Zur Lehre von der Reaktion des Protoplasmas auf thermische Reize.

Von Dr. Karl L. Schaefer.

Im Verlaufe von Studien über das quantitative Abhängigkeitsverhältniss zwischen Reiz und Reizeffekt stiess ich auf eine 1849 ausgeführte Untersuchung Nägeli's 1) über den Einfluss der Temperatur auf die Geschwindigkeit der Protoplasmaströmung. Danach gebraucht das Protoplasma von Nitella syncarpa um einen Weg von 0,1 mm zurückzulegen

60	Sekunden	be	i 1º	C.	3,6	Sekunden	bei	20^{0}	C.
24	77	"	5 º	"	2,4	"	n	26^{0}	"
8	n	"	10°	n	1,5	n	"	31^{0}	n
5	"	11	15^{0}	77	0,6	5 "	**	37°	

Aus dieser Reihe leitete Nägeli den Satz ab, dass die Zunahme der Geschwindigkeit für jeden folgenden Temperaturgrad einen kleineren Werth ausmache.

Später stellte W. Velten²) analoge Versuche an Zellen von Elodea canadensis, Vallisneria spiralis und Chara foetida an und fand, "in erster Linie als Bestätigung des Nägeli'schen Gesetzes, dass die Geschwindigkeit des Protoplasmas und der Chlorophyllkörner für jeden folgenden Temperaturgrad einen kleinen Werth darstellt".

Diese Schlussfolgerungen Nägeli's und Velten's aus ihren an sich offenbar sehr exakten Experimenten sind nun leider infolge einer Verkettung von Irrthümern gänzlich falsch, indem sie so ziemlich das Gegentheil von dem aussagen, was in Wirklichkeit der Fall ist. Dies ist um so bedauerlicher, als es sich hier um Thatsachen handelt, die für unsere Kenntniss von der Reizbarkeit des Protoplasmas eine nicht geringe Bedeutung haben, und die Angaben unserer beiden Autoren in mehr als einer schätzbaren Veröffentlichung der neueren und neuesten Zeit aufgenommen und verwerthet sind, ohne dass ihre Unrichtigkeit entdeckt worden wäre. Es dürfte daher nicht überflüssig sein, an dieser Stelle den wahren Sachverhalt klarzustellen.

Hierzu genügt eine Durchsicht folgender Tabellen.

In jeder derselben enthalten die Kolumnen I und II die von Nägeli resp. Velten angegebenen, III und IV die von mir daraus

¹⁾ Beiträge zur wissenschaftlichen Botanik. II. Heft. p. 77.

²⁾ Ueber die Einwirkung der Temperatur auf die Protoplasmabewegung. Diese Zeitschr. 1876. Nr. 12-14.

berechneten Werthe. Die Zahlen der Spalte II bedeuten die Zeit, diejenigen der Rubrik III die Geschwindigkeit, mit der die Plasmaströmung bei der sub I danebenstehenden Temperatur den Weg von 0,01 mm zurücklegt.

Tabelle I.
Betreffend Nägeli's Versuche an Nitella syncarpa.

Temperatur	Zeit	Geschwindigkeit	Geschwindig- keits-Zuwachs
10 C.	60 Sec.	0,01667	+ 0,02500
5	24	0,04167	+0.08333
10	8	0,12500	+0.07500
15	5	0,20000	+0.07778
20	3,6	0,27778	+0,13889
26	2,4	0,41667	+0.25000
31	1,5	0,66667	+0.87179
37	0,65	1,53846	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Tabelle II.

Betreffend Velten's Versuche an Elodea canadensis.

Temperatur	Zeit	Geschwindigkeit	Geschwindig keits-Zuwach
10 R.	50,0 Sec.	0,02000	+0,01448
2	29,0	0,03448	+0,00552
2 3	25,0	0,04000	+0,00608
4	21,7	0,04608	+0.01761
5	15,7	0,06369	+0,00124
6	15,4	0,06493	+ 0,00860
7	13,6	0,07353	+0,00280
8 9	13,1	0,07633	+0,00119
9	12,9	0,07752	+0,00651
10	11,9	0,08403	+0,00369
11	11,4	0,08772	+0,00156
12	11,2	0,08928	+0,00973
14	10,1	0,09901	+0,00851
16	9,3	0,10752	+0,00484
18	8,9	0,11236	+0,00258
20	8,7	0,11494	+0,01006
22	8,0	0,12500	+0.00158
23	7,9	0,12658	+0.00855
24	7,4	0,13513	+0.01639
25	6,6	0,15152	+0,00720
26	$6,\!3$	0,15872	+0.00257
27	6,2	0,16129	+0,00538
28	6,0	0,16667	+0.02201
29	5,3	0,18868	-0,00686
30	5,5	0,18182	-0.07071
31	9,0	0,11111	<u>_</u>
32	Wärmestarre.		

Tabelle III.
Betreffend Velten's Versuche an Vallisneria spiralis.

			0 1 : 2:
Temperatur	Zeit	Geschwindigkeit	Geschwindig- keits-Zuwachs
10 R.	45,0 Sec.	0,02222	+0,01481
2	27,0	0,03703	+0,00644
3	23,0	0,04347	+0.00370
4	21,2	0,04717	+0.01533
5	16,0	0,06250	+0,00792
6	14,2	0,07042	+0,01022
7	12,4	0,08064	- 0,00631
8	11,5	0,08695	+0,00920
9	10,4	0,09615	+0,02730
10	8,1	0,12345	+0,00155
11	8,0	0,12500	+0,02652
12	6,6	0,15152	+0.00232
13	6,5	0,15384	+0,01283
14	6,0	0,16667	+-0,02941
15	5,1	0,19608	+0,00392
16	5,0	0,20000	+0,02222
17	4,5	0,22222	+0.02168
18	4,1	0,24390	+0,00610
19	4,0	0,25000	+0.01316
20	3,8	0,26316	+0.02255
21	3,5	0,28571	+0,00840
22	3,4	0,29411	+0.00892
23	3,3	0,30303	+0,00947
24	3,2	0,31250	+0.02083
26	3,0	0,33333	+0.03704
27	2,7	0,37037	+0,01424
28	2,6	0,38461	+0,01539
29	2,5	0,40000	+0,01667
30	2,4	0,41667	+0.01811
31	2,3	0,43478	- 0,03478
32	2,5	0,40000	-0,09697
33	3,3	0,30303	- 0,13062
34	5,8	0,17241	0,06130
35	9,0	0,11111	
36	Wärn	iestarre.	_
	(1

Tabelle IV.
Betreffend Velten's Versuche an Chara foetida.

Temperatur	Zeit	Geschwindigkeit	Geschwindig- keits-Zuwachs
10 R.	20,00 Sec.	0,05000	+ 0,09124
2	7,08	0,14124	+ 0,04708
3	5,31	0,18832	+ 0,01576
4	4,90	0,20408	+ 0,02848
6	4,30	0,23256	+ 0,02385
8	3,90	0,25641	+ 0,03770
10	3,40	0,29411	+ 0,05071

Temperatur	Zeit	Geschwindigkeit	Geschwindig- keits-Zuwachs
11º R.	2,90 Sec.	0,34482	+0,03112
12	2,66	0,37594	+0.01016
13	$2,\!59$	0,38610	+0,00915
14	$2,\!53$	0,39525	+0.01969
15	2,41	0,41494	+0.00347
16	2,39	0,41841	+0.01637
17	2,30	0,43478	+0.02393
18	2,18	0,45871	+0.04129
19	2,00	0,50000	+0.01546
20	1,94	0,51546	+0.09060
21	1,65	0,60606	+0,14582
23	1,33	0,75188	+0.02331
25	1,29	0,77519	+0.03781
27	1,23	0,81300	+0,13039
27,5	1,06	0,94330	-0.09594
30	1,18	0,84745	0,03445
31	1,23	0,81300	-0,22821
33	1,71	0,58479	
34,25	Wärm		

Man sieht auf den ersten Blick, dass die Geschwindigkeit nicht, wie Velten sich ausdrückt, "für jeden folgenden Temperaturgrad einen kleineren Werth darstellt", sondern im Gegentheil überall von 1° an bis zu einem bestimmten Temperaturoptimum, jenseits dessen allerdings ein Abfallen beginnt, fortwährend wächst.

Will man sich nun des Weiteren darüber informiren, wie denn die Geschwindigkeit mit der Temperatur wächst, ob langsamer, rascher oder proportional, so kann dies entweder auf graphischem Wege geschehen oder arithmetisch, indem man, wie ich es in den Abtheilungen IV der vorstehenden Tabellen ausgeführt habe, jeden Geschwindigkeitswerth von dem nächstfolgenden subtrahirt. Jede der so gebildeten Differenzen repräsentirt den positiven oder negativen Zuwachs, den die links neben ihr stehende Geschwindigkeit erfährt, wenn die zugehörige Temperatur auf den nächstfolgenden Grad erhöht wird.

Wie man wiederum ohne Weiteres sieht, liegt ein Irrthum vor, wenn Nägeli das Gesetz aufstellt und Velten es bestätigt findet, dass "die Zunahme der Geschwindigkeit zwischen $+ \, ^{1}/_{2}{}^{0}$ und 37° C. für jeden folgenden Temperaturgrad einen kleineren Werth ausmacht". Das zeigen am deutlichsten gerade Nägeli's eigene Zahlen, Mit einer einzigen Ausnahme vergrössert sich hier die Zunahme der Geschwindigkeiten und zwar zuletzt sogar rapide. Ueberdies sei

als interessant hervorgehoben, dass zwischen 10° und 31° die Geschwindigkeit sehr annähernd geometrisch¹) mit arithmetisch ansteigender Temperatur zunimmt. Ist demnach in der Nägeli'schen Reihe eine ganz andere Gesetzmässigkeit enthalten, als ihr Urheber meinte, so lässt sich andererseits aus den Velten'schen Ergebnissen eine solche überhaupt nicht herauslesen. Am ehesten könnte man noch sagen, dass bei Elodea, Vallisneria und Chara die Geschwindigkeit unregelmässig proportional der Temperatur wächst, wenn man dabei mit Zugrundelegung der graphischen Darstellung unter "proportional" versteht, dass sämmtliche Ordinatenköpfe auf der die Spitze der ersten Ordinate mit derjenigen der letzten verbindenden Graden liegen.

Im Anschlusse hieran ist es für etwaige künftige Untersuchungen ähnlicher Art vielleicht lehrreich, auch noch den Fehler aufzudecken, der in der Ableitung des "Nägeli'schen Gesetzes" stockt. Eine Handhabe dazu bietet die graphische Wiedergabe aller vier Versuchsreihen, die Velten, jedenfalls unter dem Einfluss und nach dem Vorbilde Nägeli's, seiner Abhandlung beigegeben hat. Er hat sich die Berechnung der Geschwindigkeiten erspart und sie mit Hilfe eines Kunstgriffes durch die Zeiten auszudrücken versucht. Auf der Abscissenachse sind die Temperaturen von 0° bis 36°, auf der Ordinatenachse die Zeiten von 0 bis 92 Secunden abgetragen und zwar letztere entgegen der üblichen Schreibweise so, dass die Null am oberen Ende der Ordinatenachse steht, die höchste Secundenzahl dagegen am Fusspunkt. In dieses Coordinatensystem sind dann die beobachteten Zeiten direkt und ohne Weiteres als Ordinaten eingetragen. Weil der Nullwerth der Zeit zu oberst liegt, werden diese Ordinaten natürlich um so grösser, je kürzer die Zeit wird, und da zugleich die Geschwindigkeit zunimmt, wenn die Zeit kürzer wird, so hat der Autor geglaubt, dass seine Ordinaten unmittelbar auch das Anwachsen der Geschwindigkeiten veranschaulichten. Hier liegt der Fehler. steigen und fallen Kürze der Zeit und Geschwindigkeit gemeinsam, aber jede in ihrer eigenen Weise und so abweichend von der andern, dass nichts verkehrter sein kann, als eine und dieselbe Kurve für beide zu postuliren. Einige Beispiele mögen dies erläutern. Für Vallisneria spiralis beträgt die Zeit bei 11° 8 Secunden, bei 16° 5 Secunden. Die Zeit wird also kürzer um 3 Secunden. Die zugehörigen Ge-

¹⁾ Die Reihe der Zeiten: 8; 5; 3,6; 2,4; 1,5 ist nahezu eine geometrische (mit dem constanten Factor 1,5). Dasselbe gilt dann natürlich auch von den Geschwindigkeiten als den reciproken Werthen der Zeiten.

schwindigkeiten sind 1/8 und 1/5 oder 5/40 und 8/40. Die Geschwindigkeit steigt also ebenfalls gerade um 3, aber wohlverstanden um 3/40. Bei einer Wärmesteigerung von 160 auf 260 wird die Zeit kürzer um 2 Secunden und erhöht sich die Geschwindigkeit von ⁸/₁₅ auf ⁵/₁₅, also ebenfalls um 2, aber diesmal um 2/15. Wie aus diesen Proben schon zur Genüge hervorgeht, wachsen die Geschwindigkeitsbrüche wohl mit der Kürze der Zeit, die Zähler sogar um die gleiche Zahl; die Nenner sind aber ungleichnamig, und wenn sie zum Zweck der graphischen Aufzeichnung gleichnamig gemacht werden, so resultiren eben für die einzelnen Geschwindigkeiten ganz andere Werthe als die von Velten angegebenen Ordinaten. Mit einem Worte: Hat man zwei Reihen, deren correspondirende Glieder in reciprokem Verhältniss zu einander stehen, so hat jede dieser Reihen ihre Man erhält wohl jedes einzelne Glied der einen specielle Kurve. Reihe durch einfache Umkehrung des entsprechenden Gliedes der andern, nicht aber die eine Kurve durch blosse Umdrehung der zweiten.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Flora oder Allgemeine Botanische Zeitung

Jahr/Year: 1898

Band/Volume: 85

Autor(en)/Author(s): Schaefer Karl L.

Artikel/Article: Zur Lehre von der Reaktion des Protoplasmas auf

thermische Reize. 135-140