BioOne COMPLETE

First record of the litter-inhabiting weevil genus Protacallodes (Coleoptera: Curculionidae: Molytinae) from outside of Japan, with description of a new species from Taiwan

Authors: Germann, Christoph, and Grebennikov, Vasily V.
Source: Integrative Systematics: Stuttgart Contributions to Natural History, 5(2) : 121-135
Published By: Stuttgart State Museum of Natural History
URL: https://doi.org/10.18476/2022.939288

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

[^0]
First record of the litter-inhabiting weevil genus Protacallodes (Coleoptera: Curculionidae: Molytinae) from outside of Japan, with description of a new species from Taiwan

Christoph Germann ${ }^{1}$ \& Vasily V. Grebennikov ${ }^{2}$

Abstract

We clarify the taxonomic and phylogenetic identity of two conspecific, litter-inhabiting female weevils from the Huisun forest in Taiwan. These beetles are most similar to those of the genera Protacalles Voss, 1957, Protacallinus Morimoto, 1962 and Protacallodes Morimoto, 2011, which are all endemic to Japan. We performed a phylogenetic analysis of 37 terminals and 83 parsimony-informative adult morphological characters. The single most parsimonious tree recovered a clade of these three genera, with the Taiwan species sister to Protacallodes. Statistical support for this tree was low and these clades collapsed after bootstrapping. We describe the Taiwan weevils as Protacallodes bhudevi sp. n., the third species of the genus and a new generic record for Taiwan. We illustrate the newlydescribed species and its possible relatives, and update the identification key to Protacallodes and related genera.

Key words: East Asia, morphology, new genus record, phylogeny, taxonomy.

Zusammenfassung

Wir klären die taxonomische Zugehörigkeit und die phylogenetische Stellung zweier konspezifischer weiblicher Rüsselkäfer aus der Streuschicht des Huisun-Waldes auf Taiwan. Diese Rüsselkäfer sind denjenigen der Gattungen Protacalles Voss, 1957, Protacallinus Morimoto, 1962 und Protacallodes Morimoto, 2011 am ähnlichsten, welche alle endemisch für Japan sind. Wir führten eine phylogenetische Analyse mit 37 Taxa und 83 parsimonieinformativen morphologischen Merkmalen durch. Der sparsamste Baum ergab eine Klade dieser drei Gattungen, mit der Art aus Taiwan als Schwesterart zu Protacallodes. Der Baum wird statistisch nur schwach unterstützt und die Kladen kollabierten nach dem Bootstrapping-Verfahren. Wir beschreiben die taiwanesischen Rüsselkäfer als Protacallodes bhudevi sp. n. Dies ist die dritte Art der Gattung und der Erstnachweis der Gattung für Taiwan. Die neue Art und ihre möglichen verwandten Arten werden illustriert und in einem angepassten Bestimmungsschlüssel vorgestellt.

Introduction

In 2013, when sifting the leaf litter in the high-altitude Huisun forest of Taiwan, one of us collected two seemingly conspecific females of an unknown Molytine weevil (Fig. 1). A preliminary morphological comparison suggested affinities with the genera Protacallodes (Fig. 2), Protacalles (Fig. 3) and Protacallinus (Fig. 4). These genera consist of four named species, all restricted to Japan. Morimoto (2011), however, indicated that Protacallinus was known to him in "a good number of species", while Protacallodes "has a wide range of distribution from Japan to southern China and Vietnam according to unnamed species in our collection". One of these species, Protacallodes ryukyuensis Morimoto, 2011, is known from the Ishigaki (Мовimoto 2011) and Kumejima Islands (Yoshitake 2020), part of the Ryukyus, the former one at a mere 400 km from the Huisun forest. Both Taiwanese specimens resemble these Japanese weevils habitually
and agree with the morphological diagnosis of this group of genera (Morimoro 2011: 325). Additionally, all these beetles display the same habitat preference for the forest floor and leaf litter. Consequently, these three Japanese genera became the first candidates in our search to identify the closest relatives of our two unnamed Taiwanese specimens.

Uncertainties arose when we attempted to search the literature for other taxa potentially related to our find. As pointed out by Morimoto (2011: 325), the three aforementioned Japanese genera and at least three other potentially closely related genera are scattered between the two potentially non-monophyletic molytine tribes Ithyporini and Sthereini (Alonso-Zarazaga \& Lyal 1999; Löbl \& Smetana 2013; Lyal 2014; Alonso-Zarazaga et al. 2017). These three potentially related genera are the monotypic Darumazo Morimoto \& Miyakawa, 1985 from Japan (Fig. 5) and the two trans-Beringian oligotypic genera Lobosoma Zimmermann, 1964 and Sthereus

Motschulsky, 1845. No phylogenetic analysis has targeted any of these genera. The existing taxonomic ambiguity is, therefore, not surprising, because the majority of Molytinae tribes and the subfamily itself are likely non-monophyletic (Shin et al. 2017).

We designed our study to face and resolve, as far as possible, the taxonomic and phylogenetic uncertainties pertaining to our Taiwanese weevils. The present paper, therefore, has two goals. First, we introduce the Taiwanese species to science by describing and naming it. This we do based on a phylogenetic analysis, the latter forming our second goal. As before (Germann \& Grebennikov 2020), our overall objective is to shed phylogenetic light on the obscure and diverse litter-inhabiting molytine weevils.

Material and methods

Museum abbreviations, with the name of contact person(s) in parentheses:

CGC Christoph Germann collection, Rubigen, Switzerland KUZC Kyushu University Museum, Fukuoka, Japan (Munetoshi Maruyama)
NHMB Naturhistorisches Museum Basel, Switzerland (Christoph Germann)
NMNS National Museum of Natural Science, Taichung, Taiwan (Ming-Luen Jeng, Jing-Fu Tsai)

This study follows the methodology of our earlier work on the molytine subtribe Cotasteromimina (Germann \& Grebennikov 2020). We re-use the Cotasteromimina morphological matrix and adapt it to our current purposes. For the present analysis, we define the ingroup by restricting it to six terminals altogether, representing the Taiwanese species, all three Japanese genera, and two genera from the potentially closely related tribe Ithyporini: Darumazo and Sclerocardius Schoenherr, 1847. The outgroup consists of 23 representatives of other Molytinae. The root is formed, in addition to a representative of the subfamily Curculioninae, Gymnetron veronicae (Germar, 1821), by a representative of the more distantly related (Shin et al. 2017) subfamily Entiminae: Otiorhynchus singularis (Linnaeus, 1787). Our matrix (Appendix 1) consists of 31 terminals and 87 adult morphological characters (Appendix 2). Label data of the seven newly scored terminals are given in Appendix 3. Five newly scored ingroup terminals are depicted in Figs. 1-5. We conducted a single parsimony analysis using the same analytical procedures as before (Germann \& Grebennikov 2020). In this analysis, we treated all characters as of equal weight, and all multistate characters are unordered. Four parsimoniously uninformative characters ($36,66,70$ and 77) were deactivated before the analysis. Throughout this paper we adhere for practical reasons to the current and unsatisfactory (see Introduction) tribe classification of Molytinae and, therefore, do not modify the existing tribal placement of any genus.

Results

The phylogenetic analysis resulted in a single shortest tree of 529 steps (Fig. 6), with consistency index 23 and
retention index 44. The Taiwanese weevil was recovered as a member of the Protacalles, Protacallinus and Protacallodes clade, sister to the latter genus. The former clade was supported by two unambiguously optimized synapomorphies (UOS): 24/1 (head, antenna, funicle, ratio of second antennomere length to that of first, dorsal view: 0.5 and more) and 57/0 (elytra, raised and bowed bristles, shape of tip: rounded). The next less inclusive clade of Protacalles sister to Protacallodes is supported by five UOS: $3 / 0$ (body, ratio of body length to maximum height, lateral view: <2.5), 10/2 (head, rostrum, fronto-dorsal length compared to that of pronotum in dorsal view: > 1.1), 21/1 (antenna, funicle, number of distal-most antennomeres with vestiture similar to that of club: 1), $35 / 1$ (prothorax, longitudinal channel on sternum anterior of procoxae, ventral view: present) and 55/1 (elytra, raised bristles, dorsal or lateral view: present). The monophyly of the genus Protacallodes including the herein described new species was supported by five UOS: 4/2 (body, scales, including those on head and legs: appressed and erect), 17/1 (head, eyes, smallest distance between compared to width of base of rostrum, dorso-frontal view: smaller than 0.8), 33/0 (prothorax, anterior edge, ocular lobes, lateral view: absent), 50/2 (scutellum, if visible externally, dorsal view: not visible) and 67/1 (legs, all tibiae, premucro: present). Bootstrapping this tree resulted in an almost completely unresolved bush, with only three clades supported over the 50\% threshold: Darumazo + Himalanchonus Zherikhin, 1987 (55\%), Orthorhinus Schoenherr, 1825 + Vanapa Pouillaude, 1915 (52\%) and all three included species of the genus Seticotasteromimus Germann, 2013 (99\%). Unambiguous optimization of evolutionary events on branches demonstrated the preponderance of nonunique evolutionary events, i.e., of either parallelisms or reversals (open circles in Fig. 6).

Consistently with the obtained results, and considering the morphological similarity and geographical proximity between our Taiwanese specimens and those of the genus Protacallodes, we introduce our Taiwanese specimens as belonging to a new species of this genus.

Protacallodes bhudevi sp. n.

(Fig. 1)

Type locality
Taiwan, Taichung, Huisun forest, N24.0640 E121.0245 ${ }^{\circ}$, 1647 m .

Type material

Holotype (NMNS): female, "TAIWAN, Taichung, Huisun forest, $24.0640121 .0245,1647 \mathrm{~m}, 3 . \mathrm{ix} .2013$, sift TW16, V. Grebennikov"//CNCCOLVG00006978//CNCCOLVG00006979.

Paratype (NHMB): female, "TAIWAN, Taichung, Huisun forest, 24.0671 121.0291, 1682m, 13.viii.2013, sift TW06, V. Grebennikov"//CNCCOLVG00006778//CNCCOLVG00006779.

Fig. 1. Protacallodes bhudevi sp. n., females. A-J, L-P: holotype; K: paratype. A-C. Habitus dorsal, ventral and lateral. D. Head and rostrum. E. Mesoventral process. F. Mouthparts. G. Right protibia with uncus, premucro and stiff yellow spines on outer side. H. Right fore leg showing femur with small tooth. I. Sternite 8. J-K. Spermatheca. L. Ventrites 3-5. M. Tergite 8. N. Tergite 7. O. Gonocoxites. P. Antenna. (© Christoph Germann)

Fig. 2. Protacallodes masumotoi Morimoto, 2011, female. A-C. Habitus dorsal, ventral and lateral. D. Head and rostrum. E. Mesoventral process. F. Prosternum. G. Ventrite 7. H. Spermatheca. I. Gonocoxites. (© Christoph Germann)

Fig. 3. Protacalles monticola Voss, 1957, female. A-C. Habitus dorsal, ventral and lateral. D. Head and rostrum. E. Mesoventral process. F. Prosternum. G. Ventrite 7. H. Spermatheca. I. Gonocoxites. (C Christoph Germann)

Fig. 4. Protacallinus uenoi Morimoto, 1962, female. A-C. Habitus dorsal, ventral and lateral. D. Head and rostrum. E. Prosternum. F. Ventrite 7. G. Spermatheca. H. Gonocoxites. (© Christoph Germann)

Fig. 5. Darumazo distinctus Morimoto \& Miyakawa, 1985, female. A-C. Habitus, dorsal, ventral lateral. D. Head and rostrum. E. Prosternum. F. Ventrite 7. G. Spermatheca. H. Gonocoxites. I. Antenna. (© Christoph Germann)

Fig. 6. The single most parsimonious tree obtained after a phylogenetic analysis of Protacallodes bhudevi sp. n. and its potential relatives. The clade of the genera Protacalles, Protacallinus and Protacallodes is highlighted. Unambiguously optimized evolutionary events are plotted on internodes. Character numbers are above the circles, newly acquired character states are below the circles. Black circles indicate unique evolutionary events; white circles indicate parallelisms or reversals.

Description

Body length in dorsal view excluding rostrum: 2.562.94 mm . Body dark auburn (Fig. 1A-D), prothorax and elytra with bowed and club-shaped, appressed, yellowish scales.

Head globular, deeply retracted in pronotum (Fig. 1BD). Rostrum as long as pronotum, its dorsal surface evenly curved in lateral view (Fig. 1D); scrobes lateral, oblique. Rostrum in dorsal view weakly narrowed at antennal
insertion, widening anteriad. Eyes oval, in lateral view comparable in their greatest dimension to the width of the rostrum at its base, in dorsal view eye contours not protruding outside head contour (Fig. 1D). Epistome glabrous and finely punctuate, vaulted laterally above mandibular base (Fig. 1D). Mandibles visible in frontal view, with three teeth. Labium rounded; maxillae with broad and stout palpomeres (Fig. 1F). Antennal funicle with seven antennomeres (Fig. 1P). First and sixth antennomeres of
funicle subequal in width (Fig. 1P). Pedicel 1.5 times as long as wide; funicle antennomeres $2-4$ as long as wide; 5-7 gradually widening, wider than long. Antennal club oval (Fig. 1P).

Pronotum oval, about 1.1x as long as wide (Fig. 1A); pronotal surface with coarse, polyhedric punctures separated by narrow ridges (Figs 1A, C). Anterior margin of prothorax in ventral view rounded and emarginate (Fig. 1B). Procoxae subcontiguous; metacoxae separated by less than half their diameter; metacoxae separated by twice their length (Fig. 1B). Elytra short, oval, without shoulders, hind wings absent. Elytral base about 1.25 x as wide as hind margin of pronotum (Fig. 1A). Elytra with ten punctuate striae; elytral intervals vaulted, twice wider than width of striae. Inner surfaces of elytra at apex with stridulatory ridges. Vaulted intervals on elytra with small and irregularly placed punctures; each puncture with a clubbed, bowed and yellowish scale. Elytral stria 10 as short as basal quarter of elytra; striae 6-8 merging before reaching elytral base, striae 4,5,7 and 8 merging before reaching elytral apex. Externally visible part of scutellum small and triangular. Meso-, metaventrites and abdominal ventrites coarsely punctuate; each puncture with a narrow, clubbed and bowed, yellowish scale (Fig. 1B). Legs slender, femora clubbed, profemora with obtuse ventral tooth (Fig. 1H). Tibiae uncinate; premucro present (Fig. 1G). Tarsi with entire (not bilobed) third tarsomere; claws free. Apex of tibiae on inner and outer side with a row of stiff, yellowish spines (Fig. 1G).

Abdomen with first and second ventrites fused; suture between them obliterated at middle and visible at sides (Fig. 1B). Ventrites three to five free (Fig. 1L). Female sternite 8 paddle-shaped (Fig. 1I), with manubrium longer than plate; plate bifurcate, not sclerotized in middle; base of sternite 8 handle-like and broadened (Fig. 1I). Spermatheca with short and bowed nodulus, with long and slender cornu attenuated towards its tip (Fig. 1J, K), with ramus and duct (Fig. 1J, K). Tergite 8 with posterior margin angular (Fig. 1M); posterior margin of tergite 7 rounded (Fig. 1N). Gonocoxites elongate, weakly sclerotized; styli cone-shaped, twice as long as wide at middle, with straight setae posteriorly (Fig. 1O). Male unknown.

Comment

Three DNA fragments of the holotype were previously released under the name "Himalanchonus" (Grebennikov \& Anderson 2021): the DNA barcode part of the mitochondrial cytochrome c oxidase I (GenBank accession number MT889118), the nuclear internal transcribed spacer 2 (MT889140) and the nuclear 28 S ribosomal DNA (MT889164).

Etymology
The species is named after Bhudevi, the Hindu goddess of Mother Earth, as a noun in apposition.

Biogeographical interpretation

The weak statistical support of our morphological phylogenetic tree leaves doubts about the identity of the more inclusive clade to which the new species belongs. Moreover, much of the leaf litter biodiversity, including weevils related to our new species, remains undocumented, particularly in mainland China. Assuming, however, that the new species is a member of the previously Japan-only clade, its herein reported discovery in Taiwan is not surprising. The continental islands of Taiwan and Ryukyus emerged some nine million years ago (Mya) and "attained their modern features and their current flora and fauna from the adjacent mainland and tropical Asia only 5-6 Mya" (Chiang \& Schata 2006). These lands were isolated as three larger islands since the Late Miocene period (Kaito \& Toda 2016). The subsequent Quaternary glaciation and the drop of the sea level resulted in the formation of the Early Pleistocene land bridge connecting the Taiwan-Ryukyu Archipelago to the mainland and facilitating biotic interchange (Chiang \& Schaal 2006). Among better-documented plants, some 53% of Ryukyus' $1,220+$ species also occur in Taiwan, while both floras share a close affinity with that of mainland China rather than with that of the rest of Japan (Chiang \& Schaal 2006). A few well-documented animal examples also demonstrate a closer relatedness of the Taiwan and Ryukyus faunas to mainland China rather than to Japan's main islands [e.g., the wood-feeding cockroaches, see Maekawa et al. (1999)]. We therefore interpreted the herein hypothesized placement of the Taiwanese Protacallodes bhudevi sp. n. among the Japan-only relatives as (1) a bias resulting from a markedly uneven taxonomic knowledge of the weevil faunas of mainland China and Japan and (2) an indicator that closely related species will soon be discovered and documented in mainland China.

Diagnosis

Both herein analysed species of the genus Protacal-lodes-P. masumotoi Morimoto, 2011 and P. bhudevi sp. n.-differ by 13 morphological characters (Fig. 6). The other described Japanese species, P. ryukyuensis Morimoto, 2011 (not included in the analysis), is very similar to P. masumotoi according to the description and differs in its larger size, subcordate elytral outline, rudimentary femoral tooth and penis shape (Morimoto 2011).

Identification key to Protacallodes bhudevi sp. n. and similar or related weevils

[Modified from Morimoto (2011).]
1(4) Antero-lateral corner of first ventrite and metepisternum narrowly separated (metaxocae and elytra contiguous); longitudinal groove on prosternum present, with lateral carinae \qquad .. part of Ithyporini [sensu Morimoto (2011), Löbl \& Smetana (2013), but not Alonso-Zarazaga et al. (2017)—see below]

2(3) Scutellum not visible externally (Fig. 3A); ultimate striae of elytra notably shallower posterior to the level of hind coxae; mesoventral process between mesocoxae as wide as base of mesofemur (Fig. 3E), not bulged; elytra circular (Fig. 3A), with scattered scales (Figs 3A-C)

Protacalles Voss
3(2) Scutellum visible externally (Fig. 2A); ultimate striae of elytra of similar depth along their entire length. Ultimate stria entire (Japanese species) or obliterated at middle, only visible at anterior edge and towards apex of each elytron (Fig. 1C; P. bhudevi sp. n.); mesoventral process between mesocoxae narrower than base of mesofemur, either bulged (Fig. 2E; Japanese species) or not (Fig. 1E; P. bhudevi sp. n.; elytra oval (Fig. 2A), with denser scales (Fig. 2A, C). \qquad Protacallodes Morimoto
4(1) Antero-lateral corner of first ventrite and metepisternum contiguous (separating metacoxae from elytra); longitudinal groove on prosternum absent or present........Sthereini
5(10) Funicle with seven antennomeres; eyes smaller, forehead between eyes scarcely narrower than base of rostrum, without erect scales along inner margin of eyes; prosternum flat or shallowly depressed, with or without lateral carinae
6(9) Prosternum at anterior margin deeply emarginate
7(8) Third tarsomere shallowly emarginate at anterior margin to not more than a quarter its length; socket of fourth tarsomere located in distal half of third tarsomere; prosternum anterior to procoxae shallowly to deeply depressed (Fig. 4E), with or without lateral carinae. \qquad Protacallinus Morimoto
8(7) Third tarsomere deeply emarginate at anterior margin to almost half its length; socket of fourth tarsomere located at middle or in proximal half of third tarsomere; prosternum anterior to procoxae shallowly depressed, without lateral carinae, sides of depression obtusely raised. \qquadLobosoma Buchanan and Philostratus Zimmermann
9(6) Prosternum at anterior margin weakly emarginate \qquad
10(5) Funicle with six antennomeres (Fig. 5I); eyes larger, forehead between eyes much narrower than base of rostrum, with erect scales along inner margin of eyes (Fig. 5D); prosternum deeply depressed, with lateral carinae (Fig. 5E) \qquad Darumazo Morimoto

Acknowledgements

Ming-Luen Jeng and Wesley Hunting (both Taichung, Taiwan) facilitated the 2013 fieldwork of the second author in Taiwan, which resulted in the herein reported discovery. Hiroaki Koima (Tokyo University of Agriculture) and Christopher H. C. Lyal (London, UK) suggested affinities of these Taiwan specimens to the Japanese genus Protacalles and its allies. Munetoshi Maruyama and Naomichi Tsuif (both Kyushu, Japan) loaned us the herein illustrated specimens of the genera Protacalles, Protacallodes, Protacallinus and Darumazo (Figs. 2-5). Patricia Gamarra (Basel, Switzerland) helped us trace some of the cited references.

References

Alonso-Zarazaga, M. A., Barrios, H., Borovec, R., Bouchard, P., Caldara, R., Colonnelli, E., Gültekin, L., Hlaváč, P., Korotyaev, B. A., Lyal, C. H. C., Machado, A., Meregalli, M., Pierotti, H., Ren, L., Sánchez-Ruiz, M., Sforzi, A., Silfverberg, H., Skuhrovec, J., Trýzna, M., Velázquez de Castro, A .J. \& Yunakov, N. N. (2017): Cooperative cata-
logue of Palaearctic Coleoptera Curculionoidea. - Sociedad Entomológica Aragonesa, Monografias Electrónicas SEA 8: 1-729. Available from: http://sea-entomologia.org/ PDF/MeSEA_8_Catalogue_Palaeartic_Curculionoidea.pdf (accessed 10 Āugust 2022).
Alonso-Zarazaga, M. A. \& Lyal, C. H. C. (1999): A world catalogue of families and genera of Curculionoidea (Insecta: Coleoptera) (excepting Scolytidae and Platypodidae), 315 pp.; Barcelona (Entomopraxis).
Chiang, T.-Z. \& Schaal, B. A. (2006) Phylogeography of plants in Taiwan and the Ryukyu Archipelago. - Taxon 55: 31-41. https://doi.org/10.2307/25065526
Germann, C. (2021) Two new Cotasteromimina from Borneo (Coleoptera, Curculionidae: Molytinae). - Zootaxa 4933 (4): 567-574.
https://doi.org/10.11646/zootaxa.4933.4.7
Germann, C. (2022): A new species of Seticotasteromimus Germann from the Cameron Highlands of Malaysia (Coleoptera, Curculionidae, Molytinae). - Zootaxa 5100 (3): 445-450. https://doi.org/10.11646/zootaxa.5100.3.8
Germann, G. \& Grebennikov, V. V. (2020) A new weevil genus from the highlands of China casts doubts on monophyly of Cotasteromimina (Coleoptera: Curculionidae, Molytinae). Fragmenta Entomologica 52: 197-211. https://doi.org/10.13133/2284-4880/459
Grebennikov, V. V. \& Anderson, R. S. (2021): Late Miocene eastwards transatlantic dispersal of flightless anchonine weevils (Coleoptera: Curculionidae: Molytinae). - Zootaxa 4952 (1): 55-70. https://doi.org/10.11646/zootaxa.4952.1.3
Kaito, T. \& Toda, M. (2016): The biogeographical history of Asian keelback snakes of the genus Hebius (Squamata: Colubridae: Natricinae) in the Ryukyu Archipelago, Japan. Biological Journal of the Linnean Society 118 (2): 187-199. https://doi.org/10.1111/bij. 12726
Löbl, I. \& Smetana, A. (eds.) (2013): Catalogue of Palaearctic Coleoptera. Volume 8, 700 pp.; Leiden (Brill).
Lyal, C. H. C. (2014): 3.7.7 Molytinae Schoenherr, 1823. - In: Leschen, R. A. B. \& Beutel, R. G. (eds.): Handbook of Zoology. Arthropoda: Insecta: Coleoptera. Volume 3. Morphology and Systematics (Phytophaga), pp. 529-570; Berlin (Walter de Gruyter).
Maekawa, K., Lo, N., Kitade, O., Miura, T., \& Matsumoto, T. (1999): Molecular phylogeny and geographic distribution of wood-feeding cockroaches in East Asian islands. - Molecular Phylogenetics and Evolution 13 (2): 360-376. https://doi.org/10.1006/mpev.1999.0647
Morimoto, K. (2011): Weevils of the genus Protacalles and its allies in Japan (Coleoptera: Curculionidae: Molytinae) (Part 1). - In: Kawar, S. (ed.): Masumushi. Special publication of the Japanese Society of Scarabaeidology 1. Entomological papers dedicated to Dr. Kimio Masumoto on the occasion of his retirement, pp. 325-336; Tokyo (Japanese Society of Scarabaeoidology).
Shin, S., Clarke, D. J., Lemmon, A. R., Lemmon, E. M., Aitken, A. L., Haddad, S., Farrell, B. D., Marvaldi, A. E., Oberprieler, R. G. \& McKenna, D. D. (2017): Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. - Molecular Biology and Evolution 35 (4): 823-836. https://doi.org/10.1093/molbev/msx 324
Yoshitake, H. (2020): New record of Protacallodes ryukyuensis Morimoto (Coleoptera, Curculionidae, Molytinae) from Kumejima Island, the Ryukyus, Japan. - Elytra, New Series 10: 338.

Authors' addresses:
${ }^{1}$ Biosciences, Naturhistorisches Museum Basel, Augustinergasse 2, CH 4051-Basel, Switzerland; e-mail (corresponding author): christoph.germann@bs.ch; (D) https://orcid.org/0000-0001-8317-3799
${ }^{2}$ Canadian Food Inspection Agency, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada; e-mail: vasily.grebennikov@inspection.gc.ca

ZooBank registration: https://zoobank.org/References/035C7E00-4E09-48B6-A53F-23EEA9C622DA

Manuscript received: 08.IX.2022; accepted: 05.XII.2022.

Appendix 1. A data matrix of adult morphological characters used in determining phylogenetic affinities of Protacallodes bhudevi sp. n. Abbreviations before taxa are: "InG": ingroup, "OtG": outgroup. The letter "C." after "Pissodini" indicates the subtribe Cotasteromimina. The first two lines, read vertically, provide the character number. The bottom line indicates four deactivated characters.

$\begin{array}{ll}0 & 0 \\ V_{1} & - \\ H \\ - \\ - & \underset{ }{-} \\ - & - \\ H & - \\ - & \\ & \end{array}$ $\begin{array}{ll}0 & 0 \\ - & 1 \\ ⿱ & 1 \\ - & \\ - & \\ - & \end{array}$ $\begin{array}{lll}0 & 0 & 0 \\ 1 & H & F \\ 0 & H \\ \text { N } & - \\ 0 & - \\ 0 & - & \\ 0 & H\end{array}$ | 0 | |
| :--- | :--- |
| 1 | |
| -1 | |
| -1 | |
| -1 | |
| 0 | |
| 0 | |
| 0 | |

 0
${ }_{3}$
-
-
-
-1
0
0
$\begin{array}{ll}0 & 0 \\ - & \underset{~}{1} \\ - & - \\ 0 & 0 \\ - & \ddots \\ - & - \\ - & -1\end{array}$

 n
n
n
\cdots
\cdots
n
n
n
n
n
n
 $\begin{array}{ll}0 & - \\ 0 & - \\ - & - \\ 0 & - \\ 0 & - \\ - & -\end{array}$ $\begin{array}{ll}000120101201000--010 & 00311101000110000110 \\ 101021101200000-1010 & 11001101100110110102 \\ 10112010120000111010 & 11011100000011100020 \\ 1011202100-0200-1001 & 11001110000110000022 \\ 000020211200000--010 & 11011111100110110012 \\ 1110002100-000101001 & 11011111000010110022 \\ 10102121121101111110 & 11300112100110100112 \\ 201221210211010--110 & 01310112100110100022 \\ 102120201211010--110 & 01311112100110110111 \\ 201121101221010-1110 & 01311112100110110012\end{array}$

 21102110122110100001
20112121022111110110
00311110000000100122

\qquad
\square

 1
1
1
0
ROOT1 Otiorhynchus singularis
ROOT2 Gymnetron veronicae ROOT2 Gymnetron veronicae
InG1 Ithyporini Protacallodes budhevisp. nov.
InG2 Ithyporini Darumazo distinctus
InG3 Ithyporini Protacallodes masumotoi
InG4 Ithyporini Sclerocardius bohemani
InG5 Sthereini Protacalles monticola
InG6 Sthereini Protacallinus uenoi
OtG1 no tribe Himalanchonus sp.
OtG2 Anchonini Titilayo garnerae ROOT2 Gymnetron veronicae
InG1 Ithyporini Protacallodes budhevisp. nov.
InG2 Ithyporini Darumazo distinctus
InG3 Ithyporini Protacallodes masumotoi
InG4 Ithyporini Sclerocardius bohemani
InG5 Sthereini Protacalles monticola
InG6 Sthereini Protacallinus uenoi
OtG1 no tribe Himalanchonus sp.
OtG2 Anchonini Titilayo garnerae ROOT2 Gymnetron veronicae
InG1 Ithyporini Protacallodes budhevisp. nov.
InG2 Ithyporini Darumazo distinctus
InG3 Ithyporini Protacallodes masumotoi
InG4 Ithyporini Sclerocardius bohemani
InG5 Sthereini Protacalles monticola
InG6 Sthereini Protacallinus uenoi
OtG1 no tribe Himalanchonus sp.
OtG2 Anchonini Titilayo garnerae ROOT2 Gymnetron veronicae
InG1 Ithyporini Protacallodes budhevisp. nov.
InG2 Ithyporini Darumazo distinctus
InG3 Ithyporini Protacallodes masumotoi
InG4 Ithyporini Sclerocardius bohemani
InG5 Sthereini Protacalles monticola
InG6 Sthereini Protacallinus uenoi
OtG1 no tribe Himalanchonus sp.
OtG2 Anchonini Titilayo garnerae ROOT2 Gymnetron veronicae
InG1 Ithyporini Protacallodes budhevisp. nov.
InG2 Ithyporini Darumazo distinctus
InG3 Ithyporini Protacallodes masumotoi
InG4 Ithyporini Sclerocardius bohemani
InG5 Sthereini Protacalles monticola
InG6 Sthereini Protacallinus uenoi
OtG1 no tribe Himalanchonus sp.
OtG2 Anchonini Titilayo garnerae ROOT2 Gymnetron veronicae
InG1 Ithyporini Protacallodes budhevisp. nov.
InG2 Ithyporini Darumazo distinctus
InG3 Ithyporini Protacallodes masumotoi
InG4 Ithyporini Sclerocardius bohemani
InG5 Sthereini Protacalles monticola
InG6 Sthereini Protacallinus uenoi
OtG1 no tribe Himalanchonus sp.
OtG2 Anchonini Titilayo garnerae OtG3 Hylobiini Hylobius abietis Sepyrus cap
Seleuca sp. $60012110100000-0110$
$70002011101000-10-0$

 22103100111111101211
42300000321001111011 OtG4 Lepyrini OtG6 Lymantini OtG7 Molytini OtG8 Molytini OtG8 Molytini Pinacopus intermedius OtG9 Orthorhinini Eurhamphus fasciculatus OtG11 Orthorhinini Orthorhinus sp.
-
OtG13 Pissodini C. Cotasteromimus morimotoi C. Cotasteromimus morimotoi
C. Cotasteromorphus chujoi
C. Obhylius arboricola
C. Pseudohylobius setosus
C. Seticotasteromimus brunomanseri
C. Seticotasteromimus crassirostris
C. Seticotasteromimus jarawa
C. Zembrus perseus
Dorytomorpha tonsa
Pissodes pini
Aparopion chevrolati

Appendix 2. List of 87 adult morphological characters scored to analyze the phylogenetic position of Protacallodes bhudevi $\mathbf{s p}$. n. [modified from Germann \& Grebennikov (2020)]; characters and their states are illustrated in Fig. 1.

1. Body, length between anterior margin of pronotum and elytral apex, dorsal view: $<6 \mathrm{~mm}=0 ; 6$ to $<9 \mathrm{~mm}=1 ; 9$ to $<12 \mathrm{~mm}=2$; 12 to $<15 \mathrm{~mm}=3 ; 15 \mathrm{~mm}$ and more $=4$.
2. Body, ratio of body length to elytral width at midlength, dorsal view: $<2.0=0 ; 2.0$ to $<2.5=1 ; 2.5$ to $<3.0=2$.
3. Body, ratio of body length to maximum height, lateral view: $<2.5=0 ; 2.5$ to $<3.0=1 ; 3.0$ to $<3.5=2 ; 3.5$ and more $=3$.
4. Body, scales (including those on head and legs): appressed, $<45^{\circ}=0$; erect, $>45^{\circ}=1$; both, appressed and erect $=2$; no scales $=3$.
5. Head, rostrum, shape in cross-section at midlength: circular $=0$; vertical oval $=1$; horizontal oval $=2$; rectangular/quadrate $=3$.
6. Head, rostrum, shape, fronto-dorsal view: widening anteriad $=0$; parallel-sided $=1$; narrowing anteriad $=2$.
7. Head, rostrum, shape, lateral view: straight or weakly curved $=0$; strongly curved $=1$.
8. Head, transverse dorsal depression separating rostrum and frons, lateral view: absent $=0$; present $=1$.
9. Head, rostrum, length to width at middle ratio, fronto-dorsal view: $<3.0=0 ; 3.0$ to $<4.0=1 ; 4.0$ to $<5.0=2 ; 5.0$ and more $=3$.
10. Head, rostrum, fronto-dorsal length compared to that of pronotum in dorsal view: $<0.9=0 ; 0.9$ to $1.1=1 ;>1.1=2$.
11. Head, rostrum, position of frons relative to position of upper margin of eyes, lateral view: below $=0$; at level $=1$; above $=2$.
12. Head, rostrum, antennal attachment in relation to rostral length: in apical third $=0$; in central third $=1$.
13. Head, rostrum, scrobes, orientation relative to rostrum, lateral view: parallel, posterior ends not approximate each other $=0$; oblique, posterior ends approximate each other $=1$.
14. Head, eyes, number of ommatidia: 40 and less $=0 ;>40=1$.
15. Head, eyes, position in relation to imaginary posterior extension of rostrum: below $=0$; at level $=1$; above $=2$.
16. Head, eyes, contour in relation to that of head capsule, dorsal view: not or weakly protruding $=0$; markedly protruding $=1$.
17. Head, eyes, smallest distance between compared to width of base of rostrum, dorso-frontal view: greater than $0.8=0$; smaller than $0.8=1$.
18. Head, retraction into pronotum, lateral view: not retreated, temples exposed by eye diameter or more $=0$; weakly retracted, temples exposed for less than eye diameter $=1$; moderately retracted, eyes not concealed, temples fully concealed $=2$.
19. Head, antenna, antennal scape, ratio of its length to that of funicle and club together: $<0.9=0 ; 0.9$ to $<1.1=1 ; 1.1$ to $<1.3=2$.
20. Antenna, funicle with club, ratio of their combined length to that of 3 basal funicular antennomeres: 1.0 to $1.5=0 ; 1.5$ to $2.0=1$; 2.0 to $2.5=2 ;>2.5=3$.
21. Antenna, funicle, number of distal-most antennomeres with vestiture similar to that of club: $0=0 ; 1=1$.
22. Head, antenna, funicle, number of antennomeres: $5=5 ; 6=6 ; 7=7$.
23. Head, antenna, first funicular antennomere, ratio of its maximal width to that of second antennomere: $<1.7=0 ; 1.7$ and more $=1$.
24. Head, antenna, funicle, ratio of second antennomere length to that of first, dorsal view: $<0.5=0 ; 0.5$ and more $=1$.
25. Head, antenna, club, the greatest width: in proximal half $=0$; at middle $=1$; in distal half $=2$.
26. Head, antenna, proximal antennomere of club, length to width ratio: more than 1 , elongate $=0 ; 1=1 ;$ less than 1 , transverse $=2$.
27. Prothorax, notum, ratio of maximal length to maximal width, dorsal view: $<0.9=0 ; 0.9$ to $1.1=1 ;>1.1=2$.
28. Prothorax, notum, its sides, dorsal view: parallel $=0$; rounded $=1$.
29. Prothorax, notum, the greatest width, dorsal view: anterior of middle $=0$; at middle $=1 ;$ posterior of middle $=2$.
30. Prothorax, notum, constriction at fore margin, dorsal view: absent $=0$; present $=1$.
31. Prothorax, notum, constriction at hind margin, dorsal view: absent $=0 ;$ present $=1$.
32. Prothorax, notum, punctures, dorsal view: as deep as wide, radii greater than width of walls, angular $=0$; shallow, radii not greater than width of walls, rounded $=1$.
33. Prothorax, anterior edge, ocular lobes, lateral view: absent $=0$; present $=1$.
34. Prothorax, anterior edge, ventral view: straight $=0$; emarginate $=1$.
35. Prothorax, longitudinal channel on sternum anterior of procoxae, ventral view: absent $=0$; present $=1$.
36. Prothorax, longitudinal ridges on each side of longitudinal channel on prosternum anterior of procoxae, ventral view: absent $=0$; present $=1$. [parsimoniously uninformative and deactivated].
37. Prothorax, dorsal and lateral surface, scales: absent $=0$; present $=1$.
38. Prothorax, dorsal and lateral surface, bristles: absent $=0$; present $=1$.
39. Pronotum and elytra, shape of bristles, ratio of their length to their width in middle: $<3=0 ; 3$ to $<4=1 ; 4$ to $<5=2 ; 5$ and more $=3$.
40. Prothorax, dorsal and lateral surface, vestiture, orientation: appressed, nearly parallel to surface $=0$; semierect, at about 45° to surface $=1$; erect, nearly 90° to surface $=2$.
41. Prothorax, dorsal and lateral surface, vestiture, shape: straight $=0 ;$ curved $=1 ;$ both, straight and curved $=2$.
42. Prothorax, distance between inner edges of coxae in relation to coxal diameter, ventral view: <0.3 (subcontiguous) $=0 ; 0.3$ to 0.9 $($ moderately separated $)=1$.
43. Mesothorax, distance between inner edges of coxae in relation to coxal diameter, ventral view: <0.3 (subcontiguous) $=0 ; 0.3$ to $0.9($ moderately separated $)=1 ;>0.9($ widely separated $)=2$.
44. Mesothorax, process between mesocoxae, maximal width compared to width of mesofemur at base, ventral view: subequal $=0$; narrower $=1$; broader $=2$.
45. Mesothorax, process between mesocoxae, shape, ventral view: parallel-sided $=0$; widening posteriorly $=1$; narrowing posteriorly $=2$.
46. Mesothorax, process between mesocoxae, bulge, ventral view: absent $($ process flat $)=0$; present $=1$.
47. Metathorax, distance between inner edges of coxae in relation to coxal diameter, ventral view: 0.9 to $1.1=1 ;>1.1=2$.
48. Metathorax, abdominal process between metacoxae, width relative to that of coxa: 1.5 and less $=0 ;>1.5=1$.
49. Metathorax, ventrum, separation between metacoxae and elytra (i.e., whether metepisternum and first ventrite are contiguous or not): absent $=0$; present $=1$.
50. Scutellum, if visible externally, dorsal view: not visible $=0$; barely visible, shape indistinct $=1$; clearly visible, shape distinct $=2$.
51. Scutellum, its external part, shape, if distinct, dorsal view: triangular $=0$; clearly rounded $=1$; pentagonal $=2$.
52. Elytra, shoulders, dorsal view: absent $=0$; present $=1$.
53. Elytra, striae, ratio of their width to that of elytral intervals, dorsal view: $<0.9=0 ; 0.9$ to $1.1=1 ;>1.1=2$.
54. Elytra, elytral intervals, tubercles or bulges on at least some intervals, dorsal view (excepting elytral bulge at declivity): absent $=0$; present $=1$.
55. Elytra, raised bristles, dorsal or lateral view: absent $=0$; present $=1$.
56. Elytra, raised bristles, arrangement: in rows $=0$; in tufts $=1$.
57. Elytra, raised and bowed bristles, shape of tip: rounded $=0$; pointed $=1$; $\operatorname{bifid}=2$.
58. Elytra, elevation of odd versus even intervals, oblique dorsal view: similar $=0$; odd intervals more elevated $=1$.
59. Elytra, ultimate stria, length compared to elytral length, dorso-lateral view: short, not more than 50%; long, at least $60 \%=1$.
60. Elytra, ultimate stria, dorso-lateral view: entire $=0$; interrupted at middle $=1$.
61. Elytra, contour at middle, dorsal view: parallel-sided $=0$; rounded $=1$.
62. Elytra, dorsal contour at middle third, lateral view: straight $=0 ;$ curved $=1$.
63. Hind wings (dissection required): absent $=0$; present, vestigial, about half elytral length $=1$; present, short, subequal to elytral length $=2$; present, long, about 2 x elytral length $=3$.
64. Legs, all femora, posteriorly oriented spines: absent $=0$; present $=1$.
65. Legs, hind femora, length, ventral view: reaching apex of elytra $=0$; not reaching apex of elytra $=1$.
66. Legs, all tibiae, uncus: absent $=0$; present $=1$. [parsimoniously uninformative and deactivated].
67. Legs, all tibiae, premucro: absent $=0$; present $=1$.
68. Legs, all tarsi, tarsomere 2, shape in cross-section: round $=0$; vertical oval $=1$; horizontal oval $=2$.
69. Legs, all tarsi, tarsomere 3, shape, dorsal view: entire $=0$; bilobed $=1$.
70. Legs, all claws, fusion in basal third: absent (claws free) $=0$; present (claws fused) $=1$. [parsimoniously uninformative and deactivated].
71. Legs, all claws, angle between them, dorsal view: less then $20^{\circ}=0 ; 45^{\circ}$ and more $=1$.
72. Abdomen, trace of fusion between visible ventrites 1 and 2 in their mid-third, ventral view: absent $=0 ;$ present $=1$.
73. Male genitalia, aedeagus, cross-section at middle, shape: circular $=0$; oval $=1$.
74. Male genitalia, aedeagus, median lobe, dorsal surface appearance, sclerotization compared to that of lateral surface: membranous $=0$; sclerotized $=1$.
75. Male genitalia, aedeagus, median lobe, ventral surface, sclerotization compared to that of lateral surface: membranous $=0$; scle$\operatorname{rotized}=1$.
76. Male genitalia, aedeagus, shape of apex: rounded $=0 ;$ pointed $=1$.
77. Male genitalia, aedeagus, apex, dorsal or ventral view: symmetrical $=0$; asymmetrical $=1$. [parsimoniously uninformative and deactivated].
78. Male genitalia, aedeagus, one or more internal sclerites in endophallus: absent $=0$; present $=1$.
79. Female genitalia, sternite 8 , ratio of length of apodeme to that of plate: $<0.9=0 ; 0.9$ to $1.1=1 ;>1.1=2$.
80. Female genitalia, sternite 8, plate, length to width ratio: $<0.9=0 ; 0.9$ to $1.1=1 ;>1.1=2$.
81. Female genitalia, sternite 8, plate, extend of its sclerotization (but not pigmentation): small, middle part not sclerotized, sternite 8 fork-like $=0$; great, middle part sclerotized, sternite 8 paddle-like $=1$.
82. Female genitalia, sternite 8 , apodeme, abrupt widening in its part opposite to plate ("handle of a spade"): absent $=0$; present $=1$.
83. Female genitalia, spermatheca, nodulus and ramus: indistinct $=0$; distinct $=1$.
84. Female genitalia, each of two hemisternites 9 (= each gonocoxite, excluding styli), ratio of length to width: $<2.5=0 ; 2.5$ to $3.5=1$; $>3.5=2$.
85. Female genitalia, styli: absent $=0$; present $=1$.
86. Female genitalia, styli, ratio of length to width in middle: $<1.5=0 ; 1.5$ to $2.5=1 ;>2.5=2$.
87. Female genitalia, sclerotized bursa copulatrix: absent $=0$; present $=1$.

Appendix 3. Label data of specimens scored for the 31-terminal matrix to analyze the phylogenetic position of Protacallodes bhudevi sp. n. Of them, 24 terminals have their label data given in Germann \& Grebennikov (2020); two of those 24 terminals ("InG05 nr Pseudohylobius" and "InG7 Seticotasteromimus sp.") were subsequently named Obhylius arboricola Germann, 2021 and Seticotasteromimus brunomanseri Germann, 2021, respectively (see Germann 2021).

ROOT1: Otiorhynchus singularis (Linnaeus, 1787): male (CGC), France, Pyrenées Orientales, NE of Mont Louis, Fôret de Clavera, vii.2001, C. Germann leg.; female (CGC), Italy, Piemonte, Gran Paradiso, Ceresole Reale, 8.vii.2003, C. Germann leg. (CGC). InG1: Protacallodes bhudevi sp. n.: see Description. InG2: Darumazo distinctus Morimoto \& Miyakawa, 1985: unsexed paratype (KUZC) Japan, Nanto rindo, Miyake Jima Is. Izu-Shyoto Isls. May 16, 1979, S. Miyakawa leg.; unsexed paratype (KUZC), Japan, Yasundo go, Ochi yo, Aogashima Is. Izu-Shyoto Isls. May 20, 1979, J. Oкuma leg.; male (KUZC), Japan, Nagasaki, Danjo Islands, Meshima Island, 3.v.1982, J. Onagamitsu leg.; female (KUZC), Japan, Fukui, Ubejima Island, Mikata-Cho, 24.vii.1986, T. Ueno leg. (KUZC). InG3: Protacallodes masumotoi Morimoto, 2011, male (KUZC), Japan, Nagano, Kitamatazawa, 740 m, Kami-mura, Shimo-Ina-gun, Honshu, 23.viii.1997, H. SAKAYORI et al. leg.; unsexed paratype (KUZC), Japan, Nagano, Kitamatazawa, 740m, Kami-mura, Shimoinagun, Honshu, 23.viii.1997, H. SAKAYori et al. leg.; 1 male, 1 female (KUZC), same label data; unsexed specimen (KUZC) Japan, Saga, Mt. Kyogatake, 1050 m., 13.iii.2000, S. Nomura leg., unsexed paratype (KUZC), Japan, Osaka, Mt. Kongosan, 22.xi.1989, T. Nonaka leg. InG5: Protacalles monticola Voss, 1957: three females (CGC), Japan, Tokyo, Hinohara Vil., Mt. Tsukiyomiya, 18.v.1997, T. Shimada leg.; female (KUZC), Japan, illegible Japanese characters, 2.vii.2000; female (KUZC), Japan, Shikoku, Mt. Tsurugi, 7.vi.1970, M. Sakai leg. InG6: Protacallinus uenoi Morimoto, 1962: female (KUZC), Japan, Nara, Mt. Ohdaigahara, 30.v.1985, S. Nomura leg.; female (KUZC), Japan, Nara, Mt. Kyogamine, Odaighara, Kamikitayama V., 13.x.2017, R. Ito leg. spOtG18: Seticotasteromimus crassirostris Germann, 2022; see Germann (2022).

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database
Digitale Literatur/Digital Literature
Zeitschrift/Journal: Integrative Systematics: Stuttgart Contributions to Natural History
Jahr/Year: 2022
Band/Volume: 5
Autor(en)/Author(s): Germann Christoph, Grebennikov Vasily V.
Artikel/Article: First record of the litter-inhabiting weevil genus Protacallodes (Coleoptera: Curculionidae: Molytinae) from outside of Japan, with description of a new species from Taiwan 121-135

[^0]: BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

