Robber Flies (Diptera: Asilidae) of Iranian Rice Fields and Surrounding Grasslands

H. GHAHARI, R. HAYAT, P.A. LEHR †, R. LAVIGNE & H. OSTOVAN

Abstract: Rice fields are an interesting agroecosystem that supports a diverse insect fauna. Robber flies (Insecta: Diptera: Asilidae) were studied in rice fields and the surrounding grasslands of Iran from 2002 to 2006. Twenty six species representing 19 genera and 7 subfamilies of asilids were collected resting on rice seedlings and 23 species of weedy plants surrounding fields. Of these, 9 species are new records for Iranian fauna.

Key words: Asilidae, Rice fields, Weeds, Iran.

Introduction

Rice is the primary food for half the people in the world, providing more calories than any other single food. Arthropods are the main terrestrial invertebrates of rice fields. Most are insects and spiders that largely inhabit the vegetation and soil surface. These arthropod communities can be further divided into rice pests, their natural enemies (predators and parasitoids) and neutral forms. In rice fields the composition of the terrestrial arthropod communities are known to change during the growth of the rice crop (BAMBARADENIYA & AMERASINGHE 2003). Several pests including, stem borers (Lepidoptera: Pyralidae), *Naranga aenescens* MOORE, *Pseudaletia unipunctata* HAWORTH (Lepidoptera: Noctuidae), plant hoppers (Homoptera: Cicadellidae, Delphacidae), and grasshoppers (Orthoptera: Acrididae), damage and reduce the yields of this crop (DATTA & KHUSH 2002). Although pesticides can control many of the rice pests, because of environmental risks and the killing of beneficial species (natural enemies and pollinators), their use is not efficient and safe (KHAN et al. 1991).

Several natural enemies of pests, especially predators, can potentially decrease the population densities of rice pests (MOHYUDDIN 1990; BONHOFF et al. 1997). The most important predators collected in rice fields are in the insect orders Coleoptera, Hemiptera, Hymenoptera, Diptera (especially Asilidae and Syrphidae), Mantodea, Odonata, and Orthoptera. Numerous spider species are also present (POLASZEK 1998; HEINRICHS & BARRION 2004).

Robber flies comprise an abundant and diverse family of Diptera known for their predatory behavior. The family Asilidae belongs to the superfamily Asiloidea within the suborder Brachycera and contains approximately 6,750 described species distributed
throughout the world (GELLER-GRIMM 2002). Certain groups are characteristic of particular regions (HULL 1962). For instance, the subfamily Megapodinae is restricted to the Neotropical Region. Large island chains tend to contain abundant asilid faunas, particularly those in southern Asia (WOOD 1981), whereas considerably fewer species occur on smaller island groups, such as the Hawaiian chain (LONDT 2006).

As their common name implies, robber flies have voracious appetites and feed on a vast array of other arthropods, a habit that may help maintain a healthy balance among insect populations in various habitats (JOERN & RUDD 1982; SHUROVNEKOV 1962). Adults of Asilidae attack wasps, bees, dragonflies, grasshoppers, other flies, and some spiders. Robber flies are particularly abundant in arid, sandy and sunny habitats, which supply optimal conditions for the observation of their many forms and behaviors.

Female asilids deposit eggs on leaves or stems of low-lying plants and grasses, in crevices within soil, under bark, or in burrows of wood-boring insects. Egg-laying habits depend on the species and its specific habitat; most species lay their eggs in groups while a few species deposit their eggs in masses, which are then covered with a chalky protective coating. However, females of the Leptogastrinae drop their eggs singly in flight (DENNIS & LAVIGNE 1976b). Many robber fly larvae live in the soil; others inhabit wood or other various decaying organic materials that occur in their environment; they are predacious, feeding on eggs, larvae, or other soft-bodied insects. Robber flies overwinter as larvae and pupate in the larval site. Pupae burrow upwards and emerge as adults, leaving behind their pupal casing. Complete development ranges from one to three years, depending on the species and environmental conditions (CANNINGS 1998). THEODOR (1980) proposed that larval growth is accelerated in warmer regions and that many asilid species live no longer than one year.

Robber flies seize their prey in flight and inject their victims with saliva containing a neurotoxin and proteolytic enzymes. This injection, inflicted by their modified mouthparts (hypotharynx), rapidly immobilizes prey and digests bodily contents (MUSSO 1978). The robber fly soon has access to a liquid meal, which is generally consumed upon returning to a perch.

The nature of the prey taken by adult robber flies appears to depend on many factors, but the most important may be the composition of the local insect fauna. LEHR (1959, 1964) has shown that changes in the seasonal feeding habits of robber flies often correspond to changes in the composition of the insect fauna. Additionally, according to ADAMOVIC (1963), the abundance of prey varies from year to year, and this may result in variation in the robber fly diet.

Estimates of the number of prey consumed daily by asilids have been given by DENNIS & LAVIGNE (1975, 1976a), LAVIGNE & DENNIS (1975) and LEHR (1964). These estimates have been derived from data that deals with the major period of foraging activity, average feeding and inter-feeding times, and the number of robber flies feeding in a given area. Thus, LEHR (1972) hypothesized that asilids in Russia consume between 9 and 18 prey per day.

Robber flies generally establish a perching zone in which to locate potential prey. This zone serves to separate various predator species in a single habitat as well as partitioning available resources (LEHR 1979; LONDT 1994).
Materials and Methods

Asilids were collected mainly by sweeping vegetation with a net (17" diameter) and utilizing light traps (2002-2006). Specimens were killed in cyanide jars, pinned, and wings were spread. Labels were printed which contained information on locality, plants on which the asilids were perched and date of collection. The second and fifth authors identified or confirmed the identification of the robber flies. In addition to field collections from rice fields and surrounding vegetation, materials in the collections of Tehran (Science & Research Branch), Shahr-e-Rey, Ghaemshahr and Amol Islamic Azad Universities, and Iran Rice Research Institute (Amol) were examined. The majority of specimens are deposited in the collection of 3rd author with additional material placed in the collection of 3rd author. The nomenclature and distributional data in the following records are based on data in CANNINGS (1998) and GELLER-GRIMM (2005).

Species list

Twenty six species in 19 genera and 7 subfamilies were collected from rice fields and surrounding grasslands in various localities throughout Iran. Of these, nine species are new records for Iranian fauna. The list of identified species, date of collection, sex of the predator and habitat or the plants on which they were collected, is given below:

Subfamily Apocleinae PAPAVERO 1973

Apoclea micracantha LOEW 1856

Distribution: Egypt, Tunisia, Libya, Israel, Yemen and Morocco.

Philodicus ponticus (BIGOT 1880)

Synonymy: *Alcimus bimaculatus* BECKER in BECKER & STEIN 1913.

Distribution: Greece, USSR-South European territory, Transcaucasus (incl. Azerbaijan), Soviet Middle Asia, Iraq, Israel, Turkey and Afghanistan.

Promachus canus (WIEDEMANN 1818)

Synonymy: *Asilus tesselatus* PALLAS in WIEDEMANN 1818 (nomen nudum).

Distribution: USSR-South European territory, Kazakh (incl. Turkistan), Soviet Middle Asia, Afghanistan, Turkey and Taiwan.
Promachus leoninus LOEW 1848

Distribution: Greece, Romania, Turkey, Yugoslavia (incl. Bosnia-Herzegovina, Croatia, Macedonia, Slovenia), USSR-South European territory, Transcaucasus (incl. Azerbaijan), Israel, Turkey, Myanmar (Burma) and India.

Subfamily Asilinae LATREILLE 1802

Aneomochtherus mundus (LOEW 1849)

Distribution: Greece and Turkey.

Aneomochtherus perplexus (BECKER 1923)

Material: Mazandaran province: Savadkooh (Xanthium pensylvanicum, Compositeae), 1♂; June 2006. Golestan province: Gorgan (Rubus hyrcanus, Rosaceae), 1♀; September 2006.

Distribution: Soviet Middle Asia.

Machimus annulipes (BRULLÉ 1832)

Synonymy: Asilus basalis LOEW 1849/ A. cerdo GERSTAECKER 1861.

Distribution: Albania, Bulgaria, Greece, Hungary, Poland, Romania, Yugoslavia (incl. Bosnia-Herzegovina, Croatia, Macedonia, Slovenia), USSR-South European territory, Transcaucasus (incl. Azerbaijan), Israel, Turkey and Switzerland.

Machimus armipes BECKER in BECKER & STEIN 1913

Material: Mazandaran province: Savadkooh (Xanthium pensylvanicum, Compositeae), 1♀; June 2006. Golestan province: Gorgan (Rubus hyrcanus, Rosaceae), 1♀; September 2006.

Distribution: Soviet Middle Asia.

Machimus rusticus (MEIGEN 1820)

Synonymy: Asilus gemualis ZELLER 1840/ A. obscurus MEIGEN 1820.

Material: Mazandaran province: Sari (Rice field), 1♀; April 2004. Isfahan province: Khomeyni Shahr (Polygonum convolvulus, Polygonaceae), 2♀♂; September 2005.

Distribution: Austria, Albania, Bulgaria, Czech Republic and Slovakia, Ger-
many, Spain, France, United Kingdom, Italy, The Netherlands, Poland, Romania, Yugoslavia (incl. Bosnia-Herzegovina, Croatia, Macedonia, Slovenia), USSR-Central and South European territories, Kazakh (incl. Turkistan), Soviet Middle Asia, Switzerland, Greece, Turkey and Belgium.

Machimus thoracius (LOEW 1849)

Materi a l: Khuzestan province: Ahwaz (Hibiscus syriacus, Malvaceae), 1♀; August 2005. Mazandaran province: Amol (Rice field), 2♂♂; July 2006.

Distribution: Hungary, Turkey.

Philonicus albiceps (MEIGEN 1820)

Materi a l: Mazandaran province: Fereydonkenar (Amaranthus retroflexus; Amaranthaceae), 1♀; September 2005.

Distribution: Austria, Albania, Belgium, Bulgaria, Switzerland, Czech Republic and Slovakia, Cyprus, Germany, Denmark, Spain, France, Coarse, Liechtenstein, United Kingdom, Greece, Hungary, Italy, Ireland, Iceland, Luxembourg, Malta, Norway, The Netherlands, Portugal, Poland, Romania, Sweden, Finland, Turkey, Yugoslavia (incl. Bosnia-Herzegovina, Croatia, Macedonia, Slovenia), USSR-North, Central and South European territories, Transcaucasus (incl. Azerbaijan), West, East Siberia, Far East, Mongolia and Israel.

Polysarca ungu lata (WIEDEMANN 1818)

Synonymy: Laphria/A. ungu lata PALLAS: collection name.

Materi a l: Guilan province: Rasht (Rice field), 1♀; 14 August 2005. New record for the Iranian fauna.

Distribution: Central and South European territory, Russia, Kazakh, Soviet Middle Asia, Turkey.

Satanas gigas (EVERSMANN 1855)

Materi a l: Mazandaran province: Sari (Rice field), 1♀; April 2006.

Distribution: Greece, Romania, USSR-Central and South European territories, Transcaucasus (incl. Azerbaijan), Kazakh (incl. Turkistan), Israel, Mongolia, China, Turkey, Algeria, Libya and Egypt.

Trichomachimus oldroydi MOUCHA & HRADSKY 1964

Materi a l: Guilan province: Fooman (Rice field), 1♂, 1♀; 5. April 2006. New record for the Iranian fauna.

Distribution: Afghanistan.
Trichomachimus klapperichi Moucha & Hradsky 1964

Distribution: Afghanistan.

Subfamily Dasypogoninae Macquart 1838

Tribe Dasypogonini Macquart 1838

Dasypogon octonotatus Loew 1869

Synonymy: As ssp. of *D. diadema*/*Dasypogon variabilis* Brullé 1832 (Engel 1930; Weinberg 1991).

Distribution: Greece, Turkey, Romania, USSR-Central and South European territories, Transcaucasus (incl. Azerbaijan), Kazakh (incl. Turkistan), Soviet Middle Asia, West Siberia and Mongolia.

Saropogon longicornis (Macquart 1838)

Distribution: Egypt and Israel.

Subfamily Laphriinae Macquart 1838

Tribe Laphriini Macquart 1838

Choerades gilva (Linnaeus 1758)

Subfamily *Laphystiinae*

Acrochordomerus aeneus HERMANN 1920

Distribution: Syria, Turkey.

Subfamily *Stenopogoninae* HULL 1962

Tribe Dioctriini ENDERLEIN 1936

Dioctria flavipennis MEIGENI 1820

Synonymy: *D. aurifrons* MEIGEN 1820.

Distribution: Austria, Bulgaria, Czech Republic, Germany, France, Hungary, Poland, Romania, USSR, Switzerland, Turkey.

Tribe Stenopogonini HARDY 1930

Anarolius fronto LOEW 1873

Material: Golestan province: Kordkoy (Rice field), 1♀; July 2006. New record for the Iranian fauna.

Distribution: Russia, Kazakh, Soviet Middle Asia, Turkey.

Anisopogon asiaticus OLDROYD 1963

Distribution: Afghanistan.

Cyrtopogon centralis LOEW 1871

Distribution: Russia (West and East Siberia, Far East), Mongolia, China, South and North Korea, Turkey.

Stenopogon junceus (WIEDEMANN in MEIGEN 1820)

Synonymy: *Dasypogon tanygastrus* LOEW 1861.

Material: Babol (Rice field), 1♂; September 2005.

Distribution: Spain, France, Greece, Turkey, USSR-South European territory, Transcaucasus (incl. Azerbaijan), Israel, Turkey, Afghanistan and Morocco.
Stenopogon roederii BEZZI 1895

Material: Mazandaran province: Behshahr (Rice field), 1♀; 3 July 2006. New record for the Iranian fauna.

Distribution: Italy, Russia, Soviet Middle Asia, Transcaucasia (incl. Azerbaijan), Turkey.

Subfamily Stichopogoninae HARDY 1930

Stichopogon scaliger conjungens BEZZI 1910

Material: Guilan province: Rasht (Rice field), 1♀; 7 April 2005. New record for the Iranian fauna.

Distribution: Greece, Italy, Russia, Kazakh, Soviet Middle Asia, Turkey.

Acknowledgements

Torsten Dikow (Department of Entomology, Cornell University, USA) and Dr. Hakan Çalışkan (Osmangazi University of Turkey) for editing the manuscript. We also thank Dr. Hamid Sakenin (Ghaemshahr Islamic Azad University), Eng. Mehrdad Tabari (Amol Rice Research Institute) for invaluable aid and the loan of multiple specimens; we also express our appreciation to Eng. Hamid Reza Mohebbi (Shahr-e-Rey Islamic Azad University) for identifying the botanical specimens. The research was supported by Tehran Islamic Azad University and Iran Rice Research Institute.

References

SHUROVNEKOVB.G. (1962): Field entomophagous predators (Coleoptera, Carabidae, and Diptera, Asilidae) and factors determining their efficiency. — Entomological Review 41: 476-485.

Author's addresses:
Hassan GHAHARI Department of Entomology
Islamic Azad University; Tehran Science & Research Branch; Iran
E-mail: h_gahhari@yahoo.com

Rüstem HAYAT
Department of Plant Protection,
Faculty of Agriculture, Atatürk University
TR-25240 Erzurum, Turkey;
E-mail: rhayat@atauni.edu.tr

Pavel A. LEHR (†)
Institute of Biology and Soil,
Far Eastern Division, Russian Academy of Sciences
RUS-Vladivostok, Russia (deceased)

Robert LAVIGNE
Entomology Section, South Australia Museum
North Terrace, Adelaide, SA 5000, Australia
E-mail: rjlavigne@netspace.net.au

Hadi OSTOVAN
Department of Entomology,
Islamic Azad University, Fars Science and Research Branch, Iran
E-mail: ostovan2002@yahoo.com