ENTOMOLOGISCHE MITTEILUNGEN aus dem Zoologischen Museum Hamburg

Herausgeber: Prof. Dr. H. STRÜMPEL, Dr. G. RACK, Dr. H. DASTYCH, Prof. Dr. R. ABRAHAM, Prof. Dr. W. RÜHM Schriftleitung: Dr. H. DASTYCH

ISSN 0044-5223

Hamburg

11. Band

15. Oktober 1995

Nr. 152

Zur Variablitität meristischer morphologischer Merkmale von *Simulium noelleri* Friedrichs, 1920 (Simuliidae, Diptera)

WALTER RÜHM*

(Mit 15 Abbildungen im Text)

Abstract

On the variability of meristic morphological characters of Simulium noelleri FRIEDR., 1920 (Simuliidae, Diptera)

The variability of essential meristic and morphological characters of larvae (L VII), pupae and the imagoes of a population of *Simulium noelleri* through the course of a year is presented in tabular form, the individual structures and characters being supplemented through figures. The findings, should they deviate, are critically compared with those made by various authors.

Allgemeine Bedeutung meristischer morphologischer Merkmale bei den Simuliiden

In den letzten 40 Jahren sind zahlreiche morphologisch-taxonomische und faunistische Arbeiten über die europäischen Kriebelmückenarten mit lokalem bzw. regionalem Bezug oder nach Faunengebieten getrennt veröffentlicht worden (vgl. u. a. Rubzow 1964, Knoz 1965, Knoz u. Sasinkova 1969, Davies 1968, Zwick 1974, Seitz 1992, Rühm 1993). Die Bestimmung der Arten bereitet nicht mehr die Schwierigkeiten

^{*} Herrn Dr. Dr. A. Lohse (Hamburg) zum Gedenken.

früherer Jahre, so daß die Simuliiden für praktische Zielsetzungen in der Fließwasserkunde genutzt werden können. Nur wenige Arten bedürfen wegen nicht ausreichender Bearbeitung und unsicherer Taxonomie der Klärung. Die weiblichen Mücken sind wegen ihrer relativen Merkmalsarmut in einigen Fällen schwer zu identifizieren. Wenn bei biologisch-ökologisch ausgerichteten Untersuchungen mit größeren Populationen gearbeitet werden sollten, müßten ausreichend Männchen zur Verfügung stehen, so daß die Identifizierung nicht ausschließlich auf die Weibchen beschränkt bleibt. Der "Gang der Bestimmung" vom Ei über die Larven und Puppe zur Imago ist kaum erschlossen. Mit der ersten mir bekannten Ei-Bestimmungstabelle von Timm (1987) wurde der Grundstock für einen derartigen "systematischen Gang" gelegt. In diesen Fällen können die Eiablage-Subhabitate und die sich entwickelnden präimaginalen wie imaginalen Populationen miteinander ohne weiteres verbunden werden wie es für Analysen zur Habitatbindung unbedingt notwendig ist.

Die Merkmalsarmut und Monotonie zahlreicher Strukturen zwingt zur Erfassung einer möglichst großen Anzahl meristischer morphologischer Merkmale und deren Prüfung auf den differentialdiagnostischen Wert. Dies ist nur möglich, wenn die Grenzen der Variabilität dieser Merkmale bekannt sind bzw. die mit anderen, ergänzenden Methoden festgelegten Unterschiede (z. B. Cytotaxonomie, Elektrophorese) auf ihre Übereinstimmung bzw. Abweichung mit der äußeren Morphologie geprüft werden können. Das Arbeiten u. a. mit dem Bestimmungswerk von Rubzov (1964) ist wegen der fehlenden wie unsicheren Angaben zur Variabilität und wegen der Überbewertung einzelner Merkmale wie z. B. der Pigmentierung, mit der Folge von Aufspaltungen, erschwert. Die morphologischen Strukturen sind nach wie vor Basiselemente, auf die aus taxonomischen Gründen wie die des Vergleiches zurückgegriffen werden muß.

Ermittlungen zur Variabilität meristischer Merkmale können sich auf eine Population zu einem bestimmten Zeitpunkt, im Jahresverlauf, auf eine Region oder auf das gesamte Verbeitungsgebiet (z. B. Kline bzw. Ökokline) erstrecken. Für die Populationsgenetik sind diese Merkmale ein nicht zu vernachlässigender Bezugspunkt ebenso wie für die Cytotaxonomie und andere diagnostische Verfahren.

Beim Vergleich des europäischen bzw. mitteleuropäischen taxonomischen Schrifttums fällt die lückenhafte Bearbeitung und bildliche Darstellung allgemein verbreiteter auch ohne Schwierigkeiten zu identifizierender Arten auf, die eine morphologische Differenzierung der Populationen im Rahmen biologisch-ökologischer Fragestellungen erschweren.

2. Die spezielle Bedeutung meristisch- morphologischer Merkmale bei Simulium noelleri

Zum ersten Mal wurden die meristischen Merkmale einschl. tabellarischer Zusammenstellung von Simulium (Boophthora) erythrocephalum De Geer erfaßt (Rühm 1971). Der Saisondimorphismus mit dem Ergebnis einer Art Simulium erythrocephalum De Geer (vgl. S. sericatum bei Rubzov 1964) wurde aufgedeckt, später durch biologischökologische Untersuchungen ergänzt. Diese Klarstellung war eine Voraussetzung für die Analyse der auf eine Art zu beziehende Populations- und Abundanzdynamik eines Plage- und Schaderregers. Die Biologie und Ökologie von Simulium noelleri wurde in mehreren Arbeiten untersucht (u.a. Rühm 1975, Timm 1988, Schütte 1990, 1992/93, Stöhr 1993).

Simulium noelleri ist eine zwar sehr weit verbreitete Art, aber an einen speziellen Monotop mit häufig enger räumlicher Begrenzung gebunden und kann daher gegenüber benachbarten Populationen stark isoliert sein. Sie überwintert im Eistadium (Rühm 1975, Timm 1988, Schütte 1990), das in unserer Fauna ein einmaliges Beispiel, Trockenfallen toleriert. Die Mortalität der Gelege liegt trotz spezieller Anpassungen (Timm 1988), vor allem bei sehr später Überflutung der Eier nach dem Winter, relativ hoch (Schütte 1990, 1992/93). Nur wenige Individuen überleben und bauen, u. a. durch die Fähigkeit zur Autogenie, bei rascher Entwicklung ab Frühiahr sehr schnell neue Populationen auf. Die Bindung der Art an einen speziellen Monotop enger Lokalisation, deren Folge häufig die Aufsplitterung in kleine Populationen (Habitat) ist, sowie die starke Dichteminderung während des Winters, lassen Simulium noelleri zu einem herausragenden Studienobjekt der Populationsgenetik innerhalb der Simuliiden werden (u. a. Problematik: Gründerpopulation, Gendrift). In diesem Zusammenhang, unabhängig von cytotaxonomischen Analysen, ist auch hier eine morphologische Bezugsbasis wünschenswert. Es müßte überprüft werden, ob die besondere Bindung an einen räumlich häufig eingeengten Monotop eine Aufsplitterung in kleine Populationen mit feststehenden morphologischen Strukturen hervorgebracht hat, die eine Artaufspaltung bzw. das Überschreiten von Artgrenzen über die molekulare und cytogenetische Ebene hinaus anzeigen.

3. Material und Methoden

Die Altlarven (L VII), Puppen und Imagines einer Jahresaufsammlung (1980) bis zur Eudiapause im Herbst aus dem Meißendorfer Teichgebiet (Celle) wurde in 70 %igem Alkohol fixiert. Die Imagines schlüpften aus eingesammelten Puppen. Verglichen wurden die Frühjahrs-, Sommer- und Herbstpopulationen, die verschiedenen Überläufen entnommen worden waren. Für die weitere Analyse wurde ein Stereopräparationsmikroskop, ein Lichtmikroskop, ein Leitz'scher und Abbe'scher Zeichenapparat sowie Präparationsbesteck verwendet.

Sofem es nicht zwingend notwendig ist, wird auf eine ausführliche Beschreibung der meristischen morphologischen Merkmale verzichtet. Im allgemeinen werden die tabellarische Zusammenstellung der Merkmale mit Angaben zur Variabilität sowie die Zeichnungen zum Vergleich als ausreichend angesehen. Nur bei abweichenden Befunden wird mit anderen Autoren kritisch verglichen.

Geringfügige Abweichungen z.B. Borstenanzahl in den Fächern, werden nicht erwähnt, liegen sie doch erfahrungsgemäß innerhalb der Variabilität der Art im gesamten Verbreitungsgebiet. Entsprechendes trifft für die Erörterung von Merkmalen großer Variabilität zu, die für die Diagnostik z.B. die Pigmentierung, in der Regel ohne Bedeutung sind.

4. Die Variabilität der meristischen morphologischen Merkmale von Simulium noelleri (Tabelle 1, Abb. 1-15)

Zwick (1986) und Zwick & Crosskey (1980) fanden heraus (vgl. Crosskey 1990), daß Simulium noelleri Friedrichs, 1920 (Friedrichs 1919, 1920 a, b, 1922) eine gute Art und die von, Rubzov (1964) getroffene Synonymisierung unzutreffend ist. Zuvor wurde die Biologie und Ökologie häufiger auf Simulium argyreatum syn. S. noelleri (Rubzov 1964) bezogen (Rühm 1975). Diese unrichtige Synonymisierung dürfte dazu beigetragen haben, daß S. noelleri in Europa größere Schäden zugeschrieben werden, die zumindest für Mitteleuropa nach den schlüssigen Untersuchungen von Schütte (1990, 1992/93) unzutreffend sind. Jetzt bereitet die morphologische Abgrenzung gegenüber

anderen Arten keine Schwierigkeiten. Die Cibarialarmatur, die vor kurzem erfaßt wurde (Rühm 1994), hebt sich nur geringfügig von der anderer Arten ab, ohne daß diesem Faktum beim derzeitigen Stand der Erfassung der Cibarialarmatur eine diagnostische Bedeutung zukäme.

Die zahlreichen Größenmessungen an Larven, Puppen und Imagines und den Strukturen während der Vegetationsperiode ergaben einen V-förmigen Kurvenverlauf. Die Größen der meristischen morphologischen Merkmale nimmt in den meisten Fällen vom Frühjahr gegen den Sommer bis Juli/August ab und steigt gegen den Herbst zu wieder an. Dies betrifft u. a. die Antennen, die Mundwerkzeuge, den Ventralabschnitt der Larven ebenso wie die Fadenlänge der Atemfäden der Puppe oder die Mundwerkzeuge und Genitalarmaturen (u. a. Gonostyl, Gonosternum, Gonofurca) beiderlei Geschlechts. Der Kurvenverlauf ist gegenüber einer frühschwärmenden Art wie Simulium (Odagmia) ornatum zeitlich etwas verschoben. Er ist bei plurivoltinen Arten, unabhängig davon, ob Eier oder Larven überwintern, universal gegeben, wenn sich die erste Generation noch unter den klimatischen Bedingungen des Frühjahrs mit relativ niedrigen Temperaturen bei regionalen Verschiebungen entwickeln kann und die nachfolgenden Generationen einem ausgeprägten Sommer mit höheren Temperaturen unterliegen (vgl. Rühm/Hechler 1974, Hechler/Rühm 1976, Schütte 1992/93). Die temperaturabhängige Entwicklungsgeschwindigkeit und die Möglichkeit der Nahrungsaufnahme innerhalb dieses Zeitrahmens beeinflussen die Größenentwicklung. Auch seriale Merkmale wie die Anzahl der Borsten der Kopffächer nehmen im Jahresverlauf ab und dann wieder geringfügig zu. Dabei könnte die Filterwirkung der Larven in Abhängigkeit von der Jahreszeit strukturbedingt unterschiedlich sein.

Der Umfang der Variabilität einzelner Merkmale ist unterschiedlich. Als sehr variabel erwiesen sich bei den Larven die Kopfzeichnung, mit heller Tendenz zum Sommer und dunkler zum Herbst, die Beborstung des Hypostoms mit Asymmetrien, die Beborstung und Bedornung der Puppen ventral und dorsal in ihrer Gesamtheit, die Länge des Fadenstammes der Atemfäden, die Form der Borsten und Dornen und die Pigmentierung der verschiedenen Körperteile u. a. der Beinpaare der Imagines. Nur die kräftigen Dornen des 3. und 4. Segmentes der diesbezüglich reich strukturierten Puppen variierten in ihrer Anordnung nicht.

Der bei *S. noelleri* festgestellte Borstenkamm ist dem von *Simulium tuberosum* (Lundstr., 1911) ähnlich, besitzt jedoch zusätzliche Einzelborsten (vgl. Podzuhn 1967). Seine Größe variiert im Jahresgang.

Mit den meisten Autoren, soweit Abbildungen und Beschreibungen verglichen werden konnten, stimmen die in der Tabelle angegebenen Merkmale weitgehend überein. Edwards (1920) beschreibt noch unter dem Artnamen Simulium subornatum den Kokon mit Fenstern. In dem mir vorliegenden Material nahm nur die Maschenweite in Richtung Kokonöffnung zu. Unterschiede in der Bezahnung (Form, Anzahl) der Mandibeln der Larven konnten gegenüber den Angaben von Rubzov (1964) und Davies (1968) festgestellt werden. Diese trifft auch für die Gonofurca gegenüber Rubzov (1964) und Davies (1966) zu. Die Beschreibung der Parameren durch Rubzov stimmt mit den eigenen Befunden nicht überein, jedoch die von diesem Autor beigefügten Abbildungen. Keine Übereinstimmung besteht bezüglich der Genitalplatte und der weiblichen Gonofurca gegenüber den Beschreibungen von Rubzov (1964). Meistens handelt es sich bei weiteren Merkmalen um geringfügige Abweichungen bzw. Varianten, die derzeit noch nicht sicher bewertet werden können. Gegenüber Rubzovs

58-77 µm

44-68 µm

(1964) Ausführungen könnte man vermuten, daß seine *S. noelleri* (= *S. argyreatum*) mit der in Mitteleuropa vorkommenden Art. *S. noelleri* Friedr. nicht identisch ist bzw., daß statt zwei, nur eine einzige Art beschrieben wurde.

Tabelle 1. Übersicht der wichtigsten meristischen morphologischen Merkmale im Jahresverlauf bei Simulium noelleri

bei Simulium noelleri					
ALTLARVEN (LVII) (Abb. 1-6), n = 100 (pro Jahreszeit)					
Merkmale	Frühjahr	Sommer	Herbst		
	stets graugelb gefärk				
Länge	7,7-9,5 mm	7,3-8,9 mm	7,3-9,3 mm		
	us am Hinterende ste				
Kopfkapselbreite	630-770 µm	580-740 μm	630-770 µm		
Antenne: mit Spitzch		·			
Abschnitt a	89-105 μm	77-105 µm	80-105 μm		
Abschnitt b	139-162 µm	126-154 µm	132-162 µm		
Abschnitt c	86-102 µm	74-102 µm	80-102 μm		
gr. Fächer (n)	40-45	43-61	45-61		
kl. Fächer (n)	24-32	26-38	23-36		
Spateln (n)	3	4-5	4-5		
Mundwerkzeuge Maxillartaster	139-154 µm	120-143 µm	129-154 µm		
Innenzähne (n)	7-13	8-15	8-12		
Mandibeln	329-369 µm	263-269 µm	269-289 µm		
Hypostom					
Zahnkante (Breite)	83-96 µm	71-96 µm	74-96 µm		
Länge	163-182 µm	148-176 µm	154-182 µm		
Entfernung Hypostom- Ventralausschnitt	57-93 μm	43-77 µm	49-93 µm		
Borsten einer Seite (n)	4-8	4-8	4-8		
	stets spitzbogenförmig				
Breite	213-263 µm	163-250 µm	188-263 µm		
Länge	168-228 µm	150-213 µm	163-225 µm		
Sklerit-Beborstung	UNPAARER VENTRALFUSS Sklerit-Beborstung				
Kamm aus Borstenbüscheln (n)	6-9	4-7	6-9		

64-77 µm

Kamm (Länge)

HINTERENDE: mit stets weißen Analschläuchen

Dornenreihen (n)	60-76	60-74	61-70
Haken dorsal (n)	9-15	11-15	9-11
ventral (n)	8-12	8-14	8-12
Analsklerit	393-485 µm	393-510 µm	367-485 µm

PUPPEN (Abb. 7-9), n = 80 (pro Jahreszeit, ohne Frühjahr)

GESAMTKÖRPER

Kokon (Länge):	-	4,6 mm	4,9 mm
Kokon (Breite):		1,95 mm	2,25 mm

KOPF

Höcker	1/1	
Beborstung S (Stirn)	2/2	
" G (Gesicht)	-	
" L (Lippen)	1/1	

THORAX

11101001	
Atemfäden (n)	8
Borsten an den	6-7
Atemfäden (n)	
Schwielen (n)	3-7

ABDOMEN

dorsal

uoisai		_
1. + 2. Segment	ohne Dornen	
3. + 4. Segment	je 8 Dornen	
5. + 6. Segment	ohne Dornen	
7. + 8. Segment	6-16 Dornen	
9. Segment	2 Dornen	

ventral

1 3. Segment	ohne Dornen	
4. Segment	2 Dornen	
5 7. Segment	4 Dornen	
8. + 9. Segment	ohne Dornen	

IMAGINES (Abb. 10-15)

MÄNNCHEN (Abb. 10-13), n = 100 (pro Jahreszeit)

GESAMTKÖRPER

Größe: (gemessen anhand der	3,0-3,3 mm	2,7-3,0 mm	2,8-3,0 mm
Flügellänge)			

KOPF

Antenne: Hellbraun, Basalglieder dunkelgelb, z.T. mittelbraun

Mundwerkzeuge: Lauterbornsches Organ stets klein und oval, kleiner als das des

Weibchens

Maxillartaster	3. u. 4. Glied	d ockerfarben, Basalg	lieder braun
(Länge)	770-850 µm	740-810 µm	760-830 µm

THORAX

Pronotum	rötlich-hell oder mittelbraun
Mesonotum	dunkelrotbraun, z.T. schwarzbraun, Silberstreifen in
	wechselnder Form
Behaarung	silbrig oder goldgelb, glänzende kurze Härchen
Scutellum	dunkelrotbraun u. mattiert o. bräunlichweiß mit proximal
	braunem Rand
Postnotum,	mittelbraun oder dunkelrotbraun, mattiert
Episternit	
Epimerit	ockerfarben, mattiert
Halteren	milchweiß

Beine

1. Beinpaar	Coxa gelb, Trochanter hellbraun, Femur gelb, Ende braun, Tibia Anfang u. Ende braun, Tarsus schwarzbraun
2. Beinpaar	Coxa u. Trochanter hellbraun, Femur u. Tibia gelb, Ende braun, Metatarsus Anfang gelb, Ende und Prätarsus dunkelbraun
3. Beinpaar	Coxa braun, Trochanter u. Femur gelb, Ende braun, Tibia gelb, Anfang und Ende braun, Meta- u. Prätarsus gelb

ARDOMEN

/ IDD OWIE IT		
Tergite	hellbraun	
Sternite	hell- oder mittelbraun	
Behaarung	lang, dunkelbraun	

äußere Genitalanhänge

ausere Geritaiarinange			
Gonosternum (Länge)	185-206 µm	166-197 µm	175-200 µm
(Breite)	154-191 µm	148-185 µm	150-188 µm
Gonofurca (Länge)	125-138 µm	100-120 μm	113-138 µm
Gonocoxit (Länge)	100-125 µm	87-114 μm	87-120 µm
(Breite)	200-250 µm	175-212 µm	195-240 µm
Gonostyl (Länge)	220-285 µm	200-246 µm	212-268 µm
(Breite)	104-114 µm	81-108 µm	81-114 µm

WEIBCHEN (Abb. 14-15), n = 100 (pro Jahreszeit)

GESAMTKÖRPER

Größe: (gemessen			
an anhand der	3,45-3,75 mm	2,95-3,25 mm	3,2-3,6 mm
Flügellänge)	i		

KOPF

Antenne: gelb, Basalglieder hellbraun o. mittel- bis dunkelbraun

Mundwerkzeuge

Maxillartaster (Länge)	860-970 μm	810-890 µm	850-930 μm
Maxillartaster	gelb, 2. Glied braun		
Lutzsches Organ	braun, oval > das des Männchens		

THORAX

Pronotum	dunkelgelb, z.T. mittel- bis dunkelbraun		
Mesonotum	Silberstreifen in wechselnder Form		
Behaarung	silbrig o. goldgelb glänzende, kurze Härchen		
Scutellum	gelb, z.T. dunkelrotbraun		
Postnotum	dunkelrotbraun		
Episternit	mattiert		
Epimerit	ockerfarben		
Halteren	milchweiß		

Beine

1. Beinpaar	Coxa braun,-Trochanter gelb, Femur braun, Ende dunkler, Tibia Außenkante weiß, Anfang u. Ende dunkelbraun, Tarsus schwarzbraun
2. Beinpaar	Coxa braun, Trochanter gelb, Femur gelb, Ende braun, Tibia dunkelgelb, Ende dunkelbraun, Metatarsus Anfang dunkelgelb, sonst dunkelbraun, Prätarsus dunkelbraun
3. Beinpaar	Coxa braun, Trochanter gelb, Fermur gelb, Ende dunkler, Tibia Anfang gelb, Ende dunkelbraun, Metatarsus gelb, Ende dunkelbraun, Prätarsus gelb, teilweise braun

ABDOMEN

Tergite	mittelbraun
Sternite	gelb o. hellbraun
Behaarung	dunkelbraun

äußere Genitalanhänge

adiscre C	or intalar in lar	90.		
Gonofurc	a (Länge)	300-350 µm	312-362 µm	312-375 µm
	(Breite)	212-238 µm	-	-
Genitalplatte (Länge)		112-138 μm	100-119 μm	100-125 μm
"	(Breite)	261-300 µm	212-250 µm	225-250 µm
Anallamelle (Länge)		112-138 μm	93-112 µm	106-126 μm
Ħ	(Breite)	150-188 µm	129-161 µm	144-175 µm

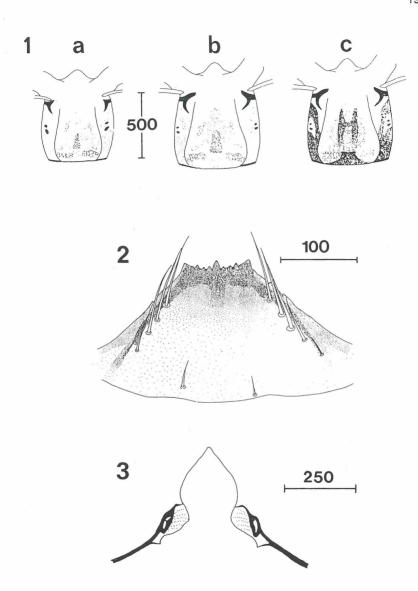


Abb. 1-3. Simulium noelleri Friedrichs, Altlarve: 1a-c = Frontclypeus (Aufsicht und Genae), Variabilität von Strukturierung und Pigmentierung; 2 - Hypostom (Aufsicht, ventral); 3 - Ventralausschnitt (Aufsicht). [Alle Messungen (Abb. 1-15) sind in μm angegeben].

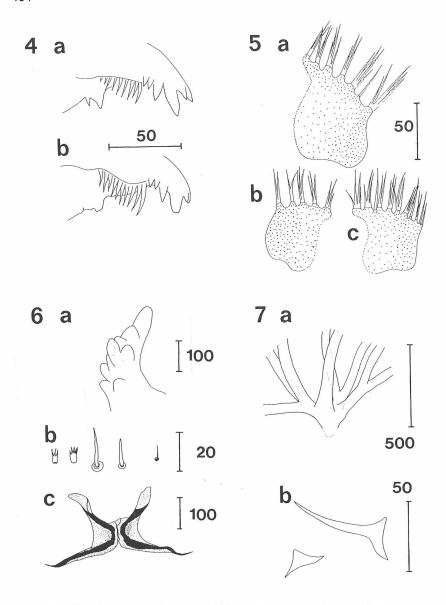


Abb. 4-7. Simulium noelleri Friedrichs, Altlarve (4-6): 4a-b = Ausschnitt des distalen Mandibelendes; 5 - Sklerit des unpaaren Thorakalfußes einer a: Frühjahrs-b: Sommer- und c: Herbstgeneration; 6a - Analschlauch; 6b - Dornen, Borsten, Haare im Bereich des Analsklerits; 6c - Analsklerit (Aufsicht); Puppe (7a, b): 7a - Atemfäden, Verzweigungsschema; 7b - Höcker der Ventralseite des Puppenkopfes (Aufsicht).

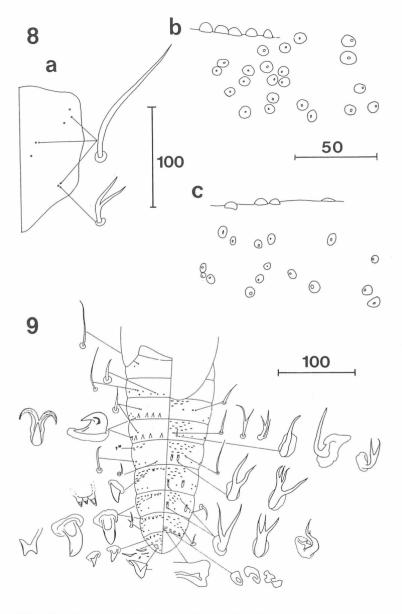


Abb. 8-9. Simulium noelleri Friedrichs, Puppe: 8a - Verteilung der Borsten auf der Ventralseite des Thorax; 8b und c - Tuberkeln der Herbst- und Sommergeneration; 9 - Schema links: Dorsalseite mit Haaren, Borsten, Dornen; rechts - Ventralseite mit Haaren, Borsten, Dornen.

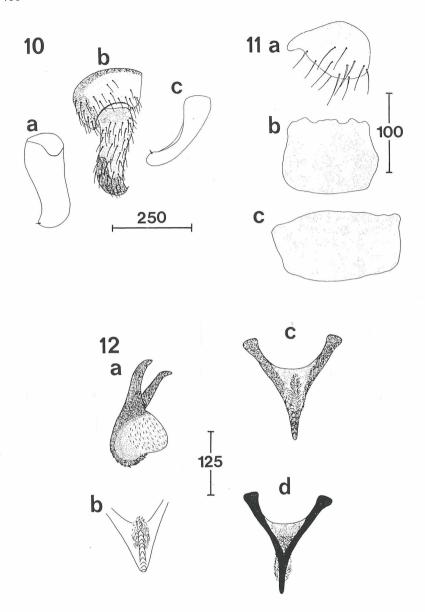


Abb. 10-12. Simulium noelleri Friedrichs, Männchen; 10a - Gonostyl, lateral; 10b - Gonocoxit, Gonostyl, ventral; 10c - Gonostyl, lateral; 11a - Cercus; 11b - letztes Tergit; 12a - Gonosternum, lateral; 12b - Gonosternum, ventral; 12c - Skizze des Gonosternums: Blick von oben auf die Zahnkante; 12d - Gonosternum, dorsal.

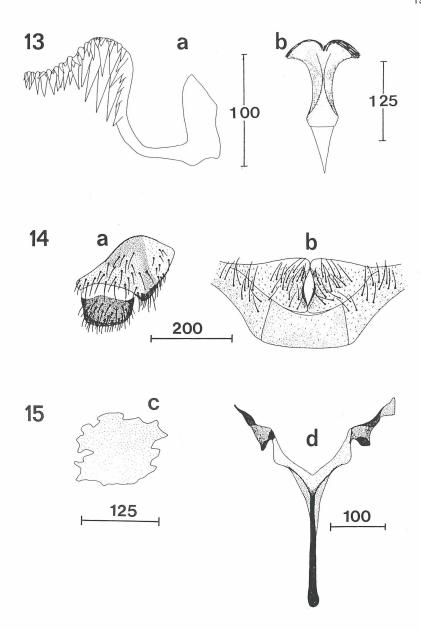


Abb. 13-15. Simulium noelleri Friedrichs, Männchen (13): 13a - Paramer; 13b - Gonofurca; Weibchen (14-15): 14a - Cercus, 14b - Genitalplatte, 14c - letztes Tergit; 15 - Gonofurca.

Danksagung

Für die Mitarbeit bei der Bearbeitung des aufgesammelten Materials bedanke ich mich bei Frau Preuß-Gartke (Kiel), Herrn K. Rupp (Zoologisches Institut und Zoologisches Museum Hamburg) und bei meiner Frau Verena.

Literatur

- Crosskey, R. W., 1990: The natural history of blackflies. 711 pp., Chicester. New York.
- Davies, L., 1966: The taxonomy of British blackflies (Diptera, Simuliidae). Trans R. ent. Soc. Lond., 118: 413-511. London.
- Davies, L.,1968: A key to the British species of Simuliidae (Diptera) in the larval, puppal and adult stages. Freshw. Biol. Sci. Publ., 24: 1-126. Ambleside. Westmoreland.
- Edwards, F. W.,1920: On the British species of *Simulium*. II. The early stages: with corrections and addition to part I. Bull. Ent. Res., 11: 211-246. London.
- Friedrichs, K., 1919: Untersuchungen über Simuliiden. Z. ang. Ent., 6: 61-63. Berlin.
- Friedrichs, K., 1920 a: Zur Kenntnis der deutschen Simuliiden. Sber. Abh. naturforsch. Ges. Rostock, N. F. 7 (2), 1918-1921: 1-16. Rostock (im Buchhandel nicht erschienen).
- Friedrichs, K., 1920 b: Neues über Kriebelmücken. Tierärztl. Wschr., 36: 567-569, Berlin.
- Friedrichs, K., 1922: Untersuchungen über Simuliiden (Teil 2). Z. ang. Ent., 9: 31-92. Berlin.
- Hechler, J. und Rühm, W., 1976: Ergänzende Untersuchungen zur potentiallen Natalität verschiedener Kriebelmückenarten (Simuliidae, Diptera). Z. ang. Ent., 81: 208-214. Hamburg.
- Knoz, J., 1965: To identification of Czechoslovakian Blackflies (Diptera, Simuliidae).- Prirod. Univ. Brno I. E. Purkyne, (Biol. 2), 6: 1-52. Brno.
- Knoz, J. und Sasinkova, V., 1969: Zur Kenntnis der Kriebelmücken (Simuliidae, Diptera) im Dyje-Gebiet in Morava. - Prirod Univ. I. E. Purkyne Brno (Biol. 25), 10: 13-44. Brno.
- Podszuhn, H., 1967: Gattungsbestimmung von europäischen Simuliiden-Larven (Diptera).-Gewäss. Abwäss., 44/45: 87-95. Düsseldorf.
- Rubzov, I. A., 1964: Simuliidae. Die Fliegen der paläarktischen Region (ed. E. Lindner), Bd. III, 689 pp. Stuttgart.
- Rühm, W., 1971: Zur Taxonomie und Morphologie von *Boophthora erythrocephala* De Geer. Dtsch. Ent. Z. N. F., I-III: 149-193. Berlin.
- Rühm, W., 1975: Freilandbeobachtungen zum Funktionskreis verschiedener Simuliidenarten unter besonderer Berücksichtigung von *Simulium argyreatum* Meig. (Diptera, Simuliidae). Z. ang. Ent., **78**: 221-234. Hamburg.
- Rühm, W., 1993: Der wissenschaftliche Beitrag der Kriebelmückenforschung in Deutschland seit 1960. In: Beiträge zur Taxonomie, Faunistik und Ökologie der Kriebelmücken in Mitteleuropa (ed. T. Timm, W. Rühm). Essener Ökol. Schriften, 2: 15-35. Magdeburg.

- Rühm, W., 1994: Über die diagnostische Bedeutung der Cibarialarmaturen mitteleuropäischer Kriebelmückenarten (Simuliidae, Diptera). Ent. Mitt. zool. Mus. Hamburg, **11** (149): 87-100. Hamburg.
- Rühm, W. und Hechler, J., 1974: Untersuchungen über die potentielle Natalität verschiedener mammolophiler Kriebelmückenarten unter besonderer Berücksichtigung von *Boophthora erythrocephala* De Geer. Z. ang. Ent., 77: 19-31. Hamburg.
- Schütte, G., 1990: Die Anpassung der Populationen der autogenen Kriebelmückenart Simulium noelleri Friedrichs, 1920 (Diptera, Simuliidae), an ein extremes Habitat.-Dissertation Fachbereich Biologie, Universität Hamburg, 95 pp.
- Schütte, G., 1992/1993: Ein latenter Fluktuationstyp als Schaderreger? Z. ang. Zool., 79: 393-408. Berlin.
- Seitz, G., 1992: Verbreitung und Ökologie der Kriebelmücken (Diptera, Simuliidae) in Niederbayern. - Lauterbornia, 11: 230 pp. Dinkelscherben.
- Stöhr, S., 1993: Atmung, Embryonalentwicklung und Habitatbindung bei vier nicht diapausierenden und einer diapausierenden Kriebelmückenart (Diptera,: Simuliidae). Dissertation Fachbereich Biologie, Universität Hamburg, 89 pp.
- Timm, T., 1987: Bestimmungsschlüssel für Eier und Eigelege von Kriebelmückenarten (Dipt. Simuliidae) unter besonderer Berücksichtigung mammaolophiler Schad- und Plageerreger. Anz. Schädlingskde, Pflanzenschutz, Umweltschutz, **60**: 68-74. Berlin u. Hamburg.
- Timm, T., 1988: Die Eibiologie der Kriebelmücken. Potenz und Toleranz und ihre Beziehung zur Habitatbindung (Diptera, Simuliidae). Arch. Hydrobiol., Suppl. **79:** 363-445. Stuttgart.
- Zwick, H., 1974: Faunistisch-ökologische und taxonomische Untersuchungen an Simuliidae, unter besonderer Berücksichtigung des Fulda-Gebietes. Abh. Senckenb. Naturf. Ges., 533: 111 pp. Frankfurt/Main.
- Zwick, H. 1986: Lectotype designation for *Simulium noelleri* Friedrichs, 1920. Aquatic Insects, **8:** 140. Lissè.
- Zwick, H. und Crosskey, R. W., 1980: The taxonomy and nomenclature of the blackflies (Diptera: Simuliidae) described by J. W. Meigen. Aquatic Insects, 2: 225-247. Lissè.

Anschrift des Verfassers:

Prof. Dr. Walter Rühm, Zoologisches Institut und Zoologisches Museum der Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Bundesrepublik Deutschland.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg

Jahr/Year: 1993

Band/Volume: 11

Autor(en)/Author(s): Rühm Walter

Artikel/Article: Zur Variablitität meristischer morphologischer Merkmale von

Simulium noelleri Friedrichs, 1920 (Simuliidae, Diptera) 185-199