Some hematologic parameters of *Elaphe sauromates* (PALLAS, 1811)

Hematologic studies on snake species occurring in Turkey are not many and largely restricted to counts and descriptions of size and morphology of the blood cells (DUGUY 1970; SAINT-GIRON 1970; WOJTAŠZEK 1991, 1992; ARIKAN et al. 2004, 2009; TOK et al. 2006; for the species studied see Table 2). The present paper presents information about the cytomorphometry of the blood and some additional hematologic parameters of *Elaphe sauromates* (PALLAS, 1811). This snake species has a wide distributional range in Turkey and was not yet studied in this respect.

A single apparently healthy female specimen of *Elaphe sauromates* captured in the posthibernation reproductive period was used in the study. It was collected near Edirne, (WGS84: 41.674 N, 26.561 E; UTM: 35 T 0466654, 4524996), Turkish Thrace, in April 2010. The blood sample was taken from the postorbital sinus of the living specimen by means of a heparinized centrifuge for 5 min at 12000 rpm and the hematocrit (HCT [%]) was calculated from the proportion of the blood cell volume in the total blood volume. Hemoglobin concentration (Hb [g/dl]) was measured colorimetrically with a Sahli hemoglobinometer (TANYER 1985). The derived values ‘mean cell volume of erythrocytes’ (MCV = HCT / 100·RBC [fl]), ‘mean cell hemoglobin’ (MCH = Hb / RBC [pg]) and ‘mean cell hemoglobin concentration’ (MCHC = Hb·100 / HCT [%]) were mathematically calculated from the results of the above-mentioned analyses (TANYER 1985).

Blood cell measurements were done under a microscope (total magnification factor 1500x) with an Olympus 15x ocular micrometer. On each blood smear 40 erythrocytes were randomly chosen. Erythrocyte lengths (L) and widths (W), nucleus lengths (NL) and widths (NW) were measured. Erythrocyte (S) and nucleus size (NS) were computed according to the formulas:

\[
S = L \cdot W \cdot \frac{\pi}{4}
\]

The descriptive statistics were performed using Minitab® statistical software package. Cytomorphological data were described by their means, standard deviations (SD) and range values and presented in a table along with the numbers of cells measured.

The results are shown in Tables 1 and 2 (under ‘present study’). Values below are presented in the order (minimum - mean ± SD - maximum).

Erythrocyte size (S) and nucleus size (NS) were found to measure (87.95 - 138.32±18.38 - 172.76) and (11.78 - 25.33±6.71 - 38.87) µm², respectively. The ratios erythrocyte length / erythrocyte width (L/W), nucleus length / nucleus width (NL/NW), and nucleus size / erythrocyte size (NS/S) were found to be (1.50 - 1.87±0.21 - 2.44), (1.20 - 1.60±0.26 - 2.17) and (0.10 - 0.18±0.05 - 0.26), respectively.

The erythrocytes (Fig. 1A) of *Elaphe sauromates* were about oval, and their nuclei were located centrally. The erythrocyte length, erythrocyte width, nucleus length and nucleus width in µm were found to be (16.00 - 18.02±1.08 - 20.00), (7.00 - 9.76±1.00 - 12.00), (5.00 - 7.10±1.19 - 9.00) and (3.00 - 4.49±0.66 - 5.50), respectively.
Lymphocytes (Fig. 1B) were the most abundant leucocytes in the blood. They were of spherical shape and measured (6.00 - 6.70±0.72 - 8.00) µm in diameter, their nucleus was in a central position. The cytoplasm of the lymphocytes was stained in pale blue and their nuclei were dark purple-blue.

Monocytes (Fig. 1C) were the second most frequently observed leucocytes. Their diameters were (12.00 - 14.40±1.65 - 17.00) µm, and there was some granulation in their cytoplasm. Their kidney-shaped nuclei were at least as large as half of the cell. The cytoplasm appeared light purple and the nucleus dark blue.

Eosinophils (Fig. 1D) were (15.00 - 17.10±1.29 -19.00) µm in diameter. Their cytoplasms were stained in light blue and their nuclei in dark blue. Their cytoplasms were characterized by large roundish bright reddish granules.

Basophils (Fig. 1E) were observed to have diameters of (6.00 - 8.00±1.49 - 10.00) µm. The plasm was stained in light blue, the dark purplish-bluish granules partially masked the dark blue nucleus.

Neutrophils were not encountered on the blood smear preparations of *E. sauromates* in this study.

The length of the somewhat irregularly shaped thrombocytes (Fig. 1F) was (4.50 - 5.60±0.82 - 6.50) µm, their width was (3.80 - 4.46± 0.56 - 5.00) µm. The cytoplasm was stained in pale blue and the nucleus in dark purple. The large oval nucleus was in a lateral position within the thin irregular cytoplasmic envelope. Thrombocytes were susceptible to clustering on the blood smear preparations.

The results of additional hematologic analyses and calculations were as follows: red blood cell count: 450000 per mm³, white blood cell count: 8800 per mm³, hematocrit: 16.5%, hemoglobin concentration: 5.60 g/dl, mean cell volume: 366.66 fl, mean cell hemoglobin: 124.44 pg, and mean cell hemoglobin concentration: 33.93%. Total protein concentration in the blood (plasm plus cells) was determined refractometrically to be 8.50 g/dl.

In *Elaphe sauromates*, the red blood cell count, white blood cell count and hematocrit were found to be clearly lower than those of other colubrid species of the study area, *Coronella austriaca LAURENTI, 1768, Natrix natrix* (LINNAEUS, 1758), *Platyccephalus collaris MÜLLER, 1878, Eirenis modestus* (MARTIN, 1838) (Table 2). MCV, MCH and MCHC levels were higher in *E. sauromates* than in *N. natrix* (Table 2) which was the only colubrid species from which comparative data were available (WOJTAZSEK 1991).

Table 1: Established measurements and sizes of the blood cells of a specimen of *Elaphe sauromates* (PALLAS, 1811) from Edirne, Turkey.

<table>
<thead>
<tr>
<th>Character</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocyte measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L(µm)</td>
<td>40</td>
<td>18.02</td>
<td>1.08</td>
<td>16.00-20.00</td>
</tr>
<tr>
<td>W(µm)</td>
<td>40</td>
<td>9.76</td>
<td>1.00</td>
<td>7.00-12.00</td>
</tr>
<tr>
<td>L/W</td>
<td>40</td>
<td>1.87</td>
<td>0.21</td>
<td>1.50-2.44</td>
</tr>
<tr>
<td>S(µm²)</td>
<td>40</td>
<td>138.32</td>
<td>18.38</td>
<td>87.95-172.76</td>
</tr>
<tr>
<td>NL(µm)</td>
<td>40</td>
<td>7.10</td>
<td>1.19</td>
<td>5.00-9.00</td>
</tr>
<tr>
<td>NW(µm)</td>
<td>40</td>
<td>4.49</td>
<td>0.66</td>
<td>3.00-5.50</td>
</tr>
<tr>
<td>NL/NW</td>
<td>40</td>
<td>1.60</td>
<td>0.26</td>
<td>1.20-2.17</td>
</tr>
<tr>
<td>NS(µm²)</td>
<td>40</td>
<td>25.33</td>
<td>6.71</td>
<td>11.78-38.87</td>
</tr>
<tr>
<td>NS/S</td>
<td>40</td>
<td>0.18</td>
<td>0.05</td>
<td>0.10-0.26</td>
</tr>
<tr>
<td>Leucocyte measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocytes MD (µm)</td>
<td>10</td>
<td>14.40</td>
<td>1.65</td>
<td>12.00-17.00</td>
</tr>
<tr>
<td>Eosinophils MD (µm)</td>
<td>10</td>
<td>17.10</td>
<td>1.29</td>
<td>15.00-19.00</td>
</tr>
<tr>
<td>Lymphocytes MD (µm)</td>
<td>10</td>
<td>6.70</td>
<td>0.72</td>
<td>6.00-8.00</td>
</tr>
<tr>
<td>Basophils MD (µm)</td>
<td>10</td>
<td>8.00</td>
<td>1.49</td>
<td>6.00-10.00</td>
</tr>
<tr>
<td>TL (µm)</td>
<td>5</td>
<td>5.60</td>
<td>0.82</td>
<td>4.50-6.50</td>
</tr>
<tr>
<td>TW (µm)</td>
<td>5</td>
<td>4.46</td>
<td>0.56</td>
<td>3.80-5.00</td>
</tr>
</tbody>
</table>
Fig. 1: Blood cells of a specimen of *Elaphe sauromates* (Pallas, 1811) from Edirne, Turkey.
A - erythrocytes, B - lymphocyte, C - monocyte,
D - eosinophils, E - basophil, F - a cluster of thrombocytes.
Table 2: Some hematologic values in colubrid snake species occurring in Turkey, according to various authors.

<table>
<thead>
<tr>
<th>Reference Species</th>
<th>RBC [mm3]</th>
<th>WBC [mm$^{-3}$]</th>
<th>Hb [g/dl]</th>
<th>HCT [%]</th>
<th>MCV [fl]</th>
<th>MCH [pg]</th>
<th>MCHC [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Study</td>
<td>Elaphe sauromates (PALLAS, 1811)</td>
<td>450000</td>
<td>8800</td>
<td>5.6</td>
<td>16.5</td>
<td>366,66</td>
<td>124.44</td>
</tr>
<tr>
<td>DESSAUER (1970)</td>
<td>Natrix natrix (LINNAEUS, 1758)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DUGUY (1970)</td>
<td>Natrix tessellata (LAURENTI, 1758)</td>
<td>580000-1406000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WOJTAZSEK (1991)</td>
<td>Zamenis longissimus (LAURENTI, 1768)</td>
<td>620000-1410000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tok et al. (2006)</td>
<td>Platyceps collaris (MÜLLER, 1878)</td>
<td>1310000</td>
<td>16030</td>
<td>5.08</td>
<td>29.4</td>
<td>190.2</td>
<td>52.85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Study</td>
<td>Elaphe sauromates (PALLAS, 1811)</td>
<td>18.02</td>
<td>9.76</td>
<td>138.32</td>
<td>7.10</td>
<td>4.49</td>
</tr>
<tr>
<td>HARTMAN & LESSLER (1964)</td>
<td>Pantherophis guttatus (LINNAEUS, 1766)</td>
<td>18.9</td>
<td>11.8</td>
<td>-</td>
<td>6.2</td>
<td>3.6</td>
</tr>
<tr>
<td>SAINT GIRONS (1970)</td>
<td>Coronella australis LAURENTI, 1768</td>
<td>17.5</td>
<td>9.7</td>
<td>140.0</td>
<td>7.3</td>
<td>3.6</td>
</tr>
<tr>
<td>WOJTAZSEK (1991)</td>
<td>Zamenis longissimus (LAURENTI, 1768)</td>
<td>18.3</td>
<td>10.6</td>
<td>152.1</td>
<td>7.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Tok et al. (2006)</td>
<td>Platyceps collaris (MÜLLER, 1878)</td>
<td>15.41</td>
<td>10.66</td>
<td>129.59</td>
<td>7.29</td>
<td>4.02</td>
</tr>
<tr>
<td>ARIKAN et al. (2009)</td>
<td>Telescopus fallax (FLEISCHMANN, 1831)</td>
<td>18.33</td>
<td>10.33</td>
<td>148.80</td>
<td>7.39</td>
<td>4.09</td>
</tr>
<tr>
<td>Dolichophis caspius (GMELIN, 1789)</td>
<td>14.91</td>
<td>7.64</td>
<td>89.88</td>
<td>10.01</td>
<td>4.84</td>
<td>38.08</td>
</tr>
</tbody>
</table>
However, the hemoglobin concentration was almost identical in both species (Table 2). In *E. saur omates* the value of the mean erythrocyte volume (MCV) was proportionately higher whereas the value of the red blood cell count was lower as compared with other snakes.

Some authors found that there was both a great intraspecific and interspecific variation in the blood cell counts of snakes, the intraspecific variation being affected by sex, age, season, and health status of the animal (DUGUY 1970; ARIKAN et al. 2004; TOK et al. 2006; ARIKAN et al. 2009). Our study supports the above observation in that the blood cell counts of *E. saur omates* extended the range of interspecific variation of this blood parameter considerably.

No neutrophils were encountered on the blood smear preparations of *E. saur omates* paralleling the finding of ARIKAN et al. (2009) who reported that there was no neutrophil leucocyte in the blood samples of the vipers and colubrids they had examined.

The authors are fully aware that there is intraspecific, age-dependent, seasonal and sexual variation in reptilian blood cell counts and other blood parameters which in addition may be influenced by the health status of the animal. Thus, the results obtained from a single specimen may reveal a rough picture of its hematological data only and cannot specify the hematologic reference intervals for *E. saur omates*.

ACKNOWLEDGMENTS: This study was supported by the Scientific Research Foundation of Canakkale Onsekiz Mart University under Project no 2010/95. We would like to extend our gratitude to the çanakkale onsekiz mart university under Project no.

KEY WORDS: Colubridae, Elaphe saur omates, hematology, physiology, Turkey

SUBMITTED: October 20, 2010

AUTHORS: Murat TOSUNOGLU 1) (corresponding author) < mtosun@comu.edu.tr > < murattosuno@gmail.com > Seda SERBEST 2), Sultan PARLAK 1), Semra GÖKTÜRK 2), Ayşe ÇITİN 1), Arzu UÇTEPE 2), Batuhan Y. YAKIN 1), Sebah Samısa 1)

1) Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Biology, Zoology Section, Terziyolu Campus, 17100 Canakkale, Turkey.

2) Canakkale Onsekiz Mart University, Faculty of Agriculture, Department of Zootechny, Terziyolu Campus, 17100 Canakkale, Turkey