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Abstract

Under climate change, species are expected to migrate along with their climate envelope. However, many species’ distribution 
models do not include the human footprint, thus overestimating distributional zones with high probabilities of occurrence. Species 
inhabiting sky islands (high-elevation landscapes that differ from landscapes in intermediate valleys) are particularly sensitive to 
climate and land-use change, given their limited ability to migrate. We aimed to assess the suitability of the climatic conditions for 
a sky island lizard under different climate scenarios and how that could affect its distribution based on (i) its climate envelope and 
(ii) the human footprint (croplands and buildings). Using climatic variables to develop a species distribution model and the indicator 
Human Footprint, we predicted the presence probabilities of Liolaemus nigroviridis Müller & Hellmich, 1932 populations under cli-
mate change scenarios (current, year 2040, and year 2080). We analyzed the relevant variables for L. nigroviridis’s climate envelope, 
which we projected to decrease and shift southward by 2080. The species could track its climate envelope in the Andes, but not in 
the Coastal mountains, given the strong human footprint. We propose assisted migration as a possible adaptive strategy, and show 
that conservation of sky islands species can be enhanced by integrating climatic and anthropogenic factors.
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Introduction

Currently, biodiversity is rapidly declining due to climate 
change and habitat modification such as land-use change 
(Gardner et al. 2007). Biological conservation in the face 
of climate and land-use change is a key challenge, giv-
en that these phenomena will increase in future scenarios 
(Kaky and Gilbert 2017; Newbold 2018). Studying the 
effects of future climate and land-use change on species 
distribution is fundamental to managing informative ac-
tivities for conservation of biodiversity (Kaky and Gilbert 
2017; Baker et al. 2021). One way in which conservation 
biologists have addressed this challenge is by developing 

species distribution models (SDMs) to understand chang-
es in distribution that might occur due to climate change 
(Hijmans and Graham 2006; Seo et al. 2009; Sunny et al. 
2019). The climatic conditions that define a species’ distri-
bution at a given time form its climate envelope (Chardon 
et al. 2015). There are studies aimed to determine chang-
es in a species’ climate envelope with a view to future 
climatic scenarios (Iverson and McKenzie 2013; Laspiur 
et al. 2021; Shadloo et al. 2021). However, incorporating 
land-use indicators in these studies, such as the Human 
Footprint (Rosas et al. 2021; Sun et al. 2021), allows us 
not to overestimate the possible areas of species occupan-
cy in current and future scenarios (e.g. Sofi et al. 2023).
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Species with dispersal ability tend to follow their climate 
envelope as long as there are no land-use changes preventing 
their movement (Sun et al. 2021). For example, most taxa 
would move latitudinally and altitudinally in South America 
with increases in temperature and drier climatic conditions 
(Freeman et al. 2018; Laspiur et al. 2021), seeking out zones 
of higher humidity, lower temperatures, and lower anthropic 
pressure (Sáenz-Romero et al. 2015). Dispersal can occur on 
its own (in highly vagile species) or can be achieved through 
assisted migration (i.e. human intervention to assist a spe-
cies in moving to a new location that is more suitable for its 
biological fitness; Butt et al. 2021) in low-vagility species 
that are not capable of moving great distances, overcoming 
geographical barriers, or adapting to habitats modified by 
anthropic pressure (Vitt et al. 2009; Butler 2019).

Sky island species (i.e. species inhabiting patches in 
elevated zones that differ notably from patches in inter-
mediate valleys; Shepard and Burbrink 2008; Cianfer-
oni et al. 2013) are particularly sensitive to climate and 
land-use change, given that they would have increas-
ingly restricted space due to the reduction of available 
area (Shepard and Burbrink 2008; Sáenz-Romero et al. 
2015). As the temperature and precipitation patterns shift 
toward a more arid climate, the climate envelope for a 
species will decrease in size or shift toward southern lat-
itudes (Deutsch et al. 2008; Fuentes-Castillo et al. 2019, 
2020). In addition, it is expected that species inhabiting 
sky islands will undergo altitudinal displacements as they 
track their climate envelope and respond to the altitudinal 
advance of the urban border (forced altitudinal displace-
ments due to land-use change; Sáenz-Romero et al. 2015).

Herpetozoans are one of the groups most affected by cli-
mate and land-use change (Gardner et al. 2007; Cordier et 
al. 2021), and are considered the most threatened group of 
vertebrates worldwide (Gibbons et al. 2000; Cordier et al. 
2021). Reptiles have been affected by climate and land-use 
change, resulting in population declines, range shifts, and 
local extinctions (Gardner et al. 2007; Bellard et al. 2012; 
Winter et al. 2016). This conservation problem is present in 
areas of the southern cone of South America (Cordier et al. 
2021). One of these areas is central Chile, which is one of 
the priority zones for conservation worldwide (Brooks et 
al. 2006) and is considered a nucleus of high risk in terms 
of future climate and land-use change (Marquet et al. 2010; 
Benavidez-Silva et al. 2021). Further, Chilean reptiles are 
characterized by their high degree of endemism (60%), and 
45.9% are currently in some category of threat (Ruiz de 
Gamboa 2020). The species that inhabit the Chilean central 
zone are at risk due to future population declines and/or 
local extinctions (Marquet et al. 2010). Few reptile species 
from the central zone inhabit the sky islands (Fuentes and 
Jaksic 1979; Carothers et al. 2001; Mella and Mella-Rome-
ro 2020). Among them, Liolaemus nigroviridis Müller & 
Hellmich, 1932 is an endemic Chilean lizard inhabiting the 
sky islands of both Coastal and Andean mountain ranges, 
in altitudinal floors preferably between 2,000 and 2,800 m 
a.s.l. (Mella-Romero et al. 2023). Liolaemus nigroviridis 
is distributed from the southern Coquimbo Region (30°S) 

to the northern O’Higgins Region (34°S) (Cianferoni et 
al. 2013; Mella-Romero et al. 2023). Although Liolaemus 
nigroviridis is considered by the IUCN as Least Concern 
(Mella-Romero et al. 2023), this species would be facing 
threats derived from climate change (Mella-Romero et al. 
2024) and anthropization (Moya et al. 2024) and is thus of 
conservation concern.

Within this context, we assessed the suitability of the 
climatic conditions for L. nigroviridis under different cli-
mate scenarios and how that may affect its distribution 
based on (i) its climate envelope and (ii) the human foot-
print. We hypothesized that L. nigroviridis will show a 
southward distribution shift and a reduced geographic 
range (limited to higher altitudes compared to the current 
distribution), assuming that the human footprint does not 
affect this movement in its climate envelope.

Materials and methods
To determine potential distributional changes based on 
the species’ climate envelope, we developed an SDM 
to identify areas with the most suitable climatic condi-
tions for the species and to provide presence probabilities 
for the future scenarios. Regarding the development of 
SDMs, studies have demonstrated the effectiveness of 
machine learning algorithms compared to other methods, 
such as logistic regression (Prasad et al. 2006; Cutler et 
al. 2007; Benito et al. 2013; Laspiur et al. 2021). There-
fore, we selected Random Forest (RF) for obtaining the 
models, since it is a widely used algorithm in SDM stud-
ies (e.g. Laspiur et al. 2021; Shadloo et al. 2021).

Presences and pseudoabsences

We used a total of 199 georeferenced records from 53 dif-
ferent localities gathered from literature reviews, online 
museum collection catalogues, and web platforms (GBIF 
and iNaturalist) (Mella-Romero et al. 2023). These 199 
points were obtained after a rigorous process of filtering 
the raw data (cleaning and validation; for details, see table 
1 in Mella-Romero et al. 2023). The 199 occurrences cover 
the known range of the species in both the Coastal and An-
dean mountain ranges. Non-georeferenced records were 
not considered, as suggested by Zermoglio et al. (2020).

Pseudoabsences (n = 597) were generated using the 
BIOMOD2 package (version 4.2.5; Thuillier et al. 2023) 
in R software (version 4.3.2), during the data-formatting 
process with the BIOMOD_FormatingData function. We 
performed a preliminary sensitivity analysis to assess 
the impact of the number of pseudoabsences on model 
performance. This analysis was performed according to 
the recommendations of Barbet-Massin et al. (2012) and 
the BIOMOD team (2023) for RF models, which con-
firmed that 597 was an adequate number for maintaining 
accuracy without overfitting the model. This was carried 
out with TSS (True Skill Statistic) validation (TSS = 0.86).
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Climatic variables

For the inclusion of climatic variables in the model, we 
relied on: (i) the information on the biology/ecology of 
the study species (thermoregulation in the context of cli-
matic variables); (ii) the background literature on Liolae-
mus species with similar habitat requirements in terms of 
variables used for SDMs; (iii) multicollinearity among the 
climatic variables; and (iv) RF Importance index. These 
selection criteria were applied to the 19 climatic variables 
of the WorldClim 2 dataset (Schmidt et al. 2006; Fick and 
Hijmans 2017) (Table 1).

Liolaemus nigroviridis is a reptile species that, like 
other members of the genus Liolaemus, depends on ambi-
ent temperature for thermoregulation (Labra et al. 2008). 
These reptiles use the warm months for such activity, 
while they markedly decrease their activity or remain in-
active during the cold months (Labra et al. 2008; Llanqui 
et al. 2022). Therefore, a relevant a priori variable that we 
should consider is the seasonality of temperature. From 
our review of existing works that have developed climate 
envelope models for Liolaemus species (e.g. Winck et al. 
2014; Demangel et al. 2015; Laspiur et al. 2021; Vera et al. 
2023), we found that the seasonality of temperature is in-
deed a relevant variable used for modeling (Bio4). In these 
reviewed works, we noticed that two precipitation vari-
ables were frequently used: precipitation of driest quarter 
(Bio17) and precipitation of warmest quarter (Bio18).

Then, to refine the selection of variables, we evaluated the 
multicollinearity and importance of the climatic variables in 
two stages. In the first step, we used the Variance Inflation 
Factor (VIF) from R package USDM (Naimi and Araújo 
2016) to identify and quantify the multicollinearity; VIF 
quantifies how much of a variable’s variance is explained 
by its correlation with other variables in a model (Craney 
and Surles 2002). Using this approach, we excluded all the 
highly correlated variables from the model (VIF greater 
than 10; see e.g. Jara et al. 2019). We took into consider-
ation the remaining uncorrelated variables: mean diurnal 
range (Bio2), seasonality of temperature (Bio4), minimum 
temperature of coldest month (Bio6), annual precipitation 
(Bio12), and precipitation of warmest quarter (Bio18). In a 
second stage, we applied an RF regression with R package 
RANDOMFOREST (Liaw and Wiener 2002), configuring 
with 500 trees to obtain the RF Importance index (and thus 
evaluate which variables would be the most relevant). The 
higher the value of this index, the greater the relevance of 
the variable (Kamusoko et al. 2014; Laspiur et al. 2021). 
We considered variables with an RF Importance index 
greater than 30 (especially if that variable was relevant ac-
cording to the criteria previously described): mean diurnal 
range (Bio2), annual precipitation (Bio12), precipitation of 
driest quarter (Bio17), and precipitation of warmest quarter 
(Bio18). These last 2 variables had the highest RF Impor-
tance index values (77.04 and 71.04, respectively). This ap-
proach, combining VIF analysis with RF, offered a nuanced 
understanding of each variable’s contribution to the species’ 
ecological model (see Laspiur et al. 2021).

Therefore, according to the previously mentioned cri-
teria, we decided to model with the variables mean di-
urnal range (Bio2), seasonality of temperature (Bio4), 
minimum temperature of coldest month (Bio6), annu-
al precipitation (Bio12), precipitation of driest quarter 
(Bio17), and precipitation of warmest quarter (Bio18).

To describe the change in the climatic variables, we 
calculated the rate of change (expressed in %) between 
the current model and the 2080 (RCP 8.5) scenario for 
each variable obtained from the WorldClim 2 dataset 
(Schmidt et al. 2006; Fick and Hijmans 2017), using the 
mean values of the variables (Table 1). To do this, from 
the clipping of each layer (by area of interest), we extract-
ed the values using R software (SUMMARY() function). 
This allowed us to identify the magnitude of change in 
each of the 19 WorldClim variables and thus obtain com-
plementary information to analyze how these changes 
could affect the biology/ecology of the species.

Estimating species distribution models 
(SDMs) and climate envelope

To determine habitat suitability of the climate envelope 
under current and future conditions, we used the six ras-
ter layers (Bio2, Bio4, Bio6, Bio12, Bio17, Bio18) out of 
the 19 climatic variables at a 30-second (1 km) resolution 
from the WorldClim 2 dataset (Schmidt et al. 2006; Fick 
and Hijmans 2017). For all variables, we included future 
climatic projections for CMIP6 data at 30-second spatial 
resolution (model MPI-ESM1-2-HR) for RCP (represen-
tative concentration pathways) 4.5 and 8.5 experiments, 
projected for years 2040 and 2080 (also available at 
https://www.worldclim.org/) (Eyring et al. 2016). Sce-
nario 8.5 is the most catastrophic in terms of greenhouse 
gas emissions (Babaeian et al. 2021). The use of CMIP6 
has been validated in studies of montane species due to its 
high accuracy (e.g. Laspiur et al. 2021).

All SDM visualizations for present and future projec-
tions were performed using R modeling package BIO-
MOD2. We employed a five-repeat scheme (Run1 to 
Run5), focusing on an RF algorithm with 2,000 trees (see 
e.g. Laspiur et al. 2021). The dataset was divided into 
80% for training and 20% for testing in each run (Pham 
and Tran 2022). This approach allowed for a more reli-
able and accurate evaluation of the model, ensuring that 
our results more accurately reflected the model’s perfor-
mance under various data divisions (Breiman 2001; Liu 
et al. 2023). After the evaluation, the best-performing 
model was selected based on the highest scores in TSS 
and ROC (Area Under the Receiver Operating Charac-
teristic Curve) metrics, ensuring the most accurate and 
reliable representation of the data (Phillips et al. 2006; 
Rather et al. 2020; Shadloo et al. 2021).

With the best model (according to metrics), we devel-
oped projected habitat suitability maps for L. nigrovir-
idis under present and future climatic conditions in RCP 
4.5 and RCP 8.5 scenarios. Then, these projections were 

https://www.worldclim.org/
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visualized as distribution maps to show the geographical 
zones of high and low suitability probability of species 
presence (Fig. 1). Scenarios 4.5 and 8.5 have been used 
over other models in studies on herpetozoans of the South 
American southern cone, which makes these studies com-
parable (see e.g. Jara et al. 2019; Laspiur et al. 2021).

To analyze potential changes in suitable habitat distri-
bution for L. nigroviridis, we used the BIOMOD_RANG-
ESIZE function from BIOMOD2 (following the method 
described by Liu et al. 2023). The BIOMOD_RANGE-
SIZE function allowed us to identify areas predicted to be 
lost, remain stable, or gain suitability, as well as to calcu-
late their percentages of total expected change (Table 2). 
Subsequently, the distributions of high suitability (> 0.6) 
were processed in the open-source Geographic Informa-
tion Systems software QGIS (version 3.22) to determine 
the surface area in square kilometers. Although we show 
the values for all scenarios in Table 2 [i.e. Current; 2040 
(4.5, 8.5); 2080 (4.5, 8.5)], in the results and discussion 
sections we generally use only the current and the most 
catastrophic greenhouse gas emission (2080; 8.5) scenar-
ios, for purposes of establishing a more contrasting com-
parison and synthesizing the obtained results.

Human footprint

While an SDM based solely on climatic variables can ef-
fectively depict a species’ distribution on a broad scale, 
it may overestimate its regional distribution by including 
areas with unsuitable habitats due to land use. Many stud-
ies that model habitat suitability do not consider this fac-
tor (Santini et al. 2021). To minimize overestimation and 
obtain a qualitative visualization, we use the land-cover 
layer HUMAN FOOTPRINT available through world-
wide land-cover mapping (WorldCover; Zanaga et al. 
2022). This layer was included in the model a posteri-
ori. Thus, present and future scenarios incorporated the 
information obtained from this layer (cropland and built 
environments, Zanaga et al. 2022) through QGIS, thereby 
increasing their realism (in the most conservative scenar-
io regarding land use).

To produce the maps, habitat projections for L. nigro-
viridis generated under an RF algorithm at current and 
future scenarios (GCM: MPI-ESM1-2-HR, https://www.
worldclim.org/), with a human footprint layer (World-
Cover, http://https://viewer.esa-worldcover.org/world-
cover/), Chile regional divisions (Biblioteca del Con-
greso Nacional de Chile, https://www.bcn.cl/), and 199 
occurrences (Mella-Romero et al. 2023), were used.

Results
Climatic variables

When analyzing the climatic variables (Table 1) nu-
merically, all variables related to temperature (Bio1 to 
Bio11; °C) increased between the current scenario and 

2080 (8.5), and all the variables related to rainfall and 
humidity (Bio12 to Bio19; mm) decreased in the men-
tioned time range (except the variables associated with 
rainfall in warm months: Bio14, Bio17, and Bio18) (Ta-
ble 1). Regarding the variables we selected for the model, 
(i) minimum temperature of coldest month (Bio6) was 
the variable that showed the greatest change, increasing 
70.97% by 2080 (8.5); (ii) annual precipitation (Bio12) 
decreased 28.90% toward the 2080 (8.5) scenario; and 
(iii) precipitation of driest quarter (Bio17) and precipita-
tion of warmest quarter (Bio18) remained constant at all 
times analyzed (Table 1).

Estimating species distribution models 
(SDMs) and climate envelope

The best-performing model obtained a TSS of 0.86 and 
a ROC of 0.98. For this type of algorithm (i.e. machine 
learning: RF), a value of TSS and ROC > 0.85 is consid-
ered indicative of good performance (Rather et al. 2020).

The BIOMOD_RANGESIZE function indicated that 
under the 2080 (8.5) scenario, the areas with probable 
presence of the species (i.e. > 0.6) would decrease by 
42.5% compared to the current scenario (3,577 km2 to 
2,058 km2) (Table 2).

Table 1. Percentage of change between the current and the 2080 
(RCP 8.5) scenarios for each variable. We developed this table 
using the mean values of the variables, obtained from World-
clim 2 dataset (Fick and Hijmans 2017). From the clipping of 
each layer (by area of interest), we extracted the values using 
the SUMMARY() function of R software. ED: Standard devia-
tion; Coef.: Coefficient of variation.

Variable ID
2080 
(8.5)/

Current

% of 
change 

2080 (8.5)
Annual mean temperature Bio1 (°C) 1.21 21.39
Mean diurnal range Bio2 (°C) 1.03 2.71
Isothermality Bio3 (%) 1.01 0.70
Temperature seasonality Bio4 (ED) 1.02 1.81
Max. temperature of warmest 
month

Bio5 (°C) 1.11 11.44

Min. temperature of coldest month Bio6 (°C) 1.71 70.97
Temperature annual range Bio7 (°C) 1.03 2.88
Mean Temperature of wettest 
quarter

Bio8 (°C) 1.25 25.24

Mean temperature of driest quarter Bio9 (°C) 1.20 19.53
Mean temperature of warmest 
quarter

Bio10 (°C) 1.16 16.28

Mean temperature of coldest 
quarter

Bio11 (°C) 1.30 30.23

Annual precipitation Bio12 (mm) 0.71 -28.90
Precipitation of wettest month Bio13 (mm) 0.64 -35.62
Precipitation of driest month Bio14 (mm) 1.00 0.00
Precipitation seasonality Bio15 (Coef.) 0.92 -8.48
Precipitation of wettest quarter Bio16 (mm) 0.67 -33.15
Precipitation of driest quarter Bio17 (mm) 1.00 0.00
Precipitation of warmest quarter Bio18 (mm) 1.00 0.00
Precipitation of coldest quarter Bio19 (mm) 0.67 -33.33

https://www.worldclim.org/
https://www.worldclim.org/
http://https://viewer.esa-worldcover.org/worldcover/
http://https://viewer.esa-worldcover.org/worldcover/
https://www.bcn.cl/
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There was no climate envelope for the species in the 
Coquimbo Region under the 2080 (8.5) scenario (regional 
extinction, purple rectangle of Fig. 1D). A small zone of 
occupation remains present in the mountains of the Coast-
al range (near to Coltauco, current location inhabited by 
L. nigroviridis) (pink rectangle of Fig. 1G and Fig. 2B) in 
the future. As for the Andean range, under the 2040 (4.5) 
scenario, the climate envelope was projected to move a 
maximum of 33.8 km to the south (zones of high proba-
bility of presence; > 0.6) (Fig. 2A). Under the 2080 (8.5) 
scenario, the L. nigroviridis distribution was projected to 

Table 2. Percentage change of the Liolaemus nigroviridis cli-
mate envelope in different scenarios (areas with probability of 
occurrence > 0.6). Calculations based on surface area (km2) us-
ing the function BIOMOD_RANGESIZE of R software.

Scenario Area (km2) %Area 
Gain

%Area 
Loss

%Total 
Change

Current 3,576.9 - - -
2040 RCP 4.5 3,538.2 26.4 27.5 -1.1
2040 RCP 8.5 3,465.7 33.2 36.3 -3.1
2080 RCP 4.5 3,336.3 29.4 36.1 -6.7
2080 RCP 8.5 2,058.0 16.6 59.1 -42.5

Figure 1. SDMs for Liolaemus nigroviridis. Habitat projections for L. nigroviridis generated under climatic layers (GCM: MPI-
ESM1-2-HR); human footprint layer (WorldCover); Chile regional division (Biblioteca del Congreso Nacional de Chile); 199 pres-
ence points (panel A, Mella-Romero et al. 2023); and Random Forest algorithm at current (panels B and E), 2040 RCP 8.5 (panels C 
and F), and 2080 RCP 8.5 (panels D and G) projections. The purple rectangle (panel D) indicates the regional extinction in the Co-
quimbo Region. The pink rectangle (panel G) indicates a zone of hills adjacent to Coltauco. These maps were produced in the R envi-
ronment (R Core Team, version 4.3.2) using the packages: BIOMOD2 version 4.2.4 (Thuiller et al. 2023) and TERRA version 1.7.65 
(Hijmans et al. 2023). Spatial integration of the layers was performed using QGIS software version 3.32. Coordinate system: WGS84.
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reach Chimbarongo-Las Peñas (north of Santuario de la 
Naturaleza Alto Huemul) (Fig. 2B; end of the vertical red 
line). Under 2080 (8.5), the climate envelope was project-
ed to move a maximum of 60.6 km to the south (zones of 
high probability of presence; > 0.6) (Fig. 2B). The model 
indicated that the climate envelope of the species would 
move latitudinally (toward the south) but not longitudi-
nally (in altitude) in the future (Figs 1, 2).

Human footprint

The human footprint (croplands and buildings) in the 
Coastal mountain range was greater than that in the Ande-
an mountain range (Fig. 1E–G). Coastal mountain range 
presents a strong human footprint (including Coltauco to 
the south, Fig. 1G; pink rectangle).

Discussion
In this study, we assessed the suitability of the climatic 
conditions for a sky island lizard under different climate 
scenarios and how that may affect its distribution based on 
its climate envelope and human footprint (croplands and 
buildings). For this purpose, we hypothesized that L. nigro-
viridis will undergo a distributional shift toward the south, 
with a smaller geographical range limited to higher altitudes 
compared to its current distribution, given the pressures of 
climate and land-use change. We corroborated our hypoth-
esis regarding the latitudinal (southward) movement of the 
species’ climate envelope into the future and the decrease 
of the same, but not regarding the longitudinal (altitudinal) 
movement and the human footprint, which would affect 
a potential future migration of the species in the Coastal 
mountain range, but not in the Andean mountain range.

Figure 2. Southward movement of the climate envelope for Liolaemus nigroviridis. Habitat projections for L. nigroviridis gener-
ated under climatic layers (GCM: MPI-ESM1-2-HR) for the years 2040 (panel A) and 2080 (panel B) under RCP 8.5 conditions. In 
both panels, the blue outline indicates the current distribution with a probability presence > 0.6, as generated by the model (based 
on the Random Forest algorithm). The red vertical lines represent the climate envelope expansion towards the south in the Andean 
mountain range. The pink rectangle indicates the area that remains towards the future in the Coastal mountain range (near Coltauco). 
These maps were produced in the R environment (R Core Team, version 4.3.2) using the packages: BIOMOD2 version 4.2.4 
(Thuiller et al. 2023) and TERRA version 1.7.65 (Hijmans et al. 2023). The filtering based on the presence probability threshold > 
0.6, shown and represented by the blue outline, was performed using the THRESHOLD COLOR function of the ImageJ software 
(Schneider et al. 2012), applied to the BIOMOD2 current projection. The spatial integration of the layers, the blue outline, measure-
ments, and integration of red vertical lines was performed using QGIS software version 3.32. Coordinate system: WGS84.
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Habitat suitability for L. nigroviridis (in terms of high 
probability of occurrence: > 0.6) decreased by 42.5% in 
the most catastrophic future scenario (2080; 8.5). The 
reduction of the species’ climate envelope in the future 
was remarkable, with no high probability of the spe-
cies’ presence in the Coquimbo Region (Fig. 1D), where 
L. nigroviridis is currently present (Cianferoni et al. 2013; 
Mella-Romero et al. 2023). Regarding the latitudinal 
movement of the future climate envelope, the new habitat 
suitable for L. nigroviridis for year 2080 was located up to 
60.6 km to the south of its current range in the Andes (in 
the mountains to the north of Alto Huemul; end of the red 
vertical line in Fig. 2B). This southward movement was 
notable in the Andes range, but it was practically nil in the 
Coastal range, with the mountains in the northern zone 
of Coltauco being the limit of its climate envelope even 
by 2080. This, together with the existence of a strong hu-
man footprint in the vicinity and to the south of Coltau-
co, shows limitations for the dispersal of populations that 
inhabit the Coastal range in future scenarios after 2080.

The decrease and latitudinal movement of the species’ 
climate envelope in the future can be explained by the 
most relevant climatic variables (according to the biology 
of L. nigroviridis and RF Importance index): temperature 
seasonality, annual precipitation, precipitation of the dri-
est quarter, and precipitation of the wettest month. These 
variables are closely associated with precipitation/humid-
ity and its seasonality. All the variables related to tempera-
ture showed an increase between the current scenario and 
2080 (8.5), while the variables related to rainfall and hu-
midity showed a decrease in the same time range (except 
those associated with rainfall in warm months) (Table 1). 
This implies that rainfall in the warm months was equally 
scarce in all temporal scenarios, but in the cold months, 
it decreased considerably with increasing time (Table 1). 
This implies a consequent decrease in available humidity 
in the Chilean central zone. For instance, the minimum 
temperature of the coldest month increased considerably 
toward the 2080 scenario (Table 1), which would also af-
fect the decrease in humidity and indicated that the cen-
tral zone would indeed be warming up. These findings are 
consistent with those reported by other research groups 
analyzing the zone in the context of climate change, both 
at the species and ecosystem levels (Marquet et al. 2010; 
Pliscoff and Uribe-Rivera 2020; Torres et al. 2022).

Precipitation and humidity directly influence the ex-
istence of high Andean shrubs, which play a significant 
role in the thermal ecology of Liolaemus species (Labra 
et al. 2008; Laspiur et al. 2021; Cruz et al. 2022). A de-
crease in precipitation during cold months could affect 
the recruitment and growth of plants, thereby reducing 
the number of shrubs available as refuges (see e.g. Siner-
vo et al. 2010; Laspiur et al. 2021). Likewise, rainfall and 
humidity in the warm months also play a significant role 
in maintaining these shelters, which provide the lizards 
the possibility of avoiding dehydration through behavior-
al thermoregulation (Labra et al. 2008; Brizio et al. 2021; 
Laspiur et al. 2021; Cruz et al. 2022). This is supported 
by field observations and literature; the general pattern 

observed involves individuals sunning themselves di-
rectly in the morning, and retreating to shaded patches of 
shrubs to avoid overheating (which leads to dehydration) 
before noon (Laspiur et al. 2021). As a result, the number 
of active lizards outside the shelters would progressively 
decrease during the hottest hours, being forced to retire 
to shaded microhabitats, seeking optimal thermal quality 
(Laspiur et al. 2021). This would imply an increase in the 
hours of activity restriction (Sinervo et al. 2010; Cruz et 
al. 2022; Mella-Romero et al. 2024); that is, the lizards 
wait until suitable conditions of heat and humidity occur 
to resume their active behavior. This phenomenon may 
increase the local extinction risk of a population (Sinervo 
et al. 2010; Huey et al. 2012).

Additionally, humidity can significantly impact insect 
abundance (L. nigroviridis is mainly insectivorous; Labra 
et al. 2008), as it affects several aspects of insect life his-
tory traits, including reproduction and survival (He et al. 
2021). In general, high humidity is favorable for the sur-
vival and reproduction of insects (He et al. 2021), while 
low humidity can reduce the survival of some insect 
species and limit their capacity to reproduce (Miedaner 
and Juroszek 2021). In dry environments, such as those 
predicted for central Chile by 2080, certain insect spe-
cies might have difficulty finding water, leading to death 
by dehydration (Thorat and Nath 2018). Furthermore, 
humidity can affect insect migration (He et al. 2021; 
Miedaner and Juroszek 2021) due to some insect species 
migrating in response to drought patterns and possibly 
being attracted to wet regions or repelled by dry regions 
(Miedaner and Juroszek 2021). The aforementioned fac-
tors could lead to a decrease in the primary food resource 
of L. nigroviridis, thereby affecting its biological fitness.

Despite the hypothesis that biota in South America’s 
southern cone may need to seek higher altitudes to es-
cape high temperatures caused by climate change (see 
e.g. Sáenz-Romero et al. 2015), our analysis suggests that 
L. nigroviridis will not follow this pattern. Instead, our 
model showed only decreases in the high probability of 
its presence at the same altitude in the future (as shown in 
Figs 1D, 2). Although this hypothesis has been suggested 
for the biota of the zone, our results show that the spe-
cies-specific climate envelope does not shift in altitude 
at least until 2080 under the RCP 8.5 scenario (there is 
no high probability of the species’ presence at altitudes 
higher than those it currently occupies). In the Coastal 
mountain range, the species cannot climb since it already 
occupies the highest altitudes available (2,281 m a.s.l.; 
Mella-Romero et al. 2023). On the other hand, in the An-
des there is an extensive network of peaks above 4,000 m 
a.s.l. that would not be occupied by the species accord-
ing to our model. This could be explained by the magni-
tude of change in temperature and precipitation variables 
(Table 1) within the analyzed time range (from the pres-
ent time to year 2080), which may be insufficient for visu-
alizing any significant change in altitudinal displacement. 
The extent of this displacement varies depending on the 
taxa analyzed and their specific context, and may take 
from decades to centuries (Kwon et al. 2016; Guaraldo 
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et al. 2022). In some cases, this event can occur within 
a few decades in response to extreme weather phenome-
na (White 2016). Generally, a shift in altitude over short 
periods of time is more easily observable in organisms 
with high vagility, such as birds (Kwon et al. 2016; White 
2016). Our results coincide with what was proposed by 
Marquet et al. (2010) for Liolaemus bellii, in terms of a 
decrease in the distribution range of the species in future 
scenarios, although that study did not refer to latitudinal 
or longitudinal movement.

Thus, our analysis suggests that L. nigroviridis will 
have a more restricted climate envelope in future scenari-
os and, therefore, would seek to track the current climatic 
conditions to the south, especially in the Andes, where 
there is a low human footprint. The populations of these 
mountains have geographical accidents as dispersal bar-
riers, such as river basins (Lamborot and Eaton 1997), 
but not croplands and buildings. The populations in the 
Coastal mountain range would also have to navigate a 
vast network of human footprints (even considering the 
most conservative scenario of land-use change, as in this 
study) if the climate envelope does indeed shift south-
ward in a future beyond 2080. Therefore, assisted mi-
gration appears as a plausible alternative for L. nigrovir-
idis (especially the populations of the Coastal mountain 
range) and other species with the described future limita-
tions. Assisted migrations mainly apply to species with 
low vagility (Vitt et al. 2009), but they could also apply 
to species that, despite having a dispersal capacity, are re-
stricted from following their climate envelope due to the 
presence of anthropogenic barriers, such as the potential 
case of L. nigroviridis in the Coastal range.

Assisted migrations have recently been proposed as 
adaptive strategies to climate change (Müller and Eriks-
son 2013; Dunlop et al. 2021; Lavrik 2021). In Chile, en-
vironmental public policies have focused on implement-
ing climate change law in recent years. Nevertheless, the 
topic of biodiversity and climate and land-use change is 
absent from the current discussion, despite (i) the clear 
evidence that without biodiversity we cannot make ad-
justment plans to face climate change (Butt et al. 2021), 
and (ii) the dramatic reports from the IPBES (Intergovern-
mental Science-Policy Platform on Biodiversity and Eco-
system Services) and the IPCC (Intergovernmental Panel 
on Climate Change). Studies like ours may foreground 
the discussion about the usefulness of assisted migrations 
in the current context of climate and land-use change at 
the national level (especially with the future implemen-
tation of the Biodiversity and Protected Areas Service), 
a discussion that is already taking place globally (Müller 
and Eriksson 2013; Dunlop et al. 2021; Lavrik 2021).

Our work has the scope to suggest the vulnerability to 
climate change of other reptile species present in the area 
(e.g. Liolaemus bellii, Liolaemus leopardinus, and Pris-
tidactylus volcanensis; Mella-Romero and Mella 2023), 
given their similar habitat requirements (Marquet et al. 
2010; Santoyo-Brito et al. 2020). However, to obtain 
more specific information on how climate change would 

affect the thermoregulatory behavior of these species, ad-
ditional work is needed, with ecophysiological sampling 
during all seasons of the year (e.g. measurements of body 
and critical temperatures, see Laspiur et al. 2021; Cruz 
et al. 2022). Our research demonstrates how L. nigrovir-
idis could be affected in a relatively short time and, there-
fore, helps to assess the vulnerability of its populations 
to climate and land-use change. SDMs that incorporate 
information on the human footprint are thus valuable 
tools for developing biological conservation initiatives. 
We conclude that it is necessary to incorporate the human 
footprint into species distribution analyses because it can 
have heterogeneous effects on the future habitat availabil-
ity on which the species will depend.
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