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Abstract

Female reproductive effort is defined as the proportion of total energy or resources devoted to reproduction. In reptiles, there is 
frequently high inter- and intra-population variation related to several factors, such as food availability, climatic conditions, age and 
size, all of which, in turn, also influence survival and future reproduction. The present study is the first reproductive effort analysis of 
a population of the high-mountain scincid lizard Plestiodon copei in central Mexico, focusing on relative litter mass (RLM), invest-
ment per capita (INV) and productivity (PROD). We also compared the reproductive efficacy of P. copei to those of other Mexican 
congeners. We collected 24 gravid females of P. copei over a 4-year period and recorded a total of 90 neonates born in captivity. We 
found significant variation in neonatal mass amongst individual females and across years. We recorded an average litter size of 3.75 
and an average litter mass of 1.25 g, which were positively correlated with both the size and total mass of the reproductive females. 
The RLM, INV and PROD values (0.301, 0.428 g and 1.236 g × year-1, respectively) for P. copei were greater than those for other 
Mexican species in the P. brevirostris group (0.290, 0.412 g and 1.135 g × year-1), revealing that females of P. copei from Tenango 
invest a comparatively high amount of their resources in reproduction.
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Introduction

Reproductive investment is a central aspect of the theory 
of life history evolution, which states that an individual 
must allocate an optimal proportion of its available energy 
to reproduction which, in turn, will be reflected in statis-
tics, such as in neonate/egg size and mass, litter/clutch size 
and mass and reproductive effort (Stearns 1992; Schwarz-
kopf 1993; Shine 2005). In ectothermic organisms, repro-

ductive investment is strongly affected by both physiologi-
cal and ecological constraints. In reptiles, the reproductive 
investment of females is strongly influenced by body size 
and pelvic opening (Congdon and Gibbons 1987; Siner-
vo and Licht 1991; Rodríguez-Romero et al. 2002, 2004, 
2005; Ramírez-Bautista et al. 2016, 2017; Suárez et al. 
2018). However, local environmental conditions also af-
fect the reproductive investment of females and can lead 
to significant variations in the number and mass of eggs or 
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neonates (Stearns 1992; Roitberg et al. 2013; Muñoz 2015; 
Suárez et al. 2018). The metabolic rate, food intake and 
environmental temperature are also related to reproductive 
investment, whereby lizard species inhabiting temperate 
environments may accelerate their sexual maturation and 
reproduce at smaller sizes, leading to smaller clutches/lit-
ters (Warne and Charnov 2008; Meiri et al. 2012).

Female lizards can also exhibit remarkable inter- and 
intraspecific variations in their reproductive life his-
tory traits (Cruz-Elizalde and Ramírez-Bautista 1998; 
López-Alcaide et al. 2020) due to environmental factors 
associated with temperature and precipitation regimes, as 
well as evolutionary history factors, such as phylogenet-
ic constraints and adaptations to adverse environmental 
conditions, such as cold temperatures in high-elevation 
forests (Vitt and Price 1982; De Marco 1989; Rohr 1997; 
Abell 1999; Shine 2005; Castro-Franco et al. 2011).

In the mountainous regions of Mexico, several stud-
ies have analysed the reproductive strategies utilised in 
different genera of lizards, such as Barisia (Guillette and 
Casas-Andreu 1987), Phrynosoma (Zamudio and Par-
ra-Olea 2000; Suárez et al. 2018), Sceloporus (Feria-Ortiz 
et al. 2001; Rodríguez-Romero et al. 2002, 2004, 2005; 
Bastiaans et al. 2013; Ramírez-Bautista et al. 2016; Ma-
ciel-Mata 2017; López-Alcaide et al. 2020) and Plestiodon 
(Guillette 1983; Vitt and Cooper 1986; Ramírez-Bautista 
et al. 1996, 1998; Ramírez-Bautista and Arizmendi 2004; 
Feria-Ortiz et al. 2007; López et al. 2008; García 2009; 
Chávez 2012; Laguna 2014; Morales 2014; Muñoz 2015; 
Bañuelos et al. 2016), in which both the characteristics of 
females and their progeny were evaluated. Some studies 
on the reproduction of sympatric or phylogenetically re-
lated species of the genus Plestiodon indicate that inter- 
and intra-population variations in reproductive patterns 
are related to environmental heterogeneity and can lead 
to local adaptations (Mathies and Andrews 1995; Wapstra 
and O’Reilly 2001; Rodríguez-Romero et al. 2002, 2004, 
2005; Shine 2005; Chávez 2012; Ramírez-Bautista et al. 
2016; Maciel-Mata 2017).

To estimate the reproductive investment of female rep-
tiles, several indices have been developed that take into 
consideration the characteristics of both females and their 
progeny. Relative clutch mass/relative litter mass (RCM/
RLM = fraction of female body mass devoted to repro-
duction) is the most frequently used index for estimat-
ing reproductive effort in lizards for both oviparous and 

viviparous species (Tinkle and Hadley 1975; Vitt and Con-
gdon 1978; Vitt and Price 1982; Shine and Schwarzkopf 
1992; Suárez et al. 2018; Padilla-Pérez et al. 2022). Other 
indices that have been estimated for several lizard species 
include the productivity index (PROD = total mass of off-
spring produced in one year) and the per capita reproduc-
tive investment index (INV = investment per capita in the 
offspring) (Meiri et al. 2012; Rutschmann et al. 2016).

Plestiodon copei (Fig. 1) is an endemic and high-ele-
vation specialist skink lizard distributed in temperate pine 
and pine-oak forests (i.e. elevation range ca. 2466–3966 
m) in the Trans-Mexican Volcanic Belt (TMVB) (Alvara-
do-Avilés et al. 2020). Plestiodon copei is a species with 
asynchronous gonadal activity and an autumn reproduc-
tive period (Guillette 1983; Ramírez-Bautista et al. 1996). 
This species produces one litter per year and apparently 
displays parental care, but little is known about the re-
productive investment of the females of the species. The 
present study aimed to characterise the reproductive strat-
egies adopted by females of P. copei in a mountainous 
region of Central Mexico by estimating the reproductive 
effort under extreme environmental conditions that can 
lead to different adaptive responses relative to those of 
other species of the same genus.

Materials and methods
We collected 24 late-pregnant females of P. copei from 
March–early April 2014 to 2017 near Tenango del Valle 
(19°05'54.74"N, 99°38'26.43"W) at an elevation of ca. 
3030 m in the TMVB of central Mexico. Gravid females 
of P. copei were identified in situ by their greater abdom-
inal volume. All females were captured in a landscape 
dominated by pine forests (Pinus teocote, P. montezumae 
and P. rudis) and grasslands (Muhlenbergia macroura) 
and surrounded by agricultural fields (Alvarado-Avilés et 
al. 2020).

We transported the collected females to the Labo-
ratory of Genetic and Molecular Evolution (Universi-
dad Autónoma del Estado de México) and individually 
housed them in plastic boxes (400 × 220 × 180 mm) with 
natural substrate (e.g. soil, gravel, mulch) and refuge 
objects (e.g. rocks and bark) obtained from the capture 
site. All females were maintained according to the ther-
mal conditions described by García (2009), were fed live 

Figure 1. A) Adult female and B) neonate of Plestiodon copei. Photo Credits A: H. Sánchez-Sánchez; B: JC. Alvarado-Avilés.
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food every two days (crickets and mealworms) and were 
supplied with water ad libitum.

Reproductive effort estimation

We recorded the snout–vent length (SVL) and the total 
mass (TM = female body mass before birth) of each grav-
id female after capture. Females were checked at least 
once per day for 2 to 3 weeks and weighed daily until 
parturition. After birth, the following data were immedi-
ately recorded: absolute mass (AM = female body mass 
after birth), litter size (LS = number of neonates produced 
by a female), litter mass (LM = sum of the masses of 
all neonates produced by a female) and mean litter mass 
(MLM = average mass of the neonates of each litter).

The reproductive effort of P. copei females was esti-
mated as follows: (a) relative litter mass; RLM = LM/AM; 
(b) reproductive investment per capita; INV = (TM−AM)/
LS; and (c) estimated productivity; PROD = (MLM × LS) 
× year-1 (Tinkle and Hadley 1975; Vitt and Congdon 1978; 
Vitt and Price 1982; Rodríguez-Romero et al. 2002, 2004, 
2005; Castro et al. 2011; Meiri et al. 2012; Bastiaans et 
al. 2013; Muñoz 2015; Rutschmann et al. 2016; Suárez et 
al. 2018). After all the measurements were made, both the 
females and neonates were released at the place where the 
female was captured. We also estimated the reproductive 
effort of other Mexican Plestiodon species by examining 
published data. Recently, taxonomic changes were consid-
ered for undescribed species (Pavón-Vázquez et al. 2018).

Data analysis

We checked all variables for normality using the Shap-
iro‒Wilk test and for the presence of outliers with box 
plots in SPSS ver. 24 (IBM Corporation 2016). To esti-
mate whether the variations in litter characteristics could 
be explained by female traits, we performed linear re-
gression analysis on the LS, LM, RLM, INV and PROD 
variables, using the SVL, TM and AM of the females as 
independent variables. To evaluate whether female mass 
affects reproductive characteristics, we conducted two 
regression analyses using LS and MLM as dependent 
variables and the residuals of the regression of AM on 
SVL (a measure of robustness) as independent variables 
(Castro-Franco et al. 2011). We estimated the coefficient 
of variation (CV = standard deviation/mean × 100%), a 
standardised measure of the dispersion of a frequency 
distribution (Sokal and Rohlf 2012; Hutchings 2021) of 
SVL, LS, LM, MLM and the three reproductive effort 
indices; values whose CVs were ≤ 5% were considered 
invariant and those whose CVs were > 5% were consid-
ered variable, as described by Castro-Franco et al. (2011) 
and Suárez et al. (2018) in studies on reproductive effort 
in Mexican lizard species. Finally, after checking the ho-
mogeneity of the variances with Levene’s tests and not 
assuming the same variances, we analysed whether the 

mass of neonates at birth differed between litters and the 
annual variation in mean litter mass using Welch’s ANO-
VA and Games–Howell post hoc tests in SPSS ver. 24.

Results
Births

Twenty-four gravid females were captured over a 4-yr pe-
riod. The SVL ranged from 51.8 mm to 69.0 mm and the 
mean size was 62.711 mm (SD = 4.141 mm, CV = 6.6%, 
n = 24). In captivity, the females gave birth to a total of 
90 neonates (range = 2−5 neonates per litter, mean = 
3.750, SD = 0.897, CV = 23.9%) from mid-April to the 
last week of June. LMs ranged from 0.659 g to 1.844 g 
(mean = 1.250 g, SD = 0.310, CV = 31.2%, n = 24), while 
MLMs ranged from 0.256 g to 0.405 g (mean = 0.330 g, 
SD = 0.033, CV = 10.0%, n = 24).

Reproductive effort

For P. copei, the estimated range for RLM was 
0.129−0.530 (mean = 0.301, SD = 0.094, CV = 31.2%, 
n = 24), the range for INV was 0.190−0.694 g (mean = 
0.428 g, SD = 0.103, CV = 24.1%, n = 24) and the range 
for PROD was 0.659−1.844 g × year-1 (mean = 1.236 g × 
year-1, SD = 0.326, CV = 26.4%, n = 24).

Female characteristics and their 
effects on reproductive output

Correlation analyses revealed significant positive correla-
tions between female SVL and LS (r = 0.427, R2 = 0.182, 
F1,23 = 4.903, p = 0.037) and LM (r = 0.458, R2 = 0.210, F1,23 
= 5.851, p = 0.024) (Fig. 2A, B). Similarly, we found signif-
icant positive correlations between female TM and both lit-
ter traits (LS: r = 0.616, R2 = 0.379, F1,23 = 13.451, p = 0.001; 
LM: r = 0.527, R2 = 0.278, F1,23 = 8.455, p = 0.008) (Fig. 
2C, D). Analyses between the SVL of females and the three 
estimated reproductive investment indices revealed a signif-
icant correlation only for PROD (r = 0.433, R2 = 0.188, F1,23 
= 5.082, p = 0.034), but not for INV (r = 0.386, R2 = 0.149, 
F1,23 = 3.885, p = 0.062) or RLM (r = 0.253, R2 = 0.064, 
F1,23 = 1.502, p = 0.233). Additionally, a negative correlation 
between female AM and RLM was observed (r = −0.291, 
R2 = 0.540, F1,23 = 9.041, p = 0.006). We also observed no 
significant relationships between LS (r = 0.206, R2 = 0.042, 
F1,23 = 0.976, p = 0.334) or LM (r = 0.024, R2= 0.001, F1,23 
= 0.013, p = 0.912) and the TM length of females. Finally, 
when comparing the masses of the neonates, we observed 
significant variations amongst both litters (Fig. 3) (F23,20.871 
= 5.765, p < 0.001) (Suppl. material 1), and years (F3,44.102 = 
6.530, p < 0.001). The MLM varied amongst years and was 
greater in 2014 (mean = 0.3604 g) than in other years (2015 
= 0.3136 g; 2016 = 0.3301 g and 2017 = 0.3266 g) (Fig. 4).
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Figure 2. Relationships between individual Plestiodon copei female size (SVL) and (A) litter size, (B) litter mass. Additionally, 
relationships between individual female total mass and (C) litter size and (D) litter mass.

Figure 3. Within-litter variation in neonate mass (g) of Plestiodon copei. The horizontal line shows estimated mean litter mass 
(MLM) for the species.

Discussion

In several lizard species, reproductive investment has been 
shown to be associated with phenotypic and physiological 
traits, both of which are optimised by natural selection 
(Tinkle and Handley 1973; Vitt 1974; Rodríguez-Romero 
et al. 2002). The reproductive effort indices estimated in 
this study for Plestiodon copei showed that females invest 

a high amount of their resources in the development of their 
offspring and that the size of the female correlates with 
the size and aggregate weight of the offspring. In addition, 
Castro-Franco et al. (2011) discussed the pattern between 
the estimated values of RCM/RLM and their coefficients 
of variation (CVs) in several lizard species. They conclud-
ed that high RCM/RLM values and CV values above 20% 
could indicate a recurrent pattern for lizard species inhab-
iting extreme environments. In the case of P. copei, this 
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reproductive effort is associated with its habitat at high ele-
vations within the TMVB. This condition has also been doc-
umented for other viviparous high-mountain lizard species 
within the TMVB, such as Sceloporus bicanthalis (Rodrí-
guez-Romero et al. 2002), Phrynosoma orbiculare (Suárez 
et al. 2018) and Mexican skink lizards, such as Plestiodon 
sp. from Tlaxcala and P. dugessi (Muñoz 2015), all of which 
have high RLM values and > 20% variation. In the specific 
case of P. copei, the CVs of the three indices used to esti-
mate reproductive effort were > 26%, also indicating high 
reproductive investment for the population studied.

The gravid females varied in both SVL and TM; these 
variables, in turn, showed significant correlations with lit-
ter size and litter mass. Ford and Siegel (1989) showed that 
several phenotypic traits can vary within reptile popula-
tions in response to different biotic and abiotic factors and 
that phenotypic plasticity can be expected in life-history 
traits, as might be the case in P. copei. The reproductive 
investment of P. copei females is strongly influenced by 
maternal size; specifically, in P. copei, litter size increases 
with increasing maternal body size. Similar results were 
reported by Guillette (1983) and Ramírez-Bautista et al. 
(1996) for viviparous or oviparous lizard species sympat-
ric with P. copei within the TMVB (Rodríguez-Romero et 
al. 2002, 2004, 2005; Suárez et al. 2018).

The timing of birth in captivity for these study animals 
was consistent with the birth period reported by García 
(2009) for P. copei. Similarly, the birth months of P. copei 
were the same as those of other Plestiodon species inhab-
iting the TMVB (e.g. P. dugesii, P. indubitus, P. lynxe and 
Plestiodon sp. PT) (López et al. 2008; Chávez 2012; Lagu-
nas 2014; Muñoz 2015). The date of parturition of lizards is 
typically associated with an abundance of food resources, 
which favours the growth and survival of neonates (Olsson 
and Shine 1998; Ramírez-Bautista et al. 1998, 2004; Chávez 
2012; Lagunas 2014; Muñoz 2015), increasing their prob-
ability of reaching sexual maturity earlier (Chávez 2012).

The minimum gravid female sizes reported here indi-
cate that Tenango females can reach sexual maturity at rel-
atively small body sizes (SVL = 51.8 mm), as the SVL of 
the smallest pregnant female previously reported was 56.0 
mm (Ramírez-Bautista et al. 1996); this finding indicates 
a relatively fast life history for the Tenango population. 
Ramírez-Bautista et al. (1996) also reported the growth rates 
of P. copei in the first year of life; by comparing the SVL of 

the smallest gravid female from Tenango, we can confirm 
that at least some P. copei females from Tenango become 
sexually mature in the year after birth. Variation in the body 
size of sexually mature females has been associated with 
the specific climatic conditions (temperature and precipita-
tion) to which a population is exposed (Wapstra and O’Reil-
ly 2001; Arribas and Galán 2005; Gutiérrez et al. 2010), as 
well as a combination of biotic (predation, foraging capaci-
ty, food availability and quality) and abiotic factors (climat-
ic conditions) (Du et al. 2005, 2014; Roitberg et al. 2013; 
Hosseinian et al. 2014; Cruz-Elizalde and Ramírez-Bautista 
2016; Maciel-Mata 2017; Wang et al. 2017; López-Alcaide 
et al. 2020). Based on the records collected for 59 years 
from meteorological stations near each population, the 
mean annual temperature in our study area was greater (Ten-
ango = 13.4 °C) than those in other P. copei population sites 
reported by other authors (Cuajimalpa: 10.1 °C; Zoquiapan 
= 11.6 °C; Ajusco = 10.0 °C) (Suppl. material 2), suggesting 
that warmer temperatures in Tenango may favour P. copei 
females reaching sexual maturity at a smaller size (Kubisch 
et al. 2012; Cabezas-Cartes et al. 2018).

It has been shown that, particularly for ectothermic 
species living at high elevations, temperature is an im-
portant factor shaping life history strategies, as well as de-
termining growth rate and age and size at sexual maturity 
(Atkinson and Sibly 1997; Angilletta et al. 2006; Amat 
and Meiri 2018; Padilla-Pérez and Angilleta Jr. 2022). 
For example, populations living in relatively warmer en-
vironments, such as the Tenango population compared to 
those of Cuajimalpa, Zoquiapan and Ajusco, are expect-
ed to have faster gonadal maturation. This would allow 
sexual maturity to be reached at a smaller size relative to 
populations living in colder regions, where sexual matu-
rity is delayed and, in turn, reflected in the larger aver-
age body size of the gravid females (Wapstra et al. 2001; 
Morrison and Hero 2003; Angilletta Jr. et al. 2006; Meiri 
et al. 2013; Padilla-Pérez and Angilletta Jr. 2022).

The effects of temperature on determining the size of 
females of P. copei at sexual maturity are similar to those 
of other high-mountain lizards, such as Mediodactylus 
heterocercus and Darevskia derjugini. In all three liz-
ard species, sexually mature females with smaller mini-
mum body sizes were encountered under relatively warm 
temperature conditions, while sexually mature females 
with larger minimum sizes were found in comparatively 
cooler environments. (Altunışık and Eksilmez 2020; Al-
tunışık et al. 2022). This variation in reproductive strat-
egy amongst and within lizard species (i.e. the existence 
of females with early reproduction and small body size 
versus females with later reproduction at larger sizes) has 
already been recognised by earlier herpetologists within 
the fast–slow continuum hypothesis of life history theo-
ry (Adolph and Porter 1996; Shine 2005; Rojas-González 
et al. 2008; Pérez-Mendoza and Zúñiga-Vega 2014; 
Cruz-Elizalde and Ramírez-Bautista 2016; Boretto et al. 
2018). The fast–slow continuum hypothesis proposes 
that organisms inhabiting colder environments and high-
er altitudes adopt a slow reproductive strategy, resulting 

Figure 4. Annual variation in mean litter mass (g) of Ples-
tiodon copei. Values are means ± SE. Letters denote differences 
between years, based on Games-Howell post-hoc test.
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in delayed maturation, as well as comparatively smaller 
litters. Conversely, in warmer climates and at lower alti-
tudes, a rapid reproductive strategy is observed, marked 
by early maturation and larger litters (Promilsow and Har-
vey 1990; Shine 2005; Li et al. 2014; Pérez-Mendoza and 
Zúñiga-Vega 2014). Comparing these conditions between 
the populations of P. copei in Tenango and San Lorenzo 
Acopilco, we observe that the Tenango population follows 
a faster strategy, while the San Lorenzo Acopilco popula-
tion follows a slower strategy. Thus, in Tenango, which is a 
population living at relatively warm temperatures at lower 
elevations, natural selection favours sexually mature fe-
males with smaller body sizes and larger litters. Converse-
ly, in San Lorenzo Acopilco, which has higher elevations 
and colder temperatures, natural selection favours larger 
gravid females, but smaller litters (García 2009). More-
over, the possibility that a fast life history strategy may 
lead to a decrease in adult female survival has also been 
documented (Tinkle et al. 1970; Stearns 1992; Rohr 1997; 
Shine 2005; Bestion et al. 2015; Boretto et al. 2017).

The mass of the offspring is another reproductive char-
acteristic of P. copei that, if influenced by environmen-
tal temperature, suggests a rapid life history strategy for 
Tenango animals. According to the PROD index, the total 
mass of offspring produced in a year is greater in Tenan-
go than in San Lorenzo Acopilco. This pattern is similar 
to that observed in another temperate-adapted skink spe-
cies, Eulamprus tympanum (Rohr 1997); in populations 
living at higher environmental temperatures and lower 
elevations, the total offspring mass is significantly greater 
than that in populations living at colder temperatures and 
higher elevations. In conclusion, female lizards living in 
colder environments, as in the case of San Lorenzo Aco-
pilco, evolve a slow strategy characterised by a combi-
nation of sexually mature females with larger body sizes 
and lower offspring masses (Adolph and Porter 1996; 
Rohr 1997; Badyaev and Ghalambor 2001; Pérez-Men-
doza and Zúñiga-Vega 2014; López-Alcaide et al. 2020).

Our analysis of the masses of individual P. copei ne-
onates revealed marked differences both within and be-
tween litters (see Fig. 3), which have been attributed to the 
availability of resources in the environment (Bleu et al. 
2013; Wang et al. 2017) or predation pressures (Shine and 
Downes 1999; Bestion et al. 2014) to which the females 
are exposed during gestation. However, other factors 
could also explain this observed variation, such as sperm 
storage by females or multiple paternity events (Bateson 
et al. 2011; Chávez 2012; Muñoz 2015). Such factors 
have been suggested to be important in species of the ge-
nus Plestiodon (Ramírez-Bautista et al. 1996; Bateson et 
al. 2011) and may matter for P. copei as well, although this 
has not yet been demonstrated for this species.

Moreover, the differences in MLM observed between 
years suggest that there are other factors that could in-
fluence the reproductive investment of P. copei females 
in Tenango. Possible factors include differences in the 
SVL of females or in environmental conditions, such as 
temperature variation and food availability (Ballinger 
1977; Ji et al. 2007; Warner et al. 2007; Bleu et al. 2013; 

Cruz-Elizalde and Ramírez-Bautista 2016; Guo et al. 
2022), which could be responsible for the heavier litters 
produced in 2014 compared to those in the three subse-
quent years. First, we ruled out the possibility that the 
greater MLM in 2014 was due to female size variation 
because the female SVL did not significantly differ across 
the four years. Second, data from the nearest meteorolog-
ical station showed that there was no significant variation 
in environmental temperature that might account for the 
heavier litters in 2014 than in 2015–2017.

However, the lower MLMs recorded since 2015 could 
be attributed to reduced food availability, as the collection 
site showed repeated signs of human-caused grass fires due 
to traditional agricultural and grazing activities that allowed 
fires to spread into the forest. This type of vegetation distur-
bance has been shown – due to the lethal surface tempera-
tures caused by fire – to negatively impact the abundance 
of ground-dwelling beetles which, in turn, are an important 
food source for P. copei (Nunes et al. 2006; Elia et al. 2012). 
The quantity and quality of the diet of females strongly 
influence their reproductive output (Selman and Huston 
1996; Warner et al. 2007; Lovern and Adams 2008). Low 
feeding during fire years reduced MLM not only during 
that year, but also in subsequent years, as food resources for 
P. copei females decreased (Ballinger 1997; Warner et al. 
2015). Bleu et al. (2013) documented that food availability 
is correlated with reproductive investment in Zootoca vi-
vipara. Furthermore, in Vipera aspis, the size of the neonate 
is influenced by the food intake of the female immediately 
before ovulation and litter size depends on both long-term 
reserves and recent food intake (Bonnet et al. 2001). Thus, 
if human-caused grass fires in Tenango indeed resulted in a 
significant decrease in prey items consumed by females pri-
or to fertilisation and during pregnancy, this could explain 
why MLM decreased in 2015–2017; however, this hypoth-
esis needs to be tested in future studies.

In conclusion, by comparing the RLM, INV and 
PROD indices used to evaluate reproductive effort, we 
observed that P. copei had slightly greater values than the 
mean estimated for species in the P. brevirostris group 
(Table 1). The high reproductive effort values obtained 
for P. copei might be a result of inhabiting areas with ex-
treme environmental conditions (e.g. high altitude) within 
the TMVB. Elevation is considered an important factor 
influencing the evolution of life history traits, especial-
ly in P. copei, as it is the most important abiotic factor 
determining its geographic distribution within the TMVB 
(Alvarado-Avilés et al. 2020). For example, colder tem-
peratures and limited food availability at higher altitudes 
have been shown to lead to greater reproductive effort in 
high-altitude species, such as P. copei (Rohr 1997; Bady-
aev and Ghalambor 2001). Overall, we observed that the 
RLM obtained for P. copei was similar to the estimated 
values for other species of the Scincidae family (Vitt and 
Price 1982; Qualls and Shine 1997). However, when we 
examined data from only the species Plestiodon from 
Mexico, we observed that the RLM estimated for P. copei 
was slightly greater than those reported for P. dugesii and 
Plestiodon sp. PT from Jalisco and Tlaxcala, which live 
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at lower elevations (Muñoz 2015). Conversely, the RLM 
obtained for P. copei was slightly lower than that estimat-
ed for the population of Plestiodon sp. PT from Puebla 
(Chávez 2012). We also observed that the PROD index 
calculated for P. copei from Tenango was greater than that 
(0.830) estimated by Meiri et al. (2012) for this species.

The observations presented here suggest that the re-
productive strategy of P. copei from Tenango may have 
been shaped by the prevailing extreme environmental 
conditions (Castro-Franco et al. 2011; Bestion et al. 2015; 
Muñoz 2015), although it will be necessary to evaluate 
this hypothesis in future studies using both larger sample 
sizes and additional study sites. Furthermore, it will also 
be important to evaluate the effects of global warming 
and habitat loss on the reproductive strategies and sex ra-
tio of this specialist skink.
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