New synonymy and taxonomic changes in bark and ambrosia beetles
(Coleoptera: Curculionidae: Scolytinae, Platypodinae)

R.A. Beaver

Abstract
New synonymy is proposed as follows: Scolytinae: Cryptalus: Cryphalus submuricatus EICHHOFF (= C. tuberculatus SCHEDL); Hypothenemus hiranus (EICHHOFF) (= Styloventus dubius SCHEDL); Hypothenemus brevicollis (EGGERS) (= Stephanoderes lamuensis EGGERS); Dryocoetini: Cyrtogenius STROHMEYER (= Dendrographus SCHEDL); Dryocoetops kepangi SCHEDL (= Pseudopoecilips taradakensis MURAYAMA); Hylesini: Hapalogenius africanus (EGGERS) (= Xylechius uniformis SCHEDL); Ipini: Acanthotomicus insularis (EGGERS) (= Ips kepangi SCHEDL, = I. inclinans SCHEDL); Micractini: Lanurgus podocarpi SCHEDL (= L. bicolor SCHEDL, = Traglistus brevisetosus SCHEDL); Lanurgus rhusi SCHEDL (= Traglistus spatulatus SCHEDL); Lanurgus widdringtoniae SCHEDL (= Glostatus perplexus SCHEDL); Lanurgus xylographus SCHEDL (= L. oleaeformis SCHEDL); Phloeosinini: Hyledius cripatus (BLANDFORD) (= Phloeosinus australis SCHEDL, = P. tuberculatus BROWNE); Hyledius vilis (BLANDFORD) (= Hylurgus sumatranus EGGERS, = Phloeosinus borneensis SCHEDL); Xyleborini: Ambrosiophilus metanepotus (EGGERS) (= Xyleborus huananensis BROWNE); Arixyleborus imitator (EGGERS) (= A. dipterocarpi BROWNE); Cyclorhipidion circumsicum (SAMPSON) (= Xyleborus subobtusus SCHEDL); Cyclorhipidion fukiensis (EGGERS) (= Xyleborus ganshoensis MURAYAMA); Debus cavus (BROWNE) (= Xyleborus cavuloides BROWNE); Debus detritus (EGGERS) (= Xyleborus maniensis BROWNE); Debus pulchellus (EGGERS) (= Xyleborus neocylindricus SCHEDL); Fortiborus posticepilosus (SCHEDL) (= Ozopemon major STROHMEYER); Microperus kadoyamaensis (MURAYAMA) (= Xyleborus huangi BROWNE); Xyleborus volvulus (FABRICIUS) (= X. orientalis EGGERS); Xyloctonini: Ctonoxylon uniseriatum SCHEDL (= C. capensis SCHEDL); Platypodinae: Platypodini: Platypus levannongi SCHEDL (= P. beaverti BROWNE).

The following new combinations are given: Debus cavus (BROWNE), D. cylindricus (EGGERS), D. detritus (EGGERS), Fortiborus posticepilosus (SCHEDL) all from Xyleborus. The following new replacement names are proposed for junior homonyms: Cyrtogenius borneensis for C. (Eidophelus) borneensis (BROWNE), Cyrtogenius gracilior for C. (Eidophelus) gracilis (BROWNE), Cyrtogenius longipennis (BROWNE) is resurrected as the correct name for C. elongatissimus WOOD.

Key words: Curculionidae, Scolytinae, Platypodinae, Oriental Region, Afrotropical Region, new synonymy, new combination, new name.

Introduction
Taxonomists working on the bark and ambrosia beetles of the weevil subfamilies Scolytinae and Platypodinae have been well-served by the work of WOOD & BRIGHT (1987, 1992) in their bibliography and catalogue, and its supplements (BRIGHT & SKIDMORE 1997, 2002), and more recently by ALONSO-ZARAZAGA & LYAL’s (2009) catalogue of family and group names in the subfamilies. These works have clarified the nomenclature and taxonomic position of many taxa, but my continuing taxonomic studies have revealed further synonymy and shown that further changes in the assignment of species to genera are necessary. I deal here largely with species from the Oriental and Afrotropical Regions, but the distributions of some of the species extend to...
other zoogeographical regions. The conclusions are based on the study of types and other specimens in the collections of European and American museums, particularly the Schedl collection in the Naturhistorisches Museum, Wien, supplemented by specimens in my own collection. The scolytine species are dealt with in the order of tribes and genera in which they appear in the classification of Alonso-Zarazaga & Lyal (2009). Further information on the species can be found in the references given above.

The following abbreviations for collections are used in the text:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKMB</td>
<td>Alexander König Museum, Bonn</td>
</tr>
<tr>
<td>DEI</td>
<td>Deutsches Entomologisches Institut, Münchenberg</td>
</tr>
<tr>
<td>HNHM</td>
<td>Hungarian Museum of Natural History, Budapest</td>
</tr>
<tr>
<td>IRSNB</td>
<td>Institut Royal des Sciences Naturelles de Belgique, Bruxelles</td>
</tr>
<tr>
<td>MIZW</td>
<td>Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa</td>
</tr>
<tr>
<td>MNB</td>
<td>Museum für Naturkunde der Humboldt Universität, Berlin</td>
</tr>
<tr>
<td>MNHP</td>
<td>Museum of Natural History, Prague</td>
</tr>
<tr>
<td>NHMB</td>
<td>Naturhistorisches Museum, Basel</td>
</tr>
<tr>
<td>NHML</td>
<td>The Natural History Museum, London</td>
</tr>
<tr>
<td>NCP</td>
<td>National Insect Collection, Plant Protection Institute, Pretoria</td>
</tr>
<tr>
<td>NMW</td>
<td>Naturhistorisches Museum Wien</td>
</tr>
<tr>
<td>RAB</td>
<td>R.A. Beaver’s private collection, Chiangmai</td>
</tr>
<tr>
<td>TMP</td>
<td>Transvaal Museum, Pretoria</td>
</tr>
<tr>
<td>USNM</td>
<td>United States National Museum, Washington</td>
</tr>
</tbody>
</table>

SCOLYTINAE

Cryphalini

Cryphalus submuricatus Eichhoff 1878a: 385.
Cryphalus tuberculosis Schedl 1994: 37 syn.n.

The syntypes of *C. submuricatus* were lost in the Hamburg Museum during World War II (Wood & Bright 1992). However, I have examined a specimen in MIZW from ‘Birma’ [= Myanmar] identified by Eichhoff. This has been compared with specimens from Thailand in my own collection (RAB) which had earlier been compared with the holotype of *C. tuberculosis* (NMW) from Tenasserim in Myanmar. Only a single species is present. It may be noted that *Eichhoff* (1878a) gives the length as 1.7 mm, and the type locality as ‘Hindostan’. In his later redescription of the species (*Eichhoff* 1878b), the length is incorrectly given as 3 mm, and the type locality as ‘Asiae India orientalis’. However, the short Latin description given by *Eichhoff* (1878a) is identical with the diagnosis given by *Eichhoff* (1878b), and the two descriptions evidently refer to the same species.

Hypothenemus birmanus (Eichhoff)

Triarmocerus birmanus Eichhoff 1878a: 384.
Hypothenemus birmanus (Eichhoff); Browne 1970: 556.
Stylotentus dubius Schedl 1971a: 372 syn.n.

The holotype of *S. dubius* (NMW), described from Sri Lanka, has been examined, together with a specimen determined by Schedl from Vietnam (HNHM) (Schedl 1973). Both specimens, the only ones recorded, fall well within the morphological range of the well-known and widely distributed species, *H. birmanus*, numerous specimens of which from the Oriental and Pacific regions have been examined in NHML and RAB. The only difference is that the antennal funicle
of the holotype is three-segmented. (Both antennae of the Vietnamese specimen are missing.)
The apical two segments of the funicle appear to have fused to each other and to the club. In all
other respects, the antenna is typical of *Hypothenemus* with an oviform three-segmented club.
the suture between the first and second segments with a septum on one side. Schedl (1971a)
noted the similarity of the holotype to *H. birmanus*, but placed it in the genus *Stylotentus* Schedl
because of the three-segmented antennal funicle. However, *H. birmanus* is known to have a
variable number of funicle segments (3–5) in different populations (Wood 1982, 2007). The
A species of *Hypothenemus* was synonymised with *Hypothenemus* Westwood by WOOD (1983), who
noted that the funicle of both *Hypothenemus* and *Stylotentus* is unstable, that fusion or partial
fusion of segments is frequent, and that the left and right antennae of a single specimen may
occasionally have different numbers of funicular segments.

Hypothenemus brevicollis (Eggers)

Stephanocerus brevicollis Eggers 1927a: 177.
Stephanocerus lamuensis Eggers 1935: 304 syn.n.

I have examined the holotype of *H. brevicollis* (NMW) from Mozambique, and compared it with
specimens in my own collection from Mozambique and South Africa which had earlier been
compared to the holotype of *S. lamuensis* (NHML) from Kenya. Eggers (1935) distinguished the
two species on some comparative characters of the pronotum and elytra, but these are rather
variable in the series from South Africa, and the two species intergrade. Accordingly, *S.
lamuensis* is synonymised with *H. brevicollis*.

Dryocoetini

Cyrtogenius Strohmeyer

Cyrtogenius Strohmeyer 1910: 127. (Type species: *Cyrtogenius bicolor* Strohmeyer, 1910: 127; monotypic).
Dendrographus Schedl. 1964a: 310. (Type species: *Pelicerus pygmaeus* Eggers, 1923: 218; original des.) syn.n.

The genera of Dryocoetini are often difficult to separate because species occur that are
morphologically intermediate between genera. As a result, different taxonomists have had rather
different views on the generic division of the tribe, and the limits of the genera. *Cyrtogenius* has
accumulated more and more synonyms in recent studies, and Wood & Bright (1992) list ten
generic synonyms. WOOD (1984, 1986) distinguished *Dendrographus* from *Cyrtogenius* by
characters of the antennae, procoxae and size. I have examined two syntypes (MNB) of the only
species of *Dendrographus*, *D. pygmaeus* Eggers from New Guinea, and compared them with
conspecific specimens in RAB from Sulawesi, and with numerous species of *Cyrtogenius* in
NHML, NMW and RAB. I find that the only character which distinguishes the genus from
Cyrtogenius is the presence of two funicular segments rather than three, four or five. Wood
(1984) noted that *D. pygmaeus* would be placed in *Cyrtogenius* except for the two-segmented
funicle and 'slightly different' antennal club, which has the procurred cornue part of the first
segment covering more than three quarters of the anterior face. However, an identical antennal
club is also found in other (unidentified) species of *Cyrtogenius* with more than two funicular
segments. The number of funicular segments is known to be size-related in *Cyrtogenius* (Wood
1984). The larger species have five segments, smaller species tend to have four or occasionally
three. The number of funicular segments is size-related in some other genera of Scolytinae (e.g.
Hypothenemus, *Hapalogenius* Hagedorn), and is insufficient in itself to separate two genera.
The other character used by WOOD (1986) to separate *Dendrographus* from related genera, the
contiguous procoxae, is also found in species of *Cyrtogenius* with 3–5 funicular segments.
Accordingly, *Dendrographus* is here synonymised with *Cyrtogenius*, and its only species is automatically transferred to the latter genus. The genus *Protopityophthorus* Schedl, which was synonymised with *Dendrographus* by Wood (1984), also automatically becomes a synonym of *Cyrtogenius*. *Protopityophthorus durus* Schedl was synonymised with *Dendrographus pygmaeus* by Wood (1984).

Cyrtogenius borneanus Beaver nom.n.

Beaver (1995) transferred *E. borneensis* to the genus *Cyrtogenius*, but overlooked the fact that this made the species a junior homonym of *C. borneensis* Schedl., 1967. A new name for *C. borneensis* is required, and the name *borneanus* is proposed.

Cyrtogenius gracilior Beaver nom.n.

Eidophelus gracilis Browne 1984: 152.

Beaver (1995) transferred *E. gracilis* to the genus *Cyrtogenius*, but overlooked the fact that this made the species a junior homonym of *C. gracilis* (Schedl, 1974) originally described in the genus *Ozodendron* Schedl, a genus now considered to be a synonym of *Cyrtogenius* (Wood, 1986). A new name for *C. gracilis* is required, and the name *gracilior* is proposed.

Cyrtogenius longipennis Browne

Cyrtogenius longipennis Browne 1965: 195.

Ozodendron elongatus Schedl 1964b: 241.

Beaver (1998) synonymised *Cyrtogenius longipennis* with *C. elongatissimus*, but overlooked the fact that Browne’s name is available and has priority. Therefore, *C. longipennis* is reinstated as the valid name for the species, with *C. elongatissimus (= Ozodendron elongatus)* as synonym.

Dryocoetiops kepongi (Schedl)

Dryocoetes kepongi Schedl 1953: 296.

Dryocoetiops kepongi (Schedl): Schedl 1964a: 308.

Pseudopoecilips taradakensis Murayama 1957: 618 syn.n.

I have examined a syntype of *D. kepongi* (NHML) from West Malaysia and compared it with specimens in RAB from Malaysia, Singapore, and Taiwan. These in turn have been compared with two specimens from Japan which had been compared to the holotype of *P. taradakensis* (USNM). Only a single species is represented. *Pseudopoecilips taradakensis* is included in the genus *Taphrorychus* Eichhoff by Wood & Bright (1992), but does not belong in that genus. *Dryocoetiops kepongi* is closely related to *D. coffeae* (Eggers), from which it differs in little more than size. The two species should possibly be synonymised, but further studies on the genus are needed.
Hylesinini

Hapalogenius africanus (EGGERS)

Pseudolphoeotribus africanus EGGERS 1933: 19.
Xylechius uniformis SCHEDL 1982: 281 syn.n.

The holotype of H. africanus (NHML) from Zambia, and other specimens from Zimbabwe (NHML) have been examined, and compared with specimens in RAB from Angola, Botswana, Namibia and South Africa, and these with a paratype of X. uniformis (NMW) from Zimbabwe. They are all conspecific. Hapalogenius africanus was included in the genus Hylesinopsis EGGERS by WOOD & BRIGHT (1992), but this placement is corrected by ALONSO-ZARAZAGA & LYAL (2009). Further synonyms are given by BEAVER (2010).

Ipini

Acanthotomicus insularis (EGGERS)

Ips insularis EGGERS 1923: 164.
Ips kepangi SCHEDL 1942: 181 syn.n.
Ips inclinans SCHEDL 1972: 51 syn.n.

The male lectotype of A. insularis (USNM) from the ‘Key Is.’ (= Indonesia: Maluku, Kai Islands) has been directly compared with the male lectotype of I. kepangi (NMW) from West Malaysia, and with a male and a female of I. inclinans (NMW) from Papua New Guinea, which had earlier been compared with a male paratype (NMW) from Indonesia: Papua. Further specimens from Papua New Guinea in RAB have also been examined. There are small variations in the sculpture of the elytral declivity, but only one species is represented. WOOD & BRIGHT (1992) incorrectly cite a holotype for I. kepangi.

Micracini

Lanurgus podocarpi SCHEDL

Lanurgus podocarpi SCHEDL 1955: 216.
Traglostus brevisetosus SCHEDL 1957: 153 syn.n.
Lanurgus bicolor SCHEDL 1961: 350 syn.n.

I have compared syntypes of L. podocarpi (NHML) from Kenya with specimens from South Africa (TMP, RAB) which had earlier been compared with the holotype of L. bicolor (NICP) from South Africa, and the lectotype of T. brevisetosus (NMW) also from South Africa, and two specimens (NHML) with the same collection data as the type. There are minor differences in the size and colour of the scales of the elytral vestiture, but the specimens are conspecific.

Lanurgus rhusi SCHEDL

Lanurgus rhusi SCHEDL 1963: 42.
Traglostus spatulatus SCHEDL 1982: 282 syn.n.

The holotype of L. rhusi (NICP) has been compared with specimens (TMP, RAB), which were compared with the allotype and male and female paratypes (NMW) of T. spatulatus. All specimens are from South Africa. Only a single species is represented.
Lanurgus widdringtoniae Schedl

Glostatus perplexus Schedl 1982: 281 *syn.n.*

The holotype of *L. widdringtoniae* (NICP) from South Africa has been directly compared with four paratypes of *G. perplexus* (TMP) also from South Africa. They are conspecific. It is evident that Schedl (1982) erred in placing *G. perplexus* in the tribe Xylorhynchini. The species has the typical narrow, parallel-sided micracine protibiae without tibial grooves, and the same type of sexual dimorphism as in *Lanurgus*. It is here synonymised with *L. widdringtoniae*.

Lanurgus xylographus Schedl

Lanurgus xylographus Schedl 1963: 46.
Lanurgus oleaeformis Schedl 1970: 178 *syn.n.*

The holotype of *L. oleaeformis* (NICP) from South Africa has been directly compared with three paratypes of *L. xylographus* (NMW) also from South Africa, and with specimens in RAB from the same country. There are minor differences in the proportions of the pronotum and elytra, and in the arrangement of the elytral setae, but these intergrade in the series. Accordingly, the two species are placed in synonymy.

Phloeosinini

Hyledius cribratus (BLANDFORD)

Phloeosinus cribratus Blandford 1896: 198.
Phloeosinus australis Schedl 1938: 36 *syn.n.*
Phloeosinus tuberculatus Browne 1970: 544 *syn.n.*

I have directly compared the holotype of *H. cribratus* (NHML) from Sumatra and other specimens in NHML with the type series of *Phloeosinus tuberculatus* (NHML) from Myanmar and West Malaysia, and with a series of specimens in RAB from Australia, East Malaysia, Papua New Guinea, Sulawesi, Thailand and West Malaysia. Not surprisingly, given the geographical range (Myanmar to Australia), there is some morphological variation. The type series of *P. tuberculatus* in particular has more strongly developed elytral tubercles than the other specimens, and a more strongly developed frontal carina. However, these specimens lie at one extreme and intergrade with more typical specimens of *H. cribratus* with weaker elytral tubercles and shorter frontal carina or tubercle. The separation of the upper and lower parts of the eye is also variable. In the type series of *P. tuberculatus* and specimens from Sulawesi, the eyes are not quite bipartite, but in most specimens the two halves are distinctly separated. Some of the specimens in RAB were also compared to the holotype of *P. australis* (NMW) from Australia. The latter is a normal specimen of *H. cribratus*. It is evident that there is a single, somewhat variable species, with a wide distribution in the Oriental Region, and extending East of Wallace’s Line to New Guinea and tropical Australia.

Hyledius vilis (BLANDFORD)

Phloeosinus vilis Blandford 1896: 199.
Hylurgulus sumatranus Eggers 1927b: 393 *syn.n.*
Phloeosinus hylurgulus Eggers 1940: 6 (new name for *P. sumatranus* (Eggers, 1927b, nec Eggers, 1923)).
Phloeosinus borneensis Schedl 1942: 172 *syn.n.*
Male and female syntypes of *Hyledius vilis* (NHML) from Sumatra, and other specimens in IRSNB, NHMB, NHML, and RAB from Southeast Asia and Borneo, have been compared with a paratype of *Hylurgulus sumatranus* (MNHP) from Sumatra, and the holotype of *P. borneensis* from Borneo. Only a single species is represented. *Hyledius sumatranus* and *P. borneensis* are therefore placed in synonymy with *H. vilis*. *Hylurgulus sumatranus* is listed in *WOD & BRIGHT* (1992) under the name *H. hylurgulus* but this is now a synonym.

Xyleborini

Ambrosiophilus metaneptotulus (*EGGERS*)

Xyleborus metanepotulus *EGGERS* 1939: 119.

Xyleborus hunanensis *BROWN* 1983: 33 syn.n.

The holotype of *A. metaneptotulus* (Taiwan Agricultural Research Institute, Taichung) from Taiwan was not available for loan, but I have examined high quality photographs taken by M. Sharkey. These have been compared with three specimens from Taiwan in RAB, which had earlier been compared with a paratype and another specimen of *X. hunanensis* (NHML) from Hunan province in China. All are clearly conspecific. The proportions and sculpture (including puncturation, asperities, surface texture and vestiture) of the pronotum and elytra show only minor intraspecific variation. The antenna is of the same form in all, the club with the first segment small and convex apically on the anterior face, the second segment corneous (antennal type 3 of *HULCR et al. 2007*). The foretibia has 6–7 socketed teeth confined to the apical half.

Arixyleborus imitator (*EGGERS*)

Webbia imitator *EGGERS* 1927c: 105.

Arixyleborus dipterocarpi *BROWN* 1981: 133 syn.n.

The holotype of *A. imitator* (USNM) from the Philippines has been examined, and compared with a specimen (MNB) determined by Schedl from the Philippines, and with specimens in RAB from Sulawesi that had earlier been compared with the holotype (NHML) of *A. dipterocarpi*, a species also described from the Philippines. It is clear that *A. dipterocarpi* falls within the morphological range of *A. imitator*, and is here synonymised with that species.

Cyclorhipidion circumcisum (*SAMPSON*)

Xyleborus circumcisus *SAMPSON* 1921: 30.

Xyleborus subobtusus *SCHEDL* 1942: 192 syn.n.

The holotype of *C. circumcisum* (NHML) from West Malaysia has been compared with specimens in RAB from Brunei, East Malaysia and Thailand, and these with the lectotype of *Xyleborus subobtusus* (NMW) from West Malaysia. *BROWN* (1961) noted that *X. subobtusus* was perhaps only a variety of *C. circumcisum*, and examination of specimens from a wider range of localities indicates that *X. subobtusus* falls within the morphological range of the latter species.
Cyclorhipidion fukiensis (EGGERS)

Xyleborus fukiensis EGGERS 1941: 225.
Xyleborus ganshoensis MURAYAMA 1952: 16 syn.n.

Photographs of the holotype (AKMB) of Cyclorhipidion fukiensis from China (Fujian), and a specimen compared to the holotype by Schedl (NMW) have been examined, together with specimens in RAB from Taiwan and Thailand, and compared to the holotype of X. ganshoensis (USNM) from Japan, and a specimen of this species identified by Nobuchi in MIZW. The holotype of X. ganshoensis is damaged with the left elytron detached and mounted on a separate point, and the body partly covered with gum. However, it is recognisably conspecific with the MIZW specimen, and with the specimens of X. fukiensis.

Debus cavulus (BROWNE) comb.n.

Xyleborus cavulus BROWNE 1974: 538.
Xyleborus cavuloides BROWNE 1984: 451 syn.n.

The holotype of X. cavulus (NHML) from West Malaysia has been examined. The species is clearly related to others in the X. emarginatus species-group which was recently given generic status by HULCR & COGNATO (2010) as Debus HULCR & COGNATO. It is here transferred to that genus. The holotype of X. cavuloides (NHML) from East Malaysia has been directly compared to that of X. cavulus, and also to three specimens from New Guinea (NMW, RAB). The latter are intermediate between the two holotypes, and bridge the morphological gap between the species. Accordingly, X. cavuloides is synonymised with D. cavulus.

Debus detritus (EGGERS) comb.n.

Xyleborus detritus EGGERS 1927b: 402.
Xyleborus maniensis BROWNE 1981: 130 syn.n.

I have examined the holotype of X. detritus (NMW) from Java. This species too has to be transferred to the genus Debus. The holotype has been compared with specimens in RAB from East Malaysia that had previously been compared with the holotype of X. maniensis (NHML) described from specimens imported to Japan in timber from ‘Borneo’. They are clearly conspecific. The species are therefore placed in synonymy.

Debus pumilus (EGGERS)

Xyleborus pumilus EGGERS 1923: 209.
Xyleborus neocylindricus SCHEDL 1942: 196 syn.n.

The holotype of X. neocylindricus from West Malaysia is in NMW and not NHML (BEAVER 1998), contrary to the statements by SCHEDL (1942) and WOOD & BRIGHT (1992). It has been examined and compared with a series of specimens in RAB identified as D. pumilus by comparison with specimens in NHML and MNHP determined by Eggers, Schedl and Browne as either X. pumilus or its synonym X. cylindricus, and with the lectotype of X. cylindricus (USNM) from the Philippines. The holotype of X. neocylindricus is identical with the lectotype of X. cylindricus except for the rugulose surface sculpture of the elytra in the former. Xyleborus cylindricus is synonymised with D. pumilus by HULCR & COGNATO (2010). Only the holotype of X. neocylindricus is known, and it appears to be simply an aberration of the more widespread and rather variable D. pumilus.
Fortiborus posticepilosus (SCHEDL) comb.n.

Xyleborus posticepilosus SCHEDL 1951: 92.
Ozopemon major STROHMEYER 1911: 23 syn.n.

The holotype of *X. posticepilosus* (NMW) from the Philippines has been examined. It is related to species, including *X. major* STEBBING which have recently been placed in the genus *Fortiborus* HULCR & COGNATO (HULCR & COGNATO 2010), and is here transferred to that genus. A paratype of *O. major* (MNB) from the Philippines has been examined. It was previously examined in 1942 by Eggers, who determined it as *X. major* STEBBING, but never published his determination. However, the paratype is not conspecific with *F. major* (STEBBING), but with *F. posticepilosus*. Because *Fortiborus* (*Xyleborus*) *major* (STEBBING, 1909) has priority over the junior homonym *F. (Ozopemon) major* (STROHMEYER, 1911), the next available name for the species, *F. posticepilosus* (SCHEDL, 1951) is used for the endemic Philippine species. *Fortiborus major* has a wider, more westerly distribution from Northeast India to West Malaysia.

Micróperus kadoyamaensis (MURAYAMA)

Xyleborus kadoyamaensis MURAYAMA 1934: 290.
Xyleborus huangi BROWNE 1983: 34 syn.n.

Through the courtesy of R. Rabaglia, I have examined a specimen of *M. kadoyamaensis* from Japan that had previously been compared to the holotype (USNM) by M. Knižek, and compared it with a specimen in MIZW determined by Nobuchi, specimens in RAB from Taiwan and Vietnam, and a series of specimens from China (Guangxi) (NHMB). Some of the latter have been compared to a paratype from China (Fujian) of *X. huangi* (NHML). All are conspecific. *Xyleborus huangi* is therefore placed in synonymy with *Micróperus kadoyamaensis*.

Xyleborus volvulus (FABRICIUS)

Bostrichus volvulus FABRICIUS 1775: 454.
Xyleborus volvulus (FABRICIUS): EGGERS 1929: 43.
Xyleborus continentalis EGGERS 1920: 42 syn.n.

The holotype of *X. continentalis* (MNB) from South Africa has been compared with numerous specimens of *X. volvulus* in NHML and RAB from the Neotropical and Afrotropical Regions, including specimens determined by Wood, Schedl and Browne. The holotype falls well within the morphological range of *X. volvulus*, and is therefore placed in synonymy with that species.

Xyroctonini

Ctonoxylon uniseriatum SCHEDL

Ctonoxylon uniseriatum SCHEDL 1965: 114.
Ctonoxylon capensis SCHEDL 1971b: 8 syn.n.

The holotypes of *C. uniseriatum* and *C. capensis* (NMW) from Namibia and South Africa respectively have been directly compared. The holotypes differ in size and to a minor extent in their elytral sculpture, but comparisons with a series of specimens from South Africa (TMP, RAB) show that there is a continuous intergradation in morphology. Consequently, *C. capensis* is placed in synonymy with *C. uniseriatum*.
PLATYPODINAE

Platypodini

Platypus levannongi SCHEDL

A paratype of *P. levannongi* (NMW) from Vietnam has been directly compared with two paratypes of *P. beaveri* from Thailand in my own collection. Only a single species is represented. *Platypus beaveri* was previously synonymised with *Diapus formosanus* NIJIMA & MURAYAMA, 1925 and *Platypus keelungensis* BROWNE, 1985 from Taiwan by BEAVER (2000).

Acknowledgements

Special thanks are due to Dr. H. Schönmann (NMW) who has greatly facilitated my research over the last 25 years with a series of loans of specimens from the Schedl collection. I am also most grateful to the following, who have assisted my study in various ways, principally by allowing access to and/or loans from the collections in their care: T. Wagner (AKMB), L. Zerche (DEI), O. Merkl (HNHM), P. Limbourg (IRSNB), D. Mierzwa (MIZW), J. Frisch (MNB), V. Švihla (MNHP), M. Brancucci (NHMB), M. Barclay (NHML), R. Staals (NICP), C. Bellamy (TMP), R. Rabaglia (United States Department of Agriculture, Forest Service), N. Vandenberg (USNM). I thank J. Hulcr (North Carolina State University) and A.I. Cognato (Michigan State University) for making parts of their papers on the Xylocorini of New Guinea available prior to publication, and M. Sharckey (University of Kentucky) for photographs of the holotype of *Ambrostiphilus metanepotulus*.

References

BEAVER: New synonymy and taxonomic changes (CURCULIONIDAE: SCOLYTINAE, PLATYPODINAE) 287

EICHHOFF, W. 1878b: Ratio, descriptio, emendatio eorum Tomicinorum qui sunt in Dr. medic. Chapuisii et autori sis ipiae collectionibus et quos praeterea recognovit scriptor. – Mémoires de la Société Royale de Sciences de Liège, 2e Sér., 8: 1–531, pls. I–V.

SCHEDL, K.E. 1955: Contributions to the morphology and taxonomy of the Scolytoidea. – Zootaxa 2717: 1–33.

MURAYAMA, J. 1952: Notes on the scolytid beetles from southern and western parts of Izu peninsula, Shizuoka prefecture. – Bulletin of the Faculty of Agriculture, Yamaguti University 3: 15–23.

SAMPSON, F.W. 1921: Further notes on Platypodidae and Scolytidae collected by Mr G.E. Bryant and others. – Annals and Magazine of Natural History ser. 9, 7: 25–37.

SCHEDL, K.E. 1953: Fauna Indo-malayensis III. Contribution 133 to the morphology and taxonomy of the Scolytoidea. – Annals and Magazine of Natural History ser. 12, 6: 288–304.

SCHEDL, K.E. 1955: Contributions to the morphology and taxonomy of the Scolytoidea. 147. New records and new species of Scolytidae from Africa. – Annals and Magazine of Natural History ser. 12, 8: 211–220.

SCHEDL, K.E. 1957: Bark and timber beetles from South Africa. – Annals and Magazine of Natural History ser. 12, 10: 149–159.

BEAVER: New synonymy and taxonomic changes (CURCULIONIDAE: SCOLYTINAEE, PLATYPODINAE) 289

WOOD, S.L. 2007: Bark and ambrosia beetles of South America (Coleoptera, Scolytidae). – Provo, Utah: Monte L. Bean Life Science Museum, Brigham Young University, 900 pp., pl. CCXX.

Dr. Roger A. BEAVER
161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand (rogerbeaver6@gmail.com)