First West Indies records of *Thermonectus succinctus* (Aubé, 1838), with notes on other Cuban species (Coleoptera: Dytiscidae)

Y. Alarie, Y.S. Megna & A. Deler-Hernandez

Abstract

The present work deals with the taxonomic composition, distribution and bionomics of the Aciliini genus *Thermonectus* Dejean, 1833 (Coleoptera: Dytiscidae) in Cuba. *Thermonectus succinctus* is recorded for the first time from the West Indies. A key to the four species of *Thermonectus* from Cuba is provided.

Key words: Coleoptera, Dytiscidae, Aciliini, *Thermonectus*, new distribution records, key to species, Cuba.

Introduction

Dytiscinae contain the largest members of the family Dytiscidae (Larson et al. 2000, Miller et al. 2007). This subfamily comprises seven tribes worldwide (Miller 2000, Nilsson 2001, 2003), of which three (Cybistrini Sharp, Hydaticini Sharp and Aciliini Thomson) are represented in Cuba by four genera (*Cybister* Curtis, *Hydaticus* Leach, *Megadytes* Sharp, and *Thermonectus* Dejean) and nine species (Peck 2005). In Cuba, Dytiscinae are generally found in lentic habitats and tend to occur in deeper and more open sites than members of other subfamilies.

Except for some relatively recent papers (Spangler 1973, 1981, Peck 2005), all information regarding the composition and distribution of Cuban dytiscids is from old studies dealing with species concentrated in mountainous regions (Jacquelin du Val 1856–1857, Chevrolat 1863, Gundlach 1891). Lack of information on such a diverse group of beetles prompted this study, which aims at describing the *Thermonectus* fauna of Cuba. *Thermonectus* is exclusively a New World genus, which is primarily found in warm temperate to tropical regions (Trémoilles 1989, Larson et al. 2000). *Thermonectus* is comprised of 19 species worldwide, four of which occur in Cuba. Most species of *Thermonectus* are inhabiting temporary to permanent ponds; most species fly readily and are often collected at light (Larson et al. 2000).

Material and Methods

Specimens examined: Description of form and structure, taxonomic conclusions, geographical distribution and other findings reported in this paper are based on examination of adult specimens deposited in the Museo de Historia Natural “Charles Ramsden”, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba (CZCTR). Specimens collected in the field during this study are deposited in this collection.
Collecting methods: Sampling was unstructured and qualitative, with the goal of obtaining a strict inventory of Aciliini of the region. Beetles were collected using D-net sweeps in a variety of microhabitats including macrophyte beds, rocky shores, organic-rich sediments, and open water.

Sex determination and dissection of male genitalia: Determination of the sex of individuals was made simply by reference to the shape of the protarsi, which are enlarged laterally in males. Females of several species also differ from males by the presence of scratches on elytra. A character used in diagnosis of the species studied was the form of the male genitalia. Successful examination of these structures required some dissection. Prior to dissection, dry specimens were relaxed in hot water during 10 minutes. The genitalia were then extracted by inserting a pin into the abdominal opening. The median lobe and the parameres were then disarticulated and mounted together with the specimens. If the abdomen was removed, it was also glued to the same card as the genitalia.

The nomenclature used herein is based on the classification proposed by MILLER (2001) and NILSSON (2001).

Descriptions: The characters and terms used in the morphometric analysis are defined in Table 1. Measurements are given in Table 2. Measurements to the nearest 0.05 mm were taken using a MBS-9 stereomicroscope with a caliper in one ocular. When possible, nine specimens of each sex were chosen for measurements. Only intact specimens were selected for the study. Unless otherwise stated, all measurements represent greatest distance. In order to obtain measures of shape, the ratios PL/PW and TL/EW were calculated.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head length (HL)</td>
<td>Measured along the midline from the anterior clypeal margin to the anterior pronotal margin</td>
</tr>
<tr>
<td>Pronotal length (PL)</td>
<td>Measured along the midline from the anterior margin to the posterior margin</td>
</tr>
<tr>
<td>Elytral length (EL)</td>
<td>Measured along the midline from the anterior margin to the apex</td>
</tr>
<tr>
<td>Elytral width (EW)</td>
<td>Measured at greatest transverse width across both elytra</td>
</tr>
<tr>
<td>Pronotal width (PW)</td>
<td>Measured at level of posterior margin</td>
</tr>
<tr>
<td>Head width (HW)</td>
<td>Measured near posterior margin</td>
</tr>
<tr>
<td>Distance between eyes (DBE)</td>
<td>Minimum distance between eyes</td>
</tr>
<tr>
<td>Total length (TL)</td>
<td>The sum of three measurements: HL + PL + EL</td>
</tr>
</tbody>
</table>

Distribution: The Cuban records are based on specimens examined and on literature data. The principal faunal studies that we have consulted are: JACQUELIN DU VAL (1856–1857), CHEVROLAT (1863), GUNDLACH (1891), SPANGLER (1973, 1981) and PECK (2005).
Genus Thermonectus DEJEAN, 1833

Species of *Thermonectus* can be distinguished by the following combination of characters: moderate size; non-emarginate eyes; posterior ventral margin of mesofemur with a series of stiff setae about as long as or longer than width of femur; apex of outer spines of metatibia notched; outer margin of metaventral wing arched; male mesotarsi lacking adhesive palettes.

The following key was drawn largely from Young (1954), Goodhue-McWilliams (1968), Trémouilles (1989), and Larson et al. (2000).

Key to the Cuban species of Thermonectus

1. Elytra black or reddish-black, with bright yellow or yellowish spots or fascia 2
 - Elytra yellowish with dense speckles in the shape of small irregular spots; postmedial fascia; longitudinal black spots at lateral margin at about greatest width... 3
2. Elytra black or reddish-black with irregular yellowish markings; narrow yellowish lateral margins interrupted by longitudinal lines of black spots or speckles; irregular yellowish spot near lateral margin at greatest width and preapical fascia lacking; paramere as in Fig. 5……
 - Elytra black with distinct yellowish markings; broad yellowish lateral margins confluent with medial extension; irregular yellowish spot near lateral margin at greatest width; yellowish preapical fascia present; paramere as in Fig. 6... basillaris basillaris
3. Head yellowish, black markings not reaching anterior margin of head; pronotum yellowish with prominent black markings, wide black band at posterior margin tapering toward lateral margins (Fig. 3); elytra speckled with indistinct discontinuous postmedial fascia; male protarsal pad with the three basal adhesive setae of about same diameter; female with elytral sculptures deeply impressed; paramere as in Fig. 7... marginegutatus
 - Head yellowish, black markings reaching anterior margin of head; pronotum yellowish with reduced black markings, with two large subbasal biconvex lens-shaped spots, which are open or closed and usually confluent medially (Fig. 4); elytra speckled with indistinct discontinuous postmedial fascia; male protarsal pad with one of the three basal adhesive setae about twice the diameters of the other two; female lacking elytral sculptures; paramere as in Fig. 8... succinctus

Thermonectus basillaris basillaris (HARRIS, 1829)

(Figs. 1, 5, 9)

Dytiscus nimbatus MELSHEIMER, F.V. 1806: 48 (nomen nudum).
Dytiscus basillaris HARRIS 1829: 1.
Acilius incisus AUBÉ 1838: 147; GUNDLACH 1891: 39.
Acilius cinctatus AUBÉ 1838: 151.
Acilius laticintus LECONTE 1852: 203.

MATERIAL EXAMINED:
Thermonectus basillaris is a moderately small species, which could only be confused with the slightly smaller T. margineguttatus. The elytral color pattern is usually black, with variable and irregular yellowish markings.

DESCRIPTION: Measurements and ratios aimed to characterize the body shape are shown in Table 2.

Color. Head black posteriorly, with a bilobed yellow frontal band between eyes; anterior portion yellow, with yellow extending posteriorly along mesal margin of the eyes to about middle and triangularly produced medially on frons. Pronotum with a black wide transverse band in the anterior and posterior margins that are not contiguous with the lateral margins, separated by a yellow space, which is small in many specimens (Fig. 1). Elytra black, with a basal yellow band not extended to the lateral margins, yellow lateral margins with black irrorations after humeral angle to apex; venter rufous to piceous; pro- and mesothoracic legs yellow, metathoracic legs reddish-black to reddish-brown with distal end of femur slightly paler.

Sculpture and punctuation. Each elytron with three longitudinal rows of widely spaced punctures generally extending to apex; female with longitudinal strioles strongly developed on lateral portions of pronotum and basal half of elytra.

Male genitalia (Fig. 5). Parameres evenly narrowed apically in lateral aspect; aedeagus broad, apex bluntly pointed.

ECOLOGY: In Cuba this species was collected in both permanent and temporary lentic habitats as well as in saline coastal lagoons. The water temperature in these sampling areas approximated 36°C.

DISTRIBUTION: Thermonectus basillaris has a broad distribution ranging from southern Ontario to the Gulf of Mexico and west to Texas (LARSON et al. 2000). In Cuba this species is recorded both in western and eastern parts of the country including Isla de la Juventud (Fig. 9).

COMMENTS: The taxonomy of T. basillaris has been in a state of chaos since the 1800’s. This species is extremely variable over its wide range of distribution. As pointed out by YOUNG (1954), however, much of the variation may be due to environmental conditions.

Thermonectus circumscriptus (Latreille, 1809)
(Figs. 3, 7, 11)

Dyticus [!] circumscriptus Latreille 1809: 366.
Acilius maculatus Aubé 1838: 141.
Hydaticus havaniensis Castelnau 1835: 96.
Hydaticus insularis Castelnau 1835: 96.
Colymbetes insularis Castelnau 1840: 162.

MATERIAL EXAMINED:

DIAGNOSIS: Thermonectus circumscriptus is a moderately large, darkly marked species. It is characterized by its distinct black pronotal markings of wide bands at the anterior and posterior margins (Fig. 3); the elytra are dark with a vague preapical dark fascia, which varies in degree of darkness. Thermonectus circumscriptus is the largest species of this genus in Cuba.

DESCRIPTION: Measurements and ratios aimed to characterize the body shape are shown in Table 2.

Table 2: Descriptive statistics (mm) for Cuban species of Thermonectus (see Table 1).

<table>
<thead>
<tr>
<th>Thermonectus</th>
<th>HL Range</th>
<th>HW Mean</th>
<th>DBE Mean</th>
<th>PL Range</th>
<th>PW Mean</th>
<th>EL Range</th>
<th>EW Mean</th>
<th>TL Range</th>
<th>TL/EW Mean</th>
<th>PL/PW Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>basillaris</td>
<td></td>
</tr>
<tr>
<td>♂ n=9</td>
<td>1.4-1.6</td>
<td>1.5</td>
<td>1.1-1.3</td>
<td>1.1-1.6</td>
<td>4.0-4.6</td>
<td>5.3-8.4</td>
<td>5.3-6.1</td>
<td>8.3-11.4</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Range</td>
<td>2.1-2.4</td>
<td>2.3</td>
<td>1.2</td>
<td>1.4</td>
<td>4.3</td>
<td>7.6</td>
<td>5.7</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>♂ n=9</td>
<td>1.2-1.4</td>
<td>1.3</td>
<td>1.1</td>
<td>1.1-1.3</td>
<td>3.1-3.7</td>
<td>6.4-7.4</td>
<td>4.3-5.1</td>
<td>9.0-10.0</td>
<td>2.0</td>
<td>0.3-0.4</td>
</tr>
<tr>
<td>Range</td>
<td>2.0-2.6</td>
<td>2.2</td>
<td>1.1</td>
<td>1.2</td>
<td>3.5</td>
<td>6.8</td>
<td>4.7</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
</tbody>
</table>

circumscriptus										
♂ n=9	1.6-1.9	1.7	1.1-1.4	1.4-1.7	4.4-5.0	8.4-9.1	5.7-6.4	11.4-12.6	2.0	0.3-0.4
Range	2.4-2.7	2.6	1.3	1.6	4.7	8.8	6.1	12.1		
Mean										
♂ n=9	1.7-1.9	1.8	1.0-1.7	1.3-1.7	4.1-5.1	7.7-10	5.7-7.1	10.9-13.4	1.9	0.3
Range	2.3-2.9	2.5	1.4	1.5	4.8	9.2	6.5	12.5		
Mean										

margineguttatus										
♂ n=4	1.4	1.4	1.1-1.3	1.1-1.3	3.4-4.0	6.9-7.3	4.9-5.1	9.4-10.0	1.9	0.3
Range	2.0-2.1	2.01	1.2	1.2	3.8	7.1	5.0	9.7		
Mean										
♂ n=2	1.4	1.4	1.3	1.3	3.9	7.1-7.3	5.3	9.9	1.9	0.3
Range	2.1-2.7	2.4	1.3	1.3	3.9	7.2	5.3	9.9		
Mean										

succinctus										
♂ n=9	1.6-1.7	1.7	1.3-1.4	1.4-2.0	4.3-4.9	7.9-8.9	5.6-6.4	11.0-12.4	1.9	0.3-0.4
Range	2.3-2.6	2.5	1.4	1.6	4.6	8.3	6.1	11.6		
Mean										
♂ n=9	1.7-2.0	1.8	1.3-1.6	1.1-1.7	4.1-5.3	8.1-8.6	5.4-6.7	11.4-12.1	1.9	0.2-0.4
Range	2.0-2.4	2.3	1.4	1.5	4.8	8.4	6.2	11.7		
Mean										

Color. Dorsal surface yellow with dense speckles in the shape of small irregular spots; head yellowish with black markings, distinct wide M-shaped spot between eyes; pronotum yellowish with a wide black band along both anterior and posterior margins, posterior band broader than
anterior one (Fig. 3); elytra yellowish with numerous coalescent black speckles and spots, and a wide postmedial fascia; venter reddish-brown to reddish black; pro- and mesothoracic legs yellowish, metathoracic legs reddish-brown, posterior half of femur yellowish-brown.

Sculpture and punctuation. Each elytron with three longitudinal rows of widely spaced indistinct punctures; female generally with longitudinal short striae grouped irregularly and extended to apical third.

Male genitalia (Fig. 7). Parameres tapering sharply in apical third to distinctly hooked lobe apices; median lobe slightly constricted near base, dilated near middle of total length.

ECOLOGY: *Thermonectus circumscriptus* was collected in semi-permanent brackish or freshwater. This species is very frequent in lagoons and backwaters with or without aquatic vegetation and seems to prefer habitats with muddy bottom, sand and small stones. It was collected at low elevation.

DISTRIBUTION: Known from the tropical coastal plain of the West Indies, Bahama Islands, Mexico and Central America (GOODHUE-MCWILLIAMS 1968). In Cuba, *T. circumscriptus* has been reported in the western and eastern portions of the country including Isla de la Juventud (Fig. 11).

Thermonectus margineguttatus (AUBÉ, 1838)
(Figs. 2, 6, 10)

MATERIAL EXAMINED:

DIAGNOSIS: *Thermonectus margineguttatus* is the smallest *Thermonectus* species in Cuba, which is likely to be confounded with *T. basillaris*. The dorsal color pattern of *T. margineguttatus* is generally darker than that of *T. basillaris* with irregular spots near the lateral margin at greatest width, more distinct yellowish markings, subhumeral spots, and a preapical fascia or spots.

DESCRIPTION: Measurements and ratios aimed to characterize the body shape are shown in Table 2.

Color. Head yellowish with black markings; wide black M-shaped spots between eyes; pronotum black with yellowish lateral margins; narrow irregular fascia at middle of total length (Fig. 2); elytra black with distinct yellowish markings: wide yellow lateral margin extending posteriorly, confluent with medial subbasal extension towards scutellum, interrupted at midline and anterior margins; small yellowish spot near the lateral margin at middle of total elytral length; broad yellowish convex preapical band.

Sculpture and punctuation. Elytron with three longitudinal rows of widely spaced punctures; females with scratches in basal third to basal half.
Male genitalia (Fig. 6). Parameres slightly dilated near middle of total length, tapering to narrow, rounded apices with short preapical lateral spine. Median lobe acute apically, with an incomplete basal ring in ventral view.

ECOLOGY: *Thermonectus margineguttatus* was the less frequently collected species of the genus. Specimens were collected in permanent lentic habitats, generally with abundant floating and submerged vegetation. This species was also found in backwaters of small streams. It is predominantly associated with turbid waters and muddy habitats.

DISTRIBUTION: Known from the tropical coastal plain in the West Indies, Bahama Islands, Mexico and Central America. More generally distributed in the tropical lowlands of South America to Argentina (GOODHUE-MCWILLIAMS 1968). Widely distributed in Cuba (Fig. 10).

COMMENTS: The dorsal color pattern in *T. margineguttatus* varies from almost entirely black to a pattern with distinct yellowish markings over its wide range of distribution (GOODHUE-MCWILLIAMS 1968, TRÉMOUILLES 1989, BÉNETTI et al. 2003). The elytral markings are generally well defined among Cuban specimens.

Thermonectus succinctus (AUBÉ, 1838)

Acilius succinctus AUBÉ 1838: 145.

Dytiscus succinctus CASTELNAU 1840: 159.

Thermonectes succinctus (AUBÉ, 1838): SHARP 1882a: 678; 1882b: 44; 1887: 758.

MATERIAL EXAMINED:

DIAGNOSIS: *Thermonectus succinctus* is slightly smaller than *T. circumscrip tus*, the only other species of the *Thermonectus irroratus* species group found in Cuba; *T. succinctus* has a distinctive black pronotal marking and a distinct but discontinuous dark postmedial fascia on the elytra.

DESCRIPTION: Measurements and ratios aimed to characterize the body shape are shown in Table 2.

Color. Dorsal surface yellow with dense speckles in shape of small irregular spots; head yellowish with black markings, V-shaped black spot usually interrupted anteriorly; pronotum yellowish with dark markings, frequently with a row of small brownish maculae subapically; distinct subbasally compressed biconvex lens-shaped black spots often confluent medially; frequently with narrow brownish-yellow band at posterior margin (Fig. 4); elytra yellowish with numerous black speckles, spots, and a postmedial fascia; venter bright orange to orangish-brown; pro- and mesothoracic legs yellow; metathoracic legs orangish to orangish-brown except reddish-black tibiae.

Sculpture and punctuation. Each elytron with three longitudinal rows of widely spaced indistinct punctures; female elytra smooth.
Male genitalia (Fig. 8). Parameres tapering sharply posterior to greatest width, bluntly pointed apices with short lateral preapical spine; median lobe acute apically, broad basally and with an incomplete basal ring in ventral aspect.

ECOLOGY: *Thermonectus succinctus* is generally found in semi-permanent ponds with very little vegetation and clear water (GOODHUE-MCWILLIAMS 1968). In Cuba, specimens were collected both in lentic (permanent and temporary) and lotic environments with or without vegetation. Based on the number of specimens collected, this species seems to prefer semi-permanent habitats with muddy bottom.

DISTRIBUTION: Up to this study, *T. succinctus* was recorded from the tropical coastal plain of Baja California, Mexico, and Central America (GOODHUE-MCWILLIAMS 1968). *Thermonectus succinctus* was recorded from several localities of eastern parts of the country as well as north of La Havana Province (Fig. 12). These are the first reports of *T. succinctus* from the West Indies.

COMMENTS: Although the color pattern is uniform in *T. succinctus*, it varies in degree of darkness, degree of black in the biconvexed lens-shaped spots of the pronotum, and in the distinctness of the postmedial fascia (GOODHUE-MCWILLIAMS 1968). TRÉMOUILLES (1989) suggested that females of *T. succinctus* have strongly impressed elytral striae. Cuban specimens all have smooth elytra in accordance with GOODHUE-MCWILLIAMS (1968).

Acknowledgements

We thank Patricia L.M. Torres (Universidad de Buenos Aires), Hans Fery (Germany), Michel Brancucci (Naturhistorisches Museum Basel), Antonio Régil Cueto (Universidad de León), Cesar J. Benetti and Terina P. Carrión for their critical review of the manuscript and valuable comments. Financial support was provided by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to the first author.

References

BLACKWELDER, R.E. 1944: Checklist of the coleopterous insects of Mexico, Central America, the West Indies and South America. – Bulletin of the U. S. National Museum 185: 72–80.

FERNANDEZ, I. 2001: Composición taxonómica de los coleópteros de la Sierra del Rosario, Pinar del Río, Cuba. – Poeyana 481–483: 20–33.

SHARP, D. 1882a: On aquatic carnivorous Coleoptera or Dytiscidae. – Scientific Transactions of the Royal Dublin Society (2) 2: 179–1003, pls. 7–18.

SPANGLER, P.J. 1981: Supplement to the aquatic and semi-aquatic Coleoptera of Cuba collected by the biospeleological expeditions to Cuba by the Academies of Science of Cuba and Romania. – Résultats des Expéditions Biospéléologiques Cubano-Roumaines à Cuba 3: 145–171.

Dr. Yves ALARIE
Department of Biology, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6 (yalarie@laurentian.ca)

Lic. Yoandri S. MEGNA
Departamento de Biología, Museo de Historia Natural 'Charles Ramsden', Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba (ysuarez1976@yahoo.es)

Albert DELER-HERNANDEZ
Departamento de Conservación, Empresa Flora y Fauna (ENPFF), Oficina Territorial Santiago, Santiago de Cuba, Cuba (adeler1982@yahoo.com)
Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Koleopterologische Rundschau

Jahr/Year: 2009

Band/Volume: 79_2009

Autor(en)/Author(s): Alarie Yves, Megna Yoandri Suárez, Deler-Hernandez Albert

Artikel/Article: First West Indies records of Thermonectus succinctus (AUBÉ, 1838), with notes on other Cuban species (Coleoptera: Dytiscidae). 5-16