First record of gynandromorphism in the subfamily Chrysidinae (Hymenoptera: Chrysididae)

Paolo ROSA & Herbert ZETTEL

Abstract: A gynandromorph of *Holopyga fervida* (FABRICIUS, 1781) is described. This is the first record of a gynandromorph for the subfamily Chrysidinae and the second for the family Chrysididae. *Holopyga fervida* shows a strong sexual dimorphism in colour and surface sculpture. The studied specimen from Lower Austria is a mostly female-like mosaic gynandromorph with a male-like area on the pronotum.

Key words: *Holopyga fervida*, gynandromorph, sexual dimorphism, cuckoo wasps.

Introduction

Gynandromorphism is the phenomenon by which an organism possesses tissue that is genotypically and phenotypically male and female (NARITA et al. 2010), thus showing male and female features. A gynandromorph (or gynander) can have a bilateral or transversal symmetry, when male and females traits are clearly developed along a particular axis of the body, or a mosaic pattern having male and female patches across the body (CAMPOS et al. 2011, WCISLO et al. 2004, SKVARLA & DOWLING 2014).

Gynandromorphy is a widespread phenomenon among Hymenoptera in general and many cases have been reported in the last decades (see, e.g., Apidae listed by MICHEZ et al. 2009 for bees). The underlying genetic mechanism of gynandromorphy concerns a gen locus, the so-called "single locus of complementary sex determination" (sl-CSD) (WILGENBURG et al. 2006). Hymenopteran females are normally diploid heterozygotes (A1A2), and males are either haploid (A1 or A2) or, rarely, diploid and homozygous (A1A1 or A2A2) for the mentioned sex determination allele. In gynandromorphs showing female and male characters, female parts have to be CSD heterozygous while male tissues should be either CSD hemizygous (A1 or A2) or CSD homozygous (WILGENBURG et al. 2006, MICHEZ et al. 2009). For mosaic gynandromorphs, as in the treated case, two theories have been developed: in the first case it is implied that the chromosome bearing CSD is lost which might take place during the stage of zygote cell division. The second case implies mutation and/or inhibition that inactivates (A1A2 or A1A2) or removes part of the CSD allele (A1 or A2) but not the entire chromosome (MICHEZ et al. 2009, and references cited therein).

Within Hymenoptera, gynandromorphy may be the result of developmental aberrations or *Wolbachia*-induced parthenogenesis; higher temperatures partially suppress the action of the bacterial symbiont and result in the formation of gynandromorphs (BOWEN & STERN 1966, CABELLO-GARCÍA & VARGAS-PIQUERAS 1985, RAFAEL et al. 2017).

One case of gynandromorphy has already been reported for the family Chrysididae, subfamily Cleptinae (STRUMIA 2004), even if this record remained widely ignored because it was published within a taxonomical article. STRUMIA (2004) described an outstanding mosaic gynandromorph of *Cleptes triestensis* MÓCZÁR, 2000.

Here we describe the first case of gynandromorphism in *Holopyga fervida* (FABRICIUS, 1781) and by that in the entire subfamily Chrysidinae. This subfamily is well known for sexually dimorphic characters, especially in body colour and surface sculpture (LINSENMAIER 1959).

Holopyga fervida is a common and widespread species in Central Europe and in the Mediterranean countries; northwards it reaches Denmark (PAUKKUNEN et al. 2015), eastwards the Middle East (ROSA et al. 2013). The host is unknown. The wasps usually fly on sparsely vegetated areas, on sand, loess and clay banks, visiting flowers of Apicaceae, Asteraceae, and Euphorbiaceae (HEINRICH 1964, HOOP 1971, LINSENMAIER 1997, ROSA 2004).

Materials and methods

Material examined: Gynandromorph collected at Spitz an der Donau (N 48°22', E 15°25', ca. 220 m a.s.l.) in Lower Austria and deposited in the collection of the Natural History Museum in Vienna.

Methods: The specimen was examined and described under a Carton Togal stereomicroscope. Photographs were taken with a Nikon D-3400 camera connected to the Togal SCZ stereomicroscope and stacked with the Combine ZP software.

Results and discussion

Description of the gynandromorph of *Holopyga fervida* (FABRICIUS, 1781)

Body length: 6.2 mm.

Head. General appearance female-like (Figs. 1A, 2A). Red-purple, with blue scapal
basin. Frons, vertex, gena, face between eye, and scapal basin with tiny and shallow punctures, 1-3 puncture diameters apart, separated by polished interstices; scapal basin asetose and smooth; ocellar-triangle isoseles; postocellar line distinct and deep; antennae 13-segmented; in dorsal view, angular margins of the head (temples) as acute angles.

Mesosoma. Female-like, except for a male mosaic area on pronotum. Pronotum medially divided into a left masculine and a right feminine part (Figs. 1A, 2A). The most evident difference is colour: the left side is emerald green as typical for males, in contrast with the red-purple colouration of the female body. Yet, the punctuation of this area is critical for a sexual assignment: male punctuation is coarser, with larger punctures closer, and micropunctate on interstices, whereas the female's pronotum has sparser punctures, without micropunctuation on interstices, but with smooth intervals (comp. Figs. 1B-C). Mesoscutum, mesoscutellum, metanotum, propodeum, and mesopleuron female-like, with mesoscutum and mesoscutellum red-purple, the latter largely impunctate and apically with large punctures, with greenish-blue bottom; mesopleuron, metanotum, and propodeum dark blue, metanotum with foveate-reticulate punctures.

Metasoma. Female-like, terga red-purple, sterna brownish. Terga evenly punctate, with small punctures about one puncture diameter apart; laterally with denser punctures. Apical margin of metasomal terga impunctate or shallowly punctate, brownish; apex of third metasomal tergum with raised brownish rim.

Fig. 1: *Holopyga fervida*, head and mesosoma: (A) gynandromorph; (B) male; (C) female.

Identification and variability of Holopyga fervida

Holopyga fervida is a typical example of a strongly sexually dimorphic species of Chrysididae, males and females being differently coloured, shaped and sculptured. The female is mostly shiny red-purple, with legs, metanotum, mesopleuron, propodeum, and lower part of head blue; conversely, the male is entirely green to blue-green, sometimes with golden reflections on metasoma and occasionally with golden reflections also on
head and mesosoma (var. taorminensis TRAUTMANN, 1922; Fig. 2E). The habitus is different: the metasoma of the female is elongated, whereas that of the male has a regularly rounded posterior margin. The body punctuation is also considerably different: the female has small, sparse punctures with polished interstices; the male has a coarse, double punctuation, with tiny dots on interstices. Significantly different is the punctuation of the mesoscutellum, almost entirely polished in female (Fig. 1C) and densely micropunctate in male (Fig. 1B).

In Northern Europe, the male can be confused with H. metallica DAHLBOM, 1854, but it is recognizable for the coarser and denser metasomal punctuation, with interstices smaller than a puncture diameter, whereas in H. metallica the metasoma punctuation is fine and sparse (see pictures in PAUKKUNEN et al. 2015). The female of H. metallica is easily recognizable because its colour and sculpture are similar to the male. In Eastern Mediterranean countries, the Near East and Middle East H. fervida can be confused with H. buyssoni MERCET, 1902 (often considered as its eastern subspecies), but both sexes of this species are recognizable by large and coarse punctures on the metasoma.

For a very long time, males and females of Holopyga fervida were considered different species because of the remarkable sexual dimorphism. The male had been considered a valid species named either H. curvata (FÖRSTER, 1853) or H. chloroidea (DAHLBOM, 1854). TRAUTMANN’s (1922) hypothesis that H. curvata could be the male of H. fervida was not immediately accepted (e.g., INVREA, 1923). Still LINSENMAIER (1959, 1968, 1969) considered H. chloroidea as the separate subspecies of H. fervida distributed in Asia Minor, Syria, Palestine, and Cyprus. His interpretation, even though not in contrast with the original distribution of H. chloroidea, was a source of taxonomical instability and for this reason ROSA & XU (2015) designated the lectotype of H. chloroidea. This eastern Mediterranean species with an obvious coarser punctuation is currently referred to as H. buyssoni.

The Paris Museum houses an interesting female specimen of H. fervida with the aberrant colour of a male. It was collected near Paris and erroneously designated as the lectotype of H. chloroidea by KIMSEY (1986) (see ROSA & XU 2015). A second female of such colour was collected by Fritz Blühweiss in the Danube wetlands ("Donauauen") in eastern Austria (probably in or close to Vienna). This specimen (Fig. 2D), housed at the Vienna Museum, has been labelled by Karl Hammer as the type of "Holopyga fervida var. viridis", but it was never formally described.

Males of H. fervida can be very variable in colour (Figs 2B, 2E, 2F). The typical colour is green, but several specimens from all over Europe are entirely deep blue (Fig. 2F, H. fervida violacea HOFFMANN, 1935) or green with golden metasoma. In the southernmost European localities, males can be variably golden red. An extreme colour form was described as H. fervida taorminensis TRAUTMANN, 1922 (Fig. 2E).

The specimen here described as a gynandromorph shows the left half of the pronotum green and with coarse and double punctuation, referable to a phenotypic trait of the male, while all other features are that of a female. The aberrant character of this specimen is very obvious. The authors presently do not have an explanation why gynandromorphism is so rare in cuckoo wasps, compared to some other families of Aculeata like spider wasps or bees, where this phenomenon is more frequently observed (e.g., WAHIS 1996, MICHEZ et al. 2009).
Fig. 2: *Holopyga fervida*, habitus: (A) gynandromorph; (B) male, normal colour; (C) female, normal colour; (D) female, green variation; (E) male, holotype of *H. fervida* var. *taorminensis*; (F) male, holotype of *H. fervida* var. *violacea*. Scale bars: 1.0 mm.
Acknowledgements

The first author thanks Dr. Dominique Zimmermann (Natural History Museum Vienna) for enabling a research visit in 2018. We thank Alice Lacin MSc (Natural History Museum Vienna) for a language review, and Sabine Schoder MSc (University of Vienna) for her input on gynandromorphism theories.

Zusammenfassung

References

JACKSON D.J. (1959): Observations on three gynandromorphs of *Caraphractus cinctus* WALKER (Hym., Mymaridae), and notes on antennal variation in this species. — Entomologist's Monthly Magazine 95: 198-203.

Authors' addresses: Mag. Paolo ROSA
Via Belvedere 8/d, 20881 Bernareggio (MB), Italy
E-Mail: rosa@chrysis.net

Dr. Herbert ZETTEL
Natural History Museum, 2nd Zoological Department
Burgring 7, 1010 Vienna, Austria
E-Mail: herbert.zettel@nhm-wien.ac.at