Arbeiten aus dem chemischen Laboratorium der k. k. geologischen Reichsanstalt, ausgeführt in den Jahren 1892-1894.

Von C. v. John und C. F. Eichleiter.

Die letzte Zusammenstellung der in unserem Laboratorium durchgefürten Analysen und Proben für technische Zwecke erschien im Jahrbuch der Anstalt im Jahre 1892, 42. Band, 1. Heft.

Die hier angeführten Analysen wurden also in den Jahren 1892, 1893 und 1894 in unserem Laboratorium durchgeführt. Selbstverständlich enthält die hier vorliegende Zusammenstellung nicht alle bei uns gemachten technischen Untersuchungen, da uns bei sehr vielen Proben die Herkunft des Materials nicht bekannt war.

Es wurden hier nur solche Untersuchungen aufgenommen, die an Proben ausgeführt wurden, deren Fund- oder Formationsort bekannt war, oder die an und für sich Interesse in Anspruch nehmen konnten.

Dass nicht immer vollständige Analysen vorliegen, erklärt sich daraus, dass diese Untersuchungen für Parteien durchgeführt wurden und die Analysen nur in dem von diesen gewünschten Umfange zur Ausführung gelangten.

Die einzelnen Analysen und Untersuchungen wurden, wie bei früheren Zusammenstellungen, in einzelne Gruppen getheilt und wenn

möglich in Tabellen übersichtlich gruppirt.

Die einzelnen Gruppen sind die folgenden:

I. Elementaranalysen von Kohlen.

II. Kohlenuntersuchungen nach Berthier.

Die angeführten Kohlen sind in der Gruppe I nach den geologischen Formationen, in der Gruppe II nach Ländern und geolo-

gischen Formationen geordnet.

So wie bei früheren Publicationen dieser Art, sei auch hier wieder unser Standpunkt bezüglich der Berthier'schen Probe festgestellt. Selbstverständlich sind wir über den Werth der Berthierschen Probe vollständig im Klaren; wir wissen, dass dieselbe mit principiellen Fehlern behaftet ist und dass die gefundenen Brennwerthe im Allgemeinen, besonders bei wasserstoffreichen Kohlen, zu gering sind.

Jahrb. d. k. k. geol. Reichsanstalt, 1895, 45. Band, 1. Heft. (v. John u. Eichleiter.) 1

Trotzdem bringen wir die von uns nach der Berthier'schen Probe gefundenen Werthe doch wieder, weil dieselben immer noch in der Praxis vielfach benützt werden und weil sie von Praktikern, denen es nicht auf eine genaue wissenschaftliche Feststellung des Brennwerthes ankommt, noch sehr häufig verlangt werden. Bei Kohlen. von welchen noch keine Elementar-Analysen vorliegen, ist die Kenntniss des Brennwerthes nach Berthier, sammt Wasser- und Aschenbestimmung, immerlin genügend, um sich ein beiläufiges Bild ihres Werthes zu bilden, besonders wenn man das geologische Alter der Kohle in Betracht zieht und eine entsprechende Correctur zu Gunsten des Brennwerthes vornimmt.

Uebrigens wirken wir so viel als möglich dahin, dass vollständige Elementaranalysen durchgeführt werden und bringen offen neben den Resultaten der Elementaranalyse auch die der Berthier'schen Probe, um so den Empfänger der Analyse auf das Missverhältniss der beiden Resultate hinzuweisen.

Wird jedoch von der Partei ausdrücklich blos die Berthiersche Probe, deren Durchführung für dieselbe selbstverständlich bedeutend geringere Kosten verursacht, verlangt, so können wir die Ausführung derselben nicht zurückweisen.

Es hat sich in dieser Beziehung auch eine bedeutende Besserung gezeigt, indem die Anzahl der Elementaranalysen von Kohlen im Verhältniss zu den Berthier'schen Proben in unserem Laboratorium fortwährend im Wachsen begriffen ist, so dass wohl jetzt so ziemlich alle wichtigeren Kohlen Oesterreichs bei uns elementaranalytisch untersucht wurden.

III. Graphite.

IV. Erze.

- A. Silber- und goldhältige Erze.
- B. Kupfererze.
- C. Zinkerze.
- D. Antimon- und Arsenerze.
- E. Nickel- und Kobalterze.
- F. Eisenerze.
- G. Chromerze.
- H. Schwefelerze.
- V. Kalke, Dolomite, Magnesite und Mergel.
- VI. Thone und Quarzite.
- VII. Wässer.
- VIII. Metalle und Legierungen.
 - IX. Gesteine.
 - X. Salze.
 - XI. Diverse.

1. Elementaranalysen von Kohlen.

[3]

Einsender	Fundort der Kohle	Geologische Formation	H ₂ 0 0 0	Asche (%)	"/n.2	70°0		, o o S	Calorien be-nach	rien nach Berthier	Analy- tiker
K. k. priv. Südbahn-Cies., Wien Kohlenverschleissverein des Buschtichrad-Kladnoer Berg- reviers K. k. priv. Südbahn-Ges., Wien Rafael Hofmann, Wien Direction der südböhnischen Steinkohlengewerkschaft K. k. priv. Südbahn-Ges., Wien Trifailer Kohlenwerks-Ges., Wien Kohlenverein in Dux. Workschizention in Dux.	Ostrau Ostrau Selected Sewasch. Kleinkohle. Selected Nusskohle. Nusskohle. Nusskohle. Rudolfschacht im Schlaner Becken Oslavan Backen Oslavan Rudolfschacht im Schlaner Krapina. Vasas Krapina. Bruch in Böhmen " Marienk.		3.14 2.03 2.03 2.03 6.75 6.75 7.0 1.28 1.28 1.30 1.15 0.56 1.15 0.56 1.15 0.56 1.15 0.75 1.15 0.75 1.15 0.75 1.15 0.75 1.15 0.75 1.15 0.75 1.15 0.75 1.15 0.75 1.15 0.75 0.75 1.15 0.75 0.75 0.75 0.75 1.15 0.75 0	18:00 74 15 27 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	70.06 65.86 65.86 69.74 69.74 69.73 69.73 75.75 88.90 74.70 74.57 74.37 74.37 74.37 74.37 74.37	8.55 1.16	8-93 1 10-20 0 19-93 0 15-92 0 16-06 1 16-08 1 10-39 1 11-39 1 11-39 1 12-10 0 14-10 0 13-10 0	1.32 0.095 0.095 0.091 1.002 0.091 0.091 0.094 0.094	6449 7292 7188 5784 6060 6168 6168 6168 7707 7348 7701 6850 6088 6088 6088 6088 74915 44915 4742	6227 6808 6539 5651 5718 5957 6010 4623 6295 7360 7431 6026 5226 4531 4271	Elenteiter John Elenteiter " " John Elenteiter " John Fleenteiter John
K. k. vst. Staatsbahnen	Kalnik Trifail I Zangthal Fohnsdorf Förderkohle	Oligociin Miociin	32.84 22.18 17.73 36.05 10.11 9.20 29.30 29.05	6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	\$84.3 552 47.8 455 455 455 455 455 455 455 455 455 45	3.12 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	16.60 17.46 11.90 14.83 18.28 12.20	2.81 1.43 1.19 3.347 1.258 1.47 0.23	3165 4578 4688 3308 5552 5506 3765 3932	3192 4549 4192 3516 5208 8588 3864	
Schwefel in der Asche ') 0.	¹) 0·23, ²) 0·27, ³) 0·16, ⁴) 0·25, ⁵) 0	5) 0.47, 6) 0.03, 7) 0.87, 3) 0.97	7) 0.87	6.0 (,	17						

4

								ı	١	
Einsender	Fundort der Kohle	Geologische H.O		Asche Co	o H o	x +0	%) c	Calorien be-nach rechnet Berfili	rien nach Berthier	Analy- tiker
K. k. priv. Südbahn-Gesellschaft	Tregist, Lignit $\begin{cases} 1 \\ 1I \\ 1II \end{cases}$ Lankowitz						3.06 2.98 ¹ 2.05 2.33 0.58	4402 4656 2910 8459 4154	4128 4478 3025 3291 4064	John John ",
Ign. Kanter, Slatai-Bistrica Asphalt - Action - Gesellschaft, Budapest Siidnno Kohlonberersen, Action.	Jenanos Leoben, Briquettes Boljanca Felső - Derna-Boda-f.Lignit noserKoldenbecken (19988) datags		17.78 6.02 14.95 49.76 36.16 2.83	5.77 51.19 [3.16 62.21 5.26 57.00 6.35 29.36 [0.98 30.18	21.4.4.1 22.22.2 3.05.3.05.1 1.40.1	2.20°84 1.13°32 1.16°37 2.11°30 5.16°49 9.2°83	0.85 0.85 1.01 3.983 3.983	4329 5862 5069 2283 2877 5715	1043 5290 4797 2254 2815 5390	Erchlerer Tohn
	Mehadia Badin $\left\{ \begin{array}{llll} I_1 & & & & \\ & & & & \\ \end{array} \right.$	Neogen \	19.30 22.52 26.59	16.08 43-20 17.72 38·18 14·42 36·82	8 3.21 8 2.90	2 11.56 1 12.65 0 12.26	6°34 5°72 7°01	4157 3340 3375	4117 3293 3036	". Eichleiter
Dassnitz	Dassnitz, Böhmen		31.00 25.82 20.01	6.60 43.46 4.00 52.42 5.74 53.71	16 3°60 12 3°75 13 3°95	0 14.02 5 12.97 5 15.48	1.32 1.04 1.11	3884 4713 4824	3473 4292 4221	iohii ::
Staatsbahnen, Wien	$\begin{array}{c} \text{Cottschee} & \dots & \dots \\ \text{Gottschee} & \dots & \dots \\ \text{W\"ollan} & \prod_{\mathbf{r}\mathbf{T}} & \dots & \dots \\ \end{array}$		' -					2696 5238 3234 4361	2935 4145 2751 3680	Eichleuter
Isidor Mautner, Wien . Georg Hirsch, Gera	Steinkirchen bei Budweis Seestadtl, Ellyschacht Eisenberg, Ellysch. HOberflötz Brüx, Theresientiefbau Kis-Keresztes Johanuesthal in Ungarn	\$.\$.	12:10 48:85 9:15 21:05 24:50 10:72 20:62	1725 45°93 11735 24°65 2°90 63°55 3°30 53°07 2°35 51°49 4°68 62°24 6°23 50°70	55 1.86 55 1.86 55 1.86 57 4.04 58 3.46 54 4.26 60 4.02	2 34.39 10.57 1 16.29 1 17.55 1 18.20 2 15.12 1 16.61	1.11 2.725 0.99 0.574 0.574 1.82	3737 2104 6331 4685 4298 5744 4517	3728 1690 5117 4370 3804 5378 4493	John

Schwefel in dar Asche $^4)$ 1.35, $^2)$ 0.76, $^3)$ 0.16, $^4)$ 0.76, $^5)$ 0.99, $^6)$ 0.30.

II. Kohlenuntersuchungen nach Berthier.

[5]

Ca- lorien nach Ber- thier	4830 5774 5193 6210 4478	7312 6875 3082 5278	4692 3519 3942	2184 1727 2201 3257		4830 4485 4761 6529 5975
Schwe- fel- gehalt	3:51	1.23	0.87			
Wasser-Aschen- gehalt gehalt %	18.40 9.47 9.45 4.95 11.40	2.95 9.35 37.35 24.65	5.65 6.30 3.95	6.30 11.32 15.25 21.90		$6.90 \\ 11.10 \\ 5.15 \\ 4.07 \\ 13.65$
Wasser-gehalt	3.85 4.60 6.30 13.50	2.35 2.30 14.55	19·10 30·55 32·55 18·58	52.00 52.11 44.15 10.08		15.85 17.10 15.65 1.83 10.00
Geologische Formation	Trias (Lunzer Schichten)	Carbon	Oligoeán	Neogen		Carbon
Fundort der Kohle	Ober- und Niederösterreich. Dürreck bei GrHollenstein Weyer Gauning Anzbach bei Neulengbach Hohenan "	Budweis (Anthracit) 1	Falkenau, Mariahilf-Zeche Triebschitz, Saxoniaschacht Chodau bei Karlsbad, Richardschacht, Hauptflötz Spiecelffütz	Steinkirchen bei Budweis " II ." HI ." HII ."	Mähren, Schlesien, Galizien und Bukowina.	Tencsinek Unterbank Vierte Bank Vierte Bank Ostrau, Salm'sche Schächte Rossitz-Oslavaner Steinkohlenbriquettes
Finsender	J. A. Gerson, Wien Grubenverwaltung in Weyer Jos. Heiser, Gaming W. Miksch, Linz Isidor Mantner, Wien	Südböhmische Steinkohlengewerk- schaft, Budweis	• •	Isidor Mautner, Wien		Gräff, Potocky'sche Hüttenwerke, Sierza K. u. k. Intendanz des 2. Corps, Wien

Schwe- Ca- fel- lorien gehalt Ber-	4718 — 5212 — 5354	- 4075 - 4853 - 4106	7125 7125 7125 7125 7125 7128
Wasser-Aschengehalt gehalt	18:00 2:80 5:45 14:75 7:45 8:25	21:90 6:10 11:50 6:85 12:15 17:95	0.95 8°90 8°35 27°00 6°15 50°15 7°75 35°55 1°85 36°55 1°90 18°90 6°84 14°34 19°4 11°34 19°4 11°34 19°4 11°34
Geologische Formation	Karpathensandstein	Oligociu	Trias (Weng, Schicht.) Eoeän? Ob. Eoeän
Fundort der Kohle	Cara Humora	Steiermark. Trifuil Stoder-Zinken bei Gröbning Parschlug	Krain, Istrien, Dalmatien und Bosnien. Ligojna Zwischenwäss., Bohrprob., lufttr. I """" III """" III """" III """" IV Unbravica bei Scardona """ "" "" "" "" "" "" "" "" "
Einsender	Dr. Leop. Kahu, Wien	K.n. k. Intendanz des 15. Corps, Serajevo E. Ritter von Horstig M. Fürst, Wien	Werksdirection, Ober-Laibach. E. v. Lanschin, Wien " " " " Michael Weiss, Wien Gutsverwalbung Ruperthof Vincenz Havelka, Bilek A. Offenheimer Brüder Nicolovits, Orsova Eranz Steffel, Orsova L. Oberdorfer. Wien

Einsender	Fundort der Kohle	Geologische Formation	Wasser-Aschen- gehalt gehalt	Aschen-	Schwe- fel- gehalt	Ca- lorien nach Ber- thier	
Drenkovaer Steinkohlen-Gewerkschaft E. v. Luschin, Wien	Drenkova { Waschkohle Fünfkirchen " [I] " Kleinkohle	Lias	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	18:45 18:40 11:60 21:07 15:60 11:70 18:70		5979 5400 5990 4972 5014 5665	
KalnikerKohlengewerkschaft, Warasdin	I Revier Ugljanica . I " Förderschacht I II " Ljubel Lupeny Nr. 1 " " 2 " " 4 " " 5 " " 6 " " 6	Oligocim	15.80 19.20 15.50	13:20 9:05 9:05 15:75 5:95 9:00 13:55 7:80 7:80	3.41 3.14 3.19 2.86 4.50 2.27 3.51 4.47	4533	
Trifailer Kohlengewerkschaft, Wien . Eisen- und Blechfabriks-Actien-Gesell- schaft Union, Wien				8:55 3:95 4:55 8:45 5:20	6:12 3:45 1:87	5244	
Richard Kraus, Wien	Lunkacsprie, { östl. Stollen Schieferkohle Winkler-Stollen Sata { oberes Flötz Aranyos Flots Va-pojeni, Lignit	Neogen	9.75 6.60 12.70 21.40 6.18 14.60 26.10	50.00 32.45 11.15 17.65 15.72 13.40 9.25	111111	2139 3795 3643 4025 4554 3777 3450	

8

-	~	-
н	ω	7
	$\overline{}$	- 1

chwe- Ca- fel- lorien ehalt nach % thier	3909	4063	3823		3498	- 3542	- 4907	4761	4577	4827	1584	- 4876	- 5359	1157	2358		
3.5 D	16:30	8.45	13.35		25.11	91.50	3.50	3.60	4.10	4.05	13.56	3.75	3.35	42.80	10.05		
gehalt gehalt	21.45	26.85	27.45		18.50 1	15.35 3	16.10	17.05	16.95	02-91	12.24	2f.11	10.50	31.75 4	46.55 1		
Geologische Formation						Neogen	io c						Neogen	chten)			
Fundort der Kohle	1	II	Diosnos-Horvath, Cornel-Stollen		Zagorian	Veszprim	(I .	II	Zenreichenward bei Oedenburg	, IV .	Egeres	1) moreous l'accessor	Control of Case II	Vetovo, Slavonien, Lignit	Carlowitz		
E in sender		K. u. k. Intendanz des 6. Corps, Kaschau		Zagoriauer Braunkohlenwerke, Slatar	Bistrica	Gebrüder Ligeti, Veszprim		L E Bowenoth (1 M Bon) Wien	N. Dergradu C. M. 1 aut, Wien		Werksdirection in Klausenburg	Andreas Wressnie Aeram	· · · · · · · · · · · · · · · · · · ·	Georg R. v. Mileko, Wien	Th. Zwierzina, Semlin		

Anthracit von Tirgu-Jiu in Rumänien, eingesendet von II. Slade in London, enthält:

	Procent		
Kohlenstoff	86.03	Calorien berechnet	7290
Wasserstoff	1.00	" nach Berthier.	6670
Sauerstoff + Stickstoff			Proc.
Schwefel	1.43	Verbrennl. Schwefel Schwefel in der Asche	1·41 0·02
Wasser	2.90		
Asche			
	100.00	Eichleite	er.

Die Asche des Anthracits besteht aus:

					Procent
Kieselsäure					46.34
Eisenoxyd					29.22
Thonerde					17.26
Kalk					2.75
Magnesia					4.05
Schwefel.					0.25
Phosphor					0.38
_					100.95

00·25 John.

III. Graphite.

Einsender	Fundort	Kohlen- stoff º/0		Wasser
H. Müller in Požega H. Müller in Požega Gustav Beer Jacob Friedl Graphitwerk in Feistritz J. Barber in St. Lorenzeu St. Lorenzener Graphitwerke	Umgebnig von Požega. Trieben, Steiermark. Kallwang. Heiligenblut bei Feistritz. St. Lorenzen, Reichmann-	42.72	78·24 80·20 11·02 76·06 58·95 1) 54·30	7:51 6:71 8:50 1:34 6:43 2:98

IV. Erze.

A. Silber- und Goldhältige.

Kupferkies, in Quarz eingesprengt aus der Umgebung von Požega. Eingesendet von H. Müller in Požega, enthält 0:0026 Procent Silber und 0:0004 Procent Gold (ferner 9:47 Procent Kupfer).

						0 17 11 11
¹) Die	Asc	he hat fo	lgende procentisc	he Zusamme	ensetzung:	
Si O		51.40	$Al_2 O_3$. 20.51	Mg(O).	 1.70
$Fe_2 O_3$		16.29	$Ca^{\circ}O^{\circ}$. 5.00	$K_2^{\circ}O$.	 3.09
- "			$Na_2 O$		-	
Auf d	en e	araphit be	erechnet:			
Si O		30.27	$Al_2 O_3$. 12.08	Mg O.	 1.00
$Fe_2 O_3$.		9.59	$Ca^{2}O^{3}$. 2.95	$K_{2}^{\mathbf{r}} O$.	 1.82
			$Na_2 O$			

Jahrb. d. k. k. geol. Reichsanstalt, 1895, 45. Band, 1. Heft. (v. John u. Eichleiter.) 2

[10]

Bleiglanz, in Quarz eingesprengt aus der Umgebung von Požega. Eingesendet von H. Müller in Požega. enthält 0:0942 Procent Silber und kein Gold.

John.

Magnetkies aus der Umgebung von Trieben, eingesendet von Gustav Beer, enthält 0.002 Procent Silber. John.

Quarz von Pörtschach, eingesendet von Dr. Th. Neustadtl in Wien, enthält 0 00084 Procent güldisch Silber mit etwa 0 0002 Procent Gold. John.

Schwefelkies von Pörtschach, eingesendet von Dr. Th. Neustadtl in Wien, enthält nach vorhergegangener Sonderung im Quarzigen Theil. 0.001 Proc. güldisch Silber mit 0.0002 Proc. Gold. Kiesigen Theil. 0.0011 " " " 0.0002 " " John.

Bleiglanz aus Macedonien, eingesendet von C. Ditscheiner in Wien.

					Procent
Blei .					81.88
Silber					0.23
Gold .					
Kupfer					
Antimo					
Eisen					
Schwefe					
Kiesels					
Kohlens					
22211011)	 				

Summe. . . 100.0508 Eichleiter.

Schwefelkies von Nagy-Almas, eingesendet von Stantien & Becker, enthält nach vorhergegangener Röstung:

Schwefelkies mit Bleiglanz und Zinkblende von Nagy-Almas und Verespatak.

	Naturerz	Hanuser Erz	Toszka Erz
		Procent	е
Silber	0.0170	0.0047	0.0022
Gold	0.0010	0.0003	0.0003
Blei	6.02		
Kupfer	0.51		
Zinn			
Zink	5.65		
Eisen			
Thonerde	3.90		
Schwefel	32.85		
Kieselsäure			
Wasser, Kohlensäure,			
Kalk, Magnesia und			
Alkalien (Diff.)			
1	100.00		John.

[11] Arbeiten aus dem chemischen Laboratorium der k. k. geol, R.-A.

Erze aus dem Silber- und Kupferbergbau Katharinaberg bei Dux, eingesendet von C. Scharsach in Dux.

		I.	II.
	Kupi	erkies mit etwas	Spatheisenstein
	Blei	glauz, Zinnstein	mit
	ur	nd Zinkblende	Kupferkies
		Proce	ente
Silber		0.002	0.019
Gold		Spur	Spur
Kupfer		$23.\overline{3}1$	11.42
Zinn		1.53	Spur
Blei		0.97	1.09
Zink	• •	3.65	_
Eisen		22.69	13.03
Mangan			0.81
		21.35	32.64
		1.10	1.10
Kalk		0.30	11.42
Schwefel		23.23	2.19
			John.

Quarz mit etwas Schwefel- und Arsenkies aus der Umgebung von Greifenburg, eingesendet von Karoline Trebesiner, enthält:

Antimonglanz von Fejerkö im Sohler Comitat, eingesendet von J. K. Demuth in Sohl.

Gold 0.0006 Procent Silber 0.0024 " John.

B. Kupfererze.

Kupferkiese von Totos, eingesendet von der ersten ungarischen Actiengesellschaft für chemische Industrie in Nagy-Bocsko.

		Procente Kupter	
Nr.	1	4.31	
Nr.	2	handgeschieden 7:00	
Nr.	3	maschinengeschieden . 3.94	
Nr.	4	5.99	John.

Erze aus dem Silber- und Kupferbergbau Katharinaberg bei Dux, eingesendet von C. Scharsach in Dux.

- I. Kupferkies mit etwas Bleiglanz, Zinkblende und Zinnstein enthält 23:31 Procent Kupfer.
- II. Spatheisenstein mit Kupferkies enthält 11:42 Procent Kupfer.

(Die vollständige Analyse dieser Erze siehe unter silber- und goldhältige Erze.) J o h n.

11

[12]

Kupferkies in Quarz eingesprengt aus der Umgebung von Požega, eingesendet von H. Müller in Požega, enthält 9:47 Procent Kupfer. (Ferner 0:0026 Procent Silber und 0:0004 Procent Gold.)

Fahlerze von Maškara, eingesendet von der Gewerkschaft "Bosnia" in Wien.

										Ρ.	roc	ente Kupfer
Schürfung	Nr.	1						٠				17.24
22												17.72
22	Nr.	3									٠	1.19
22												6.23
22												1.92
77												14.29
27												0.40
>>	Nr.	8	٠	٠	٠		٠	٠	٠		٠	1.92
												Eichleiter.

C. Zinkerze.

Waschgalmei von Trzebinia in Galizien, eingesendet von der gräflich Henkel von Donnersmark'schen Hüttenverwaltung.

Nr.	1						10.85	
Nr.	2						8.87	John.

Zinkblende mit Bleiglanz, eingesendet von der Kalniker Kohlengewerkschaft.

	Blei Zink
	Procente
Nr. 1 Ratschach in Steiermark	20.56 14.40
Nr. 2 Kalniker Gebirge	13.58 8.17
	Eichleiter

Geröstete Zinkblenden, eingesendet von Echinger & Fernau in Wien.

	1.		11.	
		Oberschlesische	Röstblende	Steirische Röstblende
			Procente	
Eisen	17:08	$(24^{\circ}40^{\circ} Fe_2 O_3)$	17.06 (24.38 Fe ₂ 0	$(9_3) - 2.77 (3.96 Fe_2 O_3)$
Blei	1.12		1.93	2.08
Cadmium	0.10		0.01	Spur
Gesammt-Schwefel .	4.81		4.62	4.77
Schwefel in Sulfiden	-0.22		0.68	0.60
Schwefel in Sulfaten	4.59	$(11.47 \ S O_3)$	3.94 (9.84 S O ₈)	$4.17 \ (10.40 \ S O_{a})$
		•		John.

Galmeie von Gory Luszowskie, erzherzogliches Bergamt in Teschen, enthalten:

							Pre	ocente Zink	
Nr.	1							29.46	
Nr.	H					٠		27.21	
Nr.	Ш	٠						28.46	
Nr.	IV							24.00	
Nr.	V							27.05	
								20.31	John.

[13] Arbeiten aus dem chemischen Laboratorium der k. k. geol. R.-A. 13

Galmeie von Trzebinia in Galizien, eingesendet von Rawak & Grünfeld in Beuthen.

						Pro	ocente Zink	
Nr.	I						23.42	
Nr.	Π			,			19.14	
Nr.	Ш		٠,				16.81	John.

D. Antimon-und Arsenerze.

Antimonit von Grobše, eingesendet von A. Kraigher in Adelsberg.

						Procente	
Antimon				٠.		70.27	
Blei					,	1.10	
Eisen .						0.52	
Schwefel						28.11	
						100.00	John.

Arsenkies aus der Umgebung von Hermagor, eingesendet von Arnold Széb, enthält 38.77 Procent Arsen und 16.48 Procent Schwefel. John.

E. Nickelerze.

Nickelkies aus der Umgebung von Sangerberg in Böhmen, eingesendet von J. Tanzer in Sangerberg. Enthält 3:77 Procent Nickel.

John.

F. Eisenerze.

Thone is enstein von Dubrest, eingesendet von E. v. Luschin in Wien, enthält 32.06 Procent Eisenoxyd entsprechend 22.45 Procent Eisen, ferner 0.024 Procent Schwefel und Spuren von Kupfer und Phosphor.

Foullon.

Brauneisenstein manganhältig von Paliban in Ungarn, eingesendet von Richard Kraus in Wien.

									Procent
Kieselsäure			٠						26.42
Thonerde.									10.58
Eisenoxyd									41.36
Manganhype	10	χV	d						9.64
Kalk									0.92
Magnesia .									0.10
Schwefel .									0.002
Phosphor .									0.23
Glühverlust		٠				٠			10.14
									99.392

[14]

14

Eisensteine von Lunkascprie, eingesendet von Richard Kraus in Wien.

Eisenerz von Ober-Jeleni bei Hohenmauth in Böhmen, eingesendet vom Grafen Bubna in Wien, enthält 46:24 Procent Eisenoxyd entsprechend 32:37 Procent Eisen. John.

Eisenerze von Petrósz in Ungarn, eingesendet von Philipp Salzmann in Wien.

		1	Eisenoxyd	Eisen	
			Proc	ente	
I. Magneteisenstein			89.64	62.76	
II. Brauneisenstein.			95.14	66:61	
					John.

Eisenerz von Kudobanja, eingesandt vom Grafen Czaky-Pallavicini, enthält 37.60 Procent Eisenoxyd entsprechend 26.33 Procent Eisen, ferner 18.31 Procent Mangan. John.

Eisenerz von Vaskóh in Ungarn, eingesendet von Philipp Salzmann in Wien, enthält 76:04 Procent Eisenoxyd entsprechend 53:21 Procent Eisen.

Eisenerz von Klein-Zell, eingesendet von Paul Schwank. k. k. Postmeister in Klein-Zell, enthält 83:36 Procent Eisenoxyd entsprechend 58:78 Procent Eisen. Eichleiter.

Eisenerze von Karpinyasza in Ungarn, eingesendet von Philipp Salzmann in Wien.

		Eisenoxyd	Eisen
		Pro	cente
1.	Reiner Magneteisenstein	. 98.76	69.13
	Magneteisenstein theilw. in Branneisenst. verv		
III.	Unreiner Magneteisenstein	. 89.50	62.66
IV.	Begleitgestein der Erze (Carbonate)	28.50	19.95
			John.

Eisenglanze mit Quarz und Calcit von Trawnik, eingesendet von Neustadl & Comp. in Wien, enthalten:

		Procente	t	j	Procente	;	
Nr.	Ι.	. 28.80	Eisenöxyd	entsprechend	20.16	met.	Eisen
Nr.	Π.	51.50	7	33	36.06	"	John.

Eisenenerze von Szuchy vrch. Mutterka und Génir, eingesendet von der Eisen- und Blechfabriks-Actiengesellschaft "Union" in Wien.

[15] Arbeiten aus dem chemischen Laboratorium der k. k. geol. R.-A. 15

				S	zuchy vrch	Mutterka	Génir
						Procente	
Kieselsäure					3.20	6.20	16.52
Eisenoxyd					72:34	78.80	66.72
Manganoxyd	ul				3.27	2.05	3.16
Thonerde.						0.16	5.30
Kalk			٠		5.60	0.80	3.92
Magnesia .					0.81	0.12	2.45
Kupfer .						0.067	0.007
Schwefel .				,	0.04	0.06	0.04
Glühverhist						12.80	4.18

Das Eisen ist theilweise als Eisenoxydul verhanden.

John.

G. Chromerze.

Chromeisenstein aus der Umgebung von Orsova, eingesendet von Siegfried Schreiber in Wien.

						Chromoxyd						
Nr.	1			٠						30.20	Procente	
Nr.	2		٠							27.20	27	

Eichleiter.

H. Schwefelerze.

Schwefelkiesführender Schiefer aus der Umgebung von Gaming, eingesendet von J. Heiser in Kienberg.

Procente	
Unlösl. Rückstand 26.65	
Schwefel	
Eisen	
Eisenoxyd 4.78	
Kalk 7.56	
Magnesia 3.99	
Kohlensäure (diff.) 7.48	
Silber	
Gold 0.0004	
Kupfer und Nickel Spuren	
Summe 100·00 J o	h n.

Schwefelkiese von Sytani und Kehest, eingesendet von Richard Kraus in Wien.

Schwefel Procente . 50·21 Kebest 46·90

V. Kalke, Dolomite, Magnesite und Mergel.

Einsender	Fundort	Kohlen- saurer Kalk	Kohlen- saure Ma- gnesia	Eisen- oxyd u. Thon- erde	Unlösl. Rück- stand
			Proe	ente	
Charles Mark Hard Mark to MY and	F9	00.40	0.00		4.00
Gustav Schulhof in Wien	Stramberg .	99.48	0.29	0.21	0.22
Emil Tichy in Wien	Kaltenleutgeben	69.07	3.17	3.36	23.04
Otto Happach in Wien	Sainiza, Ungarn .	62.36	2.15	4.70	29.50
*	(94.00	1.72		2.12
J. Gamerith Brunn a.d. Wild	$^{f L}$ Brunn a. d. Wild (N. O.) $\{$	96.90	1.55		0.68
	l l	89.50	1.87		5.20
Joh. Moritz, St. Veit a. d.					
Triesting .	(Dolomit)	55:50	44.41	0.03	0.01
Gutsverwaltungsdirection { Véghlés	Véghlés Ungarn (Do-	50.30	40.03	1.72	6.72
Alex, Kohn, Horaždovitz	Horaždovitz	84.79	0.42	0.61	13.61
Miho Mauce in Vrbovsko.	Vrbovsko (Dolomit)	57.68	41.93	0.48	0.10
J. Wohlmeyer in St. Pölten	Stangenthal bei Lilien- feld	95.20	1.28	0.32	2.80
Dr. O. Winternitz, Karlsbad	Satteles bei Karlsbad	95.20		1.98	2.02
(Koněprus	99:39	0.67	0.09	0.05
Adam Wanayahin Daman	Karlstein .	94.64	5:36	0.14	0.48
Adam Tomašek in Beraun	Korno	94.58	2.84	0.49	1.44
	Karlstein	79.00	14.53	0.90	4.27
Hermann Krämer, Wien	Travnik	99.50		0.32	0.22
R. Huber, Wien .	Lindewiese	96:37			2.74
					John.

Mergel aus der Umgebung von Temesvár, eingesendet von M. Torsch's Söhne in Wien.

				P	rocente	
Kieselsäure					51.16	
Eisenoxyd					4 ·58	
Thonerde .					11.46	
Kalk						
Magnesia .			,		2.71	·
Kali				,	1.47	
Kali Natron		Ċ			1.43	
Glühverlust						
						Foullon.

Aetzkalk aus dem Kalkstein von Hyĕic, eingesendet von den Marmorbrüchen Hejna

	Procente
Kalk	. 91.40
Magnesia	
Eisenoxyd und Thonerde .	. 0.60
Unlöslicher Rückstand	. 0.48
Glühverlust	. 1.49
	99.59

Eichleiter.

[17] Arbeiten aus dem chemischen Laboratorium der k. k. geol. R.·A. 17

Kalkmergel aus der Bukowina übergeben von Herrn Baron Popper und der Bukowinaer Creditanstalt.

		en Steinb Baron Po	Steinbruch der Bukowinaer Credit- anstalt in Boul	
	Straža	Putna	Putna	Boul
		Pro	e e n t	e
In Salzsäure unlösliche Theile	14 60	17:58	21.19	17.17
Kohlensaurer Kalk	79.90	76.82	72.79	75.96
Kohlensaure Magnesia	1.36	1.18	1.30	1.53
Kohlensaures Eisenoxydul		1.82	1.74	3.71
Thonerde		2.06	1.66	1.14
	99.99	99.46	98.68	99.51

Die in Salzsäure unlöslichen Rückstände enthalten;

		Pro	cente	!
Kieselsäure	. 13.05	15.11	17.85	14.54
Thonerde	0.76	1.66	2.21	2.11
Eisenoxyd	0.68	0.60	0.70	0.61
Kalk, Magnesia und Alkalien				
aus der Differenz	0.11	0.21	-0.43	•
	14.60	17:58	21.19	17.26
				John.

VI. Thone und Quarzite.

Quarz, in der Nähe des Bahnhofes Bruck a. d. M. vorkommend, eingesendet von Dr. Guido Fink in Bruck a. d. M.

							Nr. 1	Nr 2				
			Procente									
Kieselsäure		٠					93.77	90.02				
Eisenoxyd							1.11	3.02				
									John.			

Thon aus der Umgebung von Steinbrück, eingesendet von der Steinbrücker Cementfabrik.

	Procente		
Kieselsäure	42.01		
Thonerde			
Eisenoxyd	7.06		**
Kohlensaurer Kalk	21:35 {	11.96 Procent 9.39 ",	Kalk Kohlensäure
Kohlensaure Magnesia.	7.56	3.60 " 3.86 "	Magnesia Kohlensäure
Wasser			
	99.22		John.

Jahrb. d. k. k. geol. Reichsanstalt, 1895, 45. Band, 1. Heft. (v. John u. Eichleiter.) 3

VII. Wässer.

Salzsoolen aus dem alten Soolenschacht von Lisowice bei Bolechow in Galizien.

In 10,000 Theilen re	sp. 1	0 Litern sin	d enthalten	Gramme:
		45 m tief	49 m tief	52 m tief
Natrium		296 000	359:580	665.740
Kalium		0.6414	0.7696	1.100
Kalk		13.720	17:020	24:380
Magnesia		3.4568	4.431	6.412
Schwefelsäure		17:682	22.761	32.340
Chlor		463.650	563.270	1059:200
Kieselsäure		0.116	0.100	0.080
Eisenoxyd u. Thone	rde	Spur	Spur	Spur
In der Soole suspendi		_	Î	·
Theile		7:004	6.932	18:332
Daraus berechnen sich folg	gende	e Salze;		
Schwefelsaurer Kalk		30.059	38.694	54:340
Chlorcalcium		2.662	2.154	3.452
Chlormagnesium		8.210	10.525	15.228
Chlorkalium		1.225	1.470	2.101
Chlornatrium		751.585	913.000	1690:500
Kieselsäure		0.116	0.100	0.080
Summe .		793.857	965.943	1765.701

Grubenwasser aus der Sct. Rudolfszeche in Lauterbach, eingesendet von der k. Bezirkshauptmannschaft in Falkenau.

In 10.000 Theilen Wasser sind enthalten Theile:

In Wasser suspendirte Theile (thonig-quarzige Theile und	In einem Klär- teich abgestandenes Grubenwasser
organische Substanzen) 2·4740	1.2050
Die filtrirten Wässer enthalten:	
Eisenoxyd 0·1200	0.0200
Thonerde Spur	Spur
Kalk 0·3240	0.3120
Magnesia 0·1023	0.1010
Kali 0.1538	0.1460
Natron 0.2078	0 1884
Ammoniak 0.0539	0.0455
Kieselsäure Spur	Spur
Schwefelsäure 0.5693	0.5450
Chlor 0.1648	0.1630
Salpetersäure 0.0041	0 0041
Organische Substanz (Ausgedrückt durch die zur Oxydation derselben nothwendige Sauer-	
stoffmenge) 0.0320	0.0340
Trockenrückstand 1.8480	1.6300

Zu Salzen gruppirt enthalten die Wässer in 10.000 Theilen:

	Grubenwasser	In einem Klär- teich abgestandenes Grubenwasser
Schwefelsauren Kalk	. 0.7869	0.7574
Schwefelsaures Kali		0.2724
Schwefelsaures Natron		0.1054
Chlornatrium		0.2686
Kohlensaure Magnesia		0.2121
Kohlensaures Eisenoxydul .		0.0290
Ammoniak		0.0455
Salpetersäure		0.0041
Organische Substanz (Ausg drückt durch die zur Oxydati derselben nothwendige Saue	ge- on	
stoffmenge)		0 0340
Summe der fixen Bestandtheile	. 1.9684	1·7285 John.

Wasser aus der Umgebung von Murau, eingesendet vom Bürgermeisteramt dieser Stadt. Dasselbe ist als ausserordentlich rein zu bezeichnen, es enthält neben den gewöhnlichen Bestandtheilen guter Trinkwässer kaum nachweisbare Spuren von organischen Substanzen. Salpetersäure und Ammoniak. Die Summe der fixen Bestandtheile beträgt 97 Milligramm im Liter.

Wasser aus der Umgebung von Krems, bestimmt als Trinkwasser zu dienen, eingesendet vom Bürgermeisteramte in Krems. Die Summe der fixen Bestandtheile beträgt 366 Milligramm im Liter. Das Wasser enthält die gewöhnlichen Bestandtheile der Trinkwässer, nur verhältnissmässig viel Magnesia. Organische Substanzen, salpetrige Säure und Ammoniak sind nur in Spuren vorhanden; dagegen ist die Menge an Salpetersäure, etwa 30 Milligramm im Liter, eine verhältnissmässig hohe.

Wässer von Trautenau, eingesendet von dem Bürgermeisteramte der Stadt Trautenau.

In 10,000 Theilen resp. in 10 Litern sind enthalten Gramme:

•					<i>a</i>)	Bohrquelle ·	b) Stadtquelle	c) Rinnelquelle
Kieselsäure .						0.0810	0.0600 .	0.0680
Thonerde						0.0150	0.0060	0.0060
Eisenoxyd				,		0.0067	0.0035	0.0028
Kalk				,		0.8530	0.8280	0.8300
Magnesia						0.2046	0.1243	0.1585
Kali	,					0.0730	0.0502	0.0626
Natron							0.0780	0.0801
Ammoniumoxyo	l		٠	٠		0.0022	0.0066	0.0071

3*

	a)	Bohrquelle	b) Stadtquelle	c) Rinnelquelle
Chlor		0.0915	0.0473	0.0445
Schwefelsäure			0.1081	0.1253
Salpetersäure			0.1530	0.2082
Kohlensäure			1.5090	1.5566
Organische Substanz, ausg	e-			
drückt durch die Men	ge			
des bei der Bestimmu				
verbrauchten übermanga	n-			
sauren Kalis		0.0379	0.0206	0.0316
Organische Substanzen, dur				
die Menge des verbraucht				
Sauerstoffes ausgedrück			0.0052	0.0080
Aufgeschlämmte Trübung		0.0232	No. collection.	
Trockenrückstand		2.6640	2.0680	2:3140

Berechnet man aus diesen Daten die vorhandenen Salze, und zwar die Carbonate als einfach kohlensaure Verbindungen gerechnet, findet man in 10 Litern Gramme:

<i>(u)</i>	Bohrquelle	b) Stadtquelle	c) Rinnelquelle
Schwefelsauren Kalk	0.4918	0.1838	0.2130
Chlorkalium	0.1274	0.0796	0.0936
Chlornatrium	0.0351	0.0152	
Salpetersaures Natron	0.2578	0.1926	0.2197
Salpetersaures Kali			0.0075
Salpetersaurer Kalk		0.0465	0.0891
Kohlensaures Natron	0.1405		
Kohlensaurer Kalk	1.1616	1.3150	1.2657
Kohlensaure Magnesia .	0.4297	0.2610	0.3329
Kohlensaures Eisenoxydul .	0.0097	0.0052	0.0040
Kohlensaures Ammon	0.0105	0.0122	0.0131
Thougrde	0.0150	0.0060	0.0060
Kieselsäure	0.0810	0.0600	0.0680
Summe der fixen Bestandtheile	2.7601	2.1771	2.3216

Die Carbonate als doppelt kohlensaure Verbindungen gerechnet:

(a)	Bohrquelle	b) Stadtquelle	c) Rinnelquelle
Schwefelsaurer Kalk		0.4918	0.1838	0.2130
Chlorkálium		0.1274	0.0796	0.0936
Chlornatrium		0.0351	0.0152	-
Salpetersaures Natron .		0.2578	0.1926	0.2197
Salpetersaures Kali			~	0.0075
Salpetersaurer Kalk		-	0.0465	0.0891
Doppelt kohlensaures Natron	11	0.1988		
Doppelt kohlensaurer Kalk		1.6727	1.8936	1.8286
Doppelt kohlens. Magnesia		0.6548	0.3976	0.5073
Doppelt kohlens. Eisenoxydu	ıl	0.0134	0.0072	0.0055

[21] Arbeiten aus dem chemischen Laboratorium der k. k. geol. R.-A.

a)	Bohrquelle	b) Stadtquelle	c) Rinnelquelle
Doppelt kohlens. Ammon .	0.0153	0.0178	0.0191
Thonerde		0.0000	. 0.0060
Kieselsäure		0.0600	0.0680
Halb gebundene Kohlensäure	0.8030	0.7229	0.7388
Freie Kohlensäure (Aus der			
Differenz bestimmt)	0.0985	0.0632	0.0790

Aus diesen Analysen ist ersichtlich, dass diese Wässer, welche als Trinkwässer für die Stadt Trautenau dienen sollen, die Zusammensetzung gewöhnlicher guter Quellen haben.

Auffallend hoch ist blos der Gehalt an Salpetersäure, der aber, besonders bei dem geringen Gehalt an Chloriden und organischer Substanz und dem Fehlen von salpetriger Säure, doch diese Wässer immerhin noch als gute Trinkwässer erscheinen lässt, so dass dieselben der Stadtgemeinde Trautenau empfohlen werden konnten.

John.

21

VIII. Metalle und Legierungen.

Legierung, eingesendet von der Locomotivfabrik in Wiener-Neustadt.

							ŀ	rocente	
Kupfer .								82.63	
Zinn								10.25	
Blei									
Zink									
Eisen .									
Antimon	٠	٠		•		٠	٠	Spuren	
		2	Sui	nm	e			99.73	John.

Legierung, eingesendet von Franz Hager in Wien.

0 /								O
							P	rocente
Blei .								68.77
Antimo	11							19.45
Zinn .								
Kupfer								0.17
Eisen								Spuren
			Sir	mm	ne.			98:43

John.

Roheisen, eingesendet von der Eisen- und Blechfabrik-Gesellschaft "Union" in Wien, enthält:

						Ρr	ocente
Kieselsäur	e						0.50
Schwefel		,					0.084
Phosphor							
Mangan .							Spuren
Nikel							Spuren

Stahlmuster, eingesendet von der österreichischen Waffenfabriks-Gesellschaft in Steyer.

Bezeichnung					Ke	ohlenstoff	Silicium	Mangan	
							P	rocent	e
	B.						0.52	0.81	1.89
	C.						0.36	0.04	0.25
	H.						0.70	0.01	0.22
	K.						0.47	0.22	0.77
	X.				•		0.45	0.18	0.73

Eichleiter.

Legierung, eingesendet von M. Herzka in Wien.

										P	rocente
Blei .		٠									76:01
Antimor											
Zinn .											
Kupfer											
Eisen	٠		•		٠		٠	-	٠	٠	0.08
				Sı	un	me	٠ .				100.85

John.

Münzlegierung, eingesendet von Cornides & Comp. in Wien.

	Nr. 1	Xr. 2	Nr. 3	Nr. 4	Nr. 5
		P 1	rocent	е	
Kupfer	 94.76	94.77	94.72	9459	94.80
Zinn	. 3.96	3.98	4.03	3.94	4.02
Zink	. 1:03	1.07	1.01	1.10	0.04
Blei	. Spuren	Spuren	0.14	0.50	0.23
Nickel.	 0.09	Spuren	Spuren	Spuren	Spuren
Eisen .	 Spuren	Spuren	Spuren	Spuren	0.02
Schwefel	. —		•		0.11
Summe	. 99.84	99.82	99-90	100.13	100:15

John. Eichleiter.

Kupfer, eingesendet von Cornides & Comp. in Wien.

							P	rocent
Blei								0.215
								0.023
								0.014
								0.042
Phos	olie	01						0.024

Spuren von Schwefel. Antimon und Arsen.

[23] Arbeiten aus dem chemischen Laboratorium der k. k. geol, R.-A. 23

Kupfer, eingesendet von der Maschinenfabrik der k. k Staatseisenbahn-Gesellschaft in Wien.

					Nr. 1	Nr. 2	Nr. 3	
					P	rocen	t e	
Blei					0.125	0.014	0.035	
Zinn					0.032	0.011		
Antim	on				Spuren	0.005	0.011	
Arsen					Spuren		0.024	
Eisen				,	0.021	0.017	Spuren	
Nickel	l				0.000	0.022	0.425	
Schwe	fe.	l			0.018	0.012	0.021	
Phosp	ho:	l,			Spuren	0.008		John.

Legierung, eingesendet von Cornides & Comp. in Wien. enthält:

		Procente													
Kupfe	۲.							61.93							
Zink.								38.07							
Blei .															
Eisen															
Nickel							٠	-0.09							
	(Su	mr	ne			4	100:31							

Legierung, eingesendet von Cornides & Comp. in Wien. enthält:

								Procent
Kupfer								95.80
Aluminium								3.04
Zinn								
Silicium .								
Nickel und	Zi	nk	•		٠	٠	٠	Spuren
		Ş	Sm	mn	ne	_	 	99.48

Eichleiter.

John.

Packfongdraht, eingesendet von Cornides & Comp. in Wien. Neben Spuren von Schwefel. Phosphor. Zink und Blei sind vorhanden:

									Procent	
Kupfer	•								79.42	
									13.95	
Zinn.									6.92	
Eisen	•		•					٠	0.25	
				Su	mr	ne			100:34	John

24

Draht, eingesendet von Cornides & Comp. in Wien.

				V	ersilbert	Vergoldet
					Proce	n t e
Kupfer					86.59	89.19
Nickel					10.77	8.72
Eisen .					0.53	0.25
Gold .			ι, ι		0.015	0.615
Silber			٠.		1.601	0.971
Schwefe	l				0.096	0.096
					99.302	99.846

ferner Spuren von Blei, Zinn und Zink.

John.

Legierung, eingesendet vom Messingwerk Achenrain in Tirol.

				T.	II.	
				Pro	e e n t e	
Kupfer	٠.			62.08	68.08	
Nickel				18.01	11:38	
Zink.				19.43	20.77	
Blei .				0.11	0.20	
Eisen			٠	0.31	0.26	
		-		99-99	100.69	John.

Draht, eingesendet von William Prym in Wien, enthält neben Spuren von Eisen, Antimon und Zinn:

				Procent	
Kupfe	ı,			64.52	
Zink				35.10	
Blei				0.37	
				99.99	John

IX. Gesteine.

Granit von Holzwiesen in Oberösterreich, eingesendet von Leopold Frei in Wien.

					Procent
Kieselsäure					67.70
Eisenoxyd .					16.80
Thonerde .					3.20
Kalk					3.40
					0.63
Alkalien etc.	(1	Diff.	.)		8.27

100.00

Eichleiter.

[25] Arbeiten aus dem chemischen Laboratorium der k. k. geol. R.-A.

Gestein aus dem Serpentin von Grodau in Preussisch-Schlesien, eingesendet von Herrn k. k. Bergrath Eugen Ritter von Wurzian, enthält:

	Procent
Kieselsäure	44.90
Thonerde	17.64
Eisenoxyd	10 11
Kalk	2.12
Magnesia	2.25
Wasser bei 100° C	14.66
Wasser über 100° C.	8.62
	 100:30

Das vorliegende Gestein dürfte ein secundäres Product vorstellen, das bei der Serpentinbildung entstanden ist. John.

X. Salze.

Bohrproben aus dem Bohrloche Turzawieka mit 47 Meter Tiefe, eingesendet von der k. k. Salinenverwaltung Kalusz.

Mit	Bezeichnung	Mit Bezeichnung		
7:	Kalisalze"	"Bittersalz"		
	Proc			
In Wasser unlöslicher Rückstand	-29.76 ${15.75^{\circ}/_{\circ}}$ ${\rm Dar}$ ${3.07}$ ${\rm Sch}$	rin eselsäure, wefelsäure) 3:42 { Nur Schwe	Spuren efelsäure	
Schwefelsäure	22:67	31.63		
Chlor	4.20	0.35		
Natron	8.50	20.74		
Kali		1.40		
Kalk		1.86		
Magnesia	2.22	0.86		
Wasser	25.50	40.18		
Zu Salzen gruppir				
Schwefelsaures Kali		2.61		
Schwefelsaures Natron		46.79		
Chlornatrium		0.28		
Schwefelsaurer Kalk.	. 10.49	4.52		
Schwefelsaure Magnesia	6.66	2:58		
Wasser	25.50	40.18		
In Wasser unlöslicher				
Rückstand	29.76	3.42		
	100.98	100.68	John.	

26

[26]

Bohrproben aus obigem Bohrloch von der k. k. Salinenverwaltung in Kalusz eingesendet.

	246 Meter tief	255 Meter tief	265 Meter tief	289 Meter tief
	Procente			
Schwefelsäure	23.42	31:38	5.75	3.77
Chlor	28.42	28.19	50.94	1.99
Natron	18:25	26.98	46.11	1.80
Kali	10.62	11.28	1.19	2.28
Kalk		Spur	1.84	1.40
Magnesia	10.37	8.92	0.41	Spur
Thonige Bestandtheile		0.36	6.86	79.44
Wasser bis 100° C		0.12	0.58	3.98
Wasser über 100° C	4.63		personne	6.22
Zu Salzen gruppirt:				
Schwefelsaures Kali	19.63	20.85	2.20	4.21
Schwefelsaures Natron	21.26	37:49	2.29	
Chlornatrium	16:91	21.26	83.94	3.41
Schwefelsaurer Kalk	4.13	Spur	4.47	3.40
Schwefelsaure Magnesia	_		1.23	
Chlormagnesium	24.70	20.47		
Thon	5.42	0.36	6.36	79.44
Wasser	8.25	0:12	0.28	10.20 ·
	100:30	100:55	100.77	100·66 John.

Gyps von Neu-Weveczanka in der Bukowina, eingesendet von Julius Roth in Barwinek.

	Procente
Kalk	32.26
Schwefelsäure	45.98
Eisenoxyd und Thonerde	().4()
Unlöslicher Rückstand	0.28
Glühverlust (Wasser)	21.50

Daraus berechnet sich die Zusammensetzung wie folgt:

	Procente
Schwefelsaurer Kalk	78:36
Glühverlust (Wasser)	21.50
Eisenoxyd und Thonerde	0.40
Unlöslicher Rückstand	0.58
_	100.84

[27]

XI. Diverse.

Farberden aus den Gemeinden Dejsina und Kyšic, Bezirk Pilsen, eingesendet von dem k. k. Revierbergamt in Pilsen.

			Pro	eei	nte Eisenoxyd
£.					8.70
B					22.00
C					43.12
D					9.12
E					4.07
F				,	11.11
G					7.15
H					9.02
J					57.07
K					4.62
L					7.48
M					38.50
N					8.58 John

Ausblühungen an Steingutgeschirren während dem Trocknen entstanden, eingesendet von der Wilhelmsburger Steingutfabrik.

				Procente
In Salzsäure un	ılösli	che	er	44.00
Rückstand .			٠	44.68
In Salzsäure l	öslic	h:		
Thonerde				0.24
Kalk				16.72
Schwefelsäure				23.76
Wasser				10.63

Der Gehalt an Kalk, Schwefelsäure und Wasser entspricht fast genau der theoretischen Zusammensetzung für 51:08 Procent Gyps. Foullon.

Ofenbruch und Staub aus den Zinköfen der gräflich Potocki'schen Hüttenwerke in Sierza.

Zink Procente						ik Procente	
Ofenbruc	h.					60.26	
Staub Nr	. 1					29.64	
Staub Nr	. 2					17.28	John.

Farberde von Unter-Metzenseifen, eingesendet von J. Kosch in Metzenseifen, enthält:

13:30 Procent Eisenoxyd und 1:30 Procent Mangan.

28

C. v. John und C. F. Eichleiter.

[28]

Farberden von Andrychau in Galizien, eingesendet von Gräfin Felice Borowska, enthalten:

	Б	Kieselsäure	Eisenoxyd	
		Proc	ente	
Nr. I .		58.10	17.70	
Nr. II .		55.90	12.10	Eichleiter.

Steinkohlentheerpech, sogenanntes Hartpech, eingesendet von J. Rütgers in Angern N.-Oe., hinterlässt 48:15 Procent Coaks.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Jahrbuch der Geologischen Bundesanstalt</u>

Jahr/Year: 1895

Band/Volume: 045

Autor(en)/Author(s): John von Johnesberg Conrad, Eichleiter C.Friedrich

Artikel/Article: <u>Arbeiten aus dem chemischen Laboratorium der k. k.</u> geologischen Reichsanstalt, ausgeführt in den Jahren 1892-1894. 1-28