full model (three predictors: species, sex and species by sex) of the fi rst 
ANOVA. Which is the model that accounts, overall, for more variance in the dependent variable (in my 
case, CS or shape)? Inevitably, it is the full model that has the larger Rsq, because adding any predictor, 
even if merely by chance, will account for some variance in the dependent variables beyond the variance 
already explained by the other factors. With a negligible interaction, however, the expectation is that the 
full and reduced models have almost identical Rsq.

Thus, with a non-signifi cant interaction, the ‘species plus sex’ ANOVA provides the information to 
decide how to use females and males in the taxonomic comparisons. If species is signifi cant, but sex is 
not and its Rsq is small compared to the species Rsq, all further analyses (B3 and following ones) can 
be done regardless of sex. This means including both females and males, when species are compared. 
For instance, Rohlf et al. (1996: 350) fi rst used a “two-way MANOVA (sex by sample) ... performed” 
on Procrustes shape data and then, based on its results, decided to pool sexes, “because only group 
differences [i.e., those among taxa] were statistically signifi cant, [so that] the two-way MANOVA was 
collapsed to single classifi cation design and analyzed using CVA”.

There is at least another potential scenario to consider in the outcome of the ‘species plus sex’ ANOVA. 
What shall be done if, despite a negligible interaction, the Rsq of sex is approximately as large as the 
Rsq of species differences? Because SDM is large and signifi cant, its effect on interspecifi c comparisons 
cannot be overlooked. Therefore, further analyses (B3 etc.) will be run in parallel using separate sexes 6. 
There is an alternative, however. Because SDM is similar in all species (as shown by the negligible 

6 I am not considering a case of highly unbalanced sample sizes, where one sex is much more represented in most species than 
the other. In this instance, especially if it is known from the literature that there is SDM, a researcher might simply use only 
the most abundant sex (say, females) for the taxonomic comparisons and exclude the other (males, in my made-up example).
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interaction, assuming N is adequately large and the result is reliable), data can be ‘sex-corrected’ 7. I do 
not provide details on ‘sex-corrections’  8. There are slightly different ways of doing them, but the basic 
rationale is to statistically remove the mean differences between females and males before pooling 
sexes. For instance, within each species, a very simple approach could be to subtract the female mean 
from female sample and, then, add the resulting residuals to the male mean, thus producing a single 
dataset with males and ‘masculinized’ females.

The results of the size or shape two-way ANOVAs may not be clear cut. Thus, the decision on whether 
to pool sexes or not might require a degree of arbitrariness, unless one takes results at face value. This 
second option means, for instance, that a signifi cant species by sex interaction becomes a rigid rule 
to separate sex in species comparisons, even when the interaction Rsq is very small compared to the 
variance accounted for by main factors. This is not unlikely to happen, when samples are large and, 
thus, statistical power high. For those who want some more fl exibility, at the cost of less rigour, I made a 
decision ‘tree’ in Table 2. The tree provides a tentative guideline, but has to be used with a grain of salt, 
on a case by case basis and in relation to the available data (sample size, p / N ratios within groups etc.).

With multi-way ANOVAs, there is a practical issue that restricts the user’s choice. The availability 
of free, user-friendly, software for ANOVAs with more than one factor is limited. This is especially 
evident for the multivariate analysis. PAST 2.17c can do two-way species by sex univariate ANOVAs, 
including the interaction, but has no equivalent for the multivariate case 9. Because of the limitation 
in the software, I will be using different programs for the ANOVA of CS and the MANOVA of shape. 
Besides, samples will be smaller in the species by sex ANOVAs, because 89 specimens of unknown 
sex have to be excluded. For building the subsample of individuals of known sex, I used MorphoJ’s 
Preliminaries, Include or Exclude observations and the sex classifi er to exclude unsexed individuals. 

7 With a non-signifi cant and small effect of the interaction, in fact, using pooled sexes should not affect results of interspecifi c 
tests when samples are perfectly balanced (same sample size in all species and sex groups). However, a perfectly balanced 
design is most unlikely in taxonomic analyses of morphological data. Besides, even in this unlikely scenario, pooling sexes 
when SDM is large makes summary plots and diagrams potentially misleading (Cardini 2020a).

8 A ‘sex-correction’ is a solution to consider with caution. It is mainly useful when samples are relatively small or contain 
a large proportion of individuals of unknown sex, because it helps to maximize sample size and increase statistical power. 
Small samples, however, make the ANOVAs potentially inaccurate: statistical power is small; estimates of parameters (e.g., 
group means) are inaccurate (Cardini et al. 2021); statistical assumptions are hard to verify. Because the sex-correction is 
valid only as long as results of the ANOVA results are accurate, the situation where the correction is most useful is also the 
one where it can be misleading. With large samples, in contrast, the ANOVA is more reliable, but one has weaker reasons 
for sex-correcting data in the presence of a large SDM, since analyses can be done using separate samples for females and 
males. With separate sex analyses in large samples, power will be slightly lower but data are not statistically transformed, 
an operation which always implies a potential degree of inaccuracy. Besides, parallel tests in females and males also allow 
to check the congruence of results in different samples from the same taxa.

9 In fact, with a perfectly balanced design (but only in this specifi c case), one could run a permutational ANOVA in PAST and 
also assess the interaction (Multivar, Two-way NPMANOVA using Euclidean distances). Users should be careful, because 
PAST allows to run the analysis even with unbalanced samples, but the help fi le is clear that this should not be done and, 
thus, results should not be trusted. Unfortunately, perfectly balanced samples are, as already said, rare in taxonomy. One 
could select random balanced subsamples, but N would be limited by the smallest species samples of either females or males 
(with a consequent loss of power and accuracy). For instance, with my marmot dataset (Table 1 in part A), even excluding 
the two smallest samples (the Alaskan and Olympic marmots), the sample size of random balanced subsamples would be 
set by N = 9, which is the number of females in VAN. That means excluding almost 80% of individuals and analyse a total 
of just 72 specimens (9 by 2 sexes by 4 species) instead of 334 using the total samples of the same four species. Excluding 
also VAN, the loss of power is much less pronounced for the remaining three species (woodchucks, yellow-bellied and 
hoary marmots). In that case, the total N of a perfectly balanced design using random subsamples would be 228 (with 38 
specimens per sex per species) instead of 315 with unbalanced samples of the same three species. This implies leaving out 
slightly less than 30%, but restricts the analysis to just the three of the six species.
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The resulting variables (raw coordinates or CS and shape coordinates) can later be exported as text fi le, 
manipulated in a spreadsheet and formatted as appropriate to be used in other programs (see the help 
fi les of the software and part A on data formats).

For CS, I run the species by sex ANOVA in PAST using the command Statistics, Two-way ANOVA. As 
clearly explained in the help fi le and easily replicated using the example fi le I provide in the SI, data 
must be formatted in three columns, with species fi rst, followed by sex and fi nally CS. Both species and 
sex must be coded using integer numbers (e.g., 1 for Alaskan marmots, 2 for hoary marmots etc. and 1 
for females and 2 for males or vice versa). PAST 2.17c, however, does not allow to repeat the ANOVA 
after excluding the interaction, when this effect is not signifi cant. If the interaction is not signifi cant and 
its Rsq is small, the tests for the main effects (species and sex) generally produce very similar results 
regardless of including or excluding the interaction. The Rsq for each effect must be calculated manually 
in PAST. This can be done by copying/pasting the ANOVA output in a spreadsheet and then dividing the 
sum of squares 10 (SS) of species, sex and species by sex, each by the total SS. The resulting Rsq should 
be treated as an approximation, however, because its computation depends on the type of SS used in the 
ANOVA (see below), which is not defi ned in PAST 2.17c 11. At the time of this study, PAST 4 seems to 
share the limitations of 2.17c for the two-way ANOVA, but future versions will likely offer more options 

Table 2. Decision ‘tree’ for the species by sex ANOVA. In the full model (fi rst ANOVA), the main focus 
is on the interaction; in the reduced (second ANOVA), it is on sex. Light grey background in the fi rst 
ANOVA suggests when one might do the second one, after excluding the interaction; black background 
and uppercase emphasize, respectively, separate sex and pooled sex analyses.

1st or 2nd ANOVA Factor † P Rsq* Decision

1st: ‘species + sex
 + species by sex’

(full model)

interaction signifi cant large separate sex analyses
small uncertainty, but could try 2nd ‘species + sex’ ANOVA with no 

interaction

not signifi cant large likely problems with the data (small N, producing inaccurate 
parameters and low power): 

explore taxonomic differences graphically without testing?
small do 2nd ANOVA with no interaction

2nd: ‘species + sex’
(interaction excluded;

reduced model)

sex signifi cant large separate sex analyses   (or ‘sex-correct’ data)

small POOL SEXES             (or ‘sex-correct’ data)

not signifi cant large likely problems (low power etc.) with the data: explore 
taxonomic differences graphically without testing?

small                                                    POOL SEXES

†  Accurate results are more likely with large, fairly similar N across groups, and no evident violation of homoscedasticity.
*  Decide if large or small by comparing: for the fi rst ANOVA, the Rsq of the full model with the Rsq of the reduced model;  

for the second ANOVA, Rsq of sex with Rsq of species.

10 More accurately, SS are the sum of squared deviations from the mean (see also the Glossary in Appendix A).
11 Results of the species by sex ANOVA in PAST 2.17c are very similar (but not identical) to those obtained in R using either 

type I or type II SS.
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(Hammer, pers. comm.), including whether the interaction is tested or not and possibly also the choice of 
the model to partition variance among factors (i.e., the type of SS used in the ANOVA). For now, users 
may have to put up with the limitations, be careful and report precisely what was done (or could not be 
done). Alternatively, they may have to use a commercial program or R.

For shape, as anticipated, PAST has no option for a two-way MANOVA equivalent to the univariate 
analysis I described above. Besides commercial programs, there might be other free statistical software, 
I am not familiar with, in which to run the analysis. The two-way MANOVA can also be done in R 
(R Core Team 2023) using the package Car (Fox & Weisberg 2019) and parametric tests 12 or, using 
permutations and a different type of SS 13, the package Vegan (Oksanen et al. 2022). For 2D GMM data, 
the species by sex MANOVA can, however, be done in TPSRegr (Rohlf 2015). The analysis is more 
laborious, because it is based on a series of regressions onto dummy variables. The dummy variables 
numerically code groups (species and sex) and their interaction. Results are equivalent to a MANOVA 
using the default type III SS options (see below) of some of the main commercial programs (Howell 
2013). I explain fi rst how to build the fi les for TPSRegr and then how to run the two-way MANOVA. R 
users, and those using commercial software for two-way MANOVAs, can skip this part of the methods 
and read only the description of data plots in the last three paragraphs before the Results of B2.

In TPSRegr, fi les can be loaded in NTS format for both landmarks and groups. The format is simple and 
well explained in the help of any program of the TPS Series. As briefl y outlined in the power analysis of part 
A, NTS is a text fi le that one can create in a text editor (e.g., Notepad++: https://notepad-plus-plus.org/). 
For our specifi c use, a matrix with observations in rows and variables in columns is pasted in the TXT 
fi le, whose extension is changed into *.nts. Before the matrix, one needs a line with four numbers. For 
the marmot raw landmark coordinates, for instance, this fi rst line is: 1 356 24 0, where 1 indicates a 
rectangular matrix; 356 is the sample size N excluding outliers and individuals of unknown sex; 24 is 
p, which is the number of variables (i.e., 12 2D landmarks, each with its X and Y coordinates); zero is a 
code to tell the software that there are no missing data. If N and p are followed by an L (1 356L 24L 0), 
then one can have more information pasted between the fi rst line and the those of the data matrix. Thus, 
on line two, there might be 356 names for the specimens, followed on line three by 24 names for the 
variables. For both, specimens and variables, names must be a single word without blanks, separated by 
the next name by blanks (or tabs or, in fact, even placed on different lines). The names of the specimens 
could be the same as the ID used in MorphoJ’s TXT fi les, and those for the coordinates could be X1 Y1 
X2 Y2 … X12 Y12.

Together with the NTS fi le with the landmark coordinates of the 356 individuals of known sex, a second 
NTS fi le is necessary to specify the independent variables, on which to regress shape data. This is the 
MANOVA ‘design matrix’, consisting of dummy variables for the same 356 individuals in exactly the 
same order as in the NTS fi le with the landmark coordinates. For convenience, as in the CS species by 
sex ANOVA in PAST, a desirable order has the species, one after the other, and, within each species, all 
females followed by all males (or vice versa). Building a design matrix in a spreadsheet is tedious, but 
easy. The design matrix has three blocks of dummy variables. The fi rst is a single variable for sex, with 
females coded -1 and males 1 (or vice versa). The second block, for species, has g-1 dummy variables, 
where g is the number of taxa, which in my case is six species. This marmot ‘species’ block is, thus, 

12 Using type III SS as in TPSRegr, the MANOVA can be specifi ed with the command: library(car); Anova(lm(Y~species*sex, 
contrasts=list(species=contr.sum, sex=contr.sum)), type=3, test.statistic=”Wilks”) with Y being the matrix of the PCs (with 
non-zero variance) of the Procrustes shape coordinates; if the interaction is not signifi cant, species*sex is replaced by 
species+sex to replicate the MANOVA without interaction.

13 Using type I SS (which is not used in TPSRegr and might not be the most appropriate for testing the species by sex 
interaction) and 10 000 permutations, the MANOVA is specifi ed with the command: library(vegan); adonis2(Y~species*sex, 
permutations=9999, method=”euc”).
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made of fi ve variables, each contrasting one species (I used VAN, the last in the matrix, but the decision 
is arbitrary) with any of the remaining fi ve. For example, for contrasting VAN with the Alaskan marmot, 
I coded the former as -1, the latter as 1, and all other species as zero. For VAN vs hoary marmots, VAN 
is unchanged (coded -1) and hoary marmots are coded 1, with the other four species coded as zero. The 
third contrast will be VAN vs yellow-bellied marmots, the fourth VAN vs woodchucks, and the fi fth 
VAN vs Olympic marmots, with these last three dummy variables built using the same rationale as 
for the previous two. Finally, the third block codes the interaction (species by sex) using another fi ve 
dummy variables. The ‘interaction’ block is the easiest to build, as it is obtained by multiplying the 
values of the sex dummy variable (fi rst column) by the corresponding value of each of the fi ve species 
dummy variables (columns 2, 3, 4, 5 and 6). From the spreadsheet, the variables are pasted into a TXT 
fi le, with the extension renamed as *.nts. Thus, the fi rst two lines of the NTS design matrix fi le will be 
like these for my data:

1 356 11L 0
sex sp1_sp6 sp2_sp6 sp3_sp6 sp4_sp6 sp5_sp6 sp1_sex sp2_sex sp3_sex sp4_sex sp5_sex

On the following lines, there will be numbers corresponding to the sex, species and interaction dummy 
variables, with the individuals ordered as in the NTS fi le with the raw coordinates.

With the two NTS fi les built as explained above, the MANOVA can be run in TPSRegr. Landmarks 
are loaded as data and the design matrix as indep. var. (independent variables). Clicking on Consensus 
does the Procrustes superimposition. Then, one has to click on Partial warps (see previous explanations 
on why this type of variables is used, and remember to skip any part of the output concerning partial 
warps), followed by another click on Regression. This is the fi rst of three series of two regressions, 
with each pair of regressions testing one factor (i.e., one pair of regressions is needed to test the 
species by sex interaction; a second pair will be used to test species, and a third pair to test sex). All six 
regressions are necessary to obtain the same output as in a species by sex MANOVA performed in R or 
a commercial software. However, the most important pair of regressions is the one testing the species 
by sex interaction, which is the one I now describe. Thus, the very fi rst regression represents the full 
model, as all independent variables are included. I call, for brevity, the full model ‘species by sex’, but I 
stress that it includes all blocks of dummy variables, i.e. species, sex and species by sex. For the second 
regression, testing the species by sex interaction, one employs a reduced model that I call ‘species plus 
sex’, because it only employs as predictors the species and sex blocks of dummy variables. Therefore, 
even if apparently counter-intuitive, in this second regression one must exclude precisely the factor (i.e., 
the block of dummy variables) a user wants to test. As I am testing the interaction, I leave out of the 
second regression all the variables in the third block (Options, Select independent variables, uncheck 
sp1_sex, sp2_sex etc.).

To explain the rationale of the procedure by which a block of predictors is excluded, I go back to the 
interpretation of Rsq. Rsq is, we said, the proportion (or percentage) of variance in the data accounted 
for by a factor. Put it another way, Rsq measures how well the data (shape, in this case) fi t the model 
(predictors). Any additional predictor explains, even if merely by chance, an extra amount of variance 
in the data, which adds up to the variance already explained by the other predictors. This is why a full 
model (all predictors) always has a larger Rsq compared to a reduced model (some predictors excluded). 
However, if the predictors left out in the reduced model (i.e., the dummy variables coding the interaction 
in my fi rst pair of regressions) have a negligible effect, the decrease in its Rsq compared to the full 
model will be very small and statistically negligible (i.e., in this case, a non-signifi cant interaction).

After running a regression, the File, View report window of TPSRegr shows the numerical output of 
the analysis. TPSRegr, instead of the Rsq, shows one minus the Rsq, expressed as a percentage. From 
this percentage, corresponding to the variance unaccounted for by the regression, one easily computes 
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the Rsq (100% minus the percentage of ‘unexplained’ variance). Finally, the difference in Rsq between 
the full (all dummy variables including the interaction) and reduced (species by sex dummy variables 
excluded) models represents the variance accounted for by the interaction. I emphasize again that the 
variance due to the interaction should be small, if SDM is similar across all species. TPSRegr computes 
the P value for the signifi cance of the interaction using an approximated F ratio. The F ratio allows to 
estimate whether the full model (larger Rsq) is really ‘better’, in terms of variance explained, than the 
reduced model. More accurately, the P value for the interaction F ratio estimates the compatibility of 
the data with the null hypothesis that the full and reduced model are equally good. To obtain this test, 
users MUST remember to select Options, Retain current resid. SS before running the second regression. 
This is fundamental, otherwise the second regression is run correctly, but the software ‘does not know’ 
that it has to compare the fi t of the fi rst and second regression. It is this comparison, that provides the 
test for the effect of the factor (the interaction, in this case) that was excluded in the second analysis. 
For instance, after running the fi rst regression of marmot mandibular shape onto all 11 dummy variables 
in my dataset, followed (having retained the residuals!) by a second regression using only the fi rst six 
dummy variables (i.e., sex sp1_sp6 sp2_sp6 sp3_sp6 sp4_sp6 sp5_sp6), the relevant results in the View 
report window will be (with my comments in square brackets):

[fi rst regression with all dummy variables, interaction included]
Percent unexplained = 75.4% [full model Rsq = 100% - 75.4% = 24.6%]
[second regression with only dummy variables for species and sex and the option Retain current resid. 
SS checked]
Percent unexplained = 76.2% [reduced model Rsq = 100% - 76.2% = 23.8%]
*** Testing difference between current residual SS matrix [the variance left unexplained by the reduced 
model] and the residual SS matrix retained from previous analysis. *** [Please, notice that this part of 
the output will not be there if one forgets to check the option Retain current resid. SS]

Multivariate tests of signifi cance:
Statistic Value Fs df1 df2 Prob [Rsq]
Wilks’ Lambda: 0.754 0.946 100 1590.2 0.6322 [24.6%-23.8% = 0.8%]

Thus, the species by sex interaction accounts for just 0.8% of total shape variance, which corresponds 
to a non signifi cant (P = 0.6322 >> 0.005) F ratio of 0.946. This is a strong indication that SDM is 
statistically similar in all species.

Using the same logic, a researcher can test sex by including all predictors except the sex dummy variable 
to have a new reduced model to compare with the full model (all 11 dummy variables) in the fi rst 
regression. Similarly, he/she can test species by, this time, excluding the species block (from the 2nd 
to the 6th dummy variable in my NTS fi le). These two main factors, however, are really important and 
worth being tested only when the interaction is not signifi cant 14. Then, with a non-signifi cant interaction, 
to specifi cally test species and sex, it is better to re-run the two-way MANOVA without the species by 
sex variables. This is because, having demonstrated that the species by sex interaction is negligible for 
shape, the researcher no longer needs a full model that includes an interaction, which is too small to 
be important. The regression approach will compare again a set of reduced models with a full model. 
However, in this ‘species plus sex’ MANOVA, the full model becomes a regression of shape onto sex 
and the species block only: the ‘new’ full model is, thus, the one previously used as a reduced model, 
when the interaction was being tested.

14 Overall results will be the equivalent of those obtained in the species by sex ANOVA of CS run in PAST, except for the 
different type of SS. However, as mentioned, PAST does not allow to re-run the ANOVA without interaction, if the latter is 
small and non-signifi cant. In contrast, this can be done in TPSRegr, as described below.
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For the ‘species plus sex’ MANOVA, even if the shape data are the same, it is better to shut down 
TPSRegr and reload both the raw coordinates and independent variables. This guarantees that no part of 
the output of the previous analyses is left, that might confound the results. Thus, after pressing consensus 
and partial warps, for a ‘species plus sex’ MANOVA, the fi rst regression has both main factors as 
independent variables, which in my NTS fi le are coded by the fi rst six dummy variables (Options, 
Select Indep. variables to include only: sex sp1_sp6 sp2_sp6 sp3_sp6 sp4_sp6 sp5_sp6). Then, to test 
sex, in the second regression, one has to exclude the sex dummy variable, check the Retain current 
resid. SS option, and run the regression using only the fi ve dummy variables of the species block (sp1_
sp6 sp2_sp6 sp3_sp6 sp4_sp6 sp5_sp6). TPSRegr will compare the fi t of the new full model (‘species 
plus sex’) with that of the new reduced model (‘species’ only as a predictor) to assess if omitting sex 
leads to a non-negligible loss of fi t. The “Multivariate tests of signifi cance” in the View report window 
(“*** Testing difference between current residual SS matrix and the residual SS matrix retained from 
previous analysis. *** ”) is, now, testing the signifi cance of shape SDM. To test species, a researcher 
will redo everything the other way round: shut down and restart TPSRegr, load the data and get the shape 
variables, regress them fi rst on the fi rst six dummy variables (sex sp1_sp6 sp2_sp6 sp3_sp6 sp4_sp6 
sp5_sp6) and then, having retained the residuals, regress them again including only the sex dummy 
variable as predictor.

As in all analyses, also in the ANOVA, plotting the data is complimentary to testing. Variability in CS 
is easily visualized using box and jitter-plots. Profi le plots can also be useful for univariate data. If the 
interaction is not signifi cant, a profi le plot of sex means (vertical axis) vs species (horizontal axis) should 
have lines connecting female means that are approximately parallel to those connecting male means. If 
they diverge strongly or cross, then there likely are important differences in magnitude and/or direction 
of SDM. A profi le plot can be obtained in PAST after computing the CS means in a spreadsheet or in 
MorphoJ (after subdividing species, the command is Preliminaries, Average Observations By sex). Data 
in PAST will have to be organized in two columns, one for female and the other for male means, with 
species in rows. After selecting the two columns, the plot is requested with Plots, Graph using the Line 
option.

For multivariate data, ordinations and phenograms should show a within-species mix of females and 
males well separated from those of other species, if SDM is negligible (see also B1), and the opposite (i.e., 
a mix of sex and species or even same-sex clusters of different species), if SDM is large. However, there 
is no simple equivalent of profi le plots for shape to graphically explore the species by sex interaction. 
Yet, having assessed that the direction of shape change between sexes is approximately similar across 
species using the visualization of female to male mean shape change (but see B1 for more on this) and 
focusing on the magnitude of SDM, a researcher could check whether the female to male mean shape 
distances are about the same in all species. This would be consistent with a negligible species by sex 
interaction in the MANOVA. To obtain the shape distances between sex means, users need a matrix with 
those mean shapes to load the data either in PAST (then, selecting the matrix and using the command 
Statistics, Similarity and distance indices, with Euclidean selected as a metric) or in TPSSmall (using 
an NTS fi le, clicking data to load it, then pressing compute and using File, Save, Procrustes distances to 
output the distance matrix). The result is a square symmetric matrix of, for the North American marmots, 
66 pairwise distances. However, in this matrix, one will need to inspect and compare only the six within-
species mean female to male distances.

A faster, graphical, approach to compare shape distances among means is to compute a phenogram 
(see A for more information on UPGMA phenograms using Euclidean distances and how to obtain 
them in PAST). If shape SDM is similarly small in all species, the phenogram of the 12 mean shapes 
should show the average female of each species paired with the average male of the same species. The 
shape distance, and thus the branch length of each pair of female and male mean shapes, should also 
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be similar and, if SDM is small, short compared to interspecifi c mean species distances. In contrast, 
if the length of the branches varies (e.g., is short between female and male means of woodchucks and 
long between those of Olympic marmots) and/or sexes do not consistently form pairs within species, 
the phenogram suggests a variable amount of SDM and, therefore, a likely interaction between species 
and sex effects.

Results (B2)
Results of the species by sex ANOVAs are reported in Table 3 for CS and Table 4 for shape. In both 
tables, analyses include either all species or only the three species (woodchucks, hoary and yellow-
bellied marmots) with the largest samples. For CS, I focus on results including all species, as they are 
in very good agreement with those of the largest samples. For shape, however, there are some small 
differences. They do not substantially change the conclusions, but results with or without small samples 
are reported and briefl y compared.

The ANOVA confi rms that SDM in size is very small (Rsq ≈ 1%), although, by pooling all species 
samples, the ANOVA achieves such a high power that SDM is signifi cant (P ≤ 0.005). Interspecifi c 
differences are also highly signifi cant (P < 0.000001), but, unlike the small effect of sex, they are very 
large (Rsq = 58-64%). This means that, for mandibular size, interspecifi c differences are ~ 60 times 
larger than SDM. The species by sex interaction is not signifi cant and hardly accounts for any variance 
in CS (Rsq = 0.4%). That the pattern of SDM is similar across all species is supported by the almost 
parallel lines in the profi le plot of female and male mean CS (Fig. 3a). The profi le plot also suggests 
very small mean sex differences (with males a few mm larger than females, on average) and large 
interspecifi c variation (average CS from little less than 70 mm to almost 90 mm). Although PAST 
does not allow to repeat the ANOVA after excluding the interaction, its effect is so small that it cannot 
appreciably change results.

Table 3. Group differences in CS: species by sex ANOVA in PAST*. As in part A, in this and other 
tables, SS = sum of squared deviations from the factor group mean; df = degrees of freedom; MS = mean 
sum of squares, i.e. SS / df.

Samples Factor Ss Df Ms F P Rsq
all species species 14770.0 5 2954 127.7 <0.000001 63.9%

sex 312.5 1 312.5 13.5 0.0003 1.3%
interaction 87.0 5 17.4 0.8 0.5849 0.4%

residual 7954.0 344 23.1 34.4%
total 23123.5 355

large samples only species 11030.0 2 5514 223.7 <0.000001 58.3%
(i.e., cal, fl a, mon) sex 200.4 1 200.4 8.1 0.0050 1.1%

interaction 72.4 2 36.2 1.5 0.2320 0.4%
residual 7618.0 309 24.7 40.3%

total 18920.8 314

*  As mentioned, PAST 2.17c does not provide details on the type of SS used in the ANOVA, but a comparison with results from 
R suggests that they are either type I or, more likely, type II.
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Fig. 3. Visualizations of species by sex interactions using group means.a. Mean CS profi le plot. For 
size, males are on average slightly larger than females, but the difference is small and roughly similar in 
all species. Thus, lines are approximately parallel in the profi le plot. b. Phenogram of mean shapes. In 
the phenogram, with the exception of the Alaskan marmot (bro) (whose sampling error is huge, having 
only eight individuals of known sex), female and male means are paired within each species with almost 
identical shape distances between sexes in each species. The similarity of SDM shape distances provides 
an information equivalent, in terms of the magnitude of the sex differences, to that of the parallel lines 
in the CS profi le plot (Fig. 3a).
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The species by sex shape MANOVA shows a small (Rsq = 0.6-0.8%) and non-signifi cant (P = 0.6) 
interaction. After excluding the smallest species samples, despite the slightly smaller Rsq, however, 
the P value of the species by sex interaction decreases almost 10 times (P = 0.07). Thus, including 
only large samples, the interaction remains non-signifi cant, but becomes closer to signifi cance using 
a conventional alpha = 0.05 instead of the more conservative 0.005 threshold adopted in this study. 
This is a powerful demonstration of the potential infl uence of small samples on the results of statistical 
tests with a highly unbalanced design. Nonetheless, the interaction not only is always non-signifi cant, 
but also, regardless of including the smallest samples or not, very small and, more precisely, 28 times 
smaller than the Rsq for species differences. Thus, the MANOVA can be repeated without the interaction 
to compare the magnitude of species and sex differences. In this second analysis (the ‘species plus sex’ 
MANOVA), SDM accounts for ~ 1% of shape variance, whereas species differences account for 22% 
and 17% of total variance, respectively including or excluding the smallest species samples. As with CS, 
both species and sex are signifi cant. However, the effect size of species is ~ 20 times larger than that of 
SDM. That SDM is negligible compared to interspecifi c variation is supported also by ordinations, as 
shown in B1 (Fig. 2). Besides, the phenogram of species mean shapes, split by sex (Fig. 3b), confi rms 
that the magnitude of SDM is generally small and similar in all species. With only one exception, female 
and male mean shapes cluster as ‘sister’ within species and mean female to male distances are almost 
identical in the phenogram. The exception is the Alaskan marmot whose female and male mean shapes 
do not cluster together, but are based on tiny samples (see Discussion). In conclusion, therefore, also 
for shape, SDM is similarly small in marmots, which justifi es pooling sexes in all further taxonomic 
analyses of size and shape.

Table 4. Group differences in shape: species by sex MANOVA using dummy variables in TPSRegr*.

Model & samples Factor Wilks’ Lambda Fs Df1 Df2 P Rsq

all species species 0.026 17.6 100 1590 <0.000001 22.3%

sex 0.919 1.4 20 325 0.1083 0.4%

 interaction 0.754 0.9 100 1590.2 0.6322 0.8%

sp.+sex+interaction 24.6%

all species species† 0.026 17.9 100 1614.6 <0.000001 22.5%

no interaction sex 0.789 4.4 20 330 <0.000001 1.0%

sp.+sex 23.8%

large samples only species 0.088 34.3 40 580 <0.000001 17.0%

(i.e., cal, fl a, mon) sex 0.793 3.8 20 290 <0.000001 1.0%

 interaction 0.835 1.4 40 580 0.0695 0.6%

sp.+sex+interaction 19.1%

large samples only species† 0.088 34.6 40 584 <0.000001 17.3%

no interaction sex 0.773 4.3 20 292 <0.000001 1.1%

sp.+sex 18.5%

*  TPSRegr uses type III SS both in MANOVAs and MANCOVAs (i.e., the tests for slope and intercept of allometric trajectories 
- see B6). 

† If species are tested in a one-way MANOVA, regardless of sex, Rsq using all species or those with the largest samples are 
respectively 22.7% and 17.5%.
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Di scussion (B2)
The species by sex ANOVAs confi rm the fi ndings of the tests of SDM one species at a time. SDM 
in marmot manibular size and shape is negligible, especially if compared to the large interspecifi c 
differences. Results are robust to the exclusion of the smallest samples, although for shape the P value 
of the interaction term becomes almost 10 times smaller when they are excluded. Nonetheless, despite 
the increased statistical power using only the largest samples, the interaction remains non-signifi cant (P 
> 0.05). More importantly, the Rsq of the interaction is approximately unchanged, with or without small 
samples, and remains consistently very small (< 1%).

The largely negligible interaction between species and sex is supported also by the graphical summaries 
for mean size (Fig. 3a) and shape (Fig. 3b). Male mandibles are consistently larger, on average, than 
female ones in all species, but the difference is always very small. In terms of magnitude, also shape SDM 
varies little among species and is smaller than interspecifi c differences, as evident in the phenogram. 
The Alaskan marmot is the only species, whose female and male mean shapes are not ‘sisters’ in the 
phenogram. In this species, with just three males and fi ve males, sample means likely behave like 
‘outliers’ (see Appendix A and Cardini et al. 2019). This is also the most plausible reason why the 
Alaskan marmot shape SDM Rsq, in the within-species tests (B1), was almost fi ve times larger than the 
average in other marmot species.

Using the Rsq in the results of the species by sex ANOVA, a researcher can relate the magnitude of 
SDM to the magnitude of interspecifi c variation. Interspecifi c differences are, thus, found to be ~ 
30 (shape) to 60 (CS) times larger than SDM. This observation, combined with the demonstration 
of similar SDM patterns in the mandibles of all species (the negligible species by sex interaction), 
provides a strong justifi cation for pooling sexes in the taxonomic analyses. This conclusion is robust, 
even if SDM was statistically signifi cant in the ‘species plus sex’ ANOVAs. As emphasized in part A, 
statistical signifi cance should not be rigidly taken at face value and must be carefully interpreted. SDM 
is statistically signifi cant, because the ANOVA (B2) is more powerful (N is larger) than tests of SDM 
one species at a time (B1). Statistical power becomes so large that allows to detect a small, but real 
effect (the tiny differences between female and male mandibles). However, this tiny effect, compared to 
a much larger interspecifi c variation, cannot appreciably bias the results of the taxonomic comparisons.

Once the interaction has been removed, results of the ‘species plus sex’ ANOVA (B2) should be very 
similar to those of the ‘ME ANOVA’ of part A. The level of individual variation is present only in the 
‘ME ANOVA’, because of the replicates used to assess ME. In the main taxonomic analyses of part B, 
in contrast, replicates have been averaged and outliers removed. Averaging replicates somewhat reduces 
the total sample variance. Yet, if ME is small, the difference should be modest. With highly unbalanced 
samples, however, the congruence of the tests for species and sex in the two types of ANOVAs is less 
certain. This is because the ‘ME ANOVA’ in MorphoJ (Klingenberg et al. 2002) and the species by sex 
ANOVA, typical of GMM taxonomic studies (Rohlf et al. 1996; Corti & Rohlf 2001; Frost et al. 2003), 
employ models that take into account the effect of unbalanced sample size differently. This advanced 
statistical topic is covered in most statistical textbook, such as Howell (2013), where it is discussed 
in relation to the choice of type of SS that was briefl y mentioned in the Methods. In general, when 
a researcher fi nds appreciable differences in the results of the ‘ME ANOVA’ in MorphoJ (which is 
hierarchical) and the ‘species plus sex’ ANOVA (based on a different, non-hierarchical, type of SS), that 
might be a warning that there are problems with the data: for instance, sample size is small and/or very 
heterogeneous or the assumption of homoscedasticity is not met 15. For marmot mandibles, comparing 
Tables 4–5 of part A1 with Tables 3–4 of part B2, and focusing in A1 on results without outliers using the 
12 landmarks confi guration and in B2 on those including all species (because they are based on exactly 
the same data), one fi nds that: species explain 64% of CS variance and 22% of shape variance in both 
ANOVAs, and sex explains 1.5% and 1.0% of respectively CS and shape variance in the ‘ME ANOVA’ 

.
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and, for the same variables, 1.3% and 1.0% in the species by sex ANOVA. Thus, with mandibular CS 
and shape in North American marmots, there is an almost perfect congruence between the analyses, 
regardless of the type of SS.

The ‘ME’ (A1) and ‘species by sex’ (B2) ANOVAs differ for the choice of type of SS, but also because 
interactions are not tested in the ‘ME ANOVA’. With three factors (species, sex and individual), 
potentially there are three two-way interactions (the pairwise combinations of all three factors), as well 
as one three-way interaction (species by sex by individual). Why are interactions among factors left out 
of the ‘ME ANOVA’? Mainly, to keep the analytical design simple in a preliminary analysis of ME. 
This simplifi cation may be arguable in A1, but it is defi nitely inappropriate in B2, where the aim of the 
ANOVA is to decide whether or not we can pool sexes in the taxonomic comparisons. If the interaction 
is signifi cant and has a large Rsq, the effect of sexual dimorphism varies depending on the species, which 
makes highly inaccurate pooling sexes. By pooling sexes in species with different patterns of SDM, 
I could end up comparing, for instance, the mean of one species with no or very small sex differences 
and the mean of a species with very large SDM. The fi rst species would have a mean, which accurately 

15 If the ANOVA model was the same in both the ‘ME ANOVA’ in part A and the species by sex ANOVA in part B, results 
should be the same. Two-way (and, more generally, multi-way) ANOVAs have different options to partition the total 
variance of the data (more precisely their SS) among the factors being tested. When the ANOVA design is perfectly balanced 
(i.e., sample size is the same in all groups), all types of SS produce identical results and the distinction becomes irrelevant. 
However, as already mentioned, in taxonomy and descriptive evolutionary studies, one rarely has the luck of equal sample 
size across groups. The choice of the type of SS is, thus, an important but rather technical topic, with disagreements even 
among experienced statisticians about the ‘best’ option. Readers who want to learn more can look at the abundant literature 
on ANOVA types of SS. I suggest Howell (2013: 444–446, 587–590) as a concise but relatively simple introduction. A brief 
but interesting introduction to the meaning of interactions and different types of ANOVA is also found in the Appendix of 
Herler et al. (2010). Below, in this note, I provide an informal, concise, comment on the three main types of SS, so that 
beginners have at least an intuition of their meaning. However, I stress again that this is a really technical topic, which I am 
not an expert of and fi nd diffi cult to fully understand (a very good reason for readers to look for more accurate explanations 
in the statistical literature!).

a. The ‘ME ANOVA’, as done in part A, is hierarchical (model I SS). I have explained (A1) why the hierarchical design is 
reasonable in that specifi c context. Here, I remark that the order in which factors are entered in a model I SS ANOVA is 
important; if altered, results will be different. In marmots, it is known from the literature that species tend to show large 
differences and have a small SDM. Thus, I fi rst controlled for species differences (fi rst factor in the model) and then for 
any potential SDM (sex as second factor), before testing individual variation. In the ‘ME ANOVA’, the main factors of 
species and sex are, therefore, included mainly to control for their effect, when the main interest is in individual differences 
compared to ME. In the species by sex ANOVA, in part B, in contrast, species, sex and their potential interaction are all 
a main focus.

b. The principal alternatives to model I SS are model II and III (Howell 2013). Type III, unlike model II where factors 
are weighted by the different groups’ N, weighs all groups equally regardless of whether one is larger or smaller, as it 
happens when N varies across species and sex. This choice seems appropriate in taxonomy, as a variable N is not usually 
due to an underlying biological model that justifi es different sample sizes across groups. Heterogeneous sample size in 
taxonomic studies is, generally, just a matter of what was available to measure. Type III SS are also called “unique SS” 
(Howell 2013), because SS which are accounted for by multiple factors (e.g., differences between species that are also 
part of within-species SDM) are left out of the model, so that each factor is assigned only the proportion of SS uniquely 
explained by that given factor. As a consequence, the sum of model III SS of all factors might not equal the total SS of the 
variables (e.g., SSspecies + SSsex + SSspecies by sex + SSunexplained ≤ SStotal). This is why in Table 4 the sum of Rsq of each factor is 
slightly less than in a regression including all of them together.

c. Different types of SS have pros and cons and the choice might depend on the data and the specifi c aims of the analysis. 
Rohlf’s TPSRegr employs model III SS and Howell (2013) also favours this model, which is the default option in some of 
the main commercial statistical programs. Others, especially in the R community, prefer model II SS. I do (and can) not 
argue about the ‘best’ choice. In this study, the decision was restricted by what is available in the free software I am using: 
MorphoJ uses model I, TPSRegr uses model III, PAST 2.17c does not specify the type of SS. In my personal experience, 
most of the time different ANOVA models lead to the same conclusions unless data are particularly problematic (e.g., very 
heterogeneous N, with several very small samples; strong deviations from the assumption of homoscedasticity; possibly, a 
large p / N ratio). With the marmot mandibles of this study, for instance, I repeated the ANOVAs in R using different types 
of SS, as well as including only the three largest samples or their random subsamples to have a perfectly balanced design. 
Results were highly congruent with those obtained in MorphoJ, PAST and TPSRegr.
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summarizes morphological variation in that species. The second species, in contrast, would have a 
mean that is somewhat halfway between the female and male phenotype. In such a case, averaging sex 
might be biasing the results of interspecifi c tests, because one cannot accurately control for the effect 
of sex on species comparisons. The issue is well known and, yet, the importance of correctly taking 
sex into account in interspecifi c studies using GMM is often ignored. In macroevolutionary studies, the 
error introduced by comparing species of different genera or even families of a lineage regardless of 
sex, when SDM varies across group, might be less serious, but it is still there and certainly contributes 
to inaccuracies. For instance, Castiglione et al. (2019) do not mention sex in their broad study on 
mandibular shape convergence in ungulates, suggesting that SDM was not taken into account. This is 
very concerning in a group whose SDM varies so widely (depending on the ecology, mating system and 
type of social organization) that for decades they have been a model for studies on how secondary sex 
differences originate in mammals (Jarman 1974; Loison et al. 1999; Ruckstuhl & Neuhaus 2002; Pérez-
Barbería et al. 2002).

The consequences of neglecting SDM in taxonomic and, more generally, evolutionary studies can be 
serious. I use also a made-up example to make the problem more tangible. I focus on size for simplicity, 
but the rationale will be analogous for shape. Let us say that I have two populations P1 and P2, whose 
mandible size is similar; there is also a degree of SDM, which is of similar magnitude and direction: in 
both, males are ~ 20% larger than females. However, I do not know in advance anything about these 
differences and, using samples, I want to discover whether mandibular size is the same or not in P1 and 
P2. Unfortunately, I have unbalanced samples with very few females in P1 and very few males in P2. To 
maximize N, I decide to pool sexes before comparing the two populations. Without a ‘sex-correction’ 
(which is rarely straightforward, as I mentioned in the ‘Material and methods’), the mean of P1 is male 
biased (‘looks larger’) and the mean of P2 is female biased (‘looks smaller’). Thus, because the impact 
of SDM was overlooked, a mere artefact of sampling error leads to a comparison that overestimates 
populations differences, which I may fi nd to be large and signifi cant, when there was none. Even if I 
used a weighted mean by computing the mean of the female and male means within each population, the 
mean of the sex with the smaller N would be less accurate (and maybe look like an outlier if N is really 
small) and, as a consequence, the mean population difference would also be inaccurate. If the samples 
were balanced (same or almost same N for females and males of both populations), pooling sexes would 
be less problematic. The mean of P1 would be halfway between the female and male mean and the same 
would happen for P2. The relative mean difference in size of P1 and P2 would, therefore, be accurate. 
However, sample variance is poorly estimated in both examples (either with unbalanced or balanced N), 
because sex differences and population variability within species are mixed up.

Besides, with a large SDM, even when N is the same for females and males, the total sample average 
is an abstraction, because it corresponds accurately neither to the female nor to the male mean of each 
population. Therefore, even with balanced samples, if pooling sex is necessary to increase statistical 
power, I prefer a ‘sex-correction’. For a ‘sex-correction’ to be accurate, however, SDM must be similar 
in all taxa, which is why it is crucial to test the species by sex interaction. For size, similarity of SDM 
means that males are larger than females by approximately the same amount in all populations or species 
(and vice versa, if females are larger). For shape, this is more complex, because a ‘sex-correction’ 
assumes not only that female and male means have similar Procrustes distances in all taxa (i.e., similar 
magnitude), but also that the variance-covariance structure of sex differences is approximately the same 
in all species. Testing the similarity of variance-covariance matrices requires large samples (Cardini 
et al., 2021, and references therein). With small samples, one might, at least, visually compare shape 
diagrams to verify that the mean difference between sexes suggests roughly similar shape changes across 
all species. If SDM is similar, for instance, displacement vectors should be similar in length and have 
approximately the same direction in all species. In contrast, the plot of the interaction between species 
and sex using a phenogram, which I used in Fig. 3b, is only based on Procrustes shape distances. Mean 
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shape distances quantify the magnitude of SDM, but say nothing on direction. Thus, one might have a 
similar amount of SDM in two species, despite different or even opposite patterns of shape change. This 
is like, for a univariate trait, having the same absolute difference between sexes (say, a 10% average 
difference in size between females and males), but in opposite directions (i.e., females 10% bigger than 
males in one species and the opposite in the other species). As I discussed in B1, patterns of SDM can 
be visualized and compared qualitatively with shape diagrams (Klingenberg 2013), but also numerically 
assessed in terms of similarity of directional change by computing pairwise species angles between 
vectors of mean shape differences.

Carefully testing and controlling for the effect of sex on taxonomic comparisons is important. SDM, 
however, is not the only potential source of within-species variability that may confound taxonomic 
analyses. Age-related differences are another potential main factor. Usually, to work with homogeneous 
samples of comparable age, taxonomic studies focus on a specifi c ontogenetic stage. In mammals, and 
endotherms more generally, growth slows down after sexual maturity and, with rare exceptions such as 
elephants (Perry 1954), almost completely stops in fully adult individuals. Thus, adults are a convenient 
option for taxonomic studies. Besides, they have the advantage of being the most common age groups in 
museum collections. Using adults, therefore, helps to maximize sample size. However, within-species 
group variability (sex, age, different morphs etc.) can be a source of taxonomic information in itself 
and, whenever possible, it is interesting to have data covering the entire life cycle of an organism. 
For instance, as long as all main ontogenetic stages are adequately sampled, we might expect that 
developmental trajectories diverge because of evolutionary separation.

In ectothermic vertebrates and in many invertebrates, with the clear exception of holometabolous insects, 
growth may not stop after sexual maturity. Even in endotherms, in fact, ageing in adults can change 
morphology, something well known in humans (de Groot et al. 1996; Smith et al. 2021). Changes in 
adult mammals and birds, however, tend to be relatively small, whereas they can be large in ectothermic 
animals. This additional, and potentially large source of variability, makes comparisons potentially more 
challenging. For instance, if, in a species of lizard, one happens to sample young adults or underfed 
individuals and in another one adults that are older or simply better fed, despite including in both species 
only sexually mature specimens, size might differ because of adult age or food abundance. Age and 
condition-dependent size differences can introduce a bias, if they are not controlled for. Because size 
changes generally infl uence shape, a similar bias might also affect shape. ‘Size-corrections’ (see B6 
in the Discussion) may help to mitigate the problem, but they are not as straightforward and almost 
automatic as sometimes believed. To avoid potentially misleading results, it is important to understand 
the methods, but an in-depth biological knowledge is the basis for a good analytical design, which must 
be tailored to the specifi c study organism.

To end this subsection, a brief comment on a methodological detail, which most of the time does not 
make any practical difference, but users should be aware of, and a second brief comment on a related 
issue, which also concerns parametric tests in TPSRegr but is potentially more important.

In the TPSRegr output for the species by sex interaction of the shape MANOVA, I selected, as a test 
statistics, the Wilks’ Lambda. Wilks’ Lambda is commonly reported for multivariate tests in commercial 
software, as well as in PAST. TPSRegr, however, provides four different multivariate tests in its report 
window. The Pillai’s trace, which is shown in the second line, after Wilks’ Lambda, is also a common 
multivariate test statistics. Pillai, for instance, is used in MorphoJ’s Procrustes ANOVA for the non-
isotropic multivariate model (Klingenberg et al. 2002). Pillai is said to be more robust to violations 
of the MANOVA assumptions (Warne 2019), but that might in fact vary from case to case (Ateş et al. 
2019). The help fi le of TPSRegr has a fairly detailed information on how the different test statistics 
are computed and multivariate parametric tests are also briefl y discussed in Zelditch et al. (2004).
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For ‘reasonable’ data, the different test statistics should produce similar approximated F ratios, and 
therefore lead to similar conclusions. The exception is often the Roy’s root, which is more liberal 
(rejects the null hypothesis more often) and is, thus, prone to a higher rate of type I errors (i.e., claiming 
differences when they are not there). This seems to be the case in my example, where all test statistics for 
the species by sex interaction had P = 0.63–64 in TPSRegr, except Roy’s root, whose P = 0.01. With the 
Rsq of the full model being only 3% larger than that of the reduced model (24.6% / 23.8% = 1.03), thus 
suggesting a tiny effect, Roy’s root might indeed be less reliable than the other test statistics in order to 
decide the signifi cance of the species by sex interaction in marmot mandibular shape.

TPSRegr was written before methods for the analysis of semilandmarks were developed and became 
popular. If semilandmarks are used in this software, there are some caveats. On semilandmarks, I wrote 
more in Appendix A. These ‘special points’, used to measure curves and surfaces, are often treated using 
different algorithms to maximize their mathematical correspondence in a procedure called ‘sliding’ 
(Bookstein 1996). I stress that this manipulation is pure mathematics with no biological model behind 
and is not a compulsory step. In certain analyses, such as in studies of modularity/integration it may, 
in fact, sometimes do more harm than good (Cardini 2019). However, because semilandmarks are 
often slid during the superimposition, shape variance is reduced and this implies increased covariance 
and a further loss of information (i.e., degrees of freedom, in statistical jargon) beyond the usual loss 
of four (2D data) or seven (3D data) degrees of freedom in Procrustean GMM (Rohlf & Slice 1990) 
and Discussion in B4). For 2D data, for instance, a user may slide the semilandmarks (but see the 
Appendix A) in TPSRelw, restore scale 16 (read help on “Boas coordinates”), save the new coordinates 
as NTS and load the data in TPSRegr, or another program of the TPSSeries, for further analyses. In 
studies of shape, that means that the superimposition will be done again on the slid-rescaled data, an 
operation which typically does not change the shape coordinates. Yet, TPSRegr (or MorphoJ) does 
not ‘know’ that semilandmarks had been slid and, therefore, it might incorrectly compute degrees of 
freedom in parametric tests, leading to wrong P values. I emphasize that this only concerns parametric 
tests, as I discuss later with an example in relation to the DA/CVA (B4). With resampling tests using 
Euclidean distances in the tangent shape space, degrees of freedom are not computed for the dependent 
variables and, therefore, P values are correct. Because the TPSRegr species by sex MANOVA (and also 
the species by CS MANCOVA, in B6) use parametric tests for the factors in the analysis, these tests 
may incorrectly compute P values using slid semilandmarks. For this type of data, therefore, analyses 
may have to be run using the matrix of PCs of the Procrustes shape coordinates, with all those with zero 
variance excluded, in a commercial software or in R.

B3)  Pairwise tests of species mean differences
Met hods (B3)
From this subsection, the focus fi nally shifts on tests of size and shape differences between taxonomic 
groups, which are the main aim of a taxonomic study. If SDM is negligible (as it happens with marmot 
mandibles) or data can be ‘sex-corrected’ (see previous B2), these and all following analyses can be 
done by pooling sexes; otherwise, they should be run in parallel in females and males or, when limited 
by sample size, only in the sex with the largest sample.

16 Bear in mind that this may not be necessary if further analyses are only done on shape only. However, if the software 
compels users to re-superimpose the slid data (as it happens in MorphoJ or the TPS Series), the Procrustes shape coordinates 
will be virtually unchanged but CS extracted from the TPSRelw shape coordinates (Procrustes aligned specimens) will be 
in all specimens equal to one (plus a tiny amount of error due to the approximation of decimals in the computations). It is 
one because data are already in the shape space with a standardized CS = 1. Yet, it is easy to forget this, so that a user ends 
up picking up the variable called CS in, say, MorphoJ and using it as if it was the true CS. This would lead to mistakes in 
all analyses of CS and allometry. For this reason, I suggest to always restore scale in data slid in TPSRelw, before they are 
re-used in another GMM program of the same series or in MorphoJ.
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Pairwise interspecifi c tests of mean differences are done on both size and shape. It is the same test used 
for SDM within species (B1; for an alternative test, see the Discussion in this chapter). Thus, CS or 
shape is regressed onto a binary dummy variable coding a pair of species (e.g., coding hoary marmots 
-1 and VAN 1, in a covariate), with the signifi cance of the corresponding Rsq tested using 10 000 (or 
more) permutations in MorphoJ. Now, however, the comparison involves pairs of species and has to be 
repeated for all possible species pairs. With g = number of groups, this means g * (g -1) / 2 pairwise 
tests, which, with six marmot species, becomes 15 tests for size and another 15 for shape. The usual 
considerations about the potential infl ation of type I error rates apply.

For mandibular size, species differences can be visualized using box and jitter-plots. For shape, both 
ordinations and phenograms, which I defer to B5, more specifi cally dedicated to this topic, provide 
effective summaries of patterns of interspecifi c variability and similarity relationships. These summary 
plots are, as usual in GMM, interpreted in combination with shape diagrams (Klingenberg 2013).

Res ults (B3)
The species by sex ANOVAs demonstrated that SDM in mandibular morphology is negligible, but also 
that interspecifi c differences are large. Pairwise tests of mean species differences in size and shape 
(Table 5) support this observation and provide fi ner details on the magnitude of interspecifi c variation.

For CS, all tests are signifi cant except two. The Alaskan marmot and the woodchuck, both member of 
the subgenus Marmota, have similar CS. In these two species, mandibular size is intermediate between 
those of the species belonging to the subgenus Petromarmota, the small yellow-bellied marmot and the 
other, larger, members of the hoary marmot species complex (i.e.,VAN, Olympic and hoary marmots). 
Within Petromarmota, hoary marmots and VAN do not differ for average size, although the range of 
CS is slightly larger in hoary marmots (Fig. 1b). Of all study species, the Olympic marmot is the largest 
on average, but its largest representatives are mostly within the range of variation of hoary marmots 
(Fig. 1b). Overall, the average Rsq of the pairwise interspecifi c mean differences in CS is 33%. However, 
there is a wide range, with Rsq close to 0% in the two pairs of species with non-signifi cant differences, 
I mentioned above, and an average Rsq ≥ 45% in the pairwise comparisons of the yellow-bellied marmot 
or the Olympic marmot.

Table 5. Pairwise permutation tests of mean CS or mean shape interspecifi c differences, performed in 
MorphoJ. Rsq above the main diagonal, P values below.

Data Species bro cal fl a mon oly van Species mean rsq

CS bro – 11.7% 20.4% 0.5% 72.4% 25.6% 26.1%

cal <0.0001 – 64.8% 26.8% 22.8% 0.4% 25.3%

fl a <0.0001 <0.0001 – 38.7% 51.5% 58.5% 46.8%

mon 0.4405 <0.0001 <0.0001 – 42.3% 28.2% 27.3%

oly <0.0001 <0.0001 <0.0001 <0.0001 – 37.0% 45.2%

van <0.0001 0.4416 <0.0001 <0.0001 <0.0001 – 29.9%

shape bro – 10.9% 9.0% 8.4% 15.0% 22.4% 13.2%

cal <0.0001 – 13.2% 20.1% 6.1% 22.9% 14.6%

fl a <0.0001 <0.0001 – 10.0% 6.0% 17.0% 11.1%

mon <0.0001 <0.0001 <0.0001 – 6.5% 21.5% 13.3%

oly <0.0001 <0.0001 <0.0001 <0.0001 – 13.3% 9.4%

van <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 – 19.4%
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For shape, all pairs of species show signifi cant mean differences. The average pairwise Rsq varies 
depending on the species. It ranges from 9% (Olympic marmot) to 19% (VAN), with a total average 
Rsq of 13% considering all 15 comparisons. Patterns of interspecifi c shape variation are, as anticipated, 
graphically summarized in B5.

Disc ussion (B3)
Pairwise tests for mean differences confi rm the signifi cant interspecifi c variation shown in the ANOVAs. 
Yellow-bellied and Olympic marmots are, respectively, the smallest and largest of all marmots (Armitage 
1999) and it is, thus, unsurprising that they have on average, respectively, the smallest and largest 
mandibles among North American species. Alaskan marmots and woodchucks have intermediate size, 
whereas both VAN and hoary marmots tend to be similarly large. In terms of body mass, in fact, VAN 
is somewhat smaller than hoary marmots (Armitage 1999), but estimates of body mass are likely based 
on smaller samples and are less straightforward than measuring the size of bones. Body mass varies in 
marmots within the active season and, depending on the length and harshness of winter or the abundance 
of food in the summer, there might be some inter-annual variability even at the time of emergence and 
immergence, when wild individuals are weighted (Armitage 2014).

In general, the range of mandibular size variation often largely overlaps and there is more variation 
within species with larger populations and distribution ranges, as expected because of both adaptive 
and plastic changes in relation to the broader variability of local conditions. This means, for instance, 
that the largest yellow-bellied marmots are larger than the smallest hoary marmots, whereas the largest 
hoary marmots and VAN are almost as large as the largest Olympic marmots (Fig. 1b). It is worth 
remarking how the comparisons of mandibular CS show the usefulness of post-hoc pairwise tests. The 
ANOVA (Table 3) of CS had a very large Rsq for species (accounting for almost ⅔ of size variation). 
Yet, this cannot be taken as evidence that all species show differences, as demonstrated by the two pairs 
of species with similar average mandibular size (Table 5). On the other hand, with shape, the ANOVA 
Rsq (Table 4) was much lower (accounting for less than ¼ of variance), but all pairwise comparisons 
(Table 5) were highly signifi cant and accounted for ~ 10% of variance or more. Indeed, important 
differences can be found among species means despite overlaps which are evident for both mandibular 
CS (Fig. 1b) and shape (Fig. 2, but also Fig. 4 in B5).

In terms of software and the approach used for comparing species pairwise, I did the tests using 
regressions on dummy variables in MorphoJ. The reasons are the same as in B1, where the test was used 
to assess SDM. There are disadvantages, however. Subsets are relatively fast to obtain in MorphoJ by 
using Preliminaries, Include or Exclude Observations and the species classifi er to select the appropriate 
pairs, but running a series of pairwise tests in MorphoJ is tedious, as one has to build 15 subsets (with the 
corresponding covariates) and run 15 analyses for size and another 15 for shape. If I was only interested 
in P values, a much faster options is MorphoJ’s Comparison, Canonical Variate Analysis using species 
as the grouping variable. The CVA in MorphoJ computes pairwise permutation tests of mean shape 
differences for all pairs of species. In these tests, the test statistics is the Procrustes shape distance between 
two means, as well as their Mahalanobis distance, which uses standardized shape variables to express 
differences in units of standard deviations (SD) (Albrecht 1992). The two types of distances are generally 
in good agreement for large samples. I usually focus on Procrustes, which measures distances in the 
untransformed shape space produced by the superimposition and provides results largely equivalent to 
those of the multivariate regressions. However, the drawback of the CVA tests in MorphoJ is that they are 
specifi c to shape (thus, they cannot be run for CS) and also do not compute the Rsq, which is necessary to 
estimate how much sample variance is accounted by the mean difference between two species. In PAST, 
users can fi nd parametric pairwise post-hoc tests using the one-way ANOVA for CS (Statistics, One-way 
ANOVA) and the MANOVA/CVA for shape (Multivar, MANOVA/CVA), but none of them also computes 
the Rsq between species pairs. The extra effort to perform the pairwise tests using a series of regressions 
on species dummy variables is, therefore, worth, because the same identical permutation test is done on 
size and shape and Rsq are obtained together with the corresponding P values.
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B4) Spe cies discriminant analysis (DA)
Methods  (B4)
The DA has been briefl y mentioned in the Introduction, as well as in part A. A detailed, but clear 
description of the method is in Albrecht (1992) and Neff & Marcus (1980), and an extensive discussion 
of its application to Procrustes shape data is in Klingenberg & Monteiro (2005). A DA is also called CVA, 
when there are more than two groups and the focus is on group separation in scatterplots. However, the 
two terms are used interchangeably in the literature. Thus, unless I refer to the name adopted by a specifi c 
software for this type of analysis, I will be also using DA and CVA interchangeably as synonyms. In 
fact, a more accurate name would be linear discriminant analysis (LDA), because there is a curvilinear 
variant of the DA, the quadratic discriminant analysis. The quadratic DA has been developed for non-
homoscedastic data (see Appendix A on assumptions), but is less common, requires larger samples for 
accuracy and cannot be used for ordinations (Neff & Marcus 1980). I am not covering this method, 
which is shortly described by Neff and Marcus (1980). For simplicity, as in most software, I will use the 
name DA instead of LDA.

In this study, the DA is mainly employed for group classifi cation. This was the main aim why it 
was originally developed by Fisher, who “asked what linear combination has the greatest difference 
of sample means relative to its sample standard deviation” (Anderson 1996: 30). In a DA, a set of 
multivariate descriptors (shape, for instance) is used to predict groups (species, in my case), after the 
original variables are standardized and linearly combined to maximize the between group variance (i.e., 
the mean differences). A new data space is produced, whose dimensionality is g – 1 17. For instance, 
using the mandibular shape data with six marmot species, there will be fi ve uncorrelated discriminant 
axes (or CVs), with the fi rst explaining more between group variance than the second, which in turn 
accounts for more between group variance than the third, and so on. Unlike in a PCA, the percentages of 
multivariate variance accounted for by the DA/CVA axes refer only to the fraction of total variance that 
captures differences between the group means. Thus, if I had just two species to classify, there would be 
only one DA axis that accounts for 100% of the differences between the two species. However, the group 
differences captured by this single discriminant axis could be just a small fraction (say, as an example, 
10% or just 5% or even less) of the total multivariate variance in the original data space.

The reduced-dimensionality space of a DA/CVA is appropriate to increase the chance of correctly 
affi liating each individual to one or the other group based on the original predictors. For instance, if 
interspecifi c differences are large compared to the variability within species, as it happens with size 
when the small yellow-bellied marmots are compared to the very large Olympic marmots (see Results), 
one expects to be able to correctly predict species using mandibular size. This is a trivial case, because 
the ranges of mandibular size variation do not overlap in these two species. However, when, for example, 
Olympic marmots are compared to hoary marmots, that are also big, a classifi cation of individuals based 
on CS might be less simple and a method, such as the DA/CVA, that maximizes between to within group 
differences, becomes useful to increase classifi cation accuracy.

In the DA/CVA data space, an individual will be classifi ed in the group whose mean is closest to that 
individual. To be rigorous, this is true if the probability of belonging to any a priori group is considered 
equal (the default option in PAST – see Albrecht (1992) for an in-depth discussion of different options to 
perform a DA/CVA, including prior probabilities and weighted vs unweighted analyses). The proximity 

17 This is true unless p, the number of variables in a dataset, is < g – 1 and, thus, p sets the limit to the DA/CVA space 
dimensionality. This is, for instance, the case when the DA/CVA is done using CS and the perimeter of the landmark 
confi guration to estimate size variation, because p = 2 < g – 1 = 5. This is a special case, in which the between group DA/
CVA space captures the entire variance in the two-variables dataset, even if data are rotated to maximize group mean 
differences.
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of each individual to the group means is calculated using Mahalanobis distances, which are Euclidean 
distances (i.e., straight lines connecting two observations) in the transformed standardized space of the 
g -1 CVs. The use of distances measured in SDs seems appealing, as it is easier to interpret. However, 
as explained in the next paragraph, Mahalanobis distances are accurate only if the assumptions of the 
DA are not violated. Also, they tend to become larger in relation to the number of predictors (Rohlf 
2021) and, therefore, they cannot be easily compared across studies, when the anatomical structures or 
landmark confi gurations are different 18.

The DA/CVA, like a parametric MANOVA, assumes multivariate normality and homoscedasticity. 
DA/CVAs are, by design, prone to overfi tting the data (Kovarovic et al. 2011; Rohlf 2021). To put 
it simply, the problem with overfi tting is that the analysis is using a data space built by knowing the 
a priori groups of a sample of individuals to classify those same individuals in those groups. This 
is a type of circular reasoning that almost always overestimates classifi cation accuracy. To mitigate 
against it, the classifi cation must be cross-validated. The most common cross-validation is a leave-out 
jack-knife approach. With this method, the DA/CVA functions are built using N – 1 individuals and, 
then, used to classify the individual which has been left out. The same procedure is repeated for all N 
individuals. Because the specimen to be classifi ed is not employed to derive the functions used for its 
own classifi cation, the ‘circular reasoning’ is avoided. Therefore, unlike a standard DA/CVA, a cross-
validated DA/CVA produces accurate results that do not spuriously infl ate group separation. This is true, 
in general, as long as there are no strong violations of the assumptions of this method and the sample 
size is large in relation to p, the number of predictors. As in the ANOVA, balanced (or almost balanced) 
samples, also help to make the analysis more accurate.

A DA/CVA becomes computationally impossible if total N – g < p. For instance, if I had to compare 
two species samples, each with 10 individuals, I could not do a DA using the 20 PCs of mandibular 
shape, because 20 – 2 = 18, which is < 20 PCs. Sometimes, to overcome this limitation, DA/CVAs are 
computed after fi rst reducing dimensionality using a PCA. As usual with dimensionality reduction, this 
requires great caution and a convincing demonstration that most variance is preserved in the selected 
PCs. When the DA/CVA is performed after dimensionality reduction, it is also desirable to explore its 
sensitivity to the inclusion of more or less PCs (Kovarovic et al. 2011; Evin et al. 2013). Besides, N – 
g < p is a minimum mathematical requirement, but accuracy usually requires N >> p (Rohlf 2021). As p 
becomes closer to total N – g , results may be inaccurate even when cross-validated (Evin et al. 2013).

For the DA/CVA, PAST offers more fl exibility and a more comprehensive output compared to MorphoJ. 
MorphoJ can only perform DA/CVAs using Procrustes shape coordinates and only predicts group 
affi liation for two groups at a time. Unfortunately, not even PAST provides options for setting unequal 
prior probabilities and has no information on posterior and typicality probabilities, on which I provide 
a basic introduction in the Discussion. Also, if used for scatterplots, PAST 2.17c seems to inaccurately 
report the percentages of between group variance accounted for by the CVs. These (using weighted 
means, as explained in the help) are correctly computed in MorphoJ, that can, thus, be used for the 
scatterplots or just to get the percentages of variance. However, as I suggest below and later discuss, 
I favour a bgPCA instead of a DA/CVA for group ordinations.

The analysis in PAST is simple to obtain from the menu Multivar, MANOVA/CVA. Because at least 
two variables are needed to predict groups, I used CS together with the perimeter of the landmark 
confi guration to assess the cross-validated classifi cation accuracy of mandibular size. The perimeter is 
easy to calculate in TPSUtil with the Compute area & perimeter option. From the perimeter, I excluded 
landmark 11, on the mental foramen, because it lies within the mandibular outline in side view, but this 

18 This holds ‘by defi nition’ also for Procrustes distances, because different landmark confi gurations imply incommensurable 
(and therefore incomparable) shape spaces.
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is optional and makes a negligible difference. CS and the perimeter are very highly correlated (within-
species r > 0.97). Highly correlated (collinear) variables are generally undesirable in multivariate analysis 
(Hair et al. 2013), as the information is redundant and there might be computational problems. However, 
it is not inappropriate in a special case where the aim is exclusively to estimate the cross-validated 
classifi cation accuracy for what is, basically, a univariate size measurement based on landmarks. Thus, 
the classifi cation table is obtained for mandibular size by ‘tricking’ the DA with two highly correlated 
size variables.

For shape, the DA/CVA in PAST is done using again the menu Multivar, MANOVA/CVA, after, now, 
selecting all shape PCs with non-zero variance. Non-zero variance PCs are automatically saved in a 
PCA in MorphoJ 19 and can be easily exported as TXT and imported in PAST 20. The reason why it is 
advisable to do the DA/CVA in PAST using the PCs of the Procrustes shape coordinates, instead of the 
shape coordinates themselves, is clarifi ed later in the Discussion. However, in this study, to assess the 
sensitivity of the classifi cation accuracy to small differences in the information captured by the shape 
variables, the DA/CVA on shape is replicated using: (a) all 24 Procrustes shape coordinates, as well as 
(b) the corresponding 20 PCs; (c) only the fi rst 10 PCs; (d) all PCs of Procrustes shape, recomputed after 
excluding the two smallest species samples (the Alaskan and Olympic marmots); (e) the fi rst 10 PCs of 
size-corrected Procrustes shape data (see B6). The shape information in the fi rst two DAs is identical, 
and, thus, unless there are computational errors, classifi cation accuracy also should be identical. All 
other DAs of shape, in contrast, use less shape information because of the exclusion of higher order PCs 
(in c and e, leaving out PCs from the 11th to the 20th), smallest samples (d) or static allometric shape (e).

The output of a DA/CVA in PAST is extensive and includes: a test for the overall signifi cance of 
group differences (Wilks’ lambda or Pillai’s trace); the pairwise parametric tests for all pairs of groups 
(post-hoc multivariate tests); the ordination (CVA) scatterplot; and the Confusion matrix, which is the 
classifi cation table. The test of signifi cance for the overall multivariate difference among groups is 
identical to a parametric one-way MANOVA, which is why PAST calls the analysis MANOVA/CVA. 
I skip this part of the output, because a P value for the Rsq of species differences has already been 
computed in B2–B3. Likewise, pairwise tests for species differences have also already been done in B3. 
I usually avoid also the CVA scatterplot, as already mentioned. For ordinations of group differences, 
I opt for a simpler, related method (see next subsection), that tends to be less prone to overfi tting, unless 
one has a very large p / N ratio (Cardini et al. 2019; Cardini & Polly 2020; Rohlf 2021). Finally, the 
fourth part of the output of the DA/CVA in PAST, the classifi cation table, is the most important one, for 
our aims, because it is the analysis that estimates the taxonomic accuracy of a classifi cation based on 
size or shape. In order to have the classifi cation table cross-validated, however, users must fi rst click on 
Confusion matrix and then, always!, check the box Jackknifi ed. If this is not done, the group prediction 
is not based on the ‘leave-one-out’ method and will almost always be biased towards overestimates of 
the true classifi cation accuracy.

In the ‘confusion matrix’, the number of individuals correctly classifi ed in their a priori group is on the 
main diagonal; the misclassifi ed individuals are off the main diagonal. The counts are easily converted 
into percentages (‘hit-rates’) by dividing in a spreadsheet by the total sample size of each species, which 
is reported in the last column of the table. The expectation for large group differences is that cross-
validated classifi cation accuracy will be high (close to 100%, if there are very large differences and little 
overlap among species) and clearly larger than random chance. Random chance, with two groups of 

19 TPSRelw relative warps are identical to MorphoJ’s PCs, but only computable for 2D data.
20 Users should also export the group (species, in my case) classifi er and must change ID in the fi rst column of the TXT fi le 

with a dot or any label other than ID, which is not accepted by PAST. The group classifi er, once the fi le is opened in PAST, 
can be used to colour-code groups, as customary in PAST.
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equal sample size, is 50%; with three balanced samples, it is 33%; with four, 25% etc. The computation 
is less straightforward if groups have heterogeneous sample sizes, which is the case with my marmot 
data. Kovarovic et al. (2011) suggest a formula and, more importantly, a randomization experiment to 
estimate random chance expectations empirically. However, this method, originally developed by Solow 
(1990), is not available in any software I know, but it is not hard to program in R (Evin et al. 2013).

 Results (B4)
In the cross-validated DA, mandibular size moderately discriminates species (Table 6, fi rst column). 
The overall average hit-rate is 60%. The lowest classifi cation accuracy (13%) is found in the Alaskan 
marmot and the highest in the yellow-bellied and Olympic marmots (≥ 79%).

Shape has a predictive accuracy higher than CS, with overall hit-rates ranging from 78% to 92%, 
depending on the set of shape variables selected for the analysis (Table 6). In terms of species-specifi c 
hit-rates, VAN has the highest classifi cation accuracy using shape (92% on average), whereas Alaskan 
and Olympic marmots have the lowest (on average, respectively 77% and 79%). With shape, however, 
there is some variability in hit-rates depending on the specifi c set of shape variables used in the DA 
(Table 6). Surprisingly, using the 24 Procrustes shape coordinates, the total hit-rate is appreciably lower 
(78%) than using all PCs of those same coordinates (90%). They should be identical, because the overall 
information is the same. In the Discussion, I will explain why this is likely to be a computational error 
in PAST using Procrustes shape coordinates and, thus, another valid reason to employ PCs in the DA/
CVA and, in general, in most analyses of shape in PAST and other programs, which are not specifi c to 
Procrustean GMM.

In the DA of shape, the sensitivity of results to p / N and small samples is briefl y explored by either 
reducing the number of group predictors, including only the fi rst 10 PCs, or by leaving out the species with 
the smallest N, which are the Alaskan and Olympic marmots, with respectively 16 and 14 specimens. In 
these two samples, the number of individuals is smaller than the shape dimensionality (i.e., N < p = 20). 
Summarizing shape with only the fi rst 10 PCs (90% of total shape variance), all species samples have 
more specimens than variables, but the DA produces slightly lower hit-rates (84% accuracy, overall, 
compared to 90% using all PCs). In contrast, if Alaskan and Olympic marmots are excluded and all 
PCs (recomputed in the reduced sample) are analysed, the resulting cross-validated hit-rates are slightly 
higher (92% overall accuracy) than including all species and PCs.

Table 6. Cross-validated DA hit-rates, computed in PAST.

Species CS and perimeter 24 shape coord. All PCs First 10 PCs All pcs without 
bro, oly 10 PCs size-corr.*

bro 13% 88% 94% 69% – 56%

cal 61% 81% 87% 81% 92% 84%

fl a 85% 71% 90% 85% 90% 85%

mon 38% 79% 91% 81% 92% 77%

oly 79% 79% 71% 86% – 79%

van 36% 84% 96% 92% 98% 90%

total 60% 78% 90% 84% 92% 82%

*  This is exploratory, because slopes are signifi cantly different and, thus,the main assumption of the size-correction is not met.
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Finally, in the last column of Table 6, purely for didactic aims, I show the hit-rates using the fi rst 10 PCs 
of size-corrected shape data. They are slightly lower (82% overall accuracy) than using the fi rst 10 PCs 
of total shape (84%). In fact, however, this analysis should not be done, because allometric trajectories 
are not statistically parallel (see Results and Discussion in B6).

Discussion (B4)
The estimates of cross-validated classifi cation accuracy in the DAs are consistent with the conclusions 
of the pairwise tests. Despite large size differences, shape is better at discriminating species and results 
of shape DAs in marmots are not strongly affected by p / N. Thus, I mainly focus the Discussion on the 
DA of shape using all species and all PCs, which correctly classifi ed on average 90% of individuals. In 
this analysis, only the Olympic marmot had a somewhat lower hit-rate (71%), but this is the smallest 
sample (N = 14) and three of the four misclassifi ed individuals were affi liated to either hoary marmots 
or VAN, which is not unreasonable since all three species are part of the hoary marmot superspecies 
complex (Kerhoulas et al. 2015). In contrast, VAN had the highest hit-rate (96%) of all North American 
marmots, which is congruent with this species highest average Rsq in pairwise tests. Thus, as in previous 
studies (Cardini 2003; Nagorsen & Cardini 2009), VAN is confi rmed as a highly distinctive species for 
mandibular shape. As with its almost uniformly dark fur (Armitage 2009) and unique kee-aw alarm call 
(Blumstein 1999), phenotypic change seems to have been faster in this isolated insular endemism.

From a methodological perspective, it is reassuring that replicating the shape DA/CVA, so that p / N < 1 
in all species, had a small, mostly negligible, impact on total hit-rates (ranging from 84% to 92%). 
In contrast, it is worrying that a DA/CVA using all shape coordinates or their PCs produced different 
estimates of classifi cation accuracy (Table 6). With PCs the total hit-rate is 90%, but using the Procrustes 
shape coordinates it drops to 78%. This difference is remarkable and should not be there at all, because 
the information being used is 100% identical. As explained in the methods, a PCA using the variance 
covariance matrix of the Procrustes shape coordinates is simply a rigid rotation of the axes that leaves 
all pairwise multivariate distances in the sample unaltered. This is easily verifi ed by unfolding the two 
pairwise distance matrices (i.e., stacking data below the main diagonal – or above, if one prefers – 
so that, for each matrix, they are in the same, single column) to plot them one against the other: the 
distances should lie on a line with a slope of one and the matrix correlation between Procrustes shape 
distances and Euclidean distances in the PCA space should also be one (or virtually one, since PCs are 
computed on data projected in the tangent space – see Introduction in A and explanations in V&C). 
Thus, using a metaphor, a rigid rotation is just like looking at the tips of needles, stuck in a transparent 
plastic box, under different angles: the relative positions of the tips (like the specimens in a scatterplot) 
will look different, depending on the view angle, but they are in fact identical.

It seems likely that the inaccurate DA hit-rate, based on Procrustes shape coordinates in PAST, 
is a computational inaccuracy that happens because of the strong collinearity (‘redundancy’) in the 
coordinates. Similar inaccuracies can happen in multivariate parametric tests in PAST and other 
statistical programs, which are not specifi c to Procrustean GMM. Depending on how computations are 
done, statistical programs may not ‘recognize’ that the Procrustes shape coordinates have an additional 
amount of covariation (beyond any real pattern of covariance among landmarks) as a consequence of the 
superimposition. Thus, for example, if a DA is done on the Procrustes shape coordinates of the marmot 
mandibles, the degrees of freedom for the predictors are computed taking into account 24 variables 
(twice the number of 2D landmarks). But this is incorrect, because four dimensions are lost (i.e., the 
corresponding information is removed) during the superimposition: one is removed by standardizing CS 
to one in all individuals; another two degrees of freedom are lost by centroid-centering all individuals 
along the horizontal and vertical axes; and a fourth degree of freedom is lost by minimizing rotational 
differences. With 3D landmarks, the reasoning is the same, but the loss of information is seven degrees 
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of freedom, because there is a third axis of translation and two more rotational planes 21. With slid 
semilandmarks, if present, there will be, very approximately, another degree of freedom lost for each 
semilandmark. Likewise, as generally appropriate in taxonomic applications, using only the symmetric 
component of Procrustes shape in structures with object symmetry, which may be appropriate in 
taxonomic applications, there will be further redundancy in the Procrustes shape coordinates because 
asymmetric variation has been removed (Klingenberg et al. 2002).

It is easy to check that P values of multivariate parametric tests in PAST change depending on whether 
they are done on the 24 Procrustes shape coordinates or the corresponding 20 shape PCs with non zero 
variance. A specifi c test, for instance a MANOVA or a multivariate regression, is done fi rst using the 
24 shape coordinates and then repeated with the 20 PCs of the same shape data: the degrees of freedom 
reported by PAST will be different, as well as, likely, the value of the test statistic (Wilks’ Lambda 
or its approximated F ratio, for instance) and the corresponding P value. Checking if computational 
inaccuracies in a DA/CVA are causing inaccuracies in cross-validated hit-rates is less immediate, but 
still relatively simple. One can create an N by p matrix of random normally distributed numbers with the 
same mean and variance as in the Procrustes shape coordinates using a spreadsheet (the function usually 
is ‘=randnorm(mean, SD)’, without the single quotes). Data are then imported in PAST for a PCA, whose 
scores are saved. It does not matter, for this aim, that there are no group differences. Differences could 
also be simulated, but now I am only interested in comparing hit-rates between the original variables 
and their PCs before and after a Procrustes superimposition. Thus, a DA/CVA is done on either the 
original random coordinates, as they were in the spreadsheet, or their PCs and everything is repeated 
after superimposing the random coordinates, which introduces covariance and, thus, redundancy as in 
the real mandible dataset. The DA/CVAs on random coordinates or their PCs produce identical cross-
validated hit-rates in PAST. In contrast, after the random coordinates are superimposed, hit-rates are 
different if the CVA is done on the superimposed coordinates or their PCs.

To avoid mistakes, unless users are very certain that the software can correctly deal with redundant 
variable in all multivariate computations and also to adjust degrees of freedom in parametric test, 
I strongly suggest to always analyse PCs with non-zero variance from a PCA of the data projected 
in the tangent space, as those computed by MorphoJ or TPSRelw. A small practical disadvantage of 
analysing PCs in PAST is that some of its multivariate analyses have options for visualizing Procrustes 
shape variation. If one wishes to draw shape diagrams in PAST (e.g., the expansion factors, which are 
not available in MorphoJ or the TPS Series), he/she must do the statistics (scores, hit-rates, tests etc.) 
using the PCs of the Procrustes shape coordinates and, then, redo the same analysis (a PCA or DA/CVA, 
for instance) using the Procrustes shape coordinates ONLY for visualizing shape changes. Nonetheless, 
even when the Procrustes shape coordinates are employed in PAST exclusively for visualizing shape 
variation, I suggest to quickly compare the deformation grids with those done in MorphoJ to be sure that 
they look the same.

As I am discussing some specifi c aspects of Procrustes shape data in the context of multivariate analyses, 
I take the chance for stressing another potential misuse of this type of data, as well as a limitation 
of the user-friendly software used in this study. Although PAST has no option for stepwise DAs, 
commercial statistical programs and also R might allow to subset the variables, so that group separation 
is maximized while parsimony is simultaneously achieved by reducing the number of group predictors. 
For instance, a stepwise DA might suggest that hit-rates are larger when only certain PCs are included 
(say, as a made-up example, PC1, PC2, PC4, PC7 and PC8). In previous work, we have already warned 

21 If N ≤ p – 4 , for 2D landmarks (p – 7 for 3D), however, the non-zero variance PCs will be N – 1, because sample size limits 
the ‘real’ dimensionality of the data (Zelditch et al. 2004; Rohlf 2021). For instance, with 20 marmots and 12 mandibular 
landmarks, a PCA would result in 19 PCs with non-zero variance, instead of 20. A number of PCs smaller than the original 
number of variables (minus the degrees of freedom lost in the superimposition, for Procrustes data) should, however, act as 
a fi rst warning of a potentially problematic p / N ratio.
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that stepwise approaches are sensitive to small variation in sample composition and may, therefore, 
produce results which are less easy to generalize (Kovarovic et al. 2011). Also, even when the sample 
is the same, a stepwise procedure might select different variables depending on the analysis, so that, for 
instance, different classifi cation methods employ different information to predict the same groups. Thus, 
if dimensionality reduction is really necessary, it might be better to explain why; then, demonstrate that 
a subset, including an entire block of the fi rst PCs (e.g., in my analysis, the fi rst 10 PCs) likely preserves 
the most important information in relation to the main study question; and, fi nally, consistently use those 
same PCs in all analyses that cannot be performed in the full Procrustes shape space. Zelditch et al. 
(2004) provide a brief overview on dimensionality reduction using PCs, but there are many alternatives 
such as, for instance, Horn’s method (Glorfeld 1995) or the modifi ed scree-plot using correlations of 
shape distances (fi rst PCs vs total Procrustes shape) explained in Cardini et al. (2010). Regardless of 
the approach, taxonomists should consider that the subset of PCs selected for the analysis should be 
adequate to accurately summarize Procrustes shape distances not only in the total sample (e.g., all six 
marmot species with 445 individuals in total), but also within subsamples or groups, so that estimates of 
parameters within subsamples (means, variances, covariances etc.) are also accurate.

PAST provides more fl exibility for the DA/CVA compared to MorphoJ, but it does not have the larger 
set of options, and results, available in most commercial programs or R. I have already mentioned that, 
for instance, PAST users only have the option of equal prior probabilities for any group. The output of 
PAST also lacks an important part, that is particularly useful in taxonomic and forensic applications. 
A DA/CVA not only decides the affi liation of each individual to the a priori groups, but also estimates its 
probability to be a member of one or the other group based on its distance to the means. This probability 
is called posterior probability (PP), because it is obtained after the discriminant functions have been 
calculated. PPs across all groups sum up to one. With two species (S1 and S2), for instance, I may fi nd 
that PP of individual X is 0.03 for species S1 and, thus, 0.97 for species S2, which is clearly the most 
likely group for X. Another individual, XX, may also be classifi ed in S2 as the most likely group, but 
its PP could be much lower; for instance, PPXX could be 0.51, which means that, despite ending up in 
S2, XX has a 49% probability of being S1. Knowing PPs, therefore, allows to accurately assess the 
confi dence with which each individual is affi liated to one or the other group.

Unfortunately, PAST does not have a table with PPs. Besides, PPs only represent a relative probability 
that refers exclusively to the available groups. It could be that, even if X is indeed much closer to S2 (PP 
= 0.97) than to S1 (PP = 0.03), within S2 X is an outlier. To make this more intuitive, I go on with the 
simple example where there are only two species, but same applies for any number of a priori groups. 
With only two species, there is a single DA/CVA axis, that can be visualized as a line passing through 
the means of S1 and S2. It might happen that X is on the side of the CV1 line opposite to the mean of 
S1 (i.e., it is not in the space in between the two means). Thus, X is very far from the mean of S1, but 
this does not exclude that, despite being relatively closer to S2 than S1, it is also far from the mean 
of S2. Therefore, X belongs to S2, because it is comparatively much closer to its mean, but it could 
be, nevertheless, an outlier for this species. The absolute probability of an individual being at a given 
distance from the mean of the group, where it is classifi ed, is called typicality probability (Albrecht 
1992). Typicality probabilities, like PPs, are estimated using a multivariate normal distribution. Thus, 
X could have a PP of 0.97 of being in S2 compared to S1, despite a typicality probability of, say, < 
0.01. Such a low typicality probability suggests that X might be better classifi ed as unlikely to belong 
to either S1 or S2. Not only PAST but, in fact, most statistical software does not provide estimates of 
typicality probabilities. Those who need to compute typicality probabilities might want to explore the 
typprobClass() function of Morpho (Schlager 2017) in R, whose use is exemplifi ed in the help of the 
CVA() function. If the outlier detection (A2) has been careful, however, it is unlikely that any specimen 
will have a very low typicality probability in a DA. This is another reason to be cautious when potential 
outliers are found in the preliminary screening of the data.
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 B5) Summary and visualization of species shape differences
Methods (B5)

Morphometricians use ordinations to explore and summarize patterns of shape variation. To this aim, 
cluster analyses are another possibility. The complementarity, as well as some of the different pros and 
cons of these methods, are outlined in part A. Ordinations and phenograms can also be used to summarize 
differences among samples and/or the similarity relationships of group mean shapes. I fi rst introduce 
ordination methods to explore patterns of variability in shape by plotting individuals and groups. Later, 
I explain how to obtain group mean shapes, visualize them and summarize their similarity relationships. 
With Procrustes shape data, there are also some special aspects, related to the biological arbitrariness of 
the superimposition that need to be considered. Basically, any interpretation of variables or landmarks 
one at a time (including loadings in ordinations, coeffi cients in regressions etc.) must be avoided and, 
thus, patterns of shape change should be described using only shape diagrams (Klingenberg 2013). In 
the Discussion, I will provide some more detail on this point.

In taxonomic research, groups can be plotted using different colours and symbols in a PCA (as anticipated 
in Figs 2 and 4a - see also below). For the computation, it is important to use the variance covariance 
matrix, instead of the correlation matrix, because Procrustes shape coordinates are in the same unit of 
measure and the covariance matrix faithfully preserves the similarity relationships in the Procrustes shape 
space. When software, such as MorphoJ or TPSRelw, are used, one can be confi dent that the default 
computations are correct, because these programs are specifi c to Procrustes shape data. In PAST, users 
have to select the correct options (Multivar, Principal components, checking the Var-covar and Disregard 
Groups boxes). Also, because PAST is not specifi c to GMM, higher order PCs with virtually zero variance 
will be shown (View scatter, View numbers) and have to be manually discarded. For instance, for the 
Procrustes shape coordinates of marmot mandibles, imported in PAST from MorphoJ, the last four PCs 
have eigenvalues (i.e., variances) in the order of 10-17, which practically means zero, as expected in 
relation to the loss of degrees of freedom in the superimposition (see B4). If a user is uncertain that PCs 
are correctly computed in a non-GMM software, he/she can compare scores with those of MorphoJ or 
check that pairwise Euclidean distances computed using the PCs are virtually identical to the Procrustes 
shape distances obtained in TPSSmall (see B2 for instructions on how to obtain them).

PAST and MorphoJ have options to add group-specifi c confi dence ellipses based on the PC scores 
visualized in a scatterplot (e.g., PC1 vs PC2 or PC3 vs PC4). In PAST, as usual, groups are specifi ed 
using colours (Edit, Row colour/symbol). PAST can also show groups using convex hulls which, 
unlike ellipses, do not require normally distributed data. The ellipses, however, have the advantage 
that they take into account sampling error. This means that they will be much larger for small samples. 
In MorphoJ, using a classifi er like species, the ellipses can be drawn for the sample (Equal frequency 
ellipse) or the group mean (Confi dence ellipse for the mean). The former are the same as in PAST and 
provide an estimate of variability in a sample, like confi dence intervals based on the SD of univariate 
data. The latter are related to the standard error of the mean (SD / √N), which is smaller than the SD and 
useful to interpret statistical tests of group mean differences (see Howell 2013 or Moore & McCabe 
2005 for an introduction). In this respect, however, users must bear in mind that the ellipses drawn in the 
scatterplots are based only on the PCs being shown, whereas group mean differences are tested in the 
full multivariate shape space which, for marmot mandibles, is made of all 20 PCs.

A PCA maximizes total variance regardless of groups. For this reason, PCA summary scatterplots are 
suboptimal (or ‘conservative’ (Rohlf 2021)) for exploring patterns of group differences. If groups are 
well separated in a PCA, a researcher can be fairly confi dent that there are differences; if they are not, 
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Fig. 4. Ordinations summarizing species variation in shape using the fi rst two axes of (a) a conventional 
PCA (total variance in parentheses) or (b) those of a bgPCA (between group variance in parentheses).
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however, it could be that none of the fi rst PCs aligns well with the direction of group differences, which 
may still be there but subtle and masked by the pattern of overall variation in the data. In this respect, 
DA/CVA scatterplots are better to summarize multivariate group structure, but tend to infl ate separation 
(Kovarovic et al. 2011; Rohlf 2021). Another possibility is a bgPCA. Using a simplifi ed description, a 
bgPCA is ‘as if’ a DA is performed without standardizing the data (Cardini et al. 2019). In a bgPCA, 
individual shape coordinates are projected on the vectors one would obtain by doing a PCA on group 
means. Thus, differences among groups are maximized, but, unlike a DA/CVA, the scores of a bgPCA 
remain in the Procrustes shape space. The bgPCs simply carve out a subspace of the total shape space 
according to group separation, instead of total sample variance as in a conventional PCA.

As in a DA/CVA, the number of bgPCs is g -1, each with an associated proportion of between group 
variance: bgPC1 explains the most, followed by bgPC2 etc. Also, and again as in DA/CVA, the bgPCA 
subspace only captures between group variation. However, in a bgPCA, one can in theory compute 
also PCs of the residual non-between group variance. This option is not available in PAST, but it is 
present in the R package Morpho using the groupPCA() function (Schlager 2017). In Morpho, users 
can also decide whether or not to take into account group differences in sample size in the computation 
of between group vectors. However, if samples are fairly balanced, results will be similar regardless of 
weighting by N (default in Morpho) or not (the only option in PAST). Importantly, unlike a DA/CVA, 
a bgPCA can be computed even when p > N. Yet, the larger the p / N ratio, the more likely it is that 
group separation is infl ated in the between group subspace (Cardini et al. 2019; Rohlf 2021). To avoid 
this type of spurious result, one could plot cross-validated bgPC scores, which are calculated using the 
same rationale as in a leave-one-out DA/CVA (Cardini & Polly 2020). A cross-validated bgPCA is, for 
now, only available in R (Schlager 2017; Thioulouse et al. 2021). However, when N is adequate (> 
or, better, >> p), the difference between cross-validated and non-validated bgPCs is usually minimal 
in biological data, where there is real covariation among the landmarks and their Procrustes shape 
coordinates (Cardini & Polly 2020). A bgPCA can also be used to predict group affi liation, but this is 
another option not yet available in user-friendly programs such as PAST. PAST, however, is one of the 
few user-friendly programs that computes a bgPCA. The analysis is obtained from the same menu as 
for the PCA (Multivar, Principal components using the Var-covar matrix), but requires the user to fi rst 
specify groups using colours and then check the Between Group box.

With the marmot mandible shape data, I exemplify summary scatterplots for groups using the PCA and 
bgPCA in PAST. When ordinations are done on Procrustes shape coordinates, PAST has also an option 
(Shape deform. (2D)) for 2D shape diagrams using wireframes, thin plate spline grids (Klingenberg 
2013) and even 2D expansion factors. The expansion factors, which are not available in MorphoJ or 
the TPS Series, employ colour-coding based on the thin plate spline deformation grids to emphasize 
regions where there is a local expansion (shown in yellow-orange-red, going from modest to larger 
changes) or a local shrinking (green-cyan-blue, from moderate to larger). The shape diagrams in PAST 
correspond to the changes occurring along a PC (or CV or bgPC). To draw them, once the deformation 
from mean shape window has been opened, the user can select one of the fi rst six axis (Component) and 
writes the score (Score) he/she wants to visualize on that axis. Showing shape diagrams corresponding 
to differences between the total sample mean shape (the origin of the axes) and both of the opposite 
extremes of an axis is common to aid the interpretation of variability in ordinations of Procrustes shape 
data. Often, differences are magnifi ed to make them more evident. For example, if the highest positive 
and negative scores on PC1 were, respectively, 0.05 and -0.035, a two-fold magnifi cation would visualize 
the shape diagrams of an hypothetical individual with a PC1 score of 0.1 or, for the opposite extreme 
of the PC, -0.07. If differences are magnifi ed, the magnifi cation factor must be stated in a fi gure used 
in a publication or presentation. I stress again that, as already discussed, Procrustes shape coordinates 
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in PAST can be used for ordinations and the visualization, but are better being avoided for parametric 
tests and group prediction (including in the Multivar, MANOVA/CVA of PAST), because there can be 
issues with computations and degrees of freedom in matrices with redundant information (i.e., very high 
collinearity, as inevitable after the superimposition).

Methods described in the previous paragraphs allow to summarize, explore and visualize the variability 
within and among groups. If mean groups differences are found, it is also useful to describe the pattern 
of similarity of the mean shapes. The methods are basically the same, with the exception of the CVA/
DA and bgPCA, which are specifi c for group separation and not applicable to sample means, unless one 
wants to group them in supraspecifi c clusters (e.g., subgenera, genera etc.). Thus, the variability in mean 
shapes can be typically summarized using a PCA and/or a phenogram. Both methods have already been 
explained (mainly in part A). However, when applied to group mean shapes, there are some specifi c 
aspects to consider. The main one is that the analysis of mean shapes, whose computation in based on the 
specimens available in a specifi c sample, typically does not take into account the uncertainties around 
their estimates. I will briefl y discuss this problem and suggest a simple approach to start exploring the 
issue in user-friendly programs. First, however, I explain how to compute shape diagrams for group 
mean shapes. I use SDM in hoary marmots, as a simple example that only involves two means, but it 
works similarly for all pairwise comparisons of group means (including species, as in B3). With more 
than two groups, to visualize mean differences in the full shape space, a researcher can do the relevant 
pairwise comparisons or compute the grand mean (the mean of the group means) and compare each 
species to the grand mean. With the North American marmots, a researcher would, thus, be using the 
same approach as with SDM (see below) but compare, for example, the mean hoary marmot with the 
grand mean of all six marmot species; then, he/she could do the same with the mean yellow-bellied 
marmot etc.

Mean shapes are easy to compute in MorphoJ using Preliminaries, Average Observations By and an 
appropriate classifi er. The classifi er could be species or, within a species, sex. Mean shape SDM, that 
I am using as an example of shape diagrams, was not visualized in the results of B1–B2, because it is 
largely negligible, but it comes handy as a simple case of shape differences with just two shapes, the 
mean of females and the mean of males. Thus, for interpreting mean differences, one can visualize 
the shape changes when the female species mean is compared to the male mean of the same species. 
In MorphoJ, this requires splitting the data by species (which had already been done in B1) and, then, 
within each species, averaging individuals using the classifi er for sex. If there are unsexed individuals, 
those will be excluded before computing the female and male means (Preliminaries, Exclude or Include 
Observations). Then, a PCA is done on the dataset with only the female and male means of a species, 
which produces a single PC with just two points. There is only one PC, because using two mean shapes, 
N = 2 and, thus, regardless of the number of landmarks and shape coordinates, there is only N -1 = 1 
PC axis. However, the shape differences between the two group means are in the total shape space of 
the 24 Procrustes shape coordinates. The two points on PC1, shown with vertical bars in MorphoJ, 
are the female and male means. To know which is which, if in doubt, the user has to colour-code the 
groups (right clicking on the plot in the Graphics, Shape changes window and selecting Color the 
data points using the sex classifi er). The differences in shape on this single PC are the mean shape 
differences between sexes in that species. As usual, if necessary, differences can be magnifi ed to aid the 
interpretation. This is particularly useful with mean shapes, as their differences are smaller than those 
between, say, the opposite extremes of bgPC1 or CV1. For instance, if the PC1 score for the male mean 
of hoary marmots is ~ 0.01, right clicking on the Shape changes window of a PCA in MorphoJ and 
setting the scale factor (the name MorphoJ uses for ordination scores) to 0.05 would correspond to a 10 
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fold 22 magnifi cation of the difference with the female mean (whose score for the visualization is -0.05, 
using the same magnifi cation as for the male).

MorphoJ shows shape differences with the target (e.g., the male mean) superimposed on the start shape, 
which, by default in this software, is the average of a sample and, therefore, in this case, the grand mean 
of the female and male mean shapes. As we suggested in V&C (Viscosi & Cardini 2011), however, it is 
generally better to avoid superimposed shapes and displacement vectors, as they easily lead to misleading 
interpretations such as describing differences in terms of landmark movements (e.g., landmark 1 moving 
forward, landmark 2 backward etc.). In contrast, by separately showing a start and a target shape one 
next to the other, a researcher is compelled to visually integrate variation simultaneously across all 
landmarks. Thus, he/she will more naturally describe it in terms of change in the space in between the 
landmarks, instead of interpreting shape differences one landmark at a time, which is wrong (Cardini & 
Verderame 2022). For instance, in the visualization of SDM in hoary marmots, using superimposed 
diagrams, it might look as if if the tip of the coronoid process moves backward in the male mean 
(Fig. 5a). However, this is misleading, because Procrustes shape changes must be described regardless of 
the superimposition, in terms of what happens in the entire space spanned by a landmark confi guration. 
Thus, one might more correctly say that the whole region of the coronoid process expands and becomes 
longer in males (Fig. 5b) compared to females (Fig. 5c), as suggested by plotting one shape next to the 
other, instead of on top of it.

To obtain separate shape diagrams in MorphoJ, one must fi rst change the visualization options using 
Preliminaries, Set Options for Shape Graphs. At the bottom of the window opened by this command, 
the user unchecks the box Show starting shape. Then, he/she fi rst shows one extreme of PC1 (the male 
mean, say), and saves the diagram as SVG (to be edited in a vector graphics software such as the free 
open-source Inkscape - https://inkscape.org/) or simply as JPG or PNG. Later, the researcher does the 
same for the opposite extreme of PC1 (the female mean), using the same magnifi cation. Finally, the two 
separate diagrams are pasted one next to the other in a graphic editor or in a slide for a presentation. 
Right clicking the Shape changes window in MorphoJ, it is also possible to select the type of diagram 
(displacement vectors, which this software calls ‘lollipops’; thin plate spline deformation grids; 
wireframe or outline). The help fi le has a good amount of information on the different options, discussed 
in detail by Klingenberg (2013) and exemplifi ed by V&C, and also explains how to build a wireframe 
(Preliminaries, Create or Edit Wireframe) or draw, format and import an outline TXT fi le.

Phenograms, when applied to group means, are a particularly effective approach to graphically 
summarize similarity relationships. This is because the number of observations is much smaller than 
using individuals in samples, which makes the tree easier to interpret. However, phenograms have 

22 The magnifi cation would be fi vefold, if done relative to the mean of the two means. This type of visualization, relative 
to the mean of the observations, regardless of using individuals or group mean shapes, is the default option in MorphoJ. 
MorphoJ also adopts a default 0.1 score for the visualization of shape change along any PC. This default option must be 
borne in mind, because it means that almost all the time users are not seeing a specifi c score in their observed data space. 
They visualize the shape that a specimen might have if there was an individual on PC1 = 0.1 (or PC2 = 0.1, PC3 = 0.1 etc.). 
But 0.1 may be larger or smaller than the observed highest PC score on that axis. Often, it tends to be larger, unless variation 
is big in a study, and that means that the shape visualized by default in MorphoJ is frequently outside the observed range of 
PC scores. By setting a new ‘Scale Factor’ on a specifi c PC to the value of the individual with the largest score on that PC, 
users will be able to visualize the observed shape with no magnifi cation. For instance, with the means of females and males 
of hoary marmots, PC1 ranges between -0.01 and 0.01, which is 10 times less than visualized using the default 0.1 (or -0.1, 
for the negative extreme). That the difference is magnifi ed is not an issue, as long as the user is aware of this and states the 
magnifi cation in his/her publication. The term ‘Scale Factor’ is, however, an unfortunate choice for the observed score in a 
MorphoJ plot, because it is already used in TPSDig and the TPS format to specify the value to convert pixels in units such as 
mm or cm, and also because ‘scaling’ in GMM is generally employed in relation to size. For instance, we typically say that 
specimens are ‘scaled’ to unit CS in the Procrustes superimposition. Users will, therefore, have to be careful and remember 
the different meaning of ‘scale’ in MorphoJ compared to the TPS Series and its common use in GMM.
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Fig. 5. Example of visualization of shape change: hoary marmot SDM illustrated using (a) superimposed 
shapes (male mean, in black, and grand mean of female and male means, in grey) or separate diagrams 
for male (b) and female (c) mean shapes. Focusing on the coronoid region, the violet arrow shows the 
potentially misleading effect of the superimposition, suggesting a backward ‘movement’ of the tip of 
the coronoid in males. Separate diagrams (b–c), in contrast, correctly suggest that change happens in the 
region whose boundary are marked by the landmarks, with the rostral margin of the coronoid becoming 
longer (red arrow) in males and shorter (blue arrows) in females.
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several limitations: a) they are only about phenetic relationships, and generally cannot be interpreted 
as phylogenetic hypotheses (Felsenstein 2004); b) all shape information is used to build a phenogram, 
but the resulting tree distorts the relationships captured by the original Procrustes shape distances (de 
Queiroz & Good 1997); c) uncertainties in the reconstruction of the tree topology are, usually, not taken 
into account (Pearson et al. 2015). In a study on differences in relation to taxonomy, a) is not an issue, but 
b) and c) are, as better explained in the B5 Discussion. In fact, the same limitations concern ordinations 
of mean shapes, that are purely phenetic in nature and do not take into account sampling error.

To mitigate against c) and, to a smaller degree, b), I suggest a subsampling experiment that helps 
exploring uncertainties in the estimates of group means. It is not equivalent to a confi dence interval and 
has its own limitations. Besides, it may not be doable if a sample is small, and results are potentially 
biased when N is highly heterogeneous across species. The main advantage of this approach is, however, 
its simplicity. The idea is to use random subsamples of the species with the largest samples to re-estimate 
their means in smaller samples. The size of the subsamples can be the number of individuals found in the 
species with the smallest sample. The variability among random subsamples means should, therefore, be 
a crude proxy for the amount of error expected in samples as small as in the species with the smallest N. 
To summarize this variation in relation to interspecifi c differences, the means of the random subsamples 
can be analysed with a PCA and/or a cluster analysis.

The size of the smallest species sample in my dataset is 14, for the Olympic marmot. In the Alaskan 
marmot, which has almost the same N (16), I just randomly excluded two individuals. The difference 
is minimal and one could have included all 16 individuals. In all other species, in contrast, N was 
much larger and, thus, I randomized the order of the specimens, before selecting mutually exclusive 
subsamples of 14 individuals. The randomization of the specimens order within each species can be 
done in TPSUtil (see ‘Digital images and landmark confi guration’ in the Material and methods of part 
A) with the data later reloaded in MorphoJ together with a classifi er for each of the N = 14 subsamples. 
Using the classifi er, it will be easy to compute in MorphoJ the means of the randomized subsamples 
(Preliminaries, Average Observations By ...), before, fi nally, combine all species subsample means in 
a single dataset (Preliminaries, Combine datasets ...). When the total sample size was not a multiple 
integer of 14, however, a few specimens had to excluded. Overall, therefore, in relation to the avalaible 
number of mutually exclusive random subsamples in each species, I analysed one mean shape for both 
Olympic and Alaskan marmots, three for VAN, seven for hoary marmots 23 and woodchucks, and eleven 
for yellow-bellied marmots, for a total of 30 mean shapes. With these 30 mean shapes, I run a PCA and 
a UPGMA cluster analysis using tangent space Euclidean shape distances, which are virtually identical 
to the corresponding Procrustes shape distances (see part A and Marcus et al. 2000). Finally, I checked 
if multiple estimates of mean shapes of the same species clustered together ‘within’ that species, as 
expected if N = 14 is precise enough to estimate species mean shapes when the aim is to summarize 
average similarity relationships in marmots. Alternatively, if N = 14 is too small for precision, I would 
expect mean shapes of different species to be mixed in the scatterplot and the phenogram, with no clear 
prevalence of species-specifi c clusters.

Results (B5)
Because all fi gures summarizing the patterns of mandibular shape differences in North American 
marmots use the abbreviations of the species names, I remind readers that they can use Table 1 to 
check scientifi c and common names, as well as the abbreviations. Thus, it is easy to observe that, 
despite signifi cantly large differences in mandibular shape and high cross-validated hit-rates in the 
DAs (Tables 4–6), ordinations of individuals including all six species (Fig. 4) show a large overlap in 

23 In fact, as I realized while correcting the proofs of the accepted version of this paper, by mistake, one of the seven mutually 
exclusive subsamples of hoary marmots had N = 12. However, its mean shape is virtually identical to that obtained by 
adding another two random specimens and, thus, the results of the analysis are unchanged.
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shape variation among species. The PCA suggests a fairly circular scatter within each species (Fig. 4a). 
The area of the convex hulls seems to indicate that variance is somewhat proportional to sample size, 
with yellow-bellied marmots varying the most on PC1–2 and Olympic marmots the least. The bgPCA 
scatterplot (Fig. 4b) captures most of between group variance (65% using bgPC1–2) and shows a pattern 
of variation which is mostly congruent with the PCA. There are, however, some differences. Compared 
to PC1–2, along bgPC1–2, the within-species scatter is more elliptical and the apparent differences 
in variance among the three largest samples are less pronounced. In fact, on bgPC1–2, woodchucks, 
instead of yellow-bellied marmots, seem to vary the most. Also, in the bgPCA scatterplot, VAN is better-
separated from other North American marmots than in the PCA.

Shape similarity relationships of North American marmots are summarized also using ordinations and 
phenograms of means (Figs 6–7). For these summaries, I am using the mean shapes of the random, 
mutually exclusive, balanced subsamples. This is optional, as generally morphometricians use the total 
sample mean shapes. However, as outlined in the methods, using the means of the subsamples can be 
a fi rst step to explore the uncertainties in relation to sampling error. A researcher might replicate the 
summaries using the total samples mean shapes, but this is redundant when, as in my case, the between 
species separation is so evident using the balanced subsample means.

Figure 6 is a PC1–PC2 scatterplot, which accounts for a total of 62% of variance in the balanced 
subsamples mean shapes. There is a complete interspecifi c separation in the space of PC1–2: each 
species with multiple mean shapes forms tight within-species clusters, totally separated from those 
of other species. However, the means of the two smallest species samples, the Alaskan and Olympic 
marmot, represented each by a single mean, are only slightly separated from the cluster of VAN means 
at the negative extreme of PC2.

The shape change at the opposite extremes of bgPC1 and bgPC2 is shown using deformation grids and 
expansion factors, magnifi ed fi ve times relative to the gran mean, which is in the origin of the axes 
and has zero scores (Fig. 6). The woodchuck and the hoary marmot, lying on opposite sides of PC1, 
are characterized by differences in the extension of the mandibular angle (longer in hoary marmots), 
masticatory tooth-row (wider in woodchucks) and incisor alveolus (showing a horizontal expansion 
between the mental foramen and the incisor in hoary marmots and a contraction in woodchucks). The 
other species have intermediate PC1 scores, with partially overlapping ranges, but are well separated 
on PC2. The yellow-bellied marmots, at the positive extreme of PC2, are completely separated from 
the group formed by VAN, Alaskan and Olympic marmots at the opposite, negative, extreme of the 
same PC. PC2 scores in yellow-bellied marmots are associated with a relatively slender mandible, with 
a sharp contraction of the dorsal margin of the mandibular symphysis and a pronounced expansion of 
the vertical ramus between the coronoid and condylar processes. Negative PC2 scores, typical of VAN, 
Alaskan and Olympic marmots, suggest a recurved coronoid process, forward bent apex of the condyle, 
dorsoventrally compressed vertical ramus and an elongated dorsal margin of the symphysis.

If PC3 (18% of variance) and PC4 (6% of variance) were also explored (not shown), the Alaskan marmot 
would be found isolated at the positive extreme of PC4. The other fi ve species, in contrast, mostly 
overlap on PC4, but, with the exception of the Olympic marmot (partly separated from hoary marmots 
on PC4, but overlapping on PC3), they are very well separated on PC3: the woodchuck is at the negative 
extreme and VAN at the positive one; hoary and yellow-bellied marmots are in the middle, with the 
former closer to woodchucks and the latter to VAN.

The UPGMA phenogram of the balanced subsamples mean shapes (Fig. 7) is complimentary to the 
PCA of Fig. 6. All species represented by multiple mean shapes using balanced random subsamples 
form within-species clusters isolated from those of other species. In terms of relative positions in the 
tree, VAN is basal, which indicates its distinctive mandibular shape, consistently with the on average 
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larger Rsq of this species in the pairwise tests of mean shape differences (Table 5) and a good degree of 
separation from other marmots in Fig. 4b. The Olympic and Alaskan marmots are ‘phenetic sisters’ in the 
phenogram, but they are separated by long branches, indicative of large differences. They are apparently 
slightly closer to the hoary marmot than to the yellow-bellied marmot or woodchuck. However, the 

Fig. 6. PC1–PC2 of mean shapes for the random, mutually exclusive, species subsamples. Shape 
variation (magnifi ed fi ve times) at the opposite extremes of each PC is shown using wireframes, as well 
as deformation grids and expansion factors computed in PAST using the thin plate spline interpolation. 
(In these wireframes, unlike those in MorphoJ, the mental foramen is also connected by a line to its 
neighbouring landmarks, as PAST constrains users to link all landmarks: the difference is, however, 
minimal and purely visual).
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Fig. 7. UPGMA phenogram of Procrustes mean shape distances for the random, mutually exclusive, 
species subsamples. Shape variation (magnifi ed fi ve times, relative to the grand mean of all species) is 
illustrated using the six species mean shapes (all specimens included) with wireframes and thin-plate 
spline deformation grids (drawn in Morpheus et al. - Slice 1999) - but equivalent to those made using 
MorphoJ or the TPS Series).
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branch length of the cluster formed by hoary, Olympic and Alaskan marmots is very short, so that it 
is probably better to interpret this node as a ‘phenetic polytomy’. The yellow-bellied marmots and 
woodchucks are ‘sister’ clusters, but the corresponding branch length is also fairly short. In contrast, 
branches separating the yellow-bellied marmot cluster from the woodchuck cluster are almost twice 
longer than that joining these two species. In short, the phenogram strongly supports the within-species 
similarities of mean shapes estimated using small samples, as well as the distinctive mandibular shape 
of VAN; the clusters between different species, however, are more dubious.

Figure 7 also illustrates, next to the tree with the means of the species random subsamples, the 
differences between the grand mean shape (mean of the means of all North American marmots) and 
the mean shape of each species, estimated, for the visualization, using the complete species samples. 
As in Fig. 6, VAN has a relatively longer superior margin of the symphysis, with a narrowing of the 
incisor alveolus approximately between its caudal end and the mental foramen. The vertical ramus 
is dorsoventrally compressed, with relatively short angular and condylar processes and an elongated 
coronoid. Both the Alaskan and Olympic marmots have robust incisor alveoli, with grids suggesting 
a dorsoventral expansion in the horizontal compared to the vertical ramus. In the vertical ramus, there 
are clear differences, with the Alaskan marmot having relatively short coronoid and angular processes, 
which make the condyle look more prominent, whereas the Olympic marmot has a longer coronoid and 
more pronounced angle of the mandible. The depth of the vertical ramus, with an enlarged, prominent 
angle, and the expansion of the incisor alveolus are the most evident aspects of shape change in the hoary 
marmot. Finally, both the yellow-bellied marmot and woodchuck have relatively slender mandibular 
shapes, but this relative horizontal expansion and dorsoventral compression occurs almost uniformly in 
the woodchuck, with the exception of a sharp contraction between the mental foramen and the inferior 
margin of the incisor alveolus. In contrast, in the yellow-bellied marmot, only the anterior part of the 
mandible is comparatively thin and elongated, whereas the vertical ramus is comparatively deep and 
with a relatively long condyle.

Discussion (B5)
It is almost a truism that summarizing differences in multivariate shape data is not as simple as using 
univariate plots for CS. Moreover, the interpretation of multivariate results of analyses of Procrustes 
shape variables cannot be based on coeffi cients, such as PCA or DA/CVA loadings, as in traditional 
morphometrics. Using coeffi cients to argue whether one or the other shape variable is more important 
for the computation of a certain PC or DA/CVA axis is akin to doing inaccurate and misleading per-
landmark analyses or visualizations. The mistake of per-landmark interpretation is, as explained in part 
A, a consequence of having specimens superimposed using a convenient, but biologically arbitrary 
mathematical superimposition (Moyers & Bookstein 1979; Richtsmeier et al. 2002; Cardini & Verderame 
2022). In contrast, all interpretations, and analyses, must be done in the total multivariate shape space. 
This means carefully avoiding parts of the output such as PCA or DA/CVA loadings in PAST or other 
multi-purpose statistical programs. Thus, shape diagrams (Klingenberg 2013) are the correct approach 
to describe the changes captured by a multivariate analysis of Procrustes shape data. For instance, in an 
ordination, one might show the shape changes happening along a specifi c PC (Fig. 6); for tests of group 
means, the average shape of each group is a simple and effective summary (Figs 5, 7); in a multivariate 
regression, one can visualize the shapes corresponding to the regression predictions for the smallest and 
largest values of the independent variable (Fig. 8 in B6).

In a taxonomic comparison, ordinations of individuals, with groups marked using different colour or 
symbols, are typically used to summarize shape variation before visualizing and interpreting mean shape 
changes. The three main ordination methods in GMM are a simple PCA, a CVA and a bgPCA. The 
advantages and disadvantages of these methods are summarized in Rohlf (2021). As I mentioned in the 
Methods, in taxonomic studies using shape, I generally opt for the bgPCA. A bgPCA better separates 
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groups compared to a simple PCA but, using morphometric datasets with covarying anatomical 
landmarks and a reasonable p / N ratio (Cardini & Polly 2020), is less prone than a CVA to infl ating 
group differences. With marmot mandibles, the bgPCA seems to perform well, as it captures most 
between group differences in just two axes (bgPC1–2, Fig. 4b). It also suggests a degree of separation 
of VAN, whereas other species mostly overlap. That VAN is more separated in the scatterplot is a 
result in good agreement with the pairwise tests of species mean shape differences (Table 5), in which 
VAN has on average the largest Rsq (almost 20% vs ~ 10–15% in other marmots). Yet, it is apparently 
puzzling that all pairwise tests of mandibular shape are highly signifi cant when there is so much overlap 
in the ordinations (Fig. 4). In fact, there is no disagreement, if P values are discussed in relation to the 
corresponding Rsq. Then, it becomes clear that on average interspecifi c differences are not negligible, 
but, even if tests are signifi cant and Rsq moderately large, ~ 80% or more of total shape variance remains 
unaccounted for by species mean shape differences. Similarly, when all species were simultaneously 
tested in the MANOVA, the Rsq of interspecifi c variation was about 20% (Table 4). A 20% multivariate 
Rsq is not small, but, with some 80% of variation unrelated to species mean differences, a large overlap 
among species in the ordinations is unsurprising. Besides, when shape variance is summarized including 
all species, axes in ordinations represent a compromise that tries to captures all main group differences 
at the same time. In contrast, when just three species are included, as in Fig. 2, bgPCA axes capture all 
interspecifi c differences and more effectively align with the main direction of between species variation. 
Figure 2 likely better separates the three species with the largest samples also because the pattern of 
shape variation is less strongly dominated by VAN, whose clear distinctiveness on bgPC1–2 contributes 
to push other species in a smaller region of the scatterplot, where they largely overlap.

In terms of species-specifi c shape variation, results are broadly congruent with those of previous 
studies on marmot mandibles, despite using fewer landmarks and often smaller samples (Cardini 2003; 
Nagorsen & Cardini 2009). The posteriorly curved, long coronoid, for instance, is confi rmed as a highly 
distinctive feature of VAN that is uncommon in other species and almost diagnostic. The relatively long 
mandibular angle in hoary and Olympic marmots, the largest species, and the slender horizontal ramus 
of the woodchuck and yellow-bellied marmot are reminiscent of similar shape features observed within 
species in, respectively, older and larger individuals compared to younger and smaller ones (Cardini & 
Tongiorgi 2003; Cardini & O’Higgins 2005). Thus, they might be part of a common allometric trend that 
occurs during ontogeny and is, partly, observed also in relation to interspecifi c size divergence in adults. 
A longer angular process is also likely to help providing a larger surface for the insertion of the main 
masticatory muscles (mainly, the masseter) and, possibly, a more effective lever arm in bigger animals.

The PCA scatterplot of Fig. 6 and the phenogram of Fig. 7, which summarize the balanced random 
subsample means and support within-species similarities and between species average differences, 
suggest that most of the variation that causes overlap in the interspecifi c ordinations of individuals (Fig. 4) 
are the small differences that make each individual unique. Some of these may be due to within-species 
genetic variation and others represent plastic responses to the variability of environmental conditions. 
More likely, they are a mix of the two. When individuals are averaged, small inconsistent differences are 
‘smoothed out’. In these samples, just 14 individuals seem to be enough for a fairly accurate estimate 
of a species mean shape, at least in the four species with samples large enough for random mutually 
exclusive subsamples to be drawn (i.e., all except the Alaskan and Olympic marmot). With means based 
on 14 individuals, species form tight clusters well separated from those of other species. N = 14 might be 
approximately appropriate also for the Olympic marmot, with its small population living in a restricted 
geographical area, but probably not for the Alaskan marmot, that occupies the much wider region of the 
Brooks Range, stretching over more than 1000 km and with peaks reaching almost 3000 m a.s.l.

The preliminary clues on an adequate sample size for estimating species mean shapes in marmot 
mandibles do not differ much from the lower boundary for a minimum N suggested in some previous 
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GMM studies on mammals. For instance, Cardini et al. (2015) found that 10–20 individuals sharply 
reduced the scatter of mean premolar shapes in Icelandic ponies. However, that was an intraspecifi c 
study and only one group had a sample large enough for random subsampling experiments. In a broader 
study on sampling error in mammal craniofacial shape, Cardini et al. (2021) showed that ~ 15 individuals 
may be enough for producing precise estimates of means in relation to interspecifi c mean differences, 
but demonstrated that no less than 20 (and often many more) specimens are necessary for repeatable 
reconstructions of interspecifi c relationships based on mean shapes. Also, for precision in estimates 
of within-species shape variance (which I did not assess in this study), Cardini et al. (2021), as well 
as other researchers (as summarized in their Discussion), suggested a minimum requirement of 20–40 
individuals. The majority of studies of sampling error in morphometric studies of within and between 
species variation, among closely related species (see references in Cardini et al. 2021), seem to agree 
that, below N = 10, estimates are highly inaccurate and precision drops. Therefore, when such small 
samples cannot be improved, the corresponding groups might have to be excluded or results fl agged and 
re-verifi ed, as I did, after leaving out the smallest samples.

The phenogram of random subsample means (Fig. 7) hints at a modest degree of mandibular shape 
similarity between yellow-bellied marmots and woodchucks, which for North America are, respectively, 
the smallest and second smallest species. Likely, the source of this moderate similarity is convergence 
driven by size, since the two species are only distantly related (Steppan et al. 1999, 2011). Mean shapes, 
however, are sample estimates and, as explained in the methods, neither a cluster analysis nor a PCA 
of mean shapes take into account the uncertainty around these estimates. Resampling methods are a 
promising approach to assess confi dence around mean shapes. PAST, for instance, has an option to 
bootstrap variables and infer how strongly the data support different branches of a phenogram. However, 
this method is inappropriate for Procrustes shape data and does not address the issue of the effect of 
sampling error on the topology of a tree using mean shapes (Cardini & Elton 2008). An alternative type 
of bootstrap should be used to this aim (Caumul & Polly 2005; Cardini & Elton 2008; Nagorsen & 
Cardini 2009; Pearson et al. 2015), but this is not available in any user-friendly software, although it 
is fairly easy to program in R. In a PCA on individuals (as the one of Fig. 4), the option for drawing 
confi dence ellipses around means, available in MorphoJ, is an interesting one, but the PCA plot is not 
the same as with group means and uncertainties are estimated only in relation to the pair of PCs used in 
the scatterplot.

In the methods, I anticipated that not only summaries using mean shapes but also and, in particular, 
phenograms have limitations: a) they are not phylogenetic hypotheses (Felsenstein 2004); b) they distort 
phenetic relationships (de Queiroz & Good 1997); c) uncertainties in the tree topology are not taken into 
account (see above). As I have already discussed the third problem in the previous paragraph, I add here 
a few comments on the other two.

In general, Procrustes shape data are not very suitable for phylogenetic inference (Varón-González et al. 
2020) and are probably best used as a source of preliminary evidence on taxonomic distinctiveness 
(Cardini et al. 2022) or interpreted (see below) in a ‘post-cladistic’ context (Smith 1990). However, 
that a phenogram is not a cladogram, except under very restrictive assumptions (Felsenstein 2004), is 
not a problem when the aim is that of summarizing phenetic relationships. The tree simply provides 
a different type of information that is ideally interpreted in relation to a well-supported molecular 
phylogeny (post-cladistic approach). With VAN, for example, I showed that, as in previous work 
(Cardini 2003; Nagorsen & Cardini 2009), its mean shape lies on a relatively isolated basal branch of 
the mean shape phenogram. Genetic data, however, show that VAN is nested within the radiation of the 
hoary marmot (Kerhoulas et al. 2015; Mills et al. 2023). The discrepancy supports the hypothesis of 
accelerated morphological evolution of this population on the island, as common in insular mammals 
(Millien 2006). This type of post-cladistic interpretation can be facilitated by graphical comparisons. 
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An effective way to complement phenetic information from shape data and phylogenetic hypotheses 
is to plot phenograms and cladograms one next to the other (e.g., Cardini 2003: fi g. 6) or to project a 
cladogram onto a PCA scatterplot (see Map Onto Phylogeny in the help of MorphoJ). Alternatively, one 
could also map shape changes onto a phylogenetic tree, which for 2D data is doable in TPSTree (Rohlf 
2015).

Distortions in phenograms are more problematic (de Queiroz & Good 1997), but can be assessed 
using cophenetic correlations (automatically shown in PAST and mentioned in part A). Integrating the 
information of a phenogram with that of a PCA scatterplot might also help to detect large distortions. 
Phenograms usually preserve shorter distances, i.e. those among the ‘leaves’ in a terminal branch, better 
than larger ones, which are more accurately captured in a scatterplot of the fi rst PCs. For cluster analyses, 
there is a variety of algorithms. However, in taxonomy and, in general, in biology, UPGMA trees are 
most common option and usually perform relatively well (Rohlf 1970). In conclusion, therefore, as long 
as one is clear about the aim of a phenogram, and the uncertainties and limitations in the reconstruction 
of a tree as a summary of phenetic variation, cluster analyses do not pose any particular problem and 
are another helpful technique in the analyses of highly dimensional multivariate data, as those typical 
of Procrustean GMM.

B6 ) Relationship between shape and size within and across species
Me thods (B6)
Allometry is rarely the main subject of a taxonomic investigation. However, as I discuss later, taxonomists 
might be interested to assess the effect of size on shape differences and, if there is an effect, they might 
want to investigate whether allometries are similar in different taxa and account for a large proportion 
of taxonomic differences. The conventional approach to answer these questions uses a multivariate 
regression of shape on size to test the signifi cance and magnitude of allometry (Zelditch et al. 2004). 
In this analytical framework, to take group differences into account, a MANCOVA is used to test the 
similarity in allometric trajectories (i.e., the linear multivariate regression lines specifi c of each taxon). 
Potentially, the MANCOVA also allows to ‘size-correct’ shapes, before re-testing ‘allometry-free’ 
species differences (Zelditch et al. 2004). There are, however, alternative approaches, as discussed by 
Klingenberg (2016, 2022), which are not considered here, and a modifi ed version of the conventional 
MANCOVA is presented in Elton et al. (Elton et al. 2010).

Before comparing allometric trajectories among species, it may be interesting to fi rst explore, one 
species at a time, whether there is any appreciable allometric variation. This step is optional, because 
overall allometry (i.e., simultaneously for all species) is tested in the MANCOVA. Alternatively, one 
could fi rst do the MANCOVA and later use within-species allometric analyses to discover how much 
allometric variation, if any, is present in each of the study groups, which is the equivalent of pairwise 
post-hoc comparisons in an ANOVA.

For testing within-species static allometry, I used linear multivariate regressions of the Procrustes shape 
coordinates on CS in MorphoJ. The test statistic, as in all regressions in this software, is the Rsq, whose 
signifi cance is assessed using permutations (10 000 in my case). The type of analysis is the same used 
to test SDM or pairwise species differences. The only difference is that, now, the regression is testing 
the association between shape and a continuous predictor, instead of a binary grouping dummy variable, 
as in the tests for mean differences of B1 and B3. The Rsq in the regression represents the amount of 
shape variation accounted for by the covariation with the CS of the individuals in a sample. The analysis 
is specifi ed in MorphoJ as already explained in the subsections, B1 and B3, on group differences. 
The only change is that the predictor (a covariate in MorphoJ’s jargon) is CS. The same test can be 
done in TPSRegr (for 2D data only, using both permutations and parametric tests) and PAST (Model, 
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linear … multivariate). In PAST, the multivariate regression is only parametric and, therefore, assumes 
normality. Also, in PAST, the multivariate regression should be done using the PCs of the Procrustes 
shape coordinates to avoid miscalculations of the degrees of freedom (see Discussion in this chapter). 
If none of the species shows signifi cant allometric variation (non-signifi cant P with a small Rsq), the 
MANCOVA is unnecessary. In contrast, if allometry is signifi cant in some species, the MANCOVA 
might be performed.

The species by CS MANCOVA is well explained in Zelditch et al. (2004), but also in the help fi le of 
TPSRegr, where it is called “test for common slopes”. The rationale is very similar to the two-way 
MANOVA. The difference is that, instead of two grouping variables (such as species and sex), there 
is now one grouping factor (species) and a continuous covariate (CS). In a species by CS MANCOVA 
(using type III SS, as in the two-way MANOVA), fi rst one assesses the interaction term. The interaction 
tests if the allometric trajectories of the different groups have the same slope. The species-specifi c 
regression lines in this MANCOVA, with the interaction included, have slopes and intercepts identical 
to those obtained in the regressions done one species at a time (previous step). If slopes are statistically 
similar, and thus allometries are approximately parallel, it means that changes in mandibular proportions, 
correlated to size, are similar in all species. For instance, in marmots, larger individuals generally tend 
to develop deeper mandibles to increase robustness (Cardini & Tongiorgi 2003; Cardini & O’Higgins 
2005).

As anticipated in the Introduction, the degree of similarity or divergence in allometries is, in itself, an 
interesting information for a taxonomist, because one expects smaller differences in allometric patterns 
when there is less evolutionary divergence. A non-signifi cant interaction might, therefore, suggests 
closer phylogenetic relationships. As in other tests, however, non-signifi cance can happen even if 
allometric trajectories form large angles, because of low power and/or inaccuracies in small samples 
(Cardini & Elton 2007). When samples are large, because multivariate tests tend to be powerful, the 
opposite may also occur, with allometries similar in direction (i.e., approximately parallel), despite a 
signifi cant interaction suggesting differences in slopes (Klingenberg 2016). As usual, the P value for the 
interaction term should be shown together with, and interpreted in relation to, its Rsq. I will go back on 
the issue of Rsq and the angles between trajectories when I discuss the statistical models to compare 
allometric vectors.

If the effect of the interaction is negligible, one can ‘size-correct’ shapes before testing again species 
differences. That the interaction is negligible is a fundamental assumption for going on with the size-
correction; in contrast, if the interaction is signifi cant and has a large Rsq, one cannot size-correct 
shapes. Size-correcting shapes means that the static allometric variation in all species is ‘statistically 
removed’. This is done by repeating the MANCOVA after excluding the interaction term. In this second 
MANCOVA, only species and CS are tested. The MANCOVA compares groups (species, in my case) 
using the residuals of the allometric trajectories, which are the component of shape variation unrelated 
to size differences. The comparison, however, is meaningful only as long as the allometric trajectories 
are parallel, and this is why the species by CS interaction must be tested fi rst. With a size-correction, it 
is as if shape variation (unrelated to CS) is ‘squeezed’ in each group around the species-specifi c shape 
predicted for a given size. Crucially, the size chosen for the predictions is identical in all species (e.g., 
the average CS of all species). Thus, the predicted means at that specifi c size become the new species 
mean shapes to which the regression residuals (i.e., non-allometric variation) are added. The overall 
procedure, therefore, ‘removes’ the effect of size on shape and produces size-corrected shape data. 
Because allometries are parallel, the choice of the ‘common’ size used to control allometric variation is 
irrelevant: whether it is the smallest, largest, the total sample mean or the grand mean size of all species 
(or even an abstraction such as CS = 0), results are the same because, with parallel allometries, the 
relative distances among the predictions used to compute the ‘new’ mean shapes are constant across the 
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entire range of CS values. In contrast, if trajectories were not parallel and, as an example, diverged as size 
increases, results of comparisons of size-corrected shapes would change depending on the size chosen 
to control for allometry: in this case, size-corrected shape differences between species are smaller, and 
maybe negligible, at the lower extreme of size variation (where allometric lines are closer), but bigger 
at the larger extreme, where allometric lines diverge more.

Assuming one has demonstrated similar allometric patterns in the species by CS MANCOVA, the 
second ‘species plus CS’ MANCOVA without interaction allows to focus on size-corrected species 
shape differences. In practice, in the fi rst MANCOVA, a researcher usually only looks at the interaction 
term (species by CS); in the second, he/she focuses on the species factor. This is analogous to what 
we saw in the species by sex MANOVA, where fi rst one focuses on the interaction and, later, if that 
is negligible, looks at SDM. Thus, if species was signifi cant without size-correction (tests in B2–B3), 
but it is not in the ‘species plus CS’ MANCOVA, the conclusion is that species shape differences are 
purely allometric. Of course, this conclusion is peculiar to the evidence provided by the morphological 
structure and the specifi c confi guration of landmarks chosen for the taxonomic assessment. With a 
different structure, or possibly even with a fairly different landmark confi guration, results may change. 
In contrast, if controlling for allometry in the MANCOVA does not remove species differences (i.e., 
species is signifi cant in the ‘species plus CS’ MANCOVA), that indicates that allometry alone does 
not account for all interspecifi c variation. Assuming size is more plastic and evolutionary labile, shape 
differences, when not purely related to size, might hint at a likely deeper evolutionary separation.

In terms of user-friendly software, the MANCOVA has the same limitations as the two-way MANOVA. 
Neither PAST nor MorphoJ can do this type of analysis, although MorphoJ offers some alternatives, 
that can produce equivalent results, as I explain in the Discussion. A taxon (species, in my case) by size 
(CS) MANCOVA is available in commercial statistical software, as well as in R, with different options 
for the SS. The distinctions in terms of model SS are the same I mentioned for the ANOVA/MANOVA. 
With balanced samples, the type of the SS does not matter. However, at least in my experience, with 
‘reasonable’ data with large and fairly homogeneous N, results in moderately unbalanced samples tend 
to be similar using type I, II or III SS.

For 2D shape data, the species by CS MANCOVA can be run in TPSRegr using dummy variables.
I provide some guidelines on how to do it without a detailed explanation. The MANCOVA in TPSRegr 
is clearly exemplifi ed in its help fi le where it is called “Example of test for common slopes”. As in the 
MANOVA, the fi le format is NTS. At least for the dependent variables (the shape data), one could in 
theory reuse the fi le employed for the species by sex MANOVA. However, I need new NTS fi les for 
both dependent and independent variables in the MANCOVA because, with a negligible SDM (B1–
B2), the specimens of unknown sex can now be included. Thus, I have one NTS fi le with the landmark 
coordinates (averaged between the two digitizations) of 445 individuals, and a second NTS fi le with the 
design matrix for the independent variables for the same individuals. Specimens must be in the same 
order in both fi les. As in the MANOVA, it is convenient to have fi rst all individuals of one species, 
followed by those of the second species etc.

The design matrix is made of three blocks of variables, two for the main effects (species and CS) 
and one for their interaction, for a total of 12 variables in my dataset. CS is simply a single column 
with the CS of all individuals. The second block, which is species dummy variables, can be built as 
shown in the help and seen in the two-way MANOVA. Thus, there will be fi ve variables, each coding 
a species as 1 (or -1) and all others as zero except one species (always the same!), which is coded 
-1 (or 1) in all fi ve dummy variables. This time I coded the Alaskan marmot -1 in all fi ve species 
dummy variables; in these same variables, other species were coded 1 or zero, depending on the dummy 
variable (e.g., hoary marmot = 1, others = 0; VAN = 1, others = 0 etc.). However, this choice is arbitrary.
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I could have, as in the MANOVA, coded -1 VAN in all variables and 1 or zero the other species. Finally, 
there is the third block, which consists of six dummy variables for the interaction. These variables have 
each the CS of one species and zeros for all the others.

In this paragraph, I describe in detail how to test the interaction, whereas in the next I explain how to 
test species holding the effect of size constant (i.e., using size-corrected shapes). The test of species size-
corrected mean shape differences is conditional on the negative outcome of the test of the interaction. 
Thus, with the variables I made as described in the paragraph above, one runs a fi rst regression of shape 
onto the species and interaction blocks of the independent variables (Options, Select indep. Variables), 
which means that only the CS column of the design matrix is excluded. This is the full model, where 
each species has its own group-specifi c slope in the allometric regressions. The slopes are identical to 
those obtained one species at a time (fi rst part of B6). However, because they are all regressed in the 
same analysis simultaneously, the Rsq corresponds to shape variance accounted for by static allometries 
in the total sample (N = 445). For instance, in my dataset, the MANCOVA fi ts six separate species-
specifi c regression lines. As usual, in the View report window, TPSregr reports the percentage of variance 
unexplained, which is subtracted from 100% to obtain the full model Rsq. Now, one needs a second 
regression which least square fi ts lines (one for each species) so that they are constrained to be parallel. 
This is the reduced model where all species are forced to have the same slope. The reduced model is 
specifi ed in TPSRegr, after checking the Retain current resid. SS option, by selecting the CS column and 
the species block as independent variables (thus, excluding the six variables in the interaction block). 
The difference between the Rsq of the full and reduced model is the Rsq of the species by CS interaction, 
which is the improvement in the goodness of fi t of the regression when slopes are separate compared to 
when they are forced to be parallel (and, thus, with regression lines which are suboptimal to a smaller 
or larger degree). The interaction Rsq should be very small if slopes are really similar and, thus, almost 
parallel.

In the report window, the multivariate tests after the label *** Testing difference between current residual 
SS matrix and the residual SS matrix retained from previous analysis. *** are those testing the species 
by CS interaction. As in the two-way MANOVA, I report the test using the Wilks’ lambda, but one 
can choose another test statistics with the caveat I have already made about Roy’s root being probably 
too liberal. By comparing the full and reduced model, TPSRegr estimates if the Rsq of the former is 
signifi cantly larger than the Rsq of the latter: if it is, slopes (fi rst regression) are not homogeneous, 
because the deviation from a model with parallel trajectories (second regression) is not negligible. 
When that happens, the analysis stops there. As explained before, one cannot size-correct the data with 
divergent allometric trajectories. If, however, lines with separate slopes do not improve appreciably the 
Rsq compared to parallel ones, the analysis produces a non-signifi cant species by CS interaction that 
allows the researcher to go on testing species differences using size-corrected shapes (next paragraph).

If the interaction is negligible, a researcher runs a second pair of regressions. For this, I suggest to shut 
down TPSRegr, reload the data and, then, re-run the same regression with parallel lines I explained 
above (i.e., shape onto the CS column plus the species block). Residuals are retained and another 
regression is run, this time including only CS as predictor. In this second pair of regressions, one is 
testing if allometries are just parallel or, in fact, they produces overlapping lines. The analysis is also 
called test for the homogeneity of intercepts because, if regression lines overlap, their intercepts (i.e., 
the values corresponding to CS = 0) must be almost identical. The regression with parallel lines has, 
now, become the full model. The reduced model, instead, is the one where a single regression line fi ts all 
445 individuals regardless of species. TPSRegr is, thus, testing the species factor in a ‘species plus CS’ 
MANCOVA (interaction excluded). As usual, a researcher should pay attention not only at the P value 
of the multivariate test, but also at the magnitude of the difference in Rsq between the full and reduced 
model and report it together with the P value. If the Rsq of the test for homogeneity of intercepts is very 
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small, after having shown in the fi rst MANCOVA that the allometric model is statistically similar in 
all species, one has demonstrated that species differences become totally negligible once the effect of 
allometry is statistically removed from the data. To put it the other way round, if species is not signifi cant 
and its Rsq small in the ‘species plus CS’ MANCOVA, mean shape species differences, if present, are 
purely allometric in nature.

The visualization of allometric change is typically done using scatterplots and shape diagrams for the 
predictions at opposite extremes of an allometric line (i.e., for the smallest and largest individual). 
The shape diagrams are the usual ones (Klingenberg 2013) that are provided as part of the output of 
multivariate regressions in both MorphoJ and, for 2D data only, TPSRegr.

I focus mainly on one species at a time regressions in MorphoJ, which is both 2D and 3D and also 
offers a summary scatterplot reminiscent of (but not identical to!) a bivariate scatterplot in a univariate 
regression. MorphoJ, in fact, can perform regressions with multiple groups, in a way that takes group 
structure into account. I will briefl y mention this option in the Discussion, where I suggest a variant of the 
MANCOVA to test species differences using size-corrected data. For the visualization of ‘multi-group’ 
allometric regressions, however, I avoid MorphoJ’s scatterplots, because allometries in this software are 
always forced to be parallel (as in the ‘species plus CS’ MANCOVA). This is because MorphoJ assumes 
that users have already demonstrated, in a different statistical software, that group-specifi c allometries 
are statistically parallel (the non-signifi cant species by CS interaction of the MANCOVA). Thus, to 
summarize variation in allometric predictions among groups I opt for an alternative method, which I 
explain below, after fi rst describing MorphoJ’s graphical output for within-species allometries.

Once the regression of the Procrustes shape coordinates on CS has been done in MorphoJ, one fi nds a 
scatterplot of shape vs CS in the Graphics, Scores window. Shape (on the vertical axis) is summarized 
using regression scores. Regression scores are the projection of the observed shape coordinates onto 
the vector of the regression coeffi cients. Thus, they correspond to the shape information that has the 
highest covariation with CS 24. Regression scores help to produce a scatterplot that, as said, looks like 
the conventional visualization of a univariate regression, where the dependent variable is plotted on the 
vertical axis and the independent predictor on the horizontal axis. However, the two types of scatterplots 
are not equivalent. Unlike in a univariate regression scatterplot, the regression scores do not show all the 
residual unexplained variance. They only display the component of total shape variance that covaries 
the most with the predictor, but this component could account for a very small proportion of total 
shape variance. Therefore, regression scores are useful, but require caution, as they can mislead users in 
their perception of how strong an allometric relationship is. To estimate the strength of a relationship, 
one has to check the Rsq in the Results window. In contrast, regression scores help to spot infl uential 
observations or outliers and, to some extent, also potential deviations from linearity or homoscedasticity.

Having summarized the linear relationship between shape and its predictor (CS, in this case), one has 
to interpret the specifi c shape changes along the regression line. In MorphoJ, this part of the output is 
found in the Graphics, Shape changes window. In this window, MorphoJ compares the sample mean 
shape to the shapes predicted by the regression, which in my case is the allometric trajectory. One can, 

24 This is analogous to using DA or bgPCA scores to summarize the shape information that ‘covaries’ with, in those cases, 
group differences. With both, regression scores or DA/bgPCA scores, one should resist the temptation to recycle these 
statistical summaries for other analyses. For instance, testing group differences using regression scores rarely makes sense. 
If the regression was a test for allometry, one might argue that comparing groups using regression scores is appropriate 
to fi nd allometric differences. It is not, because a univariate score cannot capture the full pattern of allometries in the 
multivariate shape space and the correct approach is to test allometric differences directly in that space (e.g., using the 
MANCOVA model or testing angles between group-specifi c allometric trajectories). For similar reasons, it is incorrect to 
test allometric variation using bgPCA or DA scores which maximize group differences but were not optimized to capture 
multivariate allometry and, therefore, can only produce misrepresentations of allometries.
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as usual, select wireframes, lollipops etc. Rick-clicking on the plot and selecting Set scale, users can 
specify the value of CS for which the predicted allometric shape is visualized. However, this option is 
poorly explained in the help fi le. Apparently, CS (or any other predictor) is specifi ed relative to the mean 
CS, so that positive and negative ‘scale’ values correspond respectively to individuals larger or smaller 
than average. For instance, the average CS in VAN is 83 mm and the range of CS goes from 77 to 91 
mm. Thus, if a user specifi es Set scale = -6, the allometric prediction for the smallest specimen in the 
sample is shown; if he/she specifi es Set scale = 8, the allometric prediction corresponds to the largest 
individual in the sample. With a two-fold magnifi cation for the extremes of the allometric trajectory, Set 
scale becomes -12 and 16; with a threefold magnitication, Set scale is -18 and 24 etc.

The graphical options I have considered until now mostly concern results of multivariate allometric 
regressions one species at a time. In a taxonomic study, where multiple groups are present, it is also 
interesting to summarize interspecifi c differences in allometries. A simple option consists in saving the 
species-specifi c allometric shapes, putting them together in the same dataset and performing a PCA on 
these shape data (Adams & Nistri 2010). The result, for marmots, is a summary scatterplot with six 
series of points, each on a straight line. These ‘lines’ are the species-specifi c allometries, with PC1–PC2 
representing most of the interspecifi c variation in allometric trajectories; PC3–PC4 the second highest 
variation in allometries etc. In MorphoJ, the plot can be obtained in two different, but equivalent, ways. 
The fi rst is precisely what I suggested above. One performs the allometric regressions one species at 
a time. Then, he/she selects the branch of the project tree with the output of the regression, right-click 
on it and saves the Regression prediction. This is repeated for each species. Finally, the six set of data 
are combined in a single TXT fi le (in doing this, carefully leave the column names only in the fi rst 
dataset, below which data for other species are pasted excluding their own fi rst row with the column 
names). This TXT fi le is loaded as a new dataset in the MorphoJ project, species classifi ers are re-
imported and the data are superimposed and subjected to a PCA. The PCA will provide the summary of 
the allometric trajectories. Re-superimposing the data does not typically alter the predictions, because 
they were already superimposed, even if one species at a time. Because to draw a straight line (which 
corresponds to the regression prediction for a species) one needs two points, it is as if each species is 
represented by two individuals (the opposite end points of the allometric trajectory). Thus, with six 
species, the allometric prediction dataset produces 11 PCs with nonzero variance, as it would happen in 
a PCA with N = 6 * 2 = 12.

The second way to produce the summary PCA scatterplots for the allometric predictions is faster and 
uses all data after a single common superimposition. Using a TXT fi le with the same ID (identifi er) 
employed for importing the raw coordinates in MorphoJ, a user can import as covariates the species and 
interaction blocks of the design matrix used in the MANCOVA. If data in the TPSRegr MANCOVA are 
in the same order as the raw coordinates in MorphoJ, one only has to add, in a spreadsheet, the ID column 
before pasting the 11 (for the marmot data) dummy variables (all those used for the MANCOVA except 
the one with CS for all individuals). The data are then saved in a TXT fi le, imported in MorphoJ and 
used to regress shape (all 445 individuals of all marmot species) onto the set of dummy variables. This 
means performing, with a single command, a multivariate regression of Procrustes shape coordinates on 
CS with species-specifi c independent slopes. As explained before, the slopes and intercepts are identical 
to those obtained in the regressions one species at a time. Finally, a user selects the regression output 
and performs (with the usual MorphoJ’s commands – see footnote in A2) a PCA on the Regression 
prediction. The outcome is, for marmots, an 11 dimensional allometric shape space, as in the ‘one 
species at a time approach’, and, therefore, the same type of graphical summary of allometries using 
predictions’ PCs. Results are, generally, virtually identical, but the second approach has the advantage 
of employing a single common superimposition; it is also faster, as one generates few intermediate fi les.
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 Results (B6)

Static allometries (Table 7) are signifi cant in all species except the two with the smallest samples (the 
Alaskan and Olympic marmots). The strength of the relationship, however, is modest, with an average 
Rsq of 8%. Only in the yellow-bellied marmot, the species with the largest range of variation in CS 
(Fig. 1b), static allometry is stronger, so that the Rsq goes up to 16%.

The test for common slope (interaction between species and CS in the MANCOVA) is signifi cant 
regardless of including or not small samples (Table 8). The full model with species-specifi c slopes fi ts 
the data only 2% (32% vs 30% including all species, and 31% vs 29% excluding smallest samples) 
better than forcing species allometries to be parallel. This might suggest that, despite signifi cance, the 
divergence of allometric lines is negligible and shape data may be size-corrected (i.e., doing a second 
MANCOVA testing species, without the species by CS interaction, or doing pairwise tests of shape 
differences using MorphoJ’s size-correction, as explained in the Discussion). However, the summary 
of allometric trajectories in Fig. 8 strongly suggests divergence. The trajectory of the woodchuck looks 
almost orthogonal to those of the species of Petromarmota. In the woodchuck, allometric shape makes 
smaller individuals (Fig. 8) somewhat resemble adults of yellow-bellied marmots (Fig. 7), whereas the 
larger individuals look fairly similar to the species mean shape (Fig. 7). In Petromarmota, in contrast, 
the allometric change (exemplifi ed in Fig. 8 using the yellow-bellied marmot) is reminiscent of the 
differences found in studies of ontogenetic allometry, with marmots having a slender rostral portion of 
the horizontal ramus, if small, and an expanded angular process, if large (Cardini & Tongiorgi 2003; 
Cardini & O’Higgins 2005).

The large divergence of the woodchuck allometric trajectory is confi rmed by repeating the test for common 
slopes after excluding this species: the difference in Rsq between full and reduced models becomes even 
smaller (1.5%–1.2% respectively including or excluding the two smallest species samples) and that 
is enough to make the interaction no longer signifi cant using a 0.005 threshold. The Alaskan marmot 
belongs to the same subgenus (Marmota) as the woodchuck. This species also has a somewhat divergent 
trajectory in the PC1–PC2 space of allometric predictions, with a direction apparently intermediate 
between woodchucks and Olympic marmots. However, the Alaskan marmot’s trajectory is very short 
and in this species, as well as in the Olympic marmot, estimates are less reliable, because their samples 
are small (Cardini & Elton 2007).

Table 7. Within-species 10 000 permutation tests for multivariate allometric regressions testing the null 
hypothesis that shape is independent from CS (performed in MorphoJ).

*  If angles of allometric trajectories are compared pairwise to test if they are signifi cantly smaller than expected by chance, 
because of sampling error, all pairwise tests have P < 0.005, with angles between 35° and 51°, except tests with M. monax, 
which produce angles between allometric regression vectors ranging from 62° and 72°.

Species P Rsq
bro 0.6361 5.1%
cal* <0.0001 7.7%
fl a* <0.0001 15.9%

mon* <0.0001 4.9%
oly 0.5840 6.9%
van* 0.0017 6.4%
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Overall, the effect of static allometry is modest, with the exception of yellow-bellied marmots, and 
the main differences in allometric patterns seems consistent with the subgeneric separation of North 
American marmots. However, at least within Petromarmota, where samples are large, allometries are 
broadly collinear.

Fig. 8. PC1–PC2 summary scatterplot of species-specifi c allometric predictions (66% of total allometric 
shape). As an example, the opposite extremes of the allometric trajectories of yellow-bellied marmots 
(fl a) and woodchucks (mon) are shown (magnifi ed fi ve times) using wireframes and thin plate spline 
deformation grids, drawn in TPSRelw by ‘warping’ variation along the regression lines in the PC1–PC2 
subspace.
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 Discussion (B6)

I focus this part of the discussion on the species with the largest samples because static allometric 
trajectories tend to be short in adult mammals and, thus, require large samples for accurate estimates of 
a small effect size (Cardini & Elton 2007). This means that there are big uncertainties for Alaskan and 
Olympic marmots whose allometric analyses have to be confi rmed using larger samples.

Within-species, static allometric variation in marmot mandibles is signifi cant, when samples are large 
and power adequate. However, allometry is generally modest in magnitude. Yellow-bellied marmots are 
unusual, among North American species, because adults show an amount of allometric change which 
accounts for almost three times more variance than in other marmots (16% vs an average of 6% in other 
species). This strong effect of allometry is likely related to the larger range of size differences within this 
species (Fig. 1b). Compared to other North American species, yellow-bellied marmots seem to have, 
across their geographic range, more variability in habitat conditions (from arid to mesic) and colony 
elevation (from hills less than 1000 m high to mountain prairies up to 3500 m) (Armitage 2005, 2013). 
Among other factors, because the genus Marmota conforms to the predictions of the Bergmann’s rule 
(Armitage 2005), marmot body mass is expected to vary in relation to temperature and, therefore, size 
differences in populations of M. fl aviventris may be partly related to altitude and latitude. Yellow-bellied 
marmots also a have larger genetic variance in mitochondrial DNA, compared to other Petromarmota 
species (Rankin et al. 2019). Probably, unlike hoary marmots and VAN (Nagorsen & Cardini 2009; 
Polly et al. 2015; Kerhoulas et al. 2015; Rankin et al. 2019), this species did not undergo strong genetic 
bottlenecks in its recent history. Yet, even if the yellow-bellied marmot really has more genetic variation, 
which may contribute to variability in size, we do not know to what extent within-species population 
differences in body mass of marmots are genetic or plastic in nature. It seems likely that both types of 
responses to environmental effects are present, but studies are needed to support this assumption and 
assess the relative magnitude and potential interaction of genetic and environmental effects. Regardless 
of the explanation, the evidence for a larger variability in size of yellow-bellied marmot mandibles looks 
robust and, as size changes, a degree of allometric adjustment in proportions is expected in relation to 
possible developmental constraints and/or to preserve function (Emerson & Bramble 1993; Voje et al. 
2014).

Table 8. Interspecifi c static allometry: test for common slope and test for homogeneity of intercept, 
performed using dummy variables in TPSRegr.

Model & samples Null hypothesis Wilks’ 
Lambda Fs Df1 Df2 P Rsq of 

model
all species common slope 0.613 2.1 100 2024.4 <0.000001 32.0%

homogeneous intercept† 0.033 20.6 100 2048.8 <0.000001 29.8%

large samples only common slope 0.651 3.0 60 1158.4 <0.000001 30.8%

(i.e., cal, fl a, mon, van*) homogeneous intercept§ 0.059 30.8 60 1167.4 <0.000001 28.8%

*  VAN is included because, unlike the species by sex MANOVA, where its sample is small using individuals of known sex, 
pooling sexes and including individuals of unknown sex make its sample size large.

†  The signifi cant interaction is mainly due to M. monax: if this species is removed, the interaction has a P = 0.04492 with all 
species (P = 0.01481, using only species with large samples); also, the difference in Rsq between the full (including the 
species by CS interaction) and reduced (no interaction) models becomes even smaller (from ca. 2% tp ca. 1.5-1.2%). These 
observations are congruent with the tests using angles, which are signifi cant and large mainly when comparisons involve 
M. monax.
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Unlike in yellow-bellied marmots, the magnitude of static allometry in woodchucks is small (Rsq = 
5%), which, as mentioned, seems typical of most marmot species. However, the woodchuck allometric 
trajectory diverges from those of the members of Petromarmota. The distinctiveness of the woodchuck 
static allometry is evident in the summary plot of allometric predictions (Fig. 8), but it is also supported 
by comparisons of pairwise angles between regression vectors. After excluding the smallest species 
samples, angles are on average 66°, when woodchucks are compared to Petromarmota species, but just 
44° within Petromarmota. This difference represents an increase in allometric divergence of ~ 50%. 
Thus, it is not surprising that woodchucks, a large sample with a distinctive allometric pattern, are the 
main responsible for the signifi cant species by CS interaction in the MANCOVA. Indeed, if woodchucks 
are excluded from this analysis, the interaction is no longer signifi cant.

We know, however, that signifi cance must be interpreted together with the estimates of Rsq. In this respect, 
the reduction in the variance accounted for by the MANCOVA seems negligible when the full model, with 
separate species-specifi c regression slopes, is compared to the reduced ‘species plus CS’ MANCOVA 
with parallel regression lines: including woodchucks, Rsq is 32–31% with separate slopes and 30-29% 
with parallel regressions (Table 8), which represents a reduction of just 2%; without woodchucks, the 
reduction becomes slightly smaller (~1.5%), but this is enough to make it statistically negligible. One 
might therefore argue that the decrease in Rsq is always so small that, regardless of statistical signifi cance, 
parallel regressions fi t the data almost as well as regressions with separate slopes and, therefore, allometries 
are close to parallel and shape data can be size-corrected. But is this a sound conclusion?

The evidence from the data is not always unambiguous. With the North American marmot mandibles, 
results of the allometric analyses are somewhat contradictory. The difference in Rsq using independent 
or parallel regressions is very small. However, not only the species by CS interaction is highly signifi cant 
both including all species and using only the largest samples. We have also the graphical summary of 
species-specifi c allometric predictions that strongly suggests the divergence of the allometric trajectory 
of the woodchuck. Besides, there are large and likely uncertainties in the estimates of allometry for the 
small samples of Alaskan and Olympic marmots (Cardini & Elton 2007) and the statistical power for 
detecting their potential divergence is also very low. Overall, considering the modest effect size of static 
allometries in marmot mandibles (Table 7), it seems more cautious to avoid a potentially inaccurate 
analysis of size-corrected data. If done, as in the last column of Table 6 using the DA/CVA cross-
validated hit-rates for didactic aims, the species factor would have remained highly signifi cant (not 
shown) and the results of interspecifi c comparisons almost unchanged. That these results are similar, 
however, could be accidental, as I argue in the next paragraphs.

Alaskan marmots, with the woodchucks, are the only North American members of the subgenus Marmota. 
This species, interestingly, consistently forms large angles in all pairwise comparisons of allometric 
trajectories. The angles range from 78° (Alaskan marmots vs woodchucks) to 86–87° (Alaskan marmots 
compared to hoary and Olympic marmots), with an average of 83°. Because the Alaskan marmot sample 
is very small, however, results cannot be trusted and likely represent an overestimate of allometric 
divergence. Yet, I take advantage of this species, with its apparently very distinctive static allometry, to 
exemplify what might happen if data are size-corrected in spite of divergence.

Figure 9a plots PLS1 of a partial least square analysis (Rohlf & Corti 2000) of allometric predictions 
using separate slopes versus CS (used as a covariate in the PLS). PLS1 is used as a summary to maximize 
the covariation of the allometric predictions with CS, but the plot would be almost identical using 
PC1 of the predictions (i.e., the PC shown on the horizontal axis of Fig. 8). A size-correction must be 
independent of the choice of the specifi c ‘common’ size used to calculate the size-corrected species 
shapes, which become the new mean shapes to which the regression residuals (non-allometric shape) 
are added back, as explained in the methods (B6). However, it is evident from the plot that using, for 
instance, the mean size of all 445 individuals (CS = 77 mm, emphasized with a vertical light grey line 
in Fig. 9a), size-corrected mean shapes will be much closer (i.e., more similar) than using the CS of the 
smallest individual (CS = 56 mm, emphasized with a vertical yellow line in Fig. 9a).
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Fig. 9. Divergent allometries and their effect on size-corrected shape. (a) PLS1 summarizing allometries 
(35% of variance in allometric predictions) vs CS. The vertical lines emphasize the scores of species-
specifi c predicted allometric shapes for either the smallest mandible of all North American marmots 
(CS = 56 mm, emphasized with a vertical yellow line and arrows to show the extrapolations of the 
allometric trajectories to CS = 56 mm) or the mean CS of all species (CS = 77 mm, emphasized with 
a light grey vertical line). (b1) Scatterplot of bgPC1–2 (percentages of between group shape variance 
in parentheses) for the size-corrected shapes predicted using species-specifi c allometries (i.e., separate 
slopes) and CS = 56 mm as ‘common’ size. (b2, inset) Scatterplot of bgPC1–2 of size-corrected shapes 
using independent trajectories (as in b1) and CS = 77 mm: if differences in slopes were negligible, b1 
and b2 should be almost identical.
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The analytical impact of the strong interspecifi c divergence in the allometry of the Alaskan marmots 
becomes even clearer if size corrected-shapes are indeed computed using the two different CS and, then, 
analysed. Thus, in a bgPCA of size-corrected shapes using separate slopes and CS = 56 mm, the Alaskan 
marmot is totally isolated from all other species on bgPC2 (Fig. 9b1). In contrast, using CS = 77 mm 
for the size-correction (Fig. 9b2), species show much less separation and the Alaskan marmot largely 
overlaps with the woodchuck and Olympic marmot. This second bgPC1–2 scatterplot of size-corrected 
shapes (using CS = 77 mm and independent slopes – Fig. 9b2) is, in fact, very similar to what one would 
obtain using parallel lines (not shown), as one would do with truly negligible species differences in the 
direction of allometric trajectories. All the scatterplots (using separate or common slopes and regardless 
of ‘common’ CS) should, however, be identical if the assumptions for a size-corrections were met. 
This is because, if the interspecifi c divergence in allometries was small, the difference in height of the 
species-specifi c regression line would be approximately constant for all values of CS (from the smallest 
to the largest). As this is not the case, the bgPCA scatterplots of size-corrected shapes become strongly 
infl uenced by the specifi c choice of ‘common’ size. But there is no biological justifi cation to opt for 
one or the other CS in the size-correction and, therefore, the size-correction is inappropriate for the 
mandibular shape of the North American marmots.

That the divergence of static allometry is generally larger between than within the two subgenera of 
marmots, however, is interesting and supports the potential usefulness of the comparison of allometric 
patterns to assess taxonomic differences. For now, with only two species in the subgenus Marmota, 
of which one has a small sample, it is premature to make any strong claim. Nonetheless, it might be 
interesting in the future to further explore allometric differences by also including large samples of 
Eurasian species of the subgenus Marmota. Previous studies that measured angles of allometric vectors 
in marmots are scant and in those studies, as in the present one, relatively few species were included. For 
instance, Cardini & O’Higgins (2005) compared mandibular and cranial ontogenetic allometries among 
marmots, using a total of six species, two belonging to Petromarmota and four to Marmota. They found 
that results were largely congruent between the two structures, but the separation of the subgenera in 
terms of allometric patterns was incomplete. Their samples, however, not only were relatively modest 
in overall size, but also biased in age composition, as specimens were mostly adults, whereas younger 
age classes were poorly represented. In spite of this, also in Cardini & O’Higgins (2005), the mandibles 
of the woodchuck showed a distinctive allometric trajectory with angles on average larger than between 
any other pair of marmot species. One might, thus, speculate that the long evolutionary separation of 
the woodchuck (Steppan et al. 1999, 2011; Mills et al. 2023), as well as its behavioural (being the only 
solitary marmot) and ecological (living at low altitude at the boundary between forest and meadows) 
peculiarities (Armitage 2000), might have contributed to the change in how mandibular shape covaries 
with size in this species.

Besides the specifi c fi ndings, the allometric analysis is useful to exemplify the caveats of a size-
correction and the main steps of this procedure. Since a correct application of the method requires 
caution and some effort, however, one might wonder whether size-correcting shape data is really worth 
being considered in a taxonomic context.

The potential usefulness of exploring size-corrected data might be better appreciated using a couple of 
hypothetical examples. First of all, in general, with large differences in the size of a structure across 
individuals and populations or species, a large proportion of taxonomic variation in shape could be due 
to allometry (Emerson & Bramble 1993; Klingenberg 1996, 2016; Voje et al. 2014). But this does not 
answer the question on whether it is really interesting to check that shape variation is not exclusively 
allometric in nature when taxa are compared. Let us say, however, that, using mandibles, I am studying 
two poorly known parapatric marmot populations, p1 and p2. p2 has smaller size. Between p1 and p2, 
there are also signifi cant differences in shape. After controlling for allometry, however, shape differences 
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become tiny and no longer signifi cant. Later, it is discovered that p2 lives in a region with less favourable 
conditions, so that the limitation in food quantity and quality not only reduces individual fi tness, but also 
limits growth. The smaller size might, thus, mainly be a plastic response, with shape differences related 
to an earlier truncation of the same ontogenetic model of allometric change. One does not normally 
expect such a simple explanation for population differences, but this simplistic, made-up, scenario 
shows why a taxonomist may be interested in allometry. Using a less abstract case, dwarf populations of 
large mammals are a common occurrence on islands (Foster 1964; Damuth 1993; Lomolino et al. 2013). 
Especially in young insular populations, if shape changes are found, a taxonomist may want to know if 
they are independent of, rather than merely driven by, size reduction.

The allometric variation I have investigated in North American marmots is both static (within species) 
and evolutionary (interspecifi c similarities and differences in static allometries). To estimate size, I 
employed CS. The use of CS in allometric studies using Procrustean GMM is almost a default option. 
The Procrustes superimposition standardizes CS differences to calculate shape. The shape variation, 
which is left, is, by defi nition, independent of CS unless there is allometry (Klingenberg 1996). Thus, 
because CS is based on the same landmark coordinates used to calculate shape, it seems appropriate to 
test allometry in Procrustean GMM using CS. Sometimes CS is transformed using the natural logarithm 
to better approximate the multiplicative nature of growth, but interpretations are less straightforward 
and, most of the time, logging makes no difference to the main conclusions (Klingenberg 2022). 
However, the specifi c measurement of size used for exploring its effect on shape really depends on the 
study question (Hallgrímsson et al. 2019). In taxonomy, body mass could be as interesting as CS. In 
practice, CS is often seen as a proxy for body mass, a type of information that is rarely available for all 
individuals in a sample. In fact, whether CS of a specifi c anatomical structure, measured using a certain 
landmark confi guration, is indeed a good approximation of body mass cannot be taken for granted. 
However, using CS to measure size in studies of hard tissues has another advantage. Unlike body mass, 
the CS of a bone might be less dependent, at least in adults, on condition, seasonality and other sources 
of environmental variation. This is particularly true in marmots whose body mass varies geographically 
and almost double during the active season, before hibernation (Armitage 2000, 2014).

The multivariate regression of Procrustes shape variables on CS is not the only approach for studying 
allometries in GMM. Klingenberg (2022) provides a detailed overview of some of the main alternatives, 
including form spaces, where size is analysed together with shape. For instance, one can append the 
natural logarithm of CS to the Procrustes shape coordinates or, alternatively, restore CS after the 
superimposition or simply omit the CS standardization in the superimposition (Mitteroecker et al. 2013; 
Klingenberg 2016). Klingenberg (2022) shows that, if there is no appreciable allometry or there is clear 
allometry, results of different approaches are consistent. The analysis of form can be interesting in itself, 
regardless of focusing on allometry. As I have anticipated, most of the analyses in this paper can be done 
using Procrustes form variables instead of shape. However, form spaces tend to be dominated by size 
differences. If that happens, taxonomic comparisons too may become largely equivalent to analysing a 
set of linear measurements, with some results mirroring those of a simple analysis of CS. This seems 
undesirable in taxonomic applications. Then, because a taxonomist is interested in analysing shape 
separately from size (with the exception of allometry), Procrustes shape becomes the set of variables 
of choice and, in this case, a multivariate regression of shape onto CS might be the most appropriate 
method (Klingenberg 2022). Because allometric variation may not be linear, however, besides exploring 
log-CS, a researcher can try a curvilinear model by doing the multivariate regression onto a polynomial 
expansion of CS (e.g., Larson et al. 2018). The model inevitably becomes more complicated and, to be 
worth, the improvement in the fi t of the regression (i.e., the Rsq) should be substantial.

The approach using multivariate regressions, plus, when there are groups, the group by size MANCOVA, 
has become almost a standard procedure in Procrustean GMM (Zelditch et al. 2004; Klingenberg 2011; 
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Rohlf 2015). Its implementation in user-friendly programs, unfortunately, is simple for the one-species at 
a time multivariate regression, but not straightforward for the MANCOVA. I used a series of regressions 
on dummy variables in TPSRegr, but this method has at least two main limitations: it takes some effort 
to understand how it works to carefully build the dummy variables and run the series of regressions; 
even more limiting is the fact that it cannot be used on 3D data, because TPSRegr is specifi c to 2D 
Procrustean GMM analyses. For 3D data, for now, there might be no other option than to export the PCs 
of shape from MorphoJ and do the MANCOVA in R or a commercial software.

However, there is an alternative, using a different method, which is applicable to both 2D and 3D shapes 
in user-friendly free software. Instead of using the species by CS MANCOVA, one can pairwise test in 
MorphoJ whether the angles between the allometric vectors of species specifi c regressions (those done 
in the fi rst part of B6) are signifi cantly smaller than expected by chance. More exactly, the software 
provides “P-values of the test against the null hypothesis that the vectors have random directions in the 
shape tangent space”, as explained in the help fi le. Thus, with small and signifi cant angles 25, one might 
infer that the allometric trajectories are less divergent than random expectations. This is not exactly the 
same as testing whether they are parallel, but provides at least some evidence that allometries might be 
approximately parallel. The conclusion should, therefore, generally be similar to that obtained with the 
test of the interaction term in the species by CS MANCOVA.

The test for the angle of allometric vectors must be done for each pair of species or, at least, for those 
with the largest samples. To obtain the test in MorphoJ, users have to select a regression (e.g., the 
regression of shape on CS in the hoary marmot) and, then, use the command in the menu Comparison, 
Compare Vector Directions. The software opens a window, where one can specify the second regression 
(e.g., shape on CS in woodchucks), with which to compute and test the vector angle. As usual with 
pairwise analyses, however, running the tests may be tedious, if there are many groups. For instance, 
with just six species of North American marmots, one has to run 15 tests. If all 15 living marmot species 
had been analysed, there would have been 105 tests. Because of multiple testing, there is also the need 
to be cautious and consider that some results may be signifi cant simply because the rate of type I errors 
is infl ated (see part A).

MorphoJ can also perform an analysis which is equivalent to testing the species factor in a ‘species 
plus CS’ MANCOVA. As with the MANCOVA, fi rst one has to demonstrate that slopes of different 
species are not signifi cantly different, so that allometries can be considered approximately parallel. 
This can be explored using angles, as explained above, if data are 3D and/or the user has no software 
for the MANCOVA. Once this is done, he/she can hold the effect of CS on shape constant in MorphoJ 
and pairwise test species differences in size-corrected shape data. To do it, for the marmot dataset, a 
user selects the full 445 specimens dataset and does a regression of the Procrustes shape coordinates 
on CS. However, this is done now, for this specifi c aim, without any test, but after having checked the 
box Pooled regression within subgroups, with species selected as a subgroups. With this option, the 
regression is equivalent to that of a ‘species plus CS’ MANCOVA which forces the allometric lines 
to be parallel. Finally, by selecting the output of the regression in the project tree, one can run a CVA 
on the regression residuals (Comparison, Canonical Variate Analysis, after carefully verifying that the 
type of data is Residuals and checking the box for the permutation test). The software will test pairwise 
size-corrected mean shape differences among all species. In fact, it takes slightly longer, but it might be 
even better to fi rst perform a PCA on the regression residuals (selecting the regression output and then 
using the usual commands in MorphoJ). The resulting size-corrected PCs of shape can be exported to 
PAST where, by running the CVA, users obtain the test of signifi cance of overall differences (a species 

25 I stress that to suggest approximately parallel allometries angles must be not only signifi cantly smaller than random chance, 
but also fairly small. Sheets & Zelditch (2013) discuss other types of tests for vectors (e.g., testing if angles are signifi cantly 
different from zero), which may be more specifi c and accurate to assess parallel or overlapping allometric trajectories.
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MANOVA on size-corrected shape), the pairwise post-hoc multivariate parametric tests (equivalent to 
the permutation tests in MorphoJ’s CVA), and also the cross-validated classifi cation table (confusion 
matrix). If controlling for allometry has an impact on taxonomic differences, results on size-corrected 
shape data should be substantially different from those (B3, B4, B5) using the full shape information.

Even if allometry and a potential size-correction are exclusively explored in MorphoJ without running 
the MANCOVA, a researcher should, nonetheless, at least compare the Rsq of separate and parallel 
regressions. This can be done using the same dummy variables, as in TPSRegr, by running fi rst a 
regression of the species and interaction block and, later, a second regression on CS and the species 
block. Also, allometries should be graphically summarized, but, in this respect, the options are the same 
as those I used for the MANOVA (i.e., a PCA of the predictions using separate regressions and, possibly, 
a plot of PLS1 of the regression predictions vs CS as in Fig. 9a).

At the end of this subsection of the Discussion, I would like to stress again that non-signifi cant results 
should be interpreted with caution. For instance, if samples are small and the species by CS interaction 
in TPSRegr and/or the pairwise tests of allometric vectors in MorphoJ are not signifi cant, that is more 
likely to hint at low statistical power rather than demonstrate parallel allometries. When N is small 
in all or most samples, even simple pairwise tests for group mean differences in CS or shape are at 
best preliminary and more sophisticated analyses, such as the MANCOVA, are probably not worth the 
effort, since tests are not powerful and results can be inaccurate. With small samples, thus, simply but 
cautiously exploring differences in plots is possibly the best choice. In contrast, with better data (i.e., 
large samples and reasonable p / N ratios), there are more options and analyses can become much more 
sophisticated. In that case, for those interested in learning more on comparisons of shape trajectories, 
including tests which provides fi ner resolution of the differences in allometric trajectories, I suggest the 
review by Sheets & Zelditch (2013).

B 7) Species comparisons of the magnitude of size and shape variance
M ethods (B7)
Homogeneity of variance is an assumption of all tests of group mean differences I have described and, 
therefore, large deviations from homoscedasticity should have already been spotted when assumptions 
of previous analyses were explored. However, here I focus specifi cally on a biological aspect, which is 
whether there are differences in variance magnitude between VAN, a small insular population, and the 
hoary marmot, its sister species, with a vast distributional range on the continent. For both CS and shape, 
the following comparisons will be done:
a) modern VAN vs the total sample of hoary marmots;
b) all VAN, both modern and subfossil, vs the total sample of hoary marmots;
c) all VAN vs two mutually exclusive random subsamples of hoary marmots of approximately the same 
size (N ≈ 50) as the total VAN sample;
d) the total sample of hoary marmots vs mutually exclusive subsamples of either yellow-bellied marmots 
or of woodchucks, whose size is approximately the same (N ≈ 50) as in the total VAN sample.

a–b) are used to assess if there are indications of reduced variance in the recent past of VAN, as one 
might expect because of population bottlenecks in a peripheral isolate 26. Even if, given this expectation, 

26 Demographic bottlenecks are the most likely explanation for reduced variance in VAN (Cardini et al. 2007; Nagorsen & 
Cardini 2009; Kruckenhauser et al. 2009). However, at least for the present-day population, one cannot exclude that 
morphology is somewhat less variable also because individuals live in a very restricted geographic range: almost like in a 
‘common garden’ experiment, in a relatively uniform environment, changes due to plasticity are unlikely to substantially 
increase phenotypic variation. In contrast, in the large variety of environmental conditions (latitude, altitude, humidity and 
rainfall, types of vegetation etc.) found across the huge range of the hoary marmots, both genetic and plastic responses are 
likely to be important in producing the observed phenotypic differences.

CARDINI A., Taxonomic comparisons with geometric morphometrics

159



a one-tailed test is more appropriate, I will use two-tailed tests, which are simpler to implement and 
more conservative (i.e., less powerful, but also less prone to type I errors). c–d) help to explore whether 
differences in variance might be simply due to the ~ 50% smaller size of the sample of VAN (N ≤ 50) 
compared to hoary marmots (N = 108). If that is the case, one would expect to fi nd no differences 
between VAN and subsamples of hoary marmots with N ≈ NVAN = 50 (c), but signifi cant differences 
between the total sample of hoary marmots (N = 108) and the randomized subsamples of other marmot 
species (d) with N ≈ NVAN = 50.

For both CS and shape, differences in the magnitude of variance are tested using a permutational version 
of the Levene’s test, the most common univariate test of homogeneity of variance (Gastwirth et al. 
2009), which is easily extended to multivariate data (Willmore et al. 2006). For univariate data like 
CS, the variance is reported in PAST when descriptive statistics are computed (Statistics, Univariate 
statistics). With multivariate data, there are different, complimentary, ways to calculate the magnitude of 
variance in a multidimensional space (Foote 1997; Drake & Klingenberg 2010; Fontaneto et al. 2017). 
None of them can capture the full complexity of a multivariate dataset. The multivariate extension of the 
Levene’s test employs the simplest of these statistics, which is obtained by summing up the variances 
of each Procrustes shape coordinate or, which is the same in terms of result, the variances of their PCs. 
The sum of the variances of the PCs is sometimes called the ‘trace’ of the variance covariance matrix. 
These computations are easily done in a spreadsheet, but one can fi nd the Total variance in the Results 
window of MorphoJ, immediately below the eigenvalues of a PCA. Thus, the total shape variance can 
be computed in this software by doing separate PCAs for each of the species of which one is testing 
differences in variances (VAN, hoary marmots, subsamples of these or other species etc.).

The rationale of the test is that, when variance is similar, the absolute deviations of individual 
measurements to their mean in a sample should, on average, be statistically the same as the deviations 
from the mean in a second sample. For size, the absolute deviations can be computed in a spreadsheet 
by taking the absolute value of the difference of individual CS from the mean of its species sample. 
This computation is done fi rst for one sample (e.g., VAN) and then for the second sample (e.g., hoary 
marmots). Deviations are then pasted one next to the other in two adjacent columns of PAST.

For shape, the absolute deviations are the Procrustes distances of each individual to the mean of its 
sample. These are readily obtained, one sample at a time, by loading the raw coordinates 27 in TPSSmall, 
superimposing the data (click on compute) and saving the Procrustes distances from the mean shape 
(File, Save, Procrustes d to reference – see Discussion on the small, potential, inaccuracy introduced by 
this procedure). As for the absolute deviations of CS, the resulting distances are pasted one next to the 
other in two different columns in PAST.

Finally, the similarity in mean absolute deviations (be it size or shape) is tested using the permutation 
test of the t-test (select the two columns and click on Statistics, F and T tests (two samples)). By default, 
9999 permutations (that become 10 000 including the observed difference) are used, but one can increase 
this number, if necessary. The P value is the last one, at the bottom of the output window, right above 
the box where the number of permutations is specifi ed. Everything else in this window can be omitted 
and users should not be mislead by the P value called p(same variance): this is the parametric P of 
the Levene’s test performed on the observed data (the observed CS, for instance), but it is incorrect if 
applied to the deviations of sample measurements from the mean. The reason not to do the Levene’s test 
directly on the observed data is, mainly, that this would work in PAST only for size, which is univariate. 
Another reason is that I tend to prefer resampling statistics (permutations) to avoid the assumption of 

27 In this instance, one could also use the Procrustes shape coordinates. Size is not used in TPSSmall. However, users must 
remember that the data are those with averaged replicates, i.e. the same data used in all comparisons of groups in part B.

European Journal of Taxonomy 934: 93–186 (2024)

160



normality of the parametric version of the Levene’s test. This is, usually, a minor issue, as the test is 
generally robust to non-normality (Gastwirth et al. 2009).

There is no specifi c visualization for this type of comparison of variance magnitude. For size, it is 
appropriate to use the same box and jitter-plots already drawn for the comparison of group mean 
differences (Fig. 1b). For shape, the area occupied by one or the other group in the ordination scatterplots 
(Fig. 4) might help to spot large differences in variance, even if the interpretation must be cautious, 
because one is inspecting a subspace of the multivariate dataset and this may not accurately refl ect the 
structure of the observations in the full shape space.

Results (B7)
The results of the comparisons of the magnitude of size and shape variance are in Table 9. First, I discuss 
size, for which both modern VAN and the total VAN sample have CS variances ~ 20–30% smaller than 
found in hoary marmots. However, none of the comparisons is statistically signifi cant. To explore the 
impact of sample size on results, interspecifi c comparisons of CS variance are repeated using random 
subsamples. If the hoary marmot is split into two mutually exclusive subsamples, whose size (N = 54) 
is approximately the same (N ≈ 50) as the total sample of VAN, results do not change: VAN still has 

Table 9. Comparisons of the magnitude of variance (var) between the fi rst (species 1) and second 
(species 2) species*.

Data Species 1 N Var 1 Species 2 N Var 2 Var 1/var 2 P
CS van modern 22 13.0 cal 108 16.0 0.8 0.7877

van 50 11.8 cal 108 16.0 0.7 0.3634
cal1 54 17.0 0.7 0.3531
cal2 54 15.4 0.8 0.4455

fl a1 52 30.8 cal 108 16.0 1.9 0.0043
fl a2 52 30.4 1.9 0.0014
fl a3 52 34.9 2.2 0.0009

mon1 50 23.7 1.5 0.0287
mon2 51 21.3 1.3 0.2126

shape van modern 22 0.00098 cal 108 0.00173 0.6 0.0001

van 50 0.00119 cal 108 0.00173 0.7 0.0001
cal1 54 0.00173 0.7 0.0007
cal2 54 0.00168 0.7 0.0002

fl a1 52 0.00199 cal 108 0.00173 1.1 0.0584
fl a2 52 0.00189 1.1 0.2796
fl a3 52 0.00182 1.1 0.5231

mon1 50 0.00172 1.0 0.9978
mon2  51 0.00169 1.0 0.8641

*  In the main tests, species 1 is VAN using only contemporary individuals or adding the subfossils, and species 2 is the hoary 
marmot. However, to explore the sensitivity of results to the smaller N of VAN, tests are repeated also: a) comparing VAN 
(all individuals) to mutually exclusive random subsamples of hoary marmot, so that VAN and hoary marmots have similar 
N (balanced design); b) using mutually exclusive random subsamples of yellow-bellied marmots and woodchucks, with 
approximately the same size as VAN (all individuals), compared to the total sample of hoary marmots.
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smaller variance, but none of the tests is signifi cant. This fi rst randomization experiment preliminarily 
suggests that the larger variance of the hoary marmot is not simply due to its larger sample; nevertheless, 
the difference is small and statistically negligible.

The sensitivity of results to N is explored also by taking the opposite approach, which means comparing 
the total sample of hoary marmots (N = 108) with subsamples of other marmot species of approximately 
the same size (N ≈ 50) as the total sample of VAN. This sensitivity analysis is run only using woodchucks 
and yellow-bellied marmots, whose large N allows to randomly extract respectively two and three 
mutually exclusive subsamples of ~ 50 specimens. Now, it is the hoary marmot that, despite a larger 
sample size, display less CS variance in all tests. Differences are large and signifi cant when hoary 
marmots are compared to yellow-bellied marmots, whose CS variance is about twice as big as in hoary 
marmots. When hoary marmots are compared to woodchuck subsamples, tests do not reach the 0.005 
signifi cance threshold, but variance is consistently ~ 40% larger in woodchucks. Combining the results 
of these and the previous tests, the conclusion is that hoary marmots have a relatively modest variance in 
CS. Despite the modest mandibular size variation, hoary marmots have still larger CS variance compared 
to VAN, although the data do not allow to confi dently claim that the difference is statistically sound.

The comparisons of shape variance produce a rather different outcome. For shape, both the total sample 
and the subsamples of hoary marmots show signifi cantly larger variance compared to VAN, whereas 
hoary marmots shape variance is similar to those of random subsamples of other marmots. Thus, the data 
suggest that shape variance is similar in all large samples of marmots except in VAN, whose variance is 
30–40% smaller.

Discussion (B7)
The comparisons of the magnitude of CS and shape variances focused on VAN, an endemic species with 
a small and critically endangered population (https://www.iucnredlist.org/species/12828/22259184). 
VAN has been isolated at least since the end of the last glaciation, as sea level rose at the boundary 
between the Pleistocene and the Holocene, forming the narrow strait that now separates the Vancouver 
Island from the mainland. Genetic data, however, suggest that VAN has a longer history of incomplete 
isolation from the parental lineage on the continent, the coastal clade of the hoary marmot (Kerhoulas 
et al. 2015). The main split may have occurred between 0.4 and 1.2 million years ago (if not earlier 
(Rankin et al. 2019)), but hybridization events may have happened even after the separation (Kerhoulas 
et al. 2015). Despite hybridization and an isolation longer than generally assumed (Steppan et al. 2011), 
VAN has gone through one or several bottlenecks, which probably occurred in refugia on or nearby the 
island, where the ancestors of modern VAN survived during glaciations (Kruckenhauser et al. 2009; 
Brashares et al. 2010; Jackson et al. 2015). Thus, molecular studies show that a reduction in genetic 
variance of VAN started much earlier than the dramatic demographic decline recorded in the last few 
decades. As in previous research (Nagorsen & Cardini 2009), my study supports this conclusion. VAN 
shows less morphological variance than hoary marmots not only when the modern sample is analysed, 
but also when I pooled both modern and subfossil marmots, some dating back to several thousands 
of years ago (Nagorsen & Cardini 2009). Therefore, despite small differences between modern and 
subfossil specimens of VAN, the sample shows a relatively homogeneous mandibular morphology. 
Because this fi nding has already been discussed before (Nagorsen & Cardini 2009), I focus here fi rst on 
a novel observation and later on methods.

In general, there is a good correspondence, in term of relative differences in intraspecifi c variability, 
between the genetics and the morphology of marmot mandibles. DNA analyses show that, at least using 
specifi c markers, VAN varies less than hoary marmots (Kruckenhauser et al. 2009; Brashares et al. 2010; 
Jackson et al. 2015), which, in turn, are much less variable than yellow-bellied marmots (Rankin et al. 
2019). Likewise, CS varies in VAN less than in hoary marmots, although the difference is not signifi cant, 
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with hoary marmots signifi cantly less variable than yellow-bellied marmots. When we look at shape, 
the pattern is similar, with VAN varying less than hoary marmots, which are slightly less variable than 
yellow-bellied marmots, but now it is VAN to show signifi cance, compared to hoary marmots, whereas 
the comparison of hoary and yellow-bellied marmot variance is not signifi cant. The sensitivity analyses 
using random subsamples suggests that differences between VAN and hoary marmots are not simply due 
to the smaller sample size of VAN.

Thus, mandibular data support genetic results in terms of variability increasing from VAN to hoary 
marmots and from the latter to yellow-bellied marmots. To my knowledge, a smaller phenotypic 
variance in hoary marmots has not been reported before, but it is in agreement with the predictions 
of the palaeoecological model of Polly et al. (2015). These authors suggested that, during the last 
glacial maximum, the hoary marmot “was extirpated from almost all of its modern range during glacial 
phases [and] impacted more than any other marmot species”. The correspondence between genetic and 
phenotypic data goes even further for shape. Hoary marmots vary less than yellow-bellied marmots, 
but, when they are considered as a superspecies complex, together with Olympic marmots and VAN, 
the amount of evolutionary divergence between the two lineages of Petromarmota is similar in terms of 
depth of coalescence (Rankin et al. 2019). Mandibular shape data are consistent with this similarity. If 
hoary marmots are pooled with Olympic marmots and VAN, variance in shape increases (0.00196) and 
becomes almost identical to the variance found in yellow-bellied marmots (0.00193). For CS, however, 
variance remains much higher in yellow-bellied marmots (31 mm2) even when compared to the pooled 
samples of all other Petromarmota species (17 mm2). However, this is not unexpected for a presumably 
more labile trait such as size, if size changes in relation to ecological conditions, which are likely to be 
more variable in yellow-bellied marmots (see above) compared to VAN, hoary and Olympic marmots. 
That shape variance is the same pooling these three species as in yellow-bellied marmots, in contrast, is 
surprising, given the distinctive mandibular shape of VAN. Yet, even with the additional variance brought 
by VAN, variation in mandible shape within the hoary marmot superspecies complex is comparable 
to variation found within the yellow-bellied marmot alone. The good congruence between fi ndings 
from shape and genetic data seem to support the speculation that shape might be more informative for 
evolutionary inference and less plastic and labile than size.

Although the analysis of the magnitude of variation in VAN was done mainly to explain how to run this 
type of comparisons, results were, as I discussed above, more interesting than expected in a replica study. 
They confi rmed the reduced variance of VAN, found in previous work (Nagorsen & Cardini 2009), but 
also showed how yellow-bellied marmots seem to have a slightly larger amount of intraspecifi c variation 
in shape and a much larger one in size, with shape being largely congruent with molecular data (Rankin 
et al. 2019).

Tests of differences in variance magnitude in taxonomic studies using morphometrics are, unfortunately 
rare, but should probably be considered more often as a potential source of useful information. Besides 
testing for founder effects in peripheral isolates using the phenotype as a proxy for genetic variance, 
the comparison of size and shape variance may help to provide clues to cryptic diversity. This might 
happen when, for instance, a taxon is shown to have unusually large variance compared to its closest 
relatives. One might then exclude the population(s) that he/she believes might be responsible for the 
increase in variance (e.g., a peripheral isolate or a population found in a different habitat) and repeat the 
comparison of variance magnitude with other species to assess whether it is really that population that 
makes a difference.

The test for the differences in variance magnitude is simple, despite some limitations when it is performed 
in user-friendly software. As anticipated in the methods, the sum of the univariate variance is only one of 
several ways of estimating the magnitude of total variance in a multivariate dataset. There are alternatives, 
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some of which are simple to compute. For instance, it is easy to compute the average or a trimmed upper 
boundary (e.g., the 90th percentile) for the pairwise Procrustes shape distances in a species sample and 
then compare it with those of other species. The matrix of distances after the Procrustes superimposition 
can be obtained, one species at a time, from TPSSmall (File, Save, Procrustes distances) or, using the 
equivalent Euclidean distances, in PAST (select all the shape variables and click on Statistics, Similarity 
and distance indices, checking the box Euclidean in the window that is opened). Averages or percentiles 
are, then, simple to calculate by importing the matrix in a spreadsheet. However, compared to the sum 
of variances, these summaries of multivariate variance cannot be tested for differences between groups 
in user-friendly programs. Simple resampling tests are, nonetheless, fairly easy to implement in R (e.g., 
Milella et al. 2021).

Another limitation related to the adoption of user-friendly programs concerns the computation of 
Procrustes distances to the mean, one species at a time, in TPSSmall. This procedure might introduce 
a small inaccuracy, because individuals are separately superimposed within species instead of using all 
species together, as it would be more correct. However, this is negligible for samples that are not very 
small and show moderate shape variation, as typical in taxonomic studies.

I also stressed multiple times that accurate estimates of variances require large samples (Cardini et al. 
2021). With large samples and detailed information on localities, comparisons can be made more precise 
and accurate. For instance, the comparative sample of hoary marmots could have been more specifi c, as 
I might have compared VAN fi rst to the members of the coastal clade of M. caligata (Kerhoulas et al. 
2015; Mills et al. 2023) and, maybe only later, to the total sample of this species. In general, in this 
as in all other types of tests, knowing the locality of origin of all specimens allow to better design the 
comparisons and, also, to check to what extent a taxonomic sample is representative or, in alternative, 
potentially biased and autocorrelated.

 Conclusions
Guidelines: aims, readership, limitations and further readings
My aim, with this paper and its twin on preliminary analyses, is to provide a guideline to taxonomic 
comparisons using Procrustean GMM and user-friendly software. The style of the papers is informal and 
sometimes colloquial, as they are written like a series of lectures in a workshop. Indeed, the idea behind 
this project was to put on paper the experience I have made over the years by teaching introductory 
GMM courses to biologists. For taxonomists, my main target readership, the main appeal of GMM is 
that this family of methods allows to compare groups using fairly simple morphological measurements 
taken on low cost, and easy to obtain, digital images. Taxonomists generally do not aim at becoming 
professional morphometricians and use morphometrics as a complimentary approach to qualitative 
morphological analyses, ecology, genetics or other methods. Sometimes, they are professionals and 
sometimes they are amateurs. Rarely they have the time or interest to delve deep into the methods. Also, 
among the wide range of GMM and statistical methods, they typically need mostly landmark-based 
techniques for testing group differences.

The guidelines are long, and have some repetitions, but should provide the level of detail that allows to 
perform careful, in-depth, taxonomic analyses in zoology using Procrustean GMM. The advice I give 
is extensive, but at the same time focused on practical and relatively simple applications. There are 
some theoretical digressions. However, they are simplifi ed and limited to those issues I found myself, 
as a biologist with no background in statistics, hard to fully understand. As the papers are organized in 
chapters, like a book, one might skip those topics he/she feels more confi dent on or less interested in. If 
this is done, the references to other chapters should help to quickly check if one is missing something 
important. For beginners who plan to extensively used Procrustean GMM, however, I strongly suggest to 
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endure the effort of the long reading and, thus, slowly go through both papers, as well as their appendices. 
As one proceeds with the reading, playing with the data, I made available, and replicating the analyses 
could help to better understand the theory while practicing with the programs. It is for this reason that I 
decided to combine the methodological introductions with the short instructions on the software.

Readers who want to acquire a deeper knowledge of GMM can learn more in the ‘Green Book’ 28 
(Zelditch et al. 2004, 2012), to my knowledge still the only extensive but comprehensible manual 
for biologists. The book is not perfect (Rohlf 2005); even the second version is no longer up to date 
with some recent developments and issues; and there may be disagreements with the view of other 
morphometricians (including myself, on some topics). Nonetheless, at least the fi rst version, which I 
am more familiar with, is a good starting point for improving one’s knowledge of Procrustean GMM.

Morphometrics with R (Claude 2008) is excellent as an introduction to applications of traditional 
and geometric morphometircs in the R statistical environment. The GMM literature is, in fact, vast 
and includes books on theory (e.g., Dryden & Mardia 1998), edited volumes (e.g., the free ‘Yellow 
Book’ (Cardini & Loy 2013)) and innumerable papers both on theory and applications. There is also 
an increasing number of reviews, among which, in my opinion, Adams et al. (2004, 2013) remain 
the best in terms of conciseness, completeness and, most of the time, balance. Although the newest 
developments are missing, the review by O’Higgins on Procrustes methods (O’Higgins 2000) and his 
previous work on techniques for the analysis of outlines (O’Higgins 1997) are also exemplar of clarity. 
These two papers, together with Oxnard & O’Higgins (2009), are probably unbeatable for the strength 
with which they stress the crucial connection between measurements and biology.

A limitation apparently shared by the books and review papers I know, however, is the lack of an explicit 
acknowledgment that Procrustean GMM, like all morphometric methods based on superimposition, 
prevents accurate analyses of per-landmark variation (Cardini & Verderame 2022) and, for the same 
reasons, implies serious problems for methods using subsets of landmarks within a confi guration (Cardini 
2019, 2020b, 2023). All these issues are related to the biological arbitrariness of the superimposition, 
which has been acknowledged in a slightly different context (Moyers & Bookstein 1979) since before 
the time of the ‘morphometric revolution’ (Rohlf & Marcus 1993), but had been emphasized mainly by 
the proponents of alternative GMM approaches (Lele 1991; Richtsmeier et al. 2002).

Even within the narrow context of taxonomic comparisons using GMM, my guidelines have their 
own big limitations that I am happy to acknowledge. First of all, there is an inevitable bias in relation 
to my research interests and experience in the ‘20 plus’ years since I started learning methods and 
working in this fi eld. In terms of taxa, for instance, although I have worked on a variety of groups and 
I am not a specialized theriologist, most of my research has been on mammals, which explains the 
choice of marmots in this study and a prevalence of mammalogical examples. The main scaffold for 
the research design, however, is that of Rohlf et al. (1996), which was one of the earliest applications 
of Procrustean GMM to taxonomy and has served as a model for many other studies (see Introduction 
for more references). The most important difference, in my papers, is that a few common mistakes of 
the early days of Procrustean GMM (e.g., the occasional misuse of partial warps, later acknowledged 
by Rohlf 1998) have hopefully been removed. Also, I have somewhat expanded the analyses of that 
pioneering paper by often using resampling methods, as well as by including the study of allometries 
and the comparisons of morphological variance.

28 Most of the main GMM books are nicknamed using the colour of the cover.
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Beyond free user-friendly software: why learning R
In terms of tools available for taxonomic applications of GMM, much more important than not having 
exemplifi ed semilandmarks in this study (but see Appendix A for a comment on these ‘special points’) 
are the limitations imposed by adopting user-friendly software. I made this choice after originally 
considering to implement everything in R. I did not do it, in the end, because scientists who are 
already ‘fl uent in R’ can easily write scripts for all the analyses I suggest. In contrast, taxonomists, 
who do not already use R, might fi nd it hard to learn a method, such as GMM, they have little or no 
familiarity with, while also learning how to write code in a complex statistical environment (Eglen 
2009). Unless a researcher already has some programming experience, learning fi rst GMM and later 
R (or vice versa) may be, for most users, simpler than trying to do both at the same time. Learning R 
is, nonetheless, advisable, especially for younger scientists and taxonomists who plan to extensively 
use GMM (or other quantitative methods) in their work. For the fi rst steps in R, there is a wide range 
of free online tutorials and guides and, although they reduce fl exibility and restrict the analytical 
options, there are some user-friendly graphical interfaces such as R Commander (Fox 2005, see also 
https://r4stats.com/2022/02/09/r-graphical-user-interface-comparison/ for alternatives). Tips on R 
commands or even scripts (to be carefully checked and acknowledged!) might now be obtained also 
using chatbots, such as the popular ChatGPT (https://openai.com/chatgpt). With R, there is versatility 
and a constant development of new packages for virtually all types of analyses in biological research. It 
is open source, and thus everyone can check that algorithms and computations are correct. Yet, especially 
in applications that are less commonly used and in fi elds of research with a limited number of experts, 
one cannot exclude errors in packages and scripts (Claes et al. 2014). Nonetheless, assuming everything 
has been done accurately, once a script has been written for a study, it is easy to share and modify it, 
re-run it or recycle it for a different research project. Scripting may be slow, but performing the analyses 
becomes faster.

Among the methods I made a limited use of in this work, there are several examples of how R can 
help to improve and expand the analyses. For instance, R allows to perform cross-validated bgPCAs 
both for classifi cation and ordination using the groupPCA() function of Morpho (Schlager 2017). 
Tests of group mean differences in size or shape can be run using permutations of distances with the 
adonis2() function, which also calculates the corresponding Rsq, in Vegan (Oksanen et al. 2022). 
Bootstrapping to estimate confi dence intervals also becomes relatively easy using functions such as 
sample(), which is part of the base R package (R Core Team 2023). Using bootstraps in R, one can 
also assess the robustness of a phenogram of mean shapes (Caumul & Polly 2005; Cardini & Elton 
2008), estimate confi dence envelopes in ordinations (Nagorsen & Cardini 2009) and perform extensive 
randomized subsampling experiments to assess the sensitivity of results to small and heterogeneous 
N (e.g., Cardini et al. 2021). With R, it is also easy to subset landmarks and semilandmarks and, thus, 
explore the congruence of fi ndings with different confi gurations (Adams et al. 2011; Watanabe 2018), 
as well as the impact of dimensionality when p / N is large. The number of packages for morphometric 
analyses in R is already fairly large and likely to increase. In April 2023, searching “morphometrics” 
in https://cran.r-project.org/web/packages/available_packages_by_name.html, I retrieved at least 10 
packages specifi c to morphometric analyses, mostly using GMM and Procrustes methods. Among the R 
packages useful for morphometricians, there are also some, like StereoMorph (Olsen & Westneat 2015) 
and SlicerMorph (Rolfe et al. 2021), that facilitates the collection and visualization of 3D data using 
low-cost photogrammetry.

Main steps and results, in brief
The aim and limitations of the study have been mentioned. Let me, now, concisely go back to the results, 
as well as the main suggestions and most important steps of the guidelines (emphasized in bold in this 
summary subsection).
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As in all scientifi c research, a careful inspection of the literature on the topic one is interested in is, of 
course, preliminary to all other steps and fundamental for a careful study design. For marmots, most of 
the systematic research using morphology is old (see references in Wilson & Reeder 2005) and, at least at 
the level of subspecies, a revision is likely needed. There are, however, molecular phylogenetic analyses 
(Steppan et al. 1999, 2011; Kerhoulas et al. 2015; Rankin et al. 2019; Mills et al. 2023) and several 
interspecifi c comparisons of phenotypic variation, including morphometric analyses using traditional 
(Hoffmann et al. 1979) or geometric morphometric methods (Cardini et al. 2009, and references therein).

The choice of the study structure is critical in morphometrics and taxonomy. Mandibular morphology 
is often investigated in rodents to assess evolutionary differences (Velhagen & Roth 1997; Michaux et al. 
2007; Renaud et al. 2007; Álvarez et al. 2021), including in marmots (Hoffmann et al. 1979; Cardini 
2003; Nagorsen & Cardini 2009). However, practical considerations, such as sample availability, are 
as important as anatomical and evolutionary knowledge. Likewise, a careful selection of landmarks 
is necessary. The landmark confi guration must capture the aspects relevant to the study questions. On 
marmot mandibles, I used landmarks that describe the overall proportions of this structure. I started with 
a larger confi guration, but later excluded the most imprecise landmarks. Indeed, after data collection, the 
assessment of landmark precision and, more generally, of measurement error are the fi rst analytical 
steps, together with the search for potential outliers.

Prior to the data acquisition for the main project, however, a researcher might also want to perform a 
pilot study on a small sample of a few species (subspecies or populations), for which specimens are 
easy to fi nd in her/his institution or a nearby museum. A pilot study also provides the opportunity for 
a prospective power analysis, which is more useful to plan the minimum desirable sample sizes than 
the mostly retrospective tests I performed. With marmots, simulations showed that power is adequate in 
interspecifi c comparisons of mandibular shape even when samples are small (N = 10). Yet, such small 
samples do not allow accurate tests of sex differences. Besides, despite adequate power in between 
species tests, small samples are likely to inaccurately estimate means, variances and covariances 
(Cardini et al. 2021), and might infl ate group differences and prevent a robust validation of results using 
classifi cation methods such as DA/CVAs or bgPCAs (Kovarovic et al. 2011; Cardini & Polly 2020; 
Rohlf 2021).

Once the dataset is collected and ‘cleaned’ (by removing potentially low precision landmarks and outliers), 
the proper group comparison of size and shape starts. As common in taxonomic comparisons, I chose 
adults for the North American marmot study. However, this still requires assessing sexual dimorphism 
before comparing groups. Tests of sexual dimorphism one species at a time showed that it is typically 
very small in marmot mandibles, except when it is likely infl ated by comparisons of small numbers of 
females and males. That sexual dimorphism is negligible, and similar in magnitude and direction across 
species, was confi rmed by the species by sex ANOVA. The ANOVA also allowed to explore the relative 
magnitude of sex and taxonomic differences, with the latter shown to be much larger. Thus, sexes were 
pooled and species compared.

Interspecifi c tests demonstrated large and signifi cant differences, with a few exceptions for mandibular 
size. VAN turned out to have mandibles of the same average size as hoary marmots, which is unsurprising 
given their phylogenetic relatedness (Kerhoulas et al. 2015). Yet, this result is interesting, as it does not 
follow the island rule (Millien & Damuth 2004; Lomolino et al. 2013), which predicts smaller size on 
islands for large rodents. However, the Vancouver Island is a large island in a temperate-cold region. 
Thus, the advantages of a larger size for a better thermoregulation may have countered other selective 
pressures that generally promote a smaller size in medium and large insular mammals (Lomolino et al. 
2013).
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The other interesting exception, where differences in average mandibular size were almost inexistent, 
came from the comparison of woodchucks and Alaskan marmots. Woodchucks live at lower altitude, 
mostly on plains, and may be less strongly impacted by cold and a short growing season. Alaskan 
marmots, in contrast, live near the Arctic, in an extreme environment, but are unusual for their small-
to-intermediate body mass, compared to other marmot species (Armitage 2014). The Alaskan marmot, 
however, is relatively poorly studied and specimens are diffi cult to fi nd. Most of those in my small 
sample were collected by Rausch. Year and locality are unknown for these specimens, but it is likely 
that they represent closely related individuals, possibly from the same colony or from a group of 
neighbouring families. Thus, not only statistical power and accuracy are low in my Alaskan marmot 
sample, but chances are good that the majority of the specimens are strongly autocorrelated. Because 
the observations are not independent, there is probably a bias in the estimates for this sample. The small 
sample of Olympic marmots could have similar issues. However, the geographic range and population 
size of this species is much smaller than that of Alaskan marmots, which suggests that the sample could 
be less strongly impacted by poor representativeness and autocorrelation. Yet, both species provide 
good potential examples of how poor sampling should be carefully considered in the analyses and the 
interpretation of their results. Indeed, even with mandibular differences in shape, that are always fairly 
large and highly signifi cant, one cannot exclude inaccuracies, especially in the smallest samples.

In terms of shape variation, the analysis confi rms that, even using samples of woodchucks, yellow-
bellied and hoary marmots larger than in previous studies (Cardini et al. 2009; Nagorsen & Cardini 
2009), VAN remains the most distinctive species for mandibular morphology. The long, posteriorly 
curved coronoid is almost diagnostic for VAN, although it might occasionally occur in other species. 
This is analogous to what happens with its dark fur, which is consistently found in VAN but may be 
present at low frequency in some populations of other species (Armitage 2009). For VAN, it might have 
been more accurate to separate the modern and subfossil samples, but I did not do it to simplify the 
design. There is no appreciable change in average size between modern and subfossil mandibles, but 
mean shape differences are signifi cant (not shown). However, the magnitude of this within-species time-
related variation is about half of the magnitude of VAN average interspecifi c differences (Rsq 11.8% vs 
19.4%). Consistent with this estimate of larger inter- than intra-specifi c variation, the large majority of 
VAN individuals (76%) clusters together, to the exclusion of all individuals of other species except two, 
in a UPGMA phenogram of shape (not shown). The tight clustering of most specimens in VAN explains 
why, even pooling modern and subfossil mandibles, this species has the highest cross-validated hit-rate 
in the DA/CVA of shape. That differences within VAN are much smaller than interspecifi c differences 
had already been shown using a slightly different confi guration of mandibular landmarks (Nagorsen & 
Cardini 2009). The relative homogeneity of the VAN sample was also demonstrated by the 30% smaller 
size and shape variance in this species compared to hoary marmots. The lower phenotypic variation 
and distinctive mandibular shape of VAN are in agreement with the expectations of the hypothesis of a 
founder effect in the ancestral population that originated the modern and subfossil samples (Cardini 2003; 
Nagorsen & Cardini 2009). Regardless of the relatively negligible separation (compared to interspecifi c 
variation) between the modern sample and the VAN subfossils, I stress that it is important to explore 
potential subgroups within a species, before deciding whether or not to pool them in interspecifi c 
analyses. In a didactic study, I opted for pooling to increase N, but excluding the subfossils, or keeping 
them as a separate samples, are also potential options. In fact, using separate samples for modern and 
extinct populations is generally advisable, as results are potentially more interesting and accurate.

A main study question, which was not asked in our previous example of how to perform taxonomic 
comparisons using Procrustean GMM (V&C), concerns the effect of size on shape. With large 
differences in mandibular size among some marmot species, one might be interested to know if shape 
differences are mostly size-related (i.e., allometric). Allometry is pervasive in evolution and, in the 
context of morphological change, may be crucial to preserve function (Emerson & Bramble 1993). 
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In marmots, however, mandibular size was found to explain relatively little shape variation. Yellow-
bellied marmots were the only exception. Their strong pattern of allometric change is likely related to 
their larger variability in size, probably, in turn, due to a broader ecological niche, in terms of habitat 
and altitudinal range (Armitage 2014). With a generally small effect of size on shape, controlling for 
allometry is unlikely to appreciably change results. This expectation is consistent with the totally 
negligible effect on hit-rates using ‘size-corrected’ shape in the DA/CVA. Yet, the use of ‘size-corrected’ 
shape was only exemplifi ed in this study, because the interspecifi c divergence in allometric trajectories 
prevented an accurate application of allometric corrections. Interestingly, however, the comparison of 
allometries among species produced some preliminary evidence that suggests a degree of congruence 
between allometric divergence and phylogenetic separation, since divergence was larger between than 
within marmot subgenera.

What is new? From a broader assessment of measurement error to the sensitivity of results to 
sampling
Finally, from a methodological perspective, the protocol for taxonomic studies using GMM I have 
exemplifi ed adds a few new possibilities for exploring group differences in more detail compared to 
V&C. As in the previous subsection, I emphasize the new analyses using characters in bold.

Power analysis, allometry and differences in the magnitude of variance have already been mentioned. 
In part A, however, I showed how to quantify and plot digitization error (part A: fi g. 2, table 3) so that 
low precision landmarks are easier to spot. I also exemplifi ed, using data from previous studies and 
a simple simulation (Part A: fi g. 5), how measurement error may bias results when (a) there is a 
consistent systematic error across most or all landmarks in relation to a time-lag in the data collection, 
when (b) a single landmark is highly imprecise and when (c) error is isotropic but very large. In 
the fi rst two cases, one observes error-related group structure that biases results, whereas in the latter 
measurement error might mask true group differences.

In both papers, I also demonstrated of how to very preliminarily explore the impact of small sample 
size on results. The basic idea is to extract random subsamples from the species with the largest 
samples and assess the sensitivity of results not only when N is smaller (as small as in the species 
with the lowest N), but also when all species have the same N (balanced design). Thus, I assessed 
power in tests of within-species mean sex differences, as well as tests of species mean differences, 
using N comparable to that of the smallest samples (Table 5). I also used randomized subsample means 
to re-estimate mean shapes in the largest samples and check if, despite the larger sampling error, they 
suggested the same similarity relationship (Figs 6–7 in part B). The assumption of these randomized 
subsampling experiments is that fi ndings from random subsamples of the largest species apply to the 
species with the smallest samples. If this assumption is correct in my North American marmot dataset, 
power might be adequate and estimates of means fairly precise in interspecifi c comparisons involving 
the small samples of Alaskan or Olympic marmots, but not in within-species tests of sexual dimorphism 
in these same species (as well as in VAN, where most individuals are unsexed).

Then, can we be sure that samples of just ~ 15 individuals in Alaskan and Olympic marmots are adequate 
for studying between species differences? Probably we cannot because, even if fi ndings from randomized 
subsamples were generalizable across species, the subsample of the larger species do not simulate a bias 
in the data collection. That such a bias is likely in Alaskan marmots, and cannot be completely ruled out 
in other species, has already been discussed. Excluding small samples from the main analyses is an 
option to, at least, check that small samples do not alter the conclusions for the species with the largest 
samples. For marmots, the effect of the smallest samples on the main comparisons was negligible. 
This result and similar ones in the analyses of subsamples are interesting. Nonetheless, a researcher 
might worry that all the various sensitivity analyses, I exemplifi ed, not only require extra efforts, but 
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also make results less easy to summarize. Yet, I consider them worth, because they help to demonstrate 
what fi ndings are more robust. It is these robust results, that, I argue, should be mainly discussed by a 
researcher. Others may disagree or might simply prefer a compromise to publish more and faster, rather 
than investing time to increase confi dence using sensitivity analyses.

Final remarks on GMM in taxonomy
GMM is likely to remain an important tool for taxonomists. It may even become more popular, as museum 
collections are digitized and become accessible online, reducing the economic and environmental costs 
of visiting many museums. This is nicely exemplifi ed by projects such as https://www.dissco.eu/ or 
https://www.idigbio.org/. As technologies for obtaining 2D and 3D images go on improving, it may 
also become easier to collect data in the fi eld. A fairly cheap smartphone, as long as one demonstrates 
its accuracy for the specifi c task, might sometimes be enough. In some cases, it may even be possible to 
obtain images of anatomical parts or entire animals from live individuals, without the need of sacrifi cing 
them. Fishes, for instance, can be captured, a nesthetized, carefully positioned and photographed, and 
rapidly released (Herler et al. 2007). Photographs of live individuals have also been used, in combination 
with genetics, to uncover cryptic diversity in Hermann’s tortoises (Djurakic & Milankov 2020). Similar 
approaches have a clear potential in other organisms with complete or partial exoskeletons, including 
arthropods, which represent the majority of living animal species (Zhang 2013).

With my two papers, I hope to have suggested a fairly detailed step-by-step protocol for GMM 
comparisons of groups in taxonomy, but also in other fi elds interested in morphological group differences, 
including forensic and biomedical applications. The analyses are extensive, but easy to replicate and 
explained in simple terms. I state the obvious, but must stress that, even if all steps are carefully followed 
using large samples that produce robust evidence of group differences, taxonomists should resist the 
temptation to name new species or subspecies exclusively on the basis of morphometrics. This might 
be somewhat inevitable in palaeontology, where morphology is the main and often only criterion to 
describe taxa. However, even in this fi eld, when modern analogues or relatives exist for the fossils a 
researcher is studying, one could fi rst build a model that approximately estimates the expected degree of 
interspecifi c morphological differences in a lineage. For instance, Harvati et al. (2004) showed that the 
magnitude of cranial differences between adults of modern humans and Neanderthals is comparable to 
that of well studied species, or even genera, of living primates. Yet, phenotypic and genetic data can tell 
different stories and we now know that the separation between us and Neanderthals was incomplete, and 
hybridization was not rare and might have involved other hominins as well (Lahr 2021, and references 
therein). Thus, morphometrics provides an important line of evidence on evolutionary separation, but, on 
its own, it can only be preliminary. For a sound taxonomic assessment, the approach must be integrative 
and ideally combine genetic, eco-ethological, meristic and morphometric data (Dayrat 2005).
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Supplementary fi les
Formats: mj.txt = MorphoJ (with ‘id’, the specimen label*, in the fi rst column); past.txt = PAST (with 
its own label in the fi rst column, which for multivariate analyses also contains the group colour code); 
nts = TPS Series.

*(bro_mle_MVZ_8360 is a specimen that should be renamed as cal_mle_MVZ_8360, because it is a 
hoary marmot, as correctly reported in the species classifi ers. In the label, which was not used for any 
analysis, I kept the wrong abbreviation (bro) used in the original jpg image name. However, in general, 
it is better to have accurate, descriptive labels, as discussed in V&C - see main text).

Supp. fi le 1. ALL_RAW_15L_N462by2.mj.txt: this is the main data fi le with the raw coordinates of all 
15 landmarks and 462 individuals (including possible outliers), each with its two digitizations. It is the 
main morphometric dataset, from which all others can be obtained. It should be used in MorphoJ for 
assessing ME, but also, once low precision landmarks and outliers are removed, it can be used for all 
main analyses with averaged individuals (Preliminaries, Average observations by ... using the classifi er 
‘indiv’). https://doi.org/10.5852/ejt.2024.934.2529.11383

Supp. fi le 2. ALL_CLASSIFIERS.mj.txt: the fi le contains the following variables: subgenus, species, 
modern_paleo (which is relevant only for M. vancounverensis in order to distinguish recent and subfossil 
specimens), sex, indiv (an integer used as a simple individual identifi er useful to recognize duplicates), 
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side (of the mandible), OUTLIER (marks the 17 potential outliers, which were excluded from the main 
analyses), collection (where specimens originated), catalogue_number (in the corresponding museum), 
year_coll (year when the specimen was captured), Country, Province_State, Locality (with these last 
three variables containing the information, if available, on geographical origin of a specimen).
https://doi.org/10.5852/ejt.2024.934.2529.11385

Supp. fi le 3. ALL_COVARIATES.mj.txt: this fi le can be created from the previous one, as it simply 
recodes a few variables using integer numbers (species, sex - with 0 for females and 1 for males - and 
year_coll, which was already numeric). For instance, it can be useful to test sex using regressions on 
dummy variables after removing outliers and unsexed individuals (in MorphoJ: Preliminaries, include 
or exclude observations) and splitting data by species (in MorphoJ: Preliminaries, Subdivide dataset 
by ...). HOWEVER, the species covariate cannot be used for similar purposes without being modifi ed. 
For ANOVAs/MANOVAs using the regression approach, one needs a design matrix. For pairwise 
tests of species differences using regressions, one has fi rst to subset the data (e.g., select VAN and 
woodchucks by fi rst splitting by species and then combining these two species in MorphoJ) and probably 
replace the species code with that conventionally employed for dummy variables (say, VAN = 1 and 
woodchuck = -1). https://doi.org/10.5852/ejt.2024.934.2529.11387

Supp. fi les 4–8. EXAMPLE FILES FOR SPECIFIC ANALYSES (potential outliers excluded; 12 
landmark confi guration).

Supp. fi le 4. TESTING_SDM_CS_12L_N356.past.txt: this is to run the species by sex ANOVA of CS 
in PAST. It only includes the 356 specimens of known sex. The main variables are sp.n (coding species 
with an integer as required in PAST for the two-way ANOVA), sex.n (coding males as 1 and females 
as 2) and CS (centroid size). Other variables are described above and can be ignored. Some (species, 
sex and indiv) are included only as an aid to identify specimens; sp.nBigN codes species with largest 
samples with an integer if one wants to repeat the ANOVA after excluding small samples (drag this 
variable so that it replaces sp.n and then select only the rows with woodchucks, hoary and yellow-bellied 
marmots). https://doi.org/10.5852/ejt.2024.934.2529.11389

Supp. fi le 5. TESTING_species_CS_12L_N445.past.txt: this is an example of how to organize 
data, after pooling sexes, for most univariate analyses/plots in PAST. For instance, it can be 
used for a one-way ANOVA testing species differences in CS or for drawing a box-plot of CS. 
https://doi.org/10.5852/ejt.2024.934.2529.11391

Supp. fi le 6. TESTING_SDM_SH_12L_N356_sexed.nts: this is the landmark data to run the MANOVA 
in TPSRegr as explained in the main text of the second paper (B2). It only includes the 356 individuals 
of known sex. https://doi.org/10.5852/ejt.2024.934.2529.11393

Supp. fi le 7. TESTING_SDM_SH_12L_N356_dummy_variables_MANOVA.nts: this is the design 
matrix to run the MANOVA in TPSRegr as explained in the main text of the second paper (B2). It only 
includes the 356 individuals of known sex. https://doi.org/10.5852/ejt.2024.934.2529.11395

Supp. fi le 8. TESTING_SLOPES_etc_STATIC_ALLOMETRY_12L_N445.nts: this is the landmark 
data to run the MANCOVA in TPSRegr as explained in the main text of the second paper (B6).
https://doi.org/10.5852/ejt.2024.934.2529.11397

Supp. fi le 9. TESTING_SLOPES_etc_STATIC_ALLOMETRY_12L_N445_dummy_variables_
MANCOVA.nts: this is the design matrix to run the MANCOVA in TPSRegr as explained in the main 
text of the second paper (B6). https://doi.org/10.5852/ejt.2024.934.2529.11399
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Appendix B
C hecklist of the main steps
This is a non-exhaustive checklist to help beginners not to miss important steps in their GMM analysis. 
It should be used in combination with Fig. 1 of part A.

1. Did you draft a series of clear, well defi ned study questions? 

2. Following the hourglass model of scientifi c research, the study questions conclude the introduction 
that starts with the broader reasons to perform the research, goes on with a brief review of the 
relevant literature and ends with the specifi c details of the current study. In relation to the research 
questions, I recommend to check that the study structure rigorously follows the same order as the 
main questions in all sections (i.e., methods for hypothesis 1 explained before those for hypothesis 
2 etc.; same reasoning for the results and discussion, with the discussion starting from the specifi c 
results of your study and ending with broader implications, generalizations and future directions).

3. Did you do a detailed search in the literature for studies related to your main study questions?

4. Is GMM a good option for your research or could you get more accurate answers with other 
approaches?

5. Have you selected a life stage or age group for the taxonomic comparison? Do you know if sexual 
dimorphism is important in the study group?

6. Have you considered whether enough specimens may be available? The literature might help 
guessing an approximate number, but a prospective power analysis is also an option.

7. Have you gathered enough information on the study groups, including their distribution range, 
to be sure that not only sample size is adequate but also that the sample is representative of the 
populations being studied. In this respect, if information on the locality of origin is available, plotting 
the specimens on a map, and comparing it to published maps of the distribution range for the study 
taxon, may be of help to spot gaps as well as clusters of observations.

8. Did you consider carefully what the most informative anatomical structure is for your taxonomic 
study? Practical issues may also be important: the study structure should be easy to obtain and 
measure using a standardized protocol. For instance, for tetrapods, post-cranial material is usually 
less abundant in museum collections; skulls may be more common (and important, if used to describe 
type specimens); mandibles are less informative than crania, but may be a good compromise for a 
preliminary 2D analysis etc.

9. On the selected study structure, did you consider what the most informative landmarks are? Here 
too one might have some practical considerations (certain landmarks may be potentially useful, but 
hard to see or not available in all groups; others may be on parts that are easily broken or missing; 
too many landmarks might lead to problematic p / N ratios etc.).

10. Have you tried a small pilot study to better understand possible issues with both the data collection 
protocol and the analysis?

11. Typically, you should be using both size and shape in taxonomy: if you focus only on shape, is this 
justifi ed? Bear in mind that most of the time it is not, and size is as important as shape and, in fact, 
usually easier to analyse and interpret.
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12. Have you tried to have replicates (at least duplicates) of each step of the data collection in a 
representative subsample, if not in all individuals, to assess measurement error?

13. After collecting data, and making backup copies on portable hard-drives or the cloud, have you 
checked evident errors (wrongly labelled or duplicated specimens; inconsistent scale factors or unit 
of measurements – e.g., inches or cm etc.; issues with using semicolon or commas in spreadsheets, 
depending on the language of the operating system; missing information – e.g., sex, locality, year 
of collection etc.).

14. Having digitized the data, including possible replicates, did you check if obvious outliers are evident?

15. After removing obvious outliers or correcting errors (e.g., swapped landmarks; missing or wrong 
scale factor etc.), have you assessed measurement error at least in a subsample? 

16. Did you consider a ‘time-lag’ effect that may introduce a bias in the measurements, if collected at 
multiple times with long interruptions (months or years)? Remember that one can mitigate against 
this risk by having a representative sample on which to re-train herself/himself to improve precision 
and which is re-measured any time the data collection is restarted, after a long interruption, to check 
for differences.

17. Biases are also likely when data are collected by multiple operators and/or using different instruments 
or techniques: have you thought about this and included this likely important source of error in the 
assessment of measurement error?

18. In the assessment of measurement error, as well as in all other analyses, have you considered common 
assumptions such as independent observations, homoscedasticity and, if required, normality? Have 
you at least explored these assumptions in the largest groups?

19. If very low precision landmarks are found, that might impact results or just make data noisier, have 
you reassessed measurement error and outliers after excluding those points?

20. With a cleaned dataset, the main analysis starts: have you considered what graphical techniques to 
use for complementing the numerical analyses? In the next points, I focus on the latter, but give for 
granted that they are always coupled with graphical approaches. Plots are as important as numerical 
tests and, with small samples, may in fact be the only option to at least very preliminarily explore 
the data. 

21. In gonochoric species, the assessment of sexual dimorphism is a fundamental fi rst step: is it large 
relative to interspecifi c differences? Does it vary across taxa (i.e., there is a signifi cant interaction 
between taxon and species)? I stress that I am assuming that age-related variability is controlled by 
selecting a homogeneous age group (e.g., adults).

22. Having provided sound evidence for the decision of pooling sexes or using separate sex analyses (or, 
even if less desirable, sex-correct the data), the taxonomic comparison can start. If the measurement 
error ANOVA and/or the taxon by sex ANOVA have already demonstrated overall signifi cant and 
large differences among study taxa, did you explore specifi cally which pair of taxa differ and how 
much? This is the series of pairwise tests of mean size and shape differences, where estimates of 
effect size (Rsq) are, as in all other analyses, as important as P values. In this, and similar cases of 
multiple tests of a specifi c hypothesis, bear in mind that type I error rates could be infl ated.
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23. To complement tests, have you explored group separation in ordinations and phenograms, as well as 
computing cross-validated classifi cation accuracy?

24. With DA/CVAs and similar techniques, did you consider typicality probabilities?

25. If differences are large, have you summarized mean differences and, for shape, visualized them 
using shape diagrams?

26. Have you explored if it is worth/possible to assess, and maybe control for, allometry in shape 
comparisons? In doing this, bear in mind the assumption of parallel allometries.

27. Is it interesting to also compare the magnitude of size and shape variance?

28. Have you checked the sensitivity of results to the inclusion of small samples? 

29. Have you checked the sensitivity of results to strongly unbalanced sample sizes? The question 
before this one might already provide a fi rst answer. Sometimes, it may be interesting to replicate the 
main analyses using balanced (with N equal to N in the smallest sample) randomized subsamples.

30. If p / N is large, can this affect your results? For instance, in ANOVAs and CVA/DAs, have you 
explored if the inclusion of a different number of PCs appreciably changes results?

31. Finally, have you carefully revised all analyses, assessed (and acknowledged) potential limitations, 
and stressed which fi ndings are more robust and which ones, in contrast, are uncertain and 
preliminary?
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